Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 *  linux/arch/arm/kernel/smp.c
  3 *
  4 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10#include <linux/module.h>
 11#include <linux/delay.h>
 12#include <linux/init.h>
 13#include <linux/spinlock.h>
 14#include <linux/sched.h>
 15#include <linux/interrupt.h>
 16#include <linux/cache.h>
 17#include <linux/profile.h>
 18#include <linux/errno.h>
 19#include <linux/mm.h>
 20#include <linux/err.h>
 21#include <linux/cpu.h>
 22#include <linux/smp.h>
 23#include <linux/seq_file.h>
 24#include <linux/irq.h>
 25#include <linux/percpu.h>
 26#include <linux/clockchips.h>
 27#include <linux/completion.h>
 
 
 28
 29#include <linux/atomic.h>
 
 30#include <asm/cacheflush.h>
 31#include <asm/cpu.h>
 32#include <asm/cputype.h>
 33#include <asm/exception.h>
 34#include <asm/idmap.h>
 35#include <asm/topology.h>
 36#include <asm/mmu_context.h>
 37#include <asm/pgtable.h>
 38#include <asm/pgalloc.h>
 39#include <asm/processor.h>
 40#include <asm/sections.h>
 41#include <asm/tlbflush.h>
 42#include <asm/ptrace.h>
 43#include <asm/localtimer.h>
 44#include <asm/smp_plat.h>
 
 
 
 45
 46/*
 47 * as from 2.5, kernels no longer have an init_tasks structure
 48 * so we need some other way of telling a new secondary core
 49 * where to place its SVC stack
 50 */
 51struct secondary_data secondary_data;
 52
 
 
 
 
 
 
 53enum ipi_msg_type {
 54	IPI_TIMER = 2,
 
 55	IPI_RESCHEDULE,
 56	IPI_CALL_FUNC,
 57	IPI_CALL_FUNC_SINGLE,
 58	IPI_CPU_STOP,
 
 
 59};
 60
 61static DECLARE_COMPLETION(cpu_running);
 62
 63int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 64{
 65	int ret;
 66
 67	/*
 68	 * We need to tell the secondary core where to find
 69	 * its stack and the page tables.
 70	 */
 71	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
 72	secondary_data.pgdir = virt_to_phys(idmap_pgd);
 73	secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
 74	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
 75	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
 
 
 
 
 
 76
 77	/*
 78	 * Now bring the CPU into our world.
 79	 */
 80	ret = boot_secondary(cpu, idle);
 81	if (ret == 0) {
 82		/*
 83		 * CPU was successfully started, wait for it
 84		 * to come online or time out.
 85		 */
 86		wait_for_completion_timeout(&cpu_running,
 87						 msecs_to_jiffies(1000));
 88
 89		if (!cpu_online(cpu)) {
 90			pr_crit("CPU%u: failed to come online\n", cpu);
 91			ret = -EIO;
 92		}
 93	} else {
 94		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
 95	}
 96
 97	secondary_data.stack = NULL;
 98	secondary_data.pgdir = 0;
 99
 
100	return ret;
101}
102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103#ifdef CONFIG_HOTPLUG_CPU
104static void percpu_timer_stop(void);
 
 
 
 
 
105
 
 
 
 
 
 
 
 
 
 
 
 
106/*
107 * __cpu_disable runs on the processor to be shutdown.
108 */
109int __cpu_disable(void)
110{
111	unsigned int cpu = smp_processor_id();
112	int ret;
113
114	ret = platform_cpu_disable(cpu);
115	if (ret)
116		return ret;
117
118	/*
119	 * Take this CPU offline.  Once we clear this, we can't return,
120	 * and we must not schedule until we're ready to give up the cpu.
121	 */
122	set_cpu_online(cpu, false);
123
124	/*
125	 * OK - migrate IRQs away from this CPU
126	 */
127	migrate_irqs();
128
129	/*
130	 * Stop the local timer for this CPU.
131	 */
132	percpu_timer_stop();
133
134	/*
135	 * Flush user cache and TLB mappings, and then remove this CPU
136	 * from the vm mask set of all processes.
 
 
 
137	 */
138	flush_cache_all();
139	local_flush_tlb_all();
140
141	clear_tasks_mm_cpumask(cpu);
142
143	return 0;
144}
145
146static DECLARE_COMPLETION(cpu_died);
147
148/*
149 * called on the thread which is asking for a CPU to be shutdown -
150 * waits until shutdown has completed, or it is timed out.
151 */
152void __cpu_die(unsigned int cpu)
153{
154	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
155		pr_err("CPU%u: cpu didn't die\n", cpu);
156		return;
157	}
158	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
159
 
 
 
 
 
 
 
160	if (!platform_cpu_kill(cpu))
161		printk("CPU%u: unable to kill\n", cpu);
162}
163
164/*
165 * Called from the idle thread for the CPU which has been shutdown.
166 *
167 * Note that we disable IRQs here, but do not re-enable them
168 * before returning to the caller. This is also the behaviour
169 * of the other hotplug-cpu capable cores, so presumably coming
170 * out of idle fixes this.
171 */
172void __ref cpu_die(void)
173{
174	unsigned int cpu = smp_processor_id();
175
176	idle_task_exit();
177
178	local_irq_disable();
179	mb();
180
181	/* Tell __cpu_die() that this CPU is now safe to dispose of */
 
 
 
 
 
 
 
 
 
 
 
 
182	complete(&cpu_died);
183
184	/*
185	 * actual CPU shutdown procedure is at least platform (if not
186	 * CPU) specific.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187	 */
188	platform_cpu_die(cpu);
 
 
 
 
189
190	/*
191	 * Do not return to the idle loop - jump back to the secondary
192	 * cpu initialisation.  There's some initialisation which needs
193	 * to be repeated to undo the effects of taking the CPU offline.
194	 */
195	__asm__("mov	sp, %0\n"
196	"	mov	fp, #0\n"
197	"	b	secondary_start_kernel"
198		:
199		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
200}
201#endif /* CONFIG_HOTPLUG_CPU */
202
203/*
204 * Called by both boot and secondaries to move global data into
205 * per-processor storage.
206 */
207static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
208{
209	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
210
211	cpu_info->loops_per_jiffy = loops_per_jiffy;
 
212
213	store_cpu_topology(cpuid);
214}
215
216static void percpu_timer_setup(void);
217
218/*
219 * This is the secondary CPU boot entry.  We're using this CPUs
220 * idle thread stack, but a set of temporary page tables.
221 */
222asmlinkage void __cpuinit secondary_start_kernel(void)
223{
224	struct mm_struct *mm = &init_mm;
225	unsigned int cpu = smp_processor_id();
 
 
 
 
 
 
 
 
 
226
227	/*
228	 * All kernel threads share the same mm context; grab a
229	 * reference and switch to it.
230	 */
 
231	atomic_inc(&mm->mm_count);
232	current->active_mm = mm;
233	cpumask_set_cpu(cpu, mm_cpumask(mm));
234	cpu_switch_mm(mm->pgd, mm);
235	enter_lazy_tlb(mm, current);
236	local_flush_tlb_all();
237
238	printk("CPU%u: Booted secondary processor\n", cpu);
239
240	cpu_init();
241	preempt_disable();
242	trace_hardirqs_off();
243
244	/*
245	 * Give the platform a chance to do its own initialisation.
246	 */
247	platform_secondary_init(cpu);
 
248
249	notify_cpu_starting(cpu);
250
251	calibrate_delay();
252
253	smp_store_cpu_info(cpu);
254
255	/*
256	 * OK, now it's safe to let the boot CPU continue.  Wait for
257	 * the CPU migration code to notice that the CPU is online
258	 * before we continue - which happens after __cpu_up returns.
259	 */
260	set_cpu_online(cpu, true);
261	complete(&cpu_running);
262
263	/*
264	 * Setup the percpu timer for this CPU.
265	 */
266	percpu_timer_setup();
267
268	local_irq_enable();
269	local_fiq_enable();
270
271	/*
272	 * OK, it's off to the idle thread for us
273	 */
274	cpu_idle();
275}
276
277void __init smp_cpus_done(unsigned int max_cpus)
278{
279	int cpu;
280	unsigned long bogosum = 0;
281
282	for_each_online_cpu(cpu)
283		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
284
285	printk(KERN_INFO "SMP: Total of %d processors activated "
286	       "(%lu.%02lu BogoMIPS).\n",
287	       num_online_cpus(),
288	       bogosum / (500000/HZ),
289	       (bogosum / (5000/HZ)) % 100);
290}
291
292void __init smp_prepare_boot_cpu(void)
293{
 
294}
295
296void __init smp_prepare_cpus(unsigned int max_cpus)
297{
298	unsigned int ncores = num_possible_cpus();
299
300	init_cpu_topology();
301
302	smp_store_cpu_info(smp_processor_id());
303
304	/*
305	 * are we trying to boot more cores than exist?
306	 */
307	if (max_cpus > ncores)
308		max_cpus = ncores;
309	if (ncores > 1 && max_cpus) {
310		/*
311		 * Enable the local timer or broadcast device for the
312		 * boot CPU, but only if we have more than one CPU.
313		 */
314		percpu_timer_setup();
315
316		/*
317		 * Initialise the present map, which describes the set of CPUs
318		 * actually populated at the present time. A platform should
319		 * re-initialize the map in platform_smp_prepare_cpus() if
320		 * present != possible (e.g. physical hotplug).
321		 */
322		init_cpu_present(cpu_possible_mask);
323
324		/*
325		 * Initialise the SCU if there are more than one CPU
326		 * and let them know where to start.
327		 */
328		platform_smp_prepare_cpus(max_cpus);
 
329	}
330}
331
332static void (*smp_cross_call)(const struct cpumask *, unsigned int);
333
334void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
335{
336	smp_cross_call = fn;
 
337}
338
339void arch_send_call_function_ipi_mask(const struct cpumask *mask)
340{
341	smp_cross_call(mask, IPI_CALL_FUNC);
342}
343
 
 
 
 
 
344void arch_send_call_function_single_ipi(int cpu)
345{
346	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
347}
348
 
 
 
 
 
 
 
 
349static const char *ipi_types[NR_IPI] = {
350#define S(x,s)	[x - IPI_TIMER] = s
 
351	S(IPI_TIMER, "Timer broadcast interrupts"),
352	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
353	S(IPI_CALL_FUNC, "Function call interrupts"),
354	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
355	S(IPI_CPU_STOP, "CPU stop interrupts"),
 
 
356};
357
358void show_ipi_list(struct seq_file *p, int prec)
359{
360	unsigned int cpu, i;
361
362	for (i = 0; i < NR_IPI; i++) {
363		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
364
365		for_each_present_cpu(cpu)
366			seq_printf(p, "%10u ",
367				   __get_irq_stat(cpu, ipi_irqs[i]));
368
369		seq_printf(p, " %s\n", ipi_types[i]);
370	}
371}
372
373u64 smp_irq_stat_cpu(unsigned int cpu)
374{
375	u64 sum = 0;
376	int i;
377
378	for (i = 0; i < NR_IPI; i++)
379		sum += __get_irq_stat(cpu, ipi_irqs[i]);
380
381	return sum;
382}
383
384/*
385 * Timer (local or broadcast) support
386 */
387static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
388
389static void ipi_timer(void)
390{
391	struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
392	evt->event_handler(evt);
393}
394
395#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
396static void smp_timer_broadcast(const struct cpumask *mask)
397{
398	smp_cross_call(mask, IPI_TIMER);
399}
400#else
401#define smp_timer_broadcast	NULL
402#endif
403
404static void broadcast_timer_set_mode(enum clock_event_mode mode,
405	struct clock_event_device *evt)
406{
407}
408
409static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
410{
411	evt->name	= "dummy_timer";
412	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
413			  CLOCK_EVT_FEAT_PERIODIC |
414			  CLOCK_EVT_FEAT_DUMMY;
415	evt->rating	= 400;
416	evt->mult	= 1;
417	evt->set_mode	= broadcast_timer_set_mode;
418
419	clockevents_register_device(evt);
420}
421
422static struct local_timer_ops *lt_ops;
423
424#ifdef CONFIG_LOCAL_TIMERS
425int local_timer_register(struct local_timer_ops *ops)
426{
427	if (!is_smp() || !setup_max_cpus)
428		return -ENXIO;
429
430	if (lt_ops)
431		return -EBUSY;
432
433	lt_ops = ops;
434	return 0;
435}
436#endif
437
438static void __cpuinit percpu_timer_setup(void)
439{
440	unsigned int cpu = smp_processor_id();
441	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
442
443	evt->cpumask = cpumask_of(cpu);
444	evt->broadcast = smp_timer_broadcast;
445
446	if (!lt_ops || lt_ops->setup(evt))
447		broadcast_timer_setup(evt);
448}
449
450#ifdef CONFIG_HOTPLUG_CPU
451/*
452 * The generic clock events code purposely does not stop the local timer
453 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
454 * manually here.
455 */
456static void percpu_timer_stop(void)
457{
458	unsigned int cpu = smp_processor_id();
459	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
460
461	if (lt_ops)
462		lt_ops->stop(evt);
463}
464#endif
465
466static DEFINE_RAW_SPINLOCK(stop_lock);
467
468/*
469 * ipi_cpu_stop - handle IPI from smp_send_stop()
470 */
471static void ipi_cpu_stop(unsigned int cpu)
472{
473	if (system_state == SYSTEM_BOOTING ||
474	    system_state == SYSTEM_RUNNING) {
475		raw_spin_lock(&stop_lock);
476		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
477		dump_stack();
478		raw_spin_unlock(&stop_lock);
479	}
480
481	set_cpu_online(cpu, false);
482
483	local_fiq_disable();
484	local_irq_disable();
485
486	while (1)
487		cpu_relax();
488}
489
 
 
 
 
 
 
 
 
 
 
 
 
 
490/*
491 * Main handler for inter-processor interrupts
492 */
493asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
494{
495	handle_IPI(ipinr, regs);
496}
497
498void handle_IPI(int ipinr, struct pt_regs *regs)
499{
500	unsigned int cpu = smp_processor_id();
501	struct pt_regs *old_regs = set_irq_regs(regs);
502
503	if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
504		__inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
505
506	switch (ipinr) {
 
 
 
 
507	case IPI_TIMER:
508		irq_enter();
509		ipi_timer();
510		irq_exit();
511		break;
 
512
513	case IPI_RESCHEDULE:
514		scheduler_ipi();
515		break;
516
517	case IPI_CALL_FUNC:
518		irq_enter();
519		generic_smp_call_function_interrupt();
520		irq_exit();
521		break;
522
523	case IPI_CALL_FUNC_SINGLE:
524		irq_enter();
525		generic_smp_call_function_single_interrupt();
526		irq_exit();
527		break;
528
529	case IPI_CPU_STOP:
530		irq_enter();
531		ipi_cpu_stop(cpu);
532		irq_exit();
533		break;
534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
535	default:
536		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
537		       cpu, ipinr);
538		break;
539	}
540	set_irq_regs(old_regs);
541}
542
543void smp_send_reschedule(int cpu)
544{
545	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
546}
547
548#ifdef CONFIG_HOTPLUG_CPU
549static void smp_kill_cpus(cpumask_t *mask)
550{
551	unsigned int cpu;
552	for_each_cpu(cpu, mask)
553		platform_cpu_kill(cpu);
554}
555#else
556static void smp_kill_cpus(cpumask_t *mask) { }
557#endif
558
559void smp_send_stop(void)
560{
561	unsigned long timeout;
562	struct cpumask mask;
563
564	cpumask_copy(&mask, cpu_online_mask);
565	cpumask_clear_cpu(smp_processor_id(), &mask);
566	if (!cpumask_empty(&mask))
567		smp_cross_call(&mask, IPI_CPU_STOP);
568
569	/* Wait up to one second for other CPUs to stop */
570	timeout = USEC_PER_SEC;
571	while (num_online_cpus() > 1 && timeout--)
572		udelay(1);
573
574	if (num_online_cpus() > 1)
575		pr_warning("SMP: failed to stop secondary CPUs\n");
576
577	smp_kill_cpus(&mask);
578}
579
580/*
581 * not supported here
582 */
583int setup_profiling_timer(unsigned int multiplier)
584{
585	return -EINVAL;
586}
v3.15
  1/*
  2 *  linux/arch/arm/kernel/smp.c
  3 *
  4 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10#include <linux/module.h>
 11#include <linux/delay.h>
 12#include <linux/init.h>
 13#include <linux/spinlock.h>
 14#include <linux/sched.h>
 15#include <linux/interrupt.h>
 16#include <linux/cache.h>
 17#include <linux/profile.h>
 18#include <linux/errno.h>
 19#include <linux/mm.h>
 20#include <linux/err.h>
 21#include <linux/cpu.h>
 
 22#include <linux/seq_file.h>
 23#include <linux/irq.h>
 24#include <linux/percpu.h>
 25#include <linux/clockchips.h>
 26#include <linux/completion.h>
 27#include <linux/cpufreq.h>
 28#include <linux/irq_work.h>
 29
 30#include <linux/atomic.h>
 31#include <asm/smp.h>
 32#include <asm/cacheflush.h>
 33#include <asm/cpu.h>
 34#include <asm/cputype.h>
 35#include <asm/exception.h>
 36#include <asm/idmap.h>
 37#include <asm/topology.h>
 38#include <asm/mmu_context.h>
 39#include <asm/pgtable.h>
 40#include <asm/pgalloc.h>
 41#include <asm/processor.h>
 42#include <asm/sections.h>
 43#include <asm/tlbflush.h>
 44#include <asm/ptrace.h>
 
 45#include <asm/smp_plat.h>
 46#include <asm/virt.h>
 47#include <asm/mach/arch.h>
 48#include <asm/mpu.h>
 49
 50/*
 51 * as from 2.5, kernels no longer have an init_tasks structure
 52 * so we need some other way of telling a new secondary core
 53 * where to place its SVC stack
 54 */
 55struct secondary_data secondary_data;
 56
 57/*
 58 * control for which core is the next to come out of the secondary
 59 * boot "holding pen"
 60 */
 61volatile int pen_release = -1;
 62
 63enum ipi_msg_type {
 64	IPI_WAKEUP,
 65	IPI_TIMER,
 66	IPI_RESCHEDULE,
 67	IPI_CALL_FUNC,
 68	IPI_CALL_FUNC_SINGLE,
 69	IPI_CPU_STOP,
 70	IPI_IRQ_WORK,
 71	IPI_COMPLETION,
 72};
 73
 74static DECLARE_COMPLETION(cpu_running);
 75
 76static struct smp_operations smp_ops;
 77
 78void __init smp_set_ops(struct smp_operations *ops)
 79{
 80	if (ops)
 81		smp_ops = *ops;
 82};
 83
 84static unsigned long get_arch_pgd(pgd_t *pgd)
 85{
 86	phys_addr_t pgdir = virt_to_idmap(pgd);
 87	BUG_ON(pgdir & ARCH_PGD_MASK);
 88	return pgdir >> ARCH_PGD_SHIFT;
 89}
 90
 91int __cpu_up(unsigned int cpu, struct task_struct *idle)
 92{
 93	int ret;
 94
 95	/*
 96	 * We need to tell the secondary core where to find
 97	 * its stack and the page tables.
 98	 */
 99	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
100#ifdef CONFIG_ARM_MPU
101	secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
102#endif
103
104#ifdef CONFIG_MMU
105	secondary_data.pgdir = get_arch_pgd(idmap_pgd);
106	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
107#endif
108	sync_cache_w(&secondary_data);
109
110	/*
111	 * Now bring the CPU into our world.
112	 */
113	ret = boot_secondary(cpu, idle);
114	if (ret == 0) {
115		/*
116		 * CPU was successfully started, wait for it
117		 * to come online or time out.
118		 */
119		wait_for_completion_timeout(&cpu_running,
120						 msecs_to_jiffies(1000));
121
122		if (!cpu_online(cpu)) {
123			pr_crit("CPU%u: failed to come online\n", cpu);
124			ret = -EIO;
125		}
126	} else {
127		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
128	}
129
 
 
130
131	memset(&secondary_data, 0, sizeof(secondary_data));
132	return ret;
133}
134
135/* platform specific SMP operations */
136void __init smp_init_cpus(void)
137{
138	if (smp_ops.smp_init_cpus)
139		smp_ops.smp_init_cpus();
140}
141
142int boot_secondary(unsigned int cpu, struct task_struct *idle)
143{
144	if (smp_ops.smp_boot_secondary)
145		return smp_ops.smp_boot_secondary(cpu, idle);
146	return -ENOSYS;
147}
148
149int platform_can_cpu_hotplug(void)
150{
151#ifdef CONFIG_HOTPLUG_CPU
152	if (smp_ops.cpu_kill)
153		return 1;
154#endif
155
156	return 0;
157}
158
159#ifdef CONFIG_HOTPLUG_CPU
160static int platform_cpu_kill(unsigned int cpu)
161{
162	if (smp_ops.cpu_kill)
163		return smp_ops.cpu_kill(cpu);
164	return 1;
165}
166
167static int platform_cpu_disable(unsigned int cpu)
168{
169	if (smp_ops.cpu_disable)
170		return smp_ops.cpu_disable(cpu);
171
172	/*
173	 * By default, allow disabling all CPUs except the first one,
174	 * since this is special on a lot of platforms, e.g. because
175	 * of clock tick interrupts.
176	 */
177	return cpu == 0 ? -EPERM : 0;
178}
179/*
180 * __cpu_disable runs on the processor to be shutdown.
181 */
182int __cpu_disable(void)
183{
184	unsigned int cpu = smp_processor_id();
185	int ret;
186
187	ret = platform_cpu_disable(cpu);
188	if (ret)
189		return ret;
190
191	/*
192	 * Take this CPU offline.  Once we clear this, we can't return,
193	 * and we must not schedule until we're ready to give up the cpu.
194	 */
195	set_cpu_online(cpu, false);
196
197	/*
198	 * OK - migrate IRQs away from this CPU
199	 */
200	migrate_irqs();
201
202	/*
 
 
 
 
 
203	 * Flush user cache and TLB mappings, and then remove this CPU
204	 * from the vm mask set of all processes.
205	 *
206	 * Caches are flushed to the Level of Unification Inner Shareable
207	 * to write-back dirty lines to unified caches shared by all CPUs.
208	 */
209	flush_cache_louis();
210	local_flush_tlb_all();
211
212	clear_tasks_mm_cpumask(cpu);
213
214	return 0;
215}
216
217static DECLARE_COMPLETION(cpu_died);
218
219/*
220 * called on the thread which is asking for a CPU to be shutdown -
221 * waits until shutdown has completed, or it is timed out.
222 */
223void __cpu_die(unsigned int cpu)
224{
225	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
226		pr_err("CPU%u: cpu didn't die\n", cpu);
227		return;
228	}
229	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
230
231	/*
232	 * platform_cpu_kill() is generally expected to do the powering off
233	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
234	 * be done by the CPU which is dying in preference to supporting
235	 * this call, but that means there is _no_ synchronisation between
236	 * the requesting CPU and the dying CPU actually losing power.
237	 */
238	if (!platform_cpu_kill(cpu))
239		printk("CPU%u: unable to kill\n", cpu);
240}
241
242/*
243 * Called from the idle thread for the CPU which has been shutdown.
244 *
245 * Note that we disable IRQs here, but do not re-enable them
246 * before returning to the caller. This is also the behaviour
247 * of the other hotplug-cpu capable cores, so presumably coming
248 * out of idle fixes this.
249 */
250void __ref cpu_die(void)
251{
252	unsigned int cpu = smp_processor_id();
253
254	idle_task_exit();
255
256	local_irq_disable();
 
257
258	/*
259	 * Flush the data out of the L1 cache for this CPU.  This must be
260	 * before the completion to ensure that data is safely written out
261	 * before platform_cpu_kill() gets called - which may disable
262	 * *this* CPU and power down its cache.
263	 */
264	flush_cache_louis();
265
266	/*
267	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
268	 * this returns, power and/or clocks can be removed at any point
269	 * from this CPU and its cache by platform_cpu_kill().
270	 */
271	complete(&cpu_died);
272
273	/*
274	 * Ensure that the cache lines associated with that completion are
275	 * written out.  This covers the case where _this_ CPU is doing the
276	 * powering down, to ensure that the completion is visible to the
277	 * CPU waiting for this one.
278	 */
279	flush_cache_louis();
280
281	/*
282	 * The actual CPU shutdown procedure is at least platform (if not
283	 * CPU) specific.  This may remove power, or it may simply spin.
284	 *
285	 * Platforms are generally expected *NOT* to return from this call,
286	 * although there are some which do because they have no way to
287	 * power down the CPU.  These platforms are the _only_ reason we
288	 * have a return path which uses the fragment of assembly below.
289	 *
290	 * The return path should not be used for platforms which can
291	 * power off the CPU.
292	 */
293	if (smp_ops.cpu_die)
294		smp_ops.cpu_die(cpu);
295
296	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
297		cpu);
298
299	/*
300	 * Do not return to the idle loop - jump back to the secondary
301	 * cpu initialisation.  There's some initialisation which needs
302	 * to be repeated to undo the effects of taking the CPU offline.
303	 */
304	__asm__("mov	sp, %0\n"
305	"	mov	fp, #0\n"
306	"	b	secondary_start_kernel"
307		:
308		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
309}
310#endif /* CONFIG_HOTPLUG_CPU */
311
312/*
313 * Called by both boot and secondaries to move global data into
314 * per-processor storage.
315 */
316static void smp_store_cpu_info(unsigned int cpuid)
317{
318	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
319
320	cpu_info->loops_per_jiffy = loops_per_jiffy;
321	cpu_info->cpuid = read_cpuid_id();
322
323	store_cpu_topology(cpuid);
324}
325
 
 
326/*
327 * This is the secondary CPU boot entry.  We're using this CPUs
328 * idle thread stack, but a set of temporary page tables.
329 */
330asmlinkage void secondary_start_kernel(void)
331{
332	struct mm_struct *mm = &init_mm;
333	unsigned int cpu;
334
335	/*
336	 * The identity mapping is uncached (strongly ordered), so
337	 * switch away from it before attempting any exclusive accesses.
338	 */
339	cpu_switch_mm(mm->pgd, mm);
340	local_flush_bp_all();
341	enter_lazy_tlb(mm, current);
342	local_flush_tlb_all();
343
344	/*
345	 * All kernel threads share the same mm context; grab a
346	 * reference and switch to it.
347	 */
348	cpu = smp_processor_id();
349	atomic_inc(&mm->mm_count);
350	current->active_mm = mm;
351	cpumask_set_cpu(cpu, mm_cpumask(mm));
352
353	cpu_init();
 
354
355	printk("CPU%u: Booted secondary processor\n", cpu);
356
 
357	preempt_disable();
358	trace_hardirqs_off();
359
360	/*
361	 * Give the platform a chance to do its own initialisation.
362	 */
363	if (smp_ops.smp_secondary_init)
364		smp_ops.smp_secondary_init(cpu);
365
366	notify_cpu_starting(cpu);
367
368	calibrate_delay();
369
370	smp_store_cpu_info(cpu);
371
372	/*
373	 * OK, now it's safe to let the boot CPU continue.  Wait for
374	 * the CPU migration code to notice that the CPU is online
375	 * before we continue - which happens after __cpu_up returns.
376	 */
377	set_cpu_online(cpu, true);
378	complete(&cpu_running);
379
 
 
 
 
 
380	local_irq_enable();
381	local_fiq_enable();
382
383	/*
384	 * OK, it's off to the idle thread for us
385	 */
386	cpu_startup_entry(CPUHP_ONLINE);
387}
388
389void __init smp_cpus_done(unsigned int max_cpus)
390{
391	printk(KERN_INFO "SMP: Total of %d processors activated.\n",
392	       num_online_cpus());
393
394	hyp_mode_check();
 
 
 
 
 
 
 
395}
396
397void __init smp_prepare_boot_cpu(void)
398{
399	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
400}
401
402void __init smp_prepare_cpus(unsigned int max_cpus)
403{
404	unsigned int ncores = num_possible_cpus();
405
406	init_cpu_topology();
407
408	smp_store_cpu_info(smp_processor_id());
409
410	/*
411	 * are we trying to boot more cores than exist?
412	 */
413	if (max_cpus > ncores)
414		max_cpus = ncores;
415	if (ncores > 1 && max_cpus) {
416		/*
 
 
 
 
 
 
417		 * Initialise the present map, which describes the set of CPUs
418		 * actually populated at the present time. A platform should
419		 * re-initialize the map in the platforms smp_prepare_cpus()
420		 * if present != possible (e.g. physical hotplug).
421		 */
422		init_cpu_present(cpu_possible_mask);
423
424		/*
425		 * Initialise the SCU if there are more than one CPU
426		 * and let them know where to start.
427		 */
428		if (smp_ops.smp_prepare_cpus)
429			smp_ops.smp_prepare_cpus(max_cpus);
430	}
431}
432
433static void (*smp_cross_call)(const struct cpumask *, unsigned int);
434
435void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
436{
437	if (!smp_cross_call)
438		smp_cross_call = fn;
439}
440
441void arch_send_call_function_ipi_mask(const struct cpumask *mask)
442{
443	smp_cross_call(mask, IPI_CALL_FUNC);
444}
445
446void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
447{
448	smp_cross_call(mask, IPI_WAKEUP);
449}
450
451void arch_send_call_function_single_ipi(int cpu)
452{
453	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
454}
455
456#ifdef CONFIG_IRQ_WORK
457void arch_irq_work_raise(void)
458{
459	if (is_smp())
460		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
461}
462#endif
463
464static const char *ipi_types[NR_IPI] = {
465#define S(x,s)	[x] = s
466	S(IPI_WAKEUP, "CPU wakeup interrupts"),
467	S(IPI_TIMER, "Timer broadcast interrupts"),
468	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
469	S(IPI_CALL_FUNC, "Function call interrupts"),
470	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
471	S(IPI_CPU_STOP, "CPU stop interrupts"),
472	S(IPI_IRQ_WORK, "IRQ work interrupts"),
473	S(IPI_COMPLETION, "completion interrupts"),
474};
475
476void show_ipi_list(struct seq_file *p, int prec)
477{
478	unsigned int cpu, i;
479
480	for (i = 0; i < NR_IPI; i++) {
481		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
482
483		for_each_online_cpu(cpu)
484			seq_printf(p, "%10u ",
485				   __get_irq_stat(cpu, ipi_irqs[i]));
486
487		seq_printf(p, " %s\n", ipi_types[i]);
488	}
489}
490
491u64 smp_irq_stat_cpu(unsigned int cpu)
492{
493	u64 sum = 0;
494	int i;
495
496	for (i = 0; i < NR_IPI; i++)
497		sum += __get_irq_stat(cpu, ipi_irqs[i]);
498
499	return sum;
500}
501
 
 
 
 
 
 
 
 
 
 
 
502#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
503void tick_broadcast(const struct cpumask *mask)
504{
505	smp_cross_call(mask, IPI_TIMER);
506}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
507#endif
508
509static DEFINE_RAW_SPINLOCK(stop_lock);
510
511/*
512 * ipi_cpu_stop - handle IPI from smp_send_stop()
513 */
514static void ipi_cpu_stop(unsigned int cpu)
515{
516	if (system_state == SYSTEM_BOOTING ||
517	    system_state == SYSTEM_RUNNING) {
518		raw_spin_lock(&stop_lock);
519		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
520		dump_stack();
521		raw_spin_unlock(&stop_lock);
522	}
523
524	set_cpu_online(cpu, false);
525
526	local_fiq_disable();
527	local_irq_disable();
528
529	while (1)
530		cpu_relax();
531}
532
533static DEFINE_PER_CPU(struct completion *, cpu_completion);
534
535int register_ipi_completion(struct completion *completion, int cpu)
536{
537	per_cpu(cpu_completion, cpu) = completion;
538	return IPI_COMPLETION;
539}
540
541static void ipi_complete(unsigned int cpu)
542{
543	complete(per_cpu(cpu_completion, cpu));
544}
545
546/*
547 * Main handler for inter-processor interrupts
548 */
549asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
550{
551	handle_IPI(ipinr, regs);
552}
553
554void handle_IPI(int ipinr, struct pt_regs *regs)
555{
556	unsigned int cpu = smp_processor_id();
557	struct pt_regs *old_regs = set_irq_regs(regs);
558
559	if (ipinr < NR_IPI)
560		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
561
562	switch (ipinr) {
563	case IPI_WAKEUP:
564		break;
565
566#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
567	case IPI_TIMER:
568		irq_enter();
569		tick_receive_broadcast();
570		irq_exit();
571		break;
572#endif
573
574	case IPI_RESCHEDULE:
575		scheduler_ipi();
576		break;
577
578	case IPI_CALL_FUNC:
579		irq_enter();
580		generic_smp_call_function_interrupt();
581		irq_exit();
582		break;
583
584	case IPI_CALL_FUNC_SINGLE:
585		irq_enter();
586		generic_smp_call_function_single_interrupt();
587		irq_exit();
588		break;
589
590	case IPI_CPU_STOP:
591		irq_enter();
592		ipi_cpu_stop(cpu);
593		irq_exit();
594		break;
595
596#ifdef CONFIG_IRQ_WORK
597	case IPI_IRQ_WORK:
598		irq_enter();
599		irq_work_run();
600		irq_exit();
601		break;
602#endif
603
604	case IPI_COMPLETION:
605		irq_enter();
606		ipi_complete(cpu);
607		irq_exit();
608		break;
609
610	default:
611		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
612		       cpu, ipinr);
613		break;
614	}
615	set_irq_regs(old_regs);
616}
617
618void smp_send_reschedule(int cpu)
619{
620	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
621}
622
 
 
 
 
 
 
 
 
 
 
 
623void smp_send_stop(void)
624{
625	unsigned long timeout;
626	struct cpumask mask;
627
628	cpumask_copy(&mask, cpu_online_mask);
629	cpumask_clear_cpu(smp_processor_id(), &mask);
630	if (!cpumask_empty(&mask))
631		smp_cross_call(&mask, IPI_CPU_STOP);
632
633	/* Wait up to one second for other CPUs to stop */
634	timeout = USEC_PER_SEC;
635	while (num_online_cpus() > 1 && timeout--)
636		udelay(1);
637
638	if (num_online_cpus() > 1)
639		pr_warning("SMP: failed to stop secondary CPUs\n");
 
 
640}
641
642/*
643 * not supported here
644 */
645int setup_profiling_timer(unsigned int multiplier)
646{
647	return -EINVAL;
648}
649
650#ifdef CONFIG_CPU_FREQ
651
652static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
653static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
654static unsigned long global_l_p_j_ref;
655static unsigned long global_l_p_j_ref_freq;
656
657static int cpufreq_callback(struct notifier_block *nb,
658					unsigned long val, void *data)
659{
660	struct cpufreq_freqs *freq = data;
661	int cpu = freq->cpu;
662
663	if (freq->flags & CPUFREQ_CONST_LOOPS)
664		return NOTIFY_OK;
665
666	if (!per_cpu(l_p_j_ref, cpu)) {
667		per_cpu(l_p_j_ref, cpu) =
668			per_cpu(cpu_data, cpu).loops_per_jiffy;
669		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
670		if (!global_l_p_j_ref) {
671			global_l_p_j_ref = loops_per_jiffy;
672			global_l_p_j_ref_freq = freq->old;
673		}
674	}
675
676	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
677	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
678		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
679						global_l_p_j_ref_freq,
680						freq->new);
681		per_cpu(cpu_data, cpu).loops_per_jiffy =
682			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
683					per_cpu(l_p_j_ref_freq, cpu),
684					freq->new);
685	}
686	return NOTIFY_OK;
687}
688
689static struct notifier_block cpufreq_notifier = {
690	.notifier_call  = cpufreq_callback,
691};
692
693static int __init register_cpufreq_notifier(void)
694{
695	return cpufreq_register_notifier(&cpufreq_notifier,
696						CPUFREQ_TRANSITION_NOTIFIER);
697}
698core_initcall(register_cpufreq_notifier);
699
700#endif