Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 *  linux/arch/arm/kernel/smp.c
  3 *
  4 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10#include <linux/module.h>
 11#include <linux/delay.h>
 12#include <linux/init.h>
 13#include <linux/spinlock.h>
 14#include <linux/sched.h>
 
 
 15#include <linux/interrupt.h>
 16#include <linux/cache.h>
 17#include <linux/profile.h>
 18#include <linux/errno.h>
 19#include <linux/mm.h>
 20#include <linux/err.h>
 21#include <linux/cpu.h>
 22#include <linux/smp.h>
 23#include <linux/seq_file.h>
 24#include <linux/irq.h>
 
 25#include <linux/percpu.h>
 26#include <linux/clockchips.h>
 27#include <linux/completion.h>
 
 
 28
 29#include <linux/atomic.h>
 
 
 30#include <asm/cacheflush.h>
 31#include <asm/cpu.h>
 32#include <asm/cputype.h>
 33#include <asm/exception.h>
 34#include <asm/idmap.h>
 35#include <asm/topology.h>
 36#include <asm/mmu_context.h>
 37#include <asm/pgtable.h>
 38#include <asm/pgalloc.h>
 
 39#include <asm/processor.h>
 40#include <asm/sections.h>
 41#include <asm/tlbflush.h>
 42#include <asm/ptrace.h>
 43#include <asm/localtimer.h>
 44#include <asm/smp_plat.h>
 
 
 
 
 
 
 45
 46/*
 47 * as from 2.5, kernels no longer have an init_tasks structure
 48 * so we need some other way of telling a new secondary core
 49 * where to place its SVC stack
 50 */
 51struct secondary_data secondary_data;
 52
 53enum ipi_msg_type {
 54	IPI_TIMER = 2,
 
 55	IPI_RESCHEDULE,
 56	IPI_CALL_FUNC,
 57	IPI_CALL_FUNC_SINGLE,
 58	IPI_CPU_STOP,
 
 
 
 
 
 
 
 
 
 
 
 
 59};
 60
 61static DECLARE_COMPLETION(cpu_running);
 62
 63int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 64{
 65	int ret;
 66
 
 
 
 
 
 
 
 67	/*
 68	 * We need to tell the secondary core where to find
 69	 * its stack and the page tables.
 70	 */
 71	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
 
 
 
 
 
 72	secondary_data.pgdir = virt_to_phys(idmap_pgd);
 73	secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
 74	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
 75	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
 76
 77	/*
 78	 * Now bring the CPU into our world.
 79	 */
 80	ret = boot_secondary(cpu, idle);
 81	if (ret == 0) {
 82		/*
 83		 * CPU was successfully started, wait for it
 84		 * to come online or time out.
 85		 */
 86		wait_for_completion_timeout(&cpu_running,
 87						 msecs_to_jiffies(1000));
 88
 89		if (!cpu_online(cpu)) {
 90			pr_crit("CPU%u: failed to come online\n", cpu);
 91			ret = -EIO;
 92		}
 93	} else {
 94		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
 95	}
 96
 97	secondary_data.stack = NULL;
 98	secondary_data.pgdir = 0;
 99
 
100	return ret;
101}
102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103#ifdef CONFIG_HOTPLUG_CPU
104static void percpu_timer_stop(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
106/*
107 * __cpu_disable runs on the processor to be shutdown.
108 */
109int __cpu_disable(void)
110{
111	unsigned int cpu = smp_processor_id();
112	int ret;
113
114	ret = platform_cpu_disable(cpu);
115	if (ret)
116		return ret;
117
118	/*
119	 * Take this CPU offline.  Once we clear this, we can't return,
120	 * and we must not schedule until we're ready to give up the cpu.
121	 */
122	set_cpu_online(cpu, false);
123
124	/*
125	 * OK - migrate IRQs away from this CPU
126	 */
127	migrate_irqs();
128
129	/*
130	 * Stop the local timer for this CPU.
131	 */
132	percpu_timer_stop();
133
134	/*
135	 * Flush user cache and TLB mappings, and then remove this CPU
136	 * from the vm mask set of all processes.
 
 
 
137	 */
138	flush_cache_all();
139	local_flush_tlb_all();
140
141	clear_tasks_mm_cpumask(cpu);
142
143	return 0;
144}
145
146static DECLARE_COMPLETION(cpu_died);
147
148/*
149 * called on the thread which is asking for a CPU to be shutdown -
150 * waits until shutdown has completed, or it is timed out.
151 */
152void __cpu_die(unsigned int cpu)
153{
154	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
155		pr_err("CPU%u: cpu didn't die\n", cpu);
156		return;
157	}
158	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
159
 
 
 
 
 
 
 
 
160	if (!platform_cpu_kill(cpu))
161		printk("CPU%u: unable to kill\n", cpu);
162}
163
164/*
165 * Called from the idle thread for the CPU which has been shutdown.
166 *
167 * Note that we disable IRQs here, but do not re-enable them
168 * before returning to the caller. This is also the behaviour
169 * of the other hotplug-cpu capable cores, so presumably coming
170 * out of idle fixes this.
171 */
172void __ref cpu_die(void)
173{
174	unsigned int cpu = smp_processor_id();
175
176	idle_task_exit();
177
178	local_irq_disable();
179	mb();
180
181	/* Tell __cpu_die() that this CPU is now safe to dispose of */
182	complete(&cpu_died);
 
 
 
 
 
183
184	/*
185	 * actual CPU shutdown procedure is at least platform (if not
186	 * CPU) specific.
 
187	 */
188	platform_cpu_die(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189
190	/*
191	 * Do not return to the idle loop - jump back to the secondary
192	 * cpu initialisation.  There's some initialisation which needs
193	 * to be repeated to undo the effects of taking the CPU offline.
194	 */
195	__asm__("mov	sp, %0\n"
196	"	mov	fp, #0\n"
197	"	b	secondary_start_kernel"
198		:
199		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
200}
201#endif /* CONFIG_HOTPLUG_CPU */
202
203/*
204 * Called by both boot and secondaries to move global data into
205 * per-processor storage.
206 */
207static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
208{
209	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
210
211	cpu_info->loops_per_jiffy = loops_per_jiffy;
 
212
213	store_cpu_topology(cpuid);
 
214}
215
216static void percpu_timer_setup(void);
217
218/*
219 * This is the secondary CPU boot entry.  We're using this CPUs
220 * idle thread stack, but a set of temporary page tables.
221 */
222asmlinkage void __cpuinit secondary_start_kernel(void)
223{
224	struct mm_struct *mm = &init_mm;
225	unsigned int cpu = smp_processor_id();
 
 
226
227	/*
228	 * All kernel threads share the same mm context; grab a
229	 * reference and switch to it.
230	 */
231	atomic_inc(&mm->mm_count);
232	current->active_mm = mm;
233	cpumask_set_cpu(cpu, mm_cpumask(mm));
234	cpu_switch_mm(mm->pgd, mm);
 
235	enter_lazy_tlb(mm, current);
236	local_flush_tlb_all();
237
238	printk("CPU%u: Booted secondary processor\n", cpu);
 
 
 
 
 
 
 
239
240	cpu_init();
 
 
 
 
 
 
241	preempt_disable();
242	trace_hardirqs_off();
243
244	/*
245	 * Give the platform a chance to do its own initialisation.
246	 */
247	platform_secondary_init(cpu);
 
248
249	notify_cpu_starting(cpu);
250
251	calibrate_delay();
252
253	smp_store_cpu_info(cpu);
254
255	/*
256	 * OK, now it's safe to let the boot CPU continue.  Wait for
257	 * the CPU migration code to notice that the CPU is online
258	 * before we continue - which happens after __cpu_up returns.
259	 */
260	set_cpu_online(cpu, true);
261	complete(&cpu_running);
262
263	/*
264	 * Setup the percpu timer for this CPU.
265	 */
266	percpu_timer_setup();
267
268	local_irq_enable();
269	local_fiq_enable();
 
270
271	/*
272	 * OK, it's off to the idle thread for us
273	 */
274	cpu_idle();
275}
276
277void __init smp_cpus_done(unsigned int max_cpus)
278{
279	int cpu;
280	unsigned long bogosum = 0;
281
282	for_each_online_cpu(cpu)
283		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
284
285	printk(KERN_INFO "SMP: Total of %d processors activated "
286	       "(%lu.%02lu BogoMIPS).\n",
287	       num_online_cpus(),
288	       bogosum / (500000/HZ),
289	       (bogosum / (5000/HZ)) % 100);
 
 
290}
291
292void __init smp_prepare_boot_cpu(void)
293{
 
294}
295
296void __init smp_prepare_cpus(unsigned int max_cpus)
297{
298	unsigned int ncores = num_possible_cpus();
299
300	init_cpu_topology();
301
302	smp_store_cpu_info(smp_processor_id());
303
304	/*
305	 * are we trying to boot more cores than exist?
306	 */
307	if (max_cpus > ncores)
308		max_cpus = ncores;
309	if (ncores > 1 && max_cpus) {
310		/*
311		 * Enable the local timer or broadcast device for the
312		 * boot CPU, but only if we have more than one CPU.
313		 */
314		percpu_timer_setup();
315
316		/*
317		 * Initialise the present map, which describes the set of CPUs
318		 * actually populated at the present time. A platform should
319		 * re-initialize the map in platform_smp_prepare_cpus() if
320		 * present != possible (e.g. physical hotplug).
321		 */
322		init_cpu_present(cpu_possible_mask);
323
324		/*
325		 * Initialise the SCU if there are more than one CPU
326		 * and let them know where to start.
327		 */
328		platform_smp_prepare_cpus(max_cpus);
 
329	}
330}
331
332static void (*smp_cross_call)(const struct cpumask *, unsigned int);
333
334void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
335{
336	smp_cross_call = fn;
337}
338
339void arch_send_call_function_ipi_mask(const struct cpumask *mask)
340{
341	smp_cross_call(mask, IPI_CALL_FUNC);
342}
343
344void arch_send_call_function_single_ipi(int cpu)
345{
346	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
347}
348
349static const char *ipi_types[NR_IPI] = {
350#define S(x,s)	[x - IPI_TIMER] = s
 
351	S(IPI_TIMER, "Timer broadcast interrupts"),
352	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
353	S(IPI_CALL_FUNC, "Function call interrupts"),
354	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
355	S(IPI_CPU_STOP, "CPU stop interrupts"),
 
 
356};
357
 
 
 
 
 
 
358void show_ipi_list(struct seq_file *p, int prec)
359{
360	unsigned int cpu, i;
361
362	for (i = 0; i < NR_IPI; i++) {
363		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
364
365		for_each_present_cpu(cpu)
366			seq_printf(p, "%10u ",
367				   __get_irq_stat(cpu, ipi_irqs[i]));
368
369		seq_printf(p, " %s\n", ipi_types[i]);
370	}
371}
372
373u64 smp_irq_stat_cpu(unsigned int cpu)
374{
375	u64 sum = 0;
376	int i;
377
378	for (i = 0; i < NR_IPI; i++)
379		sum += __get_irq_stat(cpu, ipi_irqs[i]);
380
381	return sum;
382}
383
384/*
385 * Timer (local or broadcast) support
386 */
387static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
388
389static void ipi_timer(void)
390{
391	struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
392	evt->event_handler(evt);
393}
394
395#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
396static void smp_timer_broadcast(const struct cpumask *mask)
397{
398	smp_cross_call(mask, IPI_TIMER);
399}
400#else
401#define smp_timer_broadcast	NULL
402#endif
403
404static void broadcast_timer_set_mode(enum clock_event_mode mode,
405	struct clock_event_device *evt)
406{
 
407}
408
409static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
 
410{
411	evt->name	= "dummy_timer";
412	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
413			  CLOCK_EVT_FEAT_PERIODIC |
414			  CLOCK_EVT_FEAT_DUMMY;
415	evt->rating	= 400;
416	evt->mult	= 1;
417	evt->set_mode	= broadcast_timer_set_mode;
418
419	clockevents_register_device(evt);
420}
421
422static struct local_timer_ops *lt_ops;
423
424#ifdef CONFIG_LOCAL_TIMERS
425int local_timer_register(struct local_timer_ops *ops)
426{
427	if (!is_smp() || !setup_max_cpus)
428		return -ENXIO;
429
430	if (lt_ops)
431		return -EBUSY;
432
433	lt_ops = ops;
434	return 0;
435}
436#endif
437
438static void __cpuinit percpu_timer_setup(void)
439{
440	unsigned int cpu = smp_processor_id();
441	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
442
443	evt->cpumask = cpumask_of(cpu);
444	evt->broadcast = smp_timer_broadcast;
445
446	if (!lt_ops || lt_ops->setup(evt))
447		broadcast_timer_setup(evt);
448}
449
450#ifdef CONFIG_HOTPLUG_CPU
451/*
452 * The generic clock events code purposely does not stop the local timer
453 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
454 * manually here.
455 */
456static void percpu_timer_stop(void)
457{
458	unsigned int cpu = smp_processor_id();
459	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
460
461	if (lt_ops)
462		lt_ops->stop(evt);
463}
464#endif
465
466static DEFINE_RAW_SPINLOCK(stop_lock);
467
468/*
469 * ipi_cpu_stop - handle IPI from smp_send_stop()
470 */
471static void ipi_cpu_stop(unsigned int cpu)
472{
473	if (system_state == SYSTEM_BOOTING ||
474	    system_state == SYSTEM_RUNNING) {
475		raw_spin_lock(&stop_lock);
476		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
477		dump_stack();
478		raw_spin_unlock(&stop_lock);
479	}
480
481	set_cpu_online(cpu, false);
482
483	local_fiq_disable();
484	local_irq_disable();
485
486	while (1)
487		cpu_relax();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
488}
489
490/*
491 * Main handler for inter-processor interrupts
492 */
493asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
494{
495	handle_IPI(ipinr, regs);
496}
497
498void handle_IPI(int ipinr, struct pt_regs *regs)
499{
500	unsigned int cpu = smp_processor_id();
501	struct pt_regs *old_regs = set_irq_regs(regs);
502
503	if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
504		__inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
 
 
505
506	switch (ipinr) {
 
 
 
 
507	case IPI_TIMER:
508		irq_enter();
509		ipi_timer();
510		irq_exit();
511		break;
 
512
513	case IPI_RESCHEDULE:
514		scheduler_ipi();
515		break;
516
517	case IPI_CALL_FUNC:
518		irq_enter();
519		generic_smp_call_function_interrupt();
520		irq_exit();
521		break;
522
523	case IPI_CALL_FUNC_SINGLE:
 
 
 
 
 
 
 
524		irq_enter();
525		generic_smp_call_function_single_interrupt();
526		irq_exit();
527		break;
 
528
529	case IPI_CPU_STOP:
530		irq_enter();
531		ipi_cpu_stop(cpu);
532		irq_exit();
533		break;
534
 
 
 
 
 
 
 
 
535	default:
536		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
537		       cpu, ipinr);
538		break;
539	}
 
 
 
540	set_irq_regs(old_regs);
541}
542
543void smp_send_reschedule(int cpu)
544{
545	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
546}
547
548#ifdef CONFIG_HOTPLUG_CPU
549static void smp_kill_cpus(cpumask_t *mask)
550{
551	unsigned int cpu;
552	for_each_cpu(cpu, mask)
553		platform_cpu_kill(cpu);
554}
555#else
556static void smp_kill_cpus(cpumask_t *mask) { }
557#endif
558
559void smp_send_stop(void)
560{
561	unsigned long timeout;
562	struct cpumask mask;
563
564	cpumask_copy(&mask, cpu_online_mask);
565	cpumask_clear_cpu(smp_processor_id(), &mask);
566	if (!cpumask_empty(&mask))
567		smp_cross_call(&mask, IPI_CPU_STOP);
568
569	/* Wait up to one second for other CPUs to stop */
570	timeout = USEC_PER_SEC;
571	while (num_online_cpus() > 1 && timeout--)
572		udelay(1);
573
574	if (num_online_cpus() > 1)
575		pr_warning("SMP: failed to stop secondary CPUs\n");
 
576
577	smp_kill_cpus(&mask);
 
 
 
 
 
 
 
 
 
 
 
 
578}
579
580/*
581 * not supported here
582 */
583int setup_profiling_timer(unsigned int multiplier)
584{
585	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/arch/arm/kernel/smp.c
  4 *
  5 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
 
 
 
 
  6 */
  7#include <linux/module.h>
  8#include <linux/delay.h>
  9#include <linux/init.h>
 10#include <linux/spinlock.h>
 11#include <linux/sched/mm.h>
 12#include <linux/sched/hotplug.h>
 13#include <linux/sched/task_stack.h>
 14#include <linux/interrupt.h>
 15#include <linux/cache.h>
 16#include <linux/profile.h>
 17#include <linux/errno.h>
 18#include <linux/mm.h>
 19#include <linux/err.h>
 20#include <linux/cpu.h>
 
 21#include <linux/seq_file.h>
 22#include <linux/irq.h>
 23#include <linux/nmi.h>
 24#include <linux/percpu.h>
 25#include <linux/clockchips.h>
 26#include <linux/completion.h>
 27#include <linux/cpufreq.h>
 28#include <linux/irq_work.h>
 29
 30#include <linux/atomic.h>
 31#include <asm/bugs.h>
 32#include <asm/smp.h>
 33#include <asm/cacheflush.h>
 34#include <asm/cpu.h>
 35#include <asm/cputype.h>
 36#include <asm/exception.h>
 37#include <asm/idmap.h>
 38#include <asm/topology.h>
 39#include <asm/mmu_context.h>
 40#include <asm/pgtable.h>
 41#include <asm/pgalloc.h>
 42#include <asm/procinfo.h>
 43#include <asm/processor.h>
 44#include <asm/sections.h>
 45#include <asm/tlbflush.h>
 46#include <asm/ptrace.h>
 
 47#include <asm/smp_plat.h>
 48#include <asm/virt.h>
 49#include <asm/mach/arch.h>
 50#include <asm/mpu.h>
 51
 52#define CREATE_TRACE_POINTS
 53#include <trace/events/ipi.h>
 54
 55/*
 56 * as from 2.5, kernels no longer have an init_tasks structure
 57 * so we need some other way of telling a new secondary core
 58 * where to place its SVC stack
 59 */
 60struct secondary_data secondary_data;
 61
 62enum ipi_msg_type {
 63	IPI_WAKEUP,
 64	IPI_TIMER,
 65	IPI_RESCHEDULE,
 66	IPI_CALL_FUNC,
 
 67	IPI_CPU_STOP,
 68	IPI_IRQ_WORK,
 69	IPI_COMPLETION,
 70	/*
 71	 * CPU_BACKTRACE is special and not included in NR_IPI
 72	 * or tracable with trace_ipi_*
 73	 */
 74	IPI_CPU_BACKTRACE,
 75	/*
 76	 * SGI8-15 can be reserved by secure firmware, and thus may
 77	 * not be usable by the kernel. Please keep the above limited
 78	 * to at most 8 entries.
 79	 */
 80};
 81
 82static DECLARE_COMPLETION(cpu_running);
 83
 84static struct smp_operations smp_ops __ro_after_init;
 85
 86void __init smp_set_ops(const struct smp_operations *ops)
 87{
 88	if (ops)
 89		smp_ops = *ops;
 90};
 91
 92static unsigned long get_arch_pgd(pgd_t *pgd)
 93{
 94#ifdef CONFIG_ARM_LPAE
 95	return __phys_to_pfn(virt_to_phys(pgd));
 96#else
 97	return virt_to_phys(pgd);
 98#endif
 99}
100
101#if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
102static int secondary_biglittle_prepare(unsigned int cpu)
103{
104	if (!cpu_vtable[cpu])
105		cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
106
107	return cpu_vtable[cpu] ? 0 : -ENOMEM;
108}
109
110static void secondary_biglittle_init(void)
111{
112	init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
113}
114#else
115static int secondary_biglittle_prepare(unsigned int cpu)
116{
117	return 0;
118}
119
120static void secondary_biglittle_init(void)
121{
122}
123#endif
124
125int __cpu_up(unsigned int cpu, struct task_struct *idle)
126{
127	int ret;
128
129	if (!smp_ops.smp_boot_secondary)
130		return -ENOSYS;
131
132	ret = secondary_biglittle_prepare(cpu);
133	if (ret)
134		return ret;
135
136	/*
137	 * We need to tell the secondary core where to find
138	 * its stack and the page tables.
139	 */
140	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
141#ifdef CONFIG_ARM_MPU
142	secondary_data.mpu_rgn_info = &mpu_rgn_info;
143#endif
144
145#ifdef CONFIG_MMU
146	secondary_data.pgdir = virt_to_phys(idmap_pgd);
147	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
148#endif
149	sync_cache_w(&secondary_data);
150
151	/*
152	 * Now bring the CPU into our world.
153	 */
154	ret = smp_ops.smp_boot_secondary(cpu, idle);
155	if (ret == 0) {
156		/*
157		 * CPU was successfully started, wait for it
158		 * to come online or time out.
159		 */
160		wait_for_completion_timeout(&cpu_running,
161						 msecs_to_jiffies(1000));
162
163		if (!cpu_online(cpu)) {
164			pr_crit("CPU%u: failed to come online\n", cpu);
165			ret = -EIO;
166		}
167	} else {
168		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
169	}
170
 
 
171
172	memset(&secondary_data, 0, sizeof(secondary_data));
173	return ret;
174}
175
176/* platform specific SMP operations */
177void __init smp_init_cpus(void)
178{
179	if (smp_ops.smp_init_cpus)
180		smp_ops.smp_init_cpus();
181}
182
183int platform_can_secondary_boot(void)
184{
185	return !!smp_ops.smp_boot_secondary;
186}
187
188int platform_can_cpu_hotplug(void)
189{
190#ifdef CONFIG_HOTPLUG_CPU
191	if (smp_ops.cpu_kill)
192		return 1;
193#endif
194
195	return 0;
196}
197
198#ifdef CONFIG_HOTPLUG_CPU
199static int platform_cpu_kill(unsigned int cpu)
200{
201	if (smp_ops.cpu_kill)
202		return smp_ops.cpu_kill(cpu);
203	return 1;
204}
205
206static int platform_cpu_disable(unsigned int cpu)
207{
208	if (smp_ops.cpu_disable)
209		return smp_ops.cpu_disable(cpu);
210
211	return 0;
212}
213
214int platform_can_hotplug_cpu(unsigned int cpu)
215{
216	/* cpu_die must be specified to support hotplug */
217	if (!smp_ops.cpu_die)
218		return 0;
219
220	if (smp_ops.cpu_can_disable)
221		return smp_ops.cpu_can_disable(cpu);
222
223	/*
224	 * By default, allow disabling all CPUs except the first one,
225	 * since this is special on a lot of platforms, e.g. because
226	 * of clock tick interrupts.
227	 */
228	return cpu != 0;
229}
230
231/*
232 * __cpu_disable runs on the processor to be shutdown.
233 */
234int __cpu_disable(void)
235{
236	unsigned int cpu = smp_processor_id();
237	int ret;
238
239	ret = platform_cpu_disable(cpu);
240	if (ret)
241		return ret;
242
243	/*
244	 * Take this CPU offline.  Once we clear this, we can't return,
245	 * and we must not schedule until we're ready to give up the cpu.
246	 */
247	set_cpu_online(cpu, false);
248
249	/*
250	 * OK - migrate IRQs away from this CPU
251	 */
252	irq_migrate_all_off_this_cpu();
 
 
 
 
 
253
254	/*
255	 * Flush user cache and TLB mappings, and then remove this CPU
256	 * from the vm mask set of all processes.
257	 *
258	 * Caches are flushed to the Level of Unification Inner Shareable
259	 * to write-back dirty lines to unified caches shared by all CPUs.
260	 */
261	flush_cache_louis();
262	local_flush_tlb_all();
263
 
 
264	return 0;
265}
266
 
 
267/*
268 * called on the thread which is asking for a CPU to be shutdown -
269 * waits until shutdown has completed, or it is timed out.
270 */
271void __cpu_die(unsigned int cpu)
272{
273	if (!cpu_wait_death(cpu, 5)) {
274		pr_err("CPU%u: cpu didn't die\n", cpu);
275		return;
276	}
277	pr_debug("CPU%u: shutdown\n", cpu);
278
279	clear_tasks_mm_cpumask(cpu);
280	/*
281	 * platform_cpu_kill() is generally expected to do the powering off
282	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
283	 * be done by the CPU which is dying in preference to supporting
284	 * this call, but that means there is _no_ synchronisation between
285	 * the requesting CPU and the dying CPU actually losing power.
286	 */
287	if (!platform_cpu_kill(cpu))
288		pr_err("CPU%u: unable to kill\n", cpu);
289}
290
291/*
292 * Called from the idle thread for the CPU which has been shutdown.
293 *
294 * Note that we disable IRQs here, but do not re-enable them
295 * before returning to the caller. This is also the behaviour
296 * of the other hotplug-cpu capable cores, so presumably coming
297 * out of idle fixes this.
298 */
299void arch_cpu_idle_dead(void)
300{
301	unsigned int cpu = smp_processor_id();
302
303	idle_task_exit();
304
305	local_irq_disable();
 
306
307	/*
308	 * Flush the data out of the L1 cache for this CPU.  This must be
309	 * before the completion to ensure that data is safely written out
310	 * before platform_cpu_kill() gets called - which may disable
311	 * *this* CPU and power down its cache.
312	 */
313	flush_cache_louis();
314
315	/*
316	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
317	 * this returns, power and/or clocks can be removed at any point
318	 * from this CPU and its cache by platform_cpu_kill().
319	 */
320	(void)cpu_report_death();
321
322	/*
323	 * Ensure that the cache lines associated with that completion are
324	 * written out.  This covers the case where _this_ CPU is doing the
325	 * powering down, to ensure that the completion is visible to the
326	 * CPU waiting for this one.
327	 */
328	flush_cache_louis();
329
330	/*
331	 * The actual CPU shutdown procedure is at least platform (if not
332	 * CPU) specific.  This may remove power, or it may simply spin.
333	 *
334	 * Platforms are generally expected *NOT* to return from this call,
335	 * although there are some which do because they have no way to
336	 * power down the CPU.  These platforms are the _only_ reason we
337	 * have a return path which uses the fragment of assembly below.
338	 *
339	 * The return path should not be used for platforms which can
340	 * power off the CPU.
341	 */
342	if (smp_ops.cpu_die)
343		smp_ops.cpu_die(cpu);
344
345	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
346		cpu);
347
348	/*
349	 * Do not return to the idle loop - jump back to the secondary
350	 * cpu initialisation.  There's some initialisation which needs
351	 * to be repeated to undo the effects of taking the CPU offline.
352	 */
353	__asm__("mov	sp, %0\n"
354	"	mov	fp, #0\n"
355	"	b	secondary_start_kernel"
356		:
357		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
358}
359#endif /* CONFIG_HOTPLUG_CPU */
360
361/*
362 * Called by both boot and secondaries to move global data into
363 * per-processor storage.
364 */
365static void smp_store_cpu_info(unsigned int cpuid)
366{
367	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
368
369	cpu_info->loops_per_jiffy = loops_per_jiffy;
370	cpu_info->cpuid = read_cpuid_id();
371
372	store_cpu_topology(cpuid);
373	check_cpu_icache_size(cpuid);
374}
375
 
 
376/*
377 * This is the secondary CPU boot entry.  We're using this CPUs
378 * idle thread stack, but a set of temporary page tables.
379 */
380asmlinkage void secondary_start_kernel(void)
381{
382	struct mm_struct *mm = &init_mm;
383	unsigned int cpu;
384
385	secondary_biglittle_init();
386
387	/*
388	 * The identity mapping is uncached (strongly ordered), so
389	 * switch away from it before attempting any exclusive accesses.
390	 */
 
 
 
391	cpu_switch_mm(mm->pgd, mm);
392	local_flush_bp_all();
393	enter_lazy_tlb(mm, current);
394	local_flush_tlb_all();
395
396	/*
397	 * All kernel threads share the same mm context; grab a
398	 * reference and switch to it.
399	 */
400	cpu = smp_processor_id();
401	mmgrab(mm);
402	current->active_mm = mm;
403	cpumask_set_cpu(cpu, mm_cpumask(mm));
404
405	cpu_init();
406
407#ifndef CONFIG_MMU
408	setup_vectors_base();
409#endif
410	pr_debug("CPU%u: Booted secondary processor\n", cpu);
411
412	preempt_disable();
413	trace_hardirqs_off();
414
415	/*
416	 * Give the platform a chance to do its own initialisation.
417	 */
418	if (smp_ops.smp_secondary_init)
419		smp_ops.smp_secondary_init(cpu);
420
421	notify_cpu_starting(cpu);
422
423	calibrate_delay();
424
425	smp_store_cpu_info(cpu);
426
427	/*
428	 * OK, now it's safe to let the boot CPU continue.  Wait for
429	 * the CPU migration code to notice that the CPU is online
430	 * before we continue - which happens after __cpu_up returns.
431	 */
432	set_cpu_online(cpu, true);
 
433
434	check_other_bugs();
435
436	complete(&cpu_running);
 
437
438	local_irq_enable();
439	local_fiq_enable();
440	local_abt_enable();
441
442	/*
443	 * OK, it's off to the idle thread for us
444	 */
445	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
446}
447
448void __init smp_cpus_done(unsigned int max_cpus)
449{
450	int cpu;
451	unsigned long bogosum = 0;
452
453	for_each_online_cpu(cpu)
454		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
455
456	printk(KERN_INFO "SMP: Total of %d processors activated "
457	       "(%lu.%02lu BogoMIPS).\n",
458	       num_online_cpus(),
459	       bogosum / (500000/HZ),
460	       (bogosum / (5000/HZ)) % 100);
461
462	hyp_mode_check();
463}
464
465void __init smp_prepare_boot_cpu(void)
466{
467	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
468}
469
470void __init smp_prepare_cpus(unsigned int max_cpus)
471{
472	unsigned int ncores = num_possible_cpus();
473
474	init_cpu_topology();
475
476	smp_store_cpu_info(smp_processor_id());
477
478	/*
479	 * are we trying to boot more cores than exist?
480	 */
481	if (max_cpus > ncores)
482		max_cpus = ncores;
483	if (ncores > 1 && max_cpus) {
484		/*
 
 
 
 
 
 
485		 * Initialise the present map, which describes the set of CPUs
486		 * actually populated at the present time. A platform should
487		 * re-initialize the map in the platforms smp_prepare_cpus()
488		 * if present != possible (e.g. physical hotplug).
489		 */
490		init_cpu_present(cpu_possible_mask);
491
492		/*
493		 * Initialise the SCU if there are more than one CPU
494		 * and let them know where to start.
495		 */
496		if (smp_ops.smp_prepare_cpus)
497			smp_ops.smp_prepare_cpus(max_cpus);
498	}
499}
500
501static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
502
503void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
504{
505	if (!__smp_cross_call)
506		__smp_cross_call = fn;
 
 
 
 
 
 
 
 
 
507}
508
509static const char *ipi_types[NR_IPI] __tracepoint_string = {
510#define S(x,s)	[x] = s
511	S(IPI_WAKEUP, "CPU wakeup interrupts"),
512	S(IPI_TIMER, "Timer broadcast interrupts"),
513	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
514	S(IPI_CALL_FUNC, "Function call interrupts"),
 
515	S(IPI_CPU_STOP, "CPU stop interrupts"),
516	S(IPI_IRQ_WORK, "IRQ work interrupts"),
517	S(IPI_COMPLETION, "completion interrupts"),
518};
519
520static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
521{
522	trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
523	__smp_cross_call(target, ipinr);
524}
525
526void show_ipi_list(struct seq_file *p, int prec)
527{
528	unsigned int cpu, i;
529
530	for (i = 0; i < NR_IPI; i++) {
531		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
532
533		for_each_online_cpu(cpu)
534			seq_printf(p, "%10u ",
535				   __get_irq_stat(cpu, ipi_irqs[i]));
536
537		seq_printf(p, " %s\n", ipi_types[i]);
538	}
539}
540
541u64 smp_irq_stat_cpu(unsigned int cpu)
542{
543	u64 sum = 0;
544	int i;
545
546	for (i = 0; i < NR_IPI; i++)
547		sum += __get_irq_stat(cpu, ipi_irqs[i]);
548
549	return sum;
550}
551
552void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 
 
 
 
 
553{
554	smp_cross_call(mask, IPI_CALL_FUNC);
 
555}
556
557void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
 
558{
559	smp_cross_call(mask, IPI_WAKEUP);
560}
 
 
 
561
562void arch_send_call_function_single_ipi(int cpu)
 
563{
564	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
565}
566
567#ifdef CONFIG_IRQ_WORK
568void arch_irq_work_raise(void)
569{
570	if (arch_irq_work_has_interrupt())
571		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
572}
573#endif
574
575#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
576void tick_broadcast(const struct cpumask *mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
577{
578	smp_cross_call(mask, IPI_TIMER);
 
 
 
 
579}
580#endif
581
582static DEFINE_RAW_SPINLOCK(stop_lock);
583
584/*
585 * ipi_cpu_stop - handle IPI from smp_send_stop()
586 */
587static void ipi_cpu_stop(unsigned int cpu)
588{
589	if (system_state <= SYSTEM_RUNNING) {
 
590		raw_spin_lock(&stop_lock);
591		pr_crit("CPU%u: stopping\n", cpu);
592		dump_stack();
593		raw_spin_unlock(&stop_lock);
594	}
595
596	set_cpu_online(cpu, false);
597
598	local_fiq_disable();
599	local_irq_disable();
600
601	while (1) {
602		cpu_relax();
603		wfe();
604	}
605}
606
607static DEFINE_PER_CPU(struct completion *, cpu_completion);
608
609int register_ipi_completion(struct completion *completion, int cpu)
610{
611	per_cpu(cpu_completion, cpu) = completion;
612	return IPI_COMPLETION;
613}
614
615static void ipi_complete(unsigned int cpu)
616{
617	complete(per_cpu(cpu_completion, cpu));
618}
619
620/*
621 * Main handler for inter-processor interrupts
622 */
623asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
624{
625	handle_IPI(ipinr, regs);
626}
627
628void handle_IPI(int ipinr, struct pt_regs *regs)
629{
630	unsigned int cpu = smp_processor_id();
631	struct pt_regs *old_regs = set_irq_regs(regs);
632
633	if ((unsigned)ipinr < NR_IPI) {
634		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
635		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
636	}
637
638	switch (ipinr) {
639	case IPI_WAKEUP:
640		break;
641
642#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
643	case IPI_TIMER:
644		irq_enter();
645		tick_receive_broadcast();
646		irq_exit();
647		break;
648#endif
649
650	case IPI_RESCHEDULE:
651		scheduler_ipi();
652		break;
653
654	case IPI_CALL_FUNC:
655		irq_enter();
656		generic_smp_call_function_interrupt();
657		irq_exit();
658		break;
659
660	case IPI_CPU_STOP:
661		irq_enter();
662		ipi_cpu_stop(cpu);
663		irq_exit();
664		break;
665
666#ifdef CONFIG_IRQ_WORK
667	case IPI_IRQ_WORK:
668		irq_enter();
669		irq_work_run();
670		irq_exit();
671		break;
672#endif
673
674	case IPI_COMPLETION:
675		irq_enter();
676		ipi_complete(cpu);
677		irq_exit();
678		break;
679
680	case IPI_CPU_BACKTRACE:
681		printk_nmi_enter();
682		irq_enter();
683		nmi_cpu_backtrace(regs);
684		irq_exit();
685		printk_nmi_exit();
686		break;
687
688	default:
689		pr_crit("CPU%u: Unknown IPI message 0x%x\n",
690		        cpu, ipinr);
691		break;
692	}
693
694	if ((unsigned)ipinr < NR_IPI)
695		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
696	set_irq_regs(old_regs);
697}
698
699void smp_send_reschedule(int cpu)
700{
701	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
702}
703
 
 
 
 
 
 
 
 
 
 
 
704void smp_send_stop(void)
705{
706	unsigned long timeout;
707	struct cpumask mask;
708
709	cpumask_copy(&mask, cpu_online_mask);
710	cpumask_clear_cpu(smp_processor_id(), &mask);
711	if (!cpumask_empty(&mask))
712		smp_cross_call(&mask, IPI_CPU_STOP);
713
714	/* Wait up to one second for other CPUs to stop */
715	timeout = USEC_PER_SEC;
716	while (num_online_cpus() > 1 && timeout--)
717		udelay(1);
718
719	if (num_online_cpus() > 1)
720		pr_warn("SMP: failed to stop secondary CPUs\n");
721}
722
723/* In case panic() and panic() called at the same time on CPU1 and CPU2,
724 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
725 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
726 * kdump fails. So split out the panic_smp_self_stop() and add
727 * set_cpu_online(smp_processor_id(), false).
728 */
729void panic_smp_self_stop(void)
730{
731	pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
732	         smp_processor_id());
733	set_cpu_online(smp_processor_id(), false);
734	while (1)
735		cpu_relax();
736}
737
738/*
739 * not supported here
740 */
741int setup_profiling_timer(unsigned int multiplier)
742{
743	return -EINVAL;
744}
745
746#ifdef CONFIG_CPU_FREQ
747
748static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
749static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
750static unsigned long global_l_p_j_ref;
751static unsigned long global_l_p_j_ref_freq;
752
753static int cpufreq_callback(struct notifier_block *nb,
754					unsigned long val, void *data)
755{
756	struct cpufreq_freqs *freq = data;
757	struct cpumask *cpus = freq->policy->cpus;
758	int cpu, first = cpumask_first(cpus);
759	unsigned int lpj;
760
761	if (freq->flags & CPUFREQ_CONST_LOOPS)
762		return NOTIFY_OK;
763
764	if (!per_cpu(l_p_j_ref, first)) {
765		for_each_cpu(cpu, cpus) {
766			per_cpu(l_p_j_ref, cpu) =
767				per_cpu(cpu_data, cpu).loops_per_jiffy;
768			per_cpu(l_p_j_ref_freq, cpu) = freq->old;
769		}
770
771		if (!global_l_p_j_ref) {
772			global_l_p_j_ref = loops_per_jiffy;
773			global_l_p_j_ref_freq = freq->old;
774		}
775	}
776
777	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
778	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
779		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
780						global_l_p_j_ref_freq,
781						freq->new);
782
783		lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
784				    per_cpu(l_p_j_ref_freq, first), freq->new);
785		for_each_cpu(cpu, cpus)
786			per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
787	}
788	return NOTIFY_OK;
789}
790
791static struct notifier_block cpufreq_notifier = {
792	.notifier_call  = cpufreq_callback,
793};
794
795static int __init register_cpufreq_notifier(void)
796{
797	return cpufreq_register_notifier(&cpufreq_notifier,
798						CPUFREQ_TRANSITION_NOTIFIER);
799}
800core_initcall(register_cpufreq_notifier);
801
802#endif
803
804static void raise_nmi(cpumask_t *mask)
805{
806	__smp_cross_call(mask, IPI_CPU_BACKTRACE);
807}
808
809void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
810{
811	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
812}