Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * OMAP2+ common Power & Reset Management (PRM) IP block functions
  3 *
  4 * Copyright (C) 2011 Texas Instruments, Inc.
  5 * Tero Kristo <t-kristo@ti.com>
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 *
 11 *
 12 * For historical purposes, the API used to configure the PRM
 13 * interrupt handler refers to it as the "PRCM interrupt."  The
 14 * underlying registers are located in the PRM on OMAP3/4.
 15 *
 16 * XXX This code should eventually be moved to a PRM driver.
 17 */
 18
 19#include <linux/kernel.h>
 20#include <linux/module.h>
 21#include <linux/init.h>
 22#include <linux/io.h>
 23#include <linux/irq.h>
 24#include <linux/interrupt.h>
 25#include <linux/slab.h>
 
 
 
 
 26
 27#include <plat/common.h>
 28#include <plat/prcm.h>
 29#include <plat/irqs.h>
 30
 31#include "prm2xxx_3xxx.h"
 
 
 
 32#include "prm44xx.h"
 
 
 
 
 
 
 
 33
 34/*
 35 * OMAP_PRCM_MAX_NR_PENDING_REG: maximum number of PRM_IRQ*_MPU regs
 36 * XXX this is technically not needed, since
 37 * omap_prcm_register_chain_handler() could allocate this based on the
 38 * actual amount of memory needed for the SoC
 39 */
 40#define OMAP_PRCM_MAX_NR_PENDING_REG		2
 41
 42/*
 43 * prcm_irq_chips: an array of all of the "generic IRQ chips" in use
 44 * by the PRCM interrupt handler code.  There will be one 'chip' per
 45 * PRM_{IRQSTATUS,IRQENABLE}_MPU register pair.  (So OMAP3 will have
 46 * one "chip" and OMAP4 will have two.)
 47 */
 48static struct irq_chip_generic **prcm_irq_chips;
 49
 50/*
 51 * prcm_irq_setup: the PRCM IRQ parameters for the hardware the code
 52 * is currently running on.  Defined and passed by initialization code
 53 * that calls omap_prcm_register_chain_handler().
 54 */
 55static struct omap_prcm_irq_setup *prcm_irq_setup;
 56
 
 
 
 
 
 
 
 
 
 
 
 
 57/* Private functions */
 58
 59/*
 60 * Move priority events from events to priority_events array
 61 */
 62static void omap_prcm_events_filter_priority(unsigned long *events,
 63	unsigned long *priority_events)
 64{
 65	int i;
 66
 67	for (i = 0; i < prcm_irq_setup->nr_regs; i++) {
 68		priority_events[i] =
 69			events[i] & prcm_irq_setup->priority_mask[i];
 70		events[i] ^= priority_events[i];
 71	}
 72}
 73
 74/*
 75 * PRCM Interrupt Handler
 76 *
 77 * This is a common handler for the OMAP PRCM interrupts. Pending
 78 * interrupts are detected by a call to prcm_pending_events and
 79 * dispatched accordingly. Clearing of the wakeup events should be
 80 * done by the SoC specific individual handlers.
 81 */
 82static void omap_prcm_irq_handler(unsigned int irq, struct irq_desc *desc)
 83{
 84	unsigned long pending[OMAP_PRCM_MAX_NR_PENDING_REG];
 85	unsigned long priority_pending[OMAP_PRCM_MAX_NR_PENDING_REG];
 86	struct irq_chip *chip = irq_desc_get_chip(desc);
 87	unsigned int virtirq;
 88	int nr_irqs = prcm_irq_setup->nr_regs * 32;
 89
 90	/*
 91	 * If we are suspended, mask all interrupts from PRCM level,
 92	 * this does not ack them, and they will be pending until we
 93	 * re-enable the interrupts, at which point the
 94	 * omap_prcm_irq_handler will be executed again.  The
 95	 * _save_and_clear_irqen() function must ensure that the PRM
 96	 * write to disable all IRQs has reached the PRM before
 97	 * returning, or spurious PRCM interrupts may occur during
 98	 * suspend.
 99	 */
100	if (prcm_irq_setup->suspended) {
101		prcm_irq_setup->save_and_clear_irqen(prcm_irq_setup->saved_mask);
102		prcm_irq_setup->suspend_save_flag = true;
103	}
104
105	/*
106	 * Loop until all pending irqs are handled, since
107	 * generic_handle_irq() can cause new irqs to come
108	 */
109	while (!prcm_irq_setup->suspended) {
110		prcm_irq_setup->read_pending_irqs(pending);
111
112		/* No bit set, then all IRQs are handled */
113		if (find_first_bit(pending, nr_irqs) >= nr_irqs)
114			break;
115
116		omap_prcm_events_filter_priority(pending, priority_pending);
117
118		/*
119		 * Loop on all currently pending irqs so that new irqs
120		 * cannot starve previously pending irqs
121		 */
122
123		/* Serve priority events first */
124		for_each_set_bit(virtirq, priority_pending, nr_irqs)
125			generic_handle_irq(prcm_irq_setup->base_irq + virtirq);
126
127		/* Serve normal events next */
128		for_each_set_bit(virtirq, pending, nr_irqs)
129			generic_handle_irq(prcm_irq_setup->base_irq + virtirq);
130	}
131	if (chip->irq_ack)
132		chip->irq_ack(&desc->irq_data);
133	if (chip->irq_eoi)
134		chip->irq_eoi(&desc->irq_data);
135	chip->irq_unmask(&desc->irq_data);
136
137	prcm_irq_setup->ocp_barrier(); /* avoid spurious IRQs */
138}
139
140/* Public functions */
141
142/**
143 * omap_prcm_event_to_irq - given a PRCM event name, returns the
144 * corresponding IRQ on which the handler should be registered
145 * @name: name of the PRCM interrupt bit to look up - see struct omap_prcm_irq
146 *
147 * Returns the Linux internal IRQ ID corresponding to @name upon success,
148 * or -ENOENT upon failure.
149 */
150int omap_prcm_event_to_irq(const char *name)
151{
152	int i;
153
154	if (!prcm_irq_setup || !name)
155		return -ENOENT;
156
157	for (i = 0; i < prcm_irq_setup->nr_irqs; i++)
158		if (!strcmp(prcm_irq_setup->irqs[i].name, name))
159			return prcm_irq_setup->base_irq +
160				prcm_irq_setup->irqs[i].offset;
161
162	return -ENOENT;
163}
164
165/**
166 * omap_prcm_irq_cleanup - reverses memory allocated and other steps
167 * done by omap_prcm_register_chain_handler()
168 *
169 * No return value.
170 */
171void omap_prcm_irq_cleanup(void)
172{
 
173	int i;
174
175	if (!prcm_irq_setup) {
176		pr_err("PRCM: IRQ handler not initialized; cannot cleanup\n");
177		return;
178	}
179
180	if (prcm_irq_chips) {
181		for (i = 0; i < prcm_irq_setup->nr_regs; i++) {
182			if (prcm_irq_chips[i])
183				irq_remove_generic_chip(prcm_irq_chips[i],
184					0xffffffff, 0, 0);
185			prcm_irq_chips[i] = NULL;
186		}
187		kfree(prcm_irq_chips);
188		prcm_irq_chips = NULL;
189	}
190
191	kfree(prcm_irq_setup->saved_mask);
192	prcm_irq_setup->saved_mask = NULL;
193
194	kfree(prcm_irq_setup->priority_mask);
195	prcm_irq_setup->priority_mask = NULL;
196
197	irq_set_chained_handler(prcm_irq_setup->irq, NULL);
 
198
199	if (prcm_irq_setup->base_irq > 0)
200		irq_free_descs(prcm_irq_setup->base_irq,
201			prcm_irq_setup->nr_regs * 32);
202	prcm_irq_setup->base_irq = 0;
203}
204
205void omap_prcm_irq_prepare(void)
206{
207	prcm_irq_setup->suspended = true;
208}
209
210void omap_prcm_irq_complete(void)
211{
212	prcm_irq_setup->suspended = false;
213
214	/* If we have not saved the masks, do not attempt to restore */
215	if (!prcm_irq_setup->suspend_save_flag)
216		return;
217
218	prcm_irq_setup->suspend_save_flag = false;
219
220	/*
221	 * Re-enable all masked PRCM irq sources, this causes the PRCM
222	 * interrupt to fire immediately if the events were masked
223	 * previously in the chain handler
224	 */
225	prcm_irq_setup->restore_irqen(prcm_irq_setup->saved_mask);
226}
227
228/**
229 * omap_prcm_register_chain_handler - initializes the prcm chained interrupt
230 * handler based on provided parameters
231 * @irq_setup: hardware data about the underlying PRM/PRCM
232 *
233 * Set up the PRCM chained interrupt handler on the PRCM IRQ.  Sets up
234 * one generic IRQ chip per PRM interrupt status/enable register pair.
235 * Returns 0 upon success, -EINVAL if called twice or if invalid
236 * arguments are passed, or -ENOMEM on any other error.
237 */
238int omap_prcm_register_chain_handler(struct omap_prcm_irq_setup *irq_setup)
239{
240	int nr_regs;
241	u32 mask[OMAP_PRCM_MAX_NR_PENDING_REG];
242	int offset, i;
243	struct irq_chip_generic *gc;
244	struct irq_chip_type *ct;
245
246	if (!irq_setup)
247		return -EINVAL;
248
249	nr_regs = irq_setup->nr_regs;
250
251	if (prcm_irq_setup) {
252		pr_err("PRCM: already initialized; won't reinitialize\n");
253		return -EINVAL;
254	}
255
256	if (nr_regs > OMAP_PRCM_MAX_NR_PENDING_REG) {
257		pr_err("PRCM: nr_regs too large\n");
258		return -EINVAL;
259	}
260
261	prcm_irq_setup = irq_setup;
262
263	prcm_irq_chips = kzalloc(sizeof(void *) * nr_regs, GFP_KERNEL);
264	prcm_irq_setup->saved_mask = kzalloc(sizeof(u32) * nr_regs, GFP_KERNEL);
265	prcm_irq_setup->priority_mask = kzalloc(sizeof(u32) * nr_regs,
266		GFP_KERNEL);
 
267
268	if (!prcm_irq_chips || !prcm_irq_setup->saved_mask ||
269	    !prcm_irq_setup->priority_mask) {
270		pr_err("PRCM: kzalloc failed\n");
271		goto err;
272	}
273
274	memset(mask, 0, sizeof(mask));
275
276	for (i = 0; i < irq_setup->nr_irqs; i++) {
277		offset = irq_setup->irqs[i].offset;
278		mask[offset >> 5] |= 1 << (offset & 0x1f);
279		if (irq_setup->irqs[i].priority)
280			irq_setup->priority_mask[offset >> 5] |=
281				1 << (offset & 0x1f);
282	}
283
284	irq_set_chained_handler(irq_setup->irq, omap_prcm_irq_handler);
 
285
286	irq_setup->base_irq = irq_alloc_descs(-1, 0, irq_setup->nr_regs * 32,
287		0);
288
289	if (irq_setup->base_irq < 0) {
290		pr_err("PRCM: failed to allocate irq descs: %d\n",
291			irq_setup->base_irq);
292		goto err;
293	}
294
295	for (i = 0; i < irq_setup->nr_regs; i++) {
296		gc = irq_alloc_generic_chip("PRCM", 1,
297			irq_setup->base_irq + i * 32, prm_base,
298			handle_level_irq);
299
300		if (!gc) {
301			pr_err("PRCM: failed to allocate generic chip\n");
302			goto err;
303		}
304		ct = gc->chip_types;
305		ct->chip.irq_ack = irq_gc_ack_set_bit;
306		ct->chip.irq_mask = irq_gc_mask_clr_bit;
307		ct->chip.irq_unmask = irq_gc_mask_set_bit;
308
309		ct->regs.ack = irq_setup->ack + i * 4;
310		ct->regs.mask = irq_setup->mask + i * 4;
311
312		irq_setup_generic_chip(gc, mask[i], 0, IRQ_NOREQUEST, 0);
313		prcm_irq_chips[i] = gc;
314	}
315
 
 
 
316	return 0;
317
318err:
319	omap_prcm_irq_cleanup();
320	return -ENOMEM;
321}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * OMAP2+ common Power & Reset Management (PRM) IP block functions
  4 *
  5 * Copyright (C) 2011 Texas Instruments, Inc.
  6 * Tero Kristo <t-kristo@ti.com>
  7 *
 
 
 
 
 
  8 * For historical purposes, the API used to configure the PRM
  9 * interrupt handler refers to it as the "PRCM interrupt."  The
 10 * underlying registers are located in the PRM on OMAP3/4.
 11 *
 12 * XXX This code should eventually be moved to a PRM driver.
 13 */
 14
 15#include <linux/kernel.h>
 16#include <linux/module.h>
 17#include <linux/init.h>
 18#include <linux/io.h>
 19#include <linux/irq.h>
 20#include <linux/interrupt.h>
 21#include <linux/slab.h>
 22#include <linux/of.h>
 23#include <linux/of_address.h>
 24#include <linux/clk-provider.h>
 25#include <linux/clk/ti.h>
 26
 27#include "soc.h"
 
 
 
 28#include "prm2xxx_3xxx.h"
 29#include "prm2xxx.h"
 30#include "prm3xxx.h"
 31#include "prm33xx.h"
 32#include "prm44xx.h"
 33#include "prm54xx.h"
 34#include "prm7xx.h"
 35#include "prcm43xx.h"
 36#include "common.h"
 37#include "clock.h"
 38#include "cm.h"
 39#include "control.h"
 40
 41/*
 42 * OMAP_PRCM_MAX_NR_PENDING_REG: maximum number of PRM_IRQ*_MPU regs
 43 * XXX this is technically not needed, since
 44 * omap_prcm_register_chain_handler() could allocate this based on the
 45 * actual amount of memory needed for the SoC
 46 */
 47#define OMAP_PRCM_MAX_NR_PENDING_REG		2
 48
 49/*
 50 * prcm_irq_chips: an array of all of the "generic IRQ chips" in use
 51 * by the PRCM interrupt handler code.  There will be one 'chip' per
 52 * PRM_{IRQSTATUS,IRQENABLE}_MPU register pair.  (So OMAP3 will have
 53 * one "chip" and OMAP4 will have two.)
 54 */
 55static struct irq_chip_generic **prcm_irq_chips;
 56
 57/*
 58 * prcm_irq_setup: the PRCM IRQ parameters for the hardware the code
 59 * is currently running on.  Defined and passed by initialization code
 60 * that calls omap_prcm_register_chain_handler().
 61 */
 62static struct omap_prcm_irq_setup *prcm_irq_setup;
 63
 64/* prm_base: base virtual address of the PRM IP block */
 65struct omap_domain_base prm_base;
 66
 67u16 prm_features;
 68
 69/*
 70 * prm_ll_data: function pointers to SoC-specific implementations of
 71 * common PRM functions
 72 */
 73static struct prm_ll_data null_prm_ll_data;
 74static struct prm_ll_data *prm_ll_data = &null_prm_ll_data;
 75
 76/* Private functions */
 77
 78/*
 79 * Move priority events from events to priority_events array
 80 */
 81static void omap_prcm_events_filter_priority(unsigned long *events,
 82	unsigned long *priority_events)
 83{
 84	int i;
 85
 86	for (i = 0; i < prcm_irq_setup->nr_regs; i++) {
 87		priority_events[i] =
 88			events[i] & prcm_irq_setup->priority_mask[i];
 89		events[i] ^= priority_events[i];
 90	}
 91}
 92
 93/*
 94 * PRCM Interrupt Handler
 95 *
 96 * This is a common handler for the OMAP PRCM interrupts. Pending
 97 * interrupts are detected by a call to prcm_pending_events and
 98 * dispatched accordingly. Clearing of the wakeup events should be
 99 * done by the SoC specific individual handlers.
100 */
101static void omap_prcm_irq_handler(struct irq_desc *desc)
102{
103	unsigned long pending[OMAP_PRCM_MAX_NR_PENDING_REG];
104	unsigned long priority_pending[OMAP_PRCM_MAX_NR_PENDING_REG];
105	struct irq_chip *chip = irq_desc_get_chip(desc);
106	unsigned int virtirq;
107	int nr_irq = prcm_irq_setup->nr_regs * 32;
108
109	/*
110	 * If we are suspended, mask all interrupts from PRCM level,
111	 * this does not ack them, and they will be pending until we
112	 * re-enable the interrupts, at which point the
113	 * omap_prcm_irq_handler will be executed again.  The
114	 * _save_and_clear_irqen() function must ensure that the PRM
115	 * write to disable all IRQs has reached the PRM before
116	 * returning, or spurious PRCM interrupts may occur during
117	 * suspend.
118	 */
119	if (prcm_irq_setup->suspended) {
120		prcm_irq_setup->save_and_clear_irqen(prcm_irq_setup->saved_mask);
121		prcm_irq_setup->suspend_save_flag = true;
122	}
123
124	/*
125	 * Loop until all pending irqs are handled, since
126	 * generic_handle_irq() can cause new irqs to come
127	 */
128	while (!prcm_irq_setup->suspended) {
129		prcm_irq_setup->read_pending_irqs(pending);
130
131		/* No bit set, then all IRQs are handled */
132		if (find_first_bit(pending, nr_irq) >= nr_irq)
133			break;
134
135		omap_prcm_events_filter_priority(pending, priority_pending);
136
137		/*
138		 * Loop on all currently pending irqs so that new irqs
139		 * cannot starve previously pending irqs
140		 */
141
142		/* Serve priority events first */
143		for_each_set_bit(virtirq, priority_pending, nr_irq)
144			generic_handle_irq(prcm_irq_setup->base_irq + virtirq);
145
146		/* Serve normal events next */
147		for_each_set_bit(virtirq, pending, nr_irq)
148			generic_handle_irq(prcm_irq_setup->base_irq + virtirq);
149	}
150	if (chip->irq_ack)
151		chip->irq_ack(&desc->irq_data);
152	if (chip->irq_eoi)
153		chip->irq_eoi(&desc->irq_data);
154	chip->irq_unmask(&desc->irq_data);
155
156	prcm_irq_setup->ocp_barrier(); /* avoid spurious IRQs */
157}
158
159/* Public functions */
160
161/**
162 * omap_prcm_event_to_irq - given a PRCM event name, returns the
163 * corresponding IRQ on which the handler should be registered
164 * @name: name of the PRCM interrupt bit to look up - see struct omap_prcm_irq
165 *
166 * Returns the Linux internal IRQ ID corresponding to @name upon success,
167 * or -ENOENT upon failure.
168 */
169int omap_prcm_event_to_irq(const char *name)
170{
171	int i;
172
173	if (!prcm_irq_setup || !name)
174		return -ENOENT;
175
176	for (i = 0; i < prcm_irq_setup->nr_irqs; i++)
177		if (!strcmp(prcm_irq_setup->irqs[i].name, name))
178			return prcm_irq_setup->base_irq +
179				prcm_irq_setup->irqs[i].offset;
180
181	return -ENOENT;
182}
183
184/**
185 * omap_prcm_irq_cleanup - reverses memory allocated and other steps
186 * done by omap_prcm_register_chain_handler()
187 *
188 * No return value.
189 */
190void omap_prcm_irq_cleanup(void)
191{
192	unsigned int irq;
193	int i;
194
195	if (!prcm_irq_setup) {
196		pr_err("PRCM: IRQ handler not initialized; cannot cleanup\n");
197		return;
198	}
199
200	if (prcm_irq_chips) {
201		for (i = 0; i < prcm_irq_setup->nr_regs; i++) {
202			if (prcm_irq_chips[i])
203				irq_remove_generic_chip(prcm_irq_chips[i],
204					0xffffffff, 0, 0);
205			prcm_irq_chips[i] = NULL;
206		}
207		kfree(prcm_irq_chips);
208		prcm_irq_chips = NULL;
209	}
210
211	kfree(prcm_irq_setup->saved_mask);
212	prcm_irq_setup->saved_mask = NULL;
213
214	kfree(prcm_irq_setup->priority_mask);
215	prcm_irq_setup->priority_mask = NULL;
216
217	irq = prcm_irq_setup->irq;
218	irq_set_chained_handler(irq, NULL);
219
220	if (prcm_irq_setup->base_irq > 0)
221		irq_free_descs(prcm_irq_setup->base_irq,
222			prcm_irq_setup->nr_regs * 32);
223	prcm_irq_setup->base_irq = 0;
224}
225
226void omap_prcm_irq_prepare(void)
227{
228	prcm_irq_setup->suspended = true;
229}
230
231void omap_prcm_irq_complete(void)
232{
233	prcm_irq_setup->suspended = false;
234
235	/* If we have not saved the masks, do not attempt to restore */
236	if (!prcm_irq_setup->suspend_save_flag)
237		return;
238
239	prcm_irq_setup->suspend_save_flag = false;
240
241	/*
242	 * Re-enable all masked PRCM irq sources, this causes the PRCM
243	 * interrupt to fire immediately if the events were masked
244	 * previously in the chain handler
245	 */
246	prcm_irq_setup->restore_irqen(prcm_irq_setup->saved_mask);
247}
248
249/**
250 * omap_prcm_register_chain_handler - initializes the prcm chained interrupt
251 * handler based on provided parameters
252 * @irq_setup: hardware data about the underlying PRM/PRCM
253 *
254 * Set up the PRCM chained interrupt handler on the PRCM IRQ.  Sets up
255 * one generic IRQ chip per PRM interrupt status/enable register pair.
256 * Returns 0 upon success, -EINVAL if called twice or if invalid
257 * arguments are passed, or -ENOMEM on any other error.
258 */
259int omap_prcm_register_chain_handler(struct omap_prcm_irq_setup *irq_setup)
260{
261	int nr_regs;
262	u32 mask[OMAP_PRCM_MAX_NR_PENDING_REG];
263	int offset, i, irq;
264	struct irq_chip_generic *gc;
265	struct irq_chip_type *ct;
266
267	if (!irq_setup)
268		return -EINVAL;
269
270	nr_regs = irq_setup->nr_regs;
271
272	if (prcm_irq_setup) {
273		pr_err("PRCM: already initialized; won't reinitialize\n");
274		return -EINVAL;
275	}
276
277	if (nr_regs > OMAP_PRCM_MAX_NR_PENDING_REG) {
278		pr_err("PRCM: nr_regs too large\n");
279		return -EINVAL;
280	}
281
282	prcm_irq_setup = irq_setup;
283
284	prcm_irq_chips = kcalloc(nr_regs, sizeof(void *), GFP_KERNEL);
285	prcm_irq_setup->saved_mask = kcalloc(nr_regs, sizeof(u32),
286					     GFP_KERNEL);
287	prcm_irq_setup->priority_mask = kcalloc(nr_regs, sizeof(u32),
288						GFP_KERNEL);
289
290	if (!prcm_irq_chips || !prcm_irq_setup->saved_mask ||
291	    !prcm_irq_setup->priority_mask)
 
292		goto err;
 
293
294	memset(mask, 0, sizeof(mask));
295
296	for (i = 0; i < irq_setup->nr_irqs; i++) {
297		offset = irq_setup->irqs[i].offset;
298		mask[offset >> 5] |= 1 << (offset & 0x1f);
299		if (irq_setup->irqs[i].priority)
300			irq_setup->priority_mask[offset >> 5] |=
301				1 << (offset & 0x1f);
302	}
303
304	irq = irq_setup->irq;
305	irq_set_chained_handler(irq, omap_prcm_irq_handler);
306
307	irq_setup->base_irq = irq_alloc_descs(-1, 0, irq_setup->nr_regs * 32,
308		0);
309
310	if (irq_setup->base_irq < 0) {
311		pr_err("PRCM: failed to allocate irq descs: %d\n",
312			irq_setup->base_irq);
313		goto err;
314	}
315
316	for (i = 0; i < irq_setup->nr_regs; i++) {
317		gc = irq_alloc_generic_chip("PRCM", 1,
318			irq_setup->base_irq + i * 32, prm_base.va,
319			handle_level_irq);
320
321		if (!gc) {
322			pr_err("PRCM: failed to allocate generic chip\n");
323			goto err;
324		}
325		ct = gc->chip_types;
326		ct->chip.irq_ack = irq_gc_ack_set_bit;
327		ct->chip.irq_mask = irq_gc_mask_clr_bit;
328		ct->chip.irq_unmask = irq_gc_mask_set_bit;
329
330		ct->regs.ack = irq_setup->ack + i * 4;
331		ct->regs.mask = irq_setup->mask + i * 4;
332
333		irq_setup_generic_chip(gc, mask[i], 0, IRQ_NOREQUEST, 0);
334		prcm_irq_chips[i] = gc;
335	}
336
337	irq = omap_prcm_event_to_irq("io");
338	omap_pcs_legacy_init(irq, irq_setup->reconfigure_io_chain);
339
340	return 0;
341
342err:
343	omap_prcm_irq_cleanup();
344	return -ENOMEM;
345}
346
347/**
348 * omap2_set_globals_prm - set the PRM base address (for early use)
349 * @prm: PRM base virtual address
350 *
351 * XXX Will be replaced when the PRM/CM drivers are completed.
352 */
353void __init omap2_set_globals_prm(void __iomem *prm)
354{
355	prm_base.va = prm;
356}
357
358/**
359 * prm_read_reset_sources - return the sources of the SoC's last reset
360 *
361 * Return a u32 bitmask representing the reset sources that caused the
362 * SoC to reset.  The low-level per-SoC functions called by this
363 * function remap the SoC-specific reset source bits into an
364 * OMAP-common set of reset source bits, defined in
365 * arch/arm/mach-omap2/prm.h.  Returns the standardized reset source
366 * u32 bitmask from the hardware upon success, or returns (1 <<
367 * OMAP_UNKNOWN_RST_SRC_ID_SHIFT) if no low-level read_reset_sources()
368 * function was registered.
369 */
370u32 prm_read_reset_sources(void)
371{
372	u32 ret = 1 << OMAP_UNKNOWN_RST_SRC_ID_SHIFT;
373
374	if (prm_ll_data->read_reset_sources)
375		ret = prm_ll_data->read_reset_sources();
376	else
377		WARN_ONCE(1, "prm: %s: no mapping function defined for reset sources\n", __func__);
378
379	return ret;
380}
381
382/**
383 * prm_was_any_context_lost_old - was device context lost? (old API)
384 * @part: PRM partition ID (e.g., OMAP4430_PRM_PARTITION)
385 * @inst: PRM instance offset (e.g., OMAP4430_PRM_MPU_INST)
386 * @idx: CONTEXT register offset
387 *
388 * Return 1 if any bits were set in the *_CONTEXT_* register
389 * identified by (@part, @inst, @idx), which means that some context
390 * was lost for that module; otherwise, return 0.  XXX Deprecated;
391 * callers need to use a less-SoC-dependent way to identify hardware
392 * IP blocks.
393 */
394bool prm_was_any_context_lost_old(u8 part, s16 inst, u16 idx)
395{
396	bool ret = true;
397
398	if (prm_ll_data->was_any_context_lost_old)
399		ret = prm_ll_data->was_any_context_lost_old(part, inst, idx);
400	else
401		WARN_ONCE(1, "prm: %s: no mapping function defined\n",
402			  __func__);
403
404	return ret;
405}
406
407/**
408 * prm_clear_context_lost_flags_old - clear context loss flags (old API)
409 * @part: PRM partition ID (e.g., OMAP4430_PRM_PARTITION)
410 * @inst: PRM instance offset (e.g., OMAP4430_PRM_MPU_INST)
411 * @idx: CONTEXT register offset
412 *
413 * Clear hardware context loss bits for the module identified by
414 * (@part, @inst, @idx).  No return value.  XXX Deprecated; callers
415 * need to use a less-SoC-dependent way to identify hardware IP
416 * blocks.
417 */
418void prm_clear_context_loss_flags_old(u8 part, s16 inst, u16 idx)
419{
420	if (prm_ll_data->clear_context_loss_flags_old)
421		prm_ll_data->clear_context_loss_flags_old(part, inst, idx);
422	else
423		WARN_ONCE(1, "prm: %s: no mapping function defined\n",
424			  __func__);
425}
426
427/**
428 * omap_prm_assert_hardreset - assert hardreset for an IP block
429 * @shift: register bit shift corresponding to the reset line
430 * @part: PRM partition
431 * @prm_mod: PRM submodule base or instance offset
432 * @offset: register offset
433 *
434 * Asserts a hardware reset line for an IP block.
435 */
436int omap_prm_assert_hardreset(u8 shift, u8 part, s16 prm_mod, u16 offset)
437{
438	if (!prm_ll_data->assert_hardreset) {
439		WARN_ONCE(1, "prm: %s: no mapping function defined\n",
440			  __func__);
441		return -EINVAL;
442	}
443
444	return prm_ll_data->assert_hardreset(shift, part, prm_mod, offset);
445}
446
447/**
448 * omap_prm_deassert_hardreset - deassert hardreset for an IP block
449 * @shift: register bit shift corresponding to the reset line
450 * @st_shift: reset status bit shift corresponding to the reset line
451 * @part: PRM partition
452 * @prm_mod: PRM submodule base or instance offset
453 * @offset: register offset
454 * @st_offset: status register offset
455 *
456 * Deasserts a hardware reset line for an IP block.
457 */
458int omap_prm_deassert_hardreset(u8 shift, u8 st_shift, u8 part, s16 prm_mod,
459				u16 offset, u16 st_offset)
460{
461	if (!prm_ll_data->deassert_hardreset) {
462		WARN_ONCE(1, "prm: %s: no mapping function defined\n",
463			  __func__);
464		return -EINVAL;
465	}
466
467	return prm_ll_data->deassert_hardreset(shift, st_shift, part, prm_mod,
468					       offset, st_offset);
469}
470
471/**
472 * omap_prm_is_hardreset_asserted - check the hardreset status for an IP block
473 * @shift: register bit shift corresponding to the reset line
474 * @part: PRM partition
475 * @prm_mod: PRM submodule base or instance offset
476 * @offset: register offset
477 *
478 * Checks if a hardware reset line for an IP block is enabled or not.
479 */
480int omap_prm_is_hardreset_asserted(u8 shift, u8 part, s16 prm_mod, u16 offset)
481{
482	if (!prm_ll_data->is_hardreset_asserted) {
483		WARN_ONCE(1, "prm: %s: no mapping function defined\n",
484			  __func__);
485		return -EINVAL;
486	}
487
488	return prm_ll_data->is_hardreset_asserted(shift, part, prm_mod, offset);
489}
490
491/**
492 * omap_prm_reconfigure_io_chain - clear latches and reconfigure I/O chain
493 *
494 * Clear any previously-latched I/O wakeup events and ensure that the
495 * I/O wakeup gates are aligned with the current mux settings.
496 * Calls SoC specific I/O chain reconfigure function if available,
497 * otherwise does nothing.
498 */
499void omap_prm_reconfigure_io_chain(void)
500{
501	if (!prcm_irq_setup || !prcm_irq_setup->reconfigure_io_chain)
502		return;
503
504	prcm_irq_setup->reconfigure_io_chain();
505}
506
507/**
508 * omap_prm_reset_system - trigger global SW reset
509 *
510 * Triggers SoC specific global warm reset to reboot the device.
511 */
512void omap_prm_reset_system(void)
513{
514	if (!prm_ll_data->reset_system) {
515		WARN_ONCE(1, "prm: %s: no mapping function defined\n",
516			  __func__);
517		return;
518	}
519
520	prm_ll_data->reset_system();
521
522	while (1) {
523		cpu_relax();
524		wfe();
525	}
526}
527
528/**
529 * omap_prm_clear_mod_irqs - clear wake-up events from PRCM interrupt
530 * @module: PRM module to clear wakeups from
531 * @regs: register to clear
532 * @wkst_mask: wkst bits to clear
533 *
534 * Clears any wakeup events for the module and register set defined.
535 * Uses SoC specific implementation to do the actual wakeup status
536 * clearing.
537 */
538int omap_prm_clear_mod_irqs(s16 module, u8 regs, u32 wkst_mask)
539{
540	if (!prm_ll_data->clear_mod_irqs) {
541		WARN_ONCE(1, "prm: %s: no mapping function defined\n",
542			  __func__);
543		return -EINVAL;
544	}
545
546	return prm_ll_data->clear_mod_irqs(module, regs, wkst_mask);
547}
548
549/**
550 * omap_prm_vp_check_txdone - check voltage processor TX done status
551 *
552 * Checks if voltage processor transmission has been completed.
553 * Returns non-zero if a transmission has completed, 0 otherwise.
554 */
555u32 omap_prm_vp_check_txdone(u8 vp_id)
556{
557	if (!prm_ll_data->vp_check_txdone) {
558		WARN_ONCE(1, "prm: %s: no mapping function defined\n",
559			  __func__);
560		return 0;
561	}
562
563	return prm_ll_data->vp_check_txdone(vp_id);
564}
565
566/**
567 * omap_prm_vp_clear_txdone - clears voltage processor TX done status
568 *
569 * Clears the status bit for completed voltage processor transmission
570 * returned by prm_vp_check_txdone.
571 */
572void omap_prm_vp_clear_txdone(u8 vp_id)
573{
574	if (!prm_ll_data->vp_clear_txdone) {
575		WARN_ONCE(1, "prm: %s: no mapping function defined\n",
576			  __func__);
577		return;
578	}
579
580	prm_ll_data->vp_clear_txdone(vp_id);
581}
582
583/**
584 * prm_register - register per-SoC low-level data with the PRM
585 * @pld: low-level per-SoC OMAP PRM data & function pointers to register
586 *
587 * Register per-SoC low-level OMAP PRM data and function pointers with
588 * the OMAP PRM common interface.  The caller must keep the data
589 * pointed to by @pld valid until it calls prm_unregister() and
590 * it returns successfully.  Returns 0 upon success, -EINVAL if @pld
591 * is NULL, or -EEXIST if prm_register() has already been called
592 * without an intervening prm_unregister().
593 */
594int prm_register(struct prm_ll_data *pld)
595{
596	if (!pld)
597		return -EINVAL;
598
599	if (prm_ll_data != &null_prm_ll_data)
600		return -EEXIST;
601
602	prm_ll_data = pld;
603
604	return 0;
605}
606
607/**
608 * prm_unregister - unregister per-SoC low-level data & function pointers
609 * @pld: low-level per-SoC OMAP PRM data & function pointers to unregister
610 *
611 * Unregister per-SoC low-level OMAP PRM data and function pointers
612 * that were previously registered with prm_register().  The
613 * caller may not destroy any of the data pointed to by @pld until
614 * this function returns successfully.  Returns 0 upon success, or
615 * -EINVAL if @pld is NULL or if @pld does not match the struct
616 * prm_ll_data * previously registered by prm_register().
617 */
618int prm_unregister(struct prm_ll_data *pld)
619{
620	if (!pld || prm_ll_data != pld)
621		return -EINVAL;
622
623	prm_ll_data = &null_prm_ll_data;
624
625	return 0;
626}
627
628#ifdef CONFIG_ARCH_OMAP2
629static struct omap_prcm_init_data omap2_prm_data __initdata = {
630	.index = TI_CLKM_PRM,
631	.init = omap2xxx_prm_init,
632};
633#endif
634
635#ifdef CONFIG_ARCH_OMAP3
636static struct omap_prcm_init_data omap3_prm_data __initdata = {
637	.index = TI_CLKM_PRM,
638	.init = omap3xxx_prm_init,
639
640	/*
641	 * IVA2 offset is a negative value, must offset the prm_base
642	 * address by this to get it to positive
643	 */
644	.offset = -OMAP3430_IVA2_MOD,
645};
646#endif
647
648#if defined(CONFIG_SOC_AM33XX) || defined(CONFIG_SOC_TI81XX)
649static struct omap_prcm_init_data am3_prm_data __initdata = {
650	.index = TI_CLKM_PRM,
651	.init = am33xx_prm_init,
652};
653#endif
654
655#ifdef CONFIG_SOC_TI81XX
656static struct omap_prcm_init_data dm814_pllss_data __initdata = {
657	.index = TI_CLKM_PLLSS,
658	.init = am33xx_prm_init,
659};
660#endif
661
662#ifdef CONFIG_ARCH_OMAP4
663static struct omap_prcm_init_data omap4_prm_data __initdata = {
664	.index = TI_CLKM_PRM,
665	.init = omap44xx_prm_init,
666	.device_inst_offset = OMAP4430_PRM_DEVICE_INST,
667	.flags = PRM_HAS_IO_WAKEUP | PRM_HAS_VOLTAGE,
668};
669#endif
670
671#ifdef CONFIG_SOC_OMAP5
672static struct omap_prcm_init_data omap5_prm_data __initdata = {
673	.index = TI_CLKM_PRM,
674	.init = omap44xx_prm_init,
675	.device_inst_offset = OMAP54XX_PRM_DEVICE_INST,
676	.flags = PRM_HAS_IO_WAKEUP | PRM_HAS_VOLTAGE,
677};
678#endif
679
680#ifdef CONFIG_SOC_DRA7XX
681static struct omap_prcm_init_data dra7_prm_data __initdata = {
682	.index = TI_CLKM_PRM,
683	.init = omap44xx_prm_init,
684	.device_inst_offset = DRA7XX_PRM_DEVICE_INST,
685	.flags = PRM_HAS_IO_WAKEUP,
686};
687#endif
688
689#ifdef CONFIG_SOC_AM43XX
690static struct omap_prcm_init_data am4_prm_data __initdata = {
691	.index = TI_CLKM_PRM,
692	.init = omap44xx_prm_init,
693	.device_inst_offset = AM43XX_PRM_DEVICE_INST,
694	.flags = PRM_HAS_IO_WAKEUP,
695};
696#endif
697
698#if defined(CONFIG_ARCH_OMAP4) || defined(CONFIG_SOC_OMAP5)
699static struct omap_prcm_init_data scrm_data __initdata = {
700	.index = TI_CLKM_SCRM,
701};
702#endif
703
704static const struct of_device_id omap_prcm_dt_match_table[] __initconst = {
705#ifdef CONFIG_SOC_AM33XX
706	{ .compatible = "ti,am3-prcm", .data = &am3_prm_data },
707#endif
708#ifdef CONFIG_SOC_AM43XX
709	{ .compatible = "ti,am4-prcm", .data = &am4_prm_data },
710#endif
711#ifdef CONFIG_SOC_TI81XX
712	{ .compatible = "ti,dm814-prcm", .data = &am3_prm_data },
713	{ .compatible = "ti,dm814-pllss", .data = &dm814_pllss_data },
714	{ .compatible = "ti,dm816-prcm", .data = &am3_prm_data },
715#endif
716#ifdef CONFIG_ARCH_OMAP2
717	{ .compatible = "ti,omap2-prcm", .data = &omap2_prm_data },
718#endif
719#ifdef CONFIG_ARCH_OMAP3
720	{ .compatible = "ti,omap3-prm", .data = &omap3_prm_data },
721#endif
722#ifdef CONFIG_ARCH_OMAP4
723	{ .compatible = "ti,omap4-prm", .data = &omap4_prm_data },
724	{ .compatible = "ti,omap4-scrm", .data = &scrm_data },
725#endif
726#ifdef CONFIG_SOC_OMAP5
727	{ .compatible = "ti,omap5-prm", .data = &omap5_prm_data },
728	{ .compatible = "ti,omap5-scrm", .data = &scrm_data },
729#endif
730#ifdef CONFIG_SOC_DRA7XX
731	{ .compatible = "ti,dra7-prm", .data = &dra7_prm_data },
732#endif
733	{ }
734};
735
736/**
737 * omap2_prm_base_init - initialize iomappings for the PRM driver
738 *
739 * Detects and initializes the iomappings for the PRM driver, based
740 * on the DT data. Returns 0 in success, negative error value
741 * otherwise.
742 */
743int __init omap2_prm_base_init(void)
744{
745	struct device_node *np;
746	const struct of_device_id *match;
747	struct omap_prcm_init_data *data;
748	struct resource res;
749	int ret;
750
751	for_each_matching_node_and_match(np, omap_prcm_dt_match_table, &match) {
752		data = (struct omap_prcm_init_data *)match->data;
753
754		ret = of_address_to_resource(np, 0, &res);
755		if (ret)
756			return ret;
757
758		data->mem = ioremap(res.start, resource_size(&res));
759
760		if (data->index == TI_CLKM_PRM) {
761			prm_base.va = data->mem + data->offset;
762			prm_base.pa = res.start + data->offset;
763		}
764
765		data->np = np;
766
767		if (data->init)
768			data->init(data);
769	}
770
771	return 0;
772}
773
774int __init omap2_prcm_base_init(void)
775{
776	int ret;
777
778	ret = omap2_prm_base_init();
779	if (ret)
780		return ret;
781
782	return omap2_cm_base_init();
783}
784
785/**
786 * omap_prcm_init - low level init for the PRCM drivers
787 *
788 * Initializes the low level clock infrastructure for PRCM drivers.
789 * Returns 0 in success, negative error value in failure.
790 */
791int __init omap_prcm_init(void)
792{
793	struct device_node *np;
794	const struct of_device_id *match;
795	const struct omap_prcm_init_data *data;
796	int ret;
797
798	for_each_matching_node_and_match(np, omap_prcm_dt_match_table, &match) {
799		data = match->data;
800
801		ret = omap2_clk_provider_init(np, data->index, NULL, data->mem);
802		if (ret)
803			return ret;
804	}
805
806	omap_cm_init();
807
808	return 0;
809}
810
811static int __init prm_late_init(void)
812{
813	if (prm_ll_data->late_init)
814		return prm_ll_data->late_init();
815	return 0;
816}
817subsys_initcall(prm_late_init);