Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
 
 
 
 
  21#include "ctree.h"
  22#include "transaction.h"
  23#include "disk-io.h"
  24#include "locking.h"
  25#include "print-tree.h"
  26#include "compat.h"
  27#include "tree-log.h"
 
 
  28
  29/* magic values for the inode_only field in btrfs_log_inode:
  30 *
  31 * LOG_INODE_ALL means to log everything
  32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  33 * during log replay
  34 */
  35#define LOG_INODE_ALL 0
  36#define LOG_INODE_EXISTS 1
 
 
 
 
  37
  38/*
  39 * directory trouble cases
  40 *
  41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  42 * log, we must force a full commit before doing an fsync of the directory
  43 * where the unlink was done.
  44 * ---> record transid of last unlink/rename per directory
  45 *
  46 * mkdir foo/some_dir
  47 * normal commit
  48 * rename foo/some_dir foo2/some_dir
  49 * mkdir foo/some_dir
  50 * fsync foo/some_dir/some_file
  51 *
  52 * The fsync above will unlink the original some_dir without recording
  53 * it in its new location (foo2).  After a crash, some_dir will be gone
  54 * unless the fsync of some_file forces a full commit
  55 *
  56 * 2) we must log any new names for any file or dir that is in the fsync
  57 * log. ---> check inode while renaming/linking.
  58 *
  59 * 2a) we must log any new names for any file or dir during rename
  60 * when the directory they are being removed from was logged.
  61 * ---> check inode and old parent dir during rename
  62 *
  63 *  2a is actually the more important variant.  With the extra logging
  64 *  a crash might unlink the old name without recreating the new one
  65 *
  66 * 3) after a crash, we must go through any directories with a link count
  67 * of zero and redo the rm -rf
  68 *
  69 * mkdir f1/foo
  70 * normal commit
  71 * rm -rf f1/foo
  72 * fsync(f1)
  73 *
  74 * The directory f1 was fully removed from the FS, but fsync was never
  75 * called on f1, only its parent dir.  After a crash the rm -rf must
  76 * be replayed.  This must be able to recurse down the entire
  77 * directory tree.  The inode link count fixup code takes care of the
  78 * ugly details.
  79 */
  80
  81/*
  82 * stages for the tree walking.  The first
  83 * stage (0) is to only pin down the blocks we find
  84 * the second stage (1) is to make sure that all the inodes
  85 * we find in the log are created in the subvolume.
  86 *
  87 * The last stage is to deal with directories and links and extents
  88 * and all the other fun semantics
  89 */
  90#define LOG_WALK_PIN_ONLY 0
  91#define LOG_WALK_REPLAY_INODES 1
  92#define LOG_WALK_REPLAY_ALL 2
 
 
 
  93
  94static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  95			     struct btrfs_root *root, struct inode *inode,
  96			     int inode_only);
 
 
 
  97static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
  98			     struct btrfs_root *root,
  99			     struct btrfs_path *path, u64 objectid);
 100static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 101				       struct btrfs_root *root,
 102				       struct btrfs_root *log,
 103				       struct btrfs_path *path,
 104				       u64 dirid, int del_all);
 105
 106/*
 107 * tree logging is a special write ahead log used to make sure that
 108 * fsyncs and O_SYNCs can happen without doing full tree commits.
 109 *
 110 * Full tree commits are expensive because they require commonly
 111 * modified blocks to be recowed, creating many dirty pages in the
 112 * extent tree an 4x-6x higher write load than ext3.
 113 *
 114 * Instead of doing a tree commit on every fsync, we use the
 115 * key ranges and transaction ids to find items for a given file or directory
 116 * that have changed in this transaction.  Those items are copied into
 117 * a special tree (one per subvolume root), that tree is written to disk
 118 * and then the fsync is considered complete.
 119 *
 120 * After a crash, items are copied out of the log-tree back into the
 121 * subvolume tree.  Any file data extents found are recorded in the extent
 122 * allocation tree, and the log-tree freed.
 123 *
 124 * The log tree is read three times, once to pin down all the extents it is
 125 * using in ram and once, once to create all the inodes logged in the tree
 126 * and once to do all the other items.
 127 */
 128
 129/*
 130 * start a sub transaction and setup the log tree
 131 * this increments the log tree writer count to make the people
 132 * syncing the tree wait for us to finish
 133 */
 134static int start_log_trans(struct btrfs_trans_handle *trans,
 135			   struct btrfs_root *root)
 
 136{
 137	int ret;
 138	int err = 0;
 139
 140	mutex_lock(&root->log_mutex);
 
 141	if (root->log_root) {
 
 
 
 
 
 142		if (!root->log_start_pid) {
 
 143			root->log_start_pid = current->pid;
 144			root->log_multiple_pids = false;
 145		} else if (root->log_start_pid != current->pid) {
 146			root->log_multiple_pids = true;
 147		}
 148
 149		root->log_batch++;
 150		atomic_inc(&root->log_writers);
 151		mutex_unlock(&root->log_mutex);
 152		return 0;
 153	}
 154	root->log_multiple_pids = false;
 155	root->log_start_pid = current->pid;
 156	mutex_lock(&root->fs_info->tree_log_mutex);
 157	if (!root->fs_info->log_root_tree) {
 158		ret = btrfs_init_log_root_tree(trans, root->fs_info);
 159		if (ret)
 160			err = ret;
 161	}
 162	if (err == 0 && !root->log_root) {
 163		ret = btrfs_add_log_tree(trans, root);
 164		if (ret)
 165			err = ret;
 
 
 
 166	}
 167	mutex_unlock(&root->fs_info->tree_log_mutex);
 168	root->log_batch++;
 169	atomic_inc(&root->log_writers);
 
 
 
 
 
 
 
 170	mutex_unlock(&root->log_mutex);
 171	return err;
 172}
 173
 174/*
 175 * returns 0 if there was a log transaction running and we were able
 176 * to join, or returns -ENOENT if there were not transactions
 177 * in progress
 178 */
 179static int join_running_log_trans(struct btrfs_root *root)
 180{
 181	int ret = -ENOENT;
 182
 183	smp_mb();
 184	if (!root->log_root)
 185		return -ENOENT;
 186
 187	mutex_lock(&root->log_mutex);
 188	if (root->log_root) {
 189		ret = 0;
 190		atomic_inc(&root->log_writers);
 191	}
 192	mutex_unlock(&root->log_mutex);
 193	return ret;
 194}
 195
 196/*
 197 * This either makes the current running log transaction wait
 198 * until you call btrfs_end_log_trans() or it makes any future
 199 * log transactions wait until you call btrfs_end_log_trans()
 200 */
 201int btrfs_pin_log_trans(struct btrfs_root *root)
 202{
 203	int ret = -ENOENT;
 204
 205	mutex_lock(&root->log_mutex);
 206	atomic_inc(&root->log_writers);
 207	mutex_unlock(&root->log_mutex);
 208	return ret;
 209}
 210
 211/*
 212 * indicate we're done making changes to the log tree
 213 * and wake up anyone waiting to do a sync
 214 */
 215void btrfs_end_log_trans(struct btrfs_root *root)
 216{
 217	if (atomic_dec_and_test(&root->log_writers)) {
 218		smp_mb();
 219		if (waitqueue_active(&root->log_writer_wait))
 220			wake_up(&root->log_writer_wait);
 221	}
 222}
 223
 
 
 
 
 
 
 
 
 
 
 
 224
 225/*
 226 * the walk control struct is used to pass state down the chain when
 227 * processing the log tree.  The stage field tells us which part
 228 * of the log tree processing we are currently doing.  The others
 229 * are state fields used for that specific part
 230 */
 231struct walk_control {
 232	/* should we free the extent on disk when done?  This is used
 233	 * at transaction commit time while freeing a log tree
 234	 */
 235	int free;
 236
 237	/* should we write out the extent buffer?  This is used
 238	 * while flushing the log tree to disk during a sync
 239	 */
 240	int write;
 241
 242	/* should we wait for the extent buffer io to finish?  Also used
 243	 * while flushing the log tree to disk for a sync
 244	 */
 245	int wait;
 246
 247	/* pin only walk, we record which extents on disk belong to the
 248	 * log trees
 249	 */
 250	int pin;
 251
 252	/* what stage of the replay code we're currently in */
 253	int stage;
 254
 
 
 
 
 
 
 
 255	/* the root we are currently replaying */
 256	struct btrfs_root *replay_dest;
 257
 258	/* the trans handle for the current replay */
 259	struct btrfs_trans_handle *trans;
 260
 261	/* the function that gets used to process blocks we find in the
 262	 * tree.  Note the extent_buffer might not be up to date when it is
 263	 * passed in, and it must be checked or read if you need the data
 264	 * inside it
 265	 */
 266	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 267			    struct walk_control *wc, u64 gen);
 268};
 269
 270/*
 271 * process_func used to pin down extents, write them or wait on them
 272 */
 273static int process_one_buffer(struct btrfs_root *log,
 274			      struct extent_buffer *eb,
 275			      struct walk_control *wc, u64 gen)
 276{
 
 
 
 
 
 
 
 
 
 
 
 
 
 277	if (wc->pin)
 278		btrfs_pin_extent_for_log_replay(wc->trans,
 279						log->fs_info->extent_root,
 280						eb->start, eb->len);
 281
 282	if (btrfs_buffer_uptodate(eb, gen, 0)) {
 
 
 283		if (wc->write)
 284			btrfs_write_tree_block(eb);
 285		if (wc->wait)
 286			btrfs_wait_tree_block_writeback(eb);
 287	}
 288	return 0;
 289}
 290
 291/*
 292 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 293 * to the src data we are copying out.
 294 *
 295 * root is the tree we are copying into, and path is a scratch
 296 * path for use in this function (it should be released on entry and
 297 * will be released on exit).
 298 *
 299 * If the key is already in the destination tree the existing item is
 300 * overwritten.  If the existing item isn't big enough, it is extended.
 301 * If it is too large, it is truncated.
 302 *
 303 * If the key isn't in the destination yet, a new item is inserted.
 304 */
 305static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 306				   struct btrfs_root *root,
 307				   struct btrfs_path *path,
 308				   struct extent_buffer *eb, int slot,
 309				   struct btrfs_key *key)
 310{
 311	int ret;
 312	u32 item_size;
 313	u64 saved_i_size = 0;
 314	int save_old_i_size = 0;
 315	unsigned long src_ptr;
 316	unsigned long dst_ptr;
 317	int overwrite_root = 0;
 
 318
 319	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 320		overwrite_root = 1;
 321
 322	item_size = btrfs_item_size_nr(eb, slot);
 323	src_ptr = btrfs_item_ptr_offset(eb, slot);
 324
 325	/* look for the key in the destination tree */
 326	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 
 
 
 327	if (ret == 0) {
 328		char *src_copy;
 329		char *dst_copy;
 330		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 331						  path->slots[0]);
 332		if (dst_size != item_size)
 333			goto insert;
 334
 335		if (item_size == 0) {
 336			btrfs_release_path(path);
 337			return 0;
 338		}
 339		dst_copy = kmalloc(item_size, GFP_NOFS);
 340		src_copy = kmalloc(item_size, GFP_NOFS);
 341		if (!dst_copy || !src_copy) {
 342			btrfs_release_path(path);
 343			kfree(dst_copy);
 344			kfree(src_copy);
 345			return -ENOMEM;
 346		}
 347
 348		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 349
 350		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 351		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 352				   item_size);
 353		ret = memcmp(dst_copy, src_copy, item_size);
 354
 355		kfree(dst_copy);
 356		kfree(src_copy);
 357		/*
 358		 * they have the same contents, just return, this saves
 359		 * us from cowing blocks in the destination tree and doing
 360		 * extra writes that may not have been done by a previous
 361		 * sync
 362		 */
 363		if (ret == 0) {
 364			btrfs_release_path(path);
 365			return 0;
 366		}
 367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 368	}
 369insert:
 370	btrfs_release_path(path);
 371	/* try to insert the key into the destination tree */
 
 372	ret = btrfs_insert_empty_item(trans, root, path,
 373				      key, item_size);
 
 374
 375	/* make sure any existing item is the correct size */
 376	if (ret == -EEXIST) {
 377		u32 found_size;
 378		found_size = btrfs_item_size_nr(path->nodes[0],
 379						path->slots[0]);
 380		if (found_size > item_size)
 381			btrfs_truncate_item(trans, root, path, item_size, 1);
 382		else if (found_size < item_size)
 383			btrfs_extend_item(trans, root, path,
 384					  item_size - found_size);
 385	} else if (ret) {
 386		return ret;
 387	}
 388	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 389					path->slots[0]);
 390
 391	/* don't overwrite an existing inode if the generation number
 392	 * was logged as zero.  This is done when the tree logging code
 393	 * is just logging an inode to make sure it exists after recovery.
 394	 *
 395	 * Also, don't overwrite i_size on directories during replay.
 396	 * log replay inserts and removes directory items based on the
 397	 * state of the tree found in the subvolume, and i_size is modified
 398	 * as it goes
 399	 */
 400	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 401		struct btrfs_inode_item *src_item;
 402		struct btrfs_inode_item *dst_item;
 403
 404		src_item = (struct btrfs_inode_item *)src_ptr;
 405		dst_item = (struct btrfs_inode_item *)dst_ptr;
 406
 407		if (btrfs_inode_generation(eb, src_item) == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 408			goto no_copy;
 
 409
 410		if (overwrite_root &&
 411		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 412		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 413			save_old_i_size = 1;
 414			saved_i_size = btrfs_inode_size(path->nodes[0],
 415							dst_item);
 416		}
 417	}
 418
 419	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 420			   src_ptr, item_size);
 421
 422	if (save_old_i_size) {
 423		struct btrfs_inode_item *dst_item;
 424		dst_item = (struct btrfs_inode_item *)dst_ptr;
 425		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 426	}
 427
 428	/* make sure the generation is filled in */
 429	if (key->type == BTRFS_INODE_ITEM_KEY) {
 430		struct btrfs_inode_item *dst_item;
 431		dst_item = (struct btrfs_inode_item *)dst_ptr;
 432		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 433			btrfs_set_inode_generation(path->nodes[0], dst_item,
 434						   trans->transid);
 435		}
 436	}
 437no_copy:
 438	btrfs_mark_buffer_dirty(path->nodes[0]);
 439	btrfs_release_path(path);
 440	return 0;
 441}
 442
 443/*
 444 * simple helper to read an inode off the disk from a given root
 445 * This can only be called for subvolume roots and not for the log
 446 */
 447static noinline struct inode *read_one_inode(struct btrfs_root *root,
 448					     u64 objectid)
 449{
 450	struct btrfs_key key;
 451	struct inode *inode;
 452
 453	key.objectid = objectid;
 454	key.type = BTRFS_INODE_ITEM_KEY;
 455	key.offset = 0;
 456	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
 457	if (IS_ERR(inode)) {
 458		inode = NULL;
 459	} else if (is_bad_inode(inode)) {
 460		iput(inode);
 461		inode = NULL;
 462	}
 463	return inode;
 464}
 465
 466/* replays a single extent in 'eb' at 'slot' with 'key' into the
 467 * subvolume 'root'.  path is released on entry and should be released
 468 * on exit.
 469 *
 470 * extents in the log tree have not been allocated out of the extent
 471 * tree yet.  So, this completes the allocation, taking a reference
 472 * as required if the extent already exists or creating a new extent
 473 * if it isn't in the extent allocation tree yet.
 474 *
 475 * The extent is inserted into the file, dropping any existing extents
 476 * from the file that overlap the new one.
 477 */
 478static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 479				      struct btrfs_root *root,
 480				      struct btrfs_path *path,
 481				      struct extent_buffer *eb, int slot,
 482				      struct btrfs_key *key)
 483{
 
 484	int found_type;
 485	u64 mask = root->sectorsize - 1;
 486	u64 extent_end;
 487	u64 alloc_hint;
 488	u64 start = key->offset;
 489	u64 saved_nbytes;
 490	struct btrfs_file_extent_item *item;
 491	struct inode *inode = NULL;
 492	unsigned long size;
 493	int ret = 0;
 494
 495	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 496	found_type = btrfs_file_extent_type(eb, item);
 497
 498	if (found_type == BTRFS_FILE_EXTENT_REG ||
 499	    found_type == BTRFS_FILE_EXTENT_PREALLOC)
 500		extent_end = start + btrfs_file_extent_num_bytes(eb, item);
 501	else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 502		size = btrfs_file_extent_inline_len(eb, item);
 503		extent_end = (start + size + mask) & ~mask;
 
 
 
 
 
 
 
 
 
 
 504	} else {
 505		ret = 0;
 506		goto out;
 507	}
 508
 509	inode = read_one_inode(root, key->objectid);
 510	if (!inode) {
 511		ret = -EIO;
 512		goto out;
 513	}
 514
 515	/*
 516	 * first check to see if we already have this extent in the
 517	 * file.  This must be done before the btrfs_drop_extents run
 518	 * so we don't try to drop this extent.
 519	 */
 520	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
 521				       start, 0);
 522
 523	if (ret == 0 &&
 524	    (found_type == BTRFS_FILE_EXTENT_REG ||
 525	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 526		struct btrfs_file_extent_item cmp1;
 527		struct btrfs_file_extent_item cmp2;
 528		struct btrfs_file_extent_item *existing;
 529		struct extent_buffer *leaf;
 530
 531		leaf = path->nodes[0];
 532		existing = btrfs_item_ptr(leaf, path->slots[0],
 533					  struct btrfs_file_extent_item);
 534
 535		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 536				   sizeof(cmp1));
 537		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 538				   sizeof(cmp2));
 539
 540		/*
 541		 * we already have a pointer to this exact extent,
 542		 * we don't have to do anything
 543		 */
 544		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 545			btrfs_release_path(path);
 546			goto out;
 547		}
 548	}
 549	btrfs_release_path(path);
 550
 551	saved_nbytes = inode_get_bytes(inode);
 552	/* drop any overlapping extents */
 553	ret = btrfs_drop_extents(trans, inode, start, extent_end,
 554				 &alloc_hint, 1);
 555	BUG_ON(ret);
 556
 557	if (found_type == BTRFS_FILE_EXTENT_REG ||
 558	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 559		u64 offset;
 560		unsigned long dest_offset;
 561		struct btrfs_key ins;
 562
 
 
 
 
 563		ret = btrfs_insert_empty_item(trans, root, path, key,
 564					      sizeof(*item));
 565		BUG_ON(ret);
 
 566		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 567						    path->slots[0]);
 568		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 569				(unsigned long)item,  sizeof(*item));
 570
 571		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 572		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 573		ins.type = BTRFS_EXTENT_ITEM_KEY;
 574		offset = key->offset - btrfs_file_extent_offset(eb, item);
 575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576		if (ins.objectid > 0) {
 
 577			u64 csum_start;
 578			u64 csum_end;
 579			LIST_HEAD(ordered_sums);
 
 580			/*
 581			 * is this extent already allocated in the extent
 582			 * allocation tree?  If so, just add a reference
 583			 */
 584			ret = btrfs_lookup_extent(root, ins.objectid,
 585						ins.offset);
 586			if (ret == 0) {
 587				ret = btrfs_inc_extent_ref(trans, root,
 588						ins.objectid, ins.offset,
 589						0, root->root_key.objectid,
 590						key->objectid, offset, 0);
 591				BUG_ON(ret);
 
 
 
 
 592			} else {
 593				/*
 594				 * insert the extent pointer in the extent
 595				 * allocation tree
 596				 */
 597				ret = btrfs_alloc_logged_file_extent(trans,
 598						root, root->root_key.objectid,
 599						key->objectid, offset, &ins);
 600				BUG_ON(ret);
 
 601			}
 602			btrfs_release_path(path);
 603
 604			if (btrfs_file_extent_compression(eb, item)) {
 605				csum_start = ins.objectid;
 606				csum_end = csum_start + ins.offset;
 607			} else {
 608				csum_start = ins.objectid +
 609					btrfs_file_extent_offset(eb, item);
 610				csum_end = csum_start +
 611					btrfs_file_extent_num_bytes(eb, item);
 612			}
 613
 614			ret = btrfs_lookup_csums_range(root->log_root,
 615						csum_start, csum_end - 1,
 616						&ordered_sums, 0);
 617			BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 618			while (!list_empty(&ordered_sums)) {
 619				struct btrfs_ordered_sum *sums;
 620				sums = list_entry(ordered_sums.next,
 621						struct btrfs_ordered_sum,
 622						list);
 623				ret = btrfs_csum_file_blocks(trans,
 624						root->fs_info->csum_root,
 625						sums);
 626				BUG_ON(ret);
 
 
 
 627				list_del(&sums->list);
 628				kfree(sums);
 629			}
 
 
 630		} else {
 631			btrfs_release_path(path);
 632		}
 633	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 634		/* inline extents are easy, we just overwrite them */
 635		ret = overwrite_item(trans, root, path, eb, slot, key);
 636		BUG_ON(ret);
 
 637	}
 638
 639	inode_set_bytes(inode, saved_nbytes);
 640	btrfs_update_inode(trans, root, inode);
 
 641out:
 642	if (inode)
 643		iput(inode);
 644	return ret;
 645}
 646
 647/*
 648 * when cleaning up conflicts between the directory names in the
 649 * subvolume, directory names in the log and directory names in the
 650 * inode back references, we may have to unlink inodes from directories.
 651 *
 652 * This is a helper function to do the unlink of a specific directory
 653 * item
 654 */
 655static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 656				      struct btrfs_root *root,
 657				      struct btrfs_path *path,
 658				      struct inode *dir,
 659				      struct btrfs_dir_item *di)
 660{
 661	struct inode *inode;
 662	char *name;
 663	int name_len;
 664	struct extent_buffer *leaf;
 665	struct btrfs_key location;
 666	int ret;
 667
 668	leaf = path->nodes[0];
 669
 670	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 671	name_len = btrfs_dir_name_len(leaf, di);
 672	name = kmalloc(name_len, GFP_NOFS);
 673	if (!name)
 674		return -ENOMEM;
 675
 676	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 677	btrfs_release_path(path);
 678
 679	inode = read_one_inode(root, location.objectid);
 680	if (!inode) {
 681		kfree(name);
 682		return -EIO;
 683	}
 684
 685	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 686	BUG_ON(ret);
 
 687
 688	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
 689	BUG_ON(ret);
 
 
 
 
 
 690	kfree(name);
 691
 692	iput(inode);
 693
 694	btrfs_run_delayed_items(trans, root);
 695	return ret;
 696}
 697
 698/*
 699 * helper function to see if a given name and sequence number found
 700 * in an inode back reference are already in a directory and correctly
 701 * point to this inode
 702 */
 703static noinline int inode_in_dir(struct btrfs_root *root,
 704				 struct btrfs_path *path,
 705				 u64 dirid, u64 objectid, u64 index,
 706				 const char *name, int name_len)
 707{
 708	struct btrfs_dir_item *di;
 709	struct btrfs_key location;
 710	int match = 0;
 711
 712	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 713					 index, name, name_len, 0);
 714	if (di && !IS_ERR(di)) {
 715		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 716		if (location.objectid != objectid)
 717			goto out;
 718	} else
 719		goto out;
 720	btrfs_release_path(path);
 721
 722	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 723	if (di && !IS_ERR(di)) {
 724		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 725		if (location.objectid != objectid)
 726			goto out;
 727	} else
 728		goto out;
 729	match = 1;
 730out:
 731	btrfs_release_path(path);
 732	return match;
 733}
 734
 735/*
 736 * helper function to check a log tree for a named back reference in
 737 * an inode.  This is used to decide if a back reference that is
 738 * found in the subvolume conflicts with what we find in the log.
 739 *
 740 * inode backreferences may have multiple refs in a single item,
 741 * during replay we process one reference at a time, and we don't
 742 * want to delete valid links to a file from the subvolume if that
 743 * link is also in the log.
 744 */
 745static noinline int backref_in_log(struct btrfs_root *log,
 746				   struct btrfs_key *key,
 747				   char *name, int namelen)
 
 748{
 749	struct btrfs_path *path;
 750	struct btrfs_inode_ref *ref;
 751	unsigned long ptr;
 752	unsigned long ptr_end;
 753	unsigned long name_ptr;
 754	int found_name_len;
 755	int item_size;
 756	int ret;
 757	int match = 0;
 758
 759	path = btrfs_alloc_path();
 760	if (!path)
 761		return -ENOMEM;
 762
 763	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 764	if (ret != 0)
 765		goto out;
 766
 767	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 768	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 
 
 
 
 
 
 
 
 
 
 
 
 769	ptr_end = ptr + item_size;
 770	while (ptr < ptr_end) {
 771		ref = (struct btrfs_inode_ref *)ptr;
 772		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 773		if (found_name_len == namelen) {
 774			name_ptr = (unsigned long)(ref + 1);
 775			ret = memcmp_extent_buffer(path->nodes[0], name,
 776						   name_ptr, namelen);
 777			if (ret == 0) {
 778				match = 1;
 779				goto out;
 780			}
 781		}
 782		ptr = (unsigned long)(ref + 1) + found_name_len;
 783	}
 784out:
 785	btrfs_free_path(path);
 786	return match;
 787}
 788
 789
 790/*
 791 * replay one inode back reference item found in the log tree.
 792 * eb, slot and key refer to the buffer and key found in the log tree.
 793 * root is the destination we are replaying into, and path is for temp
 794 * use by this function.  (it should be released on return).
 795 */
 796static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
 797				  struct btrfs_root *root,
 798				  struct btrfs_root *log,
 799				  struct btrfs_path *path,
 800				  struct extent_buffer *eb, int slot,
 801				  struct btrfs_key *key)
 
 
 
 
 802{
 803	struct btrfs_inode_ref *ref;
 804	struct btrfs_dir_item *di;
 805	struct inode *dir;
 806	struct inode *inode;
 807	unsigned long ref_ptr;
 808	unsigned long ref_end;
 809	char *name;
 810	int namelen;
 811	int ret;
 812	int search_done = 0;
 813
 814	/*
 815	 * it is possible that we didn't log all the parent directories
 816	 * for a given inode.  If we don't find the dir, just don't
 817	 * copy the back ref in.  The link count fixup code will take
 818	 * care of the rest
 819	 */
 820	dir = read_one_inode(root, key->offset);
 821	if (!dir)
 822		return -ENOENT;
 823
 824	inode = read_one_inode(root, key->objectid);
 825	if (!inode) {
 826		iput(dir);
 827		return -EIO;
 828	}
 829
 830	ref_ptr = btrfs_item_ptr_offset(eb, slot);
 831	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
 832
 833again:
 834	ref = (struct btrfs_inode_ref *)ref_ptr;
 835
 836	namelen = btrfs_inode_ref_name_len(eb, ref);
 837	name = kmalloc(namelen, GFP_NOFS);
 838	BUG_ON(!name);
 839
 840	read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
 841
 842	/* if we already have a perfect match, we're done */
 843	if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
 844			 btrfs_inode_ref_index(eb, ref),
 845			 name, namelen)) {
 846		goto out;
 847	}
 848
 849	/*
 850	 * look for a conflicting back reference in the metadata.
 851	 * if we find one we have to unlink that name of the file
 852	 * before we add our new link.  Later on, we overwrite any
 853	 * existing back reference, and we don't want to create
 854	 * dangling pointers in the directory.
 855	 */
 856
 857	if (search_done)
 858		goto insert;
 859
 860	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 861	if (ret == 0) {
 862		char *victim_name;
 863		int victim_name_len;
 864		struct btrfs_inode_ref *victim_ref;
 865		unsigned long ptr;
 866		unsigned long ptr_end;
 867		struct extent_buffer *leaf = path->nodes[0];
 
 868
 869		/* are we trying to overwrite a back ref for the root directory
 870		 * if so, just jump out, we're done
 871		 */
 872		if (key->objectid == key->offset)
 873			goto out_nowrite;
 874
 875		/* check all the names in this back reference to see
 876		 * if they are in the log.  if so, we allow them to stay
 877		 * otherwise they must be unlinked as a conflict
 878		 */
 879		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
 880		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
 881		while (ptr < ptr_end) {
 882			victim_ref = (struct btrfs_inode_ref *)ptr;
 883			victim_name_len = btrfs_inode_ref_name_len(leaf,
 884								   victim_ref);
 885			victim_name = kmalloc(victim_name_len, GFP_NOFS);
 886			BUG_ON(!victim_name);
 
 887
 888			read_extent_buffer(leaf, victim_name,
 889					   (unsigned long)(victim_ref + 1),
 890					   victim_name_len);
 891
 892			if (!backref_in_log(log, key, victim_name,
 
 
 893					    victim_name_len)) {
 894				btrfs_inc_nlink(inode);
 895				btrfs_release_path(path);
 896
 897				ret = btrfs_unlink_inode(trans, root, dir,
 898							 inode, victim_name,
 899							 victim_name_len);
 900				btrfs_run_delayed_items(trans, root);
 
 
 
 
 
 
 901			}
 902			kfree(victim_name);
 
 903			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
 904		}
 905		BUG_ON(ret);
 906
 907		/*
 908		 * NOTE: we have searched root tree and checked the
 909		 * coresponding ref, it does not need to check again.
 910		 */
 911		search_done = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912	}
 913	btrfs_release_path(path);
 914
 915	/* look for a conflicting sequence number */
 916	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
 917					 btrfs_inode_ref_index(eb, ref),
 918					 name, namelen, 0);
 919	if (di && !IS_ERR(di)) {
 920		ret = drop_one_dir_item(trans, root, path, dir, di);
 921		BUG_ON(ret);
 
 922	}
 923	btrfs_release_path(path);
 924
 925	/* look for a conflicing name */
 926	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
 927				   name, namelen, 0);
 928	if (di && !IS_ERR(di)) {
 929		ret = drop_one_dir_item(trans, root, path, dir, di);
 930		BUG_ON(ret);
 
 931	}
 932	btrfs_release_path(path);
 933
 934insert:
 935	/* insert our name */
 936	ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
 937			     btrfs_inode_ref_index(eb, ref));
 938	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 939
 940	btrfs_update_inode(trans, root, inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 941
 942out:
 943	ref_ptr = (unsigned long)(ref + 1) + namelen;
 944	kfree(name);
 945	if (ref_ptr < ref_end)
 946		goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 947
 948	/* finally write the back reference in the inode */
 949	ret = overwrite_item(trans, root, path, eb, slot, key);
 950	BUG_ON(ret);
 951
 952out_nowrite:
 953	btrfs_release_path(path);
 
 954	iput(dir);
 955	iput(inode);
 956	return 0;
 957}
 958
 959static int insert_orphan_item(struct btrfs_trans_handle *trans,
 960			      struct btrfs_root *root, u64 offset)
 961{
 962	int ret;
 963	ret = btrfs_find_orphan_item(root, offset);
 964	if (ret > 0)
 965		ret = btrfs_insert_orphan_item(trans, root, offset);
 
 
 966	return ret;
 967}
 968
 
 
 
 
 
 
 
 
 
 
 
 
 
 969
 970/*
 971 * There are a few corners where the link count of the file can't
 972 * be properly maintained during replay.  So, instead of adding
 973 * lots of complexity to the log code, we just scan the backrefs
 974 * for any file that has been through replay.
 975 *
 976 * The scan will update the link count on the inode to reflect the
 977 * number of back refs found.  If it goes down to zero, the iput
 978 * will free the inode.
 979 */
 980static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
 981					   struct btrfs_root *root,
 982					   struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983{
 984	struct btrfs_path *path;
 985	int ret;
 986	struct btrfs_key key;
 987	u64 nlink = 0;
 988	unsigned long ptr;
 989	unsigned long ptr_end;
 990	int name_len;
 991	u64 ino = btrfs_ino(inode);
 992
 993	key.objectid = ino;
 994	key.type = BTRFS_INODE_REF_KEY;
 995	key.offset = (u64)-1;
 996
 997	path = btrfs_alloc_path();
 998	if (!path)
 999		return -ENOMEM;
1000
1001	while (1) {
1002		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1003		if (ret < 0)
1004			break;
1005		if (ret > 0) {
1006			if (path->slots[0] == 0)
1007				break;
1008			path->slots[0]--;
1009		}
 
1010		btrfs_item_key_to_cpu(path->nodes[0], &key,
1011				      path->slots[0]);
1012		if (key.objectid != ino ||
1013		    key.type != BTRFS_INODE_REF_KEY)
1014			break;
1015		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1016		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1017						   path->slots[0]);
1018		while (ptr < ptr_end) {
1019			struct btrfs_inode_ref *ref;
1020
1021			ref = (struct btrfs_inode_ref *)ptr;
1022			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1023							    ref);
1024			ptr = (unsigned long)(ref + 1) + name_len;
1025			nlink++;
1026		}
1027
1028		if (key.offset == 0)
1029			break;
 
 
 
 
1030		key.offset--;
1031		btrfs_release_path(path);
1032	}
1033	btrfs_release_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034	if (nlink != inode->i_nlink) {
1035		set_nlink(inode, nlink);
1036		btrfs_update_inode(trans, root, inode);
1037	}
1038	BTRFS_I(inode)->index_cnt = (u64)-1;
1039
1040	if (inode->i_nlink == 0) {
1041		if (S_ISDIR(inode->i_mode)) {
1042			ret = replay_dir_deletes(trans, root, NULL, path,
1043						 ino, 1);
1044			BUG_ON(ret);
 
1045		}
1046		ret = insert_orphan_item(trans, root, ino);
1047		BUG_ON(ret);
1048	}
1049	btrfs_free_path(path);
1050
1051	return 0;
 
 
1052}
1053
1054static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1055					    struct btrfs_root *root,
1056					    struct btrfs_path *path)
1057{
1058	int ret;
1059	struct btrfs_key key;
1060	struct inode *inode;
1061
1062	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1063	key.type = BTRFS_ORPHAN_ITEM_KEY;
1064	key.offset = (u64)-1;
1065	while (1) {
1066		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1067		if (ret < 0)
1068			break;
1069
1070		if (ret == 1) {
1071			if (path->slots[0] == 0)
1072				break;
1073			path->slots[0]--;
1074		}
1075
1076		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1077		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1078		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1079			break;
1080
1081		ret = btrfs_del_item(trans, root, path);
1082		if (ret)
1083			goto out;
1084
1085		btrfs_release_path(path);
1086		inode = read_one_inode(root, key.offset);
1087		if (!inode)
1088			return -EIO;
1089
1090		ret = fixup_inode_link_count(trans, root, inode);
1091		BUG_ON(ret);
1092
1093		iput(inode);
 
 
1094
1095		/*
1096		 * fixup on a directory may create new entries,
1097		 * make sure we always look for the highset possible
1098		 * offset
1099		 */
1100		key.offset = (u64)-1;
1101	}
1102	ret = 0;
1103out:
1104	btrfs_release_path(path);
1105	return ret;
1106}
1107
1108
1109/*
1110 * record a given inode in the fixup dir so we can check its link
1111 * count when replay is done.  The link count is incremented here
1112 * so the inode won't go away until we check it
1113 */
1114static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1115				      struct btrfs_root *root,
1116				      struct btrfs_path *path,
1117				      u64 objectid)
1118{
1119	struct btrfs_key key;
1120	int ret = 0;
1121	struct inode *inode;
1122
1123	inode = read_one_inode(root, objectid);
1124	if (!inode)
1125		return -EIO;
1126
1127	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1128	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1129	key.offset = objectid;
1130
1131	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1132
1133	btrfs_release_path(path);
1134	if (ret == 0) {
1135		btrfs_inc_nlink(inode);
1136		btrfs_update_inode(trans, root, inode);
 
 
 
1137	} else if (ret == -EEXIST) {
1138		ret = 0;
1139	} else {
1140		BUG();
1141	}
1142	iput(inode);
1143
1144	return ret;
1145}
1146
1147/*
1148 * when replaying the log for a directory, we only insert names
1149 * for inodes that actually exist.  This means an fsync on a directory
1150 * does not implicitly fsync all the new files in it
1151 */
1152static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1153				    struct btrfs_root *root,
1154				    struct btrfs_path *path,
1155				    u64 dirid, u64 index,
1156				    char *name, int name_len, u8 type,
1157				    struct btrfs_key *location)
1158{
1159	struct inode *inode;
1160	struct inode *dir;
1161	int ret;
1162
1163	inode = read_one_inode(root, location->objectid);
1164	if (!inode)
1165		return -ENOENT;
1166
1167	dir = read_one_inode(root, dirid);
1168	if (!dir) {
1169		iput(inode);
1170		return -EIO;
1171	}
1172	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
 
 
1173
1174	/* FIXME, put inode into FIXUP list */
1175
1176	iput(inode);
1177	iput(dir);
1178	return ret;
1179}
1180
1181/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182 * take a single entry in a log directory item and replay it into
1183 * the subvolume.
1184 *
1185 * if a conflicting item exists in the subdirectory already,
1186 * the inode it points to is unlinked and put into the link count
1187 * fix up tree.
1188 *
1189 * If a name from the log points to a file or directory that does
1190 * not exist in the FS, it is skipped.  fsyncs on directories
1191 * do not force down inodes inside that directory, just changes to the
1192 * names or unlinks in a directory.
 
 
 
1193 */
1194static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1195				    struct btrfs_root *root,
1196				    struct btrfs_path *path,
1197				    struct extent_buffer *eb,
1198				    struct btrfs_dir_item *di,
1199				    struct btrfs_key *key)
1200{
1201	char *name;
1202	int name_len;
1203	struct btrfs_dir_item *dst_di;
1204	struct btrfs_key found_key;
1205	struct btrfs_key log_key;
1206	struct inode *dir;
1207	u8 log_type;
1208	int exists;
1209	int ret;
 
 
1210
1211	dir = read_one_inode(root, key->objectid);
1212	if (!dir)
1213		return -EIO;
1214
1215	name_len = btrfs_dir_name_len(eb, di);
1216	name = kmalloc(name_len, GFP_NOFS);
1217	if (!name)
1218		return -ENOMEM;
 
 
1219
1220	log_type = btrfs_dir_type(eb, di);
1221	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1222		   name_len);
1223
1224	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1225	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1226	if (exists == 0)
1227		exists = 1;
1228	else
1229		exists = 0;
1230	btrfs_release_path(path);
1231
1232	if (key->type == BTRFS_DIR_ITEM_KEY) {
1233		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1234				       name, name_len, 1);
1235	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1236		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1237						     key->objectid,
1238						     key->offset, name,
1239						     name_len, 1);
1240	} else {
1241		BUG();
 
 
1242	}
1243	if (IS_ERR_OR_NULL(dst_di)) {
1244		/* we need a sequence number to insert, so we only
1245		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1246		 */
1247		if (key->type != BTRFS_DIR_INDEX_KEY)
1248			goto out;
1249		goto insert;
1250	}
1251
1252	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1253	/* the existing item matches the logged item */
1254	if (found_key.objectid == log_key.objectid &&
1255	    found_key.type == log_key.type &&
1256	    found_key.offset == log_key.offset &&
1257	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
 
1258		goto out;
1259	}
1260
1261	/*
1262	 * don't drop the conflicting directory entry if the inode
1263	 * for the new entry doesn't exist
1264	 */
1265	if (!exists)
1266		goto out;
1267
1268	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1269	BUG_ON(ret);
 
1270
1271	if (key->type == BTRFS_DIR_INDEX_KEY)
1272		goto insert;
1273out:
1274	btrfs_release_path(path);
 
 
 
 
1275	kfree(name);
1276	iput(dir);
1277	return 0;
 
 
1278
1279insert:
 
 
 
 
 
 
 
1280	btrfs_release_path(path);
1281	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1282			      name, name_len, log_type, &log_key);
1283
1284	BUG_ON(ret && ret != -ENOENT);
 
 
 
 
1285	goto out;
1286}
1287
1288/*
1289 * find all the names in a directory item and reconcile them into
1290 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1291 * one name in a directory item, but the same code gets used for
1292 * both directory index types
1293 */
1294static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1295					struct btrfs_root *root,
1296					struct btrfs_path *path,
1297					struct extent_buffer *eb, int slot,
1298					struct btrfs_key *key)
1299{
1300	int ret;
1301	u32 item_size = btrfs_item_size_nr(eb, slot);
1302	struct btrfs_dir_item *di;
1303	int name_len;
1304	unsigned long ptr;
1305	unsigned long ptr_end;
 
1306
1307	ptr = btrfs_item_ptr_offset(eb, slot);
1308	ptr_end = ptr + item_size;
1309	while (ptr < ptr_end) {
1310		di = (struct btrfs_dir_item *)ptr;
1311		if (verify_dir_item(root, eb, di))
1312			return -EIO;
1313		name_len = btrfs_dir_name_len(eb, di);
1314		ret = replay_one_name(trans, root, path, eb, di, key);
1315		BUG_ON(ret);
 
1316		ptr = (unsigned long)(di + 1);
1317		ptr += name_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1318	}
1319	return 0;
 
1320}
1321
1322/*
1323 * directory replay has two parts.  There are the standard directory
1324 * items in the log copied from the subvolume, and range items
1325 * created in the log while the subvolume was logged.
1326 *
1327 * The range items tell us which parts of the key space the log
1328 * is authoritative for.  During replay, if a key in the subvolume
1329 * directory is in a logged range item, but not actually in the log
1330 * that means it was deleted from the directory before the fsync
1331 * and should be removed.
1332 */
1333static noinline int find_dir_range(struct btrfs_root *root,
1334				   struct btrfs_path *path,
1335				   u64 dirid, int key_type,
1336				   u64 *start_ret, u64 *end_ret)
1337{
1338	struct btrfs_key key;
1339	u64 found_end;
1340	struct btrfs_dir_log_item *item;
1341	int ret;
1342	int nritems;
1343
1344	if (*start_ret == (u64)-1)
1345		return 1;
1346
1347	key.objectid = dirid;
1348	key.type = key_type;
1349	key.offset = *start_ret;
1350
1351	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1352	if (ret < 0)
1353		goto out;
1354	if (ret > 0) {
1355		if (path->slots[0] == 0)
1356			goto out;
1357		path->slots[0]--;
1358	}
1359	if (ret != 0)
1360		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1361
1362	if (key.type != key_type || key.objectid != dirid) {
1363		ret = 1;
1364		goto next;
1365	}
1366	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1367			      struct btrfs_dir_log_item);
1368	found_end = btrfs_dir_log_end(path->nodes[0], item);
1369
1370	if (*start_ret >= key.offset && *start_ret <= found_end) {
1371		ret = 0;
1372		*start_ret = key.offset;
1373		*end_ret = found_end;
1374		goto out;
1375	}
1376	ret = 1;
1377next:
1378	/* check the next slot in the tree to see if it is a valid item */
1379	nritems = btrfs_header_nritems(path->nodes[0]);
 
1380	if (path->slots[0] >= nritems) {
1381		ret = btrfs_next_leaf(root, path);
1382		if (ret)
1383			goto out;
1384	} else {
1385		path->slots[0]++;
1386	}
1387
1388	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1389
1390	if (key.type != key_type || key.objectid != dirid) {
1391		ret = 1;
1392		goto out;
1393	}
1394	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1395			      struct btrfs_dir_log_item);
1396	found_end = btrfs_dir_log_end(path->nodes[0], item);
1397	*start_ret = key.offset;
1398	*end_ret = found_end;
1399	ret = 0;
1400out:
1401	btrfs_release_path(path);
1402	return ret;
1403}
1404
1405/*
1406 * this looks for a given directory item in the log.  If the directory
1407 * item is not in the log, the item is removed and the inode it points
1408 * to is unlinked
1409 */
1410static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1411				      struct btrfs_root *root,
1412				      struct btrfs_root *log,
1413				      struct btrfs_path *path,
1414				      struct btrfs_path *log_path,
1415				      struct inode *dir,
1416				      struct btrfs_key *dir_key)
1417{
1418	int ret;
1419	struct extent_buffer *eb;
1420	int slot;
1421	u32 item_size;
1422	struct btrfs_dir_item *di;
1423	struct btrfs_dir_item *log_di;
1424	int name_len;
1425	unsigned long ptr;
1426	unsigned long ptr_end;
1427	char *name;
1428	struct inode *inode;
1429	struct btrfs_key location;
1430
1431again:
1432	eb = path->nodes[0];
1433	slot = path->slots[0];
1434	item_size = btrfs_item_size_nr(eb, slot);
1435	ptr = btrfs_item_ptr_offset(eb, slot);
1436	ptr_end = ptr + item_size;
1437	while (ptr < ptr_end) {
1438		di = (struct btrfs_dir_item *)ptr;
1439		if (verify_dir_item(root, eb, di)) {
1440			ret = -EIO;
1441			goto out;
1442		}
1443
1444		name_len = btrfs_dir_name_len(eb, di);
1445		name = kmalloc(name_len, GFP_NOFS);
1446		if (!name) {
1447			ret = -ENOMEM;
1448			goto out;
1449		}
1450		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1451				  name_len);
1452		log_di = NULL;
1453		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1454			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1455						       dir_key->objectid,
1456						       name, name_len, 0);
1457		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1458			log_di = btrfs_lookup_dir_index_item(trans, log,
1459						     log_path,
1460						     dir_key->objectid,
1461						     dir_key->offset,
1462						     name, name_len, 0);
1463		}
1464		if (IS_ERR_OR_NULL(log_di)) {
1465			btrfs_dir_item_key_to_cpu(eb, di, &location);
1466			btrfs_release_path(path);
1467			btrfs_release_path(log_path);
1468			inode = read_one_inode(root, location.objectid);
1469			if (!inode) {
1470				kfree(name);
1471				return -EIO;
1472			}
1473
1474			ret = link_to_fixup_dir(trans, root,
1475						path, location.objectid);
1476			BUG_ON(ret);
1477			btrfs_inc_nlink(inode);
1478			ret = btrfs_unlink_inode(trans, root, dir, inode,
1479						 name, name_len);
1480			BUG_ON(ret);
1481
1482			btrfs_run_delayed_items(trans, root);
1483
 
 
 
 
 
1484			kfree(name);
1485			iput(inode);
 
 
1486
1487			/* there might still be more names under this key
1488			 * check and repeat if required
1489			 */
1490			ret = btrfs_search_slot(NULL, root, dir_key, path,
1491						0, 0);
1492			if (ret == 0)
1493				goto again;
1494			ret = 0;
1495			goto out;
 
 
 
1496		}
1497		btrfs_release_path(log_path);
1498		kfree(name);
1499
1500		ptr = (unsigned long)(di + 1);
1501		ptr += name_len;
1502	}
1503	ret = 0;
1504out:
1505	btrfs_release_path(path);
1506	btrfs_release_path(log_path);
1507	return ret;
1508}
1509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510/*
1511 * deletion replay happens before we copy any new directory items
1512 * out of the log or out of backreferences from inodes.  It
1513 * scans the log to find ranges of keys that log is authoritative for,
1514 * and then scans the directory to find items in those ranges that are
1515 * not present in the log.
1516 *
1517 * Anything we don't find in the log is unlinked and removed from the
1518 * directory.
1519 */
1520static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1521				       struct btrfs_root *root,
1522				       struct btrfs_root *log,
1523				       struct btrfs_path *path,
1524				       u64 dirid, int del_all)
1525{
1526	u64 range_start;
1527	u64 range_end;
1528	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1529	int ret = 0;
1530	struct btrfs_key dir_key;
1531	struct btrfs_key found_key;
1532	struct btrfs_path *log_path;
1533	struct inode *dir;
1534
1535	dir_key.objectid = dirid;
1536	dir_key.type = BTRFS_DIR_ITEM_KEY;
1537	log_path = btrfs_alloc_path();
1538	if (!log_path)
1539		return -ENOMEM;
1540
1541	dir = read_one_inode(root, dirid);
1542	/* it isn't an error if the inode isn't there, that can happen
1543	 * because we replay the deletes before we copy in the inode item
1544	 * from the log
1545	 */
1546	if (!dir) {
1547		btrfs_free_path(log_path);
1548		return 0;
1549	}
1550again:
1551	range_start = 0;
1552	range_end = 0;
1553	while (1) {
1554		if (del_all)
1555			range_end = (u64)-1;
1556		else {
1557			ret = find_dir_range(log, path, dirid, key_type,
1558					     &range_start, &range_end);
1559			if (ret != 0)
1560				break;
1561		}
1562
1563		dir_key.offset = range_start;
1564		while (1) {
1565			int nritems;
1566			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1567						0, 0);
1568			if (ret < 0)
1569				goto out;
1570
1571			nritems = btrfs_header_nritems(path->nodes[0]);
1572			if (path->slots[0] >= nritems) {
1573				ret = btrfs_next_leaf(root, path);
1574				if (ret)
1575					break;
 
 
1576			}
1577			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1578					      path->slots[0]);
1579			if (found_key.objectid != dirid ||
1580			    found_key.type != dir_key.type)
1581				goto next_type;
1582
1583			if (found_key.offset > range_end)
1584				break;
1585
1586			ret = check_item_in_log(trans, root, log, path,
1587						log_path, dir,
1588						&found_key);
1589			BUG_ON(ret);
 
1590			if (found_key.offset == (u64)-1)
1591				break;
1592			dir_key.offset = found_key.offset + 1;
1593		}
1594		btrfs_release_path(path);
1595		if (range_end == (u64)-1)
1596			break;
1597		range_start = range_end + 1;
1598	}
1599
1600next_type:
1601	ret = 0;
1602	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1603		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1604		dir_key.type = BTRFS_DIR_INDEX_KEY;
1605		btrfs_release_path(path);
1606		goto again;
1607	}
1608out:
1609	btrfs_release_path(path);
1610	btrfs_free_path(log_path);
1611	iput(dir);
1612	return ret;
1613}
1614
1615/*
1616 * the process_func used to replay items from the log tree.  This
1617 * gets called in two different stages.  The first stage just looks
1618 * for inodes and makes sure they are all copied into the subvolume.
1619 *
1620 * The second stage copies all the other item types from the log into
1621 * the subvolume.  The two stage approach is slower, but gets rid of
1622 * lots of complexity around inodes referencing other inodes that exist
1623 * only in the log (references come from either directory items or inode
1624 * back refs).
1625 */
1626static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1627			     struct walk_control *wc, u64 gen)
1628{
1629	int nritems;
1630	struct btrfs_path *path;
1631	struct btrfs_root *root = wc->replay_dest;
1632	struct btrfs_key key;
1633	int level;
1634	int i;
1635	int ret;
1636
1637	ret = btrfs_read_buffer(eb, gen);
1638	if (ret)
1639		return ret;
1640
1641	level = btrfs_header_level(eb);
1642
1643	if (level != 0)
1644		return 0;
1645
1646	path = btrfs_alloc_path();
1647	if (!path)
1648		return -ENOMEM;
1649
1650	nritems = btrfs_header_nritems(eb);
1651	for (i = 0; i < nritems; i++) {
1652		btrfs_item_key_to_cpu(eb, &key, i);
1653
1654		/* inode keys are done during the first stage */
1655		if (key.type == BTRFS_INODE_ITEM_KEY &&
1656		    wc->stage == LOG_WALK_REPLAY_INODES) {
1657			struct btrfs_inode_item *inode_item;
1658			u32 mode;
1659
1660			inode_item = btrfs_item_ptr(eb, i,
1661					    struct btrfs_inode_item);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1662			mode = btrfs_inode_mode(eb, inode_item);
1663			if (S_ISDIR(mode)) {
1664				ret = replay_dir_deletes(wc->trans,
1665					 root, log, path, key.objectid, 0);
1666				BUG_ON(ret);
 
1667			}
1668			ret = overwrite_item(wc->trans, root, path,
1669					     eb, i, &key);
1670			BUG_ON(ret);
 
1671
1672			/* for regular files, make sure corresponding
1673			 * orhpan item exist. extents past the new EOF
1674			 * will be truncated later by orphan cleanup.
 
 
 
 
1675			 */
1676			if (S_ISREG(mode)) {
1677				ret = insert_orphan_item(wc->trans, root,
1678							 key.objectid);
1679				BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1680			}
1681
1682			ret = link_to_fixup_dir(wc->trans, root,
1683						path, key.objectid);
1684			BUG_ON(ret);
 
1685		}
 
 
 
 
 
 
 
 
 
 
 
 
1686		if (wc->stage < LOG_WALK_REPLAY_ALL)
1687			continue;
1688
1689		/* these keys are simply copied */
1690		if (key.type == BTRFS_XATTR_ITEM_KEY) {
1691			ret = overwrite_item(wc->trans, root, path,
1692					     eb, i, &key);
1693			BUG_ON(ret);
1694		} else if (key.type == BTRFS_INODE_REF_KEY) {
 
 
1695			ret = add_inode_ref(wc->trans, root, log, path,
1696					    eb, i, &key);
1697			BUG_ON(ret && ret != -ENOENT);
 
 
1698		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1699			ret = replay_one_extent(wc->trans, root, path,
1700						eb, i, &key);
1701			BUG_ON(ret);
1702		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
1703			   key.type == BTRFS_DIR_INDEX_KEY) {
1704			ret = replay_one_dir_item(wc->trans, root, path,
1705						  eb, i, &key);
1706			BUG_ON(ret);
 
1707		}
1708	}
1709	btrfs_free_path(path);
1710	return 0;
1711}
1712
1713static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1714				   struct btrfs_root *root,
1715				   struct btrfs_path *path, int *level,
1716				   struct walk_control *wc)
1717{
 
1718	u64 root_owner;
1719	u64 bytenr;
1720	u64 ptr_gen;
1721	struct extent_buffer *next;
1722	struct extent_buffer *cur;
1723	struct extent_buffer *parent;
1724	u32 blocksize;
1725	int ret = 0;
1726
1727	WARN_ON(*level < 0);
1728	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1729
1730	while (*level > 0) {
 
 
1731		WARN_ON(*level < 0);
1732		WARN_ON(*level >= BTRFS_MAX_LEVEL);
1733		cur = path->nodes[*level];
1734
1735		if (btrfs_header_level(cur) != *level)
1736			WARN_ON(1);
1737
1738		if (path->slots[*level] >=
1739		    btrfs_header_nritems(cur))
1740			break;
1741
1742		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1743		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1744		blocksize = btrfs_level_size(root, *level - 1);
 
1745
1746		parent = path->nodes[*level];
1747		root_owner = btrfs_header_owner(parent);
1748
1749		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1750		if (!next)
1751			return -ENOMEM;
1752
1753		if (*level == 1) {
1754			ret = wc->process_func(root, next, wc, ptr_gen);
1755			if (ret)
 
 
1756				return ret;
 
1757
1758			path->slots[*level]++;
1759			if (wc->free) {
1760				ret = btrfs_read_buffer(next, ptr_gen);
 
1761				if (ret) {
1762					free_extent_buffer(next);
1763					return ret;
1764				}
1765
1766				btrfs_tree_lock(next);
1767				btrfs_set_lock_blocking(next);
1768				clean_tree_block(trans, root, next);
1769				btrfs_wait_tree_block_writeback(next);
1770				btrfs_tree_unlock(next);
 
 
 
 
 
1771
1772				WARN_ON(root_owner !=
1773					BTRFS_TREE_LOG_OBJECTID);
1774				ret = btrfs_free_and_pin_reserved_extent(root,
1775							 bytenr, blocksize);
1776				BUG_ON(ret); /* -ENOMEM or logic errors */
 
 
 
 
1777			}
1778			free_extent_buffer(next);
1779			continue;
1780		}
1781		ret = btrfs_read_buffer(next, ptr_gen);
1782		if (ret) {
1783			free_extent_buffer(next);
1784			return ret;
1785		}
1786
1787		WARN_ON(*level <= 0);
1788		if (path->nodes[*level-1])
1789			free_extent_buffer(path->nodes[*level-1]);
1790		path->nodes[*level-1] = next;
1791		*level = btrfs_header_level(next);
1792		path->slots[*level] = 0;
1793		cond_resched();
1794	}
1795	WARN_ON(*level < 0);
1796	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1797
1798	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1799
1800	cond_resched();
1801	return 0;
1802}
1803
1804static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1805				 struct btrfs_root *root,
1806				 struct btrfs_path *path, int *level,
1807				 struct walk_control *wc)
1808{
 
1809	u64 root_owner;
1810	int i;
1811	int slot;
1812	int ret;
1813
1814	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1815		slot = path->slots[i];
1816		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1817			path->slots[i]++;
1818			*level = i;
1819			WARN_ON(*level == 0);
1820			return 0;
1821		} else {
1822			struct extent_buffer *parent;
1823			if (path->nodes[*level] == root->node)
1824				parent = path->nodes[*level];
1825			else
1826				parent = path->nodes[*level + 1];
1827
1828			root_owner = btrfs_header_owner(parent);
1829			ret = wc->process_func(root, path->nodes[*level], wc,
1830				 btrfs_header_generation(path->nodes[*level]));
 
1831			if (ret)
1832				return ret;
1833
1834			if (wc->free) {
1835				struct extent_buffer *next;
1836
1837				next = path->nodes[*level];
1838
1839				btrfs_tree_lock(next);
1840				btrfs_set_lock_blocking(next);
1841				clean_tree_block(trans, root, next);
1842				btrfs_wait_tree_block_writeback(next);
1843				btrfs_tree_unlock(next);
 
 
 
 
 
1844
1845				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1846				ret = btrfs_free_and_pin_reserved_extent(root,
 
1847						path->nodes[*level]->start,
1848						path->nodes[*level]->len);
1849				BUG_ON(ret);
 
1850			}
1851			free_extent_buffer(path->nodes[*level]);
1852			path->nodes[*level] = NULL;
1853			*level = i + 1;
1854		}
1855	}
1856	return 1;
1857}
1858
1859/*
1860 * drop the reference count on the tree rooted at 'snap'.  This traverses
1861 * the tree freeing any blocks that have a ref count of zero after being
1862 * decremented.
1863 */
1864static int walk_log_tree(struct btrfs_trans_handle *trans,
1865			 struct btrfs_root *log, struct walk_control *wc)
1866{
 
1867	int ret = 0;
1868	int wret;
1869	int level;
1870	struct btrfs_path *path;
1871	int i;
1872	int orig_level;
1873
1874	path = btrfs_alloc_path();
1875	if (!path)
1876		return -ENOMEM;
1877
1878	level = btrfs_header_level(log->node);
1879	orig_level = level;
1880	path->nodes[level] = log->node;
1881	extent_buffer_get(log->node);
1882	path->slots[level] = 0;
1883
1884	while (1) {
1885		wret = walk_down_log_tree(trans, log, path, &level, wc);
1886		if (wret > 0)
1887			break;
1888		if (wret < 0) {
1889			ret = wret;
1890			goto out;
1891		}
1892
1893		wret = walk_up_log_tree(trans, log, path, &level, wc);
1894		if (wret > 0)
1895			break;
1896		if (wret < 0) {
1897			ret = wret;
1898			goto out;
1899		}
1900	}
1901
1902	/* was the root node processed? if not, catch it here */
1903	if (path->nodes[orig_level]) {
1904		ret = wc->process_func(log, path->nodes[orig_level], wc,
1905			 btrfs_header_generation(path->nodes[orig_level]));
 
1906		if (ret)
1907			goto out;
1908		if (wc->free) {
1909			struct extent_buffer *next;
1910
1911			next = path->nodes[orig_level];
1912
1913			btrfs_tree_lock(next);
1914			btrfs_set_lock_blocking(next);
1915			clean_tree_block(trans, log, next);
1916			btrfs_wait_tree_block_writeback(next);
1917			btrfs_tree_unlock(next);
 
 
 
 
 
1918
1919			WARN_ON(log->root_key.objectid !=
1920				BTRFS_TREE_LOG_OBJECTID);
1921			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
1922							 next->len);
1923			BUG_ON(ret); /* -ENOMEM or logic errors */
 
1924		}
1925	}
1926
1927out:
1928	for (i = 0; i <= orig_level; i++) {
1929		if (path->nodes[i]) {
1930			free_extent_buffer(path->nodes[i]);
1931			path->nodes[i] = NULL;
1932		}
1933	}
1934	btrfs_free_path(path);
1935	return ret;
1936}
1937
1938/*
1939 * helper function to update the item for a given subvolumes log root
1940 * in the tree of log roots
1941 */
1942static int update_log_root(struct btrfs_trans_handle *trans,
1943			   struct btrfs_root *log)
 
1944{
 
1945	int ret;
1946
1947	if (log->log_transid == 1) {
1948		/* insert root item on the first sync */
1949		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1950				&log->root_key, &log->root_item);
1951	} else {
1952		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1953				&log->root_key, &log->root_item);
1954	}
1955	return ret;
1956}
1957
1958static int wait_log_commit(struct btrfs_trans_handle *trans,
1959			   struct btrfs_root *root, unsigned long transid)
1960{
1961	DEFINE_WAIT(wait);
1962	int index = transid % 2;
1963
1964	/*
1965	 * we only allow two pending log transactions at a time,
1966	 * so we know that if ours is more than 2 older than the
1967	 * current transaction, we're done
1968	 */
1969	do {
1970		prepare_to_wait(&root->log_commit_wait[index],
1971				&wait, TASK_UNINTERRUPTIBLE);
1972		mutex_unlock(&root->log_mutex);
1973
1974		if (root->fs_info->last_trans_log_full_commit !=
1975		    trans->transid && root->log_transid < transid + 2 &&
1976		    atomic_read(&root->log_commit[index]))
1977			schedule();
1978
1979		finish_wait(&root->log_commit_wait[index], &wait);
 
1980		mutex_lock(&root->log_mutex);
1981	} while (root->fs_info->last_trans_log_full_commit !=
1982		 trans->transid && root->log_transid < transid + 2 &&
1983		 atomic_read(&root->log_commit[index]));
1984	return 0;
1985}
1986
1987static void wait_for_writer(struct btrfs_trans_handle *trans,
1988			    struct btrfs_root *root)
1989{
1990	DEFINE_WAIT(wait);
1991	while (root->fs_info->last_trans_log_full_commit !=
1992	       trans->transid && atomic_read(&root->log_writers)) {
1993		prepare_to_wait(&root->log_writer_wait,
1994				&wait, TASK_UNINTERRUPTIBLE);
 
 
 
1995		mutex_unlock(&root->log_mutex);
1996		if (root->fs_info->last_trans_log_full_commit !=
1997		    trans->transid && atomic_read(&root->log_writers))
1998			schedule();
1999		mutex_lock(&root->log_mutex);
2000		finish_wait(&root->log_writer_wait, &wait);
2001	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2002}
2003
2004/*
2005 * btrfs_sync_log does sends a given tree log down to the disk and
2006 * updates the super blocks to record it.  When this call is done,
2007 * you know that any inodes previously logged are safely on disk only
2008 * if it returns 0.
2009 *
2010 * Any other return value means you need to call btrfs_commit_transaction.
2011 * Some of the edge cases for fsyncing directories that have had unlinks
2012 * or renames done in the past mean that sometimes the only safe
2013 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2014 * that has happened.
2015 */
2016int btrfs_sync_log(struct btrfs_trans_handle *trans,
2017		   struct btrfs_root *root)
2018{
2019	int index1;
2020	int index2;
2021	int mark;
2022	int ret;
 
2023	struct btrfs_root *log = root->log_root;
2024	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2025	unsigned long log_transid = 0;
 
 
 
2026
2027	mutex_lock(&root->log_mutex);
2028	index1 = root->log_transid % 2;
 
 
 
 
 
 
2029	if (atomic_read(&root->log_commit[index1])) {
2030		wait_log_commit(trans, root, root->log_transid);
2031		mutex_unlock(&root->log_mutex);
2032		return 0;
2033	}
 
2034	atomic_set(&root->log_commit[index1], 1);
2035
2036	/* wait for previous tree log sync to complete */
2037	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2038		wait_log_commit(trans, root, root->log_transid - 1);
 
2039	while (1) {
2040		unsigned long batch = root->log_batch;
2041		/* when we're on an ssd, just kick the log commit out */
2042		if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
 
2043			mutex_unlock(&root->log_mutex);
2044			schedule_timeout_uninterruptible(1);
2045			mutex_lock(&root->log_mutex);
2046		}
2047		wait_for_writer(trans, root);
2048		if (batch == root->log_batch)
2049			break;
2050	}
2051
2052	/* bail out if we need to do a full commit */
2053	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2054		ret = -EAGAIN;
2055		mutex_unlock(&root->log_mutex);
2056		goto out;
2057	}
2058
2059	log_transid = root->log_transid;
2060	if (log_transid % 2 == 0)
2061		mark = EXTENT_DIRTY;
2062	else
2063		mark = EXTENT_NEW;
2064
2065	/* we start IO on  all the marked extents here, but we don't actually
2066	 * wait for them until later.
2067	 */
2068	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
 
2069	if (ret) {
2070		btrfs_abort_transaction(trans, root, ret);
 
 
2071		mutex_unlock(&root->log_mutex);
2072		goto out;
2073	}
2074
 
 
 
 
 
 
 
 
 
 
 
 
 
2075	btrfs_set_root_node(&log->root_item, log->node);
 
2076
2077	root->log_batch = 0;
2078	root->log_transid++;
2079	log->log_transid = root->log_transid;
2080	root->log_start_pid = 0;
2081	smp_mb();
2082	/*
2083	 * IO has been started, blocks of the log tree have WRITTEN flag set
2084	 * in their headers. new modifications of the log will be written to
2085	 * new positions. so it's safe to allow log writers to go in.
2086	 */
2087	mutex_unlock(&root->log_mutex);
2088
 
 
2089	mutex_lock(&log_root_tree->log_mutex);
2090	log_root_tree->log_batch++;
2091	atomic_inc(&log_root_tree->log_writers);
2092	mutex_unlock(&log_root_tree->log_mutex);
2093
2094	ret = update_log_root(trans, log);
 
 
 
 
2095
2096	mutex_lock(&log_root_tree->log_mutex);
 
 
 
 
 
 
 
 
2097	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2098		smp_mb();
2099		if (waitqueue_active(&log_root_tree->log_writer_wait))
2100			wake_up(&log_root_tree->log_writer_wait);
2101	}
2102
2103	if (ret) {
 
 
 
 
 
 
2104		if (ret != -ENOSPC) {
2105			btrfs_abort_transaction(trans, root, ret);
2106			mutex_unlock(&log_root_tree->log_mutex);
2107			goto out;
2108		}
2109		root->fs_info->last_trans_log_full_commit = trans->transid;
2110		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2111		mutex_unlock(&log_root_tree->log_mutex);
2112		ret = -EAGAIN;
2113		goto out;
2114	}
2115
2116	index2 = log_root_tree->log_transid % 2;
 
 
 
 
 
 
 
 
2117	if (atomic_read(&log_root_tree->log_commit[index2])) {
2118		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2119		wait_log_commit(trans, log_root_tree,
2120				log_root_tree->log_transid);
 
2121		mutex_unlock(&log_root_tree->log_mutex);
2122		ret = 0;
 
2123		goto out;
2124	}
 
2125	atomic_set(&log_root_tree->log_commit[index2], 1);
2126
2127	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2128		wait_log_commit(trans, log_root_tree,
2129				log_root_tree->log_transid - 1);
2130	}
2131
2132	wait_for_writer(trans, log_root_tree);
2133
2134	/*
2135	 * now that we've moved on to the tree of log tree roots,
2136	 * check the full commit flag again
2137	 */
2138	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2139		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
 
2140		mutex_unlock(&log_root_tree->log_mutex);
2141		ret = -EAGAIN;
2142		goto out_wake_log_root;
2143	}
2144
2145	ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2146				&log_root_tree->dirty_log_pages,
2147				EXTENT_DIRTY | EXTENT_NEW);
 
 
 
 
 
 
 
 
 
 
 
2148	if (ret) {
2149		btrfs_abort_transaction(trans, root, ret);
2150		mutex_unlock(&log_root_tree->log_mutex);
2151		goto out_wake_log_root;
2152	}
2153	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2154
2155	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2156				log_root_tree->node->start);
2157	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2158				btrfs_header_level(log_root_tree->node));
2159
2160	log_root_tree->log_batch = 0;
2161	log_root_tree->log_transid++;
2162	smp_mb();
2163
2164	mutex_unlock(&log_root_tree->log_mutex);
2165
2166	/*
2167	 * nobody else is going to jump in and write the the ctree
2168	 * super here because the log_commit atomic below is protecting
2169	 * us.  We must be called with a transaction handle pinning
2170	 * the running transaction open, so a full commit can't hop
2171	 * in and cause problems either.
2172	 */
2173	btrfs_scrub_pause_super(root);
2174	write_ctree_super(trans, root->fs_info->tree_root, 1);
2175	btrfs_scrub_continue_super(root);
2176	ret = 0;
 
 
2177
2178	mutex_lock(&root->log_mutex);
2179	if (root->last_log_commit < log_transid)
2180		root->last_log_commit = log_transid;
2181	mutex_unlock(&root->log_mutex);
2182
2183out_wake_log_root:
 
 
 
 
2184	atomic_set(&log_root_tree->log_commit[index2], 0);
2185	smp_mb();
2186	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2187		wake_up(&log_root_tree->log_commit_wait[index2]);
 
 
 
 
 
2188out:
 
 
 
2189	atomic_set(&root->log_commit[index1], 0);
2190	smp_mb();
2191	if (waitqueue_active(&root->log_commit_wait[index1]))
2192		wake_up(&root->log_commit_wait[index1]);
 
 
 
 
 
2193	return ret;
2194}
2195
2196static void free_log_tree(struct btrfs_trans_handle *trans,
2197			  struct btrfs_root *log)
2198{
2199	int ret;
2200	u64 start;
2201	u64 end;
2202	struct walk_control wc = {
2203		.free = 1,
2204		.process_func = process_one_buffer
2205	};
2206
2207	ret = walk_log_tree(trans, log, &wc);
2208	BUG_ON(ret);
2209
2210	while (1) {
2211		ret = find_first_extent_bit(&log->dirty_log_pages,
2212				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2213		if (ret)
2214			break;
2215
2216		clear_extent_bits(&log->dirty_log_pages, start, end,
2217				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2218	}
2219
 
 
2220	free_extent_buffer(log->node);
2221	kfree(log);
2222}
2223
2224/*
2225 * free all the extents used by the tree log.  This should be called
2226 * at commit time of the full transaction
2227 */
2228int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2229{
2230	if (root->log_root) {
2231		free_log_tree(trans, root->log_root);
2232		root->log_root = NULL;
2233	}
2234	return 0;
2235}
2236
2237int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2238			     struct btrfs_fs_info *fs_info)
2239{
2240	if (fs_info->log_root_tree) {
2241		free_log_tree(trans, fs_info->log_root_tree);
2242		fs_info->log_root_tree = NULL;
2243	}
2244	return 0;
2245}
2246
2247/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2248 * If both a file and directory are logged, and unlinks or renames are
2249 * mixed in, we have a few interesting corners:
2250 *
2251 * create file X in dir Y
2252 * link file X to X.link in dir Y
2253 * fsync file X
2254 * unlink file X but leave X.link
2255 * fsync dir Y
2256 *
2257 * After a crash we would expect only X.link to exist.  But file X
2258 * didn't get fsync'd again so the log has back refs for X and X.link.
2259 *
2260 * We solve this by removing directory entries and inode backrefs from the
2261 * log when a file that was logged in the current transaction is
2262 * unlinked.  Any later fsync will include the updated log entries, and
2263 * we'll be able to reconstruct the proper directory items from backrefs.
2264 *
2265 * This optimizations allows us to avoid relogging the entire inode
2266 * or the entire directory.
2267 */
2268int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2269				 struct btrfs_root *root,
2270				 const char *name, int name_len,
2271				 struct inode *dir, u64 index)
2272{
2273	struct btrfs_root *log;
2274	struct btrfs_dir_item *di;
2275	struct btrfs_path *path;
2276	int ret;
2277	int err = 0;
2278	int bytes_del = 0;
2279	u64 dir_ino = btrfs_ino(dir);
2280
2281	if (BTRFS_I(dir)->logged_trans < trans->transid)
2282		return 0;
2283
2284	ret = join_running_log_trans(root);
2285	if (ret)
2286		return 0;
2287
2288	mutex_lock(&BTRFS_I(dir)->log_mutex);
2289
2290	log = root->log_root;
2291	path = btrfs_alloc_path();
2292	if (!path) {
2293		err = -ENOMEM;
2294		goto out_unlock;
2295	}
2296
2297	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2298				   name, name_len, -1);
2299	if (IS_ERR(di)) {
2300		err = PTR_ERR(di);
2301		goto fail;
2302	}
2303	if (di) {
2304		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2305		bytes_del += name_len;
2306		BUG_ON(ret);
 
 
 
2307	}
2308	btrfs_release_path(path);
2309	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2310					 index, name, name_len, -1);
2311	if (IS_ERR(di)) {
2312		err = PTR_ERR(di);
2313		goto fail;
2314	}
2315	if (di) {
2316		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2317		bytes_del += name_len;
2318		BUG_ON(ret);
 
 
 
2319	}
2320
2321	/* update the directory size in the log to reflect the names
2322	 * we have removed
2323	 */
2324	if (bytes_del) {
2325		struct btrfs_key key;
2326
2327		key.objectid = dir_ino;
2328		key.offset = 0;
2329		key.type = BTRFS_INODE_ITEM_KEY;
2330		btrfs_release_path(path);
2331
2332		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2333		if (ret < 0) {
2334			err = ret;
2335			goto fail;
2336		}
2337		if (ret == 0) {
2338			struct btrfs_inode_item *item;
2339			u64 i_size;
2340
2341			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2342					      struct btrfs_inode_item);
2343			i_size = btrfs_inode_size(path->nodes[0], item);
2344			if (i_size > bytes_del)
2345				i_size -= bytes_del;
2346			else
2347				i_size = 0;
2348			btrfs_set_inode_size(path->nodes[0], item, i_size);
2349			btrfs_mark_buffer_dirty(path->nodes[0]);
2350		} else
2351			ret = 0;
2352		btrfs_release_path(path);
2353	}
2354fail:
2355	btrfs_free_path(path);
2356out_unlock:
2357	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2358	if (ret == -ENOSPC) {
2359		root->fs_info->last_trans_log_full_commit = trans->transid;
2360		ret = 0;
2361	} else if (ret < 0)
2362		btrfs_abort_transaction(trans, root, ret);
2363
2364	btrfs_end_log_trans(root);
2365
2366	return err;
2367}
2368
2369/* see comments for btrfs_del_dir_entries_in_log */
2370int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2371			       struct btrfs_root *root,
2372			       const char *name, int name_len,
2373			       struct inode *inode, u64 dirid)
2374{
2375	struct btrfs_root *log;
2376	u64 index;
2377	int ret;
2378
2379	if (BTRFS_I(inode)->logged_trans < trans->transid)
2380		return 0;
2381
2382	ret = join_running_log_trans(root);
2383	if (ret)
2384		return 0;
2385	log = root->log_root;
2386	mutex_lock(&BTRFS_I(inode)->log_mutex);
2387
2388	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2389				  dirid, &index);
2390	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2391	if (ret == -ENOSPC) {
2392		root->fs_info->last_trans_log_full_commit = trans->transid;
2393		ret = 0;
2394	} else if (ret < 0 && ret != -ENOENT)
2395		btrfs_abort_transaction(trans, root, ret);
2396	btrfs_end_log_trans(root);
2397
2398	return ret;
2399}
2400
2401/*
2402 * creates a range item in the log for 'dirid'.  first_offset and
2403 * last_offset tell us which parts of the key space the log should
2404 * be considered authoritative for.
2405 */
2406static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2407				       struct btrfs_root *log,
2408				       struct btrfs_path *path,
2409				       int key_type, u64 dirid,
2410				       u64 first_offset, u64 last_offset)
2411{
2412	int ret;
2413	struct btrfs_key key;
2414	struct btrfs_dir_log_item *item;
2415
2416	key.objectid = dirid;
2417	key.offset = first_offset;
2418	if (key_type == BTRFS_DIR_ITEM_KEY)
2419		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2420	else
2421		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2422	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2423	if (ret)
2424		return ret;
2425
2426	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2427			      struct btrfs_dir_log_item);
2428	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2429	btrfs_mark_buffer_dirty(path->nodes[0]);
2430	btrfs_release_path(path);
2431	return 0;
2432}
2433
2434/*
2435 * log all the items included in the current transaction for a given
2436 * directory.  This also creates the range items in the log tree required
2437 * to replay anything deleted before the fsync
2438 */
2439static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2440			  struct btrfs_root *root, struct inode *inode,
2441			  struct btrfs_path *path,
2442			  struct btrfs_path *dst_path, int key_type,
 
2443			  u64 min_offset, u64 *last_offset_ret)
2444{
2445	struct btrfs_key min_key;
2446	struct btrfs_key max_key;
2447	struct btrfs_root *log = root->log_root;
2448	struct extent_buffer *src;
2449	int err = 0;
2450	int ret;
2451	int i;
2452	int nritems;
2453	u64 first_offset = min_offset;
2454	u64 last_offset = (u64)-1;
2455	u64 ino = btrfs_ino(inode);
2456
2457	log = root->log_root;
2458	max_key.objectid = ino;
2459	max_key.offset = (u64)-1;
2460	max_key.type = key_type;
2461
2462	min_key.objectid = ino;
2463	min_key.type = key_type;
2464	min_key.offset = min_offset;
2465
2466	path->keep_locks = 1;
2467
2468	ret = btrfs_search_forward(root, &min_key, &max_key,
2469				   path, 0, trans->transid);
2470
2471	/*
2472	 * we didn't find anything from this transaction, see if there
2473	 * is anything at all
2474	 */
2475	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2476		min_key.objectid = ino;
2477		min_key.type = key_type;
2478		min_key.offset = (u64)-1;
2479		btrfs_release_path(path);
2480		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2481		if (ret < 0) {
2482			btrfs_release_path(path);
2483			return ret;
2484		}
2485		ret = btrfs_previous_item(root, path, ino, key_type);
2486
2487		/* if ret == 0 there are items for this type,
2488		 * create a range to tell us the last key of this type.
2489		 * otherwise, there are no items in this directory after
2490		 * *min_offset, and we create a range to indicate that.
2491		 */
2492		if (ret == 0) {
2493			struct btrfs_key tmp;
2494			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2495					      path->slots[0]);
2496			if (key_type == tmp.type)
2497				first_offset = max(min_offset, tmp.offset) + 1;
2498		}
2499		goto done;
2500	}
2501
2502	/* go backward to find any previous key */
2503	ret = btrfs_previous_item(root, path, ino, key_type);
2504	if (ret == 0) {
2505		struct btrfs_key tmp;
2506		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2507		if (key_type == tmp.type) {
2508			first_offset = tmp.offset;
2509			ret = overwrite_item(trans, log, dst_path,
2510					     path->nodes[0], path->slots[0],
2511					     &tmp);
2512			if (ret) {
2513				err = ret;
2514				goto done;
2515			}
2516		}
2517	}
2518	btrfs_release_path(path);
2519
2520	/* find the first key from this transaction again */
 
 
 
 
 
 
 
2521	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2522	if (ret != 0) {
2523		WARN_ON(1);
2524		goto done;
2525	}
2526
2527	/*
2528	 * we have a block from this transaction, log every item in it
2529	 * from our directory
2530	 */
2531	while (1) {
2532		struct btrfs_key tmp;
2533		src = path->nodes[0];
2534		nritems = btrfs_header_nritems(src);
2535		for (i = path->slots[0]; i < nritems; i++) {
 
 
2536			btrfs_item_key_to_cpu(src, &min_key, i);
2537
2538			if (min_key.objectid != ino || min_key.type != key_type)
2539				goto done;
2540			ret = overwrite_item(trans, log, dst_path, src, i,
2541					     &min_key);
2542			if (ret) {
2543				err = ret;
2544				goto done;
2545			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2546		}
2547		path->slots[0] = nritems;
2548
2549		/*
2550		 * look ahead to the next item and see if it is also
2551		 * from this directory and from this transaction
2552		 */
2553		ret = btrfs_next_leaf(root, path);
2554		if (ret == 1) {
2555			last_offset = (u64)-1;
 
 
 
2556			goto done;
2557		}
2558		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2559		if (tmp.objectid != ino || tmp.type != key_type) {
2560			last_offset = (u64)-1;
2561			goto done;
2562		}
2563		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2564			ret = overwrite_item(trans, log, dst_path,
2565					     path->nodes[0], path->slots[0],
2566					     &tmp);
2567			if (ret)
2568				err = ret;
2569			else
2570				last_offset = tmp.offset;
2571			goto done;
2572		}
2573	}
2574done:
2575	btrfs_release_path(path);
2576	btrfs_release_path(dst_path);
2577
2578	if (err == 0) {
2579		*last_offset_ret = last_offset;
2580		/*
2581		 * insert the log range keys to indicate where the log
2582		 * is valid
2583		 */
2584		ret = insert_dir_log_key(trans, log, path, key_type,
2585					 ino, first_offset, last_offset);
2586		if (ret)
2587			err = ret;
2588	}
2589	return err;
2590}
2591
2592/*
2593 * logging directories is very similar to logging inodes, We find all the items
2594 * from the current transaction and write them to the log.
2595 *
2596 * The recovery code scans the directory in the subvolume, and if it finds a
2597 * key in the range logged that is not present in the log tree, then it means
2598 * that dir entry was unlinked during the transaction.
2599 *
2600 * In order for that scan to work, we must include one key smaller than
2601 * the smallest logged by this transaction and one key larger than the largest
2602 * key logged by this transaction.
2603 */
2604static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2605			  struct btrfs_root *root, struct inode *inode,
2606			  struct btrfs_path *path,
2607			  struct btrfs_path *dst_path)
 
2608{
2609	u64 min_key;
2610	u64 max_key;
2611	int ret;
2612	int key_type = BTRFS_DIR_ITEM_KEY;
2613
2614again:
2615	min_key = 0;
2616	max_key = 0;
2617	while (1) {
2618		ret = log_dir_items(trans, root, inode, path,
2619				    dst_path, key_type, min_key,
2620				    &max_key);
2621		if (ret)
2622			return ret;
2623		if (max_key == (u64)-1)
2624			break;
2625		min_key = max_key + 1;
2626	}
2627
2628	if (key_type == BTRFS_DIR_ITEM_KEY) {
2629		key_type = BTRFS_DIR_INDEX_KEY;
2630		goto again;
2631	}
2632	return 0;
2633}
2634
2635/*
2636 * a helper function to drop items from the log before we relog an
2637 * inode.  max_key_type indicates the highest item type to remove.
2638 * This cannot be run for file data extents because it does not
2639 * free the extents they point to.
2640 */
2641static int drop_objectid_items(struct btrfs_trans_handle *trans,
2642				  struct btrfs_root *log,
2643				  struct btrfs_path *path,
2644				  u64 objectid, int max_key_type)
2645{
2646	int ret;
2647	struct btrfs_key key;
2648	struct btrfs_key found_key;
 
2649
2650	key.objectid = objectid;
2651	key.type = max_key_type;
2652	key.offset = (u64)-1;
2653
2654	while (1) {
2655		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2656		BUG_ON(ret == 0);
2657		if (ret < 0)
2658			break;
2659
2660		if (path->slots[0] == 0)
2661			break;
2662
2663		path->slots[0]--;
2664		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2665				      path->slots[0]);
2666
2667		if (found_key.objectid != objectid)
2668			break;
2669
2670		ret = btrfs_del_item(trans, log, path);
2671		if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
2672			break;
2673		btrfs_release_path(path);
2674	}
2675	btrfs_release_path(path);
2676	if (ret > 0)
2677		ret = 0;
2678	return ret;
2679}
2680
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2681static noinline int copy_items(struct btrfs_trans_handle *trans,
2682			       struct btrfs_root *log,
2683			       struct btrfs_path *dst_path,
2684			       struct extent_buffer *src,
2685			       int start_slot, int nr, int inode_only)
 
2686{
 
2687	unsigned long src_offset;
2688	unsigned long dst_offset;
 
2689	struct btrfs_file_extent_item *extent;
2690	struct btrfs_inode_item *inode_item;
 
 
2691	int ret;
2692	struct btrfs_key *ins_keys;
2693	u32 *ins_sizes;
2694	char *ins_data;
2695	int i;
2696	struct list_head ordered_sums;
 
 
 
 
2697
2698	INIT_LIST_HEAD(&ordered_sums);
2699
2700	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2701			   nr * sizeof(u32), GFP_NOFS);
2702	if (!ins_data)
2703		return -ENOMEM;
2704
 
 
2705	ins_sizes = (u32 *)ins_data;
2706	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2707
2708	for (i = 0; i < nr; i++) {
2709		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2710		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2711	}
2712	ret = btrfs_insert_empty_items(trans, log, dst_path,
2713				       ins_keys, ins_sizes, nr);
2714	if (ret) {
2715		kfree(ins_data);
2716		return ret;
2717	}
2718
2719	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2720		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2721						   dst_path->slots[0]);
2722
2723		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2724
2725		copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2726				   src_offset, ins_sizes[i]);
2727
2728		if (inode_only == LOG_INODE_EXISTS &&
2729		    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2730			inode_item = btrfs_item_ptr(dst_path->nodes[0],
2731						    dst_path->slots[0],
2732						    struct btrfs_inode_item);
2733			btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
 
 
 
 
 
 
 
2734
2735			/* set the generation to zero so the recover code
2736			 * can tell the difference between an logging
2737			 * just to say 'this inode exists' and a logging
2738			 * to say 'update this inode with these values'
2739			 */
2740			btrfs_set_inode_generation(dst_path->nodes[0],
2741						   inode_item, 0);
 
 
 
 
 
2742		}
 
2743		/* take a reference on file data extents so that truncates
2744		 * or deletes of this inode don't have to relog the inode
2745		 * again
2746		 */
2747		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
 
2748			int found_type;
2749			extent = btrfs_item_ptr(src, start_slot + i,
2750						struct btrfs_file_extent_item);
2751
2752			if (btrfs_file_extent_generation(src, extent) < trans->transid)
2753				continue;
2754
2755			found_type = btrfs_file_extent_type(src, extent);
2756			if (found_type == BTRFS_FILE_EXTENT_REG ||
2757			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2758				u64 ds, dl, cs, cl;
2759				ds = btrfs_file_extent_disk_bytenr(src,
2760								extent);
2761				/* ds == 0 is a hole */
2762				if (ds == 0)
2763					continue;
2764
2765				dl = btrfs_file_extent_disk_num_bytes(src,
2766								extent);
2767				cs = btrfs_file_extent_offset(src, extent);
2768				cl = btrfs_file_extent_num_bytes(src,
2769								extent);
2770				if (btrfs_file_extent_compression(src,
2771								  extent)) {
2772					cs = 0;
2773					cl = dl;
2774				}
2775
2776				ret = btrfs_lookup_csums_range(
2777						log->fs_info->csum_root,
2778						ds + cs, ds + cs + cl - 1,
2779						&ordered_sums, 0);
2780				BUG_ON(ret);
 
 
 
 
2781			}
2782		}
2783	}
2784
2785	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2786	btrfs_release_path(dst_path);
2787	kfree(ins_data);
2788
2789	/*
2790	 * we have to do this after the loop above to avoid changing the
2791	 * log tree while trying to change the log tree.
2792	 */
2793	ret = 0;
2794	while (!list_empty(&ordered_sums)) {
2795		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2796						   struct btrfs_ordered_sum,
2797						   list);
2798		if (!ret)
2799			ret = btrfs_csum_file_blocks(trans, log, sums);
2800		list_del(&sums->list);
2801		kfree(sums);
2802	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2803	return ret;
2804}
2805
2806/* log a single inode in the tree log.
2807 * At least one parent directory for this inode must exist in the tree
2808 * or be logged already.
2809 *
2810 * Any items from this inode changed by the current transaction are copied
2811 * to the log tree.  An extra reference is taken on any extents in this
2812 * file, allowing us to avoid a whole pile of corner cases around logging
2813 * blocks that have been removed from the tree.
2814 *
2815 * See LOG_INODE_ALL and related defines for a description of what inode_only
2816 * does.
2817 *
2818 * This handles both files and directories.
2819 */
2820static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2821			     struct btrfs_root *root, struct inode *inode,
2822			     int inode_only)
 
 
 
2823{
 
2824	struct btrfs_path *path;
2825	struct btrfs_path *dst_path;
2826	struct btrfs_key min_key;
2827	struct btrfs_key max_key;
2828	struct btrfs_root *log = root->log_root;
2829	struct extent_buffer *src = NULL;
2830	int err = 0;
2831	int ret;
2832	int nritems;
2833	int ins_start_slot = 0;
2834	int ins_nr;
 
2835	u64 ino = btrfs_ino(inode);
2836
2837	log = root->log_root;
 
 
 
2838
2839	path = btrfs_alloc_path();
2840	if (!path)
2841		return -ENOMEM;
2842	dst_path = btrfs_alloc_path();
2843	if (!dst_path) {
2844		btrfs_free_path(path);
2845		return -ENOMEM;
2846	}
2847
2848	min_key.objectid = ino;
2849	min_key.type = BTRFS_INODE_ITEM_KEY;
2850	min_key.offset = 0;
2851
2852	max_key.objectid = ino;
2853
2854	/* today the code can only do partial logging of directories */
2855	if (!S_ISDIR(inode->i_mode))
2856	    inode_only = LOG_INODE_ALL;
2857
2858	if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
 
 
 
 
2859		max_key.type = BTRFS_XATTR_ITEM_KEY;
2860	else
2861		max_key.type = (u8)-1;
2862	max_key.offset = (u64)-1;
2863
2864	ret = btrfs_commit_inode_delayed_items(trans, inode);
 
 
 
 
 
 
 
 
 
 
 
2865	if (ret) {
2866		btrfs_free_path(path);
2867		btrfs_free_path(dst_path);
2868		return ret;
2869	}
2870
2871	mutex_lock(&BTRFS_I(inode)->log_mutex);
 
 
 
 
 
 
 
 
 
2872
2873	/*
2874	 * a brute force approach to making sure we get the most uptodate
2875	 * copies of everything.
2876	 */
2877	if (S_ISDIR(inode->i_mode)) {
2878		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2879
2880		if (inode_only == LOG_INODE_EXISTS)
2881			max_key_type = BTRFS_XATTR_ITEM_KEY;
2882		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
2883	} else {
2884		ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2885	}
2886	if (ret) {
2887		err = ret;
2888		goto out_unlock;
2889	}
2890	path->keep_locks = 1;
2891
2892	while (1) {
2893		ins_nr = 0;
2894		ret = btrfs_search_forward(root, &min_key, &max_key,
2895					   path, 0, trans->transid);
 
 
 
 
2896		if (ret != 0)
2897			break;
2898again:
2899		/* note, ins_nr might be > 0 here, cleanup outside the loop */
2900		if (min_key.objectid != ino)
2901			break;
2902		if (min_key.type > max_key.type)
2903			break;
2904
2905		src = path->nodes[0];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2906		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2907			ins_nr++;
2908			goto next_slot;
2909		} else if (!ins_nr) {
2910			ins_start_slot = path->slots[0];
2911			ins_nr = 1;
2912			goto next_slot;
2913		}
2914
2915		ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2916				 ins_nr, inode_only);
2917		if (ret) {
 
2918			err = ret;
2919			goto out_unlock;
2920		}
 
 
 
 
 
2921		ins_nr = 1;
2922		ins_start_slot = path->slots[0];
2923next_slot:
2924
2925		nritems = btrfs_header_nritems(path->nodes[0]);
2926		path->slots[0]++;
2927		if (path->slots[0] < nritems) {
2928			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2929					      path->slots[0]);
2930			goto again;
2931		}
2932		if (ins_nr) {
2933			ret = copy_items(trans, log, dst_path, src,
2934					 ins_start_slot,
2935					 ins_nr, inode_only);
2936			if (ret) {
2937				err = ret;
2938				goto out_unlock;
2939			}
 
2940			ins_nr = 0;
2941		}
2942		btrfs_release_path(path);
2943
2944		if (min_key.offset < (u64)-1)
2945			min_key.offset++;
2946		else if (min_key.type < (u8)-1)
2947			min_key.type++;
2948		else if (min_key.objectid < (u64)-1)
2949			min_key.objectid++;
2950		else
2951			break;
 
2952	}
2953	if (ins_nr) {
2954		ret = copy_items(trans, log, dst_path, src,
2955				 ins_start_slot,
2956				 ins_nr, inode_only);
2957		if (ret) {
2958			err = ret;
2959			goto out_unlock;
2960		}
 
2961		ins_nr = 0;
2962	}
2963	WARN_ON(ins_nr);
2964	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
 
 
 
 
 
 
2965		btrfs_release_path(path);
2966		btrfs_release_path(dst_path);
2967		ret = log_directory_changes(trans, root, inode, path, dst_path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2968		if (ret) {
2969			err = ret;
2970			goto out_unlock;
2971		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2972	}
2973	BTRFS_I(inode)->logged_trans = trans->transid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2974out_unlock:
2975	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2976
2977	btrfs_free_path(path);
2978	btrfs_free_path(dst_path);
2979	return err;
2980}
2981
2982/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2983 * follow the dentry parent pointers up the chain and see if any
2984 * of the directories in it require a full commit before they can
2985 * be logged.  Returns zero if nothing special needs to be done or 1 if
2986 * a full commit is required.
2987 */
2988static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2989					       struct inode *inode,
2990					       struct dentry *parent,
2991					       struct super_block *sb,
2992					       u64 last_committed)
2993{
2994	int ret = 0;
2995	struct btrfs_root *root;
2996	struct dentry *old_parent = NULL;
2997
2998	/*
2999	 * for regular files, if its inode is already on disk, we don't
3000	 * have to worry about the parents at all.  This is because
3001	 * we can use the last_unlink_trans field to record renames
3002	 * and other fun in this file.
3003	 */
3004	if (S_ISREG(inode->i_mode) &&
3005	    BTRFS_I(inode)->generation <= last_committed &&
3006	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
3007			goto out;
3008
3009	if (!S_ISDIR(inode->i_mode)) {
3010		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3011			goto out;
3012		inode = parent->d_inode;
3013	}
3014
3015	while (1) {
3016		BTRFS_I(inode)->logged_trans = trans->transid;
3017		smp_mb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3018
3019		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3020			root = BTRFS_I(inode)->root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3021
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3022			/*
3023			 * make sure any commits to the log are forced
3024			 * to be full commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3025			 */
3026			root->fs_info->last_trans_log_full_commit =
3027				trans->transid;
3028			ret = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3029			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3030		}
3031
3032		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3033			break;
3034
 
 
 
 
 
 
3035		if (IS_ROOT(parent))
3036			break;
3037
3038		parent = dget_parent(parent);
3039		dput(old_parent);
3040		old_parent = parent;
3041		inode = parent->d_inode;
3042
3043	}
3044	dput(old_parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3045out:
 
3046	return ret;
3047}
3048
3049/*
3050 * helper function around btrfs_log_inode to make sure newly created
3051 * parent directories also end up in the log.  A minimal inode and backref
3052 * only logging is done of any parent directories that are older than
3053 * the last committed transaction
3054 */
3055int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3056		    struct btrfs_root *root, struct inode *inode,
3057		    struct dentry *parent, int exists_only)
 
 
 
 
3058{
3059	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
 
3060	struct super_block *sb;
3061	struct dentry *old_parent = NULL;
3062	int ret = 0;
3063	u64 last_committed = root->fs_info->last_trans_committed;
 
3064
3065	sb = inode->i_sb;
3066
3067	if (btrfs_test_opt(root, NOTREELOG)) {
3068		ret = 1;
3069		goto end_no_trans;
3070	}
3071
3072	if (root->fs_info->last_trans_log_full_commit >
3073	    root->fs_info->last_trans_committed) {
 
 
 
 
3074		ret = 1;
3075		goto end_no_trans;
3076	}
3077
3078	if (root != BTRFS_I(inode)->root ||
3079	    btrfs_root_refs(&root->root_item) == 0) {
3080		ret = 1;
3081		goto end_no_trans;
3082	}
3083
3084	ret = check_parent_dirs_for_sync(trans, inode, parent,
3085					 sb, last_committed);
3086	if (ret)
3087		goto end_no_trans;
3088
3089	if (btrfs_inode_in_log(inode, trans->transid)) {
 
 
 
 
 
 
3090		ret = BTRFS_NO_LOG_SYNC;
3091		goto end_no_trans;
3092	}
3093
3094	ret = start_log_trans(trans, root);
3095	if (ret)
3096		goto end_trans;
3097
3098	ret = btrfs_log_inode(trans, root, inode, inode_only);
3099	if (ret)
3100		goto end_trans;
3101
3102	/*
3103	 * for regular files, if its inode is already on disk, we don't
3104	 * have to worry about the parents at all.  This is because
3105	 * we can use the last_unlink_trans field to record renames
3106	 * and other fun in this file.
3107	 */
3108	if (S_ISREG(inode->i_mode) &&
3109	    BTRFS_I(inode)->generation <= last_committed &&
3110	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3111		ret = 0;
3112		goto end_trans;
3113	}
3114
3115	inode_only = LOG_INODE_EXISTS;
3116	while (1) {
3117		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3118			break;
3119
3120		inode = parent->d_inode;
3121		if (root != BTRFS_I(inode)->root)
3122			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3123
3124		if (BTRFS_I(inode)->generation >
3125		    root->fs_info->last_trans_committed) {
3126			ret = btrfs_log_inode(trans, root, inode, inode_only);
3127			if (ret)
3128				goto end_trans;
3129		}
3130		if (IS_ROOT(parent))
3131			break;
3132
3133		parent = dget_parent(parent);
3134		dput(old_parent);
3135		old_parent = parent;
3136	}
3137	ret = 0;
3138end_trans:
3139	dput(old_parent);
3140	if (ret < 0) {
3141		BUG_ON(ret != -ENOSPC);
3142		root->fs_info->last_trans_log_full_commit = trans->transid;
3143		ret = 1;
3144	}
 
 
 
3145	btrfs_end_log_trans(root);
3146end_no_trans:
3147	return ret;
3148}
3149
3150/*
3151 * it is not safe to log dentry if the chunk root has added new
3152 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
3153 * If this returns 1, you must commit the transaction to safely get your
3154 * data on disk.
3155 */
3156int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3157			  struct btrfs_root *root, struct dentry *dentry)
 
 
 
3158{
3159	struct dentry *parent = dget_parent(dentry);
3160	int ret;
3161
3162	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
 
3163	dput(parent);
3164
3165	return ret;
3166}
3167
3168/*
3169 * should be called during mount to recover any replay any log trees
3170 * from the FS
3171 */
3172int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3173{
3174	int ret;
3175	struct btrfs_path *path;
3176	struct btrfs_trans_handle *trans;
3177	struct btrfs_key key;
3178	struct btrfs_key found_key;
3179	struct btrfs_key tmp_key;
3180	struct btrfs_root *log;
3181	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3182	struct walk_control wc = {
3183		.process_func = process_one_buffer,
3184		.stage = 0,
3185	};
3186
3187	path = btrfs_alloc_path();
3188	if (!path)
3189		return -ENOMEM;
3190
3191	fs_info->log_root_recovering = 1;
3192
3193	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3194	if (IS_ERR(trans)) {
3195		ret = PTR_ERR(trans);
3196		goto error;
3197	}
3198
3199	wc.trans = trans;
3200	wc.pin = 1;
3201
3202	ret = walk_log_tree(trans, log_root_tree, &wc);
3203	if (ret) {
3204		btrfs_error(fs_info, ret, "Failed to pin buffers while "
3205			    "recovering log root tree.");
3206		goto error;
3207	}
3208
3209again:
3210	key.objectid = BTRFS_TREE_LOG_OBJECTID;
3211	key.offset = (u64)-1;
3212	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3213
3214	while (1) {
3215		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3216
3217		if (ret < 0) {
3218			btrfs_error(fs_info, ret,
3219				    "Couldn't find tree log root.");
3220			goto error;
3221		}
3222		if (ret > 0) {
3223			if (path->slots[0] == 0)
3224				break;
3225			path->slots[0]--;
3226		}
3227		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3228				      path->slots[0]);
3229		btrfs_release_path(path);
3230		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3231			break;
3232
3233		log = btrfs_read_fs_root_no_radix(log_root_tree,
3234						  &found_key);
3235		if (IS_ERR(log)) {
3236			ret = PTR_ERR(log);
3237			btrfs_error(fs_info, ret,
3238				    "Couldn't read tree log root.");
3239			goto error;
3240		}
3241
3242		tmp_key.objectid = found_key.offset;
3243		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3244		tmp_key.offset = (u64)-1;
3245
3246		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3247		if (IS_ERR(wc.replay_dest)) {
3248			ret = PTR_ERR(wc.replay_dest);
3249			btrfs_error(fs_info, ret, "Couldn't read target root "
3250				    "for tree log recovery.");
 
 
 
3251			goto error;
3252		}
3253
3254		wc.replay_dest->log_root = log;
3255		btrfs_record_root_in_trans(trans, wc.replay_dest);
3256		ret = walk_log_tree(trans, log, &wc);
3257		BUG_ON(ret);
3258
3259		if (wc.stage == LOG_WALK_REPLAY_ALL) {
3260			ret = fixup_inode_link_counts(trans, wc.replay_dest,
3261						      path);
3262			BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3263		}
3264
3265		key.offset = found_key.offset - 1;
3266		wc.replay_dest->log_root = NULL;
3267		free_extent_buffer(log->node);
3268		free_extent_buffer(log->commit_root);
3269		kfree(log);
3270
 
 
 
3271		if (found_key.offset == 0)
3272			break;
3273	}
3274	btrfs_release_path(path);
3275
3276	/* step one is to pin it all, step two is to replay just inodes */
3277	if (wc.pin) {
3278		wc.pin = 0;
3279		wc.process_func = replay_one_buffer;
3280		wc.stage = LOG_WALK_REPLAY_INODES;
3281		goto again;
3282	}
3283	/* step three is to replay everything */
3284	if (wc.stage < LOG_WALK_REPLAY_ALL) {
3285		wc.stage++;
3286		goto again;
3287	}
3288
3289	btrfs_free_path(path);
3290
3291	free_extent_buffer(log_root_tree->node);
3292	log_root_tree->log_root = NULL;
3293	fs_info->log_root_recovering = 0;
3294
3295	/* step 4: commit the transaction, which also unpins the blocks */
3296	btrfs_commit_transaction(trans, fs_info->tree_root);
 
 
3297
 
 
 
3298	kfree(log_root_tree);
3299	return 0;
3300
 
3301error:
 
 
3302	btrfs_free_path(path);
3303	return ret;
3304}
3305
3306/*
3307 * there are some corner cases where we want to force a full
3308 * commit instead of allowing a directory to be logged.
3309 *
3310 * They revolve around files there were unlinked from the directory, and
3311 * this function updates the parent directory so that a full commit is
3312 * properly done if it is fsync'd later after the unlinks are done.
 
 
 
3313 */
3314void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3315			     struct inode *dir, struct inode *inode,
3316			     int for_rename)
3317{
3318	/*
3319	 * when we're logging a file, if it hasn't been renamed
3320	 * or unlinked, and its inode is fully committed on disk,
3321	 * we don't have to worry about walking up the directory chain
3322	 * to log its parents.
3323	 *
3324	 * So, we use the last_unlink_trans field to put this transid
3325	 * into the file.  When the file is logged we check it and
3326	 * don't log the parents if the file is fully on disk.
3327	 */
3328	if (S_ISREG(inode->i_mode))
3329		BTRFS_I(inode)->last_unlink_trans = trans->transid;
 
3330
3331	/*
3332	 * if this directory was already logged any new
3333	 * names for this file/dir will get recorded
3334	 */
3335	smp_mb();
3336	if (BTRFS_I(dir)->logged_trans == trans->transid)
3337		return;
3338
3339	/*
3340	 * if the inode we're about to unlink was logged,
3341	 * the log will be properly updated for any new names
3342	 */
3343	if (BTRFS_I(inode)->logged_trans == trans->transid)
3344		return;
3345
3346	/*
3347	 * when renaming files across directories, if the directory
3348	 * there we're unlinking from gets fsync'd later on, there's
3349	 * no way to find the destination directory later and fsync it
3350	 * properly.  So, we have to be conservative and force commits
3351	 * so the new name gets discovered.
3352	 */
3353	if (for_rename)
3354		goto record;
3355
3356	/* we can safely do the unlink without any special recording */
3357	return;
3358
3359record:
3360	BTRFS_I(dir)->last_unlink_trans = trans->transid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3361}
3362
3363/*
3364 * Call this after adding a new name for a file and it will properly
3365 * update the log to reflect the new name.
3366 *
3367 * It will return zero if all goes well, and it will return 1 if a
3368 * full transaction commit is required.
 
 
 
 
 
 
 
 
 
3369 */
3370int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3371			struct inode *inode, struct inode *old_dir,
3372			struct dentry *parent)
 
3373{
3374	struct btrfs_root * root = BTRFS_I(inode)->root;
 
3375
3376	/*
3377	 * this will force the logging code to walk the dentry chain
3378	 * up for the file
3379	 */
3380	if (S_ISREG(inode->i_mode))
3381		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3382
3383	/*
3384	 * if this inode hasn't been logged and directory we're renaming it
3385	 * from hasn't been logged, we don't need to log it
3386	 */
3387	if (BTRFS_I(inode)->logged_trans <=
3388	    root->fs_info->last_trans_committed &&
3389	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3390		    root->fs_info->last_trans_committed))
3391		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3392
3393	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3394}
3395
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/blkdev.h>
   9#include <linux/list_sort.h>
  10#include <linux/iversion.h>
  11#include "misc.h"
  12#include "ctree.h"
  13#include "tree-log.h"
  14#include "disk-io.h"
  15#include "locking.h"
  16#include "print-tree.h"
  17#include "backref.h"
  18#include "compression.h"
  19#include "qgroup.h"
  20#include "inode-map.h"
  21
  22/* magic values for the inode_only field in btrfs_log_inode:
  23 *
  24 * LOG_INODE_ALL means to log everything
  25 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  26 * during log replay
  27 */
  28enum {
  29	LOG_INODE_ALL,
  30	LOG_INODE_EXISTS,
  31	LOG_OTHER_INODE,
  32	LOG_OTHER_INODE_ALL,
  33};
  34
  35/*
  36 * directory trouble cases
  37 *
  38 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  39 * log, we must force a full commit before doing an fsync of the directory
  40 * where the unlink was done.
  41 * ---> record transid of last unlink/rename per directory
  42 *
  43 * mkdir foo/some_dir
  44 * normal commit
  45 * rename foo/some_dir foo2/some_dir
  46 * mkdir foo/some_dir
  47 * fsync foo/some_dir/some_file
  48 *
  49 * The fsync above will unlink the original some_dir without recording
  50 * it in its new location (foo2).  After a crash, some_dir will be gone
  51 * unless the fsync of some_file forces a full commit
  52 *
  53 * 2) we must log any new names for any file or dir that is in the fsync
  54 * log. ---> check inode while renaming/linking.
  55 *
  56 * 2a) we must log any new names for any file or dir during rename
  57 * when the directory they are being removed from was logged.
  58 * ---> check inode and old parent dir during rename
  59 *
  60 *  2a is actually the more important variant.  With the extra logging
  61 *  a crash might unlink the old name without recreating the new one
  62 *
  63 * 3) after a crash, we must go through any directories with a link count
  64 * of zero and redo the rm -rf
  65 *
  66 * mkdir f1/foo
  67 * normal commit
  68 * rm -rf f1/foo
  69 * fsync(f1)
  70 *
  71 * The directory f1 was fully removed from the FS, but fsync was never
  72 * called on f1, only its parent dir.  After a crash the rm -rf must
  73 * be replayed.  This must be able to recurse down the entire
  74 * directory tree.  The inode link count fixup code takes care of the
  75 * ugly details.
  76 */
  77
  78/*
  79 * stages for the tree walking.  The first
  80 * stage (0) is to only pin down the blocks we find
  81 * the second stage (1) is to make sure that all the inodes
  82 * we find in the log are created in the subvolume.
  83 *
  84 * The last stage is to deal with directories and links and extents
  85 * and all the other fun semantics
  86 */
  87enum {
  88	LOG_WALK_PIN_ONLY,
  89	LOG_WALK_REPLAY_INODES,
  90	LOG_WALK_REPLAY_DIR_INDEX,
  91	LOG_WALK_REPLAY_ALL,
  92};
  93
  94static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  95			   struct btrfs_root *root, struct btrfs_inode *inode,
  96			   int inode_only,
  97			   const loff_t start,
  98			   const loff_t end,
  99			   struct btrfs_log_ctx *ctx);
 100static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 101			     struct btrfs_root *root,
 102			     struct btrfs_path *path, u64 objectid);
 103static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 104				       struct btrfs_root *root,
 105				       struct btrfs_root *log,
 106				       struct btrfs_path *path,
 107				       u64 dirid, int del_all);
 108
 109/*
 110 * tree logging is a special write ahead log used to make sure that
 111 * fsyncs and O_SYNCs can happen without doing full tree commits.
 112 *
 113 * Full tree commits are expensive because they require commonly
 114 * modified blocks to be recowed, creating many dirty pages in the
 115 * extent tree an 4x-6x higher write load than ext3.
 116 *
 117 * Instead of doing a tree commit on every fsync, we use the
 118 * key ranges and transaction ids to find items for a given file or directory
 119 * that have changed in this transaction.  Those items are copied into
 120 * a special tree (one per subvolume root), that tree is written to disk
 121 * and then the fsync is considered complete.
 122 *
 123 * After a crash, items are copied out of the log-tree back into the
 124 * subvolume tree.  Any file data extents found are recorded in the extent
 125 * allocation tree, and the log-tree freed.
 126 *
 127 * The log tree is read three times, once to pin down all the extents it is
 128 * using in ram and once, once to create all the inodes logged in the tree
 129 * and once to do all the other items.
 130 */
 131
 132/*
 133 * start a sub transaction and setup the log tree
 134 * this increments the log tree writer count to make the people
 135 * syncing the tree wait for us to finish
 136 */
 137static int start_log_trans(struct btrfs_trans_handle *trans,
 138			   struct btrfs_root *root,
 139			   struct btrfs_log_ctx *ctx)
 140{
 141	struct btrfs_fs_info *fs_info = root->fs_info;
 142	int ret = 0;
 143
 144	mutex_lock(&root->log_mutex);
 145
 146	if (root->log_root) {
 147		if (btrfs_need_log_full_commit(trans)) {
 148			ret = -EAGAIN;
 149			goto out;
 150		}
 151
 152		if (!root->log_start_pid) {
 153			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 154			root->log_start_pid = current->pid;
 
 155		} else if (root->log_start_pid != current->pid) {
 156			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 157		}
 158	} else {
 159		mutex_lock(&fs_info->tree_log_mutex);
 160		if (!fs_info->log_root_tree)
 161			ret = btrfs_init_log_root_tree(trans, fs_info);
 162		mutex_unlock(&fs_info->tree_log_mutex);
 
 
 
 
 
 
 163		if (ret)
 164			goto out;
 165
 
 166		ret = btrfs_add_log_tree(trans, root);
 167		if (ret)
 168			goto out;
 169
 170		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 171		root->log_start_pid = current->pid;
 172	}
 173
 174	atomic_inc(&root->log_batch);
 175	atomic_inc(&root->log_writers);
 176	if (ctx) {
 177		int index = root->log_transid % 2;
 178		list_add_tail(&ctx->list, &root->log_ctxs[index]);
 179		ctx->log_transid = root->log_transid;
 180	}
 181
 182out:
 183	mutex_unlock(&root->log_mutex);
 184	return ret;
 185}
 186
 187/*
 188 * returns 0 if there was a log transaction running and we were able
 189 * to join, or returns -ENOENT if there were not transactions
 190 * in progress
 191 */
 192static int join_running_log_trans(struct btrfs_root *root)
 193{
 194	int ret = -ENOENT;
 195
 
 
 
 
 196	mutex_lock(&root->log_mutex);
 197	if (root->log_root) {
 198		ret = 0;
 199		atomic_inc(&root->log_writers);
 200	}
 201	mutex_unlock(&root->log_mutex);
 202	return ret;
 203}
 204
 205/*
 206 * This either makes the current running log transaction wait
 207 * until you call btrfs_end_log_trans() or it makes any future
 208 * log transactions wait until you call btrfs_end_log_trans()
 209 */
 210void btrfs_pin_log_trans(struct btrfs_root *root)
 211{
 
 
 212	mutex_lock(&root->log_mutex);
 213	atomic_inc(&root->log_writers);
 214	mutex_unlock(&root->log_mutex);
 
 215}
 216
 217/*
 218 * indicate we're done making changes to the log tree
 219 * and wake up anyone waiting to do a sync
 220 */
 221void btrfs_end_log_trans(struct btrfs_root *root)
 222{
 223	if (atomic_dec_and_test(&root->log_writers)) {
 224		/* atomic_dec_and_test implies a barrier */
 225		cond_wake_up_nomb(&root->log_writer_wait);
 
 226	}
 227}
 228
 229static int btrfs_write_tree_block(struct extent_buffer *buf)
 230{
 231	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
 232					buf->start + buf->len - 1);
 233}
 234
 235static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
 236{
 237	filemap_fdatawait_range(buf->pages[0]->mapping,
 238			        buf->start, buf->start + buf->len - 1);
 239}
 240
 241/*
 242 * the walk control struct is used to pass state down the chain when
 243 * processing the log tree.  The stage field tells us which part
 244 * of the log tree processing we are currently doing.  The others
 245 * are state fields used for that specific part
 246 */
 247struct walk_control {
 248	/* should we free the extent on disk when done?  This is used
 249	 * at transaction commit time while freeing a log tree
 250	 */
 251	int free;
 252
 253	/* should we write out the extent buffer?  This is used
 254	 * while flushing the log tree to disk during a sync
 255	 */
 256	int write;
 257
 258	/* should we wait for the extent buffer io to finish?  Also used
 259	 * while flushing the log tree to disk for a sync
 260	 */
 261	int wait;
 262
 263	/* pin only walk, we record which extents on disk belong to the
 264	 * log trees
 265	 */
 266	int pin;
 267
 268	/* what stage of the replay code we're currently in */
 269	int stage;
 270
 271	/*
 272	 * Ignore any items from the inode currently being processed. Needs
 273	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
 274	 * the LOG_WALK_REPLAY_INODES stage.
 275	 */
 276	bool ignore_cur_inode;
 277
 278	/* the root we are currently replaying */
 279	struct btrfs_root *replay_dest;
 280
 281	/* the trans handle for the current replay */
 282	struct btrfs_trans_handle *trans;
 283
 284	/* the function that gets used to process blocks we find in the
 285	 * tree.  Note the extent_buffer might not be up to date when it is
 286	 * passed in, and it must be checked or read if you need the data
 287	 * inside it
 288	 */
 289	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 290			    struct walk_control *wc, u64 gen, int level);
 291};
 292
 293/*
 294 * process_func used to pin down extents, write them or wait on them
 295 */
 296static int process_one_buffer(struct btrfs_root *log,
 297			      struct extent_buffer *eb,
 298			      struct walk_control *wc, u64 gen, int level)
 299{
 300	struct btrfs_fs_info *fs_info = log->fs_info;
 301	int ret = 0;
 302
 303	/*
 304	 * If this fs is mixed then we need to be able to process the leaves to
 305	 * pin down any logged extents, so we have to read the block.
 306	 */
 307	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 308		ret = btrfs_read_buffer(eb, gen, level, NULL);
 309		if (ret)
 310			return ret;
 311	}
 312
 313	if (wc->pin)
 314		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
 315						      eb->len);
 
 316
 317	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
 318		if (wc->pin && btrfs_header_level(eb) == 0)
 319			ret = btrfs_exclude_logged_extents(eb);
 320		if (wc->write)
 321			btrfs_write_tree_block(eb);
 322		if (wc->wait)
 323			btrfs_wait_tree_block_writeback(eb);
 324	}
 325	return ret;
 326}
 327
 328/*
 329 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 330 * to the src data we are copying out.
 331 *
 332 * root is the tree we are copying into, and path is a scratch
 333 * path for use in this function (it should be released on entry and
 334 * will be released on exit).
 335 *
 336 * If the key is already in the destination tree the existing item is
 337 * overwritten.  If the existing item isn't big enough, it is extended.
 338 * If it is too large, it is truncated.
 339 *
 340 * If the key isn't in the destination yet, a new item is inserted.
 341 */
 342static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 343				   struct btrfs_root *root,
 344				   struct btrfs_path *path,
 345				   struct extent_buffer *eb, int slot,
 346				   struct btrfs_key *key)
 347{
 348	int ret;
 349	u32 item_size;
 350	u64 saved_i_size = 0;
 351	int save_old_i_size = 0;
 352	unsigned long src_ptr;
 353	unsigned long dst_ptr;
 354	int overwrite_root = 0;
 355	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 356
 357	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 358		overwrite_root = 1;
 359
 360	item_size = btrfs_item_size_nr(eb, slot);
 361	src_ptr = btrfs_item_ptr_offset(eb, slot);
 362
 363	/* look for the key in the destination tree */
 364	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 365	if (ret < 0)
 366		return ret;
 367
 368	if (ret == 0) {
 369		char *src_copy;
 370		char *dst_copy;
 371		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 372						  path->slots[0]);
 373		if (dst_size != item_size)
 374			goto insert;
 375
 376		if (item_size == 0) {
 377			btrfs_release_path(path);
 378			return 0;
 379		}
 380		dst_copy = kmalloc(item_size, GFP_NOFS);
 381		src_copy = kmalloc(item_size, GFP_NOFS);
 382		if (!dst_copy || !src_copy) {
 383			btrfs_release_path(path);
 384			kfree(dst_copy);
 385			kfree(src_copy);
 386			return -ENOMEM;
 387		}
 388
 389		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 390
 391		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 392		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 393				   item_size);
 394		ret = memcmp(dst_copy, src_copy, item_size);
 395
 396		kfree(dst_copy);
 397		kfree(src_copy);
 398		/*
 399		 * they have the same contents, just return, this saves
 400		 * us from cowing blocks in the destination tree and doing
 401		 * extra writes that may not have been done by a previous
 402		 * sync
 403		 */
 404		if (ret == 0) {
 405			btrfs_release_path(path);
 406			return 0;
 407		}
 408
 409		/*
 410		 * We need to load the old nbytes into the inode so when we
 411		 * replay the extents we've logged we get the right nbytes.
 412		 */
 413		if (inode_item) {
 414			struct btrfs_inode_item *item;
 415			u64 nbytes;
 416			u32 mode;
 417
 418			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 419					      struct btrfs_inode_item);
 420			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 421			item = btrfs_item_ptr(eb, slot,
 422					      struct btrfs_inode_item);
 423			btrfs_set_inode_nbytes(eb, item, nbytes);
 424
 425			/*
 426			 * If this is a directory we need to reset the i_size to
 427			 * 0 so that we can set it up properly when replaying
 428			 * the rest of the items in this log.
 429			 */
 430			mode = btrfs_inode_mode(eb, item);
 431			if (S_ISDIR(mode))
 432				btrfs_set_inode_size(eb, item, 0);
 433		}
 434	} else if (inode_item) {
 435		struct btrfs_inode_item *item;
 436		u32 mode;
 437
 438		/*
 439		 * New inode, set nbytes to 0 so that the nbytes comes out
 440		 * properly when we replay the extents.
 441		 */
 442		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 443		btrfs_set_inode_nbytes(eb, item, 0);
 444
 445		/*
 446		 * If this is a directory we need to reset the i_size to 0 so
 447		 * that we can set it up properly when replaying the rest of
 448		 * the items in this log.
 449		 */
 450		mode = btrfs_inode_mode(eb, item);
 451		if (S_ISDIR(mode))
 452			btrfs_set_inode_size(eb, item, 0);
 453	}
 454insert:
 455	btrfs_release_path(path);
 456	/* try to insert the key into the destination tree */
 457	path->skip_release_on_error = 1;
 458	ret = btrfs_insert_empty_item(trans, root, path,
 459				      key, item_size);
 460	path->skip_release_on_error = 0;
 461
 462	/* make sure any existing item is the correct size */
 463	if (ret == -EEXIST || ret == -EOVERFLOW) {
 464		u32 found_size;
 465		found_size = btrfs_item_size_nr(path->nodes[0],
 466						path->slots[0]);
 467		if (found_size > item_size)
 468			btrfs_truncate_item(path, item_size, 1);
 469		else if (found_size < item_size)
 470			btrfs_extend_item(path, item_size - found_size);
 
 471	} else if (ret) {
 472		return ret;
 473	}
 474	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 475					path->slots[0]);
 476
 477	/* don't overwrite an existing inode if the generation number
 478	 * was logged as zero.  This is done when the tree logging code
 479	 * is just logging an inode to make sure it exists after recovery.
 480	 *
 481	 * Also, don't overwrite i_size on directories during replay.
 482	 * log replay inserts and removes directory items based on the
 483	 * state of the tree found in the subvolume, and i_size is modified
 484	 * as it goes
 485	 */
 486	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 487		struct btrfs_inode_item *src_item;
 488		struct btrfs_inode_item *dst_item;
 489
 490		src_item = (struct btrfs_inode_item *)src_ptr;
 491		dst_item = (struct btrfs_inode_item *)dst_ptr;
 492
 493		if (btrfs_inode_generation(eb, src_item) == 0) {
 494			struct extent_buffer *dst_eb = path->nodes[0];
 495			const u64 ino_size = btrfs_inode_size(eb, src_item);
 496
 497			/*
 498			 * For regular files an ino_size == 0 is used only when
 499			 * logging that an inode exists, as part of a directory
 500			 * fsync, and the inode wasn't fsynced before. In this
 501			 * case don't set the size of the inode in the fs/subvol
 502			 * tree, otherwise we would be throwing valid data away.
 503			 */
 504			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
 505			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
 506			    ino_size != 0) {
 507				struct btrfs_map_token token;
 508
 509				btrfs_init_map_token(&token, dst_eb);
 510				btrfs_set_token_inode_size(dst_eb, dst_item,
 511							   ino_size, &token);
 512			}
 513			goto no_copy;
 514		}
 515
 516		if (overwrite_root &&
 517		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 518		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 519			save_old_i_size = 1;
 520			saved_i_size = btrfs_inode_size(path->nodes[0],
 521							dst_item);
 522		}
 523	}
 524
 525	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 526			   src_ptr, item_size);
 527
 528	if (save_old_i_size) {
 529		struct btrfs_inode_item *dst_item;
 530		dst_item = (struct btrfs_inode_item *)dst_ptr;
 531		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 532	}
 533
 534	/* make sure the generation is filled in */
 535	if (key->type == BTRFS_INODE_ITEM_KEY) {
 536		struct btrfs_inode_item *dst_item;
 537		dst_item = (struct btrfs_inode_item *)dst_ptr;
 538		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 539			btrfs_set_inode_generation(path->nodes[0], dst_item,
 540						   trans->transid);
 541		}
 542	}
 543no_copy:
 544	btrfs_mark_buffer_dirty(path->nodes[0]);
 545	btrfs_release_path(path);
 546	return 0;
 547}
 548
 549/*
 550 * simple helper to read an inode off the disk from a given root
 551 * This can only be called for subvolume roots and not for the log
 552 */
 553static noinline struct inode *read_one_inode(struct btrfs_root *root,
 554					     u64 objectid)
 555{
 556	struct btrfs_key key;
 557	struct inode *inode;
 558
 559	key.objectid = objectid;
 560	key.type = BTRFS_INODE_ITEM_KEY;
 561	key.offset = 0;
 562	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
 563	if (IS_ERR(inode))
 
 
 
 564		inode = NULL;
 
 565	return inode;
 566}
 567
 568/* replays a single extent in 'eb' at 'slot' with 'key' into the
 569 * subvolume 'root'.  path is released on entry and should be released
 570 * on exit.
 571 *
 572 * extents in the log tree have not been allocated out of the extent
 573 * tree yet.  So, this completes the allocation, taking a reference
 574 * as required if the extent already exists or creating a new extent
 575 * if it isn't in the extent allocation tree yet.
 576 *
 577 * The extent is inserted into the file, dropping any existing extents
 578 * from the file that overlap the new one.
 579 */
 580static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 581				      struct btrfs_root *root,
 582				      struct btrfs_path *path,
 583				      struct extent_buffer *eb, int slot,
 584				      struct btrfs_key *key)
 585{
 586	struct btrfs_fs_info *fs_info = root->fs_info;
 587	int found_type;
 
 588	u64 extent_end;
 
 589	u64 start = key->offset;
 590	u64 nbytes = 0;
 591	struct btrfs_file_extent_item *item;
 592	struct inode *inode = NULL;
 593	unsigned long size;
 594	int ret = 0;
 595
 596	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 597	found_type = btrfs_file_extent_type(eb, item);
 598
 599	if (found_type == BTRFS_FILE_EXTENT_REG ||
 600	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 601		nbytes = btrfs_file_extent_num_bytes(eb, item);
 602		extent_end = start + nbytes;
 603
 604		/*
 605		 * We don't add to the inodes nbytes if we are prealloc or a
 606		 * hole.
 607		 */
 608		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 609			nbytes = 0;
 610	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 611		size = btrfs_file_extent_ram_bytes(eb, item);
 612		nbytes = btrfs_file_extent_ram_bytes(eb, item);
 613		extent_end = ALIGN(start + size,
 614				   fs_info->sectorsize);
 615	} else {
 616		ret = 0;
 617		goto out;
 618	}
 619
 620	inode = read_one_inode(root, key->objectid);
 621	if (!inode) {
 622		ret = -EIO;
 623		goto out;
 624	}
 625
 626	/*
 627	 * first check to see if we already have this extent in the
 628	 * file.  This must be done before the btrfs_drop_extents run
 629	 * so we don't try to drop this extent.
 630	 */
 631	ret = btrfs_lookup_file_extent(trans, root, path,
 632			btrfs_ino(BTRFS_I(inode)), start, 0);
 633
 634	if (ret == 0 &&
 635	    (found_type == BTRFS_FILE_EXTENT_REG ||
 636	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 637		struct btrfs_file_extent_item cmp1;
 638		struct btrfs_file_extent_item cmp2;
 639		struct btrfs_file_extent_item *existing;
 640		struct extent_buffer *leaf;
 641
 642		leaf = path->nodes[0];
 643		existing = btrfs_item_ptr(leaf, path->slots[0],
 644					  struct btrfs_file_extent_item);
 645
 646		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 647				   sizeof(cmp1));
 648		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 649				   sizeof(cmp2));
 650
 651		/*
 652		 * we already have a pointer to this exact extent,
 653		 * we don't have to do anything
 654		 */
 655		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 656			btrfs_release_path(path);
 657			goto out;
 658		}
 659	}
 660	btrfs_release_path(path);
 661
 
 662	/* drop any overlapping extents */
 663	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
 664	if (ret)
 665		goto out;
 666
 667	if (found_type == BTRFS_FILE_EXTENT_REG ||
 668	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 669		u64 offset;
 670		unsigned long dest_offset;
 671		struct btrfs_key ins;
 672
 673		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
 674		    btrfs_fs_incompat(fs_info, NO_HOLES))
 675			goto update_inode;
 676
 677		ret = btrfs_insert_empty_item(trans, root, path, key,
 678					      sizeof(*item));
 679		if (ret)
 680			goto out;
 681		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 682						    path->slots[0]);
 683		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 684				(unsigned long)item,  sizeof(*item));
 685
 686		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 687		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 688		ins.type = BTRFS_EXTENT_ITEM_KEY;
 689		offset = key->offset - btrfs_file_extent_offset(eb, item);
 690
 691		/*
 692		 * Manually record dirty extent, as here we did a shallow
 693		 * file extent item copy and skip normal backref update,
 694		 * but modifying extent tree all by ourselves.
 695		 * So need to manually record dirty extent for qgroup,
 696		 * as the owner of the file extent changed from log tree
 697		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
 698		 */
 699		ret = btrfs_qgroup_trace_extent(trans,
 700				btrfs_file_extent_disk_bytenr(eb, item),
 701				btrfs_file_extent_disk_num_bytes(eb, item),
 702				GFP_NOFS);
 703		if (ret < 0)
 704			goto out;
 705
 706		if (ins.objectid > 0) {
 707			struct btrfs_ref ref = { 0 };
 708			u64 csum_start;
 709			u64 csum_end;
 710			LIST_HEAD(ordered_sums);
 711
 712			/*
 713			 * is this extent already allocated in the extent
 714			 * allocation tree?  If so, just add a reference
 715			 */
 716			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
 717						ins.offset);
 718			if (ret == 0) {
 719				btrfs_init_generic_ref(&ref,
 720						BTRFS_ADD_DELAYED_REF,
 721						ins.objectid, ins.offset, 0);
 722				btrfs_init_data_ref(&ref,
 723						root->root_key.objectid,
 724						key->objectid, offset);
 725				ret = btrfs_inc_extent_ref(trans, &ref);
 726				if (ret)
 727					goto out;
 728			} else {
 729				/*
 730				 * insert the extent pointer in the extent
 731				 * allocation tree
 732				 */
 733				ret = btrfs_alloc_logged_file_extent(trans,
 734						root->root_key.objectid,
 735						key->objectid, offset, &ins);
 736				if (ret)
 737					goto out;
 738			}
 739			btrfs_release_path(path);
 740
 741			if (btrfs_file_extent_compression(eb, item)) {
 742				csum_start = ins.objectid;
 743				csum_end = csum_start + ins.offset;
 744			} else {
 745				csum_start = ins.objectid +
 746					btrfs_file_extent_offset(eb, item);
 747				csum_end = csum_start +
 748					btrfs_file_extent_num_bytes(eb, item);
 749			}
 750
 751			ret = btrfs_lookup_csums_range(root->log_root,
 752						csum_start, csum_end - 1,
 753						&ordered_sums, 0);
 754			if (ret)
 755				goto out;
 756			/*
 757			 * Now delete all existing cums in the csum root that
 758			 * cover our range. We do this because we can have an
 759			 * extent that is completely referenced by one file
 760			 * extent item and partially referenced by another
 761			 * file extent item (like after using the clone or
 762			 * extent_same ioctls). In this case if we end up doing
 763			 * the replay of the one that partially references the
 764			 * extent first, and we do not do the csum deletion
 765			 * below, we can get 2 csum items in the csum tree that
 766			 * overlap each other. For example, imagine our log has
 767			 * the two following file extent items:
 768			 *
 769			 * key (257 EXTENT_DATA 409600)
 770			 *     extent data disk byte 12845056 nr 102400
 771			 *     extent data offset 20480 nr 20480 ram 102400
 772			 *
 773			 * key (257 EXTENT_DATA 819200)
 774			 *     extent data disk byte 12845056 nr 102400
 775			 *     extent data offset 0 nr 102400 ram 102400
 776			 *
 777			 * Where the second one fully references the 100K extent
 778			 * that starts at disk byte 12845056, and the log tree
 779			 * has a single csum item that covers the entire range
 780			 * of the extent:
 781			 *
 782			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 783			 *
 784			 * After the first file extent item is replayed, the
 785			 * csum tree gets the following csum item:
 786			 *
 787			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 788			 *
 789			 * Which covers the 20K sub-range starting at offset 20K
 790			 * of our extent. Now when we replay the second file
 791			 * extent item, if we do not delete existing csum items
 792			 * that cover any of its blocks, we end up getting two
 793			 * csum items in our csum tree that overlap each other:
 794			 *
 795			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 796			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 797			 *
 798			 * Which is a problem, because after this anyone trying
 799			 * to lookup up for the checksum of any block of our
 800			 * extent starting at an offset of 40K or higher, will
 801			 * end up looking at the second csum item only, which
 802			 * does not contain the checksum for any block starting
 803			 * at offset 40K or higher of our extent.
 804			 */
 805			while (!list_empty(&ordered_sums)) {
 806				struct btrfs_ordered_sum *sums;
 807				sums = list_entry(ordered_sums.next,
 808						struct btrfs_ordered_sum,
 809						list);
 810				if (!ret)
 811					ret = btrfs_del_csums(trans, fs_info,
 812							      sums->bytenr,
 813							      sums->len);
 814				if (!ret)
 815					ret = btrfs_csum_file_blocks(trans,
 816						fs_info->csum_root, sums);
 817				list_del(&sums->list);
 818				kfree(sums);
 819			}
 820			if (ret)
 821				goto out;
 822		} else {
 823			btrfs_release_path(path);
 824		}
 825	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 826		/* inline extents are easy, we just overwrite them */
 827		ret = overwrite_item(trans, root, path, eb, slot, key);
 828		if (ret)
 829			goto out;
 830	}
 831
 832	inode_add_bytes(inode, nbytes);
 833update_inode:
 834	ret = btrfs_update_inode(trans, root, inode);
 835out:
 836	if (inode)
 837		iput(inode);
 838	return ret;
 839}
 840
 841/*
 842 * when cleaning up conflicts between the directory names in the
 843 * subvolume, directory names in the log and directory names in the
 844 * inode back references, we may have to unlink inodes from directories.
 845 *
 846 * This is a helper function to do the unlink of a specific directory
 847 * item
 848 */
 849static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 850				      struct btrfs_root *root,
 851				      struct btrfs_path *path,
 852				      struct btrfs_inode *dir,
 853				      struct btrfs_dir_item *di)
 854{
 855	struct inode *inode;
 856	char *name;
 857	int name_len;
 858	struct extent_buffer *leaf;
 859	struct btrfs_key location;
 860	int ret;
 861
 862	leaf = path->nodes[0];
 863
 864	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 865	name_len = btrfs_dir_name_len(leaf, di);
 866	name = kmalloc(name_len, GFP_NOFS);
 867	if (!name)
 868		return -ENOMEM;
 869
 870	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 871	btrfs_release_path(path);
 872
 873	inode = read_one_inode(root, location.objectid);
 874	if (!inode) {
 875		ret = -EIO;
 876		goto out;
 877	}
 878
 879	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 880	if (ret)
 881		goto out;
 882
 883	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
 884			name_len);
 885	if (ret)
 886		goto out;
 887	else
 888		ret = btrfs_run_delayed_items(trans);
 889out:
 890	kfree(name);
 
 891	iput(inode);
 
 
 892	return ret;
 893}
 894
 895/*
 896 * helper function to see if a given name and sequence number found
 897 * in an inode back reference are already in a directory and correctly
 898 * point to this inode
 899 */
 900static noinline int inode_in_dir(struct btrfs_root *root,
 901				 struct btrfs_path *path,
 902				 u64 dirid, u64 objectid, u64 index,
 903				 const char *name, int name_len)
 904{
 905	struct btrfs_dir_item *di;
 906	struct btrfs_key location;
 907	int match = 0;
 908
 909	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 910					 index, name, name_len, 0);
 911	if (di && !IS_ERR(di)) {
 912		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 913		if (location.objectid != objectid)
 914			goto out;
 915	} else
 916		goto out;
 917	btrfs_release_path(path);
 918
 919	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 920	if (di && !IS_ERR(di)) {
 921		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 922		if (location.objectid != objectid)
 923			goto out;
 924	} else
 925		goto out;
 926	match = 1;
 927out:
 928	btrfs_release_path(path);
 929	return match;
 930}
 931
 932/*
 933 * helper function to check a log tree for a named back reference in
 934 * an inode.  This is used to decide if a back reference that is
 935 * found in the subvolume conflicts with what we find in the log.
 936 *
 937 * inode backreferences may have multiple refs in a single item,
 938 * during replay we process one reference at a time, and we don't
 939 * want to delete valid links to a file from the subvolume if that
 940 * link is also in the log.
 941 */
 942static noinline int backref_in_log(struct btrfs_root *log,
 943				   struct btrfs_key *key,
 944				   u64 ref_objectid,
 945				   const char *name, int namelen)
 946{
 947	struct btrfs_path *path;
 948	struct btrfs_inode_ref *ref;
 949	unsigned long ptr;
 950	unsigned long ptr_end;
 951	unsigned long name_ptr;
 952	int found_name_len;
 953	int item_size;
 954	int ret;
 955	int match = 0;
 956
 957	path = btrfs_alloc_path();
 958	if (!path)
 959		return -ENOMEM;
 960
 961	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 962	if (ret != 0)
 963		goto out;
 964
 
 965	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 966
 967	if (key->type == BTRFS_INODE_EXTREF_KEY) {
 968		if (btrfs_find_name_in_ext_backref(path->nodes[0],
 969						   path->slots[0],
 970						   ref_objectid,
 971						   name, namelen))
 972			match = 1;
 973
 974		goto out;
 975	}
 976
 977	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 978	ptr_end = ptr + item_size;
 979	while (ptr < ptr_end) {
 980		ref = (struct btrfs_inode_ref *)ptr;
 981		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 982		if (found_name_len == namelen) {
 983			name_ptr = (unsigned long)(ref + 1);
 984			ret = memcmp_extent_buffer(path->nodes[0], name,
 985						   name_ptr, namelen);
 986			if (ret == 0) {
 987				match = 1;
 988				goto out;
 989			}
 990		}
 991		ptr = (unsigned long)(ref + 1) + found_name_len;
 992	}
 993out:
 994	btrfs_free_path(path);
 995	return match;
 996}
 997
 998static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
 
 
 
 
 
 
 
 999				  struct btrfs_root *root,
 
1000				  struct btrfs_path *path,
1001				  struct btrfs_root *log_root,
1002				  struct btrfs_inode *dir,
1003				  struct btrfs_inode *inode,
1004				  u64 inode_objectid, u64 parent_objectid,
1005				  u64 ref_index, char *name, int namelen,
1006				  int *search_done)
1007{
 
 
 
 
 
 
 
 
1008	int ret;
1009	char *victim_name;
1010	int victim_name_len;
1011	struct extent_buffer *leaf;
1012	struct btrfs_dir_item *di;
1013	struct btrfs_key search_key;
1014	struct btrfs_inode_extref *extref;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015
1016again:
1017	/* Search old style refs */
1018	search_key.objectid = inode_objectid;
1019	search_key.type = BTRFS_INODE_REF_KEY;
1020	search_key.offset = parent_objectid;
1021	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1022	if (ret == 0) {
 
 
1023		struct btrfs_inode_ref *victim_ref;
1024		unsigned long ptr;
1025		unsigned long ptr_end;
1026
1027		leaf = path->nodes[0];
1028
1029		/* are we trying to overwrite a back ref for the root directory
1030		 * if so, just jump out, we're done
1031		 */
1032		if (search_key.objectid == search_key.offset)
1033			return 1;
1034
1035		/* check all the names in this back reference to see
1036		 * if they are in the log.  if so, we allow them to stay
1037		 * otherwise they must be unlinked as a conflict
1038		 */
1039		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1040		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1041		while (ptr < ptr_end) {
1042			victim_ref = (struct btrfs_inode_ref *)ptr;
1043			victim_name_len = btrfs_inode_ref_name_len(leaf,
1044								   victim_ref);
1045			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1046			if (!victim_name)
1047				return -ENOMEM;
1048
1049			read_extent_buffer(leaf, victim_name,
1050					   (unsigned long)(victim_ref + 1),
1051					   victim_name_len);
1052
1053			if (!backref_in_log(log_root, &search_key,
1054					    parent_objectid,
1055					    victim_name,
1056					    victim_name_len)) {
1057				inc_nlink(&inode->vfs_inode);
1058				btrfs_release_path(path);
1059
1060				ret = btrfs_unlink_inode(trans, root, dir, inode,
1061						victim_name, victim_name_len);
1062				kfree(victim_name);
1063				if (ret)
1064					return ret;
1065				ret = btrfs_run_delayed_items(trans);
1066				if (ret)
1067					return ret;
1068				*search_done = 1;
1069				goto again;
1070			}
1071			kfree(victim_name);
1072
1073			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1074		}
 
1075
1076		/*
1077		 * NOTE: we have searched root tree and checked the
1078		 * corresponding ref, it does not need to check again.
1079		 */
1080		*search_done = 1;
1081	}
1082	btrfs_release_path(path);
1083
1084	/* Same search but for extended refs */
1085	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1086					   inode_objectid, parent_objectid, 0,
1087					   0);
1088	if (!IS_ERR_OR_NULL(extref)) {
1089		u32 item_size;
1090		u32 cur_offset = 0;
1091		unsigned long base;
1092		struct inode *victim_parent;
1093
1094		leaf = path->nodes[0];
1095
1096		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1097		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1098
1099		while (cur_offset < item_size) {
1100			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1101
1102			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1103
1104			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1105				goto next;
1106
1107			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1108			if (!victim_name)
1109				return -ENOMEM;
1110			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1111					   victim_name_len);
1112
1113			search_key.objectid = inode_objectid;
1114			search_key.type = BTRFS_INODE_EXTREF_KEY;
1115			search_key.offset = btrfs_extref_hash(parent_objectid,
1116							      victim_name,
1117							      victim_name_len);
1118			ret = 0;
1119			if (!backref_in_log(log_root, &search_key,
1120					    parent_objectid, victim_name,
1121					    victim_name_len)) {
1122				ret = -ENOENT;
1123				victim_parent = read_one_inode(root,
1124						parent_objectid);
1125				if (victim_parent) {
1126					inc_nlink(&inode->vfs_inode);
1127					btrfs_release_path(path);
1128
1129					ret = btrfs_unlink_inode(trans, root,
1130							BTRFS_I(victim_parent),
1131							inode,
1132							victim_name,
1133							victim_name_len);
1134					if (!ret)
1135						ret = btrfs_run_delayed_items(
1136								  trans);
1137				}
1138				iput(victim_parent);
1139				kfree(victim_name);
1140				if (ret)
1141					return ret;
1142				*search_done = 1;
1143				goto again;
1144			}
1145			kfree(victim_name);
1146next:
1147			cur_offset += victim_name_len + sizeof(*extref);
1148		}
1149		*search_done = 1;
1150	}
1151	btrfs_release_path(path);
1152
1153	/* look for a conflicting sequence number */
1154	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1155					 ref_index, name, namelen, 0);
 
1156	if (di && !IS_ERR(di)) {
1157		ret = drop_one_dir_item(trans, root, path, dir, di);
1158		if (ret)
1159			return ret;
1160	}
1161	btrfs_release_path(path);
1162
1163	/* look for a conflicting name */
1164	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1165				   name, namelen, 0);
1166	if (di && !IS_ERR(di)) {
1167		ret = drop_one_dir_item(trans, root, path, dir, di);
1168		if (ret)
1169			return ret;
1170	}
1171	btrfs_release_path(path);
1172
1173	return 0;
1174}
1175
1176static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1177			     u32 *namelen, char **name, u64 *index,
1178			     u64 *parent_objectid)
1179{
1180	struct btrfs_inode_extref *extref;
1181
1182	extref = (struct btrfs_inode_extref *)ref_ptr;
1183
1184	*namelen = btrfs_inode_extref_name_len(eb, extref);
1185	*name = kmalloc(*namelen, GFP_NOFS);
1186	if (*name == NULL)
1187		return -ENOMEM;
1188
1189	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1190			   *namelen);
1191
1192	if (index)
1193		*index = btrfs_inode_extref_index(eb, extref);
1194	if (parent_objectid)
1195		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1196
1197	return 0;
1198}
1199
1200static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1201			  u32 *namelen, char **name, u64 *index)
1202{
1203	struct btrfs_inode_ref *ref;
1204
1205	ref = (struct btrfs_inode_ref *)ref_ptr;
1206
1207	*namelen = btrfs_inode_ref_name_len(eb, ref);
1208	*name = kmalloc(*namelen, GFP_NOFS);
1209	if (*name == NULL)
1210		return -ENOMEM;
1211
1212	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1213
1214	if (index)
1215		*index = btrfs_inode_ref_index(eb, ref);
1216
1217	return 0;
1218}
1219
1220/*
1221 * Take an inode reference item from the log tree and iterate all names from the
1222 * inode reference item in the subvolume tree with the same key (if it exists).
1223 * For any name that is not in the inode reference item from the log tree, do a
1224 * proper unlink of that name (that is, remove its entry from the inode
1225 * reference item and both dir index keys).
1226 */
1227static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1228				 struct btrfs_root *root,
1229				 struct btrfs_path *path,
1230				 struct btrfs_inode *inode,
1231				 struct extent_buffer *log_eb,
1232				 int log_slot,
1233				 struct btrfs_key *key)
1234{
1235	int ret;
1236	unsigned long ref_ptr;
1237	unsigned long ref_end;
1238	struct extent_buffer *eb;
1239
1240again:
1241	btrfs_release_path(path);
1242	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1243	if (ret > 0) {
1244		ret = 0;
1245		goto out;
1246	}
1247	if (ret < 0)
1248		goto out;
1249
1250	eb = path->nodes[0];
1251	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1252	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1253	while (ref_ptr < ref_end) {
1254		char *name = NULL;
1255		int namelen;
1256		u64 parent_id;
1257
1258		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1259			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1260						NULL, &parent_id);
1261		} else {
1262			parent_id = key->offset;
1263			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1264					     NULL);
1265		}
1266		if (ret)
1267			goto out;
1268
1269		if (key->type == BTRFS_INODE_EXTREF_KEY)
1270			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1271							       parent_id, name,
1272							       namelen);
1273		else
1274			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1275							   name, namelen);
1276
1277		if (!ret) {
1278			struct inode *dir;
1279
1280			btrfs_release_path(path);
1281			dir = read_one_inode(root, parent_id);
1282			if (!dir) {
1283				ret = -ENOENT;
1284				kfree(name);
1285				goto out;
1286			}
1287			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1288						 inode, name, namelen);
1289			kfree(name);
1290			iput(dir);
1291			if (ret)
1292				goto out;
1293			goto again;
1294		}
1295
1296		kfree(name);
1297		ref_ptr += namelen;
1298		if (key->type == BTRFS_INODE_EXTREF_KEY)
1299			ref_ptr += sizeof(struct btrfs_inode_extref);
1300		else
1301			ref_ptr += sizeof(struct btrfs_inode_ref);
1302	}
1303	ret = 0;
1304 out:
1305	btrfs_release_path(path);
1306	return ret;
1307}
1308
1309static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1310				  const u8 ref_type, const char *name,
1311				  const int namelen)
1312{
1313	struct btrfs_key key;
1314	struct btrfs_path *path;
1315	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1316	int ret;
1317
1318	path = btrfs_alloc_path();
1319	if (!path)
1320		return -ENOMEM;
1321
1322	key.objectid = btrfs_ino(BTRFS_I(inode));
1323	key.type = ref_type;
1324	if (key.type == BTRFS_INODE_REF_KEY)
1325		key.offset = parent_id;
1326	else
1327		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1328
1329	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1330	if (ret < 0)
1331		goto out;
1332	if (ret > 0) {
1333		ret = 0;
1334		goto out;
1335	}
1336	if (key.type == BTRFS_INODE_EXTREF_KEY)
1337		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1338				path->slots[0], parent_id, name, namelen);
1339	else
1340		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1341						   name, namelen);
1342
1343out:
1344	btrfs_free_path(path);
1345	return ret;
1346}
1347
1348static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1349		    struct inode *dir, struct inode *inode, const char *name,
1350		    int namelen, u64 ref_index)
1351{
1352	struct btrfs_dir_item *dir_item;
1353	struct btrfs_key key;
1354	struct btrfs_path *path;
1355	struct inode *other_inode = NULL;
1356	int ret;
1357
1358	path = btrfs_alloc_path();
1359	if (!path)
1360		return -ENOMEM;
1361
1362	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1363					 btrfs_ino(BTRFS_I(dir)),
1364					 name, namelen, 0);
1365	if (!dir_item) {
1366		btrfs_release_path(path);
1367		goto add_link;
1368	} else if (IS_ERR(dir_item)) {
1369		ret = PTR_ERR(dir_item);
1370		goto out;
1371	}
1372
1373	/*
1374	 * Our inode's dentry collides with the dentry of another inode which is
1375	 * in the log but not yet processed since it has a higher inode number.
1376	 * So delete that other dentry.
1377	 */
1378	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1379	btrfs_release_path(path);
1380	other_inode = read_one_inode(root, key.objectid);
1381	if (!other_inode) {
1382		ret = -ENOENT;
1383		goto out;
1384	}
1385	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1386				 name, namelen);
1387	if (ret)
1388		goto out;
1389	/*
1390	 * If we dropped the link count to 0, bump it so that later the iput()
1391	 * on the inode will not free it. We will fixup the link count later.
1392	 */
1393	if (other_inode->i_nlink == 0)
1394		inc_nlink(other_inode);
1395
1396	ret = btrfs_run_delayed_items(trans);
1397	if (ret)
1398		goto out;
1399add_link:
1400	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1401			     name, namelen, 0, ref_index);
1402out:
1403	iput(other_inode);
1404	btrfs_free_path(path);
1405
1406	return ret;
1407}
1408
1409/*
1410 * replay one inode back reference item found in the log tree.
1411 * eb, slot and key refer to the buffer and key found in the log tree.
1412 * root is the destination we are replaying into, and path is for temp
1413 * use by this function.  (it should be released on return).
1414 */
1415static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1416				  struct btrfs_root *root,
1417				  struct btrfs_root *log,
1418				  struct btrfs_path *path,
1419				  struct extent_buffer *eb, int slot,
1420				  struct btrfs_key *key)
1421{
1422	struct inode *dir = NULL;
1423	struct inode *inode = NULL;
1424	unsigned long ref_ptr;
1425	unsigned long ref_end;
1426	char *name = NULL;
1427	int namelen;
1428	int ret;
1429	int search_done = 0;
1430	int log_ref_ver = 0;
1431	u64 parent_objectid;
1432	u64 inode_objectid;
1433	u64 ref_index = 0;
1434	int ref_struct_size;
1435
1436	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1437	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1438
1439	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1440		struct btrfs_inode_extref *r;
1441
1442		ref_struct_size = sizeof(struct btrfs_inode_extref);
1443		log_ref_ver = 1;
1444		r = (struct btrfs_inode_extref *)ref_ptr;
1445		parent_objectid = btrfs_inode_extref_parent(eb, r);
1446	} else {
1447		ref_struct_size = sizeof(struct btrfs_inode_ref);
1448		parent_objectid = key->offset;
1449	}
1450	inode_objectid = key->objectid;
1451
1452	/*
1453	 * it is possible that we didn't log all the parent directories
1454	 * for a given inode.  If we don't find the dir, just don't
1455	 * copy the back ref in.  The link count fixup code will take
1456	 * care of the rest
1457	 */
1458	dir = read_one_inode(root, parent_objectid);
1459	if (!dir) {
1460		ret = -ENOENT;
1461		goto out;
1462	}
1463
1464	inode = read_one_inode(root, inode_objectid);
1465	if (!inode) {
1466		ret = -EIO;
1467		goto out;
1468	}
1469
1470	while (ref_ptr < ref_end) {
1471		if (log_ref_ver) {
1472			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1473						&ref_index, &parent_objectid);
1474			/*
1475			 * parent object can change from one array
1476			 * item to another.
1477			 */
1478			if (!dir)
1479				dir = read_one_inode(root, parent_objectid);
1480			if (!dir) {
1481				ret = -ENOENT;
1482				goto out;
1483			}
1484		} else {
1485			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1486					     &ref_index);
1487		}
1488		if (ret)
1489			goto out;
1490
1491		/* if we already have a perfect match, we're done */
1492		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1493					btrfs_ino(BTRFS_I(inode)), ref_index,
1494					name, namelen)) {
1495			/*
1496			 * look for a conflicting back reference in the
1497			 * metadata. if we find one we have to unlink that name
1498			 * of the file before we add our new link.  Later on, we
1499			 * overwrite any existing back reference, and we don't
1500			 * want to create dangling pointers in the directory.
1501			 */
1502
1503			if (!search_done) {
1504				ret = __add_inode_ref(trans, root, path, log,
1505						      BTRFS_I(dir),
1506						      BTRFS_I(inode),
1507						      inode_objectid,
1508						      parent_objectid,
1509						      ref_index, name, namelen,
1510						      &search_done);
1511				if (ret) {
1512					if (ret == 1)
1513						ret = 0;
1514					goto out;
1515				}
1516			}
1517
1518			/*
1519			 * If a reference item already exists for this inode
1520			 * with the same parent and name, but different index,
1521			 * drop it and the corresponding directory index entries
1522			 * from the parent before adding the new reference item
1523			 * and dir index entries, otherwise we would fail with
1524			 * -EEXIST returned from btrfs_add_link() below.
1525			 */
1526			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1527						     name, namelen);
1528			if (ret > 0) {
1529				ret = btrfs_unlink_inode(trans, root,
1530							 BTRFS_I(dir),
1531							 BTRFS_I(inode),
1532							 name, namelen);
1533				/*
1534				 * If we dropped the link count to 0, bump it so
1535				 * that later the iput() on the inode will not
1536				 * free it. We will fixup the link count later.
1537				 */
1538				if (!ret && inode->i_nlink == 0)
1539					inc_nlink(inode);
1540			}
1541			if (ret < 0)
1542				goto out;
1543
1544			/* insert our name */
1545			ret = add_link(trans, root, dir, inode, name, namelen,
1546				       ref_index);
1547			if (ret)
1548				goto out;
1549
1550			btrfs_update_inode(trans, root, inode);
1551		}
1552
1553		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1554		kfree(name);
1555		name = NULL;
1556		if (log_ref_ver) {
1557			iput(dir);
1558			dir = NULL;
1559		}
1560	}
1561
1562	/*
1563	 * Before we overwrite the inode reference item in the subvolume tree
1564	 * with the item from the log tree, we must unlink all names from the
1565	 * parent directory that are in the subvolume's tree inode reference
1566	 * item, otherwise we end up with an inconsistent subvolume tree where
1567	 * dir index entries exist for a name but there is no inode reference
1568	 * item with the same name.
1569	 */
1570	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1571				    key);
1572	if (ret)
1573		goto out;
1574
1575	/* finally write the back reference in the inode */
1576	ret = overwrite_item(trans, root, path, eb, slot, key);
1577out:
 
 
1578	btrfs_release_path(path);
1579	kfree(name);
1580	iput(dir);
1581	iput(inode);
1582	return ret;
1583}
1584
1585static int insert_orphan_item(struct btrfs_trans_handle *trans,
1586			      struct btrfs_root *root, u64 ino)
1587{
1588	int ret;
1589
1590	ret = btrfs_insert_orphan_item(trans, root, ino);
1591	if (ret == -EEXIST)
1592		ret = 0;
1593
1594	return ret;
1595}
1596
1597static int count_inode_extrefs(struct btrfs_root *root,
1598		struct btrfs_inode *inode, struct btrfs_path *path)
1599{
1600	int ret = 0;
1601	int name_len;
1602	unsigned int nlink = 0;
1603	u32 item_size;
1604	u32 cur_offset = 0;
1605	u64 inode_objectid = btrfs_ino(inode);
1606	u64 offset = 0;
1607	unsigned long ptr;
1608	struct btrfs_inode_extref *extref;
1609	struct extent_buffer *leaf;
1610
1611	while (1) {
1612		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1613					    &extref, &offset);
1614		if (ret)
1615			break;
1616
1617		leaf = path->nodes[0];
1618		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1619		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1620		cur_offset = 0;
1621
1622		while (cur_offset < item_size) {
1623			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1624			name_len = btrfs_inode_extref_name_len(leaf, extref);
1625
1626			nlink++;
1627
1628			cur_offset += name_len + sizeof(*extref);
1629		}
1630
1631		offset++;
1632		btrfs_release_path(path);
1633	}
1634	btrfs_release_path(path);
1635
1636	if (ret < 0 && ret != -ENOENT)
1637		return ret;
1638	return nlink;
1639}
1640
1641static int count_inode_refs(struct btrfs_root *root,
1642			struct btrfs_inode *inode, struct btrfs_path *path)
1643{
 
1644	int ret;
1645	struct btrfs_key key;
1646	unsigned int nlink = 0;
1647	unsigned long ptr;
1648	unsigned long ptr_end;
1649	int name_len;
1650	u64 ino = btrfs_ino(inode);
1651
1652	key.objectid = ino;
1653	key.type = BTRFS_INODE_REF_KEY;
1654	key.offset = (u64)-1;
1655
 
 
 
 
1656	while (1) {
1657		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1658		if (ret < 0)
1659			break;
1660		if (ret > 0) {
1661			if (path->slots[0] == 0)
1662				break;
1663			path->slots[0]--;
1664		}
1665process_slot:
1666		btrfs_item_key_to_cpu(path->nodes[0], &key,
1667				      path->slots[0]);
1668		if (key.objectid != ino ||
1669		    key.type != BTRFS_INODE_REF_KEY)
1670			break;
1671		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1672		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1673						   path->slots[0]);
1674		while (ptr < ptr_end) {
1675			struct btrfs_inode_ref *ref;
1676
1677			ref = (struct btrfs_inode_ref *)ptr;
1678			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1679							    ref);
1680			ptr = (unsigned long)(ref + 1) + name_len;
1681			nlink++;
1682		}
1683
1684		if (key.offset == 0)
1685			break;
1686		if (path->slots[0] > 0) {
1687			path->slots[0]--;
1688			goto process_slot;
1689		}
1690		key.offset--;
1691		btrfs_release_path(path);
1692	}
1693	btrfs_release_path(path);
1694
1695	return nlink;
1696}
1697
1698/*
1699 * There are a few corners where the link count of the file can't
1700 * be properly maintained during replay.  So, instead of adding
1701 * lots of complexity to the log code, we just scan the backrefs
1702 * for any file that has been through replay.
1703 *
1704 * The scan will update the link count on the inode to reflect the
1705 * number of back refs found.  If it goes down to zero, the iput
1706 * will free the inode.
1707 */
1708static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1709					   struct btrfs_root *root,
1710					   struct inode *inode)
1711{
1712	struct btrfs_path *path;
1713	int ret;
1714	u64 nlink = 0;
1715	u64 ino = btrfs_ino(BTRFS_I(inode));
1716
1717	path = btrfs_alloc_path();
1718	if (!path)
1719		return -ENOMEM;
1720
1721	ret = count_inode_refs(root, BTRFS_I(inode), path);
1722	if (ret < 0)
1723		goto out;
1724
1725	nlink = ret;
1726
1727	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1728	if (ret < 0)
1729		goto out;
1730
1731	nlink += ret;
1732
1733	ret = 0;
1734
1735	if (nlink != inode->i_nlink) {
1736		set_nlink(inode, nlink);
1737		btrfs_update_inode(trans, root, inode);
1738	}
1739	BTRFS_I(inode)->index_cnt = (u64)-1;
1740
1741	if (inode->i_nlink == 0) {
1742		if (S_ISDIR(inode->i_mode)) {
1743			ret = replay_dir_deletes(trans, root, NULL, path,
1744						 ino, 1);
1745			if (ret)
1746				goto out;
1747		}
1748		ret = insert_orphan_item(trans, root, ino);
 
1749	}
 
1750
1751out:
1752	btrfs_free_path(path);
1753	return ret;
1754}
1755
1756static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1757					    struct btrfs_root *root,
1758					    struct btrfs_path *path)
1759{
1760	int ret;
1761	struct btrfs_key key;
1762	struct inode *inode;
1763
1764	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1765	key.type = BTRFS_ORPHAN_ITEM_KEY;
1766	key.offset = (u64)-1;
1767	while (1) {
1768		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1769		if (ret < 0)
1770			break;
1771
1772		if (ret == 1) {
1773			if (path->slots[0] == 0)
1774				break;
1775			path->slots[0]--;
1776		}
1777
1778		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1779		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1780		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1781			break;
1782
1783		ret = btrfs_del_item(trans, root, path);
1784		if (ret)
1785			goto out;
1786
1787		btrfs_release_path(path);
1788		inode = read_one_inode(root, key.offset);
1789		if (!inode)
1790			return -EIO;
1791
1792		ret = fixup_inode_link_count(trans, root, inode);
 
 
1793		iput(inode);
1794		if (ret)
1795			goto out;
1796
1797		/*
1798		 * fixup on a directory may create new entries,
1799		 * make sure we always look for the highset possible
1800		 * offset
1801		 */
1802		key.offset = (u64)-1;
1803	}
1804	ret = 0;
1805out:
1806	btrfs_release_path(path);
1807	return ret;
1808}
1809
1810
1811/*
1812 * record a given inode in the fixup dir so we can check its link
1813 * count when replay is done.  The link count is incremented here
1814 * so the inode won't go away until we check it
1815 */
1816static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1817				      struct btrfs_root *root,
1818				      struct btrfs_path *path,
1819				      u64 objectid)
1820{
1821	struct btrfs_key key;
1822	int ret = 0;
1823	struct inode *inode;
1824
1825	inode = read_one_inode(root, objectid);
1826	if (!inode)
1827		return -EIO;
1828
1829	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1830	key.type = BTRFS_ORPHAN_ITEM_KEY;
1831	key.offset = objectid;
1832
1833	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1834
1835	btrfs_release_path(path);
1836	if (ret == 0) {
1837		if (!inode->i_nlink)
1838			set_nlink(inode, 1);
1839		else
1840			inc_nlink(inode);
1841		ret = btrfs_update_inode(trans, root, inode);
1842	} else if (ret == -EEXIST) {
1843		ret = 0;
1844	} else {
1845		BUG(); /* Logic Error */
1846	}
1847	iput(inode);
1848
1849	return ret;
1850}
1851
1852/*
1853 * when replaying the log for a directory, we only insert names
1854 * for inodes that actually exist.  This means an fsync on a directory
1855 * does not implicitly fsync all the new files in it
1856 */
1857static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1858				    struct btrfs_root *root,
 
1859				    u64 dirid, u64 index,
1860				    char *name, int name_len,
1861				    struct btrfs_key *location)
1862{
1863	struct inode *inode;
1864	struct inode *dir;
1865	int ret;
1866
1867	inode = read_one_inode(root, location->objectid);
1868	if (!inode)
1869		return -ENOENT;
1870
1871	dir = read_one_inode(root, dirid);
1872	if (!dir) {
1873		iput(inode);
1874		return -EIO;
1875	}
1876
1877	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1878			name_len, 1, index);
1879
1880	/* FIXME, put inode into FIXUP list */
1881
1882	iput(inode);
1883	iput(dir);
1884	return ret;
1885}
1886
1887/*
1888 * Return true if an inode reference exists in the log for the given name,
1889 * inode and parent inode.
1890 */
1891static bool name_in_log_ref(struct btrfs_root *log_root,
1892			    const char *name, const int name_len,
1893			    const u64 dirid, const u64 ino)
1894{
1895	struct btrfs_key search_key;
1896
1897	search_key.objectid = ino;
1898	search_key.type = BTRFS_INODE_REF_KEY;
1899	search_key.offset = dirid;
1900	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1901		return true;
1902
1903	search_key.type = BTRFS_INODE_EXTREF_KEY;
1904	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1905	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1906		return true;
1907
1908	return false;
1909}
1910
1911/*
1912 * take a single entry in a log directory item and replay it into
1913 * the subvolume.
1914 *
1915 * if a conflicting item exists in the subdirectory already,
1916 * the inode it points to is unlinked and put into the link count
1917 * fix up tree.
1918 *
1919 * If a name from the log points to a file or directory that does
1920 * not exist in the FS, it is skipped.  fsyncs on directories
1921 * do not force down inodes inside that directory, just changes to the
1922 * names or unlinks in a directory.
1923 *
1924 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1925 * non-existing inode) and 1 if the name was replayed.
1926 */
1927static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1928				    struct btrfs_root *root,
1929				    struct btrfs_path *path,
1930				    struct extent_buffer *eb,
1931				    struct btrfs_dir_item *di,
1932				    struct btrfs_key *key)
1933{
1934	char *name;
1935	int name_len;
1936	struct btrfs_dir_item *dst_di;
1937	struct btrfs_key found_key;
1938	struct btrfs_key log_key;
1939	struct inode *dir;
1940	u8 log_type;
1941	int exists;
1942	int ret = 0;
1943	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1944	bool name_added = false;
1945
1946	dir = read_one_inode(root, key->objectid);
1947	if (!dir)
1948		return -EIO;
1949
1950	name_len = btrfs_dir_name_len(eb, di);
1951	name = kmalloc(name_len, GFP_NOFS);
1952	if (!name) {
1953		ret = -ENOMEM;
1954		goto out;
1955	}
1956
1957	log_type = btrfs_dir_type(eb, di);
1958	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1959		   name_len);
1960
1961	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1962	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1963	if (exists == 0)
1964		exists = 1;
1965	else
1966		exists = 0;
1967	btrfs_release_path(path);
1968
1969	if (key->type == BTRFS_DIR_ITEM_KEY) {
1970		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1971				       name, name_len, 1);
1972	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1973		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1974						     key->objectid,
1975						     key->offset, name,
1976						     name_len, 1);
1977	} else {
1978		/* Corruption */
1979		ret = -EINVAL;
1980		goto out;
1981	}
1982	if (IS_ERR_OR_NULL(dst_di)) {
1983		/* we need a sequence number to insert, so we only
1984		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1985		 */
1986		if (key->type != BTRFS_DIR_INDEX_KEY)
1987			goto out;
1988		goto insert;
1989	}
1990
1991	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1992	/* the existing item matches the logged item */
1993	if (found_key.objectid == log_key.objectid &&
1994	    found_key.type == log_key.type &&
1995	    found_key.offset == log_key.offset &&
1996	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1997		update_size = false;
1998		goto out;
1999	}
2000
2001	/*
2002	 * don't drop the conflicting directory entry if the inode
2003	 * for the new entry doesn't exist
2004	 */
2005	if (!exists)
2006		goto out;
2007
2008	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2009	if (ret)
2010		goto out;
2011
2012	if (key->type == BTRFS_DIR_INDEX_KEY)
2013		goto insert;
2014out:
2015	btrfs_release_path(path);
2016	if (!ret && update_size) {
2017		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2018		ret = btrfs_update_inode(trans, root, dir);
2019	}
2020	kfree(name);
2021	iput(dir);
2022	if (!ret && name_added)
2023		ret = 1;
2024	return ret;
2025
2026insert:
2027	if (name_in_log_ref(root->log_root, name, name_len,
2028			    key->objectid, log_key.objectid)) {
2029		/* The dentry will be added later. */
2030		ret = 0;
2031		update_size = false;
2032		goto out;
2033	}
2034	btrfs_release_path(path);
2035	ret = insert_one_name(trans, root, key->objectid, key->offset,
2036			      name, name_len, &log_key);
2037	if (ret && ret != -ENOENT && ret != -EEXIST)
2038		goto out;
2039	if (!ret)
2040		name_added = true;
2041	update_size = false;
2042	ret = 0;
2043	goto out;
2044}
2045
2046/*
2047 * find all the names in a directory item and reconcile them into
2048 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2049 * one name in a directory item, but the same code gets used for
2050 * both directory index types
2051 */
2052static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2053					struct btrfs_root *root,
2054					struct btrfs_path *path,
2055					struct extent_buffer *eb, int slot,
2056					struct btrfs_key *key)
2057{
2058	int ret = 0;
2059	u32 item_size = btrfs_item_size_nr(eb, slot);
2060	struct btrfs_dir_item *di;
2061	int name_len;
2062	unsigned long ptr;
2063	unsigned long ptr_end;
2064	struct btrfs_path *fixup_path = NULL;
2065
2066	ptr = btrfs_item_ptr_offset(eb, slot);
2067	ptr_end = ptr + item_size;
2068	while (ptr < ptr_end) {
2069		di = (struct btrfs_dir_item *)ptr;
 
 
2070		name_len = btrfs_dir_name_len(eb, di);
2071		ret = replay_one_name(trans, root, path, eb, di, key);
2072		if (ret < 0)
2073			break;
2074		ptr = (unsigned long)(di + 1);
2075		ptr += name_len;
2076
2077		/*
2078		 * If this entry refers to a non-directory (directories can not
2079		 * have a link count > 1) and it was added in the transaction
2080		 * that was not committed, make sure we fixup the link count of
2081		 * the inode it the entry points to. Otherwise something like
2082		 * the following would result in a directory pointing to an
2083		 * inode with a wrong link that does not account for this dir
2084		 * entry:
2085		 *
2086		 * mkdir testdir
2087		 * touch testdir/foo
2088		 * touch testdir/bar
2089		 * sync
2090		 *
2091		 * ln testdir/bar testdir/bar_link
2092		 * ln testdir/foo testdir/foo_link
2093		 * xfs_io -c "fsync" testdir/bar
2094		 *
2095		 * <power failure>
2096		 *
2097		 * mount fs, log replay happens
2098		 *
2099		 * File foo would remain with a link count of 1 when it has two
2100		 * entries pointing to it in the directory testdir. This would
2101		 * make it impossible to ever delete the parent directory has
2102		 * it would result in stale dentries that can never be deleted.
2103		 */
2104		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2105			struct btrfs_key di_key;
2106
2107			if (!fixup_path) {
2108				fixup_path = btrfs_alloc_path();
2109				if (!fixup_path) {
2110					ret = -ENOMEM;
2111					break;
2112				}
2113			}
2114
2115			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2116			ret = link_to_fixup_dir(trans, root, fixup_path,
2117						di_key.objectid);
2118			if (ret)
2119				break;
2120		}
2121		ret = 0;
2122	}
2123	btrfs_free_path(fixup_path);
2124	return ret;
2125}
2126
2127/*
2128 * directory replay has two parts.  There are the standard directory
2129 * items in the log copied from the subvolume, and range items
2130 * created in the log while the subvolume was logged.
2131 *
2132 * The range items tell us which parts of the key space the log
2133 * is authoritative for.  During replay, if a key in the subvolume
2134 * directory is in a logged range item, but not actually in the log
2135 * that means it was deleted from the directory before the fsync
2136 * and should be removed.
2137 */
2138static noinline int find_dir_range(struct btrfs_root *root,
2139				   struct btrfs_path *path,
2140				   u64 dirid, int key_type,
2141				   u64 *start_ret, u64 *end_ret)
2142{
2143	struct btrfs_key key;
2144	u64 found_end;
2145	struct btrfs_dir_log_item *item;
2146	int ret;
2147	int nritems;
2148
2149	if (*start_ret == (u64)-1)
2150		return 1;
2151
2152	key.objectid = dirid;
2153	key.type = key_type;
2154	key.offset = *start_ret;
2155
2156	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2157	if (ret < 0)
2158		goto out;
2159	if (ret > 0) {
2160		if (path->slots[0] == 0)
2161			goto out;
2162		path->slots[0]--;
2163	}
2164	if (ret != 0)
2165		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2166
2167	if (key.type != key_type || key.objectid != dirid) {
2168		ret = 1;
2169		goto next;
2170	}
2171	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2172			      struct btrfs_dir_log_item);
2173	found_end = btrfs_dir_log_end(path->nodes[0], item);
2174
2175	if (*start_ret >= key.offset && *start_ret <= found_end) {
2176		ret = 0;
2177		*start_ret = key.offset;
2178		*end_ret = found_end;
2179		goto out;
2180	}
2181	ret = 1;
2182next:
2183	/* check the next slot in the tree to see if it is a valid item */
2184	nritems = btrfs_header_nritems(path->nodes[0]);
2185	path->slots[0]++;
2186	if (path->slots[0] >= nritems) {
2187		ret = btrfs_next_leaf(root, path);
2188		if (ret)
2189			goto out;
 
 
2190	}
2191
2192	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2193
2194	if (key.type != key_type || key.objectid != dirid) {
2195		ret = 1;
2196		goto out;
2197	}
2198	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2199			      struct btrfs_dir_log_item);
2200	found_end = btrfs_dir_log_end(path->nodes[0], item);
2201	*start_ret = key.offset;
2202	*end_ret = found_end;
2203	ret = 0;
2204out:
2205	btrfs_release_path(path);
2206	return ret;
2207}
2208
2209/*
2210 * this looks for a given directory item in the log.  If the directory
2211 * item is not in the log, the item is removed and the inode it points
2212 * to is unlinked
2213 */
2214static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2215				      struct btrfs_root *root,
2216				      struct btrfs_root *log,
2217				      struct btrfs_path *path,
2218				      struct btrfs_path *log_path,
2219				      struct inode *dir,
2220				      struct btrfs_key *dir_key)
2221{
2222	int ret;
2223	struct extent_buffer *eb;
2224	int slot;
2225	u32 item_size;
2226	struct btrfs_dir_item *di;
2227	struct btrfs_dir_item *log_di;
2228	int name_len;
2229	unsigned long ptr;
2230	unsigned long ptr_end;
2231	char *name;
2232	struct inode *inode;
2233	struct btrfs_key location;
2234
2235again:
2236	eb = path->nodes[0];
2237	slot = path->slots[0];
2238	item_size = btrfs_item_size_nr(eb, slot);
2239	ptr = btrfs_item_ptr_offset(eb, slot);
2240	ptr_end = ptr + item_size;
2241	while (ptr < ptr_end) {
2242		di = (struct btrfs_dir_item *)ptr;
 
 
 
 
 
2243		name_len = btrfs_dir_name_len(eb, di);
2244		name = kmalloc(name_len, GFP_NOFS);
2245		if (!name) {
2246			ret = -ENOMEM;
2247			goto out;
2248		}
2249		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2250				  name_len);
2251		log_di = NULL;
2252		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2253			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2254						       dir_key->objectid,
2255						       name, name_len, 0);
2256		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2257			log_di = btrfs_lookup_dir_index_item(trans, log,
2258						     log_path,
2259						     dir_key->objectid,
2260						     dir_key->offset,
2261						     name, name_len, 0);
2262		}
2263		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2264			btrfs_dir_item_key_to_cpu(eb, di, &location);
2265			btrfs_release_path(path);
2266			btrfs_release_path(log_path);
2267			inode = read_one_inode(root, location.objectid);
2268			if (!inode) {
2269				kfree(name);
2270				return -EIO;
2271			}
2272
2273			ret = link_to_fixup_dir(trans, root,
2274						path, location.objectid);
2275			if (ret) {
2276				kfree(name);
2277				iput(inode);
2278				goto out;
2279			}
 
 
2280
2281			inc_nlink(inode);
2282			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2283					BTRFS_I(inode), name, name_len);
2284			if (!ret)
2285				ret = btrfs_run_delayed_items(trans);
2286			kfree(name);
2287			iput(inode);
2288			if (ret)
2289				goto out;
2290
2291			/* there might still be more names under this key
2292			 * check and repeat if required
2293			 */
2294			ret = btrfs_search_slot(NULL, root, dir_key, path,
2295						0, 0);
2296			if (ret == 0)
2297				goto again;
2298			ret = 0;
2299			goto out;
2300		} else if (IS_ERR(log_di)) {
2301			kfree(name);
2302			return PTR_ERR(log_di);
2303		}
2304		btrfs_release_path(log_path);
2305		kfree(name);
2306
2307		ptr = (unsigned long)(di + 1);
2308		ptr += name_len;
2309	}
2310	ret = 0;
2311out:
2312	btrfs_release_path(path);
2313	btrfs_release_path(log_path);
2314	return ret;
2315}
2316
2317static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2318			      struct btrfs_root *root,
2319			      struct btrfs_root *log,
2320			      struct btrfs_path *path,
2321			      const u64 ino)
2322{
2323	struct btrfs_key search_key;
2324	struct btrfs_path *log_path;
2325	int i;
2326	int nritems;
2327	int ret;
2328
2329	log_path = btrfs_alloc_path();
2330	if (!log_path)
2331		return -ENOMEM;
2332
2333	search_key.objectid = ino;
2334	search_key.type = BTRFS_XATTR_ITEM_KEY;
2335	search_key.offset = 0;
2336again:
2337	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2338	if (ret < 0)
2339		goto out;
2340process_leaf:
2341	nritems = btrfs_header_nritems(path->nodes[0]);
2342	for (i = path->slots[0]; i < nritems; i++) {
2343		struct btrfs_key key;
2344		struct btrfs_dir_item *di;
2345		struct btrfs_dir_item *log_di;
2346		u32 total_size;
2347		u32 cur;
2348
2349		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2350		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2351			ret = 0;
2352			goto out;
2353		}
2354
2355		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2356		total_size = btrfs_item_size_nr(path->nodes[0], i);
2357		cur = 0;
2358		while (cur < total_size) {
2359			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2360			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2361			u32 this_len = sizeof(*di) + name_len + data_len;
2362			char *name;
2363
2364			name = kmalloc(name_len, GFP_NOFS);
2365			if (!name) {
2366				ret = -ENOMEM;
2367				goto out;
2368			}
2369			read_extent_buffer(path->nodes[0], name,
2370					   (unsigned long)(di + 1), name_len);
2371
2372			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2373						    name, name_len, 0);
2374			btrfs_release_path(log_path);
2375			if (!log_di) {
2376				/* Doesn't exist in log tree, so delete it. */
2377				btrfs_release_path(path);
2378				di = btrfs_lookup_xattr(trans, root, path, ino,
2379							name, name_len, -1);
2380				kfree(name);
2381				if (IS_ERR(di)) {
2382					ret = PTR_ERR(di);
2383					goto out;
2384				}
2385				ASSERT(di);
2386				ret = btrfs_delete_one_dir_name(trans, root,
2387								path, di);
2388				if (ret)
2389					goto out;
2390				btrfs_release_path(path);
2391				search_key = key;
2392				goto again;
2393			}
2394			kfree(name);
2395			if (IS_ERR(log_di)) {
2396				ret = PTR_ERR(log_di);
2397				goto out;
2398			}
2399			cur += this_len;
2400			di = (struct btrfs_dir_item *)((char *)di + this_len);
2401		}
2402	}
2403	ret = btrfs_next_leaf(root, path);
2404	if (ret > 0)
2405		ret = 0;
2406	else if (ret == 0)
2407		goto process_leaf;
2408out:
2409	btrfs_free_path(log_path);
2410	btrfs_release_path(path);
2411	return ret;
2412}
2413
2414
2415/*
2416 * deletion replay happens before we copy any new directory items
2417 * out of the log or out of backreferences from inodes.  It
2418 * scans the log to find ranges of keys that log is authoritative for,
2419 * and then scans the directory to find items in those ranges that are
2420 * not present in the log.
2421 *
2422 * Anything we don't find in the log is unlinked and removed from the
2423 * directory.
2424 */
2425static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2426				       struct btrfs_root *root,
2427				       struct btrfs_root *log,
2428				       struct btrfs_path *path,
2429				       u64 dirid, int del_all)
2430{
2431	u64 range_start;
2432	u64 range_end;
2433	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2434	int ret = 0;
2435	struct btrfs_key dir_key;
2436	struct btrfs_key found_key;
2437	struct btrfs_path *log_path;
2438	struct inode *dir;
2439
2440	dir_key.objectid = dirid;
2441	dir_key.type = BTRFS_DIR_ITEM_KEY;
2442	log_path = btrfs_alloc_path();
2443	if (!log_path)
2444		return -ENOMEM;
2445
2446	dir = read_one_inode(root, dirid);
2447	/* it isn't an error if the inode isn't there, that can happen
2448	 * because we replay the deletes before we copy in the inode item
2449	 * from the log
2450	 */
2451	if (!dir) {
2452		btrfs_free_path(log_path);
2453		return 0;
2454	}
2455again:
2456	range_start = 0;
2457	range_end = 0;
2458	while (1) {
2459		if (del_all)
2460			range_end = (u64)-1;
2461		else {
2462			ret = find_dir_range(log, path, dirid, key_type,
2463					     &range_start, &range_end);
2464			if (ret != 0)
2465				break;
2466		}
2467
2468		dir_key.offset = range_start;
2469		while (1) {
2470			int nritems;
2471			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2472						0, 0);
2473			if (ret < 0)
2474				goto out;
2475
2476			nritems = btrfs_header_nritems(path->nodes[0]);
2477			if (path->slots[0] >= nritems) {
2478				ret = btrfs_next_leaf(root, path);
2479				if (ret == 1)
2480					break;
2481				else if (ret < 0)
2482					goto out;
2483			}
2484			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2485					      path->slots[0]);
2486			if (found_key.objectid != dirid ||
2487			    found_key.type != dir_key.type)
2488				goto next_type;
2489
2490			if (found_key.offset > range_end)
2491				break;
2492
2493			ret = check_item_in_log(trans, root, log, path,
2494						log_path, dir,
2495						&found_key);
2496			if (ret)
2497				goto out;
2498			if (found_key.offset == (u64)-1)
2499				break;
2500			dir_key.offset = found_key.offset + 1;
2501		}
2502		btrfs_release_path(path);
2503		if (range_end == (u64)-1)
2504			break;
2505		range_start = range_end + 1;
2506	}
2507
2508next_type:
2509	ret = 0;
2510	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2511		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2512		dir_key.type = BTRFS_DIR_INDEX_KEY;
2513		btrfs_release_path(path);
2514		goto again;
2515	}
2516out:
2517	btrfs_release_path(path);
2518	btrfs_free_path(log_path);
2519	iput(dir);
2520	return ret;
2521}
2522
2523/*
2524 * the process_func used to replay items from the log tree.  This
2525 * gets called in two different stages.  The first stage just looks
2526 * for inodes and makes sure they are all copied into the subvolume.
2527 *
2528 * The second stage copies all the other item types from the log into
2529 * the subvolume.  The two stage approach is slower, but gets rid of
2530 * lots of complexity around inodes referencing other inodes that exist
2531 * only in the log (references come from either directory items or inode
2532 * back refs).
2533 */
2534static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2535			     struct walk_control *wc, u64 gen, int level)
2536{
2537	int nritems;
2538	struct btrfs_path *path;
2539	struct btrfs_root *root = wc->replay_dest;
2540	struct btrfs_key key;
 
2541	int i;
2542	int ret;
2543
2544	ret = btrfs_read_buffer(eb, gen, level, NULL);
2545	if (ret)
2546		return ret;
2547
2548	level = btrfs_header_level(eb);
2549
2550	if (level != 0)
2551		return 0;
2552
2553	path = btrfs_alloc_path();
2554	if (!path)
2555		return -ENOMEM;
2556
2557	nritems = btrfs_header_nritems(eb);
2558	for (i = 0; i < nritems; i++) {
2559		btrfs_item_key_to_cpu(eb, &key, i);
2560
2561		/* inode keys are done during the first stage */
2562		if (key.type == BTRFS_INODE_ITEM_KEY &&
2563		    wc->stage == LOG_WALK_REPLAY_INODES) {
2564			struct btrfs_inode_item *inode_item;
2565			u32 mode;
2566
2567			inode_item = btrfs_item_ptr(eb, i,
2568					    struct btrfs_inode_item);
2569			/*
2570			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2571			 * and never got linked before the fsync, skip it, as
2572			 * replaying it is pointless since it would be deleted
2573			 * later. We skip logging tmpfiles, but it's always
2574			 * possible we are replaying a log created with a kernel
2575			 * that used to log tmpfiles.
2576			 */
2577			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2578				wc->ignore_cur_inode = true;
2579				continue;
2580			} else {
2581				wc->ignore_cur_inode = false;
2582			}
2583			ret = replay_xattr_deletes(wc->trans, root, log,
2584						   path, key.objectid);
2585			if (ret)
2586				break;
2587			mode = btrfs_inode_mode(eb, inode_item);
2588			if (S_ISDIR(mode)) {
2589				ret = replay_dir_deletes(wc->trans,
2590					 root, log, path, key.objectid, 0);
2591				if (ret)
2592					break;
2593			}
2594			ret = overwrite_item(wc->trans, root, path,
2595					     eb, i, &key);
2596			if (ret)
2597				break;
2598
2599			/*
2600			 * Before replaying extents, truncate the inode to its
2601			 * size. We need to do it now and not after log replay
2602			 * because before an fsync we can have prealloc extents
2603			 * added beyond the inode's i_size. If we did it after,
2604			 * through orphan cleanup for example, we would drop
2605			 * those prealloc extents just after replaying them.
2606			 */
2607			if (S_ISREG(mode)) {
2608				struct inode *inode;
2609				u64 from;
2610
2611				inode = read_one_inode(root, key.objectid);
2612				if (!inode) {
2613					ret = -EIO;
2614					break;
2615				}
2616				from = ALIGN(i_size_read(inode),
2617					     root->fs_info->sectorsize);
2618				ret = btrfs_drop_extents(wc->trans, root, inode,
2619							 from, (u64)-1, 1);
2620				if (!ret) {
2621					/* Update the inode's nbytes. */
2622					ret = btrfs_update_inode(wc->trans,
2623								 root, inode);
2624				}
2625				iput(inode);
2626				if (ret)
2627					break;
2628			}
2629
2630			ret = link_to_fixup_dir(wc->trans, root,
2631						path, key.objectid);
2632			if (ret)
2633				break;
2634		}
2635
2636		if (wc->ignore_cur_inode)
2637			continue;
2638
2639		if (key.type == BTRFS_DIR_INDEX_KEY &&
2640		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2641			ret = replay_one_dir_item(wc->trans, root, path,
2642						  eb, i, &key);
2643			if (ret)
2644				break;
2645		}
2646
2647		if (wc->stage < LOG_WALK_REPLAY_ALL)
2648			continue;
2649
2650		/* these keys are simply copied */
2651		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2652			ret = overwrite_item(wc->trans, root, path,
2653					     eb, i, &key);
2654			if (ret)
2655				break;
2656		} else if (key.type == BTRFS_INODE_REF_KEY ||
2657			   key.type == BTRFS_INODE_EXTREF_KEY) {
2658			ret = add_inode_ref(wc->trans, root, log, path,
2659					    eb, i, &key);
2660			if (ret && ret != -ENOENT)
2661				break;
2662			ret = 0;
2663		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2664			ret = replay_one_extent(wc->trans, root, path,
2665						eb, i, &key);
2666			if (ret)
2667				break;
2668		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2669			ret = replay_one_dir_item(wc->trans, root, path,
2670						  eb, i, &key);
2671			if (ret)
2672				break;
2673		}
2674	}
2675	btrfs_free_path(path);
2676	return ret;
2677}
2678
2679static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2680				   struct btrfs_root *root,
2681				   struct btrfs_path *path, int *level,
2682				   struct walk_control *wc)
2683{
2684	struct btrfs_fs_info *fs_info = root->fs_info;
2685	u64 root_owner;
2686	u64 bytenr;
2687	u64 ptr_gen;
2688	struct extent_buffer *next;
2689	struct extent_buffer *cur;
2690	struct extent_buffer *parent;
2691	u32 blocksize;
2692	int ret = 0;
2693
2694	WARN_ON(*level < 0);
2695	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2696
2697	while (*level > 0) {
2698		struct btrfs_key first_key;
2699
2700		WARN_ON(*level < 0);
2701		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2702		cur = path->nodes[*level];
2703
2704		WARN_ON(btrfs_header_level(cur) != *level);
 
2705
2706		if (path->slots[*level] >=
2707		    btrfs_header_nritems(cur))
2708			break;
2709
2710		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2711		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2712		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2713		blocksize = fs_info->nodesize;
2714
2715		parent = path->nodes[*level];
2716		root_owner = btrfs_header_owner(parent);
2717
2718		next = btrfs_find_create_tree_block(fs_info, bytenr);
2719		if (IS_ERR(next))
2720			return PTR_ERR(next);
2721
2722		if (*level == 1) {
2723			ret = wc->process_func(root, next, wc, ptr_gen,
2724					       *level - 1);
2725			if (ret) {
2726				free_extent_buffer(next);
2727				return ret;
2728			}
2729
2730			path->slots[*level]++;
2731			if (wc->free) {
2732				ret = btrfs_read_buffer(next, ptr_gen,
2733							*level - 1, &first_key);
2734				if (ret) {
2735					free_extent_buffer(next);
2736					return ret;
2737				}
2738
2739				if (trans) {
2740					btrfs_tree_lock(next);
2741					btrfs_set_lock_blocking_write(next);
2742					btrfs_clean_tree_block(next);
2743					btrfs_wait_tree_block_writeback(next);
2744					btrfs_tree_unlock(next);
2745				} else {
2746					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2747						clear_extent_buffer_dirty(next);
2748				}
2749
2750				WARN_ON(root_owner !=
2751					BTRFS_TREE_LOG_OBJECTID);
2752				ret = btrfs_free_and_pin_reserved_extent(
2753							fs_info, bytenr,
2754							blocksize);
2755				if (ret) {
2756					free_extent_buffer(next);
2757					return ret;
2758				}
2759			}
2760			free_extent_buffer(next);
2761			continue;
2762		}
2763		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2764		if (ret) {
2765			free_extent_buffer(next);
2766			return ret;
2767		}
2768
2769		WARN_ON(*level <= 0);
2770		if (path->nodes[*level-1])
2771			free_extent_buffer(path->nodes[*level-1]);
2772		path->nodes[*level-1] = next;
2773		*level = btrfs_header_level(next);
2774		path->slots[*level] = 0;
2775		cond_resched();
2776	}
2777	WARN_ON(*level < 0);
2778	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2779
2780	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2781
2782	cond_resched();
2783	return 0;
2784}
2785
2786static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2787				 struct btrfs_root *root,
2788				 struct btrfs_path *path, int *level,
2789				 struct walk_control *wc)
2790{
2791	struct btrfs_fs_info *fs_info = root->fs_info;
2792	u64 root_owner;
2793	int i;
2794	int slot;
2795	int ret;
2796
2797	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2798		slot = path->slots[i];
2799		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2800			path->slots[i]++;
2801			*level = i;
2802			WARN_ON(*level == 0);
2803			return 0;
2804		} else {
2805			struct extent_buffer *parent;
2806			if (path->nodes[*level] == root->node)
2807				parent = path->nodes[*level];
2808			else
2809				parent = path->nodes[*level + 1];
2810
2811			root_owner = btrfs_header_owner(parent);
2812			ret = wc->process_func(root, path->nodes[*level], wc,
2813				 btrfs_header_generation(path->nodes[*level]),
2814				 *level);
2815			if (ret)
2816				return ret;
2817
2818			if (wc->free) {
2819				struct extent_buffer *next;
2820
2821				next = path->nodes[*level];
2822
2823				if (trans) {
2824					btrfs_tree_lock(next);
2825					btrfs_set_lock_blocking_write(next);
2826					btrfs_clean_tree_block(next);
2827					btrfs_wait_tree_block_writeback(next);
2828					btrfs_tree_unlock(next);
2829				} else {
2830					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2831						clear_extent_buffer_dirty(next);
2832				}
2833
2834				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2835				ret = btrfs_free_and_pin_reserved_extent(
2836						fs_info,
2837						path->nodes[*level]->start,
2838						path->nodes[*level]->len);
2839				if (ret)
2840					return ret;
2841			}
2842			free_extent_buffer(path->nodes[*level]);
2843			path->nodes[*level] = NULL;
2844			*level = i + 1;
2845		}
2846	}
2847	return 1;
2848}
2849
2850/*
2851 * drop the reference count on the tree rooted at 'snap'.  This traverses
2852 * the tree freeing any blocks that have a ref count of zero after being
2853 * decremented.
2854 */
2855static int walk_log_tree(struct btrfs_trans_handle *trans,
2856			 struct btrfs_root *log, struct walk_control *wc)
2857{
2858	struct btrfs_fs_info *fs_info = log->fs_info;
2859	int ret = 0;
2860	int wret;
2861	int level;
2862	struct btrfs_path *path;
 
2863	int orig_level;
2864
2865	path = btrfs_alloc_path();
2866	if (!path)
2867		return -ENOMEM;
2868
2869	level = btrfs_header_level(log->node);
2870	orig_level = level;
2871	path->nodes[level] = log->node;
2872	extent_buffer_get(log->node);
2873	path->slots[level] = 0;
2874
2875	while (1) {
2876		wret = walk_down_log_tree(trans, log, path, &level, wc);
2877		if (wret > 0)
2878			break;
2879		if (wret < 0) {
2880			ret = wret;
2881			goto out;
2882		}
2883
2884		wret = walk_up_log_tree(trans, log, path, &level, wc);
2885		if (wret > 0)
2886			break;
2887		if (wret < 0) {
2888			ret = wret;
2889			goto out;
2890		}
2891	}
2892
2893	/* was the root node processed? if not, catch it here */
2894	if (path->nodes[orig_level]) {
2895		ret = wc->process_func(log, path->nodes[orig_level], wc,
2896			 btrfs_header_generation(path->nodes[orig_level]),
2897			 orig_level);
2898		if (ret)
2899			goto out;
2900		if (wc->free) {
2901			struct extent_buffer *next;
2902
2903			next = path->nodes[orig_level];
2904
2905			if (trans) {
2906				btrfs_tree_lock(next);
2907				btrfs_set_lock_blocking_write(next);
2908				btrfs_clean_tree_block(next);
2909				btrfs_wait_tree_block_writeback(next);
2910				btrfs_tree_unlock(next);
2911			} else {
2912				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2913					clear_extent_buffer_dirty(next);
2914			}
2915
2916			WARN_ON(log->root_key.objectid !=
2917				BTRFS_TREE_LOG_OBJECTID);
2918			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2919							next->start, next->len);
2920			if (ret)
2921				goto out;
2922		}
2923	}
2924
2925out:
 
 
 
 
 
 
2926	btrfs_free_path(path);
2927	return ret;
2928}
2929
2930/*
2931 * helper function to update the item for a given subvolumes log root
2932 * in the tree of log roots
2933 */
2934static int update_log_root(struct btrfs_trans_handle *trans,
2935			   struct btrfs_root *log,
2936			   struct btrfs_root_item *root_item)
2937{
2938	struct btrfs_fs_info *fs_info = log->fs_info;
2939	int ret;
2940
2941	if (log->log_transid == 1) {
2942		/* insert root item on the first sync */
2943		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2944				&log->root_key, root_item);
2945	} else {
2946		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2947				&log->root_key, root_item);
2948	}
2949	return ret;
2950}
2951
2952static void wait_log_commit(struct btrfs_root *root, int transid)
 
2953{
2954	DEFINE_WAIT(wait);
2955	int index = transid % 2;
2956
2957	/*
2958	 * we only allow two pending log transactions at a time,
2959	 * so we know that if ours is more than 2 older than the
2960	 * current transaction, we're done
2961	 */
2962	for (;;) {
2963		prepare_to_wait(&root->log_commit_wait[index],
2964				&wait, TASK_UNINTERRUPTIBLE);
 
2965
2966		if (!(root->log_transid_committed < transid &&
2967		      atomic_read(&root->log_commit[index])))
2968			break;
 
2969
2970		mutex_unlock(&root->log_mutex);
2971		schedule();
2972		mutex_lock(&root->log_mutex);
2973	}
2974	finish_wait(&root->log_commit_wait[index], &wait);
 
 
2975}
2976
2977static void wait_for_writer(struct btrfs_root *root)
 
2978{
2979	DEFINE_WAIT(wait);
2980
2981	for (;;) {
2982		prepare_to_wait(&root->log_writer_wait, &wait,
2983				TASK_UNINTERRUPTIBLE);
2984		if (!atomic_read(&root->log_writers))
2985			break;
2986
2987		mutex_unlock(&root->log_mutex);
2988		schedule();
 
 
2989		mutex_lock(&root->log_mutex);
 
2990	}
2991	finish_wait(&root->log_writer_wait, &wait);
2992}
2993
2994static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2995					struct btrfs_log_ctx *ctx)
2996{
2997	if (!ctx)
2998		return;
2999
3000	mutex_lock(&root->log_mutex);
3001	list_del_init(&ctx->list);
3002	mutex_unlock(&root->log_mutex);
3003}
3004
3005/* 
3006 * Invoked in log mutex context, or be sure there is no other task which
3007 * can access the list.
3008 */
3009static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3010					     int index, int error)
3011{
3012	struct btrfs_log_ctx *ctx;
3013	struct btrfs_log_ctx *safe;
3014
3015	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3016		list_del_init(&ctx->list);
3017		ctx->log_ret = error;
3018	}
3019
3020	INIT_LIST_HEAD(&root->log_ctxs[index]);
3021}
3022
3023/*
3024 * btrfs_sync_log does sends a given tree log down to the disk and
3025 * updates the super blocks to record it.  When this call is done,
3026 * you know that any inodes previously logged are safely on disk only
3027 * if it returns 0.
3028 *
3029 * Any other return value means you need to call btrfs_commit_transaction.
3030 * Some of the edge cases for fsyncing directories that have had unlinks
3031 * or renames done in the past mean that sometimes the only safe
3032 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3033 * that has happened.
3034 */
3035int btrfs_sync_log(struct btrfs_trans_handle *trans,
3036		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3037{
3038	int index1;
3039	int index2;
3040	int mark;
3041	int ret;
3042	struct btrfs_fs_info *fs_info = root->fs_info;
3043	struct btrfs_root *log = root->log_root;
3044	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3045	struct btrfs_root_item new_root_item;
3046	int log_transid = 0;
3047	struct btrfs_log_ctx root_log_ctx;
3048	struct blk_plug plug;
3049
3050	mutex_lock(&root->log_mutex);
3051	log_transid = ctx->log_transid;
3052	if (root->log_transid_committed >= log_transid) {
3053		mutex_unlock(&root->log_mutex);
3054		return ctx->log_ret;
3055	}
3056
3057	index1 = log_transid % 2;
3058	if (atomic_read(&root->log_commit[index1])) {
3059		wait_log_commit(root, log_transid);
3060		mutex_unlock(&root->log_mutex);
3061		return ctx->log_ret;
3062	}
3063	ASSERT(log_transid == root->log_transid);
3064	atomic_set(&root->log_commit[index1], 1);
3065
3066	/* wait for previous tree log sync to complete */
3067	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3068		wait_log_commit(root, log_transid - 1);
3069
3070	while (1) {
3071		int batch = atomic_read(&root->log_batch);
3072		/* when we're on an ssd, just kick the log commit out */
3073		if (!btrfs_test_opt(fs_info, SSD) &&
3074		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3075			mutex_unlock(&root->log_mutex);
3076			schedule_timeout_uninterruptible(1);
3077			mutex_lock(&root->log_mutex);
3078		}
3079		wait_for_writer(root);
3080		if (batch == atomic_read(&root->log_batch))
3081			break;
3082	}
3083
3084	/* bail out if we need to do a full commit */
3085	if (btrfs_need_log_full_commit(trans)) {
3086		ret = -EAGAIN;
3087		mutex_unlock(&root->log_mutex);
3088		goto out;
3089	}
3090
 
3091	if (log_transid % 2 == 0)
3092		mark = EXTENT_DIRTY;
3093	else
3094		mark = EXTENT_NEW;
3095
3096	/* we start IO on  all the marked extents here, but we don't actually
3097	 * wait for them until later.
3098	 */
3099	blk_start_plug(&plug);
3100	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3101	if (ret) {
3102		blk_finish_plug(&plug);
3103		btrfs_abort_transaction(trans, ret);
3104		btrfs_set_log_full_commit(trans);
3105		mutex_unlock(&root->log_mutex);
3106		goto out;
3107	}
3108
3109	/*
3110	 * We _must_ update under the root->log_mutex in order to make sure we
3111	 * have a consistent view of the log root we are trying to commit at
3112	 * this moment.
3113	 *
3114	 * We _must_ copy this into a local copy, because we are not holding the
3115	 * log_root_tree->log_mutex yet.  This is important because when we
3116	 * commit the log_root_tree we must have a consistent view of the
3117	 * log_root_tree when we update the super block to point at the
3118	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3119	 * with the commit and possibly point at the new block which we may not
3120	 * have written out.
3121	 */
3122	btrfs_set_root_node(&log->root_item, log->node);
3123	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3124
 
3125	root->log_transid++;
3126	log->log_transid = root->log_transid;
3127	root->log_start_pid = 0;
 
3128	/*
3129	 * IO has been started, blocks of the log tree have WRITTEN flag set
3130	 * in their headers. new modifications of the log will be written to
3131	 * new positions. so it's safe to allow log writers to go in.
3132	 */
3133	mutex_unlock(&root->log_mutex);
3134
3135	btrfs_init_log_ctx(&root_log_ctx, NULL);
3136
3137	mutex_lock(&log_root_tree->log_mutex);
3138	atomic_inc(&log_root_tree->log_batch);
3139	atomic_inc(&log_root_tree->log_writers);
 
3140
3141	index2 = log_root_tree->log_transid % 2;
3142	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3143	root_log_ctx.log_transid = log_root_tree->log_transid;
3144
3145	mutex_unlock(&log_root_tree->log_mutex);
3146
3147	mutex_lock(&log_root_tree->log_mutex);
3148
3149	/*
3150	 * Now we are safe to update the log_root_tree because we're under the
3151	 * log_mutex, and we're a current writer so we're holding the commit
3152	 * open until we drop the log_mutex.
3153	 */
3154	ret = update_log_root(trans, log, &new_root_item);
3155
3156	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
3157		/* atomic_dec_and_test implies a barrier */
3158		cond_wake_up_nomb(&log_root_tree->log_writer_wait);
 
3159	}
3160
3161	if (ret) {
3162		if (!list_empty(&root_log_ctx.list))
3163			list_del_init(&root_log_ctx.list);
3164
3165		blk_finish_plug(&plug);
3166		btrfs_set_log_full_commit(trans);
3167
3168		if (ret != -ENOSPC) {
3169			btrfs_abort_transaction(trans, ret);
3170			mutex_unlock(&log_root_tree->log_mutex);
3171			goto out;
3172		}
3173		btrfs_wait_tree_log_extents(log, mark);
 
3174		mutex_unlock(&log_root_tree->log_mutex);
3175		ret = -EAGAIN;
3176		goto out;
3177	}
3178
3179	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3180		blk_finish_plug(&plug);
3181		list_del_init(&root_log_ctx.list);
3182		mutex_unlock(&log_root_tree->log_mutex);
3183		ret = root_log_ctx.log_ret;
3184		goto out;
3185	}
3186
3187	index2 = root_log_ctx.log_transid % 2;
3188	if (atomic_read(&log_root_tree->log_commit[index2])) {
3189		blk_finish_plug(&plug);
3190		ret = btrfs_wait_tree_log_extents(log, mark);
3191		wait_log_commit(log_root_tree,
3192				root_log_ctx.log_transid);
3193		mutex_unlock(&log_root_tree->log_mutex);
3194		if (!ret)
3195			ret = root_log_ctx.log_ret;
3196		goto out;
3197	}
3198	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3199	atomic_set(&log_root_tree->log_commit[index2], 1);
3200
3201	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3202		wait_log_commit(log_root_tree,
3203				root_log_ctx.log_transid - 1);
3204	}
3205
3206	wait_for_writer(log_root_tree);
3207
3208	/*
3209	 * now that we've moved on to the tree of log tree roots,
3210	 * check the full commit flag again
3211	 */
3212	if (btrfs_need_log_full_commit(trans)) {
3213		blk_finish_plug(&plug);
3214		btrfs_wait_tree_log_extents(log, mark);
3215		mutex_unlock(&log_root_tree->log_mutex);
3216		ret = -EAGAIN;
3217		goto out_wake_log_root;
3218	}
3219
3220	ret = btrfs_write_marked_extents(fs_info,
3221					 &log_root_tree->dirty_log_pages,
3222					 EXTENT_DIRTY | EXTENT_NEW);
3223	blk_finish_plug(&plug);
3224	if (ret) {
3225		btrfs_set_log_full_commit(trans);
3226		btrfs_abort_transaction(trans, ret);
3227		mutex_unlock(&log_root_tree->log_mutex);
3228		goto out_wake_log_root;
3229	}
3230	ret = btrfs_wait_tree_log_extents(log, mark);
3231	if (!ret)
3232		ret = btrfs_wait_tree_log_extents(log_root_tree,
3233						  EXTENT_NEW | EXTENT_DIRTY);
3234	if (ret) {
3235		btrfs_set_log_full_commit(trans);
3236		mutex_unlock(&log_root_tree->log_mutex);
3237		goto out_wake_log_root;
3238	}
 
3239
3240	btrfs_set_super_log_root(fs_info->super_for_commit,
3241				 log_root_tree->node->start);
3242	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3243				       btrfs_header_level(log_root_tree->node));
3244
 
3245	log_root_tree->log_transid++;
 
 
3246	mutex_unlock(&log_root_tree->log_mutex);
3247
3248	/*
3249	 * Nobody else is going to jump in and write the ctree
3250	 * super here because the log_commit atomic below is protecting
3251	 * us.  We must be called with a transaction handle pinning
3252	 * the running transaction open, so a full commit can't hop
3253	 * in and cause problems either.
3254	 */
3255	ret = write_all_supers(fs_info, 1);
3256	if (ret) {
3257		btrfs_set_log_full_commit(trans);
3258		btrfs_abort_transaction(trans, ret);
3259		goto out_wake_log_root;
3260	}
3261
3262	mutex_lock(&root->log_mutex);
3263	if (root->last_log_commit < log_transid)
3264		root->last_log_commit = log_transid;
3265	mutex_unlock(&root->log_mutex);
3266
3267out_wake_log_root:
3268	mutex_lock(&log_root_tree->log_mutex);
3269	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3270
3271	log_root_tree->log_transid_committed++;
3272	atomic_set(&log_root_tree->log_commit[index2], 0);
3273	mutex_unlock(&log_root_tree->log_mutex);
3274
3275	/*
3276	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3277	 * all the updates above are seen by the woken threads. It might not be
3278	 * necessary, but proving that seems to be hard.
3279	 */
3280	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3281out:
3282	mutex_lock(&root->log_mutex);
3283	btrfs_remove_all_log_ctxs(root, index1, ret);
3284	root->log_transid_committed++;
3285	atomic_set(&root->log_commit[index1], 0);
3286	mutex_unlock(&root->log_mutex);
3287
3288	/*
3289	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3290	 * all the updates above are seen by the woken threads. It might not be
3291	 * necessary, but proving that seems to be hard.
3292	 */
3293	cond_wake_up(&root->log_commit_wait[index1]);
3294	return ret;
3295}
3296
3297static void free_log_tree(struct btrfs_trans_handle *trans,
3298			  struct btrfs_root *log)
3299{
3300	int ret;
 
 
3301	struct walk_control wc = {
3302		.free = 1,
3303		.process_func = process_one_buffer
3304	};
3305
3306	ret = walk_log_tree(trans, log, &wc);
3307	if (ret) {
3308		if (trans)
3309			btrfs_abort_transaction(trans, ret);
3310		else
3311			btrfs_handle_fs_error(log->fs_info, ret, NULL);
 
 
 
 
 
3312	}
3313
3314	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3315			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3316	free_extent_buffer(log->node);
3317	kfree(log);
3318}
3319
3320/*
3321 * free all the extents used by the tree log.  This should be called
3322 * at commit time of the full transaction
3323 */
3324int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3325{
3326	if (root->log_root) {
3327		free_log_tree(trans, root->log_root);
3328		root->log_root = NULL;
3329	}
3330	return 0;
3331}
3332
3333int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3334			     struct btrfs_fs_info *fs_info)
3335{
3336	if (fs_info->log_root_tree) {
3337		free_log_tree(trans, fs_info->log_root_tree);
3338		fs_info->log_root_tree = NULL;
3339	}
3340	return 0;
3341}
3342
3343/*
3344 * Check if an inode was logged in the current transaction. We can't always rely
3345 * on an inode's logged_trans value, because it's an in-memory only field and
3346 * therefore not persisted. This means that its value is lost if the inode gets
3347 * evicted and loaded again from disk (in which case it has a value of 0, and
3348 * certainly it is smaller then any possible transaction ID), when that happens
3349 * the full_sync flag is set in the inode's runtime flags, so on that case we
3350 * assume eviction happened and ignore the logged_trans value, assuming the
3351 * worst case, that the inode was logged before in the current transaction.
3352 */
3353static bool inode_logged(struct btrfs_trans_handle *trans,
3354			 struct btrfs_inode *inode)
3355{
3356	if (inode->logged_trans == trans->transid)
3357		return true;
3358
3359	if (inode->last_trans == trans->transid &&
3360	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3361	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3362		return true;
3363
3364	return false;
3365}
3366
3367/*
3368 * If both a file and directory are logged, and unlinks or renames are
3369 * mixed in, we have a few interesting corners:
3370 *
3371 * create file X in dir Y
3372 * link file X to X.link in dir Y
3373 * fsync file X
3374 * unlink file X but leave X.link
3375 * fsync dir Y
3376 *
3377 * After a crash we would expect only X.link to exist.  But file X
3378 * didn't get fsync'd again so the log has back refs for X and X.link.
3379 *
3380 * We solve this by removing directory entries and inode backrefs from the
3381 * log when a file that was logged in the current transaction is
3382 * unlinked.  Any later fsync will include the updated log entries, and
3383 * we'll be able to reconstruct the proper directory items from backrefs.
3384 *
3385 * This optimizations allows us to avoid relogging the entire inode
3386 * or the entire directory.
3387 */
3388int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3389				 struct btrfs_root *root,
3390				 const char *name, int name_len,
3391				 struct btrfs_inode *dir, u64 index)
3392{
3393	struct btrfs_root *log;
3394	struct btrfs_dir_item *di;
3395	struct btrfs_path *path;
3396	int ret;
3397	int err = 0;
3398	int bytes_del = 0;
3399	u64 dir_ino = btrfs_ino(dir);
3400
3401	if (!inode_logged(trans, dir))
3402		return 0;
3403
3404	ret = join_running_log_trans(root);
3405	if (ret)
3406		return 0;
3407
3408	mutex_lock(&dir->log_mutex);
3409
3410	log = root->log_root;
3411	path = btrfs_alloc_path();
3412	if (!path) {
3413		err = -ENOMEM;
3414		goto out_unlock;
3415	}
3416
3417	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3418				   name, name_len, -1);
3419	if (IS_ERR(di)) {
3420		err = PTR_ERR(di);
3421		goto fail;
3422	}
3423	if (di) {
3424		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3425		bytes_del += name_len;
3426		if (ret) {
3427			err = ret;
3428			goto fail;
3429		}
3430	}
3431	btrfs_release_path(path);
3432	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3433					 index, name, name_len, -1);
3434	if (IS_ERR(di)) {
3435		err = PTR_ERR(di);
3436		goto fail;
3437	}
3438	if (di) {
3439		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3440		bytes_del += name_len;
3441		if (ret) {
3442			err = ret;
3443			goto fail;
3444		}
3445	}
3446
3447	/* update the directory size in the log to reflect the names
3448	 * we have removed
3449	 */
3450	if (bytes_del) {
3451		struct btrfs_key key;
3452
3453		key.objectid = dir_ino;
3454		key.offset = 0;
3455		key.type = BTRFS_INODE_ITEM_KEY;
3456		btrfs_release_path(path);
3457
3458		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3459		if (ret < 0) {
3460			err = ret;
3461			goto fail;
3462		}
3463		if (ret == 0) {
3464			struct btrfs_inode_item *item;
3465			u64 i_size;
3466
3467			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3468					      struct btrfs_inode_item);
3469			i_size = btrfs_inode_size(path->nodes[0], item);
3470			if (i_size > bytes_del)
3471				i_size -= bytes_del;
3472			else
3473				i_size = 0;
3474			btrfs_set_inode_size(path->nodes[0], item, i_size);
3475			btrfs_mark_buffer_dirty(path->nodes[0]);
3476		} else
3477			ret = 0;
3478		btrfs_release_path(path);
3479	}
3480fail:
3481	btrfs_free_path(path);
3482out_unlock:
3483	mutex_unlock(&dir->log_mutex);
3484	if (ret == -ENOSPC) {
3485		btrfs_set_log_full_commit(trans);
3486		ret = 0;
3487	} else if (ret < 0)
3488		btrfs_abort_transaction(trans, ret);
3489
3490	btrfs_end_log_trans(root);
3491
3492	return err;
3493}
3494
3495/* see comments for btrfs_del_dir_entries_in_log */
3496int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3497			       struct btrfs_root *root,
3498			       const char *name, int name_len,
3499			       struct btrfs_inode *inode, u64 dirid)
3500{
3501	struct btrfs_root *log;
3502	u64 index;
3503	int ret;
3504
3505	if (!inode_logged(trans, inode))
3506		return 0;
3507
3508	ret = join_running_log_trans(root);
3509	if (ret)
3510		return 0;
3511	log = root->log_root;
3512	mutex_lock(&inode->log_mutex);
3513
3514	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3515				  dirid, &index);
3516	mutex_unlock(&inode->log_mutex);
3517	if (ret == -ENOSPC) {
3518		btrfs_set_log_full_commit(trans);
3519		ret = 0;
3520	} else if (ret < 0 && ret != -ENOENT)
3521		btrfs_abort_transaction(trans, ret);
3522	btrfs_end_log_trans(root);
3523
3524	return ret;
3525}
3526
3527/*
3528 * creates a range item in the log for 'dirid'.  first_offset and
3529 * last_offset tell us which parts of the key space the log should
3530 * be considered authoritative for.
3531 */
3532static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3533				       struct btrfs_root *log,
3534				       struct btrfs_path *path,
3535				       int key_type, u64 dirid,
3536				       u64 first_offset, u64 last_offset)
3537{
3538	int ret;
3539	struct btrfs_key key;
3540	struct btrfs_dir_log_item *item;
3541
3542	key.objectid = dirid;
3543	key.offset = first_offset;
3544	if (key_type == BTRFS_DIR_ITEM_KEY)
3545		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3546	else
3547		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3548	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3549	if (ret)
3550		return ret;
3551
3552	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3553			      struct btrfs_dir_log_item);
3554	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3555	btrfs_mark_buffer_dirty(path->nodes[0]);
3556	btrfs_release_path(path);
3557	return 0;
3558}
3559
3560/*
3561 * log all the items included in the current transaction for a given
3562 * directory.  This also creates the range items in the log tree required
3563 * to replay anything deleted before the fsync
3564 */
3565static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3566			  struct btrfs_root *root, struct btrfs_inode *inode,
3567			  struct btrfs_path *path,
3568			  struct btrfs_path *dst_path, int key_type,
3569			  struct btrfs_log_ctx *ctx,
3570			  u64 min_offset, u64 *last_offset_ret)
3571{
3572	struct btrfs_key min_key;
 
3573	struct btrfs_root *log = root->log_root;
3574	struct extent_buffer *src;
3575	int err = 0;
3576	int ret;
3577	int i;
3578	int nritems;
3579	u64 first_offset = min_offset;
3580	u64 last_offset = (u64)-1;
3581	u64 ino = btrfs_ino(inode);
3582
3583	log = root->log_root;
 
 
 
3584
3585	min_key.objectid = ino;
3586	min_key.type = key_type;
3587	min_key.offset = min_offset;
3588
3589	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
 
 
 
3590
3591	/*
3592	 * we didn't find anything from this transaction, see if there
3593	 * is anything at all
3594	 */
3595	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3596		min_key.objectid = ino;
3597		min_key.type = key_type;
3598		min_key.offset = (u64)-1;
3599		btrfs_release_path(path);
3600		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3601		if (ret < 0) {
3602			btrfs_release_path(path);
3603			return ret;
3604		}
3605		ret = btrfs_previous_item(root, path, ino, key_type);
3606
3607		/* if ret == 0 there are items for this type,
3608		 * create a range to tell us the last key of this type.
3609		 * otherwise, there are no items in this directory after
3610		 * *min_offset, and we create a range to indicate that.
3611		 */
3612		if (ret == 0) {
3613			struct btrfs_key tmp;
3614			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3615					      path->slots[0]);
3616			if (key_type == tmp.type)
3617				first_offset = max(min_offset, tmp.offset) + 1;
3618		}
3619		goto done;
3620	}
3621
3622	/* go backward to find any previous key */
3623	ret = btrfs_previous_item(root, path, ino, key_type);
3624	if (ret == 0) {
3625		struct btrfs_key tmp;
3626		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3627		if (key_type == tmp.type) {
3628			first_offset = tmp.offset;
3629			ret = overwrite_item(trans, log, dst_path,
3630					     path->nodes[0], path->slots[0],
3631					     &tmp);
3632			if (ret) {
3633				err = ret;
3634				goto done;
3635			}
3636		}
3637	}
3638	btrfs_release_path(path);
3639
3640	/*
3641	 * Find the first key from this transaction again.  See the note for
3642	 * log_new_dir_dentries, if we're logging a directory recursively we
3643	 * won't be holding its i_mutex, which means we can modify the directory
3644	 * while we're logging it.  If we remove an entry between our first
3645	 * search and this search we'll not find the key again and can just
3646	 * bail.
3647	 */
3648	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3649	if (ret != 0)
 
3650		goto done;
 
3651
3652	/*
3653	 * we have a block from this transaction, log every item in it
3654	 * from our directory
3655	 */
3656	while (1) {
3657		struct btrfs_key tmp;
3658		src = path->nodes[0];
3659		nritems = btrfs_header_nritems(src);
3660		for (i = path->slots[0]; i < nritems; i++) {
3661			struct btrfs_dir_item *di;
3662
3663			btrfs_item_key_to_cpu(src, &min_key, i);
3664
3665			if (min_key.objectid != ino || min_key.type != key_type)
3666				goto done;
3667			ret = overwrite_item(trans, log, dst_path, src, i,
3668					     &min_key);
3669			if (ret) {
3670				err = ret;
3671				goto done;
3672			}
3673
3674			/*
3675			 * We must make sure that when we log a directory entry,
3676			 * the corresponding inode, after log replay, has a
3677			 * matching link count. For example:
3678			 *
3679			 * touch foo
3680			 * mkdir mydir
3681			 * sync
3682			 * ln foo mydir/bar
3683			 * xfs_io -c "fsync" mydir
3684			 * <crash>
3685			 * <mount fs and log replay>
3686			 *
3687			 * Would result in a fsync log that when replayed, our
3688			 * file inode would have a link count of 1, but we get
3689			 * two directory entries pointing to the same inode.
3690			 * After removing one of the names, it would not be
3691			 * possible to remove the other name, which resulted
3692			 * always in stale file handle errors, and would not
3693			 * be possible to rmdir the parent directory, since
3694			 * its i_size could never decrement to the value
3695			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3696			 */
3697			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3698			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3699			if (ctx &&
3700			    (btrfs_dir_transid(src, di) == trans->transid ||
3701			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3702			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3703				ctx->log_new_dentries = true;
3704		}
3705		path->slots[0] = nritems;
3706
3707		/*
3708		 * look ahead to the next item and see if it is also
3709		 * from this directory and from this transaction
3710		 */
3711		ret = btrfs_next_leaf(root, path);
3712		if (ret) {
3713			if (ret == 1)
3714				last_offset = (u64)-1;
3715			else
3716				err = ret;
3717			goto done;
3718		}
3719		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3720		if (tmp.objectid != ino || tmp.type != key_type) {
3721			last_offset = (u64)-1;
3722			goto done;
3723		}
3724		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3725			ret = overwrite_item(trans, log, dst_path,
3726					     path->nodes[0], path->slots[0],
3727					     &tmp);
3728			if (ret)
3729				err = ret;
3730			else
3731				last_offset = tmp.offset;
3732			goto done;
3733		}
3734	}
3735done:
3736	btrfs_release_path(path);
3737	btrfs_release_path(dst_path);
3738
3739	if (err == 0) {
3740		*last_offset_ret = last_offset;
3741		/*
3742		 * insert the log range keys to indicate where the log
3743		 * is valid
3744		 */
3745		ret = insert_dir_log_key(trans, log, path, key_type,
3746					 ino, first_offset, last_offset);
3747		if (ret)
3748			err = ret;
3749	}
3750	return err;
3751}
3752
3753/*
3754 * logging directories is very similar to logging inodes, We find all the items
3755 * from the current transaction and write them to the log.
3756 *
3757 * The recovery code scans the directory in the subvolume, and if it finds a
3758 * key in the range logged that is not present in the log tree, then it means
3759 * that dir entry was unlinked during the transaction.
3760 *
3761 * In order for that scan to work, we must include one key smaller than
3762 * the smallest logged by this transaction and one key larger than the largest
3763 * key logged by this transaction.
3764 */
3765static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3766			  struct btrfs_root *root, struct btrfs_inode *inode,
3767			  struct btrfs_path *path,
3768			  struct btrfs_path *dst_path,
3769			  struct btrfs_log_ctx *ctx)
3770{
3771	u64 min_key;
3772	u64 max_key;
3773	int ret;
3774	int key_type = BTRFS_DIR_ITEM_KEY;
3775
3776again:
3777	min_key = 0;
3778	max_key = 0;
3779	while (1) {
3780		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3781				ctx, min_key, &max_key);
 
3782		if (ret)
3783			return ret;
3784		if (max_key == (u64)-1)
3785			break;
3786		min_key = max_key + 1;
3787	}
3788
3789	if (key_type == BTRFS_DIR_ITEM_KEY) {
3790		key_type = BTRFS_DIR_INDEX_KEY;
3791		goto again;
3792	}
3793	return 0;
3794}
3795
3796/*
3797 * a helper function to drop items from the log before we relog an
3798 * inode.  max_key_type indicates the highest item type to remove.
3799 * This cannot be run for file data extents because it does not
3800 * free the extents they point to.
3801 */
3802static int drop_objectid_items(struct btrfs_trans_handle *trans,
3803				  struct btrfs_root *log,
3804				  struct btrfs_path *path,
3805				  u64 objectid, int max_key_type)
3806{
3807	int ret;
3808	struct btrfs_key key;
3809	struct btrfs_key found_key;
3810	int start_slot;
3811
3812	key.objectid = objectid;
3813	key.type = max_key_type;
3814	key.offset = (u64)-1;
3815
3816	while (1) {
3817		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3818		BUG_ON(ret == 0); /* Logic error */
3819		if (ret < 0)
3820			break;
3821
3822		if (path->slots[0] == 0)
3823			break;
3824
3825		path->slots[0]--;
3826		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3827				      path->slots[0]);
3828
3829		if (found_key.objectid != objectid)
3830			break;
3831
3832		found_key.offset = 0;
3833		found_key.type = 0;
3834		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3835				       &start_slot);
3836		if (ret < 0)
3837			break;
3838
3839		ret = btrfs_del_items(trans, log, path, start_slot,
3840				      path->slots[0] - start_slot + 1);
3841		/*
3842		 * If start slot isn't 0 then we don't need to re-search, we've
3843		 * found the last guy with the objectid in this tree.
3844		 */
3845		if (ret || start_slot != 0)
3846			break;
3847		btrfs_release_path(path);
3848	}
3849	btrfs_release_path(path);
3850	if (ret > 0)
3851		ret = 0;
3852	return ret;
3853}
3854
3855static void fill_inode_item(struct btrfs_trans_handle *trans,
3856			    struct extent_buffer *leaf,
3857			    struct btrfs_inode_item *item,
3858			    struct inode *inode, int log_inode_only,
3859			    u64 logged_isize)
3860{
3861	struct btrfs_map_token token;
3862
3863	btrfs_init_map_token(&token, leaf);
3864
3865	if (log_inode_only) {
3866		/* set the generation to zero so the recover code
3867		 * can tell the difference between an logging
3868		 * just to say 'this inode exists' and a logging
3869		 * to say 'update this inode with these values'
3870		 */
3871		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3872		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3873	} else {
3874		btrfs_set_token_inode_generation(leaf, item,
3875						 BTRFS_I(inode)->generation,
3876						 &token);
3877		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3878	}
3879
3880	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3881	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3882	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3883	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3884
3885	btrfs_set_token_timespec_sec(leaf, &item->atime,
3886				     inode->i_atime.tv_sec, &token);
3887	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3888				      inode->i_atime.tv_nsec, &token);
3889
3890	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3891				     inode->i_mtime.tv_sec, &token);
3892	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3893				      inode->i_mtime.tv_nsec, &token);
3894
3895	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3896				     inode->i_ctime.tv_sec, &token);
3897	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3898				      inode->i_ctime.tv_nsec, &token);
3899
3900	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3901				     &token);
3902
3903	btrfs_set_token_inode_sequence(leaf, item,
3904				       inode_peek_iversion(inode), &token);
3905	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3906	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3907	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3908	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3909}
3910
3911static int log_inode_item(struct btrfs_trans_handle *trans,
3912			  struct btrfs_root *log, struct btrfs_path *path,
3913			  struct btrfs_inode *inode)
3914{
3915	struct btrfs_inode_item *inode_item;
3916	int ret;
3917
3918	ret = btrfs_insert_empty_item(trans, log, path,
3919				      &inode->location, sizeof(*inode_item));
3920	if (ret && ret != -EEXIST)
3921		return ret;
3922	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3923				    struct btrfs_inode_item);
3924	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3925			0, 0);
3926	btrfs_release_path(path);
3927	return 0;
3928}
3929
3930static noinline int copy_items(struct btrfs_trans_handle *trans,
3931			       struct btrfs_inode *inode,
3932			       struct btrfs_path *dst_path,
3933			       struct btrfs_path *src_path, u64 *last_extent,
3934			       int start_slot, int nr, int inode_only,
3935			       u64 logged_isize)
3936{
3937	struct btrfs_fs_info *fs_info = trans->fs_info;
3938	unsigned long src_offset;
3939	unsigned long dst_offset;
3940	struct btrfs_root *log = inode->root->log_root;
3941	struct btrfs_file_extent_item *extent;
3942	struct btrfs_inode_item *inode_item;
3943	struct extent_buffer *src = src_path->nodes[0];
3944	struct btrfs_key first_key, last_key, key;
3945	int ret;
3946	struct btrfs_key *ins_keys;
3947	u32 *ins_sizes;
3948	char *ins_data;
3949	int i;
3950	struct list_head ordered_sums;
3951	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3952	bool has_extents = false;
3953	bool need_find_last_extent = true;
3954	bool done = false;
3955
3956	INIT_LIST_HEAD(&ordered_sums);
3957
3958	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3959			   nr * sizeof(u32), GFP_NOFS);
3960	if (!ins_data)
3961		return -ENOMEM;
3962
3963	first_key.objectid = (u64)-1;
3964
3965	ins_sizes = (u32 *)ins_data;
3966	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3967
3968	for (i = 0; i < nr; i++) {
3969		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3970		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3971	}
3972	ret = btrfs_insert_empty_items(trans, log, dst_path,
3973				       ins_keys, ins_sizes, nr);
3974	if (ret) {
3975		kfree(ins_data);
3976		return ret;
3977	}
3978
3979	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3980		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3981						   dst_path->slots[0]);
3982
3983		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3984
3985		if (i == nr - 1)
3986			last_key = ins_keys[i];
3987
3988		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
 
3989			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3990						    dst_path->slots[0],
3991						    struct btrfs_inode_item);
3992			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3993					&inode->vfs_inode,
3994					inode_only == LOG_INODE_EXISTS,
3995					logged_isize);
3996		} else {
3997			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3998					   src_offset, ins_sizes[i]);
3999		}
4000
4001		/*
4002		 * We set need_find_last_extent here in case we know we were
4003		 * processing other items and then walk into the first extent in
4004		 * the inode.  If we don't hit an extent then nothing changes,
4005		 * we'll do the last search the next time around.
4006		 */
4007		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
4008			has_extents = true;
4009			if (first_key.objectid == (u64)-1)
4010				first_key = ins_keys[i];
4011		} else {
4012			need_find_last_extent = false;
4013		}
4014
4015		/* take a reference on file data extents so that truncates
4016		 * or deletes of this inode don't have to relog the inode
4017		 * again
4018		 */
4019		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4020		    !skip_csum) {
4021			int found_type;
4022			extent = btrfs_item_ptr(src, start_slot + i,
4023						struct btrfs_file_extent_item);
4024
4025			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4026				continue;
4027
4028			found_type = btrfs_file_extent_type(src, extent);
4029			if (found_type == BTRFS_FILE_EXTENT_REG) {
 
4030				u64 ds, dl, cs, cl;
4031				ds = btrfs_file_extent_disk_bytenr(src,
4032								extent);
4033				/* ds == 0 is a hole */
4034				if (ds == 0)
4035					continue;
4036
4037				dl = btrfs_file_extent_disk_num_bytes(src,
4038								extent);
4039				cs = btrfs_file_extent_offset(src, extent);
4040				cl = btrfs_file_extent_num_bytes(src,
4041								extent);
4042				if (btrfs_file_extent_compression(src,
4043								  extent)) {
4044					cs = 0;
4045					cl = dl;
4046				}
4047
4048				ret = btrfs_lookup_csums_range(
4049						fs_info->csum_root,
4050						ds + cs, ds + cs + cl - 1,
4051						&ordered_sums, 0);
4052				if (ret) {
4053					btrfs_release_path(dst_path);
4054					kfree(ins_data);
4055					return ret;
4056				}
4057			}
4058		}
4059	}
4060
4061	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4062	btrfs_release_path(dst_path);
4063	kfree(ins_data);
4064
4065	/*
4066	 * we have to do this after the loop above to avoid changing the
4067	 * log tree while trying to change the log tree.
4068	 */
4069	ret = 0;
4070	while (!list_empty(&ordered_sums)) {
4071		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4072						   struct btrfs_ordered_sum,
4073						   list);
4074		if (!ret)
4075			ret = btrfs_csum_file_blocks(trans, log, sums);
4076		list_del(&sums->list);
4077		kfree(sums);
4078	}
4079
4080	if (!has_extents)
4081		return ret;
4082
4083	if (need_find_last_extent && *last_extent == first_key.offset) {
4084		/*
4085		 * We don't have any leafs between our current one and the one
4086		 * we processed before that can have file extent items for our
4087		 * inode (and have a generation number smaller than our current
4088		 * transaction id).
4089		 */
4090		need_find_last_extent = false;
4091	}
4092
4093	/*
4094	 * Because we use btrfs_search_forward we could skip leaves that were
4095	 * not modified and then assume *last_extent is valid when it really
4096	 * isn't.  So back up to the previous leaf and read the end of the last
4097	 * extent before we go and fill in holes.
4098	 */
4099	if (need_find_last_extent) {
4100		u64 len;
4101
4102		ret = btrfs_prev_leaf(inode->root, src_path);
4103		if (ret < 0)
4104			return ret;
4105		if (ret)
4106			goto fill_holes;
4107		if (src_path->slots[0])
4108			src_path->slots[0]--;
4109		src = src_path->nodes[0];
4110		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
4111		if (key.objectid != btrfs_ino(inode) ||
4112		    key.type != BTRFS_EXTENT_DATA_KEY)
4113			goto fill_holes;
4114		extent = btrfs_item_ptr(src, src_path->slots[0],
4115					struct btrfs_file_extent_item);
4116		if (btrfs_file_extent_type(src, extent) ==
4117		    BTRFS_FILE_EXTENT_INLINE) {
4118			len = btrfs_file_extent_ram_bytes(src, extent);
4119			*last_extent = ALIGN(key.offset + len,
4120					     fs_info->sectorsize);
4121		} else {
4122			len = btrfs_file_extent_num_bytes(src, extent);
4123			*last_extent = key.offset + len;
4124		}
4125	}
4126fill_holes:
4127	/* So we did prev_leaf, now we need to move to the next leaf, but a few
4128	 * things could have happened
4129	 *
4130	 * 1) A merge could have happened, so we could currently be on a leaf
4131	 * that holds what we were copying in the first place.
4132	 * 2) A split could have happened, and now not all of the items we want
4133	 * are on the same leaf.
4134	 *
4135	 * So we need to adjust how we search for holes, we need to drop the
4136	 * path and re-search for the first extent key we found, and then walk
4137	 * forward until we hit the last one we copied.
4138	 */
4139	if (need_find_last_extent) {
4140		/* btrfs_prev_leaf could return 1 without releasing the path */
4141		btrfs_release_path(src_path);
4142		ret = btrfs_search_slot(NULL, inode->root, &first_key,
4143				src_path, 0, 0);
4144		if (ret < 0)
4145			return ret;
4146		ASSERT(ret == 0);
4147		src = src_path->nodes[0];
4148		i = src_path->slots[0];
4149	} else {
4150		i = start_slot;
4151	}
4152
4153	/*
4154	 * Ok so here we need to go through and fill in any holes we may have
4155	 * to make sure that holes are punched for those areas in case they had
4156	 * extents previously.
4157	 */
4158	while (!done) {
4159		u64 offset, len;
4160		u64 extent_end;
4161
4162		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
4163			ret = btrfs_next_leaf(inode->root, src_path);
4164			if (ret < 0)
4165				return ret;
4166			ASSERT(ret == 0);
4167			src = src_path->nodes[0];
4168			i = 0;
4169			need_find_last_extent = true;
4170		}
4171
4172		btrfs_item_key_to_cpu(src, &key, i);
4173		if (!btrfs_comp_cpu_keys(&key, &last_key))
4174			done = true;
4175		if (key.objectid != btrfs_ino(inode) ||
4176		    key.type != BTRFS_EXTENT_DATA_KEY) {
4177			i++;
4178			continue;
4179		}
4180		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4181		if (btrfs_file_extent_type(src, extent) ==
4182		    BTRFS_FILE_EXTENT_INLINE) {
4183			len = btrfs_file_extent_ram_bytes(src, extent);
4184			extent_end = ALIGN(key.offset + len,
4185					   fs_info->sectorsize);
4186		} else {
4187			len = btrfs_file_extent_num_bytes(src, extent);
4188			extent_end = key.offset + len;
4189		}
4190		i++;
4191
4192		if (*last_extent == key.offset) {
4193			*last_extent = extent_end;
4194			continue;
4195		}
4196		offset = *last_extent;
4197		len = key.offset - *last_extent;
4198		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4199				offset, 0, 0, len, 0, len, 0, 0, 0);
4200		if (ret)
4201			break;
4202		*last_extent = extent_end;
4203	}
4204
4205	/*
4206	 * Check if there is a hole between the last extent found in our leaf
4207	 * and the first extent in the next leaf. If there is one, we need to
4208	 * log an explicit hole so that at replay time we can punch the hole.
4209	 */
4210	if (ret == 0 &&
4211	    key.objectid == btrfs_ino(inode) &&
4212	    key.type == BTRFS_EXTENT_DATA_KEY &&
4213	    i == btrfs_header_nritems(src_path->nodes[0])) {
4214		ret = btrfs_next_leaf(inode->root, src_path);
4215		need_find_last_extent = true;
4216		if (ret > 0) {
4217			ret = 0;
4218		} else if (ret == 0) {
4219			btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4220					      src_path->slots[0]);
4221			if (key.objectid == btrfs_ino(inode) &&
4222			    key.type == BTRFS_EXTENT_DATA_KEY &&
4223			    *last_extent < key.offset) {
4224				const u64 len = key.offset - *last_extent;
4225
4226				ret = btrfs_insert_file_extent(trans, log,
4227							       btrfs_ino(inode),
4228							       *last_extent, 0,
4229							       0, len, 0, len,
4230							       0, 0, 0);
4231				*last_extent += len;
4232			}
4233		}
4234	}
4235	/*
4236	 * Need to let the callers know we dropped the path so they should
4237	 * re-search.
4238	 */
4239	if (!ret && need_find_last_extent)
4240		ret = 1;
4241	return ret;
4242}
4243
4244static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4245{
4246	struct extent_map *em1, *em2;
4247
4248	em1 = list_entry(a, struct extent_map, list);
4249	em2 = list_entry(b, struct extent_map, list);
4250
4251	if (em1->start < em2->start)
4252		return -1;
4253	else if (em1->start > em2->start)
4254		return 1;
4255	return 0;
4256}
4257
4258static int log_extent_csums(struct btrfs_trans_handle *trans,
4259			    struct btrfs_inode *inode,
4260			    struct btrfs_root *log_root,
4261			    const struct extent_map *em)
4262{
4263	u64 csum_offset;
4264	u64 csum_len;
4265	LIST_HEAD(ordered_sums);
4266	int ret = 0;
4267
4268	if (inode->flags & BTRFS_INODE_NODATASUM ||
4269	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4270	    em->block_start == EXTENT_MAP_HOLE)
4271		return 0;
4272
4273	/* If we're compressed we have to save the entire range of csums. */
4274	if (em->compress_type) {
4275		csum_offset = 0;
4276		csum_len = max(em->block_len, em->orig_block_len);
4277	} else {
4278		csum_offset = em->mod_start - em->start;
4279		csum_len = em->mod_len;
4280	}
4281
4282	/* block start is already adjusted for the file extent offset. */
4283	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4284				       em->block_start + csum_offset,
4285				       em->block_start + csum_offset +
4286				       csum_len - 1, &ordered_sums, 0);
4287	if (ret)
4288		return ret;
4289
4290	while (!list_empty(&ordered_sums)) {
4291		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4292						   struct btrfs_ordered_sum,
4293						   list);
4294		if (!ret)
4295			ret = btrfs_csum_file_blocks(trans, log_root, sums);
4296		list_del(&sums->list);
4297		kfree(sums);
4298	}
4299
4300	return ret;
4301}
4302
4303static int log_one_extent(struct btrfs_trans_handle *trans,
4304			  struct btrfs_inode *inode, struct btrfs_root *root,
4305			  const struct extent_map *em,
4306			  struct btrfs_path *path,
4307			  struct btrfs_log_ctx *ctx)
4308{
4309	struct btrfs_root *log = root->log_root;
4310	struct btrfs_file_extent_item *fi;
4311	struct extent_buffer *leaf;
4312	struct btrfs_map_token token;
4313	struct btrfs_key key;
4314	u64 extent_offset = em->start - em->orig_start;
4315	u64 block_len;
4316	int ret;
4317	int extent_inserted = 0;
4318
4319	ret = log_extent_csums(trans, inode, log, em);
4320	if (ret)
4321		return ret;
4322
4323	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4324				   em->start + em->len, NULL, 0, 1,
4325				   sizeof(*fi), &extent_inserted);
4326	if (ret)
4327		return ret;
4328
4329	if (!extent_inserted) {
4330		key.objectid = btrfs_ino(inode);
4331		key.type = BTRFS_EXTENT_DATA_KEY;
4332		key.offset = em->start;
4333
4334		ret = btrfs_insert_empty_item(trans, log, path, &key,
4335					      sizeof(*fi));
4336		if (ret)
4337			return ret;
4338	}
4339	leaf = path->nodes[0];
4340	btrfs_init_map_token(&token, leaf);
4341	fi = btrfs_item_ptr(leaf, path->slots[0],
4342			    struct btrfs_file_extent_item);
4343
4344	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4345					       &token);
4346	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4347		btrfs_set_token_file_extent_type(leaf, fi,
4348						 BTRFS_FILE_EXTENT_PREALLOC,
4349						 &token);
4350	else
4351		btrfs_set_token_file_extent_type(leaf, fi,
4352						 BTRFS_FILE_EXTENT_REG,
4353						 &token);
4354
4355	block_len = max(em->block_len, em->orig_block_len);
4356	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4357		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4358							em->block_start,
4359							&token);
4360		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4361							   &token);
4362	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4363		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4364							em->block_start -
4365							extent_offset, &token);
4366		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4367							   &token);
4368	} else {
4369		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4370		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4371							   &token);
4372	}
4373
4374	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4375	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4376	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4377	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4378						&token);
4379	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4380	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4381	btrfs_mark_buffer_dirty(leaf);
4382
4383	btrfs_release_path(path);
4384
4385	return ret;
4386}
4387
4388/*
4389 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4390 * lose them after doing a fast fsync and replaying the log. We scan the
4391 * subvolume's root instead of iterating the inode's extent map tree because
4392 * otherwise we can log incorrect extent items based on extent map conversion.
4393 * That can happen due to the fact that extent maps are merged when they
4394 * are not in the extent map tree's list of modified extents.
4395 */
4396static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4397				      struct btrfs_inode *inode,
4398				      struct btrfs_path *path)
4399{
4400	struct btrfs_root *root = inode->root;
4401	struct btrfs_key key;
4402	const u64 i_size = i_size_read(&inode->vfs_inode);
4403	const u64 ino = btrfs_ino(inode);
4404	struct btrfs_path *dst_path = NULL;
4405	u64 last_extent = (u64)-1;
4406	int ins_nr = 0;
4407	int start_slot;
4408	int ret;
4409
4410	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4411		return 0;
4412
4413	key.objectid = ino;
4414	key.type = BTRFS_EXTENT_DATA_KEY;
4415	key.offset = i_size;
4416	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4417	if (ret < 0)
4418		goto out;
4419
4420	while (true) {
4421		struct extent_buffer *leaf = path->nodes[0];
4422		int slot = path->slots[0];
4423
4424		if (slot >= btrfs_header_nritems(leaf)) {
4425			if (ins_nr > 0) {
4426				ret = copy_items(trans, inode, dst_path, path,
4427						 &last_extent, start_slot,
4428						 ins_nr, 1, 0);
4429				if (ret < 0)
4430					goto out;
4431				ins_nr = 0;
4432			}
4433			ret = btrfs_next_leaf(root, path);
4434			if (ret < 0)
4435				goto out;
4436			if (ret > 0) {
4437				ret = 0;
4438				break;
4439			}
4440			continue;
4441		}
4442
4443		btrfs_item_key_to_cpu(leaf, &key, slot);
4444		if (key.objectid > ino)
4445			break;
4446		if (WARN_ON_ONCE(key.objectid < ino) ||
4447		    key.type < BTRFS_EXTENT_DATA_KEY ||
4448		    key.offset < i_size) {
4449			path->slots[0]++;
4450			continue;
4451		}
4452		if (last_extent == (u64)-1) {
4453			last_extent = key.offset;
4454			/*
4455			 * Avoid logging extent items logged in past fsync calls
4456			 * and leading to duplicate keys in the log tree.
4457			 */
4458			do {
4459				ret = btrfs_truncate_inode_items(trans,
4460							 root->log_root,
4461							 &inode->vfs_inode,
4462							 i_size,
4463							 BTRFS_EXTENT_DATA_KEY);
4464			} while (ret == -EAGAIN);
4465			if (ret)
4466				goto out;
4467		}
4468		if (ins_nr == 0)
4469			start_slot = slot;
4470		ins_nr++;
4471		path->slots[0]++;
4472		if (!dst_path) {
4473			dst_path = btrfs_alloc_path();
4474			if (!dst_path) {
4475				ret = -ENOMEM;
4476				goto out;
4477			}
4478		}
4479	}
4480	if (ins_nr > 0) {
4481		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4482				 start_slot, ins_nr, 1, 0);
4483		if (ret > 0)
4484			ret = 0;
4485	}
4486out:
4487	btrfs_release_path(path);
4488	btrfs_free_path(dst_path);
4489	return ret;
4490}
4491
4492static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4493				     struct btrfs_root *root,
4494				     struct btrfs_inode *inode,
4495				     struct btrfs_path *path,
4496				     struct btrfs_log_ctx *ctx,
4497				     const u64 start,
4498				     const u64 end)
4499{
4500	struct extent_map *em, *n;
4501	struct list_head extents;
4502	struct extent_map_tree *tree = &inode->extent_tree;
4503	u64 test_gen;
4504	int ret = 0;
4505	int num = 0;
4506
4507	INIT_LIST_HEAD(&extents);
4508
4509	write_lock(&tree->lock);
4510	test_gen = root->fs_info->last_trans_committed;
4511
4512	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4513		/*
4514		 * Skip extents outside our logging range. It's important to do
4515		 * it for correctness because if we don't ignore them, we may
4516		 * log them before their ordered extent completes, and therefore
4517		 * we could log them without logging their respective checksums
4518		 * (the checksum items are added to the csum tree at the very
4519		 * end of btrfs_finish_ordered_io()). Also leave such extents
4520		 * outside of our range in the list, since we may have another
4521		 * ranged fsync in the near future that needs them. If an extent
4522		 * outside our range corresponds to a hole, log it to avoid
4523		 * leaving gaps between extents (fsck will complain when we are
4524		 * not using the NO_HOLES feature).
4525		 */
4526		if ((em->start > end || em->start + em->len <= start) &&
4527		    em->block_start != EXTENT_MAP_HOLE)
4528			continue;
4529
4530		list_del_init(&em->list);
4531		/*
4532		 * Just an arbitrary number, this can be really CPU intensive
4533		 * once we start getting a lot of extents, and really once we
4534		 * have a bunch of extents we just want to commit since it will
4535		 * be faster.
4536		 */
4537		if (++num > 32768) {
4538			list_del_init(&tree->modified_extents);
4539			ret = -EFBIG;
4540			goto process;
4541		}
4542
4543		if (em->generation <= test_gen)
4544			continue;
4545
4546		/* We log prealloc extents beyond eof later. */
4547		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4548		    em->start >= i_size_read(&inode->vfs_inode))
4549			continue;
4550
4551		/* Need a ref to keep it from getting evicted from cache */
4552		refcount_inc(&em->refs);
4553		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4554		list_add_tail(&em->list, &extents);
4555		num++;
4556	}
4557
4558	list_sort(NULL, &extents, extent_cmp);
4559process:
4560	while (!list_empty(&extents)) {
4561		em = list_entry(extents.next, struct extent_map, list);
4562
4563		list_del_init(&em->list);
4564
4565		/*
4566		 * If we had an error we just need to delete everybody from our
4567		 * private list.
4568		 */
4569		if (ret) {
4570			clear_em_logging(tree, em);
4571			free_extent_map(em);
4572			continue;
4573		}
4574
4575		write_unlock(&tree->lock);
4576
4577		ret = log_one_extent(trans, inode, root, em, path, ctx);
4578		write_lock(&tree->lock);
4579		clear_em_logging(tree, em);
4580		free_extent_map(em);
4581	}
4582	WARN_ON(!list_empty(&extents));
4583	write_unlock(&tree->lock);
4584
4585	btrfs_release_path(path);
4586	if (!ret)
4587		ret = btrfs_log_prealloc_extents(trans, inode, path);
4588
4589	return ret;
4590}
4591
4592static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4593			     struct btrfs_path *path, u64 *size_ret)
4594{
4595	struct btrfs_key key;
4596	int ret;
4597
4598	key.objectid = btrfs_ino(inode);
4599	key.type = BTRFS_INODE_ITEM_KEY;
4600	key.offset = 0;
4601
4602	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4603	if (ret < 0) {
4604		return ret;
4605	} else if (ret > 0) {
4606		*size_ret = 0;
4607	} else {
4608		struct btrfs_inode_item *item;
4609
4610		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4611				      struct btrfs_inode_item);
4612		*size_ret = btrfs_inode_size(path->nodes[0], item);
4613		/*
4614		 * If the in-memory inode's i_size is smaller then the inode
4615		 * size stored in the btree, return the inode's i_size, so
4616		 * that we get a correct inode size after replaying the log
4617		 * when before a power failure we had a shrinking truncate
4618		 * followed by addition of a new name (rename / new hard link).
4619		 * Otherwise return the inode size from the btree, to avoid
4620		 * data loss when replaying a log due to previously doing a
4621		 * write that expands the inode's size and logging a new name
4622		 * immediately after.
4623		 */
4624		if (*size_ret > inode->vfs_inode.i_size)
4625			*size_ret = inode->vfs_inode.i_size;
4626	}
4627
4628	btrfs_release_path(path);
4629	return 0;
4630}
4631
4632/*
4633 * At the moment we always log all xattrs. This is to figure out at log replay
4634 * time which xattrs must have their deletion replayed. If a xattr is missing
4635 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4636 * because if a xattr is deleted, the inode is fsynced and a power failure
4637 * happens, causing the log to be replayed the next time the fs is mounted,
4638 * we want the xattr to not exist anymore (same behaviour as other filesystems
4639 * with a journal, ext3/4, xfs, f2fs, etc).
4640 */
4641static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4642				struct btrfs_root *root,
4643				struct btrfs_inode *inode,
4644				struct btrfs_path *path,
4645				struct btrfs_path *dst_path)
4646{
4647	int ret;
4648	struct btrfs_key key;
4649	const u64 ino = btrfs_ino(inode);
4650	int ins_nr = 0;
4651	int start_slot = 0;
4652
4653	key.objectid = ino;
4654	key.type = BTRFS_XATTR_ITEM_KEY;
4655	key.offset = 0;
4656
4657	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4658	if (ret < 0)
4659		return ret;
4660
4661	while (true) {
4662		int slot = path->slots[0];
4663		struct extent_buffer *leaf = path->nodes[0];
4664		int nritems = btrfs_header_nritems(leaf);
4665
4666		if (slot >= nritems) {
4667			if (ins_nr > 0) {
4668				u64 last_extent = 0;
4669
4670				ret = copy_items(trans, inode, dst_path, path,
4671						 &last_extent, start_slot,
4672						 ins_nr, 1, 0);
4673				/* can't be 1, extent items aren't processed */
4674				ASSERT(ret <= 0);
4675				if (ret < 0)
4676					return ret;
4677				ins_nr = 0;
4678			}
4679			ret = btrfs_next_leaf(root, path);
4680			if (ret < 0)
4681				return ret;
4682			else if (ret > 0)
4683				break;
4684			continue;
4685		}
4686
4687		btrfs_item_key_to_cpu(leaf, &key, slot);
4688		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4689			break;
4690
4691		if (ins_nr == 0)
4692			start_slot = slot;
4693		ins_nr++;
4694		path->slots[0]++;
4695		cond_resched();
4696	}
4697	if (ins_nr > 0) {
4698		u64 last_extent = 0;
4699
4700		ret = copy_items(trans, inode, dst_path, path,
4701				 &last_extent, start_slot,
4702				 ins_nr, 1, 0);
4703		/* can't be 1, extent items aren't processed */
4704		ASSERT(ret <= 0);
4705		if (ret < 0)
4706			return ret;
4707	}
4708
4709	return 0;
4710}
4711
4712/*
4713 * If the no holes feature is enabled we need to make sure any hole between the
4714 * last extent and the i_size of our inode is explicitly marked in the log. This
4715 * is to make sure that doing something like:
4716 *
4717 *      1) create file with 128Kb of data
4718 *      2) truncate file to 64Kb
4719 *      3) truncate file to 256Kb
4720 *      4) fsync file
4721 *      5) <crash/power failure>
4722 *      6) mount fs and trigger log replay
4723 *
4724 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4725 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4726 * file correspond to a hole. The presence of explicit holes in a log tree is
4727 * what guarantees that log replay will remove/adjust file extent items in the
4728 * fs/subvol tree.
4729 *
4730 * Here we do not need to care about holes between extents, that is already done
4731 * by copy_items(). We also only need to do this in the full sync path, where we
4732 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4733 * lookup the list of modified extent maps and if any represents a hole, we
4734 * insert a corresponding extent representing a hole in the log tree.
4735 */
4736static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4737				   struct btrfs_root *root,
4738				   struct btrfs_inode *inode,
4739				   struct btrfs_path *path)
4740{
4741	struct btrfs_fs_info *fs_info = root->fs_info;
4742	int ret;
4743	struct btrfs_key key;
4744	u64 hole_start;
4745	u64 hole_size;
4746	struct extent_buffer *leaf;
4747	struct btrfs_root *log = root->log_root;
4748	const u64 ino = btrfs_ino(inode);
4749	const u64 i_size = i_size_read(&inode->vfs_inode);
4750
4751	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4752		return 0;
4753
4754	key.objectid = ino;
4755	key.type = BTRFS_EXTENT_DATA_KEY;
4756	key.offset = (u64)-1;
4757
4758	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4759	ASSERT(ret != 0);
4760	if (ret < 0)
4761		return ret;
4762
4763	ASSERT(path->slots[0] > 0);
4764	path->slots[0]--;
4765	leaf = path->nodes[0];
4766	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4767
4768	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4769		/* inode does not have any extents */
4770		hole_start = 0;
4771		hole_size = i_size;
4772	} else {
4773		struct btrfs_file_extent_item *extent;
4774		u64 len;
4775
4776		/*
4777		 * If there's an extent beyond i_size, an explicit hole was
4778		 * already inserted by copy_items().
4779		 */
4780		if (key.offset >= i_size)
4781			return 0;
4782
4783		extent = btrfs_item_ptr(leaf, path->slots[0],
4784					struct btrfs_file_extent_item);
4785
4786		if (btrfs_file_extent_type(leaf, extent) ==
4787		    BTRFS_FILE_EXTENT_INLINE)
4788			return 0;
4789
4790		len = btrfs_file_extent_num_bytes(leaf, extent);
4791		/* Last extent goes beyond i_size, no need to log a hole. */
4792		if (key.offset + len > i_size)
4793			return 0;
4794		hole_start = key.offset + len;
4795		hole_size = i_size - hole_start;
4796	}
4797	btrfs_release_path(path);
4798
4799	/* Last extent ends at i_size. */
4800	if (hole_size == 0)
4801		return 0;
4802
4803	hole_size = ALIGN(hole_size, fs_info->sectorsize);
4804	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4805				       hole_size, 0, hole_size, 0, 0, 0);
4806	return ret;
4807}
4808
4809/*
4810 * When we are logging a new inode X, check if it doesn't have a reference that
4811 * matches the reference from some other inode Y created in a past transaction
4812 * and that was renamed in the current transaction. If we don't do this, then at
4813 * log replay time we can lose inode Y (and all its files if it's a directory):
4814 *
4815 * mkdir /mnt/x
4816 * echo "hello world" > /mnt/x/foobar
4817 * sync
4818 * mv /mnt/x /mnt/y
4819 * mkdir /mnt/x                 # or touch /mnt/x
4820 * xfs_io -c fsync /mnt/x
4821 * <power fail>
4822 * mount fs, trigger log replay
4823 *
4824 * After the log replay procedure, we would lose the first directory and all its
4825 * files (file foobar).
4826 * For the case where inode Y is not a directory we simply end up losing it:
4827 *
4828 * echo "123" > /mnt/foo
4829 * sync
4830 * mv /mnt/foo /mnt/bar
4831 * echo "abc" > /mnt/foo
4832 * xfs_io -c fsync /mnt/foo
4833 * <power fail>
4834 *
4835 * We also need this for cases where a snapshot entry is replaced by some other
4836 * entry (file or directory) otherwise we end up with an unreplayable log due to
4837 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4838 * if it were a regular entry:
4839 *
4840 * mkdir /mnt/x
4841 * btrfs subvolume snapshot /mnt /mnt/x/snap
4842 * btrfs subvolume delete /mnt/x/snap
4843 * rmdir /mnt/x
4844 * mkdir /mnt/x
4845 * fsync /mnt/x or fsync some new file inside it
4846 * <power fail>
4847 *
4848 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4849 * the same transaction.
4850 */
4851static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4852					 const int slot,
4853					 const struct btrfs_key *key,
4854					 struct btrfs_inode *inode,
4855					 u64 *other_ino, u64 *other_parent)
4856{
4857	int ret;
4858	struct btrfs_path *search_path;
4859	char *name = NULL;
4860	u32 name_len = 0;
4861	u32 item_size = btrfs_item_size_nr(eb, slot);
4862	u32 cur_offset = 0;
4863	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4864
4865	search_path = btrfs_alloc_path();
4866	if (!search_path)
4867		return -ENOMEM;
4868	search_path->search_commit_root = 1;
4869	search_path->skip_locking = 1;
4870
4871	while (cur_offset < item_size) {
4872		u64 parent;
4873		u32 this_name_len;
4874		u32 this_len;
4875		unsigned long name_ptr;
4876		struct btrfs_dir_item *di;
4877
4878		if (key->type == BTRFS_INODE_REF_KEY) {
4879			struct btrfs_inode_ref *iref;
4880
4881			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4882			parent = key->offset;
4883			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4884			name_ptr = (unsigned long)(iref + 1);
4885			this_len = sizeof(*iref) + this_name_len;
4886		} else {
4887			struct btrfs_inode_extref *extref;
4888
4889			extref = (struct btrfs_inode_extref *)(ptr +
4890							       cur_offset);
4891			parent = btrfs_inode_extref_parent(eb, extref);
4892			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4893			name_ptr = (unsigned long)&extref->name;
4894			this_len = sizeof(*extref) + this_name_len;
4895		}
4896
4897		if (this_name_len > name_len) {
4898			char *new_name;
4899
4900			new_name = krealloc(name, this_name_len, GFP_NOFS);
4901			if (!new_name) {
4902				ret = -ENOMEM;
4903				goto out;
4904			}
4905			name_len = this_name_len;
4906			name = new_name;
4907		}
4908
4909		read_extent_buffer(eb, name, name_ptr, this_name_len);
4910		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4911				parent, name, this_name_len, 0);
4912		if (di && !IS_ERR(di)) {
4913			struct btrfs_key di_key;
4914
4915			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4916						  di, &di_key);
4917			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4918				if (di_key.objectid != key->objectid) {
4919					ret = 1;
4920					*other_ino = di_key.objectid;
4921					*other_parent = parent;
4922				} else {
4923					ret = 0;
4924				}
4925			} else {
4926				ret = -EAGAIN;
4927			}
4928			goto out;
4929		} else if (IS_ERR(di)) {
4930			ret = PTR_ERR(di);
4931			goto out;
4932		}
4933		btrfs_release_path(search_path);
4934
4935		cur_offset += this_len;
4936	}
4937	ret = 0;
4938out:
4939	btrfs_free_path(search_path);
4940	kfree(name);
4941	return ret;
4942}
4943
4944struct btrfs_ino_list {
4945	u64 ino;
4946	u64 parent;
4947	struct list_head list;
4948};
4949
4950static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4951				  struct btrfs_root *root,
4952				  struct btrfs_path *path,
4953				  struct btrfs_log_ctx *ctx,
4954				  u64 ino, u64 parent)
4955{
4956	struct btrfs_ino_list *ino_elem;
4957	LIST_HEAD(inode_list);
4958	int ret = 0;
4959
4960	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4961	if (!ino_elem)
4962		return -ENOMEM;
4963	ino_elem->ino = ino;
4964	ino_elem->parent = parent;
4965	list_add_tail(&ino_elem->list, &inode_list);
4966
4967	while (!list_empty(&inode_list)) {
4968		struct btrfs_fs_info *fs_info = root->fs_info;
4969		struct btrfs_key key;
4970		struct inode *inode;
4971
4972		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4973					    list);
4974		ino = ino_elem->ino;
4975		parent = ino_elem->parent;
4976		list_del(&ino_elem->list);
4977		kfree(ino_elem);
4978		if (ret)
4979			continue;
4980
4981		btrfs_release_path(path);
4982
4983		key.objectid = ino;
4984		key.type = BTRFS_INODE_ITEM_KEY;
4985		key.offset = 0;
4986		inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4987		/*
4988		 * If the other inode that had a conflicting dir entry was
4989		 * deleted in the current transaction, we need to log its parent
4990		 * directory.
4991		 */
4992		if (IS_ERR(inode)) {
4993			ret = PTR_ERR(inode);
4994			if (ret == -ENOENT) {
4995				key.objectid = parent;
4996				inode = btrfs_iget(fs_info->sb, &key, root,
4997						   NULL);
4998				if (IS_ERR(inode)) {
4999					ret = PTR_ERR(inode);
5000				} else {
5001					ret = btrfs_log_inode(trans, root,
5002						      BTRFS_I(inode),
5003						      LOG_OTHER_INODE_ALL,
5004						      0, LLONG_MAX, ctx);
5005					btrfs_add_delayed_iput(inode);
5006				}
5007			}
5008			continue;
5009		}
5010		/*
5011		 * We are safe logging the other inode without acquiring its
5012		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5013		 * are safe against concurrent renames of the other inode as
5014		 * well because during a rename we pin the log and update the
5015		 * log with the new name before we unpin it.
5016		 */
5017		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5018				      LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
5019		if (ret) {
5020			btrfs_add_delayed_iput(inode);
5021			continue;
5022		}
5023
5024		key.objectid = ino;
5025		key.type = BTRFS_INODE_REF_KEY;
5026		key.offset = 0;
5027		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5028		if (ret < 0) {
5029			btrfs_add_delayed_iput(inode);
5030			continue;
5031		}
5032
5033		while (true) {
5034			struct extent_buffer *leaf = path->nodes[0];
5035			int slot = path->slots[0];
5036			u64 other_ino = 0;
5037			u64 other_parent = 0;
5038
5039			if (slot >= btrfs_header_nritems(leaf)) {
5040				ret = btrfs_next_leaf(root, path);
5041				if (ret < 0) {
5042					break;
5043				} else if (ret > 0) {
5044					ret = 0;
5045					break;
5046				}
5047				continue;
5048			}
5049
5050			btrfs_item_key_to_cpu(leaf, &key, slot);
5051			if (key.objectid != ino ||
5052			    (key.type != BTRFS_INODE_REF_KEY &&
5053			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5054				ret = 0;
5055				break;
5056			}
5057
5058			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5059					BTRFS_I(inode), &other_ino,
5060					&other_parent);
5061			if (ret < 0)
5062				break;
5063			if (ret > 0) {
5064				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5065				if (!ino_elem) {
5066					ret = -ENOMEM;
5067					break;
5068				}
5069				ino_elem->ino = other_ino;
5070				ino_elem->parent = other_parent;
5071				list_add_tail(&ino_elem->list, &inode_list);
5072				ret = 0;
5073			}
5074			path->slots[0]++;
5075		}
5076		btrfs_add_delayed_iput(inode);
5077	}
5078
5079	return ret;
5080}
5081
5082/* log a single inode in the tree log.
5083 * At least one parent directory for this inode must exist in the tree
5084 * or be logged already.
5085 *
5086 * Any items from this inode changed by the current transaction are copied
5087 * to the log tree.  An extra reference is taken on any extents in this
5088 * file, allowing us to avoid a whole pile of corner cases around logging
5089 * blocks that have been removed from the tree.
5090 *
5091 * See LOG_INODE_ALL and related defines for a description of what inode_only
5092 * does.
5093 *
5094 * This handles both files and directories.
5095 */
5096static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5097			   struct btrfs_root *root, struct btrfs_inode *inode,
5098			   int inode_only,
5099			   const loff_t start,
5100			   const loff_t end,
5101			   struct btrfs_log_ctx *ctx)
5102{
5103	struct btrfs_fs_info *fs_info = root->fs_info;
5104	struct btrfs_path *path;
5105	struct btrfs_path *dst_path;
5106	struct btrfs_key min_key;
5107	struct btrfs_key max_key;
5108	struct btrfs_root *log = root->log_root;
5109	u64 last_extent = 0;
5110	int err = 0;
5111	int ret;
5112	int nritems;
5113	int ins_start_slot = 0;
5114	int ins_nr;
5115	bool fast_search = false;
5116	u64 ino = btrfs_ino(inode);
5117	struct extent_map_tree *em_tree = &inode->extent_tree;
5118	u64 logged_isize = 0;
5119	bool need_log_inode_item = true;
5120	bool xattrs_logged = false;
5121	bool recursive_logging = false;
5122
5123	path = btrfs_alloc_path();
5124	if (!path)
5125		return -ENOMEM;
5126	dst_path = btrfs_alloc_path();
5127	if (!dst_path) {
5128		btrfs_free_path(path);
5129		return -ENOMEM;
5130	}
5131
5132	min_key.objectid = ino;
5133	min_key.type = BTRFS_INODE_ITEM_KEY;
5134	min_key.offset = 0;
5135
5136	max_key.objectid = ino;
5137
 
 
 
5138
5139	/* today the code can only do partial logging of directories */
5140	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5141	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5142		       &inode->runtime_flags) &&
5143	     inode_only >= LOG_INODE_EXISTS))
5144		max_key.type = BTRFS_XATTR_ITEM_KEY;
5145	else
5146		max_key.type = (u8)-1;
5147	max_key.offset = (u64)-1;
5148
5149	/*
5150	 * Only run delayed items if we are a dir or a new file.
5151	 * Otherwise commit the delayed inode only, which is needed in
5152	 * order for the log replay code to mark inodes for link count
5153	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5154	 */
5155	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5156	    inode->generation > fs_info->last_trans_committed)
5157		ret = btrfs_commit_inode_delayed_items(trans, inode);
5158	else
5159		ret = btrfs_commit_inode_delayed_inode(inode);
5160
5161	if (ret) {
5162		btrfs_free_path(path);
5163		btrfs_free_path(dst_path);
5164		return ret;
5165	}
5166
5167	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5168		recursive_logging = true;
5169		if (inode_only == LOG_OTHER_INODE)
5170			inode_only = LOG_INODE_EXISTS;
5171		else
5172			inode_only = LOG_INODE_ALL;
5173		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5174	} else {
5175		mutex_lock(&inode->log_mutex);
5176	}
5177
5178	/*
5179	 * a brute force approach to making sure we get the most uptodate
5180	 * copies of everything.
5181	 */
5182	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5183		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5184
5185		if (inode_only == LOG_INODE_EXISTS)
5186			max_key_type = BTRFS_XATTR_ITEM_KEY;
5187		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5188	} else {
5189		if (inode_only == LOG_INODE_EXISTS) {
5190			/*
5191			 * Make sure the new inode item we write to the log has
5192			 * the same isize as the current one (if it exists).
5193			 * This is necessary to prevent data loss after log
5194			 * replay, and also to prevent doing a wrong expanding
5195			 * truncate - for e.g. create file, write 4K into offset
5196			 * 0, fsync, write 4K into offset 4096, add hard link,
5197			 * fsync some other file (to sync log), power fail - if
5198			 * we use the inode's current i_size, after log replay
5199			 * we get a 8Kb file, with the last 4Kb extent as a hole
5200			 * (zeroes), as if an expanding truncate happened,
5201			 * instead of getting a file of 4Kb only.
5202			 */
5203			err = logged_inode_size(log, inode, path, &logged_isize);
5204			if (err)
5205				goto out_unlock;
5206		}
5207		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5208			     &inode->runtime_flags)) {
5209			if (inode_only == LOG_INODE_EXISTS) {
5210				max_key.type = BTRFS_XATTR_ITEM_KEY;
5211				ret = drop_objectid_items(trans, log, path, ino,
5212							  max_key.type);
5213			} else {
5214				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5215					  &inode->runtime_flags);
5216				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5217					  &inode->runtime_flags);
5218				while(1) {
5219					ret = btrfs_truncate_inode_items(trans,
5220						log, &inode->vfs_inode, 0, 0);
5221					if (ret != -EAGAIN)
5222						break;
5223				}
5224			}
5225		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5226					      &inode->runtime_flags) ||
5227			   inode_only == LOG_INODE_EXISTS) {
5228			if (inode_only == LOG_INODE_ALL)
5229				fast_search = true;
5230			max_key.type = BTRFS_XATTR_ITEM_KEY;
5231			ret = drop_objectid_items(trans, log, path, ino,
5232						  max_key.type);
5233		} else {
5234			if (inode_only == LOG_INODE_ALL)
5235				fast_search = true;
5236			goto log_extents;
5237		}
5238
5239	}
5240	if (ret) {
5241		err = ret;
5242		goto out_unlock;
5243	}
 
5244
5245	while (1) {
5246		ins_nr = 0;
5247		ret = btrfs_search_forward(root, &min_key,
5248					   path, trans->transid);
5249		if (ret < 0) {
5250			err = ret;
5251			goto out_unlock;
5252		}
5253		if (ret != 0)
5254			break;
5255again:
5256		/* note, ins_nr might be > 0 here, cleanup outside the loop */
5257		if (min_key.objectid != ino)
5258			break;
5259		if (min_key.type > max_key.type)
5260			break;
5261
5262		if (min_key.type == BTRFS_INODE_ITEM_KEY)
5263			need_log_inode_item = false;
5264
5265		if ((min_key.type == BTRFS_INODE_REF_KEY ||
5266		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
5267		    inode->generation == trans->transid &&
5268		    !recursive_logging) {
5269			u64 other_ino = 0;
5270			u64 other_parent = 0;
5271
5272			ret = btrfs_check_ref_name_override(path->nodes[0],
5273					path->slots[0], &min_key, inode,
5274					&other_ino, &other_parent);
5275			if (ret < 0) {
5276				err = ret;
5277				goto out_unlock;
5278			} else if (ret > 0 && ctx &&
5279				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5280				if (ins_nr > 0) {
5281					ins_nr++;
5282				} else {
5283					ins_nr = 1;
5284					ins_start_slot = path->slots[0];
5285				}
5286				ret = copy_items(trans, inode, dst_path, path,
5287						 &last_extent, ins_start_slot,
5288						 ins_nr, inode_only,
5289						 logged_isize);
5290				if (ret < 0) {
5291					err = ret;
5292					goto out_unlock;
5293				}
5294				ins_nr = 0;
5295
5296				err = log_conflicting_inodes(trans, root, path,
5297						ctx, other_ino, other_parent);
5298				if (err)
5299					goto out_unlock;
5300				btrfs_release_path(path);
5301				goto next_key;
5302			}
5303		}
5304
5305		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5306		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5307			if (ins_nr == 0)
5308				goto next_slot;
5309			ret = copy_items(trans, inode, dst_path, path,
5310					 &last_extent, ins_start_slot,
5311					 ins_nr, inode_only, logged_isize);
5312			if (ret < 0) {
5313				err = ret;
5314				goto out_unlock;
5315			}
5316			ins_nr = 0;
5317			if (ret) {
5318				btrfs_release_path(path);
5319				continue;
5320			}
5321			goto next_slot;
5322		}
5323
5324		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5325			ins_nr++;
5326			goto next_slot;
5327		} else if (!ins_nr) {
5328			ins_start_slot = path->slots[0];
5329			ins_nr = 1;
5330			goto next_slot;
5331		}
5332
5333		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5334				 ins_start_slot, ins_nr, inode_only,
5335				 logged_isize);
5336		if (ret < 0) {
5337			err = ret;
5338			goto out_unlock;
5339		}
5340		if (ret) {
5341			ins_nr = 0;
5342			btrfs_release_path(path);
5343			continue;
5344		}
5345		ins_nr = 1;
5346		ins_start_slot = path->slots[0];
5347next_slot:
5348
5349		nritems = btrfs_header_nritems(path->nodes[0]);
5350		path->slots[0]++;
5351		if (path->slots[0] < nritems) {
5352			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5353					      path->slots[0]);
5354			goto again;
5355		}
5356		if (ins_nr) {
5357			ret = copy_items(trans, inode, dst_path, path,
5358					 &last_extent, ins_start_slot,
5359					 ins_nr, inode_only, logged_isize);
5360			if (ret < 0) {
5361				err = ret;
5362				goto out_unlock;
5363			}
5364			ret = 0;
5365			ins_nr = 0;
5366		}
5367		btrfs_release_path(path);
5368next_key:
5369		if (min_key.offset < (u64)-1) {
5370			min_key.offset++;
5371		} else if (min_key.type < max_key.type) {
5372			min_key.type++;
5373			min_key.offset = 0;
5374		} else {
 
5375			break;
5376		}
5377	}
5378	if (ins_nr) {
5379		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5380				 ins_start_slot, ins_nr, inode_only,
5381				 logged_isize);
5382		if (ret < 0) {
5383			err = ret;
5384			goto out_unlock;
5385		}
5386		ret = 0;
5387		ins_nr = 0;
5388	}
5389
5390	btrfs_release_path(path);
5391	btrfs_release_path(dst_path);
5392	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5393	if (err)
5394		goto out_unlock;
5395	xattrs_logged = true;
5396	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5397		btrfs_release_path(path);
5398		btrfs_release_path(dst_path);
5399		err = btrfs_log_trailing_hole(trans, root, inode, path);
5400		if (err)
5401			goto out_unlock;
5402	}
5403log_extents:
5404	btrfs_release_path(path);
5405	btrfs_release_path(dst_path);
5406	if (need_log_inode_item) {
5407		err = log_inode_item(trans, log, dst_path, inode);
5408		if (!err && !xattrs_logged) {
5409			err = btrfs_log_all_xattrs(trans, root, inode, path,
5410						   dst_path);
5411			btrfs_release_path(path);
5412		}
5413		if (err)
5414			goto out_unlock;
5415	}
5416	if (fast_search) {
5417		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5418						ctx, start, end);
5419		if (ret) {
5420			err = ret;
5421			goto out_unlock;
5422		}
5423	} else if (inode_only == LOG_INODE_ALL) {
5424		struct extent_map *em, *n;
5425
5426		write_lock(&em_tree->lock);
5427		/*
5428		 * We can't just remove every em if we're called for a ranged
5429		 * fsync - that is, one that doesn't cover the whole possible
5430		 * file range (0 to LLONG_MAX). This is because we can have
5431		 * em's that fall outside the range we're logging and therefore
5432		 * their ordered operations haven't completed yet
5433		 * (btrfs_finish_ordered_io() not invoked yet). This means we
5434		 * didn't get their respective file extent item in the fs/subvol
5435		 * tree yet, and need to let the next fast fsync (one which
5436		 * consults the list of modified extent maps) find the em so
5437		 * that it logs a matching file extent item and waits for the
5438		 * respective ordered operation to complete (if it's still
5439		 * running).
5440		 *
5441		 * Removing every em outside the range we're logging would make
5442		 * the next fast fsync not log their matching file extent items,
5443		 * therefore making us lose data after a log replay.
5444		 */
5445		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5446					 list) {
5447			const u64 mod_end = em->mod_start + em->mod_len - 1;
5448
5449			if (em->mod_start >= start && mod_end <= end)
5450				list_del_init(&em->list);
5451		}
5452		write_unlock(&em_tree->lock);
5453	}
5454
5455	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5456		ret = log_directory_changes(trans, root, inode, path, dst_path,
5457					ctx);
5458		if (ret) {
5459			err = ret;
5460			goto out_unlock;
5461		}
5462	}
5463
5464	/*
5465	 * Don't update last_log_commit if we logged that an inode exists after
5466	 * it was loaded to memory (full_sync bit set).
5467	 * This is to prevent data loss when we do a write to the inode, then
5468	 * the inode gets evicted after all delalloc was flushed, then we log
5469	 * it exists (due to a rename for example) and then fsync it. This last
5470	 * fsync would do nothing (not logging the extents previously written).
5471	 */
5472	spin_lock(&inode->lock);
5473	inode->logged_trans = trans->transid;
5474	if (inode_only != LOG_INODE_EXISTS ||
5475	    !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5476		inode->last_log_commit = inode->last_sub_trans;
5477	spin_unlock(&inode->lock);
5478out_unlock:
5479	mutex_unlock(&inode->log_mutex);
5480
5481	btrfs_free_path(path);
5482	btrfs_free_path(dst_path);
5483	return err;
5484}
5485
5486/*
5487 * Check if we must fallback to a transaction commit when logging an inode.
5488 * This must be called after logging the inode and is used only in the context
5489 * when fsyncing an inode requires the need to log some other inode - in which
5490 * case we can't lock the i_mutex of each other inode we need to log as that
5491 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5492 * log inodes up or down in the hierarchy) or rename operations for example. So
5493 * we take the log_mutex of the inode after we have logged it and then check for
5494 * its last_unlink_trans value - this is safe because any task setting
5495 * last_unlink_trans must take the log_mutex and it must do this before it does
5496 * the actual unlink operation, so if we do this check before a concurrent task
5497 * sets last_unlink_trans it means we've logged a consistent version/state of
5498 * all the inode items, otherwise we are not sure and must do a transaction
5499 * commit (the concurrent task might have only updated last_unlink_trans before
5500 * we logged the inode or it might have also done the unlink).
5501 */
5502static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5503					  struct btrfs_inode *inode)
5504{
5505	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5506	bool ret = false;
5507
5508	mutex_lock(&inode->log_mutex);
5509	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5510		/*
5511		 * Make sure any commits to the log are forced to be full
5512		 * commits.
5513		 */
5514		btrfs_set_log_full_commit(trans);
5515		ret = true;
5516	}
5517	mutex_unlock(&inode->log_mutex);
5518
5519	return ret;
5520}
5521
5522/*
5523 * follow the dentry parent pointers up the chain and see if any
5524 * of the directories in it require a full commit before they can
5525 * be logged.  Returns zero if nothing special needs to be done or 1 if
5526 * a full commit is required.
5527 */
5528static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5529					       struct btrfs_inode *inode,
5530					       struct dentry *parent,
5531					       struct super_block *sb,
5532					       u64 last_committed)
5533{
5534	int ret = 0;
 
5535	struct dentry *old_parent = NULL;
5536
5537	/*
5538	 * for regular files, if its inode is already on disk, we don't
5539	 * have to worry about the parents at all.  This is because
5540	 * we can use the last_unlink_trans field to record renames
5541	 * and other fun in this file.
5542	 */
5543	if (S_ISREG(inode->vfs_inode.i_mode) &&
5544	    inode->generation <= last_committed &&
5545	    inode->last_unlink_trans <= last_committed)
5546		goto out;
5547
5548	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5549		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5550			goto out;
5551		inode = BTRFS_I(d_inode(parent));
5552	}
5553
5554	while (1) {
5555		if (btrfs_must_commit_transaction(trans, inode)) {
5556			ret = 1;
5557			break;
5558		}
5559
5560		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5561			break;
5562
5563		if (IS_ROOT(parent)) {
5564			inode = BTRFS_I(d_inode(parent));
5565			if (btrfs_must_commit_transaction(trans, inode))
5566				ret = 1;
5567			break;
5568		}
5569
5570		parent = dget_parent(parent);
5571		dput(old_parent);
5572		old_parent = parent;
5573		inode = BTRFS_I(d_inode(parent));
5574
5575	}
5576	dput(old_parent);
5577out:
5578	return ret;
5579}
5580
5581struct btrfs_dir_list {
5582	u64 ino;
5583	struct list_head list;
5584};
5585
5586/*
5587 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5588 * details about the why it is needed.
5589 * This is a recursive operation - if an existing dentry corresponds to a
5590 * directory, that directory's new entries are logged too (same behaviour as
5591 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5592 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5593 * complains about the following circular lock dependency / possible deadlock:
5594 *
5595 *        CPU0                                        CPU1
5596 *        ----                                        ----
5597 * lock(&type->i_mutex_dir_key#3/2);
5598 *                                            lock(sb_internal#2);
5599 *                                            lock(&type->i_mutex_dir_key#3/2);
5600 * lock(&sb->s_type->i_mutex_key#14);
5601 *
5602 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5603 * sb_start_intwrite() in btrfs_start_transaction().
5604 * Not locking i_mutex of the inodes is still safe because:
5605 *
5606 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5607 *    that while logging the inode new references (names) are added or removed
5608 *    from the inode, leaving the logged inode item with a link count that does
5609 *    not match the number of logged inode reference items. This is fine because
5610 *    at log replay time we compute the real number of links and correct the
5611 *    link count in the inode item (see replay_one_buffer() and
5612 *    link_to_fixup_dir());
5613 *
5614 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5615 *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5616 *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5617 *    has a size that doesn't match the sum of the lengths of all the logged
5618 *    names. This does not result in a problem because if a dir_item key is
5619 *    logged but its matching dir_index key is not logged, at log replay time we
5620 *    don't use it to replay the respective name (see replay_one_name()). On the
5621 *    other hand if only the dir_index key ends up being logged, the respective
5622 *    name is added to the fs/subvol tree with both the dir_item and dir_index
5623 *    keys created (see replay_one_name()).
5624 *    The directory's inode item with a wrong i_size is not a problem as well,
5625 *    since we don't use it at log replay time to set the i_size in the inode
5626 *    item of the fs/subvol tree (see overwrite_item()).
5627 */
5628static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5629				struct btrfs_root *root,
5630				struct btrfs_inode *start_inode,
5631				struct btrfs_log_ctx *ctx)
5632{
5633	struct btrfs_fs_info *fs_info = root->fs_info;
5634	struct btrfs_root *log = root->log_root;
5635	struct btrfs_path *path;
5636	LIST_HEAD(dir_list);
5637	struct btrfs_dir_list *dir_elem;
5638	int ret = 0;
5639
5640	path = btrfs_alloc_path();
5641	if (!path)
5642		return -ENOMEM;
5643
5644	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5645	if (!dir_elem) {
5646		btrfs_free_path(path);
5647		return -ENOMEM;
5648	}
5649	dir_elem->ino = btrfs_ino(start_inode);
5650	list_add_tail(&dir_elem->list, &dir_list);
5651
5652	while (!list_empty(&dir_list)) {
5653		struct extent_buffer *leaf;
5654		struct btrfs_key min_key;
5655		int nritems;
5656		int i;
5657
5658		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5659					    list);
5660		if (ret)
5661			goto next_dir_inode;
5662
5663		min_key.objectid = dir_elem->ino;
5664		min_key.type = BTRFS_DIR_ITEM_KEY;
5665		min_key.offset = 0;
5666again:
5667		btrfs_release_path(path);
5668		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5669		if (ret < 0) {
5670			goto next_dir_inode;
5671		} else if (ret > 0) {
5672			ret = 0;
5673			goto next_dir_inode;
5674		}
5675
5676process_leaf:
5677		leaf = path->nodes[0];
5678		nritems = btrfs_header_nritems(leaf);
5679		for (i = path->slots[0]; i < nritems; i++) {
5680			struct btrfs_dir_item *di;
5681			struct btrfs_key di_key;
5682			struct inode *di_inode;
5683			struct btrfs_dir_list *new_dir_elem;
5684			int log_mode = LOG_INODE_EXISTS;
5685			int type;
5686
5687			btrfs_item_key_to_cpu(leaf, &min_key, i);
5688			if (min_key.objectid != dir_elem->ino ||
5689			    min_key.type != BTRFS_DIR_ITEM_KEY)
5690				goto next_dir_inode;
5691
5692			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5693			type = btrfs_dir_type(leaf, di);
5694			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5695			    type != BTRFS_FT_DIR)
5696				continue;
5697			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5698			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5699				continue;
5700
5701			btrfs_release_path(path);
5702			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5703			if (IS_ERR(di_inode)) {
5704				ret = PTR_ERR(di_inode);
5705				goto next_dir_inode;
5706			}
5707
5708			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5709				btrfs_add_delayed_iput(di_inode);
5710				break;
5711			}
5712
5713			ctx->log_new_dentries = false;
5714			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5715				log_mode = LOG_INODE_ALL;
5716			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5717					      log_mode, 0, LLONG_MAX, ctx);
5718			if (!ret &&
5719			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5720				ret = 1;
5721			btrfs_add_delayed_iput(di_inode);
5722			if (ret)
5723				goto next_dir_inode;
5724			if (ctx->log_new_dentries) {
5725				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5726						       GFP_NOFS);
5727				if (!new_dir_elem) {
5728					ret = -ENOMEM;
5729					goto next_dir_inode;
5730				}
5731				new_dir_elem->ino = di_key.objectid;
5732				list_add_tail(&new_dir_elem->list, &dir_list);
5733			}
5734			break;
5735		}
5736		if (i == nritems) {
5737			ret = btrfs_next_leaf(log, path);
5738			if (ret < 0) {
5739				goto next_dir_inode;
5740			} else if (ret > 0) {
5741				ret = 0;
5742				goto next_dir_inode;
5743			}
5744			goto process_leaf;
5745		}
5746		if (min_key.offset < (u64)-1) {
5747			min_key.offset++;
5748			goto again;
5749		}
5750next_dir_inode:
5751		list_del(&dir_elem->list);
5752		kfree(dir_elem);
5753	}
5754
5755	btrfs_free_path(path);
5756	return ret;
5757}
5758
5759static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5760				 struct btrfs_inode *inode,
5761				 struct btrfs_log_ctx *ctx)
5762{
5763	struct btrfs_fs_info *fs_info = trans->fs_info;
5764	int ret;
5765	struct btrfs_path *path;
5766	struct btrfs_key key;
5767	struct btrfs_root *root = inode->root;
5768	const u64 ino = btrfs_ino(inode);
5769
5770	path = btrfs_alloc_path();
5771	if (!path)
5772		return -ENOMEM;
5773	path->skip_locking = 1;
5774	path->search_commit_root = 1;
5775
5776	key.objectid = ino;
5777	key.type = BTRFS_INODE_REF_KEY;
5778	key.offset = 0;
5779	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5780	if (ret < 0)
5781		goto out;
5782
5783	while (true) {
5784		struct extent_buffer *leaf = path->nodes[0];
5785		int slot = path->slots[0];
5786		u32 cur_offset = 0;
5787		u32 item_size;
5788		unsigned long ptr;
5789
5790		if (slot >= btrfs_header_nritems(leaf)) {
5791			ret = btrfs_next_leaf(root, path);
5792			if (ret < 0)
5793				goto out;
5794			else if (ret > 0)
5795				break;
5796			continue;
5797		}
5798
5799		btrfs_item_key_to_cpu(leaf, &key, slot);
5800		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5801		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5802			break;
5803
5804		item_size = btrfs_item_size_nr(leaf, slot);
5805		ptr = btrfs_item_ptr_offset(leaf, slot);
5806		while (cur_offset < item_size) {
5807			struct btrfs_key inode_key;
5808			struct inode *dir_inode;
5809
5810			inode_key.type = BTRFS_INODE_ITEM_KEY;
5811			inode_key.offset = 0;
5812
5813			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5814				struct btrfs_inode_extref *extref;
5815
5816				extref = (struct btrfs_inode_extref *)
5817					(ptr + cur_offset);
5818				inode_key.objectid = btrfs_inode_extref_parent(
5819					leaf, extref);
5820				cur_offset += sizeof(*extref);
5821				cur_offset += btrfs_inode_extref_name_len(leaf,
5822					extref);
5823			} else {
5824				inode_key.objectid = key.offset;
5825				cur_offset = item_size;
5826			}
5827
5828			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5829					       root, NULL);
5830			/*
5831			 * If the parent inode was deleted, return an error to
5832			 * fallback to a transaction commit. This is to prevent
5833			 * getting an inode that was moved from one parent A to
5834			 * a parent B, got its former parent A deleted and then
5835			 * it got fsync'ed, from existing at both parents after
5836			 * a log replay (and the old parent still existing).
5837			 * Example:
5838			 *
5839			 * mkdir /mnt/A
5840			 * mkdir /mnt/B
5841			 * touch /mnt/B/bar
5842			 * sync
5843			 * mv /mnt/B/bar /mnt/A/bar
5844			 * mv -T /mnt/A /mnt/B
5845			 * fsync /mnt/B/bar
5846			 * <power fail>
5847			 *
5848			 * If we ignore the old parent B which got deleted,
5849			 * after a log replay we would have file bar linked
5850			 * at both parents and the old parent B would still
5851			 * exist.
5852			 */
5853			if (IS_ERR(dir_inode)) {
5854				ret = PTR_ERR(dir_inode);
5855				goto out;
5856			}
5857
5858			if (ctx)
5859				ctx->log_new_dentries = false;
5860			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5861					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5862			if (!ret &&
5863			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5864				ret = 1;
5865			if (!ret && ctx && ctx->log_new_dentries)
5866				ret = log_new_dir_dentries(trans, root,
5867						   BTRFS_I(dir_inode), ctx);
5868			btrfs_add_delayed_iput(dir_inode);
5869			if (ret)
5870				goto out;
5871		}
5872		path->slots[0]++;
5873	}
5874	ret = 0;
5875out:
5876	btrfs_free_path(path);
5877	return ret;
5878}
5879
5880static int log_new_ancestors(struct btrfs_trans_handle *trans,
5881			     struct btrfs_root *root,
5882			     struct btrfs_path *path,
5883			     struct btrfs_log_ctx *ctx)
5884{
5885	struct btrfs_key found_key;
5886
5887	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5888
5889	while (true) {
5890		struct btrfs_fs_info *fs_info = root->fs_info;
5891		const u64 last_committed = fs_info->last_trans_committed;
5892		struct extent_buffer *leaf = path->nodes[0];
5893		int slot = path->slots[0];
5894		struct btrfs_key search_key;
5895		struct inode *inode;
5896		int ret = 0;
5897
5898		btrfs_release_path(path);
5899
5900		search_key.objectid = found_key.offset;
5901		search_key.type = BTRFS_INODE_ITEM_KEY;
5902		search_key.offset = 0;
5903		inode = btrfs_iget(fs_info->sb, &search_key, root, NULL);
5904		if (IS_ERR(inode))
5905			return PTR_ERR(inode);
5906
5907		if (BTRFS_I(inode)->generation > last_committed)
5908			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5909					      LOG_INODE_EXISTS,
5910					      0, LLONG_MAX, ctx);
5911		btrfs_add_delayed_iput(inode);
5912		if (ret)
5913			return ret;
5914
5915		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5916			break;
5917
5918		search_key.type = BTRFS_INODE_REF_KEY;
5919		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5920		if (ret < 0)
5921			return ret;
5922
5923		leaf = path->nodes[0];
5924		slot = path->slots[0];
5925		if (slot >= btrfs_header_nritems(leaf)) {
5926			ret = btrfs_next_leaf(root, path);
5927			if (ret < 0)
5928				return ret;
5929			else if (ret > 0)
5930				return -ENOENT;
5931			leaf = path->nodes[0];
5932			slot = path->slots[0];
5933		}
5934
5935		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5936		if (found_key.objectid != search_key.objectid ||
5937		    found_key.type != BTRFS_INODE_REF_KEY)
5938			return -ENOENT;
5939	}
5940	return 0;
5941}
5942
5943static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5944				  struct btrfs_inode *inode,
5945				  struct dentry *parent,
5946				  struct btrfs_log_ctx *ctx)
5947{
5948	struct btrfs_root *root = inode->root;
5949	struct btrfs_fs_info *fs_info = root->fs_info;
5950	struct dentry *old_parent = NULL;
5951	struct super_block *sb = inode->vfs_inode.i_sb;
5952	int ret = 0;
5953
5954	while (true) {
5955		if (!parent || d_really_is_negative(parent) ||
5956		    sb != parent->d_sb)
5957			break;
5958
5959		inode = BTRFS_I(d_inode(parent));
5960		if (root != inode->root)
5961			break;
5962
5963		if (inode->generation > fs_info->last_trans_committed) {
5964			ret = btrfs_log_inode(trans, root, inode,
5965					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5966			if (ret)
5967				break;
5968		}
5969		if (IS_ROOT(parent))
5970			break;
5971
5972		parent = dget_parent(parent);
5973		dput(old_parent);
5974		old_parent = parent;
 
 
5975	}
5976	dput(old_parent);
5977
5978	return ret;
5979}
5980
5981static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5982				 struct btrfs_inode *inode,
5983				 struct dentry *parent,
5984				 struct btrfs_log_ctx *ctx)
5985{
5986	struct btrfs_root *root = inode->root;
5987	const u64 ino = btrfs_ino(inode);
5988	struct btrfs_path *path;
5989	struct btrfs_key search_key;
5990	int ret;
5991
5992	/*
5993	 * For a single hard link case, go through a fast path that does not
5994	 * need to iterate the fs/subvolume tree.
5995	 */
5996	if (inode->vfs_inode.i_nlink < 2)
5997		return log_new_ancestors_fast(trans, inode, parent, ctx);
5998
5999	path = btrfs_alloc_path();
6000	if (!path)
6001		return -ENOMEM;
6002
6003	search_key.objectid = ino;
6004	search_key.type = BTRFS_INODE_REF_KEY;
6005	search_key.offset = 0;
6006again:
6007	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6008	if (ret < 0)
6009		goto out;
6010	if (ret == 0)
6011		path->slots[0]++;
6012
6013	while (true) {
6014		struct extent_buffer *leaf = path->nodes[0];
6015		int slot = path->slots[0];
6016		struct btrfs_key found_key;
6017
6018		if (slot >= btrfs_header_nritems(leaf)) {
6019			ret = btrfs_next_leaf(root, path);
6020			if (ret < 0)
6021				goto out;
6022			else if (ret > 0)
6023				break;
6024			continue;
6025		}
6026
6027		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6028		if (found_key.objectid != ino ||
6029		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6030			break;
6031
6032		/*
6033		 * Don't deal with extended references because they are rare
6034		 * cases and too complex to deal with (we would need to keep
6035		 * track of which subitem we are processing for each item in
6036		 * this loop, etc). So just return some error to fallback to
6037		 * a transaction commit.
6038		 */
6039		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6040			ret = -EMLINK;
6041			goto out;
6042		}
6043
6044		/*
6045		 * Logging ancestors needs to do more searches on the fs/subvol
6046		 * tree, so it releases the path as needed to avoid deadlocks.
6047		 * Keep track of the last inode ref key and resume from that key
6048		 * after logging all new ancestors for the current hard link.
6049		 */
6050		memcpy(&search_key, &found_key, sizeof(search_key));
6051
6052		ret = log_new_ancestors(trans, root, path, ctx);
6053		if (ret)
6054			goto out;
6055		btrfs_release_path(path);
6056		goto again;
6057	}
6058	ret = 0;
6059out:
6060	btrfs_free_path(path);
6061	return ret;
6062}
6063
6064/*
6065 * helper function around btrfs_log_inode to make sure newly created
6066 * parent directories also end up in the log.  A minimal inode and backref
6067 * only logging is done of any parent directories that are older than
6068 * the last committed transaction
6069 */
6070static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6071				  struct btrfs_inode *inode,
6072				  struct dentry *parent,
6073				  const loff_t start,
6074				  const loff_t end,
6075				  int inode_only,
6076				  struct btrfs_log_ctx *ctx)
6077{
6078	struct btrfs_root *root = inode->root;
6079	struct btrfs_fs_info *fs_info = root->fs_info;
6080	struct super_block *sb;
 
6081	int ret = 0;
6082	u64 last_committed = fs_info->last_trans_committed;
6083	bool log_dentries = false;
6084
6085	sb = inode->vfs_inode.i_sb;
6086
6087	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6088		ret = 1;
6089		goto end_no_trans;
6090	}
6091
6092	/*
6093	 * The prev transaction commit doesn't complete, we need do
6094	 * full commit by ourselves.
6095	 */
6096	if (fs_info->last_trans_log_full_commit >
6097	    fs_info->last_trans_committed) {
6098		ret = 1;
6099		goto end_no_trans;
6100	}
6101
6102	if (btrfs_root_refs(&root->root_item) == 0) {
 
6103		ret = 1;
6104		goto end_no_trans;
6105	}
6106
6107	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
6108			last_committed);
6109	if (ret)
6110		goto end_no_trans;
6111
6112	/*
6113	 * Skip already logged inodes or inodes corresponding to tmpfiles
6114	 * (since logging them is pointless, a link count of 0 means they
6115	 * will never be accessible).
6116	 */
6117	if (btrfs_inode_in_log(inode, trans->transid) ||
6118	    inode->vfs_inode.i_nlink == 0) {
6119		ret = BTRFS_NO_LOG_SYNC;
6120		goto end_no_trans;
6121	}
6122
6123	ret = start_log_trans(trans, root, ctx);
6124	if (ret)
6125		goto end_no_trans;
6126
6127	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
6128	if (ret)
6129		goto end_trans;
6130
6131	/*
6132	 * for regular files, if its inode is already on disk, we don't
6133	 * have to worry about the parents at all.  This is because
6134	 * we can use the last_unlink_trans field to record renames
6135	 * and other fun in this file.
6136	 */
6137	if (S_ISREG(inode->vfs_inode.i_mode) &&
6138	    inode->generation <= last_committed &&
6139	    inode->last_unlink_trans <= last_committed) {
6140		ret = 0;
6141		goto end_trans;
6142	}
6143
6144	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6145		log_dentries = true;
 
 
6146
6147	/*
6148	 * On unlink we must make sure all our current and old parent directory
6149	 * inodes are fully logged. This is to prevent leaving dangling
6150	 * directory index entries in directories that were our parents but are
6151	 * not anymore. Not doing this results in old parent directory being
6152	 * impossible to delete after log replay (rmdir will always fail with
6153	 * error -ENOTEMPTY).
6154	 *
6155	 * Example 1:
6156	 *
6157	 * mkdir testdir
6158	 * touch testdir/foo
6159	 * ln testdir/foo testdir/bar
6160	 * sync
6161	 * unlink testdir/bar
6162	 * xfs_io -c fsync testdir/foo
6163	 * <power failure>
6164	 * mount fs, triggers log replay
6165	 *
6166	 * If we don't log the parent directory (testdir), after log replay the
6167	 * directory still has an entry pointing to the file inode using the bar
6168	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6169	 * the file inode has a link count of 1.
6170	 *
6171	 * Example 2:
6172	 *
6173	 * mkdir testdir
6174	 * touch foo
6175	 * ln foo testdir/foo2
6176	 * ln foo testdir/foo3
6177	 * sync
6178	 * unlink testdir/foo3
6179	 * xfs_io -c fsync foo
6180	 * <power failure>
6181	 * mount fs, triggers log replay
6182	 *
6183	 * Similar as the first example, after log replay the parent directory
6184	 * testdir still has an entry pointing to the inode file with name foo3
6185	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6186	 * and has a link count of 2.
6187	 */
6188	if (inode->last_unlink_trans > last_committed) {
6189		ret = btrfs_log_all_parents(trans, inode, ctx);
6190		if (ret)
6191			goto end_trans;
6192	}
6193
6194	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6195	if (ret)
6196		goto end_trans;
 
 
 
 
 
6197
6198	if (log_dentries)
6199		ret = log_new_dir_dentries(trans, root, inode, ctx);
6200	else
6201		ret = 0;
 
6202end_trans:
 
6203	if (ret < 0) {
6204		btrfs_set_log_full_commit(trans);
 
6205		ret = 1;
6206	}
6207
6208	if (ret)
6209		btrfs_remove_log_ctx(root, ctx);
6210	btrfs_end_log_trans(root);
6211end_no_trans:
6212	return ret;
6213}
6214
6215/*
6216 * it is not safe to log dentry if the chunk root has added new
6217 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6218 * If this returns 1, you must commit the transaction to safely get your
6219 * data on disk.
6220 */
6221int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6222			  struct dentry *dentry,
6223			  const loff_t start,
6224			  const loff_t end,
6225			  struct btrfs_log_ctx *ctx)
6226{
6227	struct dentry *parent = dget_parent(dentry);
6228	int ret;
6229
6230	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6231				     start, end, LOG_INODE_ALL, ctx);
6232	dput(parent);
6233
6234	return ret;
6235}
6236
6237/*
6238 * should be called during mount to recover any replay any log trees
6239 * from the FS
6240 */
6241int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6242{
6243	int ret;
6244	struct btrfs_path *path;
6245	struct btrfs_trans_handle *trans;
6246	struct btrfs_key key;
6247	struct btrfs_key found_key;
6248	struct btrfs_key tmp_key;
6249	struct btrfs_root *log;
6250	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6251	struct walk_control wc = {
6252		.process_func = process_one_buffer,
6253		.stage = LOG_WALK_PIN_ONLY,
6254	};
6255
6256	path = btrfs_alloc_path();
6257	if (!path)
6258		return -ENOMEM;
6259
6260	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6261
6262	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6263	if (IS_ERR(trans)) {
6264		ret = PTR_ERR(trans);
6265		goto error;
6266	}
6267
6268	wc.trans = trans;
6269	wc.pin = 1;
6270
6271	ret = walk_log_tree(trans, log_root_tree, &wc);
6272	if (ret) {
6273		btrfs_handle_fs_error(fs_info, ret,
6274			"Failed to pin buffers while recovering log root tree.");
6275		goto error;
6276	}
6277
6278again:
6279	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6280	key.offset = (u64)-1;
6281	key.type = BTRFS_ROOT_ITEM_KEY;
6282
6283	while (1) {
6284		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6285
6286		if (ret < 0) {
6287			btrfs_handle_fs_error(fs_info, ret,
6288				    "Couldn't find tree log root.");
6289			goto error;
6290		}
6291		if (ret > 0) {
6292			if (path->slots[0] == 0)
6293				break;
6294			path->slots[0]--;
6295		}
6296		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6297				      path->slots[0]);
6298		btrfs_release_path(path);
6299		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6300			break;
6301
6302		log = btrfs_read_fs_root(log_root_tree, &found_key);
 
6303		if (IS_ERR(log)) {
6304			ret = PTR_ERR(log);
6305			btrfs_handle_fs_error(fs_info, ret,
6306				    "Couldn't read tree log root.");
6307			goto error;
6308		}
6309
6310		tmp_key.objectid = found_key.offset;
6311		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
6312		tmp_key.offset = (u64)-1;
6313
6314		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
6315		if (IS_ERR(wc.replay_dest)) {
6316			ret = PTR_ERR(wc.replay_dest);
6317			free_extent_buffer(log->node);
6318			free_extent_buffer(log->commit_root);
6319			kfree(log);
6320			btrfs_handle_fs_error(fs_info, ret,
6321				"Couldn't read target root for tree log recovery.");
6322			goto error;
6323		}
6324
6325		wc.replay_dest->log_root = log;
6326		btrfs_record_root_in_trans(trans, wc.replay_dest);
6327		ret = walk_log_tree(trans, log, &wc);
 
6328
6329		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6330			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6331						      path);
6332		}
6333
6334		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6335			struct btrfs_root *root = wc.replay_dest;
6336
6337			btrfs_release_path(path);
6338
6339			/*
6340			 * We have just replayed everything, and the highest
6341			 * objectid of fs roots probably has changed in case
6342			 * some inode_item's got replayed.
6343			 *
6344			 * root->objectid_mutex is not acquired as log replay
6345			 * could only happen during mount.
6346			 */
6347			ret = btrfs_find_highest_objectid(root,
6348						  &root->highest_objectid);
6349		}
6350
6351		key.offset = found_key.offset - 1;
6352		wc.replay_dest->log_root = NULL;
6353		free_extent_buffer(log->node);
6354		free_extent_buffer(log->commit_root);
6355		kfree(log);
6356
6357		if (ret)
6358			goto error;
6359
6360		if (found_key.offset == 0)
6361			break;
6362	}
6363	btrfs_release_path(path);
6364
6365	/* step one is to pin it all, step two is to replay just inodes */
6366	if (wc.pin) {
6367		wc.pin = 0;
6368		wc.process_func = replay_one_buffer;
6369		wc.stage = LOG_WALK_REPLAY_INODES;
6370		goto again;
6371	}
6372	/* step three is to replay everything */
6373	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6374		wc.stage++;
6375		goto again;
6376	}
6377
6378	btrfs_free_path(path);
6379
 
 
 
 
6380	/* step 4: commit the transaction, which also unpins the blocks */
6381	ret = btrfs_commit_transaction(trans);
6382	if (ret)
6383		return ret;
6384
6385	free_extent_buffer(log_root_tree->node);
6386	log_root_tree->log_root = NULL;
6387	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6388	kfree(log_root_tree);
 
6389
6390	return 0;
6391error:
6392	if (wc.trans)
6393		btrfs_end_transaction(wc.trans);
6394	btrfs_free_path(path);
6395	return ret;
6396}
6397
6398/*
6399 * there are some corner cases where we want to force a full
6400 * commit instead of allowing a directory to be logged.
6401 *
6402 * They revolve around files there were unlinked from the directory, and
6403 * this function updates the parent directory so that a full commit is
6404 * properly done if it is fsync'd later after the unlinks are done.
6405 *
6406 * Must be called before the unlink operations (updates to the subvolume tree,
6407 * inodes, etc) are done.
6408 */
6409void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6410			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6411			     int for_rename)
6412{
6413	/*
6414	 * when we're logging a file, if it hasn't been renamed
6415	 * or unlinked, and its inode is fully committed on disk,
6416	 * we don't have to worry about walking up the directory chain
6417	 * to log its parents.
6418	 *
6419	 * So, we use the last_unlink_trans field to put this transid
6420	 * into the file.  When the file is logged we check it and
6421	 * don't log the parents if the file is fully on disk.
6422	 */
6423	mutex_lock(&inode->log_mutex);
6424	inode->last_unlink_trans = trans->transid;
6425	mutex_unlock(&inode->log_mutex);
6426
6427	/*
6428	 * if this directory was already logged any new
6429	 * names for this file/dir will get recorded
6430	 */
6431	if (dir->logged_trans == trans->transid)
 
6432		return;
6433
6434	/*
6435	 * if the inode we're about to unlink was logged,
6436	 * the log will be properly updated for any new names
6437	 */
6438	if (inode->logged_trans == trans->transid)
6439		return;
6440
6441	/*
6442	 * when renaming files across directories, if the directory
6443	 * there we're unlinking from gets fsync'd later on, there's
6444	 * no way to find the destination directory later and fsync it
6445	 * properly.  So, we have to be conservative and force commits
6446	 * so the new name gets discovered.
6447	 */
6448	if (for_rename)
6449		goto record;
6450
6451	/* we can safely do the unlink without any special recording */
6452	return;
6453
6454record:
6455	mutex_lock(&dir->log_mutex);
6456	dir->last_unlink_trans = trans->transid;
6457	mutex_unlock(&dir->log_mutex);
6458}
6459
6460/*
6461 * Make sure that if someone attempts to fsync the parent directory of a deleted
6462 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6463 * that after replaying the log tree of the parent directory's root we will not
6464 * see the snapshot anymore and at log replay time we will not see any log tree
6465 * corresponding to the deleted snapshot's root, which could lead to replaying
6466 * it after replaying the log tree of the parent directory (which would replay
6467 * the snapshot delete operation).
6468 *
6469 * Must be called before the actual snapshot destroy operation (updates to the
6470 * parent root and tree of tree roots trees, etc) are done.
6471 */
6472void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6473				   struct btrfs_inode *dir)
6474{
6475	mutex_lock(&dir->log_mutex);
6476	dir->last_unlink_trans = trans->transid;
6477	mutex_unlock(&dir->log_mutex);
6478}
6479
6480/*
6481 * Call this after adding a new name for a file and it will properly
6482 * update the log to reflect the new name.
6483 *
6484 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6485 * true (because it's not used).
6486 *
6487 * Return value depends on whether @sync_log is true or false.
6488 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6489 *            committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6490 *            otherwise.
6491 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6492 *             to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6493 *             or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6494 *             committed (without attempting to sync the log).
6495 */
6496int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6497			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6498			struct dentry *parent,
6499			bool sync_log, struct btrfs_log_ctx *ctx)
6500{
6501	struct btrfs_fs_info *fs_info = trans->fs_info;
6502	int ret;
6503
6504	/*
6505	 * this will force the logging code to walk the dentry chain
6506	 * up for the file
6507	 */
6508	if (!S_ISDIR(inode->vfs_inode.i_mode))
6509		inode->last_unlink_trans = trans->transid;
6510
6511	/*
6512	 * if this inode hasn't been logged and directory we're renaming it
6513	 * from hasn't been logged, we don't need to log it
6514	 */
6515	if (inode->logged_trans <= fs_info->last_trans_committed &&
6516	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6517		return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6518			BTRFS_DONT_NEED_LOG_SYNC;
6519
6520	if (sync_log) {
6521		struct btrfs_log_ctx ctx2;
6522
6523		btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6524		ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6525					     LOG_INODE_EXISTS, &ctx2);
6526		if (ret == BTRFS_NO_LOG_SYNC)
6527			return BTRFS_DONT_NEED_TRANS_COMMIT;
6528		else if (ret)
6529			return BTRFS_NEED_TRANS_COMMIT;
6530
6531		ret = btrfs_sync_log(trans, inode->root, &ctx2);
6532		if (ret)
6533			return BTRFS_NEED_TRANS_COMMIT;
6534		return BTRFS_DONT_NEED_TRANS_COMMIT;
6535	}
6536
6537	ASSERT(ctx);
6538	ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6539				     LOG_INODE_EXISTS, ctx);
6540	if (ret == BTRFS_NO_LOG_SYNC)
6541		return BTRFS_DONT_NEED_LOG_SYNC;
6542	else if (ret)
6543		return BTRFS_NEED_TRANS_COMMIT;
6544
6545	return BTRFS_NEED_LOG_SYNC;
6546}
6547