Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 20#include "xfs_types.h"
 21#include "xfs_log.h"
 22#include "xfs_trans.h"
 23#include "xfs_sb.h"
 24#include "xfs_ag.h"
 25#include "xfs_mount.h"
 26#include "xfs_bmap_btree.h"
 27#include "xfs_alloc_btree.h"
 28#include "xfs_ialloc_btree.h"
 29#include "xfs_dinode.h"
 30#include "xfs_inode.h"
 31#include "xfs_buf_item.h"
 32#include "xfs_trans_priv.h"
 33#include "xfs_error.h"
 34#include "xfs_trace.h"
 35
 36/*
 37 * Check to see if a buffer matching the given parameters is already
 38 * a part of the given transaction.
 39 */
 40STATIC struct xfs_buf *
 41xfs_trans_buf_item_match(
 42	struct xfs_trans	*tp,
 43	struct xfs_buftarg	*target,
 44	xfs_daddr_t		blkno,
 45	int			len)
 46{
 47	struct xfs_log_item_desc *lidp;
 48	struct xfs_buf_log_item	*blip;
 
 
 49
 50	len = BBTOB(len);
 51	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
 52		blip = (struct xfs_buf_log_item *)lidp->lid_item;
 
 
 53		if (blip->bli_item.li_type == XFS_LI_BUF &&
 54		    blip->bli_buf->b_target == target &&
 55		    XFS_BUF_ADDR(blip->bli_buf) == blkno &&
 56		    BBTOB(blip->bli_buf->b_length) == len)
 
 57			return blip->bli_buf;
 
 58	}
 59
 60	return NULL;
 61}
 62
 63/*
 64 * Add the locked buffer to the transaction.
 65 *
 66 * The buffer must be locked, and it cannot be associated with any
 67 * transaction.
 68 *
 69 * If the buffer does not yet have a buf log item associated with it,
 70 * then allocate one for it.  Then add the buf item to the transaction.
 71 */
 72STATIC void
 73_xfs_trans_bjoin(
 74	struct xfs_trans	*tp,
 75	struct xfs_buf		*bp,
 76	int			reset_recur)
 77{
 78	struct xfs_buf_log_item	*bip;
 79
 80	ASSERT(bp->b_transp == NULL);
 81
 82	/*
 83	 * The xfs_buf_log_item pointer is stored in b_fsprivate.  If
 84	 * it doesn't have one yet, then allocate one and initialize it.
 85	 * The checks to see if one is there are in xfs_buf_item_init().
 86	 */
 87	xfs_buf_item_init(bp, tp->t_mountp);
 88	bip = bp->b_fspriv;
 89	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 90	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
 91	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
 92	if (reset_recur)
 93		bip->bli_recur = 0;
 94
 95	/*
 96	 * Take a reference for this transaction on the buf item.
 97	 */
 98	atomic_inc(&bip->bli_refcount);
 99
100	/*
101	 * Get a log_item_desc to point at the new item.
 
102	 */
103	xfs_trans_add_item(tp, &bip->bli_item);
104
105	/*
106	 * Initialize b_fsprivate2 so we can find it with incore_match()
107	 * in xfs_trans_get_buf() and friends above.
108	 */
109	bp->b_transp = tp;
110
111}
112
113void
114xfs_trans_bjoin(
115	struct xfs_trans	*tp,
116	struct xfs_buf		*bp)
117{
118	_xfs_trans_bjoin(tp, bp, 0);
119	trace_xfs_trans_bjoin(bp->b_fspriv);
120}
121
122/*
123 * Get and lock the buffer for the caller if it is not already
124 * locked within the given transaction.  If it is already locked
125 * within the transaction, just increment its lock recursion count
126 * and return a pointer to it.
127 *
128 * If the transaction pointer is NULL, make this just a normal
129 * get_buf() call.
130 */
131xfs_buf_t *
132xfs_trans_get_buf(xfs_trans_t	*tp,
133		  xfs_buftarg_t	*target_dev,
134		  xfs_daddr_t	blkno,
135		  int		len,
136		  uint		flags)
 
137{
138	xfs_buf_t		*bp;
139	xfs_buf_log_item_t	*bip;
140
141	/*
142	 * Default to a normal get_buf() call if the tp is NULL.
143	 */
144	if (tp == NULL)
145		return xfs_buf_get(target_dev, blkno, len, flags);
146
147	/*
148	 * If we find the buffer in the cache with this transaction
149	 * pointer in its b_fsprivate2 field, then we know we already
150	 * have it locked.  In this case we just increment the lock
151	 * recursion count and return the buffer to the caller.
152	 */
153	bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len);
154	if (bp != NULL) {
155		ASSERT(xfs_buf_islocked(bp));
156		if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
157			xfs_buf_stale(bp);
158			XFS_BUF_DONE(bp);
159		}
160
161		ASSERT(bp->b_transp == tp);
162		bip = bp->b_fspriv;
163		ASSERT(bip != NULL);
164		ASSERT(atomic_read(&bip->bli_refcount) > 0);
165		bip->bli_recur++;
166		trace_xfs_trans_get_buf_recur(bip);
167		return (bp);
168	}
169
170	bp = xfs_buf_get(target_dev, blkno, len, flags);
171	if (bp == NULL) {
172		return NULL;
173	}
174
175	ASSERT(!bp->b_error);
176
177	_xfs_trans_bjoin(tp, bp, 1);
178	trace_xfs_trans_get_buf(bp->b_fspriv);
179	return (bp);
180}
181
182/*
183 * Get and lock the superblock buffer of this file system for the
184 * given transaction.
185 *
186 * We don't need to use incore_match() here, because the superblock
187 * buffer is a private buffer which we keep a pointer to in the
188 * mount structure.
189 */
190xfs_buf_t *
191xfs_trans_getsb(xfs_trans_t	*tp,
192		struct xfs_mount *mp,
193		int		flags)
194{
195	xfs_buf_t		*bp;
196	xfs_buf_log_item_t	*bip;
197
198	/*
199	 * Default to just trying to lock the superblock buffer
200	 * if tp is NULL.
201	 */
202	if (tp == NULL) {
203		return (xfs_getsb(mp, flags));
204	}
205
206	/*
207	 * If the superblock buffer already has this transaction
208	 * pointer in its b_fsprivate2 field, then we know we already
209	 * have it locked.  In this case we just increment the lock
210	 * recursion count and return the buffer to the caller.
211	 */
212	bp = mp->m_sb_bp;
213	if (bp->b_transp == tp) {
214		bip = bp->b_fspriv;
215		ASSERT(bip != NULL);
216		ASSERT(atomic_read(&bip->bli_refcount) > 0);
217		bip->bli_recur++;
218		trace_xfs_trans_getsb_recur(bip);
219		return (bp);
220	}
221
222	bp = xfs_getsb(mp, flags);
223	if (bp == NULL)
224		return NULL;
225
226	_xfs_trans_bjoin(tp, bp, 1);
227	trace_xfs_trans_getsb(bp->b_fspriv);
228	return (bp);
229}
230
231#ifdef DEBUG
232xfs_buftarg_t *xfs_error_target;
233int	xfs_do_error;
234int	xfs_req_num;
235int	xfs_error_mod = 33;
236#endif
237
238/*
239 * Get and lock the buffer for the caller if it is not already
240 * locked within the given transaction.  If it has not yet been
241 * read in, read it from disk. If it is already locked
242 * within the transaction and already read in, just increment its
243 * lock recursion count and return a pointer to it.
244 *
245 * If the transaction pointer is NULL, make this just a normal
246 * read_buf() call.
247 */
248int
249xfs_trans_read_buf(
250	xfs_mount_t	*mp,
251	xfs_trans_t	*tp,
252	xfs_buftarg_t	*target,
253	xfs_daddr_t	blkno,
254	int		len,
255	uint		flags,
256	xfs_buf_t	**bpp)
 
257{
258	xfs_buf_t		*bp;
259	xfs_buf_log_item_t	*bip;
260	int			error;
261
262	*bpp = NULL;
263
264	/*
265	 * Default to a normal get_buf() call if the tp is NULL.
266	 */
267	if (tp == NULL) {
268		bp = xfs_buf_read(target, blkno, len, flags);
269		if (!bp)
270			return (flags & XBF_TRYLOCK) ?
271					EAGAIN : XFS_ERROR(ENOMEM);
272
273		if (bp->b_error) {
274			error = bp->b_error;
275			xfs_buf_ioerror_alert(bp, __func__);
276			XFS_BUF_UNDONE(bp);
277			xfs_buf_stale(bp);
278			xfs_buf_relse(bp);
279			return error;
280		}
281#ifdef DEBUG
282		if (xfs_do_error) {
283			if (xfs_error_target == target) {
284				if (((xfs_req_num++) % xfs_error_mod) == 0) {
285					xfs_buf_relse(bp);
286					xfs_debug(mp, "Returning error!");
287					return XFS_ERROR(EIO);
288				}
289			}
290		}
291#endif
292		if (XFS_FORCED_SHUTDOWN(mp))
293			goto shutdown_abort;
294		*bpp = bp;
295		return 0;
296	}
297
298	/*
299	 * If we find the buffer in the cache with this transaction
300	 * pointer in its b_fsprivate2 field, then we know we already
301	 * have it locked.  If it is already read in we just increment
302	 * the lock recursion count and return the buffer to the caller.
303	 * If the buffer is not yet read in, then we read it in, increment
304	 * the lock recursion count, and return it to the caller.
305	 */
306	bp = xfs_trans_buf_item_match(tp, target, blkno, len);
307	if (bp != NULL) {
 
308		ASSERT(xfs_buf_islocked(bp));
309		ASSERT(bp->b_transp == tp);
310		ASSERT(bp->b_fspriv != NULL);
311		ASSERT(!bp->b_error);
312		if (!(XFS_BUF_ISDONE(bp))) {
313			trace_xfs_trans_read_buf_io(bp, _RET_IP_);
314			ASSERT(!XFS_BUF_ISASYNC(bp));
315			XFS_BUF_READ(bp);
316			xfsbdstrat(tp->t_mountp, bp);
317			error = xfs_buf_iowait(bp);
318			if (error) {
319				xfs_buf_ioerror_alert(bp, __func__);
320				xfs_buf_relse(bp);
321				/*
322				 * We can gracefully recover from most read
323				 * errors. Ones we can't are those that happen
324				 * after the transaction's already dirty.
325				 */
326				if (tp->t_flags & XFS_TRANS_DIRTY)
327					xfs_force_shutdown(tp->t_mountp,
328							SHUTDOWN_META_IO_ERROR);
329				return error;
330			}
331		}
332		/*
333		 * We never locked this buf ourselves, so we shouldn't
334		 * brelse it either. Just get out.
335		 */
336		if (XFS_FORCED_SHUTDOWN(mp)) {
337			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
338			*bpp = NULL;
339			return XFS_ERROR(EIO);
340		}
341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342
343		bip = bp->b_fspriv;
 
 
 
 
 
 
 
 
 
 
344		bip->bli_recur++;
345
346		ASSERT(atomic_read(&bip->bli_refcount) > 0);
347		trace_xfs_trans_read_buf_recur(bip);
 
348		*bpp = bp;
349		return 0;
350	}
351
352	bp = xfs_buf_read(target, blkno, len, flags);
353	if (bp == NULL) {
354		*bpp = NULL;
355		return (flags & XBF_TRYLOCK) ?
356					0 : XFS_ERROR(ENOMEM);
357	}
 
 
 
 
 
 
 
 
 
 
358	if (bp->b_error) {
359		error = bp->b_error;
 
 
 
360		xfs_buf_stale(bp);
361		XFS_BUF_DONE(bp);
362		xfs_buf_ioerror_alert(bp, __func__);
363		if (tp->t_flags & XFS_TRANS_DIRTY)
364			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
365		xfs_buf_relse(bp);
 
 
 
 
366		return error;
367	}
368#ifdef DEBUG
369	if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) {
370		if (xfs_error_target == target) {
371			if (((xfs_req_num++) % xfs_error_mod) == 0) {
372				xfs_force_shutdown(tp->t_mountp,
373						   SHUTDOWN_META_IO_ERROR);
374				xfs_buf_relse(bp);
375				xfs_debug(mp, "Returning trans error!");
376				return XFS_ERROR(EIO);
377			}
378		}
379	}
380#endif
381	if (XFS_FORCED_SHUTDOWN(mp))
382		goto shutdown_abort;
383
384	_xfs_trans_bjoin(tp, bp, 1);
385	trace_xfs_trans_read_buf(bp->b_fspriv);
 
 
 
386
 
 
 
 
 
387	*bpp = bp;
388	return 0;
389
390shutdown_abort:
391	trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
392	xfs_buf_relse(bp);
393	*bpp = NULL;
394	return XFS_ERROR(EIO);
395}
396
 
 
 
 
 
 
 
 
 
 
 
 
397
398/*
399 * Release the buffer bp which was previously acquired with one of the
400 * xfs_trans_... buffer allocation routines if the buffer has not
401 * been modified within this transaction.  If the buffer is modified
402 * within this transaction, do decrement the recursion count but do
403 * not release the buffer even if the count goes to 0.  If the buffer is not
404 * modified within the transaction, decrement the recursion count and
405 * release the buffer if the recursion count goes to 0.
406 *
407 * If the buffer is to be released and it was not modified before
408 * this transaction began, then free the buf_log_item associated with it.
409 *
410 * If the transaction pointer is NULL, make this just a normal
411 * brelse() call.
412 */
413void
414xfs_trans_brelse(xfs_trans_t	*tp,
415		 xfs_buf_t	*bp)
 
416{
417	xfs_buf_log_item_t	*bip;
418
419	/*
420	 * Default to a normal brelse() call if the tp is NULL.
421	 */
422	if (tp == NULL) {
423		ASSERT(bp->b_transp == NULL);
424		xfs_buf_relse(bp);
425		return;
426	}
427
428	ASSERT(bp->b_transp == tp);
429	bip = bp->b_fspriv;
430	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
431	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
432	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
433	ASSERT(atomic_read(&bip->bli_refcount) > 0);
434
435	trace_xfs_trans_brelse(bip);
436
437	/*
438	 * If the release is just for a recursive lock,
439	 * then decrement the count and return.
440	 */
441	if (bip->bli_recur > 0) {
442		bip->bli_recur--;
443		return;
444	}
445
446	/*
447	 * If the buffer is dirty within this transaction, we can't
448	 * release it until we commit.
449	 */
450	if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
451		return;
452
453	/*
454	 * If the buffer has been invalidated, then we can't release
455	 * it until the transaction commits to disk unless it is re-dirtied
456	 * as part of this transaction.  This prevents us from pulling
457	 * the item from the AIL before we should.
458	 */
459	if (bip->bli_flags & XFS_BLI_STALE)
460		return;
461
462	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
463
464	/*
465	 * Free up the log item descriptor tracking the released item.
 
466	 */
 
467	xfs_trans_del_item(&bip->bli_item);
 
468
469	/*
470	 * Clear the hold flag in the buf log item if it is set.
471	 * We wouldn't want the next user of the buffer to
472	 * get confused.
473	 */
474	if (bip->bli_flags & XFS_BLI_HOLD) {
475		bip->bli_flags &= ~XFS_BLI_HOLD;
476	}
477
478	/*
479	 * Drop our reference to the buf log item.
480	 */
481	atomic_dec(&bip->bli_refcount);
482
483	/*
484	 * If the buf item is not tracking data in the log, then
485	 * we must free it before releasing the buffer back to the
486	 * free pool.  Before releasing the buffer to the free pool,
487	 * clear the transaction pointer in b_fsprivate2 to dissolve
488	 * its relation to this transaction.
489	 */
490	if (!xfs_buf_item_dirty(bip)) {
491/***
492		ASSERT(bp->b_pincount == 0);
493***/
494		ASSERT(atomic_read(&bip->bli_refcount) == 0);
495		ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
496		ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
497		xfs_buf_item_relse(bp);
498	}
499
500	bp->b_transp = NULL;
501	xfs_buf_relse(bp);
502}
503
504/*
505 * Mark the buffer as not needing to be unlocked when the buf item's
506 * IOP_UNLOCK() routine is called.  The buffer must already be locked
507 * and associated with the given transaction.
508 */
509/* ARGSUSED */
510void
511xfs_trans_bhold(xfs_trans_t	*tp,
512		xfs_buf_t	*bp)
 
513{
514	xfs_buf_log_item_t	*bip = bp->b_fspriv;
515
516	ASSERT(bp->b_transp == tp);
517	ASSERT(bip != NULL);
518	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
519	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
520	ASSERT(atomic_read(&bip->bli_refcount) > 0);
521
522	bip->bli_flags |= XFS_BLI_HOLD;
523	trace_xfs_trans_bhold(bip);
524}
525
526/*
527 * Cancel the previous buffer hold request made on this buffer
528 * for this transaction.
529 */
530void
531xfs_trans_bhold_release(xfs_trans_t	*tp,
532			xfs_buf_t	*bp)
 
533{
534	xfs_buf_log_item_t	*bip = bp->b_fspriv;
535
536	ASSERT(bp->b_transp == tp);
537	ASSERT(bip != NULL);
538	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
539	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
540	ASSERT(atomic_read(&bip->bli_refcount) > 0);
541	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
542
543	bip->bli_flags &= ~XFS_BLI_HOLD;
544	trace_xfs_trans_bhold_release(bip);
545}
546
547/*
548 * This is called to mark bytes first through last inclusive of the given
549 * buffer as needing to be logged when the transaction is committed.
550 * The buffer must already be associated with the given transaction.
551 *
552 * First and last are numbers relative to the beginning of this buffer,
553 * so the first byte in the buffer is numbered 0 regardless of the
554 * value of b_blkno.
555 */
556void
557xfs_trans_log_buf(xfs_trans_t	*tp,
558		  xfs_buf_t	*bp,
559		  uint		first,
560		  uint		last)
561{
562	xfs_buf_log_item_t	*bip = bp->b_fspriv;
563
564	ASSERT(bp->b_transp == tp);
565	ASSERT(bip != NULL);
566	ASSERT(first <= last && last < BBTOB(bp->b_length));
567	ASSERT(bp->b_iodone == NULL ||
568	       bp->b_iodone == xfs_buf_iodone_callbacks);
569
570	/*
571	 * Mark the buffer as needing to be written out eventually,
572	 * and set its iodone function to remove the buffer's buf log
573	 * item from the AIL and free it when the buffer is flushed
574	 * to disk.  See xfs_buf_attach_iodone() for more details
575	 * on li_cb and xfs_buf_iodone_callbacks().
576	 * If we end up aborting this transaction, we trap this buffer
577	 * inside the b_bdstrat callback so that this won't get written to
578	 * disk.
579	 */
580	XFS_BUF_DONE(bp);
581
582	ASSERT(atomic_read(&bip->bli_refcount) > 0);
583	bp->b_iodone = xfs_buf_iodone_callbacks;
584	bip->bli_item.li_cb = xfs_buf_iodone;
585
586	trace_xfs_trans_log_buf(bip);
587
588	/*
589	 * If we invalidated the buffer within this transaction, then
590	 * cancel the invalidation now that we're dirtying the buffer
591	 * again.  There are no races with the code in xfs_buf_item_unpin(),
592	 * because we have a reference to the buffer this entire time.
593	 */
594	if (bip->bli_flags & XFS_BLI_STALE) {
595		bip->bli_flags &= ~XFS_BLI_STALE;
596		ASSERT(XFS_BUF_ISSTALE(bp));
597		XFS_BUF_UNSTALE(bp);
598		bip->bli_format.blf_flags &= ~XFS_BLF_CANCEL;
599	}
 
600
601	tp->t_flags |= XFS_TRANS_DIRTY;
602	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
603	bip->bli_flags |= XFS_BLI_LOGGED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
604	xfs_buf_item_log(bip, first, last);
605}
606
607
608/*
609 * Invalidate a buffer that is being used within a transaction.
610 *
611 * Typically this is because the blocks in the buffer are being freed, so we
612 * need to prevent it from being written out when we're done.  Allowing it
613 * to be written again might overwrite data in the free blocks if they are
614 * reallocated to a file.
615 *
616 * We prevent the buffer from being written out by marking it stale.  We can't
617 * get rid of the buf log item at this point because the buffer may still be
618 * pinned by another transaction.  If that is the case, then we'll wait until
619 * the buffer is committed to disk for the last time (we can tell by the ref
620 * count) and free it in xfs_buf_item_unpin().  Until that happens we will
621 * keep the buffer locked so that the buffer and buf log item are not reused.
622 *
623 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
624 * the buf item.  This will be used at recovery time to determine that copies
625 * of the buffer in the log before this should not be replayed.
626 *
627 * We mark the item descriptor and the transaction dirty so that we'll hold
628 * the buffer until after the commit.
629 *
630 * Since we're invalidating the buffer, we also clear the state about which
631 * parts of the buffer have been logged.  We also clear the flag indicating
632 * that this is an inode buffer since the data in the buffer will no longer
633 * be valid.
634 *
635 * We set the stale bit in the buffer as well since we're getting rid of it.
636 */
637void
638xfs_trans_binval(
639	xfs_trans_t	*tp,
640	xfs_buf_t	*bp)
641{
642	xfs_buf_log_item_t	*bip = bp->b_fspriv;
 
643
644	ASSERT(bp->b_transp == tp);
645	ASSERT(bip != NULL);
646	ASSERT(atomic_read(&bip->bli_refcount) > 0);
647
648	trace_xfs_trans_binval(bip);
649
650	if (bip->bli_flags & XFS_BLI_STALE) {
651		/*
652		 * If the buffer is already invalidated, then
653		 * just return.
654		 */
655		ASSERT(XFS_BUF_ISSTALE(bp));
656		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
657		ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_INODE_BUF));
658		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
659		ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
 
660		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
661		return;
662	}
663
664	xfs_buf_stale(bp);
665
666	bip->bli_flags |= XFS_BLI_STALE;
667	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
668	bip->bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
669	bip->bli_format.blf_flags |= XFS_BLF_CANCEL;
670	memset((char *)(bip->bli_format.blf_data_map), 0,
671	      (bip->bli_format.blf_map_size * sizeof(uint)));
672	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
 
 
 
673	tp->t_flags |= XFS_TRANS_DIRTY;
674}
675
676/*
677 * This call is used to indicate that the buffer contains on-disk inodes which
678 * must be handled specially during recovery.  They require special handling
679 * because only the di_next_unlinked from the inodes in the buffer should be
680 * recovered.  The rest of the data in the buffer is logged via the inodes
681 * themselves.
682 *
683 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
684 * transferred to the buffer's log format structure so that we'll know what to
685 * do at recovery time.
686 */
687void
688xfs_trans_inode_buf(
689	xfs_trans_t	*tp,
690	xfs_buf_t	*bp)
691{
692	xfs_buf_log_item_t	*bip = bp->b_fspriv;
693
694	ASSERT(bp->b_transp == tp);
695	ASSERT(bip != NULL);
696	ASSERT(atomic_read(&bip->bli_refcount) > 0);
697
698	bip->bli_flags |= XFS_BLI_INODE_BUF;
 
699}
700
701/*
702 * This call is used to indicate that the buffer is going to
703 * be staled and was an inode buffer. This means it gets
704 * special processing during unpin - where any inodes 
705 * associated with the buffer should be removed from ail.
706 * There is also special processing during recovery,
707 * any replay of the inodes in the buffer needs to be
708 * prevented as the buffer may have been reused.
709 */
710void
711xfs_trans_stale_inode_buf(
712	xfs_trans_t	*tp,
713	xfs_buf_t	*bp)
714{
715	xfs_buf_log_item_t	*bip = bp->b_fspriv;
716
717	ASSERT(bp->b_transp == tp);
718	ASSERT(bip != NULL);
719	ASSERT(atomic_read(&bip->bli_refcount) > 0);
720
721	bip->bli_flags |= XFS_BLI_STALE_INODE;
722	bip->bli_item.li_cb = xfs_buf_iodone;
 
723}
724
725/*
726 * Mark the buffer as being one which contains newly allocated
727 * inodes.  We need to make sure that even if this buffer is
728 * relogged as an 'inode buf' we still recover all of the inode
729 * images in the face of a crash.  This works in coordination with
730 * xfs_buf_item_committed() to ensure that the buffer remains in the
731 * AIL at its original location even after it has been relogged.
732 */
733/* ARGSUSED */
734void
735xfs_trans_inode_alloc_buf(
736	xfs_trans_t	*tp,
737	xfs_buf_t	*bp)
738{
739	xfs_buf_log_item_t	*bip = bp->b_fspriv;
740
741	ASSERT(bp->b_transp == tp);
742	ASSERT(bip != NULL);
743	ASSERT(atomic_read(&bip->bli_refcount) > 0);
744
745	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
746}
747
 
 
 
 
 
 
 
 
 
 
 
 
748
749/*
750 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
751 * dquots. However, unlike in inode buffer recovery, dquot buffers get
752 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
753 * The only thing that makes dquot buffers different from regular
754 * buffers is that we must not replay dquot bufs when recovering
755 * if a _corresponding_ quotaoff has happened. We also have to distinguish
756 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
757 * can be turned off independently.
758 */
759/* ARGSUSED */
760void
761xfs_trans_dquot_buf(
762	xfs_trans_t	*tp,
763	xfs_buf_t	*bp,
764	uint		type)
765{
766	xfs_buf_log_item_t	*bip = bp->b_fspriv;
767
768	ASSERT(bp->b_transp == tp);
769	ASSERT(bip != NULL);
770	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
771	       type == XFS_BLF_PDQUOT_BUF ||
772	       type == XFS_BLF_GDQUOT_BUF);
773	ASSERT(atomic_read(&bip->bli_refcount) > 0);
774
775	bip->bli_format.blf_flags |= type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
776}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 
 12#include "xfs_mount.h"
 13#include "xfs_trans.h"
 
 
 
 
 14#include "xfs_buf_item.h"
 15#include "xfs_trans_priv.h"
 
 16#include "xfs_trace.h"
 17
 18/*
 19 * Check to see if a buffer matching the given parameters is already
 20 * a part of the given transaction.
 21 */
 22STATIC struct xfs_buf *
 23xfs_trans_buf_item_match(
 24	struct xfs_trans	*tp,
 25	struct xfs_buftarg	*target,
 26	struct xfs_buf_map	*map,
 27	int			nmaps)
 28{
 29	struct xfs_log_item	*lip;
 30	struct xfs_buf_log_item	*blip;
 31	int			len = 0;
 32	int			i;
 33
 34	for (i = 0; i < nmaps; i++)
 35		len += map[i].bm_len;
 36
 37	list_for_each_entry(lip, &tp->t_items, li_trans) {
 38		blip = (struct xfs_buf_log_item *)lip;
 39		if (blip->bli_item.li_type == XFS_LI_BUF &&
 40		    blip->bli_buf->b_target == target &&
 41		    XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
 42		    blip->bli_buf->b_length == len) {
 43			ASSERT(blip->bli_buf->b_map_count == nmaps);
 44			return blip->bli_buf;
 45		}
 46	}
 47
 48	return NULL;
 49}
 50
 51/*
 52 * Add the locked buffer to the transaction.
 53 *
 54 * The buffer must be locked, and it cannot be associated with any
 55 * transaction.
 56 *
 57 * If the buffer does not yet have a buf log item associated with it,
 58 * then allocate one for it.  Then add the buf item to the transaction.
 59 */
 60STATIC void
 61_xfs_trans_bjoin(
 62	struct xfs_trans	*tp,
 63	struct xfs_buf		*bp,
 64	int			reset_recur)
 65{
 66	struct xfs_buf_log_item	*bip;
 67
 68	ASSERT(bp->b_transp == NULL);
 69
 70	/*
 71	 * The xfs_buf_log_item pointer is stored in b_log_item.  If
 72	 * it doesn't have one yet, then allocate one and initialize it.
 73	 * The checks to see if one is there are in xfs_buf_item_init().
 74	 */
 75	xfs_buf_item_init(bp, tp->t_mountp);
 76	bip = bp->b_log_item;
 77	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 78	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
 79	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
 80	if (reset_recur)
 81		bip->bli_recur = 0;
 82
 83	/*
 84	 * Take a reference for this transaction on the buf item.
 85	 */
 86	atomic_inc(&bip->bli_refcount);
 87
 88	/*
 89	 * Attach the item to the transaction so we can find it in
 90	 * xfs_trans_get_buf() and friends.
 91	 */
 92	xfs_trans_add_item(tp, &bip->bli_item);
 
 
 
 
 
 93	bp->b_transp = tp;
 94
 95}
 96
 97void
 98xfs_trans_bjoin(
 99	struct xfs_trans	*tp,
100	struct xfs_buf		*bp)
101{
102	_xfs_trans_bjoin(tp, bp, 0);
103	trace_xfs_trans_bjoin(bp->b_log_item);
104}
105
106/*
107 * Get and lock the buffer for the caller if it is not already
108 * locked within the given transaction.  If it is already locked
109 * within the transaction, just increment its lock recursion count
110 * and return a pointer to it.
111 *
112 * If the transaction pointer is NULL, make this just a normal
113 * get_buf() call.
114 */
115struct xfs_buf *
116xfs_trans_get_buf_map(
117	struct xfs_trans	*tp,
118	struct xfs_buftarg	*target,
119	struct xfs_buf_map	*map,
120	int			nmaps,
121	xfs_buf_flags_t		flags)
122{
123	xfs_buf_t		*bp;
124	struct xfs_buf_log_item	*bip;
125
126	if (!tp)
127		return xfs_buf_get_map(target, map, nmaps, flags);
 
 
 
128
129	/*
130	 * If we find the buffer in the cache with this transaction
131	 * pointer in its b_fsprivate2 field, then we know we already
132	 * have it locked.  In this case we just increment the lock
133	 * recursion count and return the buffer to the caller.
134	 */
135	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
136	if (bp != NULL) {
137		ASSERT(xfs_buf_islocked(bp));
138		if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
139			xfs_buf_stale(bp);
140			bp->b_flags |= XBF_DONE;
141		}
142
143		ASSERT(bp->b_transp == tp);
144		bip = bp->b_log_item;
145		ASSERT(bip != NULL);
146		ASSERT(atomic_read(&bip->bli_refcount) > 0);
147		bip->bli_recur++;
148		trace_xfs_trans_get_buf_recur(bip);
149		return bp;
150	}
151
152	bp = xfs_buf_get_map(target, map, nmaps, flags);
153	if (bp == NULL) {
154		return NULL;
155	}
156
157	ASSERT(!bp->b_error);
158
159	_xfs_trans_bjoin(tp, bp, 1);
160	trace_xfs_trans_get_buf(bp->b_log_item);
161	return bp;
162}
163
164/*
165 * Get and lock the superblock buffer of this file system for the
166 * given transaction.
167 *
168 * We don't need to use incore_match() here, because the superblock
169 * buffer is a private buffer which we keep a pointer to in the
170 * mount structure.
171 */
172xfs_buf_t *
173xfs_trans_getsb(
174	xfs_trans_t		*tp,
175	struct xfs_mount	*mp)
176{
177	xfs_buf_t		*bp;
178	struct xfs_buf_log_item	*bip;
179
180	/*
181	 * Default to just trying to lock the superblock buffer
182	 * if tp is NULL.
183	 */
184	if (tp == NULL)
185		return xfs_getsb(mp);
 
186
187	/*
188	 * If the superblock buffer already has this transaction
189	 * pointer in its b_fsprivate2 field, then we know we already
190	 * have it locked.  In this case we just increment the lock
191	 * recursion count and return the buffer to the caller.
192	 */
193	bp = mp->m_sb_bp;
194	if (bp->b_transp == tp) {
195		bip = bp->b_log_item;
196		ASSERT(bip != NULL);
197		ASSERT(atomic_read(&bip->bli_refcount) > 0);
198		bip->bli_recur++;
199		trace_xfs_trans_getsb_recur(bip);
200		return bp;
201	}
202
203	bp = xfs_getsb(mp);
204	if (bp == NULL)
205		return NULL;
206
207	_xfs_trans_bjoin(tp, bp, 1);
208	trace_xfs_trans_getsb(bp->b_log_item);
209	return bp;
210}
211
 
 
 
 
 
 
 
212/*
213 * Get and lock the buffer for the caller if it is not already
214 * locked within the given transaction.  If it has not yet been
215 * read in, read it from disk. If it is already locked
216 * within the transaction and already read in, just increment its
217 * lock recursion count and return a pointer to it.
218 *
219 * If the transaction pointer is NULL, make this just a normal
220 * read_buf() call.
221 */
222int
223xfs_trans_read_buf_map(
224	struct xfs_mount	*mp,
225	struct xfs_trans	*tp,
226	struct xfs_buftarg	*target,
227	struct xfs_buf_map	*map,
228	int			nmaps,
229	xfs_buf_flags_t		flags,
230	struct xfs_buf		**bpp,
231	const struct xfs_buf_ops *ops)
232{
233	struct xfs_buf		*bp = NULL;
234	struct xfs_buf_log_item	*bip;
235	int			error;
236
237	*bpp = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238	/*
239	 * If we find the buffer in the cache with this transaction
240	 * pointer in its b_fsprivate2 field, then we know we already
241	 * have it locked.  If it is already read in we just increment
242	 * the lock recursion count and return the buffer to the caller.
243	 * If the buffer is not yet read in, then we read it in, increment
244	 * the lock recursion count, and return it to the caller.
245	 */
246	if (tp)
247		bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
248	if (bp) {
249		ASSERT(xfs_buf_islocked(bp));
250		ASSERT(bp->b_transp == tp);
251		ASSERT(bp->b_log_item != NULL);
252		ASSERT(!bp->b_error);
253		ASSERT(bp->b_flags & XBF_DONE);
254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255		/*
256		 * We never locked this buf ourselves, so we shouldn't
257		 * brelse it either. Just get out.
258		 */
259		if (XFS_FORCED_SHUTDOWN(mp)) {
260			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
261			return -EIO;
 
262		}
263
264		/*
265		 * Check if the caller is trying to read a buffer that is
266		 * already attached to the transaction yet has no buffer ops
267		 * assigned.  Ops are usually attached when the buffer is
268		 * attached to the transaction, or by the read caller if
269		 * special circumstances.  That didn't happen, which is not
270		 * how this is supposed to go.
271		 *
272		 * If the buffer passes verification we'll let this go, but if
273		 * not we have to shut down.  Let the transaction cleanup code
274		 * release this buffer when it kills the tranaction.
275		 */
276		ASSERT(bp->b_ops != NULL);
277		error = xfs_buf_reverify(bp, ops);
278		if (error) {
279			xfs_buf_ioerror_alert(bp, __func__);
280
281			if (tp->t_flags & XFS_TRANS_DIRTY)
282				xfs_force_shutdown(tp->t_mountp,
283						SHUTDOWN_META_IO_ERROR);
284
285			/* bad CRC means corrupted metadata */
286			if (error == -EFSBADCRC)
287				error = -EFSCORRUPTED;
288			return error;
289		}
290
291		bip = bp->b_log_item;
292		bip->bli_recur++;
293
294		ASSERT(atomic_read(&bip->bli_refcount) > 0);
295		trace_xfs_trans_read_buf_recur(bip);
296		ASSERT(bp->b_ops != NULL || ops == NULL);
297		*bpp = bp;
298		return 0;
299	}
300
301	bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
302	if (!bp) {
303		if (!(flags & XBF_TRYLOCK))
304			return -ENOMEM;
305		return tp ? 0 : -EAGAIN;
306	}
307
308	/*
309	 * If we've had a read error, then the contents of the buffer are
310	 * invalid and should not be used. To ensure that a followup read tries
311	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
312	 * mark the buffer stale. This ensures that anyone who has a current
313	 * reference to the buffer will interpret it's contents correctly and
314	 * future cache lookups will also treat it as an empty, uninitialised
315	 * buffer.
316	 */
317	if (bp->b_error) {
318		error = bp->b_error;
319		if (!XFS_FORCED_SHUTDOWN(mp))
320			xfs_buf_ioerror_alert(bp, __func__);
321		bp->b_flags &= ~XBF_DONE;
322		xfs_buf_stale(bp);
323
324		if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
 
325			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
326		xfs_buf_relse(bp);
327
328		/* bad CRC means corrupted metadata */
329		if (error == -EFSBADCRC)
330			error = -EFSCORRUPTED;
331		return error;
332	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333
334	if (XFS_FORCED_SHUTDOWN(mp)) {
335		xfs_buf_relse(bp);
336		trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
337		return -EIO;
338	}
339
340	if (tp) {
341		_xfs_trans_bjoin(tp, bp, 1);
342		trace_xfs_trans_read_buf(bp->b_log_item);
343	}
344	ASSERT(bp->b_ops != NULL || ops == NULL);
345	*bpp = bp;
346	return 0;
347
 
 
 
 
 
348}
349
350/* Has this buffer been dirtied by anyone? */
351bool
352xfs_trans_buf_is_dirty(
353	struct xfs_buf		*bp)
354{
355	struct xfs_buf_log_item	*bip = bp->b_log_item;
356
357	if (!bip)
358		return false;
359	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
360	return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
361}
362
363/*
364 * Release a buffer previously joined to the transaction. If the buffer is
365 * modified within this transaction, decrement the recursion count but do not
366 * release the buffer even if the count goes to 0. If the buffer is not modified
367 * within the transaction, decrement the recursion count and release the buffer
368 * if the recursion count goes to 0.
 
 
369 *
370 * If the buffer is to be released and it was not already dirty before this
371 * transaction began, then also free the buf_log_item associated with it.
372 *
373 * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
 
374 */
375void
376xfs_trans_brelse(
377	struct xfs_trans	*tp,
378	struct xfs_buf		*bp)
379{
380	struct xfs_buf_log_item	*bip = bp->b_log_item;
381
382	ASSERT(bp->b_transp == tp);
383
384	if (!tp) {
 
 
385		xfs_buf_relse(bp);
386		return;
387	}
388
389	trace_xfs_trans_brelse(bip);
 
390	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
 
 
391	ASSERT(atomic_read(&bip->bli_refcount) > 0);
392
 
 
393	/*
394	 * If the release is for a recursive lookup, then decrement the count
395	 * and return.
396	 */
397	if (bip->bli_recur > 0) {
398		bip->bli_recur--;
399		return;
400	}
401
402	/*
403	 * If the buffer is invalidated or dirty in this transaction, we can't
404	 * release it until we commit.
405	 */
406	if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
407		return;
 
 
 
 
 
 
 
408	if (bip->bli_flags & XFS_BLI_STALE)
409		return;
410
 
 
411	/*
412	 * Unlink the log item from the transaction and clear the hold flag, if
413	 * set. We wouldn't want the next user of the buffer to get confused.
414	 */
415	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
416	xfs_trans_del_item(&bip->bli_item);
417	bip->bli_flags &= ~XFS_BLI_HOLD;
418
419	/* drop the reference to the bli */
420	xfs_buf_item_put(bip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
421
422	bp->b_transp = NULL;
423	xfs_buf_relse(bp);
424}
425
426/*
427 * Mark the buffer as not needing to be unlocked when the buf item's
428 * iop_committing() routine is called.  The buffer must already be locked
429 * and associated with the given transaction.
430 */
431/* ARGSUSED */
432void
433xfs_trans_bhold(
434	xfs_trans_t		*tp,
435	xfs_buf_t		*bp)
436{
437	struct xfs_buf_log_item	*bip = bp->b_log_item;
438
439	ASSERT(bp->b_transp == tp);
440	ASSERT(bip != NULL);
441	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
442	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
443	ASSERT(atomic_read(&bip->bli_refcount) > 0);
444
445	bip->bli_flags |= XFS_BLI_HOLD;
446	trace_xfs_trans_bhold(bip);
447}
448
449/*
450 * Cancel the previous buffer hold request made on this buffer
451 * for this transaction.
452 */
453void
454xfs_trans_bhold_release(
455	xfs_trans_t		*tp,
456	xfs_buf_t		*bp)
457{
458	struct xfs_buf_log_item	*bip = bp->b_log_item;
459
460	ASSERT(bp->b_transp == tp);
461	ASSERT(bip != NULL);
462	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
463	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
464	ASSERT(atomic_read(&bip->bli_refcount) > 0);
465	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
466
467	bip->bli_flags &= ~XFS_BLI_HOLD;
468	trace_xfs_trans_bhold_release(bip);
469}
470
471/*
472 * Mark a buffer dirty in the transaction.
 
 
 
 
 
 
473 */
474void
475xfs_trans_dirty_buf(
476	struct xfs_trans	*tp,
477	struct xfs_buf		*bp)
 
478{
479	struct xfs_buf_log_item	*bip = bp->b_log_item;
480
481	ASSERT(bp->b_transp == tp);
482	ASSERT(bip != NULL);
 
483	ASSERT(bp->b_iodone == NULL ||
484	       bp->b_iodone == xfs_buf_iodone_callbacks);
485
486	/*
487	 * Mark the buffer as needing to be written out eventually,
488	 * and set its iodone function to remove the buffer's buf log
489	 * item from the AIL and free it when the buffer is flushed
490	 * to disk.  See xfs_buf_attach_iodone() for more details
491	 * on li_cb and xfs_buf_iodone_callbacks().
492	 * If we end up aborting this transaction, we trap this buffer
493	 * inside the b_bdstrat callback so that this won't get written to
494	 * disk.
495	 */
496	bp->b_flags |= XBF_DONE;
497
498	ASSERT(atomic_read(&bip->bli_refcount) > 0);
499	bp->b_iodone = xfs_buf_iodone_callbacks;
500	bip->bli_item.li_cb = xfs_buf_iodone;
501
 
 
502	/*
503	 * If we invalidated the buffer within this transaction, then
504	 * cancel the invalidation now that we're dirtying the buffer
505	 * again.  There are no races with the code in xfs_buf_item_unpin(),
506	 * because we have a reference to the buffer this entire time.
507	 */
508	if (bip->bli_flags & XFS_BLI_STALE) {
509		bip->bli_flags &= ~XFS_BLI_STALE;
510		ASSERT(bp->b_flags & XBF_STALE);
511		bp->b_flags &= ~XBF_STALE;
512		bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
513	}
514	bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
515
516	tp->t_flags |= XFS_TRANS_DIRTY;
517	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
518}
519
520/*
521 * This is called to mark bytes first through last inclusive of the given
522 * buffer as needing to be logged when the transaction is committed.
523 * The buffer must already be associated with the given transaction.
524 *
525 * First and last are numbers relative to the beginning of this buffer,
526 * so the first byte in the buffer is numbered 0 regardless of the
527 * value of b_blkno.
528 */
529void
530xfs_trans_log_buf(
531	struct xfs_trans	*tp,
532	struct xfs_buf		*bp,
533	uint			first,
534	uint			last)
535{
536	struct xfs_buf_log_item	*bip = bp->b_log_item;
537
538	ASSERT(first <= last && last < BBTOB(bp->b_length));
539	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
540
541	xfs_trans_dirty_buf(tp, bp);
542
543	trace_xfs_trans_log_buf(bip);
544	xfs_buf_item_log(bip, first, last);
545}
546
547
548/*
549 * Invalidate a buffer that is being used within a transaction.
550 *
551 * Typically this is because the blocks in the buffer are being freed, so we
552 * need to prevent it from being written out when we're done.  Allowing it
553 * to be written again might overwrite data in the free blocks if they are
554 * reallocated to a file.
555 *
556 * We prevent the buffer from being written out by marking it stale.  We can't
557 * get rid of the buf log item at this point because the buffer may still be
558 * pinned by another transaction.  If that is the case, then we'll wait until
559 * the buffer is committed to disk for the last time (we can tell by the ref
560 * count) and free it in xfs_buf_item_unpin().  Until that happens we will
561 * keep the buffer locked so that the buffer and buf log item are not reused.
562 *
563 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
564 * the buf item.  This will be used at recovery time to determine that copies
565 * of the buffer in the log before this should not be replayed.
566 *
567 * We mark the item descriptor and the transaction dirty so that we'll hold
568 * the buffer until after the commit.
569 *
570 * Since we're invalidating the buffer, we also clear the state about which
571 * parts of the buffer have been logged.  We also clear the flag indicating
572 * that this is an inode buffer since the data in the buffer will no longer
573 * be valid.
574 *
575 * We set the stale bit in the buffer as well since we're getting rid of it.
576 */
577void
578xfs_trans_binval(
579	xfs_trans_t		*tp,
580	xfs_buf_t		*bp)
581{
582	struct xfs_buf_log_item	*bip = bp->b_log_item;
583	int			i;
584
585	ASSERT(bp->b_transp == tp);
586	ASSERT(bip != NULL);
587	ASSERT(atomic_read(&bip->bli_refcount) > 0);
588
589	trace_xfs_trans_binval(bip);
590
591	if (bip->bli_flags & XFS_BLI_STALE) {
592		/*
593		 * If the buffer is already invalidated, then
594		 * just return.
595		 */
596		ASSERT(bp->b_flags & XBF_STALE);
597		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
598		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
599		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
600		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
601		ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
602		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
603		return;
604	}
605
606	xfs_buf_stale(bp);
607
608	bip->bli_flags |= XFS_BLI_STALE;
609	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
610	bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
611	bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
612	bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
613	for (i = 0; i < bip->bli_format_count; i++) {
614		memset(bip->bli_formats[i].blf_data_map, 0,
615		       (bip->bli_formats[i].blf_map_size * sizeof(uint)));
616	}
617	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
618	tp->t_flags |= XFS_TRANS_DIRTY;
619}
620
621/*
622 * This call is used to indicate that the buffer contains on-disk inodes which
623 * must be handled specially during recovery.  They require special handling
624 * because only the di_next_unlinked from the inodes in the buffer should be
625 * recovered.  The rest of the data in the buffer is logged via the inodes
626 * themselves.
627 *
628 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
629 * transferred to the buffer's log format structure so that we'll know what to
630 * do at recovery time.
631 */
632void
633xfs_trans_inode_buf(
634	xfs_trans_t		*tp,
635	xfs_buf_t		*bp)
636{
637	struct xfs_buf_log_item	*bip = bp->b_log_item;
638
639	ASSERT(bp->b_transp == tp);
640	ASSERT(bip != NULL);
641	ASSERT(atomic_read(&bip->bli_refcount) > 0);
642
643	bip->bli_flags |= XFS_BLI_INODE_BUF;
644	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
645}
646
647/*
648 * This call is used to indicate that the buffer is going to
649 * be staled and was an inode buffer. This means it gets
650 * special processing during unpin - where any inodes
651 * associated with the buffer should be removed from ail.
652 * There is also special processing during recovery,
653 * any replay of the inodes in the buffer needs to be
654 * prevented as the buffer may have been reused.
655 */
656void
657xfs_trans_stale_inode_buf(
658	xfs_trans_t		*tp,
659	xfs_buf_t		*bp)
660{
661	struct xfs_buf_log_item	*bip = bp->b_log_item;
662
663	ASSERT(bp->b_transp == tp);
664	ASSERT(bip != NULL);
665	ASSERT(atomic_read(&bip->bli_refcount) > 0);
666
667	bip->bli_flags |= XFS_BLI_STALE_INODE;
668	bip->bli_item.li_cb = xfs_buf_iodone;
669	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
670}
671
672/*
673 * Mark the buffer as being one which contains newly allocated
674 * inodes.  We need to make sure that even if this buffer is
675 * relogged as an 'inode buf' we still recover all of the inode
676 * images in the face of a crash.  This works in coordination with
677 * xfs_buf_item_committed() to ensure that the buffer remains in the
678 * AIL at its original location even after it has been relogged.
679 */
680/* ARGSUSED */
681void
682xfs_trans_inode_alloc_buf(
683	xfs_trans_t		*tp,
684	xfs_buf_t		*bp)
685{
686	struct xfs_buf_log_item	*bip = bp->b_log_item;
687
688	ASSERT(bp->b_transp == tp);
689	ASSERT(bip != NULL);
690	ASSERT(atomic_read(&bip->bli_refcount) > 0);
691
692	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
693	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
694}
695
696/*
697 * Mark the buffer as ordered for this transaction. This means that the contents
698 * of the buffer are not recorded in the transaction but it is tracked in the
699 * AIL as though it was. This allows us to record logical changes in
700 * transactions rather than the physical changes we make to the buffer without
701 * changing writeback ordering constraints of metadata buffers.
702 */
703bool
704xfs_trans_ordered_buf(
705	struct xfs_trans	*tp,
706	struct xfs_buf		*bp)
707{
708	struct xfs_buf_log_item	*bip = bp->b_log_item;
709
710	ASSERT(bp->b_transp == tp);
711	ASSERT(bip != NULL);
712	ASSERT(atomic_read(&bip->bli_refcount) > 0);
713
714	if (xfs_buf_item_dirty_format(bip))
715		return false;
716
717	bip->bli_flags |= XFS_BLI_ORDERED;
718	trace_xfs_buf_item_ordered(bip);
719
720	/*
721	 * We don't log a dirty range of an ordered buffer but it still needs
722	 * to be marked dirty and that it has been logged.
723	 */
724	xfs_trans_dirty_buf(tp, bp);
725	return true;
726}
727
728/*
729 * Set the type of the buffer for log recovery so that it can correctly identify
730 * and hence attach the correct buffer ops to the buffer after replay.
731 */
732void
733xfs_trans_buf_set_type(
734	struct xfs_trans	*tp,
735	struct xfs_buf		*bp,
736	enum xfs_blft		type)
737{
738	struct xfs_buf_log_item	*bip = bp->b_log_item;
739
740	if (!tp)
741		return;
742
743	ASSERT(bp->b_transp == tp);
744	ASSERT(bip != NULL);
745	ASSERT(atomic_read(&bip->bli_refcount) > 0);
746
747	xfs_blft_to_flags(&bip->__bli_format, type);
748}
749
750void
751xfs_trans_buf_copy_type(
752	struct xfs_buf		*dst_bp,
753	struct xfs_buf		*src_bp)
754{
755	struct xfs_buf_log_item	*sbip = src_bp->b_log_item;
756	struct xfs_buf_log_item	*dbip = dst_bp->b_log_item;
757	enum xfs_blft		type;
758
759	type = xfs_blft_from_flags(&sbip->__bli_format);
760	xfs_blft_to_flags(&dbip->__bli_format, type);
761}
762
763/*
764 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
765 * dquots. However, unlike in inode buffer recovery, dquot buffers get
766 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
767 * The only thing that makes dquot buffers different from regular
768 * buffers is that we must not replay dquot bufs when recovering
769 * if a _corresponding_ quotaoff has happened. We also have to distinguish
770 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
771 * can be turned off independently.
772 */
773/* ARGSUSED */
774void
775xfs_trans_dquot_buf(
776	xfs_trans_t		*tp,
777	xfs_buf_t		*bp,
778	uint			type)
779{
780	struct xfs_buf_log_item	*bip = bp->b_log_item;
781
 
 
782	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
783	       type == XFS_BLF_PDQUOT_BUF ||
784	       type == XFS_BLF_GDQUOT_BUF);
 
785
786	bip->__bli_format.blf_flags |= type;
787
788	switch (type) {
789	case XFS_BLF_UDQUOT_BUF:
790		type = XFS_BLFT_UDQUOT_BUF;
791		break;
792	case XFS_BLF_PDQUOT_BUF:
793		type = XFS_BLFT_PDQUOT_BUF;
794		break;
795	case XFS_BLF_GDQUOT_BUF:
796		type = XFS_BLFT_GDQUOT_BUF;
797		break;
798	default:
799		type = XFS_BLFT_UNKNOWN_BUF;
800		break;
801	}
802
803	xfs_trans_buf_set_type(tp, bp, type);
804}