Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/* irq.c: UltraSparc IRQ handling/init/registry.
  2 *
  3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
  4 * Copyright (C) 1998  Eddie C. Dost    (ecd@skynet.be)
  5 * Copyright (C) 1998  Jakub Jelinek    (jj@ultra.linux.cz)
  6 */
  7
  8#include <linux/sched.h>
  9#include <linux/linkage.h>
 10#include <linux/ptrace.h>
 11#include <linux/errno.h>
 12#include <linux/kernel_stat.h>
 13#include <linux/signal.h>
 14#include <linux/mm.h>
 15#include <linux/interrupt.h>
 16#include <linux/slab.h>
 17#include <linux/random.h>
 18#include <linux/init.h>
 19#include <linux/delay.h>
 20#include <linux/proc_fs.h>
 21#include <linux/seq_file.h>
 22#include <linux/ftrace.h>
 23#include <linux/irq.h>
 24#include <linux/kmemleak.h>
 25
 26#include <asm/ptrace.h>
 27#include <asm/processor.h>
 28#include <linux/atomic.h>
 29#include <asm/irq.h>
 30#include <asm/io.h>
 31#include <asm/iommu.h>
 32#include <asm/upa.h>
 33#include <asm/oplib.h>
 34#include <asm/prom.h>
 35#include <asm/timer.h>
 36#include <asm/smp.h>
 37#include <asm/starfire.h>
 38#include <asm/uaccess.h>
 39#include <asm/cache.h>
 40#include <asm/cpudata.h>
 41#include <asm/auxio.h>
 42#include <asm/head.h>
 43#include <asm/hypervisor.h>
 44#include <asm/cacheflush.h>
 45
 46#include "entry.h"
 47#include "cpumap.h"
 48#include "kstack.h"
 49
 50#define NUM_IVECS	(IMAP_INR + 1)
 51
 52struct ino_bucket *ivector_table;
 53unsigned long ivector_table_pa;
 54
 55/* On several sun4u processors, it is illegal to mix bypass and
 56 * non-bypass accesses.  Therefore we access all INO buckets
 57 * using bypass accesses only.
 58 */
 59static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
 60{
 61	unsigned long ret;
 62
 63	__asm__ __volatile__("ldxa	[%1] %2, %0"
 64			     : "=&r" (ret)
 65			     : "r" (bucket_pa +
 66				    offsetof(struct ino_bucket,
 67					     __irq_chain_pa)),
 68			       "i" (ASI_PHYS_USE_EC));
 69
 70	return ret;
 71}
 72
 73static void bucket_clear_chain_pa(unsigned long bucket_pa)
 74{
 75	__asm__ __volatile__("stxa	%%g0, [%0] %1"
 76			     : /* no outputs */
 77			     : "r" (bucket_pa +
 78				    offsetof(struct ino_bucket,
 79					     __irq_chain_pa)),
 80			       "i" (ASI_PHYS_USE_EC));
 81}
 82
 83static unsigned int bucket_get_irq(unsigned long bucket_pa)
 84{
 85	unsigned int ret;
 86
 87	__asm__ __volatile__("lduwa	[%1] %2, %0"
 88			     : "=&r" (ret)
 89			     : "r" (bucket_pa +
 90				    offsetof(struct ino_bucket,
 91					     __irq)),
 92			       "i" (ASI_PHYS_USE_EC));
 93
 94	return ret;
 95}
 96
 97static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
 98{
 99	__asm__ __volatile__("stwa	%0, [%1] %2"
100			     : /* no outputs */
101			     : "r" (irq),
102			       "r" (bucket_pa +
103				    offsetof(struct ino_bucket,
104					     __irq)),
105			       "i" (ASI_PHYS_USE_EC));
106}
107
108#define irq_work_pa(__cpu)	&(trap_block[(__cpu)].irq_worklist_pa)
109
110static struct {
111	unsigned int dev_handle;
112	unsigned int dev_ino;
113	unsigned int in_use;
114} irq_table[NR_IRQS];
115static DEFINE_SPINLOCK(irq_alloc_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
117unsigned char irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
118{
119	unsigned long flags;
120	unsigned char ent;
121
122	BUILD_BUG_ON(NR_IRQS >= 256);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
124	spin_lock_irqsave(&irq_alloc_lock, flags);
 
 
125
126	for (ent = 1; ent < NR_IRQS; ent++) {
127		if (!irq_table[ent].in_use)
 
 
 
 
 
128			break;
 
129	}
130	if (ent >= NR_IRQS) {
131		printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
132		ent = 0;
133	} else {
134		irq_table[ent].dev_handle = dev_handle;
135		irq_table[ent].dev_ino = dev_ino;
136		irq_table[ent].in_use = 1;
137	}
138
139	spin_unlock_irqrestore(&irq_alloc_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
141	return ent;
 
 
 
 
 
 
 
 
 
 
 
142}
143
144#ifdef CONFIG_PCI_MSI
145void irq_free(unsigned int irq)
146{
147	unsigned long flags;
148
149	if (irq >= NR_IRQS)
150		return;
 
 
151
152	spin_lock_irqsave(&irq_alloc_lock, flags);
 
 
153
154	irq_table[irq].in_use = 0;
 
 
155
156	spin_unlock_irqrestore(&irq_alloc_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157}
158#endif
159
160/*
161 * /proc/interrupts printing:
162 */
163int arch_show_interrupts(struct seq_file *p, int prec)
164{
165	int j;
166
167	seq_printf(p, "NMI: ");
168	for_each_online_cpu(j)
169		seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
170	seq_printf(p, "     Non-maskable interrupts\n");
171	return 0;
172}
173
174static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
175{
176	unsigned int tid;
177
178	if (this_is_starfire) {
179		tid = starfire_translate(imap, cpuid);
180		tid <<= IMAP_TID_SHIFT;
181		tid &= IMAP_TID_UPA;
182	} else {
183		if (tlb_type == cheetah || tlb_type == cheetah_plus) {
184			unsigned long ver;
185
186			__asm__ ("rdpr %%ver, %0" : "=r" (ver));
187			if ((ver >> 32UL) == __JALAPENO_ID ||
188			    (ver >> 32UL) == __SERRANO_ID) {
189				tid = cpuid << IMAP_TID_SHIFT;
190				tid &= IMAP_TID_JBUS;
191			} else {
192				unsigned int a = cpuid & 0x1f;
193				unsigned int n = (cpuid >> 5) & 0x1f;
194
195				tid = ((a << IMAP_AID_SHIFT) |
196				       (n << IMAP_NID_SHIFT));
197				tid &= (IMAP_AID_SAFARI |
198					IMAP_NID_SAFARI);
199			}
200		} else {
201			tid = cpuid << IMAP_TID_SHIFT;
202			tid &= IMAP_TID_UPA;
203		}
204	}
205
206	return tid;
207}
208
209struct irq_handler_data {
210	unsigned long	iclr;
211	unsigned long	imap;
212
213	void		(*pre_handler)(unsigned int, void *, void *);
214	void		*arg1;
215	void		*arg2;
216};
217
218#ifdef CONFIG_SMP
219static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
220{
221	cpumask_t mask;
222	int cpuid;
223
224	cpumask_copy(&mask, affinity);
225	if (cpumask_equal(&mask, cpu_online_mask)) {
226		cpuid = map_to_cpu(irq);
227	} else {
228		cpumask_t tmp;
229
230		cpumask_and(&tmp, cpu_online_mask, &mask);
231		cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp);
232	}
233
234	return cpuid;
235}
236#else
237#define irq_choose_cpu(irq, affinity)	\
238	real_hard_smp_processor_id()
239#endif
240
241static void sun4u_irq_enable(struct irq_data *data)
242{
243	struct irq_handler_data *handler_data = data->handler_data;
244
 
245	if (likely(handler_data)) {
246		unsigned long cpuid, imap, val;
247		unsigned int tid;
248
249		cpuid = irq_choose_cpu(data->irq, data->affinity);
 
250		imap = handler_data->imap;
251
252		tid = sun4u_compute_tid(imap, cpuid);
253
254		val = upa_readq(imap);
255		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
256			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
257		val |= tid | IMAP_VALID;
258		upa_writeq(val, imap);
259		upa_writeq(ICLR_IDLE, handler_data->iclr);
260	}
261}
262
263static int sun4u_set_affinity(struct irq_data *data,
264			       const struct cpumask *mask, bool force)
265{
266	struct irq_handler_data *handler_data = data->handler_data;
267
 
268	if (likely(handler_data)) {
269		unsigned long cpuid, imap, val;
270		unsigned int tid;
271
272		cpuid = irq_choose_cpu(data->irq, mask);
273		imap = handler_data->imap;
274
275		tid = sun4u_compute_tid(imap, cpuid);
276
277		val = upa_readq(imap);
278		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
279			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
280		val |= tid | IMAP_VALID;
281		upa_writeq(val, imap);
282		upa_writeq(ICLR_IDLE, handler_data->iclr);
283	}
284
285	return 0;
286}
287
288/* Don't do anything.  The desc->status check for IRQ_DISABLED in
289 * handler_irq() will skip the handler call and that will leave the
290 * interrupt in the sent state.  The next ->enable() call will hit the
291 * ICLR register to reset the state machine.
292 *
293 * This scheme is necessary, instead of clearing the Valid bit in the
294 * IMAP register, to handle the case of IMAP registers being shared by
295 * multiple INOs (and thus ICLR registers).  Since we use a different
296 * virtual IRQ for each shared IMAP instance, the generic code thinks
297 * there is only one user so it prematurely calls ->disable() on
298 * free_irq().
299 *
300 * We have to provide an explicit ->disable() method instead of using
301 * NULL to get the default.  The reason is that if the generic code
302 * sees that, it also hooks up a default ->shutdown method which
303 * invokes ->mask() which we do not want.  See irq_chip_set_defaults().
304 */
305static void sun4u_irq_disable(struct irq_data *data)
306{
307}
308
309static void sun4u_irq_eoi(struct irq_data *data)
310{
311	struct irq_handler_data *handler_data = data->handler_data;
312
 
313	if (likely(handler_data))
314		upa_writeq(ICLR_IDLE, handler_data->iclr);
315}
316
317static void sun4v_irq_enable(struct irq_data *data)
318{
319	unsigned int ino = irq_table[data->irq].dev_ino;
320	unsigned long cpuid = irq_choose_cpu(data->irq, data->affinity);
 
321	int err;
322
323	err = sun4v_intr_settarget(ino, cpuid);
324	if (err != HV_EOK)
325		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
326		       "err(%d)\n", ino, cpuid, err);
327	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
328	if (err != HV_EOK)
329		printk(KERN_ERR "sun4v_intr_setstate(%x): "
330		       "err(%d)\n", ino, err);
331	err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
332	if (err != HV_EOK)
333		printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
334		       ino, err);
335}
336
337static int sun4v_set_affinity(struct irq_data *data,
338			       const struct cpumask *mask, bool force)
339{
340	unsigned int ino = irq_table[data->irq].dev_ino;
341	unsigned long cpuid = irq_choose_cpu(data->irq, mask);
 
342	int err;
343
344	err = sun4v_intr_settarget(ino, cpuid);
345	if (err != HV_EOK)
346		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
347		       "err(%d)\n", ino, cpuid, err);
348
349	return 0;
350}
351
352static void sun4v_irq_disable(struct irq_data *data)
353{
354	unsigned int ino = irq_table[data->irq].dev_ino;
355	int err;
356
357	err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
358	if (err != HV_EOK)
359		printk(KERN_ERR "sun4v_intr_setenabled(%x): "
360		       "err(%d)\n", ino, err);
361}
362
363static void sun4v_irq_eoi(struct irq_data *data)
364{
365	unsigned int ino = irq_table[data->irq].dev_ino;
366	int err;
367
368	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
369	if (err != HV_EOK)
370		printk(KERN_ERR "sun4v_intr_setstate(%x): "
371		       "err(%d)\n", ino, err);
372}
373
374static void sun4v_virq_enable(struct irq_data *data)
375{
376	unsigned long cpuid, dev_handle, dev_ino;
 
 
377	int err;
378
379	cpuid = irq_choose_cpu(data->irq, data->affinity);
380
381	dev_handle = irq_table[data->irq].dev_handle;
382	dev_ino = irq_table[data->irq].dev_ino;
383
384	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
385	if (err != HV_EOK)
386		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
387		       "err(%d)\n",
388		       dev_handle, dev_ino, cpuid, err);
389	err = sun4v_vintr_set_state(dev_handle, dev_ino,
390				    HV_INTR_STATE_IDLE);
391	if (err != HV_EOK)
392		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
393		       "HV_INTR_STATE_IDLE): err(%d)\n",
394		       dev_handle, dev_ino, err);
395	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
396				    HV_INTR_ENABLED);
397	if (err != HV_EOK)
398		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
399		       "HV_INTR_ENABLED): err(%d)\n",
400		       dev_handle, dev_ino, err);
401}
402
403static int sun4v_virt_set_affinity(struct irq_data *data,
404				    const struct cpumask *mask, bool force)
405{
406	unsigned long cpuid, dev_handle, dev_ino;
 
 
407	int err;
408
409	cpuid = irq_choose_cpu(data->irq, mask);
410
411	dev_handle = irq_table[data->irq].dev_handle;
412	dev_ino = irq_table[data->irq].dev_ino;
413
414	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
415	if (err != HV_EOK)
416		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
417		       "err(%d)\n",
418		       dev_handle, dev_ino, cpuid, err);
419
420	return 0;
421}
422
423static void sun4v_virq_disable(struct irq_data *data)
424{
425	unsigned long dev_handle, dev_ino;
 
426	int err;
427
428	dev_handle = irq_table[data->irq].dev_handle;
429	dev_ino = irq_table[data->irq].dev_ino;
430
431	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
432				    HV_INTR_DISABLED);
433	if (err != HV_EOK)
434		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
435		       "HV_INTR_DISABLED): err(%d)\n",
436		       dev_handle, dev_ino, err);
437}
438
439static void sun4v_virq_eoi(struct irq_data *data)
440{
441	unsigned long dev_handle, dev_ino;
 
442	int err;
443
444	dev_handle = irq_table[data->irq].dev_handle;
445	dev_ino = irq_table[data->irq].dev_ino;
446
447	err = sun4v_vintr_set_state(dev_handle, dev_ino,
448				    HV_INTR_STATE_IDLE);
449	if (err != HV_EOK)
450		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
451		       "HV_INTR_STATE_IDLE): err(%d)\n",
452		       dev_handle, dev_ino, err);
453}
454
455static struct irq_chip sun4u_irq = {
456	.name			= "sun4u",
457	.irq_enable		= sun4u_irq_enable,
458	.irq_disable		= sun4u_irq_disable,
459	.irq_eoi		= sun4u_irq_eoi,
460	.irq_set_affinity	= sun4u_set_affinity,
461	.flags			= IRQCHIP_EOI_IF_HANDLED,
462};
463
464static struct irq_chip sun4v_irq = {
465	.name			= "sun4v",
466	.irq_enable		= sun4v_irq_enable,
467	.irq_disable		= sun4v_irq_disable,
468	.irq_eoi		= sun4v_irq_eoi,
469	.irq_set_affinity	= sun4v_set_affinity,
470	.flags			= IRQCHIP_EOI_IF_HANDLED,
471};
472
473static struct irq_chip sun4v_virq = {
474	.name			= "vsun4v",
475	.irq_enable		= sun4v_virq_enable,
476	.irq_disable		= sun4v_virq_disable,
477	.irq_eoi		= sun4v_virq_eoi,
478	.irq_set_affinity	= sun4v_virt_set_affinity,
479	.flags			= IRQCHIP_EOI_IF_HANDLED,
480};
481
482static void pre_flow_handler(struct irq_data *d)
483{
484	struct irq_handler_data *handler_data = irq_data_get_irq_handler_data(d);
485	unsigned int ino = irq_table[d->irq].dev_ino;
486
487	handler_data->pre_handler(ino, handler_data->arg1, handler_data->arg2);
488}
489
490void irq_install_pre_handler(int irq,
491			     void (*func)(unsigned int, void *, void *),
492			     void *arg1, void *arg2)
493{
494	struct irq_handler_data *handler_data = irq_get_handler_data(irq);
495
496	handler_data->pre_handler = func;
497	handler_data->arg1 = arg1;
498	handler_data->arg2 = arg2;
499
500	__irq_set_preflow_handler(irq, pre_flow_handler);
501}
502
503unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
504{
505	struct ino_bucket *bucket;
506	struct irq_handler_data *handler_data;
 
507	unsigned int irq;
508	int ino;
509
510	BUG_ON(tlb_type == hypervisor);
511
512	ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
513	bucket = &ivector_table[ino];
514	irq = bucket_get_irq(__pa(bucket));
515	if (!irq) {
516		irq = irq_alloc(0, ino);
517		bucket_set_irq(__pa(bucket), irq);
518		irq_set_chip_and_handler_name(irq, &sun4u_irq,
519					      handle_fasteoi_irq, "IVEC");
520	}
521
522	handler_data = irq_get_handler_data(irq);
523	if (unlikely(handler_data))
524		goto out;
525
526	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
527	if (unlikely(!handler_data)) {
528		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
529		prom_halt();
530	}
531	irq_set_handler_data(irq, handler_data);
532
533	handler_data->imap  = imap;
534	handler_data->iclr  = iclr;
535
536out:
537	return irq;
538}
539
540static unsigned int sun4v_build_common(unsigned long sysino,
541				       struct irq_chip *chip)
 
 
542{
543	struct ino_bucket *bucket;
544	struct irq_handler_data *handler_data;
545	unsigned int irq;
546
547	BUG_ON(tlb_type != hypervisor);
 
 
548
549	bucket = &ivector_table[sysino];
550	irq = bucket_get_irq(__pa(bucket));
551	if (!irq) {
552		irq = irq_alloc(0, sysino);
553		bucket_set_irq(__pa(bucket), irq);
554		irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq,
555					      "IVEC");
556	}
557
558	handler_data = irq_get_handler_data(irq);
559	if (unlikely(handler_data))
560		goto out;
 
 
 
 
 
561
562	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
563	if (unlikely(!handler_data)) {
564		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
565		prom_halt();
566	}
567	irq_set_handler_data(irq, handler_data);
568
569	/* Catch accidental accesses to these things.  IMAP/ICLR handling
570	 * is done by hypervisor calls on sun4v platforms, not by direct
571	 * register accesses.
572	 */
573	handler_data->imap = ~0UL;
574	handler_data->iclr = ~0UL;
575
576out:
577	return irq;
 
 
 
578}
579
580unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
 
581{
582	unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
 
 
583
584	return sun4v_build_common(sysino, &sun4v_irq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
585}
586
587unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
588{
589	struct irq_handler_data *handler_data;
590	unsigned long hv_err, cookie;
591	struct ino_bucket *bucket;
592	unsigned int irq;
593
594	bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
595	if (unlikely(!bucket))
596		return 0;
597
598	/* The only reference we store to the IRQ bucket is
599	 * by physical address which kmemleak can't see, tell
600	 * it that this object explicitly is not a leak and
601	 * should be scanned.
602	 */
603	kmemleak_not_leak(bucket);
604
605	__flush_dcache_range((unsigned long) bucket,
606			     ((unsigned long) bucket +
607			      sizeof(struct ino_bucket)));
608
609	irq = irq_alloc(devhandle, devino);
 
 
 
 
 
 
 
 
 
 
 
 
610	bucket_set_irq(__pa(bucket), irq);
 
611
612	irq_set_chip_and_handler_name(irq, &sun4v_virq, handle_fasteoi_irq,
613				      "IVEC");
 
 
614
615	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
616	if (unlikely(!handler_data))
617		return 0;
618
619	/* In order to make the LDC channel startup sequence easier,
620	 * especially wrt. locking, we do not let request_irq() enable
621	 * the interrupt.
622	 */
623	irq_set_status_flags(irq, IRQ_NOAUTOEN);
624	irq_set_handler_data(irq, handler_data);
625
626	/* Catch accidental accesses to these things.  IMAP/ICLR handling
627	 * is done by hypervisor calls on sun4v platforms, not by direct
628	 * register accesses.
629	 */
630	handler_data->imap = ~0UL;
631	handler_data->iclr = ~0UL;
632
633	cookie = ~__pa(bucket);
634	hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
635	if (hv_err) {
636		prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
637			    "err=%lu\n", devhandle, devino, hv_err);
638		prom_halt();
639	}
 
640
 
 
 
 
 
 
641	return irq;
642}
643
644void ack_bad_irq(unsigned int irq)
 
 
 
 
 
 
 
 
 
 
 
 
645{
646	unsigned int ino = irq_table[irq].dev_ino;
647
648	if (!ino)
649		ino = 0xdeadbeef;
 
 
 
 
 
650
651	printk(KERN_CRIT "Unexpected IRQ from ino[%x] irq[%u]\n",
652	       ino, irq);
653}
654
655void *hardirq_stack[NR_CPUS];
656void *softirq_stack[NR_CPUS];
657
658void __irq_entry handler_irq(int pil, struct pt_regs *regs)
659{
660	unsigned long pstate, bucket_pa;
661	struct pt_regs *old_regs;
662	void *orig_sp;
663
664	clear_softint(1 << pil);
665
666	old_regs = set_irq_regs(regs);
667	irq_enter();
668
669	/* Grab an atomic snapshot of the pending IVECs.  */
670	__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
671			     "wrpr	%0, %3, %%pstate\n\t"
672			     "ldx	[%2], %1\n\t"
673			     "stx	%%g0, [%2]\n\t"
674			     "wrpr	%0, 0x0, %%pstate\n\t"
675			     : "=&r" (pstate), "=&r" (bucket_pa)
676			     : "r" (irq_work_pa(smp_processor_id())),
677			       "i" (PSTATE_IE)
678			     : "memory");
679
680	orig_sp = set_hardirq_stack();
681
682	while (bucket_pa) {
683		unsigned long next_pa;
684		unsigned int irq;
685
686		next_pa = bucket_get_chain_pa(bucket_pa);
687		irq = bucket_get_irq(bucket_pa);
688		bucket_clear_chain_pa(bucket_pa);
689
690		generic_handle_irq(irq);
691
692		bucket_pa = next_pa;
693	}
694
695	restore_hardirq_stack(orig_sp);
696
697	irq_exit();
698	set_irq_regs(old_regs);
699}
700
701void do_softirq(void)
702{
703	unsigned long flags;
704
705	if (in_interrupt())
706		return;
707
708	local_irq_save(flags);
709
710	if (local_softirq_pending()) {
711		void *orig_sp, *sp = softirq_stack[smp_processor_id()];
712
713		sp += THREAD_SIZE - 192 - STACK_BIAS;
714
715		__asm__ __volatile__("mov %%sp, %0\n\t"
716				     "mov %1, %%sp"
717				     : "=&r" (orig_sp)
718				     : "r" (sp));
719		__do_softirq();
720		__asm__ __volatile__("mov %0, %%sp"
721				     : : "r" (orig_sp));
722	}
723
724	local_irq_restore(flags);
725}
726
727#ifdef CONFIG_HOTPLUG_CPU
728void fixup_irqs(void)
729{
730	unsigned int irq;
731
732	for (irq = 0; irq < NR_IRQS; irq++) {
733		struct irq_desc *desc = irq_to_desc(irq);
734		struct irq_data *data = irq_desc_get_irq_data(desc);
735		unsigned long flags;
736
 
 
 
737		raw_spin_lock_irqsave(&desc->lock, flags);
738		if (desc->action && !irqd_is_per_cpu(data)) {
739			if (data->chip->irq_set_affinity)
740				data->chip->irq_set_affinity(data,
741							     data->affinity,
742							     false);
743		}
744		raw_spin_unlock_irqrestore(&desc->lock, flags);
745	}
746
747	tick_ops->disable_irq();
748}
749#endif
750
751struct sun5_timer {
752	u64	count0;
753	u64	limit0;
754	u64	count1;
755	u64	limit1;
756};
757
758static struct sun5_timer *prom_timers;
759static u64 prom_limit0, prom_limit1;
760
761static void map_prom_timers(void)
762{
763	struct device_node *dp;
764	const unsigned int *addr;
765
766	/* PROM timer node hangs out in the top level of device siblings... */
767	dp = of_find_node_by_path("/");
768	dp = dp->child;
769	while (dp) {
770		if (!strcmp(dp->name, "counter-timer"))
771			break;
772		dp = dp->sibling;
773	}
774
775	/* Assume if node is not present, PROM uses different tick mechanism
776	 * which we should not care about.
777	 */
778	if (!dp) {
779		prom_timers = (struct sun5_timer *) 0;
780		return;
781	}
782
783	/* If PROM is really using this, it must be mapped by him. */
784	addr = of_get_property(dp, "address", NULL);
785	if (!addr) {
786		prom_printf("PROM does not have timer mapped, trying to continue.\n");
787		prom_timers = (struct sun5_timer *) 0;
788		return;
789	}
790	prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
791}
792
793static void kill_prom_timer(void)
794{
795	if (!prom_timers)
796		return;
797
798	/* Save them away for later. */
799	prom_limit0 = prom_timers->limit0;
800	prom_limit1 = prom_timers->limit1;
801
802	/* Just as in sun4c PROM uses timer which ticks at IRQ 14.
803	 * We turn both off here just to be paranoid.
804	 */
805	prom_timers->limit0 = 0;
806	prom_timers->limit1 = 0;
807
808	/* Wheee, eat the interrupt packet too... */
809	__asm__ __volatile__(
810"	mov	0x40, %%g2\n"
811"	ldxa	[%%g0] %0, %%g1\n"
812"	ldxa	[%%g2] %1, %%g1\n"
813"	stxa	%%g0, [%%g0] %0\n"
814"	membar	#Sync\n"
815	: /* no outputs */
816	: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
817	: "g1", "g2");
818}
819
820void notrace init_irqwork_curcpu(void)
821{
822	int cpu = hard_smp_processor_id();
823
824	trap_block[cpu].irq_worklist_pa = 0UL;
825}
826
827/* Please be very careful with register_one_mondo() and
828 * sun4v_register_mondo_queues().
829 *
830 * On SMP this gets invoked from the CPU trampoline before
831 * the cpu has fully taken over the trap table from OBP,
832 * and it's kernel stack + %g6 thread register state is
833 * not fully cooked yet.
834 *
835 * Therefore you cannot make any OBP calls, not even prom_printf,
836 * from these two routines.
837 */
838static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
 
839{
840	unsigned long num_entries = (qmask + 1) / 64;
841	unsigned long status;
842
843	status = sun4v_cpu_qconf(type, paddr, num_entries);
844	if (status != HV_EOK) {
845		prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
846			    "err %lu\n", type, paddr, num_entries, status);
847		prom_halt();
848	}
849}
850
851void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
852{
853	struct trap_per_cpu *tb = &trap_block[this_cpu];
854
855	register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
856			   tb->cpu_mondo_qmask);
857	register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
858			   tb->dev_mondo_qmask);
859	register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
860			   tb->resum_qmask);
861	register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
862			   tb->nonresum_qmask);
863}
864
865/* Each queue region must be a power of 2 multiple of 64 bytes in
866 * size.  The base real address must be aligned to the size of the
867 * region.  Thus, an 8KB queue must be 8KB aligned, for example.
868 */
869static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
870{
871	unsigned long size = PAGE_ALIGN(qmask + 1);
872	unsigned long order = get_order(size);
873	unsigned long p;
874
875	p = __get_free_pages(GFP_KERNEL, order);
876	if (!p) {
877		prom_printf("SUN4V: Error, cannot allocate queue.\n");
878		prom_halt();
879	}
880
881	*pa_ptr = __pa(p);
882}
883
884static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
885{
886#ifdef CONFIG_SMP
887	unsigned long page;
 
888
889	BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
 
 
 
 
 
 
 
 
 
890
891	page = get_zeroed_page(GFP_KERNEL);
892	if (!page) {
893		prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
894		prom_halt();
895	}
896
897	tb->cpu_mondo_block_pa = __pa(page);
898	tb->cpu_list_pa = __pa(page + 64);
899#endif
900}
901
902/* Allocate mondo and error queues for all possible cpus.  */
903static void __init sun4v_init_mondo_queues(void)
904{
905	int cpu;
906
907	for_each_possible_cpu(cpu) {
908		struct trap_per_cpu *tb = &trap_block[cpu];
909
910		alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
911		alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
912		alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
913		alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
914		alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
915		alloc_one_queue(&tb->nonresum_kernel_buf_pa,
916				tb->nonresum_qmask);
917	}
918}
919
920static void __init init_send_mondo_info(void)
921{
922	int cpu;
923
924	for_each_possible_cpu(cpu) {
925		struct trap_per_cpu *tb = &trap_block[cpu];
926
927		init_cpu_send_mondo_info(tb);
928	}
929}
930
931static struct irqaction timer_irq_action = {
932	.name = "timer",
933};
934
935/* Only invoked on boot processor. */
936void __init init_IRQ(void)
937{
938	unsigned long size;
 
939
940	map_prom_timers();
941	kill_prom_timer();
 
 
 
942
943	size = sizeof(struct ino_bucket) * NUM_IVECS;
944	ivector_table = kzalloc(size, GFP_KERNEL);
 
 
 
945	if (!ivector_table) {
946		prom_printf("Fatal error, cannot allocate ivector_table\n");
947		prom_halt();
948	}
949	__flush_dcache_range((unsigned long) ivector_table,
950			     ((unsigned long) ivector_table) + size);
951
952	ivector_table_pa = __pa(ivector_table);
 
 
 
 
 
 
 
 
 
953
954	if (tlb_type == hypervisor)
955		sun4v_init_mondo_queues();
956
957	init_send_mondo_info();
958
959	if (tlb_type == hypervisor) {
960		/* Load up the boot cpu's entries.  */
961		sun4v_register_mondo_queues(hard_smp_processor_id());
962	}
963
964	/* We need to clear any IRQ's pending in the soft interrupt
965	 * registers, a spurious one could be left around from the
966	 * PROM timer which we just disabled.
967	 */
968	clear_softint(get_softint());
969
970	/* Now that ivector table is initialized, it is safe
971	 * to receive IRQ vector traps.  We will normally take
972	 * one or two right now, in case some device PROM used
973	 * to boot us wants to speak to us.  We just ignore them.
974	 */
975	__asm__ __volatile__("rdpr	%%pstate, %%g1\n\t"
976			     "or	%%g1, %0, %%g1\n\t"
977			     "wrpr	%%g1, 0x0, %%pstate"
978			     : /* No outputs */
979			     : "i" (PSTATE_IE)
980			     : "g1");
981
982	irq_to_desc(0)->action = &timer_irq_action;
983}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* irq.c: UltraSparc IRQ handling/init/registry.
   3 *
   4 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   5 * Copyright (C) 1998  Eddie C. Dost    (ecd@skynet.be)
   6 * Copyright (C) 1998  Jakub Jelinek    (jj@ultra.linux.cz)
   7 */
   8
   9#include <linux/sched.h>
  10#include <linux/linkage.h>
  11#include <linux/ptrace.h>
  12#include <linux/errno.h>
  13#include <linux/kernel_stat.h>
  14#include <linux/signal.h>
  15#include <linux/mm.h>
  16#include <linux/interrupt.h>
  17#include <linux/slab.h>
  18#include <linux/random.h>
  19#include <linux/init.h>
  20#include <linux/delay.h>
  21#include <linux/proc_fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/ftrace.h>
  24#include <linux/irq.h>
 
  25
  26#include <asm/ptrace.h>
  27#include <asm/processor.h>
  28#include <linux/atomic.h>
  29#include <asm/irq.h>
  30#include <asm/io.h>
  31#include <asm/iommu.h>
  32#include <asm/upa.h>
  33#include <asm/oplib.h>
  34#include <asm/prom.h>
  35#include <asm/timer.h>
  36#include <asm/smp.h>
  37#include <asm/starfire.h>
  38#include <linux/uaccess.h>
  39#include <asm/cache.h>
  40#include <asm/cpudata.h>
  41#include <asm/auxio.h>
  42#include <asm/head.h>
  43#include <asm/hypervisor.h>
  44#include <asm/cacheflush.h>
  45
  46#include "entry.h"
  47#include "cpumap.h"
  48#include "kstack.h"
  49
 
 
  50struct ino_bucket *ivector_table;
  51unsigned long ivector_table_pa;
  52
  53/* On several sun4u processors, it is illegal to mix bypass and
  54 * non-bypass accesses.  Therefore we access all INO buckets
  55 * using bypass accesses only.
  56 */
  57static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
  58{
  59	unsigned long ret;
  60
  61	__asm__ __volatile__("ldxa	[%1] %2, %0"
  62			     : "=&r" (ret)
  63			     : "r" (bucket_pa +
  64				    offsetof(struct ino_bucket,
  65					     __irq_chain_pa)),
  66			       "i" (ASI_PHYS_USE_EC));
  67
  68	return ret;
  69}
  70
  71static void bucket_clear_chain_pa(unsigned long bucket_pa)
  72{
  73	__asm__ __volatile__("stxa	%%g0, [%0] %1"
  74			     : /* no outputs */
  75			     : "r" (bucket_pa +
  76				    offsetof(struct ino_bucket,
  77					     __irq_chain_pa)),
  78			       "i" (ASI_PHYS_USE_EC));
  79}
  80
  81static unsigned int bucket_get_irq(unsigned long bucket_pa)
  82{
  83	unsigned int ret;
  84
  85	__asm__ __volatile__("lduwa	[%1] %2, %0"
  86			     : "=&r" (ret)
  87			     : "r" (bucket_pa +
  88				    offsetof(struct ino_bucket,
  89					     __irq)),
  90			       "i" (ASI_PHYS_USE_EC));
  91
  92	return ret;
  93}
  94
  95static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
  96{
  97	__asm__ __volatile__("stwa	%0, [%1] %2"
  98			     : /* no outputs */
  99			     : "r" (irq),
 100			       "r" (bucket_pa +
 101				    offsetof(struct ino_bucket,
 102					     __irq)),
 103			       "i" (ASI_PHYS_USE_EC));
 104}
 105
 106#define irq_work_pa(__cpu)	&(trap_block[(__cpu)].irq_worklist_pa)
 107
 108static unsigned long hvirq_major __initdata;
 109static int __init early_hvirq_major(char *p)
 110{
 111	int rc = kstrtoul(p, 10, &hvirq_major);
 112
 113	return rc;
 114}
 115early_param("hvirq", early_hvirq_major);
 116
 117static int hv_irq_version;
 118
 119/* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie
 120 * based interfaces, but:
 121 *
 122 * 1) Several OSs, Solaris and Linux included, use them even when only
 123 *    negotiating version 1.0 (or failing to negotiate at all).  So the
 124 *    hypervisor has a workaround that provides the VIRQ interfaces even
 125 *    when only verion 1.0 of the API is in use.
 126 *
 127 * 2) Second, and more importantly, with major version 2.0 these VIRQ
 128 *    interfaces only were actually hooked up for LDC interrupts, even
 129 *    though the Hypervisor specification clearly stated:
 130 *
 131 *	The new interrupt API functions will be available to a guest
 132 *	when it negotiates version 2.0 in the interrupt API group 0x2. When
 133 *	a guest negotiates version 2.0, all interrupt sources will only
 134 *	support using the cookie interface, and any attempt to use the
 135 *	version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the
 136 *	ENOTSUPPORTED error being returned.
 137 *
 138 *   with an emphasis on "all interrupt sources".
 139 *
 140 * To correct this, major version 3.0 was created which does actually
 141 * support VIRQs for all interrupt sources (not just LDC devices).  So
 142 * if we want to move completely over the cookie based VIRQs we must
 143 * negotiate major version 3.0 or later of HV_GRP_INTR.
 144 */
 145static bool sun4v_cookie_only_virqs(void)
 146{
 147	if (hv_irq_version >= 3)
 148		return true;
 149	return false;
 150}
 151
 152static void __init irq_init_hv(void)
 153{
 154	unsigned long hv_error, major, minor = 0;
 
 155
 156	if (tlb_type != hypervisor)
 157		return;
 158
 159	if (hvirq_major)
 160		major = hvirq_major;
 161	else
 162		major = 3;
 163
 164	hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor);
 165	if (!hv_error)
 166		hv_irq_version = major;
 167	else
 168		hv_irq_version = 1;
 169
 170	pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n",
 171		hv_irq_version,
 172		sun4v_cookie_only_virqs() ? "enabled" : "disabled");
 173}
 174
 175/* This function is for the timer interrupt.*/
 176int __init arch_probe_nr_irqs(void)
 177{
 178	return 1;
 179}
 180
 181#define DEFAULT_NUM_IVECS	(0xfffU)
 182static unsigned int nr_ivec = DEFAULT_NUM_IVECS;
 183#define NUM_IVECS (nr_ivec)
 184
 185static unsigned int __init size_nr_ivec(void)
 186{
 187	if (tlb_type == hypervisor) {
 188		switch (sun4v_chip_type) {
 189		/* Athena's devhandle|devino is large.*/
 190		case SUN4V_CHIP_SPARC64X:
 191			nr_ivec = 0xffff;
 192			break;
 193		}
 194	}
 195	return nr_ivec;
 196}
 
 
 
 
 
 
 197
 198struct irq_handler_data {
 199	union {
 200		struct {
 201			unsigned int dev_handle;
 202			unsigned int dev_ino;
 203		};
 204		unsigned long sysino;
 205	};
 206	struct ino_bucket bucket;
 207	unsigned long	iclr;
 208	unsigned long	imap;
 209};
 210
 211static inline unsigned int irq_data_to_handle(struct irq_data *data)
 212{
 213	struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
 214
 215	return ihd->dev_handle;
 216}
 217
 218static inline unsigned int irq_data_to_ino(struct irq_data *data)
 219{
 220	struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
 221
 222	return ihd->dev_ino;
 223}
 224
 225static inline unsigned long irq_data_to_sysino(struct irq_data *data)
 226{
 227	struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
 228
 229	return ihd->sysino;
 230}
 231
 
 232void irq_free(unsigned int irq)
 233{
 234	void *data = irq_get_handler_data(irq);
 235
 236	kfree(data);
 237	irq_set_handler_data(irq, NULL);
 238	irq_free_descs(irq, 1);
 239}
 240
 241unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
 242{
 243	int irq;
 244
 245	irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL, NULL);
 246	if (irq <= 0)
 247		goto out;
 248
 249	return irq;
 250out:
 251	return 0;
 252}
 253
 254static unsigned int cookie_exists(u32 devhandle, unsigned int devino)
 255{
 256	unsigned long hv_err, cookie;
 257	struct ino_bucket *bucket;
 258	unsigned int irq = 0U;
 259
 260	hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie);
 261	if (hv_err) {
 262		pr_err("HV get cookie failed hv_err = %ld\n", hv_err);
 263		goto out;
 264	}
 265
 266	if (cookie & ((1UL << 63UL))) {
 267		cookie = ~cookie;
 268		bucket = (struct ino_bucket *) __va(cookie);
 269		irq = bucket->__irq;
 270	}
 271out:
 272	return irq;
 273}
 274
 275static unsigned int sysino_exists(u32 devhandle, unsigned int devino)
 276{
 277	unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
 278	struct ino_bucket *bucket;
 279	unsigned int irq;
 280
 281	bucket = &ivector_table[sysino];
 282	irq = bucket_get_irq(__pa(bucket));
 283
 284	return irq;
 285}
 286
 287void ack_bad_irq(unsigned int irq)
 288{
 289	pr_crit("BAD IRQ ack %d\n", irq);
 290}
 291
 292void irq_install_pre_handler(int irq,
 293			     void (*func)(unsigned int, void *, void *),
 294			     void *arg1, void *arg2)
 295{
 296	pr_warn("IRQ pre handler NOT supported.\n");
 297}
 
 298
 299/*
 300 * /proc/interrupts printing:
 301 */
 302int arch_show_interrupts(struct seq_file *p, int prec)
 303{
 304	int j;
 305
 306	seq_printf(p, "NMI: ");
 307	for_each_online_cpu(j)
 308		seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
 309	seq_printf(p, "     Non-maskable interrupts\n");
 310	return 0;
 311}
 312
 313static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
 314{
 315	unsigned int tid;
 316
 317	if (this_is_starfire) {
 318		tid = starfire_translate(imap, cpuid);
 319		tid <<= IMAP_TID_SHIFT;
 320		tid &= IMAP_TID_UPA;
 321	} else {
 322		if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 323			unsigned long ver;
 324
 325			__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 326			if ((ver >> 32UL) == __JALAPENO_ID ||
 327			    (ver >> 32UL) == __SERRANO_ID) {
 328				tid = cpuid << IMAP_TID_SHIFT;
 329				tid &= IMAP_TID_JBUS;
 330			} else {
 331				unsigned int a = cpuid & 0x1f;
 332				unsigned int n = (cpuid >> 5) & 0x1f;
 333
 334				tid = ((a << IMAP_AID_SHIFT) |
 335				       (n << IMAP_NID_SHIFT));
 336				tid &= (IMAP_AID_SAFARI |
 337					IMAP_NID_SAFARI);
 338			}
 339		} else {
 340			tid = cpuid << IMAP_TID_SHIFT;
 341			tid &= IMAP_TID_UPA;
 342		}
 343	}
 344
 345	return tid;
 346}
 347
 
 
 
 
 
 
 
 
 
 348#ifdef CONFIG_SMP
 349static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
 350{
 351	cpumask_t mask;
 352	int cpuid;
 353
 354	cpumask_copy(&mask, affinity);
 355	if (cpumask_equal(&mask, cpu_online_mask)) {
 356		cpuid = map_to_cpu(irq);
 357	} else {
 358		cpumask_t tmp;
 359
 360		cpumask_and(&tmp, cpu_online_mask, &mask);
 361		cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp);
 362	}
 363
 364	return cpuid;
 365}
 366#else
 367#define irq_choose_cpu(irq, affinity)	\
 368	real_hard_smp_processor_id()
 369#endif
 370
 371static void sun4u_irq_enable(struct irq_data *data)
 372{
 373	struct irq_handler_data *handler_data;
 374
 375	handler_data = irq_data_get_irq_handler_data(data);
 376	if (likely(handler_data)) {
 377		unsigned long cpuid, imap, val;
 378		unsigned int tid;
 379
 380		cpuid = irq_choose_cpu(data->irq,
 381				       irq_data_get_affinity_mask(data));
 382		imap = handler_data->imap;
 383
 384		tid = sun4u_compute_tid(imap, cpuid);
 385
 386		val = upa_readq(imap);
 387		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
 388			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
 389		val |= tid | IMAP_VALID;
 390		upa_writeq(val, imap);
 391		upa_writeq(ICLR_IDLE, handler_data->iclr);
 392	}
 393}
 394
 395static int sun4u_set_affinity(struct irq_data *data,
 396			       const struct cpumask *mask, bool force)
 397{
 398	struct irq_handler_data *handler_data;
 399
 400	handler_data = irq_data_get_irq_handler_data(data);
 401	if (likely(handler_data)) {
 402		unsigned long cpuid, imap, val;
 403		unsigned int tid;
 404
 405		cpuid = irq_choose_cpu(data->irq, mask);
 406		imap = handler_data->imap;
 407
 408		tid = sun4u_compute_tid(imap, cpuid);
 409
 410		val = upa_readq(imap);
 411		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
 412			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
 413		val |= tid | IMAP_VALID;
 414		upa_writeq(val, imap);
 415		upa_writeq(ICLR_IDLE, handler_data->iclr);
 416	}
 417
 418	return 0;
 419}
 420
 421/* Don't do anything.  The desc->status check for IRQ_DISABLED in
 422 * handler_irq() will skip the handler call and that will leave the
 423 * interrupt in the sent state.  The next ->enable() call will hit the
 424 * ICLR register to reset the state machine.
 425 *
 426 * This scheme is necessary, instead of clearing the Valid bit in the
 427 * IMAP register, to handle the case of IMAP registers being shared by
 428 * multiple INOs (and thus ICLR registers).  Since we use a different
 429 * virtual IRQ for each shared IMAP instance, the generic code thinks
 430 * there is only one user so it prematurely calls ->disable() on
 431 * free_irq().
 432 *
 433 * We have to provide an explicit ->disable() method instead of using
 434 * NULL to get the default.  The reason is that if the generic code
 435 * sees that, it also hooks up a default ->shutdown method which
 436 * invokes ->mask() which we do not want.  See irq_chip_set_defaults().
 437 */
 438static void sun4u_irq_disable(struct irq_data *data)
 439{
 440}
 441
 442static void sun4u_irq_eoi(struct irq_data *data)
 443{
 444	struct irq_handler_data *handler_data;
 445
 446	handler_data = irq_data_get_irq_handler_data(data);
 447	if (likely(handler_data))
 448		upa_writeq(ICLR_IDLE, handler_data->iclr);
 449}
 450
 451static void sun4v_irq_enable(struct irq_data *data)
 452{
 453	unsigned long cpuid = irq_choose_cpu(data->irq,
 454					     irq_data_get_affinity_mask(data));
 455	unsigned int ino = irq_data_to_sysino(data);
 456	int err;
 457
 458	err = sun4v_intr_settarget(ino, cpuid);
 459	if (err != HV_EOK)
 460		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
 461		       "err(%d)\n", ino, cpuid, err);
 462	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
 463	if (err != HV_EOK)
 464		printk(KERN_ERR "sun4v_intr_setstate(%x): "
 465		       "err(%d)\n", ino, err);
 466	err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
 467	if (err != HV_EOK)
 468		printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
 469		       ino, err);
 470}
 471
 472static int sun4v_set_affinity(struct irq_data *data,
 473			       const struct cpumask *mask, bool force)
 474{
 
 475	unsigned long cpuid = irq_choose_cpu(data->irq, mask);
 476	unsigned int ino = irq_data_to_sysino(data);
 477	int err;
 478
 479	err = sun4v_intr_settarget(ino, cpuid);
 480	if (err != HV_EOK)
 481		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
 482		       "err(%d)\n", ino, cpuid, err);
 483
 484	return 0;
 485}
 486
 487static void sun4v_irq_disable(struct irq_data *data)
 488{
 489	unsigned int ino = irq_data_to_sysino(data);
 490	int err;
 491
 492	err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
 493	if (err != HV_EOK)
 494		printk(KERN_ERR "sun4v_intr_setenabled(%x): "
 495		       "err(%d)\n", ino, err);
 496}
 497
 498static void sun4v_irq_eoi(struct irq_data *data)
 499{
 500	unsigned int ino = irq_data_to_sysino(data);
 501	int err;
 502
 503	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
 504	if (err != HV_EOK)
 505		printk(KERN_ERR "sun4v_intr_setstate(%x): "
 506		       "err(%d)\n", ino, err);
 507}
 508
 509static void sun4v_virq_enable(struct irq_data *data)
 510{
 511	unsigned long dev_handle = irq_data_to_handle(data);
 512	unsigned long dev_ino = irq_data_to_ino(data);
 513	unsigned long cpuid;
 514	int err;
 515
 516	cpuid = irq_choose_cpu(data->irq, irq_data_get_affinity_mask(data));
 
 
 
 517
 518	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
 519	if (err != HV_EOK)
 520		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
 521		       "err(%d)\n",
 522		       dev_handle, dev_ino, cpuid, err);
 523	err = sun4v_vintr_set_state(dev_handle, dev_ino,
 524				    HV_INTR_STATE_IDLE);
 525	if (err != HV_EOK)
 526		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
 527		       "HV_INTR_STATE_IDLE): err(%d)\n",
 528		       dev_handle, dev_ino, err);
 529	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
 530				    HV_INTR_ENABLED);
 531	if (err != HV_EOK)
 532		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
 533		       "HV_INTR_ENABLED): err(%d)\n",
 534		       dev_handle, dev_ino, err);
 535}
 536
 537static int sun4v_virt_set_affinity(struct irq_data *data,
 538				    const struct cpumask *mask, bool force)
 539{
 540	unsigned long dev_handle = irq_data_to_handle(data);
 541	unsigned long dev_ino = irq_data_to_ino(data);
 542	unsigned long cpuid;
 543	int err;
 544
 545	cpuid = irq_choose_cpu(data->irq, mask);
 546
 
 
 
 547	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
 548	if (err != HV_EOK)
 549		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
 550		       "err(%d)\n",
 551		       dev_handle, dev_ino, cpuid, err);
 552
 553	return 0;
 554}
 555
 556static void sun4v_virq_disable(struct irq_data *data)
 557{
 558	unsigned long dev_handle = irq_data_to_handle(data);
 559	unsigned long dev_ino = irq_data_to_ino(data);
 560	int err;
 561
 
 
 562
 563	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
 564				    HV_INTR_DISABLED);
 565	if (err != HV_EOK)
 566		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
 567		       "HV_INTR_DISABLED): err(%d)\n",
 568		       dev_handle, dev_ino, err);
 569}
 570
 571static void sun4v_virq_eoi(struct irq_data *data)
 572{
 573	unsigned long dev_handle = irq_data_to_handle(data);
 574	unsigned long dev_ino = irq_data_to_ino(data);
 575	int err;
 576
 
 
 
 577	err = sun4v_vintr_set_state(dev_handle, dev_ino,
 578				    HV_INTR_STATE_IDLE);
 579	if (err != HV_EOK)
 580		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
 581		       "HV_INTR_STATE_IDLE): err(%d)\n",
 582		       dev_handle, dev_ino, err);
 583}
 584
 585static struct irq_chip sun4u_irq = {
 586	.name			= "sun4u",
 587	.irq_enable		= sun4u_irq_enable,
 588	.irq_disable		= sun4u_irq_disable,
 589	.irq_eoi		= sun4u_irq_eoi,
 590	.irq_set_affinity	= sun4u_set_affinity,
 591	.flags			= IRQCHIP_EOI_IF_HANDLED,
 592};
 593
 594static struct irq_chip sun4v_irq = {
 595	.name			= "sun4v",
 596	.irq_enable		= sun4v_irq_enable,
 597	.irq_disable		= sun4v_irq_disable,
 598	.irq_eoi		= sun4v_irq_eoi,
 599	.irq_set_affinity	= sun4v_set_affinity,
 600	.flags			= IRQCHIP_EOI_IF_HANDLED,
 601};
 602
 603static struct irq_chip sun4v_virq = {
 604	.name			= "vsun4v",
 605	.irq_enable		= sun4v_virq_enable,
 606	.irq_disable		= sun4v_virq_disable,
 607	.irq_eoi		= sun4v_virq_eoi,
 608	.irq_set_affinity	= sun4v_virt_set_affinity,
 609	.flags			= IRQCHIP_EOI_IF_HANDLED,
 610};
 611
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 612unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
 613{
 
 614	struct irq_handler_data *handler_data;
 615	struct ino_bucket *bucket;
 616	unsigned int irq;
 617	int ino;
 618
 619	BUG_ON(tlb_type == hypervisor);
 620
 621	ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
 622	bucket = &ivector_table[ino];
 623	irq = bucket_get_irq(__pa(bucket));
 624	if (!irq) {
 625		irq = irq_alloc(0, ino);
 626		bucket_set_irq(__pa(bucket), irq);
 627		irq_set_chip_and_handler_name(irq, &sun4u_irq,
 628					      handle_fasteoi_irq, "IVEC");
 629	}
 630
 631	handler_data = irq_get_handler_data(irq);
 632	if (unlikely(handler_data))
 633		goto out;
 634
 635	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
 636	if (unlikely(!handler_data)) {
 637		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
 638		prom_halt();
 639	}
 640	irq_set_handler_data(irq, handler_data);
 641
 642	handler_data->imap  = imap;
 643	handler_data->iclr  = iclr;
 644
 645out:
 646	return irq;
 647}
 648
 649static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino,
 650		void (*handler_data_init)(struct irq_handler_data *data,
 651		u32 devhandle, unsigned int devino),
 652		struct irq_chip *chip)
 653{
 654	struct irq_handler_data *data;
 
 655	unsigned int irq;
 656
 657	irq = irq_alloc(devhandle, devino);
 658	if (!irq)
 659		goto out;
 660
 661	data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
 662	if (unlikely(!data)) {
 663		pr_err("IRQ handler data allocation failed.\n");
 664		irq_free(irq);
 665		irq = 0;
 666		goto out;
 
 667	}
 668
 669	irq_set_handler_data(irq, data);
 670	handler_data_init(data, devhandle, devino);
 671	irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC");
 672	data->imap = ~0UL;
 673	data->iclr = ~0UL;
 674out:
 675	return irq;
 676}
 677
 678static unsigned long cookie_assign(unsigned int irq, u32 devhandle,
 679		unsigned int devino)
 680{
 681	struct irq_handler_data *ihd = irq_get_handler_data(irq);
 682	unsigned long hv_error, cookie;
 
 683
 684	/* handler_irq needs to find the irq. cookie is seen signed in
 685	 * sun4v_dev_mondo and treated as a non ivector_table delivery.
 
 686	 */
 687	ihd->bucket.__irq = irq;
 688	cookie = ~__pa(&ihd->bucket);
 689
 690	hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie);
 691	if (hv_error)
 692		pr_err("HV vintr set cookie failed = %ld\n", hv_error);
 693
 694	return hv_error;
 695}
 696
 697static void cookie_handler_data(struct irq_handler_data *data,
 698				u32 devhandle, unsigned int devino)
 699{
 700	data->dev_handle = devhandle;
 701	data->dev_ino = devino;
 702}
 703
 704static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino,
 705				     struct irq_chip *chip)
 706{
 707	unsigned long hv_error;
 708	unsigned int irq;
 709
 710	irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip);
 711
 712	hv_error = cookie_assign(irq, devhandle, devino);
 713	if (hv_error) {
 714		irq_free(irq);
 715		irq = 0;
 716	}
 717
 718	return irq;
 719}
 720
 721static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino)
 722{
 
 
 
 723	unsigned int irq;
 724
 725	irq = cookie_exists(devhandle, devino);
 726	if (irq)
 727		goto out;
 
 
 
 
 
 
 
 728
 729	irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
 
 
 730
 731out:
 732	return irq;
 733}
 734
 735static void sysino_set_bucket(unsigned int irq)
 736{
 737	struct irq_handler_data *ihd = irq_get_handler_data(irq);
 738	struct ino_bucket *bucket;
 739	unsigned long sysino;
 740
 741	sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino);
 742	BUG_ON(sysino >= nr_ivec);
 743	bucket = &ivector_table[sysino];
 744	bucket_set_irq(__pa(bucket), irq);
 745}
 746
 747static void sysino_handler_data(struct irq_handler_data *data,
 748				u32 devhandle, unsigned int devino)
 749{
 750	unsigned long sysino;
 751
 752	sysino = sun4v_devino_to_sysino(devhandle, devino);
 753	data->sysino = sysino;
 754}
 755
 756static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino,
 757				     struct irq_chip *chip)
 758{
 759	unsigned int irq;
 
 
 760
 761	irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip);
 762	if (!irq)
 763		goto out;
 
 
 
 764
 765	sysino_set_bucket(irq);
 766out:
 767	return irq;
 768}
 769
 770static int sun4v_build_sysino(u32 devhandle, unsigned int devino)
 771{
 772	int irq;
 773
 774	irq = sysino_exists(devhandle, devino);
 775	if (irq)
 776		goto out;
 777
 778	irq = sysino_build_irq(devhandle, devino, &sun4v_irq);
 779out:
 780	return irq;
 781}
 782
 783unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
 784{
 785	unsigned int irq;
 786
 787	if (sun4v_cookie_only_virqs())
 788		irq = sun4v_build_cookie(devhandle, devino);
 789	else
 790		irq = sun4v_build_sysino(devhandle, devino);
 791
 792	return irq;
 793}
 794
 795unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
 796{
 797	int irq;
 798
 799	irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
 800	if (!irq)
 801		goto out;
 802
 803	/* This is borrowed from the original function.
 804	 */
 805	irq_set_status_flags(irq, IRQ_NOAUTOEN);
 806
 807out:
 808	return irq;
 809}
 810
 811void *hardirq_stack[NR_CPUS];
 812void *softirq_stack[NR_CPUS];
 813
 814void __irq_entry handler_irq(int pil, struct pt_regs *regs)
 815{
 816	unsigned long pstate, bucket_pa;
 817	struct pt_regs *old_regs;
 818	void *orig_sp;
 819
 820	clear_softint(1 << pil);
 821
 822	old_regs = set_irq_regs(regs);
 823	irq_enter();
 824
 825	/* Grab an atomic snapshot of the pending IVECs.  */
 826	__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
 827			     "wrpr	%0, %3, %%pstate\n\t"
 828			     "ldx	[%2], %1\n\t"
 829			     "stx	%%g0, [%2]\n\t"
 830			     "wrpr	%0, 0x0, %%pstate\n\t"
 831			     : "=&r" (pstate), "=&r" (bucket_pa)
 832			     : "r" (irq_work_pa(smp_processor_id())),
 833			       "i" (PSTATE_IE)
 834			     : "memory");
 835
 836	orig_sp = set_hardirq_stack();
 837
 838	while (bucket_pa) {
 839		unsigned long next_pa;
 840		unsigned int irq;
 841
 842		next_pa = bucket_get_chain_pa(bucket_pa);
 843		irq = bucket_get_irq(bucket_pa);
 844		bucket_clear_chain_pa(bucket_pa);
 845
 846		generic_handle_irq(irq);
 847
 848		bucket_pa = next_pa;
 849	}
 850
 851	restore_hardirq_stack(orig_sp);
 852
 853	irq_exit();
 854	set_irq_regs(old_regs);
 855}
 856
 857void do_softirq_own_stack(void)
 858{
 859	void *orig_sp, *sp = softirq_stack[smp_processor_id()];
 
 
 
 
 
 860
 861	sp += THREAD_SIZE - 192 - STACK_BIAS;
 
 862
 863	__asm__ __volatile__("mov %%sp, %0\n\t"
 864			     "mov %1, %%sp"
 865			     : "=&r" (orig_sp)
 866			     : "r" (sp));
 867	__do_softirq();
 868	__asm__ __volatile__("mov %0, %%sp"
 869			     : : "r" (orig_sp));
 
 
 
 
 
 870}
 871
 872#ifdef CONFIG_HOTPLUG_CPU
 873void fixup_irqs(void)
 874{
 875	unsigned int irq;
 876
 877	for (irq = 0; irq < NR_IRQS; irq++) {
 878		struct irq_desc *desc = irq_to_desc(irq);
 879		struct irq_data *data;
 880		unsigned long flags;
 881
 882		if (!desc)
 883			continue;
 884		data = irq_desc_get_irq_data(desc);
 885		raw_spin_lock_irqsave(&desc->lock, flags);
 886		if (desc->action && !irqd_is_per_cpu(data)) {
 887			if (data->chip->irq_set_affinity)
 888				data->chip->irq_set_affinity(data,
 889					irq_data_get_affinity_mask(data),
 890					false);
 891		}
 892		raw_spin_unlock_irqrestore(&desc->lock, flags);
 893	}
 894
 895	tick_ops->disable_irq();
 896}
 897#endif
 898
 899struct sun5_timer {
 900	u64	count0;
 901	u64	limit0;
 902	u64	count1;
 903	u64	limit1;
 904};
 905
 906static struct sun5_timer *prom_timers;
 907static u64 prom_limit0, prom_limit1;
 908
 909static void map_prom_timers(void)
 910{
 911	struct device_node *dp;
 912	const unsigned int *addr;
 913
 914	/* PROM timer node hangs out in the top level of device siblings... */
 915	dp = of_find_node_by_path("/");
 916	dp = dp->child;
 917	while (dp) {
 918		if (of_node_name_eq(dp, "counter-timer"))
 919			break;
 920		dp = dp->sibling;
 921	}
 922
 923	/* Assume if node is not present, PROM uses different tick mechanism
 924	 * which we should not care about.
 925	 */
 926	if (!dp) {
 927		prom_timers = (struct sun5_timer *) 0;
 928		return;
 929	}
 930
 931	/* If PROM is really using this, it must be mapped by him. */
 932	addr = of_get_property(dp, "address", NULL);
 933	if (!addr) {
 934		prom_printf("PROM does not have timer mapped, trying to continue.\n");
 935		prom_timers = (struct sun5_timer *) 0;
 936		return;
 937	}
 938	prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
 939}
 940
 941static void kill_prom_timer(void)
 942{
 943	if (!prom_timers)
 944		return;
 945
 946	/* Save them away for later. */
 947	prom_limit0 = prom_timers->limit0;
 948	prom_limit1 = prom_timers->limit1;
 949
 950	/* Just as in sun4c PROM uses timer which ticks at IRQ 14.
 951	 * We turn both off here just to be paranoid.
 952	 */
 953	prom_timers->limit0 = 0;
 954	prom_timers->limit1 = 0;
 955
 956	/* Wheee, eat the interrupt packet too... */
 957	__asm__ __volatile__(
 958"	mov	0x40, %%g2\n"
 959"	ldxa	[%%g0] %0, %%g1\n"
 960"	ldxa	[%%g2] %1, %%g1\n"
 961"	stxa	%%g0, [%%g0] %0\n"
 962"	membar	#Sync\n"
 963	: /* no outputs */
 964	: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
 965	: "g1", "g2");
 966}
 967
 968void notrace init_irqwork_curcpu(void)
 969{
 970	int cpu = hard_smp_processor_id();
 971
 972	trap_block[cpu].irq_worklist_pa = 0UL;
 973}
 974
 975/* Please be very careful with register_one_mondo() and
 976 * sun4v_register_mondo_queues().
 977 *
 978 * On SMP this gets invoked from the CPU trampoline before
 979 * the cpu has fully taken over the trap table from OBP,
 980 * and it's kernel stack + %g6 thread register state is
 981 * not fully cooked yet.
 982 *
 983 * Therefore you cannot make any OBP calls, not even prom_printf,
 984 * from these two routines.
 985 */
 986static void notrace register_one_mondo(unsigned long paddr, unsigned long type,
 987				       unsigned long qmask)
 988{
 989	unsigned long num_entries = (qmask + 1) / 64;
 990	unsigned long status;
 991
 992	status = sun4v_cpu_qconf(type, paddr, num_entries);
 993	if (status != HV_EOK) {
 994		prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
 995			    "err %lu\n", type, paddr, num_entries, status);
 996		prom_halt();
 997	}
 998}
 999
1000void notrace sun4v_register_mondo_queues(int this_cpu)
1001{
1002	struct trap_per_cpu *tb = &trap_block[this_cpu];
1003
1004	register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
1005			   tb->cpu_mondo_qmask);
1006	register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
1007			   tb->dev_mondo_qmask);
1008	register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
1009			   tb->resum_qmask);
1010	register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
1011			   tb->nonresum_qmask);
1012}
1013
1014/* Each queue region must be a power of 2 multiple of 64 bytes in
1015 * size.  The base real address must be aligned to the size of the
1016 * region.  Thus, an 8KB queue must be 8KB aligned, for example.
1017 */
1018static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
1019{
1020	unsigned long size = PAGE_ALIGN(qmask + 1);
1021	unsigned long order = get_order(size);
1022	unsigned long p;
1023
1024	p = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1025	if (!p) {
1026		prom_printf("SUN4V: Error, cannot allocate queue.\n");
1027		prom_halt();
1028	}
1029
1030	*pa_ptr = __pa(p);
1031}
1032
1033static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
1034{
1035#ifdef CONFIG_SMP
1036	unsigned long page;
1037	void *mondo, *p;
1038
1039	BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > PAGE_SIZE);
1040
1041	/* Make sure mondo block is 64byte aligned */
1042	p = kzalloc(127, GFP_KERNEL);
1043	if (!p) {
1044		prom_printf("SUN4V: Error, cannot allocate mondo block.\n");
1045		prom_halt();
1046	}
1047	mondo = (void *)(((unsigned long)p + 63) & ~0x3f);
1048	tb->cpu_mondo_block_pa = __pa(mondo);
1049
1050	page = get_zeroed_page(GFP_KERNEL);
1051	if (!page) {
1052		prom_printf("SUN4V: Error, cannot allocate cpu list page.\n");
1053		prom_halt();
1054	}
1055
1056	tb->cpu_list_pa = __pa(page);
 
1057#endif
1058}
1059
1060/* Allocate mondo and error queues for all possible cpus.  */
1061static void __init sun4v_init_mondo_queues(void)
1062{
1063	int cpu;
1064
1065	for_each_possible_cpu(cpu) {
1066		struct trap_per_cpu *tb = &trap_block[cpu];
1067
1068		alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
1069		alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
1070		alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
1071		alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
1072		alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
1073		alloc_one_queue(&tb->nonresum_kernel_buf_pa,
1074				tb->nonresum_qmask);
1075	}
1076}
1077
1078static void __init init_send_mondo_info(void)
1079{
1080	int cpu;
1081
1082	for_each_possible_cpu(cpu) {
1083		struct trap_per_cpu *tb = &trap_block[cpu];
1084
1085		init_cpu_send_mondo_info(tb);
1086	}
1087}
1088
1089static struct irqaction timer_irq_action = {
1090	.name = "timer",
1091};
1092
1093static void __init irq_ivector_init(void)
 
1094{
1095	unsigned long size, order;
1096	unsigned int ivecs;
1097
1098	/* If we are doing cookie only VIRQs then we do not need the ivector
1099	 * table to process interrupts.
1100	 */
1101	if (sun4v_cookie_only_virqs())
1102		return;
1103
1104	ivecs = size_nr_ivec();
1105	size = sizeof(struct ino_bucket) * ivecs;
1106	order = get_order(size);
1107	ivector_table = (struct ino_bucket *)
1108		__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1109	if (!ivector_table) {
1110		prom_printf("Fatal error, cannot allocate ivector_table\n");
1111		prom_halt();
1112	}
1113	__flush_dcache_range((unsigned long) ivector_table,
1114			     ((unsigned long) ivector_table) + size);
1115
1116	ivector_table_pa = __pa(ivector_table);
1117}
1118
1119/* Only invoked on boot processor.*/
1120void __init init_IRQ(void)
1121{
1122	irq_init_hv();
1123	irq_ivector_init();
1124	map_prom_timers();
1125	kill_prom_timer();
1126
1127	if (tlb_type == hypervisor)
1128		sun4v_init_mondo_queues();
1129
1130	init_send_mondo_info();
1131
1132	if (tlb_type == hypervisor) {
1133		/* Load up the boot cpu's entries.  */
1134		sun4v_register_mondo_queues(hard_smp_processor_id());
1135	}
1136
1137	/* We need to clear any IRQ's pending in the soft interrupt
1138	 * registers, a spurious one could be left around from the
1139	 * PROM timer which we just disabled.
1140	 */
1141	clear_softint(get_softint());
1142
1143	/* Now that ivector table is initialized, it is safe
1144	 * to receive IRQ vector traps.  We will normally take
1145	 * one or two right now, in case some device PROM used
1146	 * to boot us wants to speak to us.  We just ignore them.
1147	 */
1148	__asm__ __volatile__("rdpr	%%pstate, %%g1\n\t"
1149			     "or	%%g1, %0, %%g1\n\t"
1150			     "wrpr	%%g1, 0x0, %%pstate"
1151			     : /* No outputs */
1152			     : "i" (PSTATE_IE)
1153			     : "g1");
1154
1155	irq_to_desc(0)->action = &timer_irq_action;
1156}