Linux Audio

Check our new training course

Loading...
  1/*
  2 * OMAP2+ common Power & Reset Management (PRM) IP block functions
  3 *
  4 * Copyright (C) 2011 Texas Instruments, Inc.
  5 * Tero Kristo <t-kristo@ti.com>
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 *
 11 *
 12 * For historical purposes, the API used to configure the PRM
 13 * interrupt handler refers to it as the "PRCM interrupt."  The
 14 * underlying registers are located in the PRM on OMAP3/4.
 15 *
 16 * XXX This code should eventually be moved to a PRM driver.
 17 */
 18
 19#include <linux/kernel.h>
 20#include <linux/module.h>
 21#include <linux/init.h>
 22#include <linux/io.h>
 23#include <linux/irq.h>
 24#include <linux/interrupt.h>
 25#include <linux/slab.h>
 26
 27#include <plat/common.h>
 28#include <plat/prcm.h>
 29#include <plat/irqs.h>
 30
 31#include "prm2xxx_3xxx.h"
 32#include "prm44xx.h"
 33
 34/*
 35 * OMAP_PRCM_MAX_NR_PENDING_REG: maximum number of PRM_IRQ*_MPU regs
 36 * XXX this is technically not needed, since
 37 * omap_prcm_register_chain_handler() could allocate this based on the
 38 * actual amount of memory needed for the SoC
 39 */
 40#define OMAP_PRCM_MAX_NR_PENDING_REG		2
 41
 42/*
 43 * prcm_irq_chips: an array of all of the "generic IRQ chips" in use
 44 * by the PRCM interrupt handler code.  There will be one 'chip' per
 45 * PRM_{IRQSTATUS,IRQENABLE}_MPU register pair.  (So OMAP3 will have
 46 * one "chip" and OMAP4 will have two.)
 47 */
 48static struct irq_chip_generic **prcm_irq_chips;
 49
 50/*
 51 * prcm_irq_setup: the PRCM IRQ parameters for the hardware the code
 52 * is currently running on.  Defined and passed by initialization code
 53 * that calls omap_prcm_register_chain_handler().
 54 */
 55static struct omap_prcm_irq_setup *prcm_irq_setup;
 56
 57/* Private functions */
 58
 59/*
 60 * Move priority events from events to priority_events array
 61 */
 62static void omap_prcm_events_filter_priority(unsigned long *events,
 63	unsigned long *priority_events)
 64{
 65	int i;
 66
 67	for (i = 0; i < prcm_irq_setup->nr_regs; i++) {
 68		priority_events[i] =
 69			events[i] & prcm_irq_setup->priority_mask[i];
 70		events[i] ^= priority_events[i];
 71	}
 72}
 73
 74/*
 75 * PRCM Interrupt Handler
 76 *
 77 * This is a common handler for the OMAP PRCM interrupts. Pending
 78 * interrupts are detected by a call to prcm_pending_events and
 79 * dispatched accordingly. Clearing of the wakeup events should be
 80 * done by the SoC specific individual handlers.
 81 */
 82static void omap_prcm_irq_handler(unsigned int irq, struct irq_desc *desc)
 83{
 84	unsigned long pending[OMAP_PRCM_MAX_NR_PENDING_REG];
 85	unsigned long priority_pending[OMAP_PRCM_MAX_NR_PENDING_REG];
 86	struct irq_chip *chip = irq_desc_get_chip(desc);
 87	unsigned int virtirq;
 88	int nr_irqs = prcm_irq_setup->nr_regs * 32;
 89
 90	/*
 91	 * If we are suspended, mask all interrupts from PRCM level,
 92	 * this does not ack them, and they will be pending until we
 93	 * re-enable the interrupts, at which point the
 94	 * omap_prcm_irq_handler will be executed again.  The
 95	 * _save_and_clear_irqen() function must ensure that the PRM
 96	 * write to disable all IRQs has reached the PRM before
 97	 * returning, or spurious PRCM interrupts may occur during
 98	 * suspend.
 99	 */
100	if (prcm_irq_setup->suspended) {
101		prcm_irq_setup->save_and_clear_irqen(prcm_irq_setup->saved_mask);
102		prcm_irq_setup->suspend_save_flag = true;
103	}
104
105	/*
106	 * Loop until all pending irqs are handled, since
107	 * generic_handle_irq() can cause new irqs to come
108	 */
109	while (!prcm_irq_setup->suspended) {
110		prcm_irq_setup->read_pending_irqs(pending);
111
112		/* No bit set, then all IRQs are handled */
113		if (find_first_bit(pending, nr_irqs) >= nr_irqs)
114			break;
115
116		omap_prcm_events_filter_priority(pending, priority_pending);
117
118		/*
119		 * Loop on all currently pending irqs so that new irqs
120		 * cannot starve previously pending irqs
121		 */
122
123		/* Serve priority events first */
124		for_each_set_bit(virtirq, priority_pending, nr_irqs)
125			generic_handle_irq(prcm_irq_setup->base_irq + virtirq);
126
127		/* Serve normal events next */
128		for_each_set_bit(virtirq, pending, nr_irqs)
129			generic_handle_irq(prcm_irq_setup->base_irq + virtirq);
130	}
131	if (chip->irq_ack)
132		chip->irq_ack(&desc->irq_data);
133	if (chip->irq_eoi)
134		chip->irq_eoi(&desc->irq_data);
135	chip->irq_unmask(&desc->irq_data);
136
137	prcm_irq_setup->ocp_barrier(); /* avoid spurious IRQs */
138}
139
140/* Public functions */
141
142/**
143 * omap_prcm_event_to_irq - given a PRCM event name, returns the
144 * corresponding IRQ on which the handler should be registered
145 * @name: name of the PRCM interrupt bit to look up - see struct omap_prcm_irq
146 *
147 * Returns the Linux internal IRQ ID corresponding to @name upon success,
148 * or -ENOENT upon failure.
149 */
150int omap_prcm_event_to_irq(const char *name)
151{
152	int i;
153
154	if (!prcm_irq_setup || !name)
155		return -ENOENT;
156
157	for (i = 0; i < prcm_irq_setup->nr_irqs; i++)
158		if (!strcmp(prcm_irq_setup->irqs[i].name, name))
159			return prcm_irq_setup->base_irq +
160				prcm_irq_setup->irqs[i].offset;
161
162	return -ENOENT;
163}
164
165/**
166 * omap_prcm_irq_cleanup - reverses memory allocated and other steps
167 * done by omap_prcm_register_chain_handler()
168 *
169 * No return value.
170 */
171void omap_prcm_irq_cleanup(void)
172{
173	int i;
174
175	if (!prcm_irq_setup) {
176		pr_err("PRCM: IRQ handler not initialized; cannot cleanup\n");
177		return;
178	}
179
180	if (prcm_irq_chips) {
181		for (i = 0; i < prcm_irq_setup->nr_regs; i++) {
182			if (prcm_irq_chips[i])
183				irq_remove_generic_chip(prcm_irq_chips[i],
184					0xffffffff, 0, 0);
185			prcm_irq_chips[i] = NULL;
186		}
187		kfree(prcm_irq_chips);
188		prcm_irq_chips = NULL;
189	}
190
191	kfree(prcm_irq_setup->saved_mask);
192	prcm_irq_setup->saved_mask = NULL;
193
194	kfree(prcm_irq_setup->priority_mask);
195	prcm_irq_setup->priority_mask = NULL;
196
197	irq_set_chained_handler(prcm_irq_setup->irq, NULL);
198
199	if (prcm_irq_setup->base_irq > 0)
200		irq_free_descs(prcm_irq_setup->base_irq,
201			prcm_irq_setup->nr_regs * 32);
202	prcm_irq_setup->base_irq = 0;
203}
204
205void omap_prcm_irq_prepare(void)
206{
207	prcm_irq_setup->suspended = true;
208}
209
210void omap_prcm_irq_complete(void)
211{
212	prcm_irq_setup->suspended = false;
213
214	/* If we have not saved the masks, do not attempt to restore */
215	if (!prcm_irq_setup->suspend_save_flag)
216		return;
217
218	prcm_irq_setup->suspend_save_flag = false;
219
220	/*
221	 * Re-enable all masked PRCM irq sources, this causes the PRCM
222	 * interrupt to fire immediately if the events were masked
223	 * previously in the chain handler
224	 */
225	prcm_irq_setup->restore_irqen(prcm_irq_setup->saved_mask);
226}
227
228/**
229 * omap_prcm_register_chain_handler - initializes the prcm chained interrupt
230 * handler based on provided parameters
231 * @irq_setup: hardware data about the underlying PRM/PRCM
232 *
233 * Set up the PRCM chained interrupt handler on the PRCM IRQ.  Sets up
234 * one generic IRQ chip per PRM interrupt status/enable register pair.
235 * Returns 0 upon success, -EINVAL if called twice or if invalid
236 * arguments are passed, or -ENOMEM on any other error.
237 */
238int omap_prcm_register_chain_handler(struct omap_prcm_irq_setup *irq_setup)
239{
240	int nr_regs;
241	u32 mask[OMAP_PRCM_MAX_NR_PENDING_REG];
242	int offset, i;
243	struct irq_chip_generic *gc;
244	struct irq_chip_type *ct;
245
246	if (!irq_setup)
247		return -EINVAL;
248
249	nr_regs = irq_setup->nr_regs;
250
251	if (prcm_irq_setup) {
252		pr_err("PRCM: already initialized; won't reinitialize\n");
253		return -EINVAL;
254	}
255
256	if (nr_regs > OMAP_PRCM_MAX_NR_PENDING_REG) {
257		pr_err("PRCM: nr_regs too large\n");
258		return -EINVAL;
259	}
260
261	prcm_irq_setup = irq_setup;
262
263	prcm_irq_chips = kzalloc(sizeof(void *) * nr_regs, GFP_KERNEL);
264	prcm_irq_setup->saved_mask = kzalloc(sizeof(u32) * nr_regs, GFP_KERNEL);
265	prcm_irq_setup->priority_mask = kzalloc(sizeof(u32) * nr_regs,
266		GFP_KERNEL);
267
268	if (!prcm_irq_chips || !prcm_irq_setup->saved_mask ||
269	    !prcm_irq_setup->priority_mask) {
270		pr_err("PRCM: kzalloc failed\n");
271		goto err;
272	}
273
274	memset(mask, 0, sizeof(mask));
275
276	for (i = 0; i < irq_setup->nr_irqs; i++) {
277		offset = irq_setup->irqs[i].offset;
278		mask[offset >> 5] |= 1 << (offset & 0x1f);
279		if (irq_setup->irqs[i].priority)
280			irq_setup->priority_mask[offset >> 5] |=
281				1 << (offset & 0x1f);
282	}
283
284	irq_set_chained_handler(irq_setup->irq, omap_prcm_irq_handler);
285
286	irq_setup->base_irq = irq_alloc_descs(-1, 0, irq_setup->nr_regs * 32,
287		0);
288
289	if (irq_setup->base_irq < 0) {
290		pr_err("PRCM: failed to allocate irq descs: %d\n",
291			irq_setup->base_irq);
292		goto err;
293	}
294
295	for (i = 0; i < irq_setup->nr_regs; i++) {
296		gc = irq_alloc_generic_chip("PRCM", 1,
297			irq_setup->base_irq + i * 32, prm_base,
298			handle_level_irq);
299
300		if (!gc) {
301			pr_err("PRCM: failed to allocate generic chip\n");
302			goto err;
303		}
304		ct = gc->chip_types;
305		ct->chip.irq_ack = irq_gc_ack_set_bit;
306		ct->chip.irq_mask = irq_gc_mask_clr_bit;
307		ct->chip.irq_unmask = irq_gc_mask_set_bit;
308
309		ct->regs.ack = irq_setup->ack + i * 4;
310		ct->regs.mask = irq_setup->mask + i * 4;
311
312		irq_setup_generic_chip(gc, mask[i], 0, IRQ_NOREQUEST, 0);
313		prcm_irq_chips[i] = gc;
314	}
315
316	return 0;
317
318err:
319	omap_prcm_irq_cleanup();
320	return -ENOMEM;
321}