Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 20#include "xfs_types.h"
 21#include "xfs_log.h"
 22#include "xfs_trans.h"
 23#include "xfs_sb.h"
 24#include "xfs_ag.h"
 25#include "xfs_mount.h"
 26#include "xfs_bmap_btree.h"
 27#include "xfs_alloc_btree.h"
 28#include "xfs_ialloc_btree.h"
 29#include "xfs_dinode.h"
 30#include "xfs_inode.h"
 
 31#include "xfs_buf_item.h"
 32#include "xfs_trans_priv.h"
 33#include "xfs_error.h"
 34#include "xfs_trace.h"
 35
 36/*
 37 * Check to see if a buffer matching the given parameters is already
 38 * a part of the given transaction.
 39 */
 40STATIC struct xfs_buf *
 41xfs_trans_buf_item_match(
 42	struct xfs_trans	*tp,
 43	struct xfs_buftarg	*target,
 44	xfs_daddr_t		blkno,
 45	int			len)
 46{
 47	struct xfs_log_item_desc *lidp;
 48	struct xfs_buf_log_item	*blip;
 
 
 
 
 
 49
 50	len = BBTOB(len);
 51	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
 52		blip = (struct xfs_buf_log_item *)lidp->lid_item;
 53		if (blip->bli_item.li_type == XFS_LI_BUF &&
 54		    blip->bli_buf->b_target == target &&
 55		    XFS_BUF_ADDR(blip->bli_buf) == blkno &&
 56		    BBTOB(blip->bli_buf->b_length) == len)
 
 57			return blip->bli_buf;
 
 58	}
 59
 60	return NULL;
 61}
 62
 63/*
 64 * Add the locked buffer to the transaction.
 65 *
 66 * The buffer must be locked, and it cannot be associated with any
 67 * transaction.
 68 *
 69 * If the buffer does not yet have a buf log item associated with it,
 70 * then allocate one for it.  Then add the buf item to the transaction.
 71 */
 72STATIC void
 73_xfs_trans_bjoin(
 74	struct xfs_trans	*tp,
 75	struct xfs_buf		*bp,
 76	int			reset_recur)
 77{
 78	struct xfs_buf_log_item	*bip;
 79
 80	ASSERT(bp->b_transp == NULL);
 81
 82	/*
 83	 * The xfs_buf_log_item pointer is stored in b_fsprivate.  If
 84	 * it doesn't have one yet, then allocate one and initialize it.
 85	 * The checks to see if one is there are in xfs_buf_item_init().
 86	 */
 87	xfs_buf_item_init(bp, tp->t_mountp);
 88	bip = bp->b_fspriv;
 89	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 90	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
 91	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
 92	if (reset_recur)
 93		bip->bli_recur = 0;
 94
 95	/*
 96	 * Take a reference for this transaction on the buf item.
 97	 */
 98	atomic_inc(&bip->bli_refcount);
 99
100	/*
101	 * Get a log_item_desc to point at the new item.
102	 */
103	xfs_trans_add_item(tp, &bip->bli_item);
104
105	/*
106	 * Initialize b_fsprivate2 so we can find it with incore_match()
107	 * in xfs_trans_get_buf() and friends above.
108	 */
109	bp->b_transp = tp;
110
111}
112
113void
114xfs_trans_bjoin(
115	struct xfs_trans	*tp,
116	struct xfs_buf		*bp)
117{
118	_xfs_trans_bjoin(tp, bp, 0);
119	trace_xfs_trans_bjoin(bp->b_fspriv);
120}
121
122/*
123 * Get and lock the buffer for the caller if it is not already
124 * locked within the given transaction.  If it is already locked
125 * within the transaction, just increment its lock recursion count
126 * and return a pointer to it.
127 *
128 * If the transaction pointer is NULL, make this just a normal
129 * get_buf() call.
130 */
131xfs_buf_t *
132xfs_trans_get_buf(xfs_trans_t	*tp,
133		  xfs_buftarg_t	*target_dev,
134		  xfs_daddr_t	blkno,
135		  int		len,
136		  uint		flags)
 
137{
138	xfs_buf_t		*bp;
139	xfs_buf_log_item_t	*bip;
140
141	/*
142	 * Default to a normal get_buf() call if the tp is NULL.
143	 */
144	if (tp == NULL)
145		return xfs_buf_get(target_dev, blkno, len, flags);
146
147	/*
148	 * If we find the buffer in the cache with this transaction
149	 * pointer in its b_fsprivate2 field, then we know we already
150	 * have it locked.  In this case we just increment the lock
151	 * recursion count and return the buffer to the caller.
152	 */
153	bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len);
154	if (bp != NULL) {
155		ASSERT(xfs_buf_islocked(bp));
156		if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
157			xfs_buf_stale(bp);
158			XFS_BUF_DONE(bp);
159		}
160
161		ASSERT(bp->b_transp == tp);
162		bip = bp->b_fspriv;
163		ASSERT(bip != NULL);
164		ASSERT(atomic_read(&bip->bli_refcount) > 0);
165		bip->bli_recur++;
166		trace_xfs_trans_get_buf_recur(bip);
167		return (bp);
168	}
169
170	bp = xfs_buf_get(target_dev, blkno, len, flags);
171	if (bp == NULL) {
172		return NULL;
173	}
174
175	ASSERT(!bp->b_error);
176
177	_xfs_trans_bjoin(tp, bp, 1);
178	trace_xfs_trans_get_buf(bp->b_fspriv);
179	return (bp);
180}
181
182/*
183 * Get and lock the superblock buffer of this file system for the
184 * given transaction.
185 *
186 * We don't need to use incore_match() here, because the superblock
187 * buffer is a private buffer which we keep a pointer to in the
188 * mount structure.
189 */
190xfs_buf_t *
191xfs_trans_getsb(xfs_trans_t	*tp,
192		struct xfs_mount *mp,
193		int		flags)
194{
195	xfs_buf_t		*bp;
196	xfs_buf_log_item_t	*bip;
197
198	/*
199	 * Default to just trying to lock the superblock buffer
200	 * if tp is NULL.
201	 */
202	if (tp == NULL) {
203		return (xfs_getsb(mp, flags));
204	}
205
206	/*
207	 * If the superblock buffer already has this transaction
208	 * pointer in its b_fsprivate2 field, then we know we already
209	 * have it locked.  In this case we just increment the lock
210	 * recursion count and return the buffer to the caller.
211	 */
212	bp = mp->m_sb_bp;
213	if (bp->b_transp == tp) {
214		bip = bp->b_fspriv;
215		ASSERT(bip != NULL);
216		ASSERT(atomic_read(&bip->bli_refcount) > 0);
217		bip->bli_recur++;
218		trace_xfs_trans_getsb_recur(bip);
219		return (bp);
220	}
221
222	bp = xfs_getsb(mp, flags);
223	if (bp == NULL)
224		return NULL;
225
226	_xfs_trans_bjoin(tp, bp, 1);
227	trace_xfs_trans_getsb(bp->b_fspriv);
228	return (bp);
229}
230
231#ifdef DEBUG
232xfs_buftarg_t *xfs_error_target;
233int	xfs_do_error;
234int	xfs_req_num;
235int	xfs_error_mod = 33;
236#endif
237
238/*
239 * Get and lock the buffer for the caller if it is not already
240 * locked within the given transaction.  If it has not yet been
241 * read in, read it from disk. If it is already locked
242 * within the transaction and already read in, just increment its
243 * lock recursion count and return a pointer to it.
244 *
245 * If the transaction pointer is NULL, make this just a normal
246 * read_buf() call.
247 */
248int
249xfs_trans_read_buf(
250	xfs_mount_t	*mp,
251	xfs_trans_t	*tp,
252	xfs_buftarg_t	*target,
253	xfs_daddr_t	blkno,
254	int		len,
255	uint		flags,
256	xfs_buf_t	**bpp)
 
257{
258	xfs_buf_t		*bp;
259	xfs_buf_log_item_t	*bip;
260	int			error;
261
262	*bpp = NULL;
263
264	/*
265	 * Default to a normal get_buf() call if the tp is NULL.
266	 */
267	if (tp == NULL) {
268		bp = xfs_buf_read(target, blkno, len, flags);
269		if (!bp)
270			return (flags & XBF_TRYLOCK) ?
271					EAGAIN : XFS_ERROR(ENOMEM);
272
273		if (bp->b_error) {
274			error = bp->b_error;
275			xfs_buf_ioerror_alert(bp, __func__);
276			XFS_BUF_UNDONE(bp);
277			xfs_buf_stale(bp);
278			xfs_buf_relse(bp);
279			return error;
280		}
281#ifdef DEBUG
282		if (xfs_do_error) {
283			if (xfs_error_target == target) {
284				if (((xfs_req_num++) % xfs_error_mod) == 0) {
285					xfs_buf_relse(bp);
286					xfs_debug(mp, "Returning error!");
287					return XFS_ERROR(EIO);
288				}
289			}
290		}
291#endif
292		if (XFS_FORCED_SHUTDOWN(mp))
293			goto shutdown_abort;
294		*bpp = bp;
295		return 0;
296	}
297
298	/*
299	 * If we find the buffer in the cache with this transaction
300	 * pointer in its b_fsprivate2 field, then we know we already
301	 * have it locked.  If it is already read in we just increment
302	 * the lock recursion count and return the buffer to the caller.
303	 * If the buffer is not yet read in, then we read it in, increment
304	 * the lock recursion count, and return it to the caller.
305	 */
306	bp = xfs_trans_buf_item_match(tp, target, blkno, len);
307	if (bp != NULL) {
 
308		ASSERT(xfs_buf_islocked(bp));
309		ASSERT(bp->b_transp == tp);
310		ASSERT(bp->b_fspriv != NULL);
311		ASSERT(!bp->b_error);
312		if (!(XFS_BUF_ISDONE(bp))) {
313			trace_xfs_trans_read_buf_io(bp, _RET_IP_);
314			ASSERT(!XFS_BUF_ISASYNC(bp));
315			XFS_BUF_READ(bp);
316			xfsbdstrat(tp->t_mountp, bp);
317			error = xfs_buf_iowait(bp);
318			if (error) {
319				xfs_buf_ioerror_alert(bp, __func__);
320				xfs_buf_relse(bp);
321				/*
322				 * We can gracefully recover from most read
323				 * errors. Ones we can't are those that happen
324				 * after the transaction's already dirty.
325				 */
326				if (tp->t_flags & XFS_TRANS_DIRTY)
327					xfs_force_shutdown(tp->t_mountp,
328							SHUTDOWN_META_IO_ERROR);
329				return error;
330			}
331		}
332		/*
333		 * We never locked this buf ourselves, so we shouldn't
334		 * brelse it either. Just get out.
335		 */
336		if (XFS_FORCED_SHUTDOWN(mp)) {
337			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
338			*bpp = NULL;
339			return XFS_ERROR(EIO);
340		}
341
342
343		bip = bp->b_fspriv;
344		bip->bli_recur++;
345
346		ASSERT(atomic_read(&bip->bli_refcount) > 0);
347		trace_xfs_trans_read_buf_recur(bip);
348		*bpp = bp;
349		return 0;
350	}
351
352	bp = xfs_buf_read(target, blkno, len, flags);
353	if (bp == NULL) {
354		*bpp = NULL;
355		return (flags & XBF_TRYLOCK) ?
356					0 : XFS_ERROR(ENOMEM);
357	}
 
 
 
 
 
 
 
 
 
 
358	if (bp->b_error) {
359		error = bp->b_error;
 
 
 
360		xfs_buf_stale(bp);
361		XFS_BUF_DONE(bp);
362		xfs_buf_ioerror_alert(bp, __func__);
363		if (tp->t_flags & XFS_TRANS_DIRTY)
364			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
365		xfs_buf_relse(bp);
 
 
 
 
366		return error;
367	}
368#ifdef DEBUG
369	if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) {
370		if (xfs_error_target == target) {
371			if (((xfs_req_num++) % xfs_error_mod) == 0) {
372				xfs_force_shutdown(tp->t_mountp,
373						   SHUTDOWN_META_IO_ERROR);
374				xfs_buf_relse(bp);
375				xfs_debug(mp, "Returning trans error!");
376				return XFS_ERROR(EIO);
377			}
378		}
379	}
380#endif
381	if (XFS_FORCED_SHUTDOWN(mp))
382		goto shutdown_abort;
383
384	_xfs_trans_bjoin(tp, bp, 1);
385	trace_xfs_trans_read_buf(bp->b_fspriv);
 
 
 
386
 
 
 
 
387	*bpp = bp;
388	return 0;
389
390shutdown_abort:
391	trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
392	xfs_buf_relse(bp);
393	*bpp = NULL;
394	return XFS_ERROR(EIO);
395}
396
397
398/*
399 * Release the buffer bp which was previously acquired with one of the
400 * xfs_trans_... buffer allocation routines if the buffer has not
401 * been modified within this transaction.  If the buffer is modified
402 * within this transaction, do decrement the recursion count but do
403 * not release the buffer even if the count goes to 0.  If the buffer is not
404 * modified within the transaction, decrement the recursion count and
405 * release the buffer if the recursion count goes to 0.
406 *
407 * If the buffer is to be released and it was not modified before
408 * this transaction began, then free the buf_log_item associated with it.
409 *
410 * If the transaction pointer is NULL, make this just a normal
411 * brelse() call.
412 */
413void
414xfs_trans_brelse(xfs_trans_t	*tp,
415		 xfs_buf_t	*bp)
416{
417	xfs_buf_log_item_t	*bip;
418
419	/*
420	 * Default to a normal brelse() call if the tp is NULL.
421	 */
422	if (tp == NULL) {
423		ASSERT(bp->b_transp == NULL);
424		xfs_buf_relse(bp);
425		return;
426	}
427
428	ASSERT(bp->b_transp == tp);
429	bip = bp->b_fspriv;
430	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
431	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
432	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
433	ASSERT(atomic_read(&bip->bli_refcount) > 0);
434
435	trace_xfs_trans_brelse(bip);
436
437	/*
438	 * If the release is just for a recursive lock,
439	 * then decrement the count and return.
440	 */
441	if (bip->bli_recur > 0) {
442		bip->bli_recur--;
443		return;
444	}
445
446	/*
447	 * If the buffer is dirty within this transaction, we can't
448	 * release it until we commit.
449	 */
450	if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
451		return;
452
453	/*
454	 * If the buffer has been invalidated, then we can't release
455	 * it until the transaction commits to disk unless it is re-dirtied
456	 * as part of this transaction.  This prevents us from pulling
457	 * the item from the AIL before we should.
458	 */
459	if (bip->bli_flags & XFS_BLI_STALE)
460		return;
461
462	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
463
464	/*
465	 * Free up the log item descriptor tracking the released item.
466	 */
467	xfs_trans_del_item(&bip->bli_item);
468
469	/*
470	 * Clear the hold flag in the buf log item if it is set.
471	 * We wouldn't want the next user of the buffer to
472	 * get confused.
473	 */
474	if (bip->bli_flags & XFS_BLI_HOLD) {
475		bip->bli_flags &= ~XFS_BLI_HOLD;
476	}
477
478	/*
479	 * Drop our reference to the buf log item.
480	 */
481	atomic_dec(&bip->bli_refcount);
482
483	/*
484	 * If the buf item is not tracking data in the log, then
485	 * we must free it before releasing the buffer back to the
486	 * free pool.  Before releasing the buffer to the free pool,
487	 * clear the transaction pointer in b_fsprivate2 to dissolve
488	 * its relation to this transaction.
489	 */
490	if (!xfs_buf_item_dirty(bip)) {
491/***
492		ASSERT(bp->b_pincount == 0);
493***/
494		ASSERT(atomic_read(&bip->bli_refcount) == 0);
495		ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
496		ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
497		xfs_buf_item_relse(bp);
498	}
499
500	bp->b_transp = NULL;
501	xfs_buf_relse(bp);
502}
503
504/*
505 * Mark the buffer as not needing to be unlocked when the buf item's
506 * IOP_UNLOCK() routine is called.  The buffer must already be locked
507 * and associated with the given transaction.
508 */
509/* ARGSUSED */
510void
511xfs_trans_bhold(xfs_trans_t	*tp,
512		xfs_buf_t	*bp)
513{
514	xfs_buf_log_item_t	*bip = bp->b_fspriv;
515
516	ASSERT(bp->b_transp == tp);
517	ASSERT(bip != NULL);
518	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
519	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
520	ASSERT(atomic_read(&bip->bli_refcount) > 0);
521
522	bip->bli_flags |= XFS_BLI_HOLD;
523	trace_xfs_trans_bhold(bip);
524}
525
526/*
527 * Cancel the previous buffer hold request made on this buffer
528 * for this transaction.
529 */
530void
531xfs_trans_bhold_release(xfs_trans_t	*tp,
532			xfs_buf_t	*bp)
533{
534	xfs_buf_log_item_t	*bip = bp->b_fspriv;
535
536	ASSERT(bp->b_transp == tp);
537	ASSERT(bip != NULL);
538	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
539	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
540	ASSERT(atomic_read(&bip->bli_refcount) > 0);
541	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
542
543	bip->bli_flags &= ~XFS_BLI_HOLD;
544	trace_xfs_trans_bhold_release(bip);
545}
546
547/*
548 * This is called to mark bytes first through last inclusive of the given
549 * buffer as needing to be logged when the transaction is committed.
550 * The buffer must already be associated with the given transaction.
551 *
552 * First and last are numbers relative to the beginning of this buffer,
553 * so the first byte in the buffer is numbered 0 regardless of the
554 * value of b_blkno.
555 */
556void
557xfs_trans_log_buf(xfs_trans_t	*tp,
558		  xfs_buf_t	*bp,
559		  uint		first,
560		  uint		last)
561{
562	xfs_buf_log_item_t	*bip = bp->b_fspriv;
563
564	ASSERT(bp->b_transp == tp);
565	ASSERT(bip != NULL);
566	ASSERT(first <= last && last < BBTOB(bp->b_length));
567	ASSERT(bp->b_iodone == NULL ||
568	       bp->b_iodone == xfs_buf_iodone_callbacks);
569
570	/*
571	 * Mark the buffer as needing to be written out eventually,
572	 * and set its iodone function to remove the buffer's buf log
573	 * item from the AIL and free it when the buffer is flushed
574	 * to disk.  See xfs_buf_attach_iodone() for more details
575	 * on li_cb and xfs_buf_iodone_callbacks().
576	 * If we end up aborting this transaction, we trap this buffer
577	 * inside the b_bdstrat callback so that this won't get written to
578	 * disk.
579	 */
580	XFS_BUF_DONE(bp);
581
582	ASSERT(atomic_read(&bip->bli_refcount) > 0);
583	bp->b_iodone = xfs_buf_iodone_callbacks;
584	bip->bli_item.li_cb = xfs_buf_iodone;
585
586	trace_xfs_trans_log_buf(bip);
587
588	/*
589	 * If we invalidated the buffer within this transaction, then
590	 * cancel the invalidation now that we're dirtying the buffer
591	 * again.  There are no races with the code in xfs_buf_item_unpin(),
592	 * because we have a reference to the buffer this entire time.
593	 */
594	if (bip->bli_flags & XFS_BLI_STALE) {
595		bip->bli_flags &= ~XFS_BLI_STALE;
596		ASSERT(XFS_BUF_ISSTALE(bp));
597		XFS_BUF_UNSTALE(bp);
598		bip->bli_format.blf_flags &= ~XFS_BLF_CANCEL;
599	}
600
601	tp->t_flags |= XFS_TRANS_DIRTY;
602	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
603	bip->bli_flags |= XFS_BLI_LOGGED;
604	xfs_buf_item_log(bip, first, last);
 
 
 
 
 
 
605}
606
607
608/*
609 * Invalidate a buffer that is being used within a transaction.
610 *
611 * Typically this is because the blocks in the buffer are being freed, so we
612 * need to prevent it from being written out when we're done.  Allowing it
613 * to be written again might overwrite data in the free blocks if they are
614 * reallocated to a file.
615 *
616 * We prevent the buffer from being written out by marking it stale.  We can't
617 * get rid of the buf log item at this point because the buffer may still be
618 * pinned by another transaction.  If that is the case, then we'll wait until
619 * the buffer is committed to disk for the last time (we can tell by the ref
620 * count) and free it in xfs_buf_item_unpin().  Until that happens we will
621 * keep the buffer locked so that the buffer and buf log item are not reused.
622 *
623 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
624 * the buf item.  This will be used at recovery time to determine that copies
625 * of the buffer in the log before this should not be replayed.
626 *
627 * We mark the item descriptor and the transaction dirty so that we'll hold
628 * the buffer until after the commit.
629 *
630 * Since we're invalidating the buffer, we also clear the state about which
631 * parts of the buffer have been logged.  We also clear the flag indicating
632 * that this is an inode buffer since the data in the buffer will no longer
633 * be valid.
634 *
635 * We set the stale bit in the buffer as well since we're getting rid of it.
636 */
637void
638xfs_trans_binval(
639	xfs_trans_t	*tp,
640	xfs_buf_t	*bp)
641{
642	xfs_buf_log_item_t	*bip = bp->b_fspriv;
 
643
644	ASSERT(bp->b_transp == tp);
645	ASSERT(bip != NULL);
646	ASSERT(atomic_read(&bip->bli_refcount) > 0);
647
648	trace_xfs_trans_binval(bip);
649
650	if (bip->bli_flags & XFS_BLI_STALE) {
651		/*
652		 * If the buffer is already invalidated, then
653		 * just return.
654		 */
655		ASSERT(XFS_BUF_ISSTALE(bp));
656		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
657		ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_INODE_BUF));
658		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
 
659		ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
660		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
661		return;
662	}
663
664	xfs_buf_stale(bp);
665
666	bip->bli_flags |= XFS_BLI_STALE;
667	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
668	bip->bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
669	bip->bli_format.blf_flags |= XFS_BLF_CANCEL;
670	memset((char *)(bip->bli_format.blf_data_map), 0,
671	      (bip->bli_format.blf_map_size * sizeof(uint)));
 
 
 
672	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
673	tp->t_flags |= XFS_TRANS_DIRTY;
674}
675
676/*
677 * This call is used to indicate that the buffer contains on-disk inodes which
678 * must be handled specially during recovery.  They require special handling
679 * because only the di_next_unlinked from the inodes in the buffer should be
680 * recovered.  The rest of the data in the buffer is logged via the inodes
681 * themselves.
682 *
683 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
684 * transferred to the buffer's log format structure so that we'll know what to
685 * do at recovery time.
686 */
687void
688xfs_trans_inode_buf(
689	xfs_trans_t	*tp,
690	xfs_buf_t	*bp)
691{
692	xfs_buf_log_item_t	*bip = bp->b_fspriv;
693
694	ASSERT(bp->b_transp == tp);
695	ASSERT(bip != NULL);
696	ASSERT(atomic_read(&bip->bli_refcount) > 0);
697
698	bip->bli_flags |= XFS_BLI_INODE_BUF;
 
699}
700
701/*
702 * This call is used to indicate that the buffer is going to
703 * be staled and was an inode buffer. This means it gets
704 * special processing during unpin - where any inodes 
705 * associated with the buffer should be removed from ail.
706 * There is also special processing during recovery,
707 * any replay of the inodes in the buffer needs to be
708 * prevented as the buffer may have been reused.
709 */
710void
711xfs_trans_stale_inode_buf(
712	xfs_trans_t	*tp,
713	xfs_buf_t	*bp)
714{
715	xfs_buf_log_item_t	*bip = bp->b_fspriv;
716
717	ASSERT(bp->b_transp == tp);
718	ASSERT(bip != NULL);
719	ASSERT(atomic_read(&bip->bli_refcount) > 0);
720
721	bip->bli_flags |= XFS_BLI_STALE_INODE;
722	bip->bli_item.li_cb = xfs_buf_iodone;
 
723}
724
725/*
726 * Mark the buffer as being one which contains newly allocated
727 * inodes.  We need to make sure that even if this buffer is
728 * relogged as an 'inode buf' we still recover all of the inode
729 * images in the face of a crash.  This works in coordination with
730 * xfs_buf_item_committed() to ensure that the buffer remains in the
731 * AIL at its original location even after it has been relogged.
732 */
733/* ARGSUSED */
734void
735xfs_trans_inode_alloc_buf(
736	xfs_trans_t	*tp,
737	xfs_buf_t	*bp)
738{
739	xfs_buf_log_item_t	*bip = bp->b_fspriv;
740
741	ASSERT(bp->b_transp == tp);
742	ASSERT(bip != NULL);
743	ASSERT(atomic_read(&bip->bli_refcount) > 0);
744
745	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
 
746}
747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
748
749/*
750 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
751 * dquots. However, unlike in inode buffer recovery, dquot buffers get
752 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
753 * The only thing that makes dquot buffers different from regular
754 * buffers is that we must not replay dquot bufs when recovering
755 * if a _corresponding_ quotaoff has happened. We also have to distinguish
756 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
757 * can be turned off independently.
758 */
759/* ARGSUSED */
760void
761xfs_trans_dquot_buf(
762	xfs_trans_t	*tp,
763	xfs_buf_t	*bp,
764	uint		type)
765{
766	xfs_buf_log_item_t	*bip = bp->b_fspriv;
767
768	ASSERT(bp->b_transp == tp);
769	ASSERT(bip != NULL);
770	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
771	       type == XFS_BLF_PDQUOT_BUF ||
772	       type == XFS_BLF_GDQUOT_BUF);
773	ASSERT(atomic_read(&bip->bli_refcount) > 0);
774
775	bip->bli_format.blf_flags |= type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
776}
v4.10.11
  1/*
  2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 20#include "xfs_shared.h"
 21#include "xfs_format.h"
 22#include "xfs_log_format.h"
 23#include "xfs_trans_resv.h"
 
 24#include "xfs_mount.h"
 
 
 
 
 25#include "xfs_inode.h"
 26#include "xfs_trans.h"
 27#include "xfs_buf_item.h"
 28#include "xfs_trans_priv.h"
 29#include "xfs_error.h"
 30#include "xfs_trace.h"
 31
 32/*
 33 * Check to see if a buffer matching the given parameters is already
 34 * a part of the given transaction.
 35 */
 36STATIC struct xfs_buf *
 37xfs_trans_buf_item_match(
 38	struct xfs_trans	*tp,
 39	struct xfs_buftarg	*target,
 40	struct xfs_buf_map	*map,
 41	int			nmaps)
 42{
 43	struct xfs_log_item_desc *lidp;
 44	struct xfs_buf_log_item	*blip;
 45	int			len = 0;
 46	int			i;
 47
 48	for (i = 0; i < nmaps; i++)
 49		len += map[i].bm_len;
 50
 
 51	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
 52		blip = (struct xfs_buf_log_item *)lidp->lid_item;
 53		if (blip->bli_item.li_type == XFS_LI_BUF &&
 54		    blip->bli_buf->b_target == target &&
 55		    XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
 56		    blip->bli_buf->b_length == len) {
 57			ASSERT(blip->bli_buf->b_map_count == nmaps);
 58			return blip->bli_buf;
 59		}
 60	}
 61
 62	return NULL;
 63}
 64
 65/*
 66 * Add the locked buffer to the transaction.
 67 *
 68 * The buffer must be locked, and it cannot be associated with any
 69 * transaction.
 70 *
 71 * If the buffer does not yet have a buf log item associated with it,
 72 * then allocate one for it.  Then add the buf item to the transaction.
 73 */
 74STATIC void
 75_xfs_trans_bjoin(
 76	struct xfs_trans	*tp,
 77	struct xfs_buf		*bp,
 78	int			reset_recur)
 79{
 80	struct xfs_buf_log_item	*bip;
 81
 82	ASSERT(bp->b_transp == NULL);
 83
 84	/*
 85	 * The xfs_buf_log_item pointer is stored in b_fsprivate.  If
 86	 * it doesn't have one yet, then allocate one and initialize it.
 87	 * The checks to see if one is there are in xfs_buf_item_init().
 88	 */
 89	xfs_buf_item_init(bp, tp->t_mountp);
 90	bip = bp->b_fspriv;
 91	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 92	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
 93	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
 94	if (reset_recur)
 95		bip->bli_recur = 0;
 96
 97	/*
 98	 * Take a reference for this transaction on the buf item.
 99	 */
100	atomic_inc(&bip->bli_refcount);
101
102	/*
103	 * Get a log_item_desc to point at the new item.
104	 */
105	xfs_trans_add_item(tp, &bip->bli_item);
106
107	/*
108	 * Initialize b_fsprivate2 so we can find it with incore_match()
109	 * in xfs_trans_get_buf() and friends above.
110	 */
111	bp->b_transp = tp;
112
113}
114
115void
116xfs_trans_bjoin(
117	struct xfs_trans	*tp,
118	struct xfs_buf		*bp)
119{
120	_xfs_trans_bjoin(tp, bp, 0);
121	trace_xfs_trans_bjoin(bp->b_fspriv);
122}
123
124/*
125 * Get and lock the buffer for the caller if it is not already
126 * locked within the given transaction.  If it is already locked
127 * within the transaction, just increment its lock recursion count
128 * and return a pointer to it.
129 *
130 * If the transaction pointer is NULL, make this just a normal
131 * get_buf() call.
132 */
133struct xfs_buf *
134xfs_trans_get_buf_map(
135	struct xfs_trans	*tp,
136	struct xfs_buftarg	*target,
137	struct xfs_buf_map	*map,
138	int			nmaps,
139	xfs_buf_flags_t		flags)
140{
141	xfs_buf_t		*bp;
142	xfs_buf_log_item_t	*bip;
143
144	if (!tp)
145		return xfs_buf_get_map(target, map, nmaps, flags);
 
 
 
146
147	/*
148	 * If we find the buffer in the cache with this transaction
149	 * pointer in its b_fsprivate2 field, then we know we already
150	 * have it locked.  In this case we just increment the lock
151	 * recursion count and return the buffer to the caller.
152	 */
153	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
154	if (bp != NULL) {
155		ASSERT(xfs_buf_islocked(bp));
156		if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
157			xfs_buf_stale(bp);
158			bp->b_flags |= XBF_DONE;
159		}
160
161		ASSERT(bp->b_transp == tp);
162		bip = bp->b_fspriv;
163		ASSERT(bip != NULL);
164		ASSERT(atomic_read(&bip->bli_refcount) > 0);
165		bip->bli_recur++;
166		trace_xfs_trans_get_buf_recur(bip);
167		return bp;
168	}
169
170	bp = xfs_buf_get_map(target, map, nmaps, flags);
171	if (bp == NULL) {
172		return NULL;
173	}
174
175	ASSERT(!bp->b_error);
176
177	_xfs_trans_bjoin(tp, bp, 1);
178	trace_xfs_trans_get_buf(bp->b_fspriv);
179	return bp;
180}
181
182/*
183 * Get and lock the superblock buffer of this file system for the
184 * given transaction.
185 *
186 * We don't need to use incore_match() here, because the superblock
187 * buffer is a private buffer which we keep a pointer to in the
188 * mount structure.
189 */
190xfs_buf_t *
191xfs_trans_getsb(xfs_trans_t	*tp,
192		struct xfs_mount *mp,
193		int		flags)
194{
195	xfs_buf_t		*bp;
196	xfs_buf_log_item_t	*bip;
197
198	/*
199	 * Default to just trying to lock the superblock buffer
200	 * if tp is NULL.
201	 */
202	if (tp == NULL)
203		return xfs_getsb(mp, flags);
 
204
205	/*
206	 * If the superblock buffer already has this transaction
207	 * pointer in its b_fsprivate2 field, then we know we already
208	 * have it locked.  In this case we just increment the lock
209	 * recursion count and return the buffer to the caller.
210	 */
211	bp = mp->m_sb_bp;
212	if (bp->b_transp == tp) {
213		bip = bp->b_fspriv;
214		ASSERT(bip != NULL);
215		ASSERT(atomic_read(&bip->bli_refcount) > 0);
216		bip->bli_recur++;
217		trace_xfs_trans_getsb_recur(bip);
218		return bp;
219	}
220
221	bp = xfs_getsb(mp, flags);
222	if (bp == NULL)
223		return NULL;
224
225	_xfs_trans_bjoin(tp, bp, 1);
226	trace_xfs_trans_getsb(bp->b_fspriv);
227	return bp;
228}
229
 
 
 
 
 
 
 
230/*
231 * Get and lock the buffer for the caller if it is not already
232 * locked within the given transaction.  If it has not yet been
233 * read in, read it from disk. If it is already locked
234 * within the transaction and already read in, just increment its
235 * lock recursion count and return a pointer to it.
236 *
237 * If the transaction pointer is NULL, make this just a normal
238 * read_buf() call.
239 */
240int
241xfs_trans_read_buf_map(
242	struct xfs_mount	*mp,
243	struct xfs_trans	*tp,
244	struct xfs_buftarg	*target,
245	struct xfs_buf_map	*map,
246	int			nmaps,
247	xfs_buf_flags_t		flags,
248	struct xfs_buf		**bpp,
249	const struct xfs_buf_ops *ops)
250{
251	struct xfs_buf		*bp = NULL;
252	struct xfs_buf_log_item	*bip;
253	int			error;
254
255	*bpp = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
256	/*
257	 * If we find the buffer in the cache with this transaction
258	 * pointer in its b_fsprivate2 field, then we know we already
259	 * have it locked.  If it is already read in we just increment
260	 * the lock recursion count and return the buffer to the caller.
261	 * If the buffer is not yet read in, then we read it in, increment
262	 * the lock recursion count, and return it to the caller.
263	 */
264	if (tp)
265		bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
266	if (bp) {
267		ASSERT(xfs_buf_islocked(bp));
268		ASSERT(bp->b_transp == tp);
269		ASSERT(bp->b_fspriv != NULL);
270		ASSERT(!bp->b_error);
271		ASSERT(bp->b_flags & XBF_DONE);
272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
273		/*
274		 * We never locked this buf ourselves, so we shouldn't
275		 * brelse it either. Just get out.
276		 */
277		if (XFS_FORCED_SHUTDOWN(mp)) {
278			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
279			return -EIO;
 
280		}
281
 
282		bip = bp->b_fspriv;
283		bip->bli_recur++;
284
285		ASSERT(atomic_read(&bip->bli_refcount) > 0);
286		trace_xfs_trans_read_buf_recur(bip);
287		*bpp = bp;
288		return 0;
289	}
290
291	bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
292	if (!bp) {
293		if (!(flags & XBF_TRYLOCK))
294			return -ENOMEM;
295		return tp ? 0 : -EAGAIN;
296	}
297
298	/*
299	 * If we've had a read error, then the contents of the buffer are
300	 * invalid and should not be used. To ensure that a followup read tries
301	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
302	 * mark the buffer stale. This ensures that anyone who has a current
303	 * reference to the buffer will interpret it's contents correctly and
304	 * future cache lookups will also treat it as an empty, uninitialised
305	 * buffer.
306	 */
307	if (bp->b_error) {
308		error = bp->b_error;
309		if (!XFS_FORCED_SHUTDOWN(mp))
310			xfs_buf_ioerror_alert(bp, __func__);
311		bp->b_flags &= ~XBF_DONE;
312		xfs_buf_stale(bp);
313
314		if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
 
315			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
316		xfs_buf_relse(bp);
317
318		/* bad CRC means corrupted metadata */
319		if (error == -EFSBADCRC)
320			error = -EFSCORRUPTED;
321		return error;
322	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323
324	if (XFS_FORCED_SHUTDOWN(mp)) {
325		xfs_buf_relse(bp);
326		trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
327		return -EIO;
328	}
329
330	if (tp) {
331		_xfs_trans_bjoin(tp, bp, 1);
332		trace_xfs_trans_read_buf(bp->b_fspriv);
333	}
334	*bpp = bp;
335	return 0;
336
 
 
 
 
 
337}
338
 
339/*
340 * Release the buffer bp which was previously acquired with one of the
341 * xfs_trans_... buffer allocation routines if the buffer has not
342 * been modified within this transaction.  If the buffer is modified
343 * within this transaction, do decrement the recursion count but do
344 * not release the buffer even if the count goes to 0.  If the buffer is not
345 * modified within the transaction, decrement the recursion count and
346 * release the buffer if the recursion count goes to 0.
347 *
348 * If the buffer is to be released and it was not modified before
349 * this transaction began, then free the buf_log_item associated with it.
350 *
351 * If the transaction pointer is NULL, make this just a normal
352 * brelse() call.
353 */
354void
355xfs_trans_brelse(xfs_trans_t	*tp,
356		 xfs_buf_t	*bp)
357{
358	xfs_buf_log_item_t	*bip;
359
360	/*
361	 * Default to a normal brelse() call if the tp is NULL.
362	 */
363	if (tp == NULL) {
364		ASSERT(bp->b_transp == NULL);
365		xfs_buf_relse(bp);
366		return;
367	}
368
369	ASSERT(bp->b_transp == tp);
370	bip = bp->b_fspriv;
371	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
372	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
373	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
374	ASSERT(atomic_read(&bip->bli_refcount) > 0);
375
376	trace_xfs_trans_brelse(bip);
377
378	/*
379	 * If the release is just for a recursive lock,
380	 * then decrement the count and return.
381	 */
382	if (bip->bli_recur > 0) {
383		bip->bli_recur--;
384		return;
385	}
386
387	/*
388	 * If the buffer is dirty within this transaction, we can't
389	 * release it until we commit.
390	 */
391	if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
392		return;
393
394	/*
395	 * If the buffer has been invalidated, then we can't release
396	 * it until the transaction commits to disk unless it is re-dirtied
397	 * as part of this transaction.  This prevents us from pulling
398	 * the item from the AIL before we should.
399	 */
400	if (bip->bli_flags & XFS_BLI_STALE)
401		return;
402
403	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
404
405	/*
406	 * Free up the log item descriptor tracking the released item.
407	 */
408	xfs_trans_del_item(&bip->bli_item);
409
410	/*
411	 * Clear the hold flag in the buf log item if it is set.
412	 * We wouldn't want the next user of the buffer to
413	 * get confused.
414	 */
415	if (bip->bli_flags & XFS_BLI_HOLD) {
416		bip->bli_flags &= ~XFS_BLI_HOLD;
417	}
418
419	/*
420	 * Drop our reference to the buf log item.
421	 */
422	atomic_dec(&bip->bli_refcount);
423
424	/*
425	 * If the buf item is not tracking data in the log, then
426	 * we must free it before releasing the buffer back to the
427	 * free pool.  Before releasing the buffer to the free pool,
428	 * clear the transaction pointer in b_fsprivate2 to dissolve
429	 * its relation to this transaction.
430	 */
431	if (!xfs_buf_item_dirty(bip)) {
432/***
433		ASSERT(bp->b_pincount == 0);
434***/
435		ASSERT(atomic_read(&bip->bli_refcount) == 0);
436		ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
437		ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
438		xfs_buf_item_relse(bp);
439	}
440
441	bp->b_transp = NULL;
442	xfs_buf_relse(bp);
443}
444
445/*
446 * Mark the buffer as not needing to be unlocked when the buf item's
447 * iop_unlock() routine is called.  The buffer must already be locked
448 * and associated with the given transaction.
449 */
450/* ARGSUSED */
451void
452xfs_trans_bhold(xfs_trans_t	*tp,
453		xfs_buf_t	*bp)
454{
455	xfs_buf_log_item_t	*bip = bp->b_fspriv;
456
457	ASSERT(bp->b_transp == tp);
458	ASSERT(bip != NULL);
459	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
460	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
461	ASSERT(atomic_read(&bip->bli_refcount) > 0);
462
463	bip->bli_flags |= XFS_BLI_HOLD;
464	trace_xfs_trans_bhold(bip);
465}
466
467/*
468 * Cancel the previous buffer hold request made on this buffer
469 * for this transaction.
470 */
471void
472xfs_trans_bhold_release(xfs_trans_t	*tp,
473			xfs_buf_t	*bp)
474{
475	xfs_buf_log_item_t	*bip = bp->b_fspriv;
476
477	ASSERT(bp->b_transp == tp);
478	ASSERT(bip != NULL);
479	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
480	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
481	ASSERT(atomic_read(&bip->bli_refcount) > 0);
482	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
483
484	bip->bli_flags &= ~XFS_BLI_HOLD;
485	trace_xfs_trans_bhold_release(bip);
486}
487
488/*
489 * This is called to mark bytes first through last inclusive of the given
490 * buffer as needing to be logged when the transaction is committed.
491 * The buffer must already be associated with the given transaction.
492 *
493 * First and last are numbers relative to the beginning of this buffer,
494 * so the first byte in the buffer is numbered 0 regardless of the
495 * value of b_blkno.
496 */
497void
498xfs_trans_log_buf(xfs_trans_t	*tp,
499		  xfs_buf_t	*bp,
500		  uint		first,
501		  uint		last)
502{
503	xfs_buf_log_item_t	*bip = bp->b_fspriv;
504
505	ASSERT(bp->b_transp == tp);
506	ASSERT(bip != NULL);
507	ASSERT(first <= last && last < BBTOB(bp->b_length));
508	ASSERT(bp->b_iodone == NULL ||
509	       bp->b_iodone == xfs_buf_iodone_callbacks);
510
511	/*
512	 * Mark the buffer as needing to be written out eventually,
513	 * and set its iodone function to remove the buffer's buf log
514	 * item from the AIL and free it when the buffer is flushed
515	 * to disk.  See xfs_buf_attach_iodone() for more details
516	 * on li_cb and xfs_buf_iodone_callbacks().
517	 * If we end up aborting this transaction, we trap this buffer
518	 * inside the b_bdstrat callback so that this won't get written to
519	 * disk.
520	 */
521	bp->b_flags |= XBF_DONE;
522
523	ASSERT(atomic_read(&bip->bli_refcount) > 0);
524	bp->b_iodone = xfs_buf_iodone_callbacks;
525	bip->bli_item.li_cb = xfs_buf_iodone;
526
527	trace_xfs_trans_log_buf(bip);
528
529	/*
530	 * If we invalidated the buffer within this transaction, then
531	 * cancel the invalidation now that we're dirtying the buffer
532	 * again.  There are no races with the code in xfs_buf_item_unpin(),
533	 * because we have a reference to the buffer this entire time.
534	 */
535	if (bip->bli_flags & XFS_BLI_STALE) {
536		bip->bli_flags &= ~XFS_BLI_STALE;
537		ASSERT(bp->b_flags & XBF_STALE);
538		bp->b_flags &= ~XBF_STALE;
539		bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
540	}
541
542	tp->t_flags |= XFS_TRANS_DIRTY;
543	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
544
545	/*
546	 * If we have an ordered buffer we are not logging any dirty range but
547	 * it still needs to be marked dirty and that it has been logged.
548	 */
549	bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
550	if (!(bip->bli_flags & XFS_BLI_ORDERED))
551		xfs_buf_item_log(bip, first, last);
552}
553
554
555/*
556 * Invalidate a buffer that is being used within a transaction.
557 *
558 * Typically this is because the blocks in the buffer are being freed, so we
559 * need to prevent it from being written out when we're done.  Allowing it
560 * to be written again might overwrite data in the free blocks if they are
561 * reallocated to a file.
562 *
563 * We prevent the buffer from being written out by marking it stale.  We can't
564 * get rid of the buf log item at this point because the buffer may still be
565 * pinned by another transaction.  If that is the case, then we'll wait until
566 * the buffer is committed to disk for the last time (we can tell by the ref
567 * count) and free it in xfs_buf_item_unpin().  Until that happens we will
568 * keep the buffer locked so that the buffer and buf log item are not reused.
569 *
570 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
571 * the buf item.  This will be used at recovery time to determine that copies
572 * of the buffer in the log before this should not be replayed.
573 *
574 * We mark the item descriptor and the transaction dirty so that we'll hold
575 * the buffer until after the commit.
576 *
577 * Since we're invalidating the buffer, we also clear the state about which
578 * parts of the buffer have been logged.  We also clear the flag indicating
579 * that this is an inode buffer since the data in the buffer will no longer
580 * be valid.
581 *
582 * We set the stale bit in the buffer as well since we're getting rid of it.
583 */
584void
585xfs_trans_binval(
586	xfs_trans_t	*tp,
587	xfs_buf_t	*bp)
588{
589	xfs_buf_log_item_t	*bip = bp->b_fspriv;
590	int			i;
591
592	ASSERT(bp->b_transp == tp);
593	ASSERT(bip != NULL);
594	ASSERT(atomic_read(&bip->bli_refcount) > 0);
595
596	trace_xfs_trans_binval(bip);
597
598	if (bip->bli_flags & XFS_BLI_STALE) {
599		/*
600		 * If the buffer is already invalidated, then
601		 * just return.
602		 */
603		ASSERT(bp->b_flags & XBF_STALE);
604		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
605		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
606		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
607		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
608		ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
609		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
610		return;
611	}
612
613	xfs_buf_stale(bp);
614
615	bip->bli_flags |= XFS_BLI_STALE;
616	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
617	bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
618	bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
619	bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
620	for (i = 0; i < bip->bli_format_count; i++) {
621		memset(bip->bli_formats[i].blf_data_map, 0,
622		       (bip->bli_formats[i].blf_map_size * sizeof(uint)));
623	}
624	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
625	tp->t_flags |= XFS_TRANS_DIRTY;
626}
627
628/*
629 * This call is used to indicate that the buffer contains on-disk inodes which
630 * must be handled specially during recovery.  They require special handling
631 * because only the di_next_unlinked from the inodes in the buffer should be
632 * recovered.  The rest of the data in the buffer is logged via the inodes
633 * themselves.
634 *
635 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
636 * transferred to the buffer's log format structure so that we'll know what to
637 * do at recovery time.
638 */
639void
640xfs_trans_inode_buf(
641	xfs_trans_t	*tp,
642	xfs_buf_t	*bp)
643{
644	xfs_buf_log_item_t	*bip = bp->b_fspriv;
645
646	ASSERT(bp->b_transp == tp);
647	ASSERT(bip != NULL);
648	ASSERT(atomic_read(&bip->bli_refcount) > 0);
649
650	bip->bli_flags |= XFS_BLI_INODE_BUF;
651	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
652}
653
654/*
655 * This call is used to indicate that the buffer is going to
656 * be staled and was an inode buffer. This means it gets
657 * special processing during unpin - where any inodes
658 * associated with the buffer should be removed from ail.
659 * There is also special processing during recovery,
660 * any replay of the inodes in the buffer needs to be
661 * prevented as the buffer may have been reused.
662 */
663void
664xfs_trans_stale_inode_buf(
665	xfs_trans_t	*tp,
666	xfs_buf_t	*bp)
667{
668	xfs_buf_log_item_t	*bip = bp->b_fspriv;
669
670	ASSERT(bp->b_transp == tp);
671	ASSERT(bip != NULL);
672	ASSERT(atomic_read(&bip->bli_refcount) > 0);
673
674	bip->bli_flags |= XFS_BLI_STALE_INODE;
675	bip->bli_item.li_cb = xfs_buf_iodone;
676	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
677}
678
679/*
680 * Mark the buffer as being one which contains newly allocated
681 * inodes.  We need to make sure that even if this buffer is
682 * relogged as an 'inode buf' we still recover all of the inode
683 * images in the face of a crash.  This works in coordination with
684 * xfs_buf_item_committed() to ensure that the buffer remains in the
685 * AIL at its original location even after it has been relogged.
686 */
687/* ARGSUSED */
688void
689xfs_trans_inode_alloc_buf(
690	xfs_trans_t	*tp,
691	xfs_buf_t	*bp)
692{
693	xfs_buf_log_item_t	*bip = bp->b_fspriv;
694
695	ASSERT(bp->b_transp == tp);
696	ASSERT(bip != NULL);
697	ASSERT(atomic_read(&bip->bli_refcount) > 0);
698
699	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
700	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
701}
702
703/*
704 * Mark the buffer as ordered for this transaction. This means
705 * that the contents of the buffer are not recorded in the transaction
706 * but it is tracked in the AIL as though it was. This allows us
707 * to record logical changes in transactions rather than the physical
708 * changes we make to the buffer without changing writeback ordering
709 * constraints of metadata buffers.
710 */
711void
712xfs_trans_ordered_buf(
713	struct xfs_trans	*tp,
714	struct xfs_buf		*bp)
715{
716	struct xfs_buf_log_item	*bip = bp->b_fspriv;
717
718	ASSERT(bp->b_transp == tp);
719	ASSERT(bip != NULL);
720	ASSERT(atomic_read(&bip->bli_refcount) > 0);
721
722	bip->bli_flags |= XFS_BLI_ORDERED;
723	trace_xfs_buf_item_ordered(bip);
724}
725
726/*
727 * Set the type of the buffer for log recovery so that it can correctly identify
728 * and hence attach the correct buffer ops to the buffer after replay.
729 */
730void
731xfs_trans_buf_set_type(
732	struct xfs_trans	*tp,
733	struct xfs_buf		*bp,
734	enum xfs_blft		type)
735{
736	struct xfs_buf_log_item	*bip = bp->b_fspriv;
737
738	if (!tp)
739		return;
740
741	ASSERT(bp->b_transp == tp);
742	ASSERT(bip != NULL);
743	ASSERT(atomic_read(&bip->bli_refcount) > 0);
744
745	xfs_blft_to_flags(&bip->__bli_format, type);
746}
747
748void
749xfs_trans_buf_copy_type(
750	struct xfs_buf		*dst_bp,
751	struct xfs_buf		*src_bp)
752{
753	struct xfs_buf_log_item	*sbip = src_bp->b_fspriv;
754	struct xfs_buf_log_item	*dbip = dst_bp->b_fspriv;
755	enum xfs_blft		type;
756
757	type = xfs_blft_from_flags(&sbip->__bli_format);
758	xfs_blft_to_flags(&dbip->__bli_format, type);
759}
760
761/*
762 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
763 * dquots. However, unlike in inode buffer recovery, dquot buffers get
764 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
765 * The only thing that makes dquot buffers different from regular
766 * buffers is that we must not replay dquot bufs when recovering
767 * if a _corresponding_ quotaoff has happened. We also have to distinguish
768 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
769 * can be turned off independently.
770 */
771/* ARGSUSED */
772void
773xfs_trans_dquot_buf(
774	xfs_trans_t	*tp,
775	xfs_buf_t	*bp,
776	uint		type)
777{
778	struct xfs_buf_log_item	*bip = bp->b_fspriv;
779
 
 
780	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
781	       type == XFS_BLF_PDQUOT_BUF ||
782	       type == XFS_BLF_GDQUOT_BUF);
 
783
784	bip->__bli_format.blf_flags |= type;
785
786	switch (type) {
787	case XFS_BLF_UDQUOT_BUF:
788		type = XFS_BLFT_UDQUOT_BUF;
789		break;
790	case XFS_BLF_PDQUOT_BUF:
791		type = XFS_BLFT_PDQUOT_BUF;
792		break;
793	case XFS_BLF_GDQUOT_BUF:
794		type = XFS_BLFT_GDQUOT_BUF;
795		break;
796	default:
797		type = XFS_BLFT_UNKNOWN_BUF;
798		break;
799	}
800
801	xfs_trans_buf_set_type(tp, bp, type);
802}