Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * This program is free software; you can redistribute it and/or
  3 * modify it under the terms of the GNU General Public License
  4 * as published by the Free Software Foundation; either version 2
  5 * of the License, or (at your option) any later version.
  6 *
  7 * This program is distributed in the hope that it will be useful,
  8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 10 * GNU General Public License for more details.
 11 *
 12 * You should have received a copy of the GNU General Public License
 13 * along with this program; if not, write to the Free Software
 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 15 *
 16 * Copyright (C) 2000, 2001 Kanoj Sarcar
 17 * Copyright (C) 2000, 2001 Ralf Baechle
 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
 20 */
 21#include <linux/cache.h>
 22#include <linux/delay.h>
 23#include <linux/init.h>
 24#include <linux/interrupt.h>
 25#include <linux/smp.h>
 26#include <linux/spinlock.h>
 27#include <linux/threads.h>
 28#include <linux/module.h>
 29#include <linux/time.h>
 30#include <linux/timex.h>
 31#include <linux/sched.h>
 32#include <linux/cpumask.h>
 33#include <linux/cpu.h>
 34#include <linux/err.h>
 35#include <linux/ftrace.h>
 
 
 
 36
 37#include <linux/atomic.h>
 38#include <asm/cpu.h>
 
 39#include <asm/processor.h>
 
 40#include <asm/r4k-timer.h>
 
 41#include <asm/mmu_context.h>
 42#include <asm/time.h>
 43#include <asm/setup.h>
 
 44
 45#ifdef CONFIG_MIPS_MT_SMTC
 46#include <asm/mipsmtregs.h>
 47#endif /* CONFIG_MIPS_MT_SMTC */
 48
 49volatile cpumask_t cpu_callin_map;	/* Bitmask of started secondaries */
 50
 51int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
 52EXPORT_SYMBOL(__cpu_number_map);
 53
 54int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 55EXPORT_SYMBOL(__cpu_logical_map);
 56
 57/* Number of TCs (or siblings in Intel speak) per CPU core */
 58int smp_num_siblings = 1;
 59EXPORT_SYMBOL(smp_num_siblings);
 60
 61/* representing the TCs (or siblings in Intel speak) of each logical CPU */
 62cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
 63EXPORT_SYMBOL(cpu_sibling_map);
 64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 65/* representing cpus for which sibling maps can be computed */
 66static cpumask_t cpu_sibling_setup_map;
 67
 
 
 
 
 
 
 
 
 
 
 68static inline void set_cpu_sibling_map(int cpu)
 69{
 70	int i;
 71
 72	cpu_set(cpu, cpu_sibling_setup_map);
 73
 74	if (smp_num_siblings > 1) {
 75		for_each_cpu_mask(i, cpu_sibling_setup_map) {
 76			if (cpu_data[cpu].core == cpu_data[i].core) {
 77				cpu_set(i, cpu_sibling_map[cpu]);
 78				cpu_set(cpu, cpu_sibling_map[i]);
 79			}
 80		}
 81	} else
 82		cpu_set(cpu, cpu_sibling_map[cpu]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 83}
 84
 85struct plat_smp_ops *mp_ops;
 
 86
 87__cpuinit void register_smp_ops(struct plat_smp_ops *ops)
 88{
 89	if (mp_ops)
 90		printk(KERN_WARNING "Overriding previously set SMP ops\n");
 91
 92	mp_ops = ops;
 93}
 94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 95/*
 96 * First C code run on the secondary CPUs after being started up by
 97 * the master.
 98 */
 99asmlinkage __cpuinit void start_secondary(void)
100{
101	unsigned int cpu;
102
103#ifdef CONFIG_MIPS_MT_SMTC
104	/* Only do cpu_probe for first TC of CPU */
105	if ((read_c0_tcbind() & TCBIND_CURTC) == 0)
106#endif /* CONFIG_MIPS_MT_SMTC */
107	cpu_probe();
108	cpu_report();
109	per_cpu_trap_init(false);
110	mips_clockevent_init();
111	mp_ops->init_secondary();
 
 
112
113	/*
114	 * XXX parity protection should be folded in here when it's converted
115	 * to an option instead of something based on .cputype
116	 */
117
118	calibrate_delay();
119	preempt_disable();
120	cpu = smp_processor_id();
121	cpu_data[cpu].udelay_val = loops_per_jiffy;
122
 
123	notify_cpu_starting(cpu);
124
 
 
 
 
 
 
125	set_cpu_online(cpu, true);
126
127	set_cpu_sibling_map(cpu);
 
128
129	cpu_set(cpu, cpu_callin_map);
130
131	synchronise_count_slave();
 
 
 
 
132
133	/*
134	 * irq will be enabled in ->smp_finish(), enabling it too early
135	 * is dangerous.
136	 */
137	WARN_ON_ONCE(!irqs_disabled());
138	mp_ops->smp_finish();
139
140	cpu_idle();
141}
142
143/*
144 * Call into both interrupt handlers, as we share the IPI for them
145 */
146void __irq_entry smp_call_function_interrupt(void)
147{
148	irq_enter();
149	generic_smp_call_function_single_interrupt();
150	generic_smp_call_function_interrupt();
151	irq_exit();
152}
153
154static void stop_this_cpu(void *dummy)
155{
156	/*
157	 * Remove this CPU:
158	 */
 
159	set_cpu_online(smp_processor_id(), false);
160	for (;;) {
161		if (cpu_wait)
162			(*cpu_wait)();		/* Wait if available. */
163	}
164}
165
166void smp_send_stop(void)
167{
168	smp_call_function(stop_this_cpu, NULL, 0);
169}
170
171void __init smp_cpus_done(unsigned int max_cpus)
172{
173	mp_ops->cpus_done();
174	synchronise_count_master();
175}
176
177/* called from main before smp_init() */
178void __init smp_prepare_cpus(unsigned int max_cpus)
179{
180	init_new_context(current, &init_mm);
181	current_thread_info()->cpu = 0;
182	mp_ops->prepare_cpus(max_cpus);
183	set_cpu_sibling_map(0);
 
 
184#ifndef CONFIG_HOTPLUG_CPU
185	init_cpu_present(cpu_possible_mask);
186#endif
 
187}
188
189/* preload SMP state for boot cpu */
190void __devinit smp_prepare_boot_cpu(void)
191{
 
 
192	set_cpu_possible(0, true);
193	set_cpu_online(0, true);
194	cpu_set(0, cpu_callin_map);
195}
196
197int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
198{
199	mp_ops->boot_secondary(cpu, tidle);
200
201	/*
202	 * Trust is futile.  We should really have timeouts ...
203	 */
204	while (!cpu_isset(cpu, cpu_callin_map))
205		udelay(100);
 
 
 
 
 
206
 
 
 
 
207	return 0;
208}
209
210/* Not really SMP stuff ... */
211int setup_profiling_timer(unsigned int multiplier)
212{
213	return 0;
214}
215
216static void flush_tlb_all_ipi(void *info)
217{
218	local_flush_tlb_all();
219}
220
221void flush_tlb_all(void)
222{
 
 
 
 
 
 
 
 
 
223	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
224}
225
226static void flush_tlb_mm_ipi(void *mm)
227{
228	local_flush_tlb_mm((struct mm_struct *)mm);
229}
230
231/*
232 * Special Variant of smp_call_function for use by TLB functions:
233 *
234 *  o No return value
235 *  o collapses to normal function call on UP kernels
236 *  o collapses to normal function call on systems with a single shared
237 *    primary cache.
238 *  o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core.
239 */
240static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
241{
242#ifndef CONFIG_MIPS_MT_SMTC
243	smp_call_function(func, info, 1);
244#endif
245}
246
247static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
248{
249	preempt_disable();
250
251	smp_on_other_tlbs(func, info);
252	func(info);
253
254	preempt_enable();
255}
256
257/*
258 * The following tlb flush calls are invoked when old translations are
259 * being torn down, or pte attributes are changing. For single threaded
260 * address spaces, a new context is obtained on the current cpu, and tlb
261 * context on other cpus are invalidated to force a new context allocation
262 * at switch_mm time, should the mm ever be used on other cpus. For
263 * multithreaded address spaces, intercpu interrupts have to be sent.
264 * Another case where intercpu interrupts are required is when the target
265 * mm might be active on another cpu (eg debuggers doing the flushes on
266 * behalf of debugees, kswapd stealing pages from another process etc).
267 * Kanoj 07/00.
268 */
269
270void flush_tlb_mm(struct mm_struct *mm)
271{
272	preempt_disable();
273
274	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
 
 
 
 
 
275		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
276	} else {
277		unsigned int cpu;
278
279		for_each_online_cpu(cpu) {
280			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
281				cpu_context(cpu, mm) = 0;
282		}
283	}
284	local_flush_tlb_mm(mm);
285
286	preempt_enable();
287}
288
289struct flush_tlb_data {
290	struct vm_area_struct *vma;
291	unsigned long addr1;
292	unsigned long addr2;
293};
294
295static void flush_tlb_range_ipi(void *info)
296{
297	struct flush_tlb_data *fd = info;
298
299	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
300}
301
302void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
303{
304	struct mm_struct *mm = vma->vm_mm;
 
 
305
306	preempt_disable();
307	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
308		struct flush_tlb_data fd = {
309			.vma = vma,
310			.addr1 = start,
311			.addr2 = end,
312		};
313
314		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
 
315	} else {
316		unsigned int cpu;
 
317
318		for_each_online_cpu(cpu) {
 
 
 
 
 
 
319			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
320				cpu_context(cpu, mm) = 0;
321		}
 
322	}
323	local_flush_tlb_range(vma, start, end);
324	preempt_enable();
325}
326
327static void flush_tlb_kernel_range_ipi(void *info)
328{
329	struct flush_tlb_data *fd = info;
330
331	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
332}
333
334void flush_tlb_kernel_range(unsigned long start, unsigned long end)
335{
336	struct flush_tlb_data fd = {
337		.addr1 = start,
338		.addr2 = end,
339	};
340
341	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
342}
343
344static void flush_tlb_page_ipi(void *info)
345{
346	struct flush_tlb_data *fd = info;
347
348	local_flush_tlb_page(fd->vma, fd->addr1);
349}
350
351void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
352{
 
 
353	preempt_disable();
354	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
 
 
 
 
 
 
 
 
 
 
 
355		struct flush_tlb_data fd = {
356			.vma = vma,
357			.addr1 = page,
358		};
359
360		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
 
361	} else {
362		unsigned int cpu;
363
364		for_each_online_cpu(cpu) {
 
 
 
 
 
 
365			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
366				cpu_context(cpu, vma->vm_mm) = 0;
367		}
 
368	}
369	local_flush_tlb_page(vma, page);
370	preempt_enable();
371}
372
373static void flush_tlb_one_ipi(void *info)
374{
375	unsigned long vaddr = (unsigned long) info;
376
377	local_flush_tlb_one(vaddr);
378}
379
380void flush_tlb_one(unsigned long vaddr)
381{
382	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
383}
384
385EXPORT_SYMBOL(flush_tlb_page);
386EXPORT_SYMBOL(flush_tlb_one);
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
 
 
 
 
 
 
 
 
 
 
 
 
 
  3 *
  4 * Copyright (C) 2000, 2001 Kanoj Sarcar
  5 * Copyright (C) 2000, 2001 Ralf Baechle
  6 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
  7 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
  8 */
  9#include <linux/cache.h>
 10#include <linux/delay.h>
 11#include <linux/init.h>
 12#include <linux/interrupt.h>
 13#include <linux/smp.h>
 14#include <linux/spinlock.h>
 15#include <linux/threads.h>
 16#include <linux/export.h>
 17#include <linux/time.h>
 18#include <linux/timex.h>
 19#include <linux/sched/mm.h>
 20#include <linux/cpumask.h>
 21#include <linux/cpu.h>
 22#include <linux/err.h>
 23#include <linux/ftrace.h>
 24#include <linux/irqdomain.h>
 25#include <linux/of.h>
 26#include <linux/of_irq.h>
 27
 28#include <linux/atomic.h>
 29#include <asm/cpu.h>
 30#include <asm/ginvt.h>
 31#include <asm/processor.h>
 32#include <asm/idle.h>
 33#include <asm/r4k-timer.h>
 34#include <asm/mips-cps.h>
 35#include <asm/mmu_context.h>
 36#include <asm/time.h>
 37#include <asm/setup.h>
 38#include <asm/maar.h>
 39
 40int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP];   /* Map physical to logical */
 
 
 
 
 
 
 41EXPORT_SYMBOL(__cpu_number_map);
 42
 43int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 44EXPORT_SYMBOL(__cpu_logical_map);
 45
 46/* Number of TCs (or siblings in Intel speak) per CPU core */
 47int smp_num_siblings = 1;
 48EXPORT_SYMBOL(smp_num_siblings);
 49
 50/* representing the TCs (or siblings in Intel speak) of each logical CPU */
 51cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
 52EXPORT_SYMBOL(cpu_sibling_map);
 53
 54/* representing the core map of multi-core chips of each logical CPU */
 55cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
 56EXPORT_SYMBOL(cpu_core_map);
 57
 58static DECLARE_COMPLETION(cpu_starting);
 59static DECLARE_COMPLETION(cpu_running);
 60
 61/*
 62 * A logcal cpu mask containing only one VPE per core to
 63 * reduce the number of IPIs on large MT systems.
 64 */
 65cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
 66EXPORT_SYMBOL(cpu_foreign_map);
 67
 68/* representing cpus for which sibling maps can be computed */
 69static cpumask_t cpu_sibling_setup_map;
 70
 71/* representing cpus for which core maps can be computed */
 72static cpumask_t cpu_core_setup_map;
 73
 74cpumask_t cpu_coherent_mask;
 75
 76#ifdef CONFIG_GENERIC_IRQ_IPI
 77static struct irq_desc *call_desc;
 78static struct irq_desc *sched_desc;
 79#endif
 80
 81static inline void set_cpu_sibling_map(int cpu)
 82{
 83	int i;
 84
 85	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
 86
 87	if (smp_num_siblings > 1) {
 88		for_each_cpu(i, &cpu_sibling_setup_map) {
 89			if (cpus_are_siblings(cpu, i)) {
 90				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
 91				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
 92			}
 93		}
 94	} else
 95		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
 96}
 97
 98static inline void set_cpu_core_map(int cpu)
 99{
100	int i;
101
102	cpumask_set_cpu(cpu, &cpu_core_setup_map);
103
104	for_each_cpu(i, &cpu_core_setup_map) {
105		if (cpu_data[cpu].package == cpu_data[i].package) {
106			cpumask_set_cpu(i, &cpu_core_map[cpu]);
107			cpumask_set_cpu(cpu, &cpu_core_map[i]);
108		}
109	}
110}
111
112/*
113 * Calculate a new cpu_foreign_map mask whenever a
114 * new cpu appears or disappears.
115 */
116void calculate_cpu_foreign_map(void)
117{
118	int i, k, core_present;
119	cpumask_t temp_foreign_map;
120
121	/* Re-calculate the mask */
122	cpumask_clear(&temp_foreign_map);
123	for_each_online_cpu(i) {
124		core_present = 0;
125		for_each_cpu(k, &temp_foreign_map)
126			if (cpus_are_siblings(i, k))
127				core_present = 1;
128		if (!core_present)
129			cpumask_set_cpu(i, &temp_foreign_map);
130	}
131
132	for_each_online_cpu(i)
133		cpumask_andnot(&cpu_foreign_map[i],
134			       &temp_foreign_map, &cpu_sibling_map[i]);
135}
136
137const struct plat_smp_ops *mp_ops;
138EXPORT_SYMBOL(mp_ops);
139
140void register_smp_ops(const struct plat_smp_ops *ops)
141{
142	if (mp_ops)
143		printk(KERN_WARNING "Overriding previously set SMP ops\n");
144
145	mp_ops = ops;
146}
147
148#ifdef CONFIG_GENERIC_IRQ_IPI
149void mips_smp_send_ipi_single(int cpu, unsigned int action)
150{
151	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
152}
153
154void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
155{
156	unsigned long flags;
157	unsigned int core;
158	int cpu;
159
160	local_irq_save(flags);
161
162	switch (action) {
163	case SMP_CALL_FUNCTION:
164		__ipi_send_mask(call_desc, mask);
165		break;
166
167	case SMP_RESCHEDULE_YOURSELF:
168		__ipi_send_mask(sched_desc, mask);
169		break;
170
171	default:
172		BUG();
173	}
174
175	if (mips_cpc_present()) {
176		for_each_cpu(cpu, mask) {
177			if (cpus_are_siblings(cpu, smp_processor_id()))
178				continue;
179
180			core = cpu_core(&cpu_data[cpu]);
181
182			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
183				mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
184				mips_cpc_lock_other(core);
185				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
186				mips_cpc_unlock_other();
187				mips_cm_unlock_other();
188			}
189		}
190	}
191
192	local_irq_restore(flags);
193}
194
195
196static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
197{
198	scheduler_ipi();
199
200	return IRQ_HANDLED;
201}
202
203static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
204{
205	generic_smp_call_function_interrupt();
206
207	return IRQ_HANDLED;
208}
209
210static struct irqaction irq_resched = {
211	.handler	= ipi_resched_interrupt,
212	.flags		= IRQF_PERCPU,
213	.name		= "IPI resched"
214};
215
216static struct irqaction irq_call = {
217	.handler	= ipi_call_interrupt,
218	.flags		= IRQF_PERCPU,
219	.name		= "IPI call"
220};
221
222static void smp_ipi_init_one(unsigned int virq,
223				    struct irqaction *action)
224{
225	int ret;
226
227	irq_set_handler(virq, handle_percpu_irq);
228	ret = setup_irq(virq, action);
229	BUG_ON(ret);
230}
231
232static unsigned int call_virq, sched_virq;
233
234int mips_smp_ipi_allocate(const struct cpumask *mask)
235{
236	int virq;
237	struct irq_domain *ipidomain;
238	struct device_node *node;
239
240	node = of_irq_find_parent(of_root);
241	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
242
243	/*
244	 * Some platforms have half DT setup. So if we found irq node but
245	 * didn't find an ipidomain, try to search for one that is not in the
246	 * DT.
247	 */
248	if (node && !ipidomain)
249		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
250
251	/*
252	 * There are systems which use IPI IRQ domains, but only have one
253	 * registered when some runtime condition is met. For example a Malta
254	 * kernel may include support for GIC & CPU interrupt controller IPI
255	 * IRQ domains, but if run on a system with no GIC & no MT ASE then
256	 * neither will be supported or registered.
257	 *
258	 * We only have a problem if we're actually using multiple CPUs so fail
259	 * loudly if that is the case. Otherwise simply return, skipping IPI
260	 * setup, if we're running with only a single CPU.
261	 */
262	if (!ipidomain) {
263		BUG_ON(num_present_cpus() > 1);
264		return 0;
265	}
266
267	virq = irq_reserve_ipi(ipidomain, mask);
268	BUG_ON(!virq);
269	if (!call_virq)
270		call_virq = virq;
271
272	virq = irq_reserve_ipi(ipidomain, mask);
273	BUG_ON(!virq);
274	if (!sched_virq)
275		sched_virq = virq;
276
277	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
278		int cpu;
279
280		for_each_cpu(cpu, mask) {
281			smp_ipi_init_one(call_virq + cpu, &irq_call);
282			smp_ipi_init_one(sched_virq + cpu, &irq_resched);
283		}
284	} else {
285		smp_ipi_init_one(call_virq, &irq_call);
286		smp_ipi_init_one(sched_virq, &irq_resched);
287	}
288
289	return 0;
290}
291
292int mips_smp_ipi_free(const struct cpumask *mask)
293{
294	struct irq_domain *ipidomain;
295	struct device_node *node;
296
297	node = of_irq_find_parent(of_root);
298	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
299
300	/*
301	 * Some platforms have half DT setup. So if we found irq node but
302	 * didn't find an ipidomain, try to search for one that is not in the
303	 * DT.
304	 */
305	if (node && !ipidomain)
306		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
307
308	BUG_ON(!ipidomain);
309
310	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
311		int cpu;
312
313		for_each_cpu(cpu, mask) {
314			remove_irq(call_virq + cpu, &irq_call);
315			remove_irq(sched_virq + cpu, &irq_resched);
316		}
317	}
318	irq_destroy_ipi(call_virq, mask);
319	irq_destroy_ipi(sched_virq, mask);
320	return 0;
321}
322
323
324static int __init mips_smp_ipi_init(void)
325{
326	if (num_possible_cpus() == 1)
327		return 0;
328
329	mips_smp_ipi_allocate(cpu_possible_mask);
330
331	call_desc = irq_to_desc(call_virq);
332	sched_desc = irq_to_desc(sched_virq);
333
334	return 0;
335}
336early_initcall(mips_smp_ipi_init);
337#endif
338
339/*
340 * First C code run on the secondary CPUs after being started up by
341 * the master.
342 */
343asmlinkage void start_secondary(void)
344{
345	unsigned int cpu;
346
 
 
 
 
347	cpu_probe();
 
348	per_cpu_trap_init(false);
349	mips_clockevent_init();
350	mp_ops->init_secondary();
351	cpu_report();
352	maar_init();
353
354	/*
355	 * XXX parity protection should be folded in here when it's converted
356	 * to an option instead of something based on .cputype
357	 */
358
359	calibrate_delay();
360	preempt_disable();
361	cpu = smp_processor_id();
362	cpu_data[cpu].udelay_val = loops_per_jiffy;
363
364	cpumask_set_cpu(cpu, &cpu_coherent_mask);
365	notify_cpu_starting(cpu);
366
367	/* Notify boot CPU that we're starting & ready to sync counters */
368	complete(&cpu_starting);
369
370	synchronise_count_slave(cpu);
371
372	/* The CPU is running and counters synchronised, now mark it online */
373	set_cpu_online(cpu, true);
374
375	set_cpu_sibling_map(cpu);
376	set_cpu_core_map(cpu);
377
378	calculate_cpu_foreign_map();
379
380	/*
381	 * Notify boot CPU that we're up & online and it can safely return
382	 * from __cpu_up
383	 */
384	complete(&cpu_running);
385
386	/*
387	 * irq will be enabled in ->smp_finish(), enabling it too early
388	 * is dangerous.
389	 */
390	WARN_ON_ONCE(!irqs_disabled());
391	mp_ops->smp_finish();
392
393	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 
 
 
 
 
 
 
 
 
 
 
394}
395
396static void stop_this_cpu(void *dummy)
397{
398	/*
399	 * Remove this CPU:
400	 */
401
402	set_cpu_online(smp_processor_id(), false);
403	calculate_cpu_foreign_map();
404	local_irq_disable();
405	while (1);
 
406}
407
408void smp_send_stop(void)
409{
410	smp_call_function(stop_this_cpu, NULL, 0);
411}
412
413void __init smp_cpus_done(unsigned int max_cpus)
414{
 
 
415}
416
417/* called from main before smp_init() */
418void __init smp_prepare_cpus(unsigned int max_cpus)
419{
420	init_new_context(current, &init_mm);
421	current_thread_info()->cpu = 0;
422	mp_ops->prepare_cpus(max_cpus);
423	set_cpu_sibling_map(0);
424	set_cpu_core_map(0);
425	calculate_cpu_foreign_map();
426#ifndef CONFIG_HOTPLUG_CPU
427	init_cpu_present(cpu_possible_mask);
428#endif
429	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
430}
431
432/* preload SMP state for boot cpu */
433void smp_prepare_boot_cpu(void)
434{
435	if (mp_ops->prepare_boot_cpu)
436		mp_ops->prepare_boot_cpu();
437	set_cpu_possible(0, true);
438	set_cpu_online(0, true);
 
439}
440
441int __cpu_up(unsigned int cpu, struct task_struct *tidle)
442{
443	int err;
444
445	err = mp_ops->boot_secondary(cpu, tidle);
446	if (err)
447		return err;
448
449	/* Wait for CPU to start and be ready to sync counters */
450	if (!wait_for_completion_timeout(&cpu_starting,
451					 msecs_to_jiffies(1000))) {
452		pr_crit("CPU%u: failed to start\n", cpu);
453		return -EIO;
454	}
455
456	synchronise_count_master(cpu);
457
458	/* Wait for CPU to finish startup & mark itself online before return */
459	wait_for_completion(&cpu_running);
460	return 0;
461}
462
463/* Not really SMP stuff ... */
464int setup_profiling_timer(unsigned int multiplier)
465{
466	return 0;
467}
468
469static void flush_tlb_all_ipi(void *info)
470{
471	local_flush_tlb_all();
472}
473
474void flush_tlb_all(void)
475{
476	if (cpu_has_mmid) {
477		htw_stop();
478		ginvt_full();
479		sync_ginv();
480		instruction_hazard();
481		htw_start();
482		return;
483	}
484
485	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
486}
487
488static void flush_tlb_mm_ipi(void *mm)
489{
490	drop_mmu_context((struct mm_struct *)mm);
491}
492
493/*
494 * Special Variant of smp_call_function for use by TLB functions:
495 *
496 *  o No return value
497 *  o collapses to normal function call on UP kernels
498 *  o collapses to normal function call on systems with a single shared
499 *    primary cache.
 
500 */
501static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
502{
 
503	smp_call_function(func, info, 1);
 
504}
505
506static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
507{
508	preempt_disable();
509
510	smp_on_other_tlbs(func, info);
511	func(info);
512
513	preempt_enable();
514}
515
516/*
517 * The following tlb flush calls are invoked when old translations are
518 * being torn down, or pte attributes are changing. For single threaded
519 * address spaces, a new context is obtained on the current cpu, and tlb
520 * context on other cpus are invalidated to force a new context allocation
521 * at switch_mm time, should the mm ever be used on other cpus. For
522 * multithreaded address spaces, intercpu interrupts have to be sent.
523 * Another case where intercpu interrupts are required is when the target
524 * mm might be active on another cpu (eg debuggers doing the flushes on
525 * behalf of debugees, kswapd stealing pages from another process etc).
526 * Kanoj 07/00.
527 */
528
529void flush_tlb_mm(struct mm_struct *mm)
530{
531	preempt_disable();
532
533	if (cpu_has_mmid) {
534		/*
535		 * No need to worry about other CPUs - the ginvt in
536		 * drop_mmu_context() will be globalized.
537		 */
538	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
539		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
540	} else {
541		unsigned int cpu;
542
543		for_each_online_cpu(cpu) {
544			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
545				set_cpu_context(cpu, mm, 0);
546		}
547	}
548	drop_mmu_context(mm);
549
550	preempt_enable();
551}
552
553struct flush_tlb_data {
554	struct vm_area_struct *vma;
555	unsigned long addr1;
556	unsigned long addr2;
557};
558
559static void flush_tlb_range_ipi(void *info)
560{
561	struct flush_tlb_data *fd = info;
562
563	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
564}
565
566void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
567{
568	struct mm_struct *mm = vma->vm_mm;
569	unsigned long addr;
570	u32 old_mmid;
571
572	preempt_disable();
573	if (cpu_has_mmid) {
574		htw_stop();
575		old_mmid = read_c0_memorymapid();
576		write_c0_memorymapid(cpu_asid(0, mm));
577		mtc0_tlbw_hazard();
578		addr = round_down(start, PAGE_SIZE * 2);
579		end = round_up(end, PAGE_SIZE * 2);
580		do {
581			ginvt_va_mmid(addr);
582			sync_ginv();
583			addr += PAGE_SIZE * 2;
584		} while (addr < end);
585		write_c0_memorymapid(old_mmid);
586		instruction_hazard();
587		htw_start();
588	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
589		struct flush_tlb_data fd = {
590			.vma = vma,
591			.addr1 = start,
592			.addr2 = end,
593		};
594
595		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
596		local_flush_tlb_range(vma, start, end);
597	} else {
598		unsigned int cpu;
599		int exec = vma->vm_flags & VM_EXEC;
600
601		for_each_online_cpu(cpu) {
602			/*
603			 * flush_cache_range() will only fully flush icache if
604			 * the VMA is executable, otherwise we must invalidate
605			 * ASID without it appearing to has_valid_asid() as if
606			 * mm has been completely unused by that CPU.
607			 */
608			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
609				set_cpu_context(cpu, mm, !exec);
610		}
611		local_flush_tlb_range(vma, start, end);
612	}
 
613	preempt_enable();
614}
615
616static void flush_tlb_kernel_range_ipi(void *info)
617{
618	struct flush_tlb_data *fd = info;
619
620	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
621}
622
623void flush_tlb_kernel_range(unsigned long start, unsigned long end)
624{
625	struct flush_tlb_data fd = {
626		.addr1 = start,
627		.addr2 = end,
628	};
629
630	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
631}
632
633static void flush_tlb_page_ipi(void *info)
634{
635	struct flush_tlb_data *fd = info;
636
637	local_flush_tlb_page(fd->vma, fd->addr1);
638}
639
640void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
641{
642	u32 old_mmid;
643
644	preempt_disable();
645	if (cpu_has_mmid) {
646		htw_stop();
647		old_mmid = read_c0_memorymapid();
648		write_c0_memorymapid(cpu_asid(0, vma->vm_mm));
649		mtc0_tlbw_hazard();
650		ginvt_va_mmid(page);
651		sync_ginv();
652		write_c0_memorymapid(old_mmid);
653		instruction_hazard();
654		htw_start();
655	} else if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
656		   (current->mm != vma->vm_mm)) {
657		struct flush_tlb_data fd = {
658			.vma = vma,
659			.addr1 = page,
660		};
661
662		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
663		local_flush_tlb_page(vma, page);
664	} else {
665		unsigned int cpu;
666
667		for_each_online_cpu(cpu) {
668			/*
669			 * flush_cache_page() only does partial flushes, so
670			 * invalidate ASID without it appearing to
671			 * has_valid_asid() as if mm has been completely unused
672			 * by that CPU.
673			 */
674			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
675				set_cpu_context(cpu, vma->vm_mm, 1);
676		}
677		local_flush_tlb_page(vma, page);
678	}
 
679	preempt_enable();
680}
681
682static void flush_tlb_one_ipi(void *info)
683{
684	unsigned long vaddr = (unsigned long) info;
685
686	local_flush_tlb_one(vaddr);
687}
688
689void flush_tlb_one(unsigned long vaddr)
690{
691	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
692}
693
694EXPORT_SYMBOL(flush_tlb_page);
695EXPORT_SYMBOL(flush_tlb_one);
696
697#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
698
699static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
700static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd);
701
702void tick_broadcast(const struct cpumask *mask)
703{
704	atomic_t *count;
705	call_single_data_t *csd;
706	int cpu;
707
708	for_each_cpu(cpu, mask) {
709		count = &per_cpu(tick_broadcast_count, cpu);
710		csd = &per_cpu(tick_broadcast_csd, cpu);
711
712		if (atomic_inc_return(count) == 1)
713			smp_call_function_single_async(cpu, csd);
714	}
715}
716
717static void tick_broadcast_callee(void *info)
718{
719	int cpu = smp_processor_id();
720	tick_receive_broadcast();
721	atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
722}
723
724static int __init tick_broadcast_init(void)
725{
726	call_single_data_t *csd;
727	int cpu;
728
729	for (cpu = 0; cpu < NR_CPUS; cpu++) {
730		csd = &per_cpu(tick_broadcast_csd, cpu);
731		csd->func = tick_broadcast_callee;
732	}
733
734	return 0;
735}
736early_initcall(tick_broadcast_init);
737
738#endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */