Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
 
 
  21#include "ctree.h"
  22#include "transaction.h"
  23#include "disk-io.h"
  24#include "locking.h"
  25#include "print-tree.h"
  26#include "compat.h"
  27#include "tree-log.h"
 
  28
  29/* magic values for the inode_only field in btrfs_log_inode:
  30 *
  31 * LOG_INODE_ALL means to log everything
  32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  33 * during log replay
  34 */
  35#define LOG_INODE_ALL 0
  36#define LOG_INODE_EXISTS 1
  37
  38/*
  39 * directory trouble cases
  40 *
  41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  42 * log, we must force a full commit before doing an fsync of the directory
  43 * where the unlink was done.
  44 * ---> record transid of last unlink/rename per directory
  45 *
  46 * mkdir foo/some_dir
  47 * normal commit
  48 * rename foo/some_dir foo2/some_dir
  49 * mkdir foo/some_dir
  50 * fsync foo/some_dir/some_file
  51 *
  52 * The fsync above will unlink the original some_dir without recording
  53 * it in its new location (foo2).  After a crash, some_dir will be gone
  54 * unless the fsync of some_file forces a full commit
  55 *
  56 * 2) we must log any new names for any file or dir that is in the fsync
  57 * log. ---> check inode while renaming/linking.
  58 *
  59 * 2a) we must log any new names for any file or dir during rename
  60 * when the directory they are being removed from was logged.
  61 * ---> check inode and old parent dir during rename
  62 *
  63 *  2a is actually the more important variant.  With the extra logging
  64 *  a crash might unlink the old name without recreating the new one
  65 *
  66 * 3) after a crash, we must go through any directories with a link count
  67 * of zero and redo the rm -rf
  68 *
  69 * mkdir f1/foo
  70 * normal commit
  71 * rm -rf f1/foo
  72 * fsync(f1)
  73 *
  74 * The directory f1 was fully removed from the FS, but fsync was never
  75 * called on f1, only its parent dir.  After a crash the rm -rf must
  76 * be replayed.  This must be able to recurse down the entire
  77 * directory tree.  The inode link count fixup code takes care of the
  78 * ugly details.
  79 */
  80
  81/*
  82 * stages for the tree walking.  The first
  83 * stage (0) is to only pin down the blocks we find
  84 * the second stage (1) is to make sure that all the inodes
  85 * we find in the log are created in the subvolume.
  86 *
  87 * The last stage is to deal with directories and links and extents
  88 * and all the other fun semantics
  89 */
  90#define LOG_WALK_PIN_ONLY 0
  91#define LOG_WALK_REPLAY_INODES 1
  92#define LOG_WALK_REPLAY_ALL 2
 
  93
  94static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  95			     struct btrfs_root *root, struct inode *inode,
  96			     int inode_only);
  97static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
  98			     struct btrfs_root *root,
  99			     struct btrfs_path *path, u64 objectid);
 100static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 101				       struct btrfs_root *root,
 102				       struct btrfs_root *log,
 103				       struct btrfs_path *path,
 104				       u64 dirid, int del_all);
 105
 106/*
 107 * tree logging is a special write ahead log used to make sure that
 108 * fsyncs and O_SYNCs can happen without doing full tree commits.
 109 *
 110 * Full tree commits are expensive because they require commonly
 111 * modified blocks to be recowed, creating many dirty pages in the
 112 * extent tree an 4x-6x higher write load than ext3.
 113 *
 114 * Instead of doing a tree commit on every fsync, we use the
 115 * key ranges and transaction ids to find items for a given file or directory
 116 * that have changed in this transaction.  Those items are copied into
 117 * a special tree (one per subvolume root), that tree is written to disk
 118 * and then the fsync is considered complete.
 119 *
 120 * After a crash, items are copied out of the log-tree back into the
 121 * subvolume tree.  Any file data extents found are recorded in the extent
 122 * allocation tree, and the log-tree freed.
 123 *
 124 * The log tree is read three times, once to pin down all the extents it is
 125 * using in ram and once, once to create all the inodes logged in the tree
 126 * and once to do all the other items.
 127 */
 128
 129/*
 130 * start a sub transaction and setup the log tree
 131 * this increments the log tree writer count to make the people
 132 * syncing the tree wait for us to finish
 133 */
 134static int start_log_trans(struct btrfs_trans_handle *trans,
 135			   struct btrfs_root *root)
 
 136{
 
 137	int ret;
 138	int err = 0;
 139
 140	mutex_lock(&root->log_mutex);
 141	if (root->log_root) {
 
 
 
 
 
 
 142		if (!root->log_start_pid) {
 143			root->log_start_pid = current->pid;
 144			root->log_multiple_pids = false;
 145		} else if (root->log_start_pid != current->pid) {
 146			root->log_multiple_pids = true;
 147		}
 148
 149		root->log_batch++;
 150		atomic_inc(&root->log_writers);
 
 
 
 
 
 151		mutex_unlock(&root->log_mutex);
 152		return 0;
 153	}
 154	root->log_multiple_pids = false;
 155	root->log_start_pid = current->pid;
 156	mutex_lock(&root->fs_info->tree_log_mutex);
 157	if (!root->fs_info->log_root_tree) {
 158		ret = btrfs_init_log_root_tree(trans, root->fs_info);
 159		if (ret)
 160			err = ret;
 161	}
 162	if (err == 0 && !root->log_root) {
 
 163		ret = btrfs_add_log_tree(trans, root);
 164		if (ret)
 165			err = ret;
 166	}
 167	mutex_unlock(&root->fs_info->tree_log_mutex);
 168	root->log_batch++;
 
 169	atomic_inc(&root->log_writers);
 
 
 
 
 
 
 170	mutex_unlock(&root->log_mutex);
 171	return err;
 172}
 173
 174/*
 175 * returns 0 if there was a log transaction running and we were able
 176 * to join, or returns -ENOENT if there were not transactions
 177 * in progress
 178 */
 179static int join_running_log_trans(struct btrfs_root *root)
 180{
 181	int ret = -ENOENT;
 182
 183	smp_mb();
 184	if (!root->log_root)
 185		return -ENOENT;
 186
 187	mutex_lock(&root->log_mutex);
 188	if (root->log_root) {
 189		ret = 0;
 190		atomic_inc(&root->log_writers);
 191	}
 192	mutex_unlock(&root->log_mutex);
 193	return ret;
 194}
 195
 196/*
 197 * This either makes the current running log transaction wait
 198 * until you call btrfs_end_log_trans() or it makes any future
 199 * log transactions wait until you call btrfs_end_log_trans()
 200 */
 201int btrfs_pin_log_trans(struct btrfs_root *root)
 202{
 203	int ret = -ENOENT;
 204
 205	mutex_lock(&root->log_mutex);
 206	atomic_inc(&root->log_writers);
 207	mutex_unlock(&root->log_mutex);
 208	return ret;
 209}
 210
 211/*
 212 * indicate we're done making changes to the log tree
 213 * and wake up anyone waiting to do a sync
 214 */
 215void btrfs_end_log_trans(struct btrfs_root *root)
 216{
 217	if (atomic_dec_and_test(&root->log_writers)) {
 218		smp_mb();
 219		if (waitqueue_active(&root->log_writer_wait))
 220			wake_up(&root->log_writer_wait);
 221	}
 222}
 223
 224
 225/*
 226 * the walk control struct is used to pass state down the chain when
 227 * processing the log tree.  The stage field tells us which part
 228 * of the log tree processing we are currently doing.  The others
 229 * are state fields used for that specific part
 230 */
 231struct walk_control {
 232	/* should we free the extent on disk when done?  This is used
 233	 * at transaction commit time while freeing a log tree
 234	 */
 235	int free;
 236
 237	/* should we write out the extent buffer?  This is used
 238	 * while flushing the log tree to disk during a sync
 239	 */
 240	int write;
 241
 242	/* should we wait for the extent buffer io to finish?  Also used
 243	 * while flushing the log tree to disk for a sync
 244	 */
 245	int wait;
 246
 247	/* pin only walk, we record which extents on disk belong to the
 248	 * log trees
 249	 */
 250	int pin;
 251
 252	/* what stage of the replay code we're currently in */
 253	int stage;
 254
 255	/* the root we are currently replaying */
 256	struct btrfs_root *replay_dest;
 257
 258	/* the trans handle for the current replay */
 259	struct btrfs_trans_handle *trans;
 260
 261	/* the function that gets used to process blocks we find in the
 262	 * tree.  Note the extent_buffer might not be up to date when it is
 263	 * passed in, and it must be checked or read if you need the data
 264	 * inside it
 265	 */
 266	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 267			    struct walk_control *wc, u64 gen);
 268};
 269
 270/*
 271 * process_func used to pin down extents, write them or wait on them
 272 */
 273static int process_one_buffer(struct btrfs_root *log,
 274			      struct extent_buffer *eb,
 275			      struct walk_control *wc, u64 gen)
 276{
 
 
 
 
 
 
 
 
 
 
 
 
 277	if (wc->pin)
 278		btrfs_pin_extent_for_log_replay(wc->trans,
 279						log->fs_info->extent_root,
 280						eb->start, eb->len);
 281
 282	if (btrfs_buffer_uptodate(eb, gen, 0)) {
 
 
 283		if (wc->write)
 284			btrfs_write_tree_block(eb);
 285		if (wc->wait)
 286			btrfs_wait_tree_block_writeback(eb);
 287	}
 288	return 0;
 289}
 290
 291/*
 292 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 293 * to the src data we are copying out.
 294 *
 295 * root is the tree we are copying into, and path is a scratch
 296 * path for use in this function (it should be released on entry and
 297 * will be released on exit).
 298 *
 299 * If the key is already in the destination tree the existing item is
 300 * overwritten.  If the existing item isn't big enough, it is extended.
 301 * If it is too large, it is truncated.
 302 *
 303 * If the key isn't in the destination yet, a new item is inserted.
 304 */
 305static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 306				   struct btrfs_root *root,
 307				   struct btrfs_path *path,
 308				   struct extent_buffer *eb, int slot,
 309				   struct btrfs_key *key)
 310{
 311	int ret;
 312	u32 item_size;
 313	u64 saved_i_size = 0;
 314	int save_old_i_size = 0;
 315	unsigned long src_ptr;
 316	unsigned long dst_ptr;
 317	int overwrite_root = 0;
 
 318
 319	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 320		overwrite_root = 1;
 321
 322	item_size = btrfs_item_size_nr(eb, slot);
 323	src_ptr = btrfs_item_ptr_offset(eb, slot);
 324
 325	/* look for the key in the destination tree */
 326	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 
 
 
 327	if (ret == 0) {
 328		char *src_copy;
 329		char *dst_copy;
 330		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 331						  path->slots[0]);
 332		if (dst_size != item_size)
 333			goto insert;
 334
 335		if (item_size == 0) {
 336			btrfs_release_path(path);
 337			return 0;
 338		}
 339		dst_copy = kmalloc(item_size, GFP_NOFS);
 340		src_copy = kmalloc(item_size, GFP_NOFS);
 341		if (!dst_copy || !src_copy) {
 342			btrfs_release_path(path);
 343			kfree(dst_copy);
 344			kfree(src_copy);
 345			return -ENOMEM;
 346		}
 347
 348		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 349
 350		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 351		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 352				   item_size);
 353		ret = memcmp(dst_copy, src_copy, item_size);
 354
 355		kfree(dst_copy);
 356		kfree(src_copy);
 357		/*
 358		 * they have the same contents, just return, this saves
 359		 * us from cowing blocks in the destination tree and doing
 360		 * extra writes that may not have been done by a previous
 361		 * sync
 362		 */
 363		if (ret == 0) {
 364			btrfs_release_path(path);
 365			return 0;
 366		}
 367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 368	}
 369insert:
 370	btrfs_release_path(path);
 371	/* try to insert the key into the destination tree */
 372	ret = btrfs_insert_empty_item(trans, root, path,
 373				      key, item_size);
 374
 375	/* make sure any existing item is the correct size */
 376	if (ret == -EEXIST) {
 377		u32 found_size;
 378		found_size = btrfs_item_size_nr(path->nodes[0],
 379						path->slots[0]);
 380		if (found_size > item_size)
 381			btrfs_truncate_item(trans, root, path, item_size, 1);
 382		else if (found_size < item_size)
 383			btrfs_extend_item(trans, root, path,
 384					  item_size - found_size);
 385	} else if (ret) {
 386		return ret;
 387	}
 388	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 389					path->slots[0]);
 390
 391	/* don't overwrite an existing inode if the generation number
 392	 * was logged as zero.  This is done when the tree logging code
 393	 * is just logging an inode to make sure it exists after recovery.
 394	 *
 395	 * Also, don't overwrite i_size on directories during replay.
 396	 * log replay inserts and removes directory items based on the
 397	 * state of the tree found in the subvolume, and i_size is modified
 398	 * as it goes
 399	 */
 400	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 401		struct btrfs_inode_item *src_item;
 402		struct btrfs_inode_item *dst_item;
 403
 404		src_item = (struct btrfs_inode_item *)src_ptr;
 405		dst_item = (struct btrfs_inode_item *)dst_ptr;
 406
 407		if (btrfs_inode_generation(eb, src_item) == 0)
 408			goto no_copy;
 409
 410		if (overwrite_root &&
 411		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 412		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 413			save_old_i_size = 1;
 414			saved_i_size = btrfs_inode_size(path->nodes[0],
 415							dst_item);
 416		}
 417	}
 418
 419	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 420			   src_ptr, item_size);
 421
 422	if (save_old_i_size) {
 423		struct btrfs_inode_item *dst_item;
 424		dst_item = (struct btrfs_inode_item *)dst_ptr;
 425		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 426	}
 427
 428	/* make sure the generation is filled in */
 429	if (key->type == BTRFS_INODE_ITEM_KEY) {
 430		struct btrfs_inode_item *dst_item;
 431		dst_item = (struct btrfs_inode_item *)dst_ptr;
 432		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 433			btrfs_set_inode_generation(path->nodes[0], dst_item,
 434						   trans->transid);
 435		}
 436	}
 437no_copy:
 438	btrfs_mark_buffer_dirty(path->nodes[0]);
 439	btrfs_release_path(path);
 440	return 0;
 441}
 442
 443/*
 444 * simple helper to read an inode off the disk from a given root
 445 * This can only be called for subvolume roots and not for the log
 446 */
 447static noinline struct inode *read_one_inode(struct btrfs_root *root,
 448					     u64 objectid)
 449{
 450	struct btrfs_key key;
 451	struct inode *inode;
 452
 453	key.objectid = objectid;
 454	key.type = BTRFS_INODE_ITEM_KEY;
 455	key.offset = 0;
 456	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
 457	if (IS_ERR(inode)) {
 458		inode = NULL;
 459	} else if (is_bad_inode(inode)) {
 460		iput(inode);
 461		inode = NULL;
 462	}
 463	return inode;
 464}
 465
 466/* replays a single extent in 'eb' at 'slot' with 'key' into the
 467 * subvolume 'root'.  path is released on entry and should be released
 468 * on exit.
 469 *
 470 * extents in the log tree have not been allocated out of the extent
 471 * tree yet.  So, this completes the allocation, taking a reference
 472 * as required if the extent already exists or creating a new extent
 473 * if it isn't in the extent allocation tree yet.
 474 *
 475 * The extent is inserted into the file, dropping any existing extents
 476 * from the file that overlap the new one.
 477 */
 478static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 479				      struct btrfs_root *root,
 480				      struct btrfs_path *path,
 481				      struct extent_buffer *eb, int slot,
 482				      struct btrfs_key *key)
 483{
 484	int found_type;
 485	u64 mask = root->sectorsize - 1;
 486	u64 extent_end;
 487	u64 alloc_hint;
 488	u64 start = key->offset;
 489	u64 saved_nbytes;
 490	struct btrfs_file_extent_item *item;
 491	struct inode *inode = NULL;
 492	unsigned long size;
 493	int ret = 0;
 494
 495	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 496	found_type = btrfs_file_extent_type(eb, item);
 497
 498	if (found_type == BTRFS_FILE_EXTENT_REG ||
 499	    found_type == BTRFS_FILE_EXTENT_PREALLOC)
 500		extent_end = start + btrfs_file_extent_num_bytes(eb, item);
 501	else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 502		size = btrfs_file_extent_inline_len(eb, item);
 503		extent_end = (start + size + mask) & ~mask;
 
 
 
 
 
 
 
 
 
 504	} else {
 505		ret = 0;
 506		goto out;
 507	}
 508
 509	inode = read_one_inode(root, key->objectid);
 510	if (!inode) {
 511		ret = -EIO;
 512		goto out;
 513	}
 514
 515	/*
 516	 * first check to see if we already have this extent in the
 517	 * file.  This must be done before the btrfs_drop_extents run
 518	 * so we don't try to drop this extent.
 519	 */
 520	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
 521				       start, 0);
 522
 523	if (ret == 0 &&
 524	    (found_type == BTRFS_FILE_EXTENT_REG ||
 525	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 526		struct btrfs_file_extent_item cmp1;
 527		struct btrfs_file_extent_item cmp2;
 528		struct btrfs_file_extent_item *existing;
 529		struct extent_buffer *leaf;
 530
 531		leaf = path->nodes[0];
 532		existing = btrfs_item_ptr(leaf, path->slots[0],
 533					  struct btrfs_file_extent_item);
 534
 535		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 536				   sizeof(cmp1));
 537		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 538				   sizeof(cmp2));
 539
 540		/*
 541		 * we already have a pointer to this exact extent,
 542		 * we don't have to do anything
 543		 */
 544		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 545			btrfs_release_path(path);
 546			goto out;
 547		}
 548	}
 549	btrfs_release_path(path);
 550
 551	saved_nbytes = inode_get_bytes(inode);
 552	/* drop any overlapping extents */
 553	ret = btrfs_drop_extents(trans, inode, start, extent_end,
 554				 &alloc_hint, 1);
 555	BUG_ON(ret);
 556
 557	if (found_type == BTRFS_FILE_EXTENT_REG ||
 558	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 559		u64 offset;
 560		unsigned long dest_offset;
 561		struct btrfs_key ins;
 562
 563		ret = btrfs_insert_empty_item(trans, root, path, key,
 564					      sizeof(*item));
 565		BUG_ON(ret);
 
 566		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 567						    path->slots[0]);
 568		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 569				(unsigned long)item,  sizeof(*item));
 570
 571		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 572		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 573		ins.type = BTRFS_EXTENT_ITEM_KEY;
 574		offset = key->offset - btrfs_file_extent_offset(eb, item);
 575
 576		if (ins.objectid > 0) {
 577			u64 csum_start;
 578			u64 csum_end;
 579			LIST_HEAD(ordered_sums);
 580			/*
 581			 * is this extent already allocated in the extent
 582			 * allocation tree?  If so, just add a reference
 583			 */
 584			ret = btrfs_lookup_extent(root, ins.objectid,
 585						ins.offset);
 586			if (ret == 0) {
 587				ret = btrfs_inc_extent_ref(trans, root,
 588						ins.objectid, ins.offset,
 589						0, root->root_key.objectid,
 590						key->objectid, offset, 0);
 591				BUG_ON(ret);
 
 592			} else {
 593				/*
 594				 * insert the extent pointer in the extent
 595				 * allocation tree
 596				 */
 597				ret = btrfs_alloc_logged_file_extent(trans,
 598						root, root->root_key.objectid,
 599						key->objectid, offset, &ins);
 600				BUG_ON(ret);
 
 601			}
 602			btrfs_release_path(path);
 603
 604			if (btrfs_file_extent_compression(eb, item)) {
 605				csum_start = ins.objectid;
 606				csum_end = csum_start + ins.offset;
 607			} else {
 608				csum_start = ins.objectid +
 609					btrfs_file_extent_offset(eb, item);
 610				csum_end = csum_start +
 611					btrfs_file_extent_num_bytes(eb, item);
 612			}
 613
 614			ret = btrfs_lookup_csums_range(root->log_root,
 615						csum_start, csum_end - 1,
 616						&ordered_sums, 0);
 617			BUG_ON(ret);
 
 618			while (!list_empty(&ordered_sums)) {
 619				struct btrfs_ordered_sum *sums;
 620				sums = list_entry(ordered_sums.next,
 621						struct btrfs_ordered_sum,
 622						list);
 623				ret = btrfs_csum_file_blocks(trans,
 
 624						root->fs_info->csum_root,
 625						sums);
 626				BUG_ON(ret);
 627				list_del(&sums->list);
 628				kfree(sums);
 629			}
 
 
 630		} else {
 631			btrfs_release_path(path);
 632		}
 633	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 634		/* inline extents are easy, we just overwrite them */
 635		ret = overwrite_item(trans, root, path, eb, slot, key);
 636		BUG_ON(ret);
 
 637	}
 638
 639	inode_set_bytes(inode, saved_nbytes);
 640	btrfs_update_inode(trans, root, inode);
 641out:
 642	if (inode)
 643		iput(inode);
 644	return ret;
 645}
 646
 647/*
 648 * when cleaning up conflicts between the directory names in the
 649 * subvolume, directory names in the log and directory names in the
 650 * inode back references, we may have to unlink inodes from directories.
 651 *
 652 * This is a helper function to do the unlink of a specific directory
 653 * item
 654 */
 655static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 656				      struct btrfs_root *root,
 657				      struct btrfs_path *path,
 658				      struct inode *dir,
 659				      struct btrfs_dir_item *di)
 660{
 661	struct inode *inode;
 662	char *name;
 663	int name_len;
 664	struct extent_buffer *leaf;
 665	struct btrfs_key location;
 666	int ret;
 667
 668	leaf = path->nodes[0];
 669
 670	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 671	name_len = btrfs_dir_name_len(leaf, di);
 672	name = kmalloc(name_len, GFP_NOFS);
 673	if (!name)
 674		return -ENOMEM;
 675
 676	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 677	btrfs_release_path(path);
 678
 679	inode = read_one_inode(root, location.objectid);
 680	if (!inode) {
 681		kfree(name);
 682		return -EIO;
 683	}
 684
 685	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 686	BUG_ON(ret);
 
 687
 688	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
 689	BUG_ON(ret);
 
 
 
 
 690	kfree(name);
 691
 692	iput(inode);
 693
 694	btrfs_run_delayed_items(trans, root);
 695	return ret;
 696}
 697
 698/*
 699 * helper function to see if a given name and sequence number found
 700 * in an inode back reference are already in a directory and correctly
 701 * point to this inode
 702 */
 703static noinline int inode_in_dir(struct btrfs_root *root,
 704				 struct btrfs_path *path,
 705				 u64 dirid, u64 objectid, u64 index,
 706				 const char *name, int name_len)
 707{
 708	struct btrfs_dir_item *di;
 709	struct btrfs_key location;
 710	int match = 0;
 711
 712	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 713					 index, name, name_len, 0);
 714	if (di && !IS_ERR(di)) {
 715		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 716		if (location.objectid != objectid)
 717			goto out;
 718	} else
 719		goto out;
 720	btrfs_release_path(path);
 721
 722	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 723	if (di && !IS_ERR(di)) {
 724		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 725		if (location.objectid != objectid)
 726			goto out;
 727	} else
 728		goto out;
 729	match = 1;
 730out:
 731	btrfs_release_path(path);
 732	return match;
 733}
 734
 735/*
 736 * helper function to check a log tree for a named back reference in
 737 * an inode.  This is used to decide if a back reference that is
 738 * found in the subvolume conflicts with what we find in the log.
 739 *
 740 * inode backreferences may have multiple refs in a single item,
 741 * during replay we process one reference at a time, and we don't
 742 * want to delete valid links to a file from the subvolume if that
 743 * link is also in the log.
 744 */
 745static noinline int backref_in_log(struct btrfs_root *log,
 746				   struct btrfs_key *key,
 
 747				   char *name, int namelen)
 748{
 749	struct btrfs_path *path;
 750	struct btrfs_inode_ref *ref;
 751	unsigned long ptr;
 752	unsigned long ptr_end;
 753	unsigned long name_ptr;
 754	int found_name_len;
 755	int item_size;
 756	int ret;
 757	int match = 0;
 758
 759	path = btrfs_alloc_path();
 760	if (!path)
 761		return -ENOMEM;
 762
 763	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 764	if (ret != 0)
 765		goto out;
 766
 767	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 768	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 
 
 
 
 
 
 
 
 
 
 769	ptr_end = ptr + item_size;
 770	while (ptr < ptr_end) {
 771		ref = (struct btrfs_inode_ref *)ptr;
 772		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 773		if (found_name_len == namelen) {
 774			name_ptr = (unsigned long)(ref + 1);
 775			ret = memcmp_extent_buffer(path->nodes[0], name,
 776						   name_ptr, namelen);
 777			if (ret == 0) {
 778				match = 1;
 779				goto out;
 780			}
 781		}
 782		ptr = (unsigned long)(ref + 1) + found_name_len;
 783	}
 784out:
 785	btrfs_free_path(path);
 786	return match;
 787}
 788
 789
 790/*
 791 * replay one inode back reference item found in the log tree.
 792 * eb, slot and key refer to the buffer and key found in the log tree.
 793 * root is the destination we are replaying into, and path is for temp
 794 * use by this function.  (it should be released on return).
 795 */
 796static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
 797				  struct btrfs_root *root,
 798				  struct btrfs_root *log,
 799				  struct btrfs_path *path,
 800				  struct extent_buffer *eb, int slot,
 801				  struct btrfs_key *key)
 
 
 
 
 802{
 803	struct btrfs_inode_ref *ref;
 804	struct btrfs_dir_item *di;
 805	struct inode *dir;
 806	struct inode *inode;
 807	unsigned long ref_ptr;
 808	unsigned long ref_end;
 809	char *name;
 810	int namelen;
 811	int ret;
 812	int search_done = 0;
 813
 814	/*
 815	 * it is possible that we didn't log all the parent directories
 816	 * for a given inode.  If we don't find the dir, just don't
 817	 * copy the back ref in.  The link count fixup code will take
 818	 * care of the rest
 819	 */
 820	dir = read_one_inode(root, key->offset);
 821	if (!dir)
 822		return -ENOENT;
 823
 824	inode = read_one_inode(root, key->objectid);
 825	if (!inode) {
 826		iput(dir);
 827		return -EIO;
 828	}
 829
 830	ref_ptr = btrfs_item_ptr_offset(eb, slot);
 831	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
 832
 833again:
 834	ref = (struct btrfs_inode_ref *)ref_ptr;
 835
 836	namelen = btrfs_inode_ref_name_len(eb, ref);
 837	name = kmalloc(namelen, GFP_NOFS);
 838	BUG_ON(!name);
 839
 840	read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
 841
 842	/* if we already have a perfect match, we're done */
 843	if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
 844			 btrfs_inode_ref_index(eb, ref),
 845			 name, namelen)) {
 846		goto out;
 847	}
 848
 849	/*
 850	 * look for a conflicting back reference in the metadata.
 851	 * if we find one we have to unlink that name of the file
 852	 * before we add our new link.  Later on, we overwrite any
 853	 * existing back reference, and we don't want to create
 854	 * dangling pointers in the directory.
 855	 */
 856
 857	if (search_done)
 858		goto insert;
 859
 860	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 861	if (ret == 0) {
 862		char *victim_name;
 863		int victim_name_len;
 864		struct btrfs_inode_ref *victim_ref;
 865		unsigned long ptr;
 866		unsigned long ptr_end;
 867		struct extent_buffer *leaf = path->nodes[0];
 
 868
 869		/* are we trying to overwrite a back ref for the root directory
 870		 * if so, just jump out, we're done
 871		 */
 872		if (key->objectid == key->offset)
 873			goto out_nowrite;
 874
 875		/* check all the names in this back reference to see
 876		 * if they are in the log.  if so, we allow them to stay
 877		 * otherwise they must be unlinked as a conflict
 878		 */
 879		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
 880		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
 881		while (ptr < ptr_end) {
 882			victim_ref = (struct btrfs_inode_ref *)ptr;
 883			victim_name_len = btrfs_inode_ref_name_len(leaf,
 884								   victim_ref);
 885			victim_name = kmalloc(victim_name_len, GFP_NOFS);
 886			BUG_ON(!victim_name);
 
 887
 888			read_extent_buffer(leaf, victim_name,
 889					   (unsigned long)(victim_ref + 1),
 890					   victim_name_len);
 891
 892			if (!backref_in_log(log, key, victim_name,
 
 
 893					    victim_name_len)) {
 894				btrfs_inc_nlink(inode);
 895				btrfs_release_path(path);
 896
 897				ret = btrfs_unlink_inode(trans, root, dir,
 898							 inode, victim_name,
 899							 victim_name_len);
 900				btrfs_run_delayed_items(trans, root);
 
 
 
 
 
 
 
 901			}
 902			kfree(victim_name);
 
 903			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
 904		}
 905		BUG_ON(ret);
 906
 907		/*
 908		 * NOTE: we have searched root tree and checked the
 909		 * coresponding ref, it does not need to check again.
 910		 */
 911		search_done = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912	}
 913	btrfs_release_path(path);
 914
 915	/* look for a conflicting sequence number */
 916	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
 917					 btrfs_inode_ref_index(eb, ref),
 918					 name, namelen, 0);
 919	if (di && !IS_ERR(di)) {
 920		ret = drop_one_dir_item(trans, root, path, dir, di);
 921		BUG_ON(ret);
 
 922	}
 923	btrfs_release_path(path);
 924
 925	/* look for a conflicing name */
 926	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
 927				   name, namelen, 0);
 928	if (di && !IS_ERR(di)) {
 929		ret = drop_one_dir_item(trans, root, path, dir, di);
 930		BUG_ON(ret);
 
 931	}
 932	btrfs_release_path(path);
 933
 934insert:
 935	/* insert our name */
 936	ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
 937			     btrfs_inode_ref_index(eb, ref));
 938	BUG_ON(ret);
 939
 940	btrfs_update_inode(trans, root, inode);
 
 
 
 
 941
 942out:
 943	ref_ptr = (unsigned long)(ref + 1) + namelen;
 944	kfree(name);
 945	if (ref_ptr < ref_end)
 946		goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 947
 948	/* finally write the back reference in the inode */
 949	ret = overwrite_item(trans, root, path, eb, slot, key);
 950	BUG_ON(ret);
 951
 952out_nowrite:
 953	btrfs_release_path(path);
 
 954	iput(dir);
 955	iput(inode);
 956	return 0;
 957}
 958
 959static int insert_orphan_item(struct btrfs_trans_handle *trans,
 960			      struct btrfs_root *root, u64 offset)
 961{
 962	int ret;
 963	ret = btrfs_find_orphan_item(root, offset);
 
 964	if (ret > 0)
 965		ret = btrfs_insert_orphan_item(trans, root, offset);
 966	return ret;
 967}
 968
 
 
 
 
 
 
 
 
 
 
 
 
 
 969
 970/*
 971 * There are a few corners where the link count of the file can't
 972 * be properly maintained during replay.  So, instead of adding
 973 * lots of complexity to the log code, we just scan the backrefs
 974 * for any file that has been through replay.
 975 *
 976 * The scan will update the link count on the inode to reflect the
 977 * number of back refs found.  If it goes down to zero, the iput
 978 * will free the inode.
 979 */
 980static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
 981					   struct btrfs_root *root,
 982					   struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983{
 984	struct btrfs_path *path;
 985	int ret;
 986	struct btrfs_key key;
 987	u64 nlink = 0;
 988	unsigned long ptr;
 989	unsigned long ptr_end;
 990	int name_len;
 991	u64 ino = btrfs_ino(inode);
 992
 993	key.objectid = ino;
 994	key.type = BTRFS_INODE_REF_KEY;
 995	key.offset = (u64)-1;
 996
 997	path = btrfs_alloc_path();
 998	if (!path)
 999		return -ENOMEM;
1000
1001	while (1) {
1002		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1003		if (ret < 0)
1004			break;
1005		if (ret > 0) {
1006			if (path->slots[0] == 0)
1007				break;
1008			path->slots[0]--;
1009		}
 
1010		btrfs_item_key_to_cpu(path->nodes[0], &key,
1011				      path->slots[0]);
1012		if (key.objectid != ino ||
1013		    key.type != BTRFS_INODE_REF_KEY)
1014			break;
1015		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1016		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1017						   path->slots[0]);
1018		while (ptr < ptr_end) {
1019			struct btrfs_inode_ref *ref;
1020
1021			ref = (struct btrfs_inode_ref *)ptr;
1022			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1023							    ref);
1024			ptr = (unsigned long)(ref + 1) + name_len;
1025			nlink++;
1026		}
1027
1028		if (key.offset == 0)
1029			break;
 
 
 
 
1030		key.offset--;
1031		btrfs_release_path(path);
1032	}
1033	btrfs_release_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034	if (nlink != inode->i_nlink) {
1035		set_nlink(inode, nlink);
1036		btrfs_update_inode(trans, root, inode);
1037	}
1038	BTRFS_I(inode)->index_cnt = (u64)-1;
1039
1040	if (inode->i_nlink == 0) {
1041		if (S_ISDIR(inode->i_mode)) {
1042			ret = replay_dir_deletes(trans, root, NULL, path,
1043						 ino, 1);
1044			BUG_ON(ret);
 
1045		}
1046		ret = insert_orphan_item(trans, root, ino);
1047		BUG_ON(ret);
1048	}
1049	btrfs_free_path(path);
1050
1051	return 0;
 
 
1052}
1053
1054static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1055					    struct btrfs_root *root,
1056					    struct btrfs_path *path)
1057{
1058	int ret;
1059	struct btrfs_key key;
1060	struct inode *inode;
1061
1062	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1063	key.type = BTRFS_ORPHAN_ITEM_KEY;
1064	key.offset = (u64)-1;
1065	while (1) {
1066		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1067		if (ret < 0)
1068			break;
1069
1070		if (ret == 1) {
1071			if (path->slots[0] == 0)
1072				break;
1073			path->slots[0]--;
1074		}
1075
1076		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1077		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1078		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1079			break;
1080
1081		ret = btrfs_del_item(trans, root, path);
1082		if (ret)
1083			goto out;
1084
1085		btrfs_release_path(path);
1086		inode = read_one_inode(root, key.offset);
1087		if (!inode)
1088			return -EIO;
1089
1090		ret = fixup_inode_link_count(trans, root, inode);
1091		BUG_ON(ret);
1092
1093		iput(inode);
 
 
1094
1095		/*
1096		 * fixup on a directory may create new entries,
1097		 * make sure we always look for the highset possible
1098		 * offset
1099		 */
1100		key.offset = (u64)-1;
1101	}
1102	ret = 0;
1103out:
1104	btrfs_release_path(path);
1105	return ret;
1106}
1107
1108
1109/*
1110 * record a given inode in the fixup dir so we can check its link
1111 * count when replay is done.  The link count is incremented here
1112 * so the inode won't go away until we check it
1113 */
1114static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1115				      struct btrfs_root *root,
1116				      struct btrfs_path *path,
1117				      u64 objectid)
1118{
1119	struct btrfs_key key;
1120	int ret = 0;
1121	struct inode *inode;
1122
1123	inode = read_one_inode(root, objectid);
1124	if (!inode)
1125		return -EIO;
1126
1127	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1128	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1129	key.offset = objectid;
1130
1131	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1132
1133	btrfs_release_path(path);
1134	if (ret == 0) {
1135		btrfs_inc_nlink(inode);
1136		btrfs_update_inode(trans, root, inode);
 
 
 
1137	} else if (ret == -EEXIST) {
1138		ret = 0;
1139	} else {
1140		BUG();
1141	}
1142	iput(inode);
1143
1144	return ret;
1145}
1146
1147/*
1148 * when replaying the log for a directory, we only insert names
1149 * for inodes that actually exist.  This means an fsync on a directory
1150 * does not implicitly fsync all the new files in it
1151 */
1152static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1153				    struct btrfs_root *root,
1154				    struct btrfs_path *path,
1155				    u64 dirid, u64 index,
1156				    char *name, int name_len, u8 type,
1157				    struct btrfs_key *location)
1158{
1159	struct inode *inode;
1160	struct inode *dir;
1161	int ret;
1162
1163	inode = read_one_inode(root, location->objectid);
1164	if (!inode)
1165		return -ENOENT;
1166
1167	dir = read_one_inode(root, dirid);
1168	if (!dir) {
1169		iput(inode);
1170		return -EIO;
1171	}
 
1172	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1173
1174	/* FIXME, put inode into FIXUP list */
1175
1176	iput(inode);
1177	iput(dir);
1178	return ret;
1179}
1180
1181/*
1182 * take a single entry in a log directory item and replay it into
1183 * the subvolume.
1184 *
1185 * if a conflicting item exists in the subdirectory already,
1186 * the inode it points to is unlinked and put into the link count
1187 * fix up tree.
1188 *
1189 * If a name from the log points to a file or directory that does
1190 * not exist in the FS, it is skipped.  fsyncs on directories
1191 * do not force down inodes inside that directory, just changes to the
1192 * names or unlinks in a directory.
1193 */
1194static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1195				    struct btrfs_root *root,
1196				    struct btrfs_path *path,
1197				    struct extent_buffer *eb,
1198				    struct btrfs_dir_item *di,
1199				    struct btrfs_key *key)
1200{
1201	char *name;
1202	int name_len;
1203	struct btrfs_dir_item *dst_di;
1204	struct btrfs_key found_key;
1205	struct btrfs_key log_key;
1206	struct inode *dir;
1207	u8 log_type;
1208	int exists;
1209	int ret;
 
1210
1211	dir = read_one_inode(root, key->objectid);
1212	if (!dir)
1213		return -EIO;
1214
1215	name_len = btrfs_dir_name_len(eb, di);
1216	name = kmalloc(name_len, GFP_NOFS);
1217	if (!name)
1218		return -ENOMEM;
 
 
1219
1220	log_type = btrfs_dir_type(eb, di);
1221	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1222		   name_len);
1223
1224	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1225	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1226	if (exists == 0)
1227		exists = 1;
1228	else
1229		exists = 0;
1230	btrfs_release_path(path);
1231
1232	if (key->type == BTRFS_DIR_ITEM_KEY) {
1233		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1234				       name, name_len, 1);
1235	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1236		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1237						     key->objectid,
1238						     key->offset, name,
1239						     name_len, 1);
1240	} else {
1241		BUG();
 
 
1242	}
1243	if (IS_ERR_OR_NULL(dst_di)) {
1244		/* we need a sequence number to insert, so we only
1245		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1246		 */
1247		if (key->type != BTRFS_DIR_INDEX_KEY)
1248			goto out;
1249		goto insert;
1250	}
1251
1252	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1253	/* the existing item matches the logged item */
1254	if (found_key.objectid == log_key.objectid &&
1255	    found_key.type == log_key.type &&
1256	    found_key.offset == log_key.offset &&
1257	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1258		goto out;
1259	}
1260
1261	/*
1262	 * don't drop the conflicting directory entry if the inode
1263	 * for the new entry doesn't exist
1264	 */
1265	if (!exists)
1266		goto out;
1267
1268	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1269	BUG_ON(ret);
 
1270
1271	if (key->type == BTRFS_DIR_INDEX_KEY)
1272		goto insert;
1273out:
1274	btrfs_release_path(path);
 
 
 
 
1275	kfree(name);
1276	iput(dir);
1277	return 0;
1278
1279insert:
1280	btrfs_release_path(path);
1281	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1282			      name, name_len, log_type, &log_key);
1283
1284	BUG_ON(ret && ret != -ENOENT);
 
 
1285	goto out;
1286}
1287
1288/*
1289 * find all the names in a directory item and reconcile them into
1290 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1291 * one name in a directory item, but the same code gets used for
1292 * both directory index types
1293 */
1294static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1295					struct btrfs_root *root,
1296					struct btrfs_path *path,
1297					struct extent_buffer *eb, int slot,
1298					struct btrfs_key *key)
1299{
1300	int ret;
1301	u32 item_size = btrfs_item_size_nr(eb, slot);
1302	struct btrfs_dir_item *di;
1303	int name_len;
1304	unsigned long ptr;
1305	unsigned long ptr_end;
1306
1307	ptr = btrfs_item_ptr_offset(eb, slot);
1308	ptr_end = ptr + item_size;
1309	while (ptr < ptr_end) {
1310		di = (struct btrfs_dir_item *)ptr;
1311		if (verify_dir_item(root, eb, di))
1312			return -EIO;
1313		name_len = btrfs_dir_name_len(eb, di);
1314		ret = replay_one_name(trans, root, path, eb, di, key);
1315		BUG_ON(ret);
 
1316		ptr = (unsigned long)(di + 1);
1317		ptr += name_len;
1318	}
1319	return 0;
1320}
1321
1322/*
1323 * directory replay has two parts.  There are the standard directory
1324 * items in the log copied from the subvolume, and range items
1325 * created in the log while the subvolume was logged.
1326 *
1327 * The range items tell us which parts of the key space the log
1328 * is authoritative for.  During replay, if a key in the subvolume
1329 * directory is in a logged range item, but not actually in the log
1330 * that means it was deleted from the directory before the fsync
1331 * and should be removed.
1332 */
1333static noinline int find_dir_range(struct btrfs_root *root,
1334				   struct btrfs_path *path,
1335				   u64 dirid, int key_type,
1336				   u64 *start_ret, u64 *end_ret)
1337{
1338	struct btrfs_key key;
1339	u64 found_end;
1340	struct btrfs_dir_log_item *item;
1341	int ret;
1342	int nritems;
1343
1344	if (*start_ret == (u64)-1)
1345		return 1;
1346
1347	key.objectid = dirid;
1348	key.type = key_type;
1349	key.offset = *start_ret;
1350
1351	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1352	if (ret < 0)
1353		goto out;
1354	if (ret > 0) {
1355		if (path->slots[0] == 0)
1356			goto out;
1357		path->slots[0]--;
1358	}
1359	if (ret != 0)
1360		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1361
1362	if (key.type != key_type || key.objectid != dirid) {
1363		ret = 1;
1364		goto next;
1365	}
1366	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1367			      struct btrfs_dir_log_item);
1368	found_end = btrfs_dir_log_end(path->nodes[0], item);
1369
1370	if (*start_ret >= key.offset && *start_ret <= found_end) {
1371		ret = 0;
1372		*start_ret = key.offset;
1373		*end_ret = found_end;
1374		goto out;
1375	}
1376	ret = 1;
1377next:
1378	/* check the next slot in the tree to see if it is a valid item */
1379	nritems = btrfs_header_nritems(path->nodes[0]);
1380	if (path->slots[0] >= nritems) {
1381		ret = btrfs_next_leaf(root, path);
1382		if (ret)
1383			goto out;
1384	} else {
1385		path->slots[0]++;
1386	}
1387
1388	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1389
1390	if (key.type != key_type || key.objectid != dirid) {
1391		ret = 1;
1392		goto out;
1393	}
1394	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1395			      struct btrfs_dir_log_item);
1396	found_end = btrfs_dir_log_end(path->nodes[0], item);
1397	*start_ret = key.offset;
1398	*end_ret = found_end;
1399	ret = 0;
1400out:
1401	btrfs_release_path(path);
1402	return ret;
1403}
1404
1405/*
1406 * this looks for a given directory item in the log.  If the directory
1407 * item is not in the log, the item is removed and the inode it points
1408 * to is unlinked
1409 */
1410static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1411				      struct btrfs_root *root,
1412				      struct btrfs_root *log,
1413				      struct btrfs_path *path,
1414				      struct btrfs_path *log_path,
1415				      struct inode *dir,
1416				      struct btrfs_key *dir_key)
1417{
1418	int ret;
1419	struct extent_buffer *eb;
1420	int slot;
1421	u32 item_size;
1422	struct btrfs_dir_item *di;
1423	struct btrfs_dir_item *log_di;
1424	int name_len;
1425	unsigned long ptr;
1426	unsigned long ptr_end;
1427	char *name;
1428	struct inode *inode;
1429	struct btrfs_key location;
1430
1431again:
1432	eb = path->nodes[0];
1433	slot = path->slots[0];
1434	item_size = btrfs_item_size_nr(eb, slot);
1435	ptr = btrfs_item_ptr_offset(eb, slot);
1436	ptr_end = ptr + item_size;
1437	while (ptr < ptr_end) {
1438		di = (struct btrfs_dir_item *)ptr;
1439		if (verify_dir_item(root, eb, di)) {
1440			ret = -EIO;
1441			goto out;
1442		}
1443
1444		name_len = btrfs_dir_name_len(eb, di);
1445		name = kmalloc(name_len, GFP_NOFS);
1446		if (!name) {
1447			ret = -ENOMEM;
1448			goto out;
1449		}
1450		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1451				  name_len);
1452		log_di = NULL;
1453		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1454			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1455						       dir_key->objectid,
1456						       name, name_len, 0);
1457		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1458			log_di = btrfs_lookup_dir_index_item(trans, log,
1459						     log_path,
1460						     dir_key->objectid,
1461						     dir_key->offset,
1462						     name, name_len, 0);
1463		}
1464		if (IS_ERR_OR_NULL(log_di)) {
1465			btrfs_dir_item_key_to_cpu(eb, di, &location);
1466			btrfs_release_path(path);
1467			btrfs_release_path(log_path);
1468			inode = read_one_inode(root, location.objectid);
1469			if (!inode) {
1470				kfree(name);
1471				return -EIO;
1472			}
1473
1474			ret = link_to_fixup_dir(trans, root,
1475						path, location.objectid);
1476			BUG_ON(ret);
1477			btrfs_inc_nlink(inode);
 
 
 
 
 
1478			ret = btrfs_unlink_inode(trans, root, dir, inode,
1479						 name, name_len);
1480			BUG_ON(ret);
1481
1482			btrfs_run_delayed_items(trans, root);
1483
1484			kfree(name);
1485			iput(inode);
 
 
1486
1487			/* there might still be more names under this key
1488			 * check and repeat if required
1489			 */
1490			ret = btrfs_search_slot(NULL, root, dir_key, path,
1491						0, 0);
1492			if (ret == 0)
1493				goto again;
1494			ret = 0;
1495			goto out;
 
 
 
1496		}
1497		btrfs_release_path(log_path);
1498		kfree(name);
1499
1500		ptr = (unsigned long)(di + 1);
1501		ptr += name_len;
1502	}
1503	ret = 0;
1504out:
1505	btrfs_release_path(path);
1506	btrfs_release_path(log_path);
1507	return ret;
1508}
1509
1510/*
1511 * deletion replay happens before we copy any new directory items
1512 * out of the log or out of backreferences from inodes.  It
1513 * scans the log to find ranges of keys that log is authoritative for,
1514 * and then scans the directory to find items in those ranges that are
1515 * not present in the log.
1516 *
1517 * Anything we don't find in the log is unlinked and removed from the
1518 * directory.
1519 */
1520static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1521				       struct btrfs_root *root,
1522				       struct btrfs_root *log,
1523				       struct btrfs_path *path,
1524				       u64 dirid, int del_all)
1525{
1526	u64 range_start;
1527	u64 range_end;
1528	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1529	int ret = 0;
1530	struct btrfs_key dir_key;
1531	struct btrfs_key found_key;
1532	struct btrfs_path *log_path;
1533	struct inode *dir;
1534
1535	dir_key.objectid = dirid;
1536	dir_key.type = BTRFS_DIR_ITEM_KEY;
1537	log_path = btrfs_alloc_path();
1538	if (!log_path)
1539		return -ENOMEM;
1540
1541	dir = read_one_inode(root, dirid);
1542	/* it isn't an error if the inode isn't there, that can happen
1543	 * because we replay the deletes before we copy in the inode item
1544	 * from the log
1545	 */
1546	if (!dir) {
1547		btrfs_free_path(log_path);
1548		return 0;
1549	}
1550again:
1551	range_start = 0;
1552	range_end = 0;
1553	while (1) {
1554		if (del_all)
1555			range_end = (u64)-1;
1556		else {
1557			ret = find_dir_range(log, path, dirid, key_type,
1558					     &range_start, &range_end);
1559			if (ret != 0)
1560				break;
1561		}
1562
1563		dir_key.offset = range_start;
1564		while (1) {
1565			int nritems;
1566			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1567						0, 0);
1568			if (ret < 0)
1569				goto out;
1570
1571			nritems = btrfs_header_nritems(path->nodes[0]);
1572			if (path->slots[0] >= nritems) {
1573				ret = btrfs_next_leaf(root, path);
1574				if (ret)
1575					break;
1576			}
1577			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1578					      path->slots[0]);
1579			if (found_key.objectid != dirid ||
1580			    found_key.type != dir_key.type)
1581				goto next_type;
1582
1583			if (found_key.offset > range_end)
1584				break;
1585
1586			ret = check_item_in_log(trans, root, log, path,
1587						log_path, dir,
1588						&found_key);
1589			BUG_ON(ret);
 
1590			if (found_key.offset == (u64)-1)
1591				break;
1592			dir_key.offset = found_key.offset + 1;
1593		}
1594		btrfs_release_path(path);
1595		if (range_end == (u64)-1)
1596			break;
1597		range_start = range_end + 1;
1598	}
1599
1600next_type:
1601	ret = 0;
1602	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1603		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1604		dir_key.type = BTRFS_DIR_INDEX_KEY;
1605		btrfs_release_path(path);
1606		goto again;
1607	}
1608out:
1609	btrfs_release_path(path);
1610	btrfs_free_path(log_path);
1611	iput(dir);
1612	return ret;
1613}
1614
1615/*
1616 * the process_func used to replay items from the log tree.  This
1617 * gets called in two different stages.  The first stage just looks
1618 * for inodes and makes sure they are all copied into the subvolume.
1619 *
1620 * The second stage copies all the other item types from the log into
1621 * the subvolume.  The two stage approach is slower, but gets rid of
1622 * lots of complexity around inodes referencing other inodes that exist
1623 * only in the log (references come from either directory items or inode
1624 * back refs).
1625 */
1626static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1627			     struct walk_control *wc, u64 gen)
1628{
1629	int nritems;
1630	struct btrfs_path *path;
1631	struct btrfs_root *root = wc->replay_dest;
1632	struct btrfs_key key;
1633	int level;
1634	int i;
1635	int ret;
1636
1637	ret = btrfs_read_buffer(eb, gen);
1638	if (ret)
1639		return ret;
1640
1641	level = btrfs_header_level(eb);
1642
1643	if (level != 0)
1644		return 0;
1645
1646	path = btrfs_alloc_path();
1647	if (!path)
1648		return -ENOMEM;
1649
1650	nritems = btrfs_header_nritems(eb);
1651	for (i = 0; i < nritems; i++) {
1652		btrfs_item_key_to_cpu(eb, &key, i);
1653
1654		/* inode keys are done during the first stage */
1655		if (key.type == BTRFS_INODE_ITEM_KEY &&
1656		    wc->stage == LOG_WALK_REPLAY_INODES) {
1657			struct btrfs_inode_item *inode_item;
1658			u32 mode;
1659
1660			inode_item = btrfs_item_ptr(eb, i,
1661					    struct btrfs_inode_item);
1662			mode = btrfs_inode_mode(eb, inode_item);
1663			if (S_ISDIR(mode)) {
1664				ret = replay_dir_deletes(wc->trans,
1665					 root, log, path, key.objectid, 0);
1666				BUG_ON(ret);
 
1667			}
1668			ret = overwrite_item(wc->trans, root, path,
1669					     eb, i, &key);
1670			BUG_ON(ret);
 
1671
1672			/* for regular files, make sure corresponding
1673			 * orhpan item exist. extents past the new EOF
1674			 * will be truncated later by orphan cleanup.
1675			 */
1676			if (S_ISREG(mode)) {
1677				ret = insert_orphan_item(wc->trans, root,
1678							 key.objectid);
1679				BUG_ON(ret);
 
1680			}
1681
1682			ret = link_to_fixup_dir(wc->trans, root,
1683						path, key.objectid);
1684			BUG_ON(ret);
 
 
 
 
 
 
 
 
 
1685		}
 
1686		if (wc->stage < LOG_WALK_REPLAY_ALL)
1687			continue;
1688
1689		/* these keys are simply copied */
1690		if (key.type == BTRFS_XATTR_ITEM_KEY) {
1691			ret = overwrite_item(wc->trans, root, path,
1692					     eb, i, &key);
1693			BUG_ON(ret);
1694		} else if (key.type == BTRFS_INODE_REF_KEY) {
 
 
1695			ret = add_inode_ref(wc->trans, root, log, path,
1696					    eb, i, &key);
1697			BUG_ON(ret && ret != -ENOENT);
 
 
1698		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1699			ret = replay_one_extent(wc->trans, root, path,
1700						eb, i, &key);
1701			BUG_ON(ret);
1702		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
1703			   key.type == BTRFS_DIR_INDEX_KEY) {
1704			ret = replay_one_dir_item(wc->trans, root, path,
1705						  eb, i, &key);
1706			BUG_ON(ret);
 
1707		}
1708	}
1709	btrfs_free_path(path);
1710	return 0;
1711}
1712
1713static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1714				   struct btrfs_root *root,
1715				   struct btrfs_path *path, int *level,
1716				   struct walk_control *wc)
1717{
1718	u64 root_owner;
1719	u64 bytenr;
1720	u64 ptr_gen;
1721	struct extent_buffer *next;
1722	struct extent_buffer *cur;
1723	struct extent_buffer *parent;
1724	u32 blocksize;
1725	int ret = 0;
1726
1727	WARN_ON(*level < 0);
1728	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1729
1730	while (*level > 0) {
1731		WARN_ON(*level < 0);
1732		WARN_ON(*level >= BTRFS_MAX_LEVEL);
1733		cur = path->nodes[*level];
1734
1735		if (btrfs_header_level(cur) != *level)
1736			WARN_ON(1);
1737
1738		if (path->slots[*level] >=
1739		    btrfs_header_nritems(cur))
1740			break;
1741
1742		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1743		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1744		blocksize = btrfs_level_size(root, *level - 1);
1745
1746		parent = path->nodes[*level];
1747		root_owner = btrfs_header_owner(parent);
1748
1749		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1750		if (!next)
1751			return -ENOMEM;
1752
1753		if (*level == 1) {
1754			ret = wc->process_func(root, next, wc, ptr_gen);
1755			if (ret)
 
1756				return ret;
 
1757
1758			path->slots[*level]++;
1759			if (wc->free) {
1760				ret = btrfs_read_buffer(next, ptr_gen);
1761				if (ret) {
1762					free_extent_buffer(next);
1763					return ret;
1764				}
1765
1766				btrfs_tree_lock(next);
1767				btrfs_set_lock_blocking(next);
1768				clean_tree_block(trans, root, next);
1769				btrfs_wait_tree_block_writeback(next);
1770				btrfs_tree_unlock(next);
 
 
1771
1772				WARN_ON(root_owner !=
1773					BTRFS_TREE_LOG_OBJECTID);
1774				ret = btrfs_free_and_pin_reserved_extent(root,
1775							 bytenr, blocksize);
1776				BUG_ON(ret); /* -ENOMEM or logic errors */
 
 
 
1777			}
1778			free_extent_buffer(next);
1779			continue;
1780		}
1781		ret = btrfs_read_buffer(next, ptr_gen);
1782		if (ret) {
1783			free_extent_buffer(next);
1784			return ret;
1785		}
1786
1787		WARN_ON(*level <= 0);
1788		if (path->nodes[*level-1])
1789			free_extent_buffer(path->nodes[*level-1]);
1790		path->nodes[*level-1] = next;
1791		*level = btrfs_header_level(next);
1792		path->slots[*level] = 0;
1793		cond_resched();
1794	}
1795	WARN_ON(*level < 0);
1796	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1797
1798	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1799
1800	cond_resched();
1801	return 0;
1802}
1803
1804static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1805				 struct btrfs_root *root,
1806				 struct btrfs_path *path, int *level,
1807				 struct walk_control *wc)
1808{
1809	u64 root_owner;
1810	int i;
1811	int slot;
1812	int ret;
1813
1814	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1815		slot = path->slots[i];
1816		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1817			path->slots[i]++;
1818			*level = i;
1819			WARN_ON(*level == 0);
1820			return 0;
1821		} else {
1822			struct extent_buffer *parent;
1823			if (path->nodes[*level] == root->node)
1824				parent = path->nodes[*level];
1825			else
1826				parent = path->nodes[*level + 1];
1827
1828			root_owner = btrfs_header_owner(parent);
1829			ret = wc->process_func(root, path->nodes[*level], wc,
1830				 btrfs_header_generation(path->nodes[*level]));
1831			if (ret)
1832				return ret;
1833
1834			if (wc->free) {
1835				struct extent_buffer *next;
1836
1837				next = path->nodes[*level];
1838
1839				btrfs_tree_lock(next);
1840				btrfs_set_lock_blocking(next);
1841				clean_tree_block(trans, root, next);
1842				btrfs_wait_tree_block_writeback(next);
1843				btrfs_tree_unlock(next);
 
 
1844
1845				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1846				ret = btrfs_free_and_pin_reserved_extent(root,
1847						path->nodes[*level]->start,
1848						path->nodes[*level]->len);
1849				BUG_ON(ret);
 
1850			}
1851			free_extent_buffer(path->nodes[*level]);
1852			path->nodes[*level] = NULL;
1853			*level = i + 1;
1854		}
1855	}
1856	return 1;
1857}
1858
1859/*
1860 * drop the reference count on the tree rooted at 'snap'.  This traverses
1861 * the tree freeing any blocks that have a ref count of zero after being
1862 * decremented.
1863 */
1864static int walk_log_tree(struct btrfs_trans_handle *trans,
1865			 struct btrfs_root *log, struct walk_control *wc)
1866{
1867	int ret = 0;
1868	int wret;
1869	int level;
1870	struct btrfs_path *path;
1871	int i;
1872	int orig_level;
1873
1874	path = btrfs_alloc_path();
1875	if (!path)
1876		return -ENOMEM;
1877
1878	level = btrfs_header_level(log->node);
1879	orig_level = level;
1880	path->nodes[level] = log->node;
1881	extent_buffer_get(log->node);
1882	path->slots[level] = 0;
1883
1884	while (1) {
1885		wret = walk_down_log_tree(trans, log, path, &level, wc);
1886		if (wret > 0)
1887			break;
1888		if (wret < 0) {
1889			ret = wret;
1890			goto out;
1891		}
1892
1893		wret = walk_up_log_tree(trans, log, path, &level, wc);
1894		if (wret > 0)
1895			break;
1896		if (wret < 0) {
1897			ret = wret;
1898			goto out;
1899		}
1900	}
1901
1902	/* was the root node processed? if not, catch it here */
1903	if (path->nodes[orig_level]) {
1904		ret = wc->process_func(log, path->nodes[orig_level], wc,
1905			 btrfs_header_generation(path->nodes[orig_level]));
1906		if (ret)
1907			goto out;
1908		if (wc->free) {
1909			struct extent_buffer *next;
1910
1911			next = path->nodes[orig_level];
1912
1913			btrfs_tree_lock(next);
1914			btrfs_set_lock_blocking(next);
1915			clean_tree_block(trans, log, next);
1916			btrfs_wait_tree_block_writeback(next);
1917			btrfs_tree_unlock(next);
 
 
1918
1919			WARN_ON(log->root_key.objectid !=
1920				BTRFS_TREE_LOG_OBJECTID);
1921			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
1922							 next->len);
1923			BUG_ON(ret); /* -ENOMEM or logic errors */
 
1924		}
1925	}
1926
1927out:
1928	for (i = 0; i <= orig_level; i++) {
1929		if (path->nodes[i]) {
1930			free_extent_buffer(path->nodes[i]);
1931			path->nodes[i] = NULL;
1932		}
1933	}
1934	btrfs_free_path(path);
1935	return ret;
1936}
1937
1938/*
1939 * helper function to update the item for a given subvolumes log root
1940 * in the tree of log roots
1941 */
1942static int update_log_root(struct btrfs_trans_handle *trans,
1943			   struct btrfs_root *log)
1944{
1945	int ret;
1946
1947	if (log->log_transid == 1) {
1948		/* insert root item on the first sync */
1949		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1950				&log->root_key, &log->root_item);
1951	} else {
1952		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1953				&log->root_key, &log->root_item);
1954	}
1955	return ret;
1956}
1957
1958static int wait_log_commit(struct btrfs_trans_handle *trans,
1959			   struct btrfs_root *root, unsigned long transid)
1960{
1961	DEFINE_WAIT(wait);
1962	int index = transid % 2;
1963
1964	/*
1965	 * we only allow two pending log transactions at a time,
1966	 * so we know that if ours is more than 2 older than the
1967	 * current transaction, we're done
1968	 */
1969	do {
1970		prepare_to_wait(&root->log_commit_wait[index],
1971				&wait, TASK_UNINTERRUPTIBLE);
1972		mutex_unlock(&root->log_mutex);
1973
1974		if (root->fs_info->last_trans_log_full_commit !=
1975		    trans->transid && root->log_transid < transid + 2 &&
1976		    atomic_read(&root->log_commit[index]))
1977			schedule();
1978
1979		finish_wait(&root->log_commit_wait[index], &wait);
1980		mutex_lock(&root->log_mutex);
1981	} while (root->fs_info->last_trans_log_full_commit !=
1982		 trans->transid && root->log_transid < transid + 2 &&
1983		 atomic_read(&root->log_commit[index]));
1984	return 0;
1985}
1986
1987static void wait_for_writer(struct btrfs_trans_handle *trans,
1988			    struct btrfs_root *root)
1989{
1990	DEFINE_WAIT(wait);
1991	while (root->fs_info->last_trans_log_full_commit !=
1992	       trans->transid && atomic_read(&root->log_writers)) {
1993		prepare_to_wait(&root->log_writer_wait,
1994				&wait, TASK_UNINTERRUPTIBLE);
1995		mutex_unlock(&root->log_mutex);
1996		if (root->fs_info->last_trans_log_full_commit !=
1997		    trans->transid && atomic_read(&root->log_writers))
1998			schedule();
1999		mutex_lock(&root->log_mutex);
2000		finish_wait(&root->log_writer_wait, &wait);
2001	}
2002}
2003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2004/*
2005 * btrfs_sync_log does sends a given tree log down to the disk and
2006 * updates the super blocks to record it.  When this call is done,
2007 * you know that any inodes previously logged are safely on disk only
2008 * if it returns 0.
2009 *
2010 * Any other return value means you need to call btrfs_commit_transaction.
2011 * Some of the edge cases for fsyncing directories that have had unlinks
2012 * or renames done in the past mean that sometimes the only safe
2013 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2014 * that has happened.
2015 */
2016int btrfs_sync_log(struct btrfs_trans_handle *trans,
2017		   struct btrfs_root *root)
2018{
2019	int index1;
2020	int index2;
2021	int mark;
2022	int ret;
2023	struct btrfs_root *log = root->log_root;
2024	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2025	unsigned long log_transid = 0;
 
 
2026
2027	mutex_lock(&root->log_mutex);
2028	index1 = root->log_transid % 2;
 
 
 
 
 
 
2029	if (atomic_read(&root->log_commit[index1])) {
2030		wait_log_commit(trans, root, root->log_transid);
2031		mutex_unlock(&root->log_mutex);
2032		return 0;
2033	}
 
2034	atomic_set(&root->log_commit[index1], 1);
2035
2036	/* wait for previous tree log sync to complete */
2037	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2038		wait_log_commit(trans, root, root->log_transid - 1);
 
2039	while (1) {
2040		unsigned long batch = root->log_batch;
2041		/* when we're on an ssd, just kick the log commit out */
2042		if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2043			mutex_unlock(&root->log_mutex);
2044			schedule_timeout_uninterruptible(1);
2045			mutex_lock(&root->log_mutex);
2046		}
2047		wait_for_writer(trans, root);
2048		if (batch == root->log_batch)
2049			break;
2050	}
2051
2052	/* bail out if we need to do a full commit */
2053	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
 
2054		ret = -EAGAIN;
 
2055		mutex_unlock(&root->log_mutex);
2056		goto out;
2057	}
2058
2059	log_transid = root->log_transid;
2060	if (log_transid % 2 == 0)
2061		mark = EXTENT_DIRTY;
2062	else
2063		mark = EXTENT_NEW;
2064
2065	/* we start IO on  all the marked extents here, but we don't actually
2066	 * wait for them until later.
2067	 */
 
2068	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2069	if (ret) {
 
2070		btrfs_abort_transaction(trans, root, ret);
 
 
 
2071		mutex_unlock(&root->log_mutex);
2072		goto out;
2073	}
2074
2075	btrfs_set_root_node(&log->root_item, log->node);
2076
2077	root->log_batch = 0;
2078	root->log_transid++;
2079	log->log_transid = root->log_transid;
2080	root->log_start_pid = 0;
2081	smp_mb();
2082	/*
2083	 * IO has been started, blocks of the log tree have WRITTEN flag set
2084	 * in their headers. new modifications of the log will be written to
2085	 * new positions. so it's safe to allow log writers to go in.
2086	 */
2087	mutex_unlock(&root->log_mutex);
2088
 
 
2089	mutex_lock(&log_root_tree->log_mutex);
2090	log_root_tree->log_batch++;
2091	atomic_inc(&log_root_tree->log_writers);
 
 
 
 
 
2092	mutex_unlock(&log_root_tree->log_mutex);
2093
2094	ret = update_log_root(trans, log);
2095
2096	mutex_lock(&log_root_tree->log_mutex);
2097	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2098		smp_mb();
2099		if (waitqueue_active(&log_root_tree->log_writer_wait))
2100			wake_up(&log_root_tree->log_writer_wait);
2101	}
2102
2103	if (ret) {
 
 
 
 
 
 
2104		if (ret != -ENOSPC) {
2105			btrfs_abort_transaction(trans, root, ret);
2106			mutex_unlock(&log_root_tree->log_mutex);
2107			goto out;
2108		}
2109		root->fs_info->last_trans_log_full_commit = trans->transid;
2110		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
 
2111		mutex_unlock(&log_root_tree->log_mutex);
2112		ret = -EAGAIN;
2113		goto out;
2114	}
2115
2116	index2 = log_root_tree->log_transid % 2;
 
 
 
 
 
 
2117	if (atomic_read(&log_root_tree->log_commit[index2])) {
 
2118		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2119		wait_log_commit(trans, log_root_tree,
2120				log_root_tree->log_transid);
 
2121		mutex_unlock(&log_root_tree->log_mutex);
2122		ret = 0;
2123		goto out;
2124	}
 
2125	atomic_set(&log_root_tree->log_commit[index2], 1);
2126
2127	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2128		wait_log_commit(trans, log_root_tree,
2129				log_root_tree->log_transid - 1);
2130	}
2131
2132	wait_for_writer(trans, log_root_tree);
2133
2134	/*
2135	 * now that we've moved on to the tree of log tree roots,
2136	 * check the full commit flag again
2137	 */
2138	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
 
 
2139		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
 
2140		mutex_unlock(&log_root_tree->log_mutex);
2141		ret = -EAGAIN;
2142		goto out_wake_log_root;
2143	}
2144
2145	ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2146				&log_root_tree->dirty_log_pages,
2147				EXTENT_DIRTY | EXTENT_NEW);
 
2148	if (ret) {
 
 
2149		btrfs_abort_transaction(trans, root, ret);
 
2150		mutex_unlock(&log_root_tree->log_mutex);
2151		goto out_wake_log_root;
2152	}
2153	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
 
 
 
 
2154
2155	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2156				log_root_tree->node->start);
2157	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2158				btrfs_header_level(log_root_tree->node));
2159
2160	log_root_tree->log_batch = 0;
2161	log_root_tree->log_transid++;
2162	smp_mb();
2163
2164	mutex_unlock(&log_root_tree->log_mutex);
2165
2166	/*
2167	 * nobody else is going to jump in and write the the ctree
2168	 * super here because the log_commit atomic below is protecting
2169	 * us.  We must be called with a transaction handle pinning
2170	 * the running transaction open, so a full commit can't hop
2171	 * in and cause problems either.
2172	 */
2173	btrfs_scrub_pause_super(root);
2174	write_ctree_super(trans, root->fs_info->tree_root, 1);
2175	btrfs_scrub_continue_super(root);
2176	ret = 0;
 
 
 
2177
2178	mutex_lock(&root->log_mutex);
2179	if (root->last_log_commit < log_transid)
2180		root->last_log_commit = log_transid;
2181	mutex_unlock(&root->log_mutex);
2182
2183out_wake_log_root:
 
 
 
 
 
 
 
 
2184	atomic_set(&log_root_tree->log_commit[index2], 0);
2185	smp_mb();
 
2186	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2187		wake_up(&log_root_tree->log_commit_wait[index2]);
2188out:
 
 
 
 
 
2189	atomic_set(&root->log_commit[index1], 0);
2190	smp_mb();
 
2191	if (waitqueue_active(&root->log_commit_wait[index1]))
2192		wake_up(&root->log_commit_wait[index1]);
2193	return ret;
2194}
2195
2196static void free_log_tree(struct btrfs_trans_handle *trans,
2197			  struct btrfs_root *log)
2198{
2199	int ret;
2200	u64 start;
2201	u64 end;
2202	struct walk_control wc = {
2203		.free = 1,
2204		.process_func = process_one_buffer
2205	};
2206
2207	ret = walk_log_tree(trans, log, &wc);
2208	BUG_ON(ret);
 
 
2209
2210	while (1) {
2211		ret = find_first_extent_bit(&log->dirty_log_pages,
2212				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
 
2213		if (ret)
2214			break;
2215
2216		clear_extent_bits(&log->dirty_log_pages, start, end,
2217				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2218	}
2219
 
 
 
 
 
 
 
 
2220	free_extent_buffer(log->node);
2221	kfree(log);
2222}
2223
2224/*
2225 * free all the extents used by the tree log.  This should be called
2226 * at commit time of the full transaction
2227 */
2228int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2229{
2230	if (root->log_root) {
2231		free_log_tree(trans, root->log_root);
2232		root->log_root = NULL;
2233	}
2234	return 0;
2235}
2236
2237int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2238			     struct btrfs_fs_info *fs_info)
2239{
2240	if (fs_info->log_root_tree) {
2241		free_log_tree(trans, fs_info->log_root_tree);
2242		fs_info->log_root_tree = NULL;
2243	}
2244	return 0;
2245}
2246
2247/*
2248 * If both a file and directory are logged, and unlinks or renames are
2249 * mixed in, we have a few interesting corners:
2250 *
2251 * create file X in dir Y
2252 * link file X to X.link in dir Y
2253 * fsync file X
2254 * unlink file X but leave X.link
2255 * fsync dir Y
2256 *
2257 * After a crash we would expect only X.link to exist.  But file X
2258 * didn't get fsync'd again so the log has back refs for X and X.link.
2259 *
2260 * We solve this by removing directory entries and inode backrefs from the
2261 * log when a file that was logged in the current transaction is
2262 * unlinked.  Any later fsync will include the updated log entries, and
2263 * we'll be able to reconstruct the proper directory items from backrefs.
2264 *
2265 * This optimizations allows us to avoid relogging the entire inode
2266 * or the entire directory.
2267 */
2268int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2269				 struct btrfs_root *root,
2270				 const char *name, int name_len,
2271				 struct inode *dir, u64 index)
2272{
2273	struct btrfs_root *log;
2274	struct btrfs_dir_item *di;
2275	struct btrfs_path *path;
2276	int ret;
2277	int err = 0;
2278	int bytes_del = 0;
2279	u64 dir_ino = btrfs_ino(dir);
2280
2281	if (BTRFS_I(dir)->logged_trans < trans->transid)
2282		return 0;
2283
2284	ret = join_running_log_trans(root);
2285	if (ret)
2286		return 0;
2287
2288	mutex_lock(&BTRFS_I(dir)->log_mutex);
2289
2290	log = root->log_root;
2291	path = btrfs_alloc_path();
2292	if (!path) {
2293		err = -ENOMEM;
2294		goto out_unlock;
2295	}
2296
2297	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2298				   name, name_len, -1);
2299	if (IS_ERR(di)) {
2300		err = PTR_ERR(di);
2301		goto fail;
2302	}
2303	if (di) {
2304		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2305		bytes_del += name_len;
2306		BUG_ON(ret);
 
 
 
2307	}
2308	btrfs_release_path(path);
2309	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2310					 index, name, name_len, -1);
2311	if (IS_ERR(di)) {
2312		err = PTR_ERR(di);
2313		goto fail;
2314	}
2315	if (di) {
2316		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2317		bytes_del += name_len;
2318		BUG_ON(ret);
 
 
 
2319	}
2320
2321	/* update the directory size in the log to reflect the names
2322	 * we have removed
2323	 */
2324	if (bytes_del) {
2325		struct btrfs_key key;
2326
2327		key.objectid = dir_ino;
2328		key.offset = 0;
2329		key.type = BTRFS_INODE_ITEM_KEY;
2330		btrfs_release_path(path);
2331
2332		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2333		if (ret < 0) {
2334			err = ret;
2335			goto fail;
2336		}
2337		if (ret == 0) {
2338			struct btrfs_inode_item *item;
2339			u64 i_size;
2340
2341			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2342					      struct btrfs_inode_item);
2343			i_size = btrfs_inode_size(path->nodes[0], item);
2344			if (i_size > bytes_del)
2345				i_size -= bytes_del;
2346			else
2347				i_size = 0;
2348			btrfs_set_inode_size(path->nodes[0], item, i_size);
2349			btrfs_mark_buffer_dirty(path->nodes[0]);
2350		} else
2351			ret = 0;
2352		btrfs_release_path(path);
2353	}
2354fail:
2355	btrfs_free_path(path);
2356out_unlock:
2357	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2358	if (ret == -ENOSPC) {
2359		root->fs_info->last_trans_log_full_commit = trans->transid;
2360		ret = 0;
2361	} else if (ret < 0)
2362		btrfs_abort_transaction(trans, root, ret);
2363
2364	btrfs_end_log_trans(root);
2365
2366	return err;
2367}
2368
2369/* see comments for btrfs_del_dir_entries_in_log */
2370int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2371			       struct btrfs_root *root,
2372			       const char *name, int name_len,
2373			       struct inode *inode, u64 dirid)
2374{
2375	struct btrfs_root *log;
2376	u64 index;
2377	int ret;
2378
2379	if (BTRFS_I(inode)->logged_trans < trans->transid)
2380		return 0;
2381
2382	ret = join_running_log_trans(root);
2383	if (ret)
2384		return 0;
2385	log = root->log_root;
2386	mutex_lock(&BTRFS_I(inode)->log_mutex);
2387
2388	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2389				  dirid, &index);
2390	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2391	if (ret == -ENOSPC) {
2392		root->fs_info->last_trans_log_full_commit = trans->transid;
2393		ret = 0;
2394	} else if (ret < 0 && ret != -ENOENT)
2395		btrfs_abort_transaction(trans, root, ret);
2396	btrfs_end_log_trans(root);
2397
2398	return ret;
2399}
2400
2401/*
2402 * creates a range item in the log for 'dirid'.  first_offset and
2403 * last_offset tell us which parts of the key space the log should
2404 * be considered authoritative for.
2405 */
2406static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2407				       struct btrfs_root *log,
2408				       struct btrfs_path *path,
2409				       int key_type, u64 dirid,
2410				       u64 first_offset, u64 last_offset)
2411{
2412	int ret;
2413	struct btrfs_key key;
2414	struct btrfs_dir_log_item *item;
2415
2416	key.objectid = dirid;
2417	key.offset = first_offset;
2418	if (key_type == BTRFS_DIR_ITEM_KEY)
2419		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2420	else
2421		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2422	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2423	if (ret)
2424		return ret;
2425
2426	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2427			      struct btrfs_dir_log_item);
2428	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2429	btrfs_mark_buffer_dirty(path->nodes[0]);
2430	btrfs_release_path(path);
2431	return 0;
2432}
2433
2434/*
2435 * log all the items included in the current transaction for a given
2436 * directory.  This also creates the range items in the log tree required
2437 * to replay anything deleted before the fsync
2438 */
2439static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2440			  struct btrfs_root *root, struct inode *inode,
2441			  struct btrfs_path *path,
2442			  struct btrfs_path *dst_path, int key_type,
2443			  u64 min_offset, u64 *last_offset_ret)
2444{
2445	struct btrfs_key min_key;
2446	struct btrfs_key max_key;
2447	struct btrfs_root *log = root->log_root;
2448	struct extent_buffer *src;
2449	int err = 0;
2450	int ret;
2451	int i;
2452	int nritems;
2453	u64 first_offset = min_offset;
2454	u64 last_offset = (u64)-1;
2455	u64 ino = btrfs_ino(inode);
2456
2457	log = root->log_root;
2458	max_key.objectid = ino;
2459	max_key.offset = (u64)-1;
2460	max_key.type = key_type;
2461
2462	min_key.objectid = ino;
2463	min_key.type = key_type;
2464	min_key.offset = min_offset;
2465
2466	path->keep_locks = 1;
2467
2468	ret = btrfs_search_forward(root, &min_key, &max_key,
2469				   path, 0, trans->transid);
2470
2471	/*
2472	 * we didn't find anything from this transaction, see if there
2473	 * is anything at all
2474	 */
2475	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2476		min_key.objectid = ino;
2477		min_key.type = key_type;
2478		min_key.offset = (u64)-1;
2479		btrfs_release_path(path);
2480		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2481		if (ret < 0) {
2482			btrfs_release_path(path);
2483			return ret;
2484		}
2485		ret = btrfs_previous_item(root, path, ino, key_type);
2486
2487		/* if ret == 0 there are items for this type,
2488		 * create a range to tell us the last key of this type.
2489		 * otherwise, there are no items in this directory after
2490		 * *min_offset, and we create a range to indicate that.
2491		 */
2492		if (ret == 0) {
2493			struct btrfs_key tmp;
2494			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2495					      path->slots[0]);
2496			if (key_type == tmp.type)
2497				first_offset = max(min_offset, tmp.offset) + 1;
2498		}
2499		goto done;
2500	}
2501
2502	/* go backward to find any previous key */
2503	ret = btrfs_previous_item(root, path, ino, key_type);
2504	if (ret == 0) {
2505		struct btrfs_key tmp;
2506		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2507		if (key_type == tmp.type) {
2508			first_offset = tmp.offset;
2509			ret = overwrite_item(trans, log, dst_path,
2510					     path->nodes[0], path->slots[0],
2511					     &tmp);
2512			if (ret) {
2513				err = ret;
2514				goto done;
2515			}
2516		}
2517	}
2518	btrfs_release_path(path);
2519
2520	/* find the first key from this transaction again */
2521	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2522	if (ret != 0) {
2523		WARN_ON(1);
2524		goto done;
2525	}
2526
2527	/*
2528	 * we have a block from this transaction, log every item in it
2529	 * from our directory
2530	 */
2531	while (1) {
2532		struct btrfs_key tmp;
2533		src = path->nodes[0];
2534		nritems = btrfs_header_nritems(src);
2535		for (i = path->slots[0]; i < nritems; i++) {
2536			btrfs_item_key_to_cpu(src, &min_key, i);
2537
2538			if (min_key.objectid != ino || min_key.type != key_type)
2539				goto done;
2540			ret = overwrite_item(trans, log, dst_path, src, i,
2541					     &min_key);
2542			if (ret) {
2543				err = ret;
2544				goto done;
2545			}
2546		}
2547		path->slots[0] = nritems;
2548
2549		/*
2550		 * look ahead to the next item and see if it is also
2551		 * from this directory and from this transaction
2552		 */
2553		ret = btrfs_next_leaf(root, path);
2554		if (ret == 1) {
2555			last_offset = (u64)-1;
2556			goto done;
2557		}
2558		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2559		if (tmp.objectid != ino || tmp.type != key_type) {
2560			last_offset = (u64)-1;
2561			goto done;
2562		}
2563		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2564			ret = overwrite_item(trans, log, dst_path,
2565					     path->nodes[0], path->slots[0],
2566					     &tmp);
2567			if (ret)
2568				err = ret;
2569			else
2570				last_offset = tmp.offset;
2571			goto done;
2572		}
2573	}
2574done:
2575	btrfs_release_path(path);
2576	btrfs_release_path(dst_path);
2577
2578	if (err == 0) {
2579		*last_offset_ret = last_offset;
2580		/*
2581		 * insert the log range keys to indicate where the log
2582		 * is valid
2583		 */
2584		ret = insert_dir_log_key(trans, log, path, key_type,
2585					 ino, first_offset, last_offset);
2586		if (ret)
2587			err = ret;
2588	}
2589	return err;
2590}
2591
2592/*
2593 * logging directories is very similar to logging inodes, We find all the items
2594 * from the current transaction and write them to the log.
2595 *
2596 * The recovery code scans the directory in the subvolume, and if it finds a
2597 * key in the range logged that is not present in the log tree, then it means
2598 * that dir entry was unlinked during the transaction.
2599 *
2600 * In order for that scan to work, we must include one key smaller than
2601 * the smallest logged by this transaction and one key larger than the largest
2602 * key logged by this transaction.
2603 */
2604static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2605			  struct btrfs_root *root, struct inode *inode,
2606			  struct btrfs_path *path,
2607			  struct btrfs_path *dst_path)
2608{
2609	u64 min_key;
2610	u64 max_key;
2611	int ret;
2612	int key_type = BTRFS_DIR_ITEM_KEY;
2613
2614again:
2615	min_key = 0;
2616	max_key = 0;
2617	while (1) {
2618		ret = log_dir_items(trans, root, inode, path,
2619				    dst_path, key_type, min_key,
2620				    &max_key);
2621		if (ret)
2622			return ret;
2623		if (max_key == (u64)-1)
2624			break;
2625		min_key = max_key + 1;
2626	}
2627
2628	if (key_type == BTRFS_DIR_ITEM_KEY) {
2629		key_type = BTRFS_DIR_INDEX_KEY;
2630		goto again;
2631	}
2632	return 0;
2633}
2634
2635/*
2636 * a helper function to drop items from the log before we relog an
2637 * inode.  max_key_type indicates the highest item type to remove.
2638 * This cannot be run for file data extents because it does not
2639 * free the extents they point to.
2640 */
2641static int drop_objectid_items(struct btrfs_trans_handle *trans,
2642				  struct btrfs_root *log,
2643				  struct btrfs_path *path,
2644				  u64 objectid, int max_key_type)
2645{
2646	int ret;
2647	struct btrfs_key key;
2648	struct btrfs_key found_key;
 
2649
2650	key.objectid = objectid;
2651	key.type = max_key_type;
2652	key.offset = (u64)-1;
2653
2654	while (1) {
2655		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2656		BUG_ON(ret == 0);
2657		if (ret < 0)
2658			break;
2659
2660		if (path->slots[0] == 0)
2661			break;
2662
2663		path->slots[0]--;
2664		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2665				      path->slots[0]);
2666
2667		if (found_key.objectid != objectid)
2668			break;
2669
2670		ret = btrfs_del_item(trans, log, path);
2671		if (ret)
 
 
 
 
 
 
 
 
 
 
2672			break;
2673		btrfs_release_path(path);
2674	}
2675	btrfs_release_path(path);
2676	if (ret > 0)
2677		ret = 0;
2678	return ret;
2679}
2680
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2681static noinline int copy_items(struct btrfs_trans_handle *trans,
2682			       struct btrfs_root *log,
2683			       struct btrfs_path *dst_path,
2684			       struct extent_buffer *src,
2685			       int start_slot, int nr, int inode_only)
2686{
2687	unsigned long src_offset;
2688	unsigned long dst_offset;
 
2689	struct btrfs_file_extent_item *extent;
2690	struct btrfs_inode_item *inode_item;
 
 
2691	int ret;
2692	struct btrfs_key *ins_keys;
2693	u32 *ins_sizes;
2694	char *ins_data;
2695	int i;
2696	struct list_head ordered_sums;
 
 
 
 
2697
2698	INIT_LIST_HEAD(&ordered_sums);
2699
2700	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2701			   nr * sizeof(u32), GFP_NOFS);
2702	if (!ins_data)
2703		return -ENOMEM;
2704
 
 
2705	ins_sizes = (u32 *)ins_data;
2706	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2707
2708	for (i = 0; i < nr; i++) {
2709		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2710		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2711	}
2712	ret = btrfs_insert_empty_items(trans, log, dst_path,
2713				       ins_keys, ins_sizes, nr);
2714	if (ret) {
2715		kfree(ins_data);
2716		return ret;
2717	}
2718
2719	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2720		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2721						   dst_path->slots[0]);
2722
2723		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2724
2725		copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2726				   src_offset, ins_sizes[i]);
2727
2728		if (inode_only == LOG_INODE_EXISTS &&
2729		    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2730			inode_item = btrfs_item_ptr(dst_path->nodes[0],
2731						    dst_path->slots[0],
2732						    struct btrfs_inode_item);
2733			btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
 
 
 
 
 
2734
2735			/* set the generation to zero so the recover code
2736			 * can tell the difference between an logging
2737			 * just to say 'this inode exists' and a logging
2738			 * to say 'update this inode with these values'
2739			 */
2740			btrfs_set_inode_generation(dst_path->nodes[0],
2741						   inode_item, 0);
 
 
 
 
 
 
2742		}
 
2743		/* take a reference on file data extents so that truncates
2744		 * or deletes of this inode don't have to relog the inode
2745		 * again
2746		 */
2747		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
 
2748			int found_type;
2749			extent = btrfs_item_ptr(src, start_slot + i,
2750						struct btrfs_file_extent_item);
2751
2752			if (btrfs_file_extent_generation(src, extent) < trans->transid)
2753				continue;
2754
2755			found_type = btrfs_file_extent_type(src, extent);
2756			if (found_type == BTRFS_FILE_EXTENT_REG ||
2757			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2758				u64 ds, dl, cs, cl;
2759				ds = btrfs_file_extent_disk_bytenr(src,
2760								extent);
2761				/* ds == 0 is a hole */
2762				if (ds == 0)
2763					continue;
2764
2765				dl = btrfs_file_extent_disk_num_bytes(src,
2766								extent);
2767				cs = btrfs_file_extent_offset(src, extent);
2768				cl = btrfs_file_extent_num_bytes(src,
2769								extent);
2770				if (btrfs_file_extent_compression(src,
2771								  extent)) {
2772					cs = 0;
2773					cl = dl;
2774				}
2775
2776				ret = btrfs_lookup_csums_range(
2777						log->fs_info->csum_root,
2778						ds + cs, ds + cs + cl - 1,
2779						&ordered_sums, 0);
2780				BUG_ON(ret);
 
 
 
 
2781			}
2782		}
2783	}
2784
2785	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2786	btrfs_release_path(dst_path);
2787	kfree(ins_data);
2788
2789	/*
2790	 * we have to do this after the loop above to avoid changing the
2791	 * log tree while trying to change the log tree.
2792	 */
2793	ret = 0;
2794	while (!list_empty(&ordered_sums)) {
2795		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2796						   struct btrfs_ordered_sum,
2797						   list);
2798		if (!ret)
2799			ret = btrfs_csum_file_blocks(trans, log, sums);
2800		list_del(&sums->list);
2801		kfree(sums);
2802	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2803	return ret;
2804}
2805
2806/* log a single inode in the tree log.
2807 * At least one parent directory for this inode must exist in the tree
2808 * or be logged already.
2809 *
2810 * Any items from this inode changed by the current transaction are copied
2811 * to the log tree.  An extra reference is taken on any extents in this
2812 * file, allowing us to avoid a whole pile of corner cases around logging
2813 * blocks that have been removed from the tree.
2814 *
2815 * See LOG_INODE_ALL and related defines for a description of what inode_only
2816 * does.
2817 *
2818 * This handles both files and directories.
2819 */
2820static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2821			     struct btrfs_root *root, struct inode *inode,
2822			     int inode_only)
2823{
2824	struct btrfs_path *path;
2825	struct btrfs_path *dst_path;
2826	struct btrfs_key min_key;
2827	struct btrfs_key max_key;
2828	struct btrfs_root *log = root->log_root;
2829	struct extent_buffer *src = NULL;
 
 
2830	int err = 0;
2831	int ret;
2832	int nritems;
2833	int ins_start_slot = 0;
2834	int ins_nr;
 
2835	u64 ino = btrfs_ino(inode);
2836
2837	log = root->log_root;
2838
2839	path = btrfs_alloc_path();
2840	if (!path)
2841		return -ENOMEM;
2842	dst_path = btrfs_alloc_path();
2843	if (!dst_path) {
2844		btrfs_free_path(path);
2845		return -ENOMEM;
2846	}
2847
2848	min_key.objectid = ino;
2849	min_key.type = BTRFS_INODE_ITEM_KEY;
2850	min_key.offset = 0;
2851
2852	max_key.objectid = ino;
2853
2854	/* today the code can only do partial logging of directories */
2855	if (!S_ISDIR(inode->i_mode))
2856	    inode_only = LOG_INODE_ALL;
2857
2858	if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
 
 
 
 
2859		max_key.type = BTRFS_XATTR_ITEM_KEY;
2860	else
2861		max_key.type = (u8)-1;
2862	max_key.offset = (u64)-1;
2863
2864	ret = btrfs_commit_inode_delayed_items(trans, inode);
2865	if (ret) {
2866		btrfs_free_path(path);
2867		btrfs_free_path(dst_path);
2868		return ret;
 
 
 
 
2869	}
2870
2871	mutex_lock(&BTRFS_I(inode)->log_mutex);
2872
 
 
2873	/*
2874	 * a brute force approach to making sure we get the most uptodate
2875	 * copies of everything.
2876	 */
2877	if (S_ISDIR(inode->i_mode)) {
2878		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2879
2880		if (inode_only == LOG_INODE_EXISTS)
2881			max_key_type = BTRFS_XATTR_ITEM_KEY;
2882		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
2883	} else {
2884		ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2885	}
2886	if (ret) {
2887		err = ret;
2888		goto out_unlock;
2889	}
2890	path->keep_locks = 1;
2891
2892	while (1) {
2893		ins_nr = 0;
2894		ret = btrfs_search_forward(root, &min_key, &max_key,
2895					   path, 0, trans->transid);
2896		if (ret != 0)
2897			break;
2898again:
2899		/* note, ins_nr might be > 0 here, cleanup outside the loop */
2900		if (min_key.objectid != ino)
2901			break;
2902		if (min_key.type > max_key.type)
2903			break;
2904
2905		src = path->nodes[0];
2906		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2907			ins_nr++;
2908			goto next_slot;
2909		} else if (!ins_nr) {
2910			ins_start_slot = path->slots[0];
2911			ins_nr = 1;
2912			goto next_slot;
2913		}
2914
2915		ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2916				 ins_nr, inode_only);
2917		if (ret) {
2918			err = ret;
2919			goto out_unlock;
 
 
 
 
2920		}
2921		ins_nr = 1;
2922		ins_start_slot = path->slots[0];
2923next_slot:
2924
2925		nritems = btrfs_header_nritems(path->nodes[0]);
2926		path->slots[0]++;
2927		if (path->slots[0] < nritems) {
2928			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2929					      path->slots[0]);
2930			goto again;
2931		}
2932		if (ins_nr) {
2933			ret = copy_items(trans, log, dst_path, src,
2934					 ins_start_slot,
2935					 ins_nr, inode_only);
2936			if (ret) {
2937				err = ret;
2938				goto out_unlock;
2939			}
 
2940			ins_nr = 0;
2941		}
2942		btrfs_release_path(path);
2943
2944		if (min_key.offset < (u64)-1)
2945			min_key.offset++;
2946		else if (min_key.type < (u8)-1)
2947			min_key.type++;
2948		else if (min_key.objectid < (u64)-1)
2949			min_key.objectid++;
2950		else
2951			break;
 
2952	}
2953	if (ins_nr) {
2954		ret = copy_items(trans, log, dst_path, src,
2955				 ins_start_slot,
2956				 ins_nr, inode_only);
2957		if (ret) {
2958			err = ret;
2959			goto out_unlock;
2960		}
 
2961		ins_nr = 0;
2962	}
2963	WARN_ON(ins_nr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2964	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2965		btrfs_release_path(path);
2966		btrfs_release_path(dst_path);
2967		ret = log_directory_changes(trans, root, inode, path, dst_path);
2968		if (ret) {
2969			err = ret;
2970			goto out_unlock;
2971		}
2972	}
2973	BTRFS_I(inode)->logged_trans = trans->transid;
 
2974out_unlock:
 
 
 
 
2975	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2976
2977	btrfs_free_path(path);
2978	btrfs_free_path(dst_path);
2979	return err;
2980}
2981
2982/*
2983 * follow the dentry parent pointers up the chain and see if any
2984 * of the directories in it require a full commit before they can
2985 * be logged.  Returns zero if nothing special needs to be done or 1 if
2986 * a full commit is required.
2987 */
2988static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2989					       struct inode *inode,
2990					       struct dentry *parent,
2991					       struct super_block *sb,
2992					       u64 last_committed)
2993{
2994	int ret = 0;
2995	struct btrfs_root *root;
2996	struct dentry *old_parent = NULL;
 
2997
2998	/*
2999	 * for regular files, if its inode is already on disk, we don't
3000	 * have to worry about the parents at all.  This is because
3001	 * we can use the last_unlink_trans field to record renames
3002	 * and other fun in this file.
3003	 */
3004	if (S_ISREG(inode->i_mode) &&
3005	    BTRFS_I(inode)->generation <= last_committed &&
3006	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
3007			goto out;
3008
3009	if (!S_ISDIR(inode->i_mode)) {
3010		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3011			goto out;
3012		inode = parent->d_inode;
3013	}
3014
3015	while (1) {
3016		BTRFS_I(inode)->logged_trans = trans->transid;
 
 
 
 
 
 
 
3017		smp_mb();
3018
3019		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3020			root = BTRFS_I(inode)->root;
3021
3022			/*
3023			 * make sure any commits to the log are forced
3024			 * to be full commits
3025			 */
3026			root->fs_info->last_trans_log_full_commit =
3027				trans->transid;
3028			ret = 1;
3029			break;
3030		}
3031
3032		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3033			break;
3034
3035		if (IS_ROOT(parent))
3036			break;
3037
3038		parent = dget_parent(parent);
3039		dput(old_parent);
3040		old_parent = parent;
3041		inode = parent->d_inode;
3042
3043	}
3044	dput(old_parent);
3045out:
3046	return ret;
3047}
3048
3049/*
3050 * helper function around btrfs_log_inode to make sure newly created
3051 * parent directories also end up in the log.  A minimal inode and backref
3052 * only logging is done of any parent directories that are older than
3053 * the last committed transaction
3054 */
3055int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3056		    struct btrfs_root *root, struct inode *inode,
3057		    struct dentry *parent, int exists_only)
 
3058{
3059	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3060	struct super_block *sb;
3061	struct dentry *old_parent = NULL;
3062	int ret = 0;
3063	u64 last_committed = root->fs_info->last_trans_committed;
3064
3065	sb = inode->i_sb;
3066
3067	if (btrfs_test_opt(root, NOTREELOG)) {
3068		ret = 1;
3069		goto end_no_trans;
3070	}
3071
3072	if (root->fs_info->last_trans_log_full_commit >
3073	    root->fs_info->last_trans_committed) {
3074		ret = 1;
3075		goto end_no_trans;
3076	}
3077
3078	if (root != BTRFS_I(inode)->root ||
3079	    btrfs_root_refs(&root->root_item) == 0) {
3080		ret = 1;
3081		goto end_no_trans;
3082	}
3083
3084	ret = check_parent_dirs_for_sync(trans, inode, parent,
3085					 sb, last_committed);
3086	if (ret)
3087		goto end_no_trans;
3088
3089	if (btrfs_inode_in_log(inode, trans->transid)) {
3090		ret = BTRFS_NO_LOG_SYNC;
3091		goto end_no_trans;
3092	}
3093
3094	ret = start_log_trans(trans, root);
3095	if (ret)
3096		goto end_trans;
3097
3098	ret = btrfs_log_inode(trans, root, inode, inode_only);
3099	if (ret)
3100		goto end_trans;
3101
3102	/*
3103	 * for regular files, if its inode is already on disk, we don't
3104	 * have to worry about the parents at all.  This is because
3105	 * we can use the last_unlink_trans field to record renames
3106	 * and other fun in this file.
3107	 */
3108	if (S_ISREG(inode->i_mode) &&
3109	    BTRFS_I(inode)->generation <= last_committed &&
3110	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3111		ret = 0;
3112		goto end_trans;
3113	}
3114
3115	inode_only = LOG_INODE_EXISTS;
3116	while (1) {
3117		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3118			break;
3119
3120		inode = parent->d_inode;
3121		if (root != BTRFS_I(inode)->root)
3122			break;
3123
3124		if (BTRFS_I(inode)->generation >
3125		    root->fs_info->last_trans_committed) {
3126			ret = btrfs_log_inode(trans, root, inode, inode_only);
3127			if (ret)
3128				goto end_trans;
3129		}
3130		if (IS_ROOT(parent))
3131			break;
3132
3133		parent = dget_parent(parent);
3134		dput(old_parent);
3135		old_parent = parent;
3136	}
3137	ret = 0;
3138end_trans:
3139	dput(old_parent);
3140	if (ret < 0) {
3141		BUG_ON(ret != -ENOSPC);
3142		root->fs_info->last_trans_log_full_commit = trans->transid;
3143		ret = 1;
3144	}
 
 
 
3145	btrfs_end_log_trans(root);
3146end_no_trans:
3147	return ret;
3148}
3149
3150/*
3151 * it is not safe to log dentry if the chunk root has added new
3152 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
3153 * If this returns 1, you must commit the transaction to safely get your
3154 * data on disk.
3155 */
3156int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3157			  struct btrfs_root *root, struct dentry *dentry)
 
3158{
3159	struct dentry *parent = dget_parent(dentry);
3160	int ret;
3161
3162	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
 
3163	dput(parent);
3164
3165	return ret;
3166}
3167
3168/*
3169 * should be called during mount to recover any replay any log trees
3170 * from the FS
3171 */
3172int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3173{
3174	int ret;
3175	struct btrfs_path *path;
3176	struct btrfs_trans_handle *trans;
3177	struct btrfs_key key;
3178	struct btrfs_key found_key;
3179	struct btrfs_key tmp_key;
3180	struct btrfs_root *log;
3181	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3182	struct walk_control wc = {
3183		.process_func = process_one_buffer,
3184		.stage = 0,
3185	};
3186
3187	path = btrfs_alloc_path();
3188	if (!path)
3189		return -ENOMEM;
3190
3191	fs_info->log_root_recovering = 1;
3192
3193	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3194	if (IS_ERR(trans)) {
3195		ret = PTR_ERR(trans);
3196		goto error;
3197	}
3198
3199	wc.trans = trans;
3200	wc.pin = 1;
3201
3202	ret = walk_log_tree(trans, log_root_tree, &wc);
3203	if (ret) {
3204		btrfs_error(fs_info, ret, "Failed to pin buffers while "
3205			    "recovering log root tree.");
3206		goto error;
3207	}
3208
3209again:
3210	key.objectid = BTRFS_TREE_LOG_OBJECTID;
3211	key.offset = (u64)-1;
3212	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3213
3214	while (1) {
3215		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3216
3217		if (ret < 0) {
3218			btrfs_error(fs_info, ret,
3219				    "Couldn't find tree log root.");
3220			goto error;
3221		}
3222		if (ret > 0) {
3223			if (path->slots[0] == 0)
3224				break;
3225			path->slots[0]--;
3226		}
3227		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3228				      path->slots[0]);
3229		btrfs_release_path(path);
3230		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3231			break;
3232
3233		log = btrfs_read_fs_root_no_radix(log_root_tree,
3234						  &found_key);
3235		if (IS_ERR(log)) {
3236			ret = PTR_ERR(log);
3237			btrfs_error(fs_info, ret,
3238				    "Couldn't read tree log root.");
3239			goto error;
3240		}
3241
3242		tmp_key.objectid = found_key.offset;
3243		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3244		tmp_key.offset = (u64)-1;
3245
3246		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3247		if (IS_ERR(wc.replay_dest)) {
3248			ret = PTR_ERR(wc.replay_dest);
 
 
 
3249			btrfs_error(fs_info, ret, "Couldn't read target root "
3250				    "for tree log recovery.");
3251			goto error;
3252		}
3253
3254		wc.replay_dest->log_root = log;
3255		btrfs_record_root_in_trans(trans, wc.replay_dest);
3256		ret = walk_log_tree(trans, log, &wc);
3257		BUG_ON(ret);
3258
3259		if (wc.stage == LOG_WALK_REPLAY_ALL) {
3260			ret = fixup_inode_link_counts(trans, wc.replay_dest,
3261						      path);
3262			BUG_ON(ret);
3263		}
3264
3265		key.offset = found_key.offset - 1;
3266		wc.replay_dest->log_root = NULL;
3267		free_extent_buffer(log->node);
3268		free_extent_buffer(log->commit_root);
3269		kfree(log);
3270
 
 
 
3271		if (found_key.offset == 0)
3272			break;
3273	}
3274	btrfs_release_path(path);
3275
3276	/* step one is to pin it all, step two is to replay just inodes */
3277	if (wc.pin) {
3278		wc.pin = 0;
3279		wc.process_func = replay_one_buffer;
3280		wc.stage = LOG_WALK_REPLAY_INODES;
3281		goto again;
3282	}
3283	/* step three is to replay everything */
3284	if (wc.stage < LOG_WALK_REPLAY_ALL) {
3285		wc.stage++;
3286		goto again;
3287	}
3288
3289	btrfs_free_path(path);
3290
 
 
 
 
 
3291	free_extent_buffer(log_root_tree->node);
3292	log_root_tree->log_root = NULL;
3293	fs_info->log_root_recovering = 0;
3294
3295	/* step 4: commit the transaction, which also unpins the blocks */
3296	btrfs_commit_transaction(trans, fs_info->tree_root);
3297
3298	kfree(log_root_tree);
3299	return 0;
3300
 
3301error:
 
 
3302	btrfs_free_path(path);
3303	return ret;
3304}
3305
3306/*
3307 * there are some corner cases where we want to force a full
3308 * commit instead of allowing a directory to be logged.
3309 *
3310 * They revolve around files there were unlinked from the directory, and
3311 * this function updates the parent directory so that a full commit is
3312 * properly done if it is fsync'd later after the unlinks are done.
3313 */
3314void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3315			     struct inode *dir, struct inode *inode,
3316			     int for_rename)
3317{
3318	/*
3319	 * when we're logging a file, if it hasn't been renamed
3320	 * or unlinked, and its inode is fully committed on disk,
3321	 * we don't have to worry about walking up the directory chain
3322	 * to log its parents.
3323	 *
3324	 * So, we use the last_unlink_trans field to put this transid
3325	 * into the file.  When the file is logged we check it and
3326	 * don't log the parents if the file is fully on disk.
3327	 */
3328	if (S_ISREG(inode->i_mode))
3329		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3330
3331	/*
3332	 * if this directory was already logged any new
3333	 * names for this file/dir will get recorded
3334	 */
3335	smp_mb();
3336	if (BTRFS_I(dir)->logged_trans == trans->transid)
3337		return;
3338
3339	/*
3340	 * if the inode we're about to unlink was logged,
3341	 * the log will be properly updated for any new names
3342	 */
3343	if (BTRFS_I(inode)->logged_trans == trans->transid)
3344		return;
3345
3346	/*
3347	 * when renaming files across directories, if the directory
3348	 * there we're unlinking from gets fsync'd later on, there's
3349	 * no way to find the destination directory later and fsync it
3350	 * properly.  So, we have to be conservative and force commits
3351	 * so the new name gets discovered.
3352	 */
3353	if (for_rename)
3354		goto record;
3355
3356	/* we can safely do the unlink without any special recording */
3357	return;
3358
3359record:
3360	BTRFS_I(dir)->last_unlink_trans = trans->transid;
3361}
3362
3363/*
3364 * Call this after adding a new name for a file and it will properly
3365 * update the log to reflect the new name.
3366 *
3367 * It will return zero if all goes well, and it will return 1 if a
3368 * full transaction commit is required.
3369 */
3370int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3371			struct inode *inode, struct inode *old_dir,
3372			struct dentry *parent)
3373{
3374	struct btrfs_root * root = BTRFS_I(inode)->root;
3375
3376	/*
3377	 * this will force the logging code to walk the dentry chain
3378	 * up for the file
3379	 */
3380	if (S_ISREG(inode->i_mode))
3381		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3382
3383	/*
3384	 * if this inode hasn't been logged and directory we're renaming it
3385	 * from hasn't been logged, we don't need to log it
3386	 */
3387	if (BTRFS_I(inode)->logged_trans <=
3388	    root->fs_info->last_trans_committed &&
3389	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3390		    root->fs_info->last_trans_committed))
3391		return 0;
3392
3393	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3394}
3395
v3.15
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/blkdev.h>
  22#include <linux/list_sort.h>
  23#include "ctree.h"
  24#include "transaction.h"
  25#include "disk-io.h"
  26#include "locking.h"
  27#include "print-tree.h"
  28#include "backref.h"
  29#include "tree-log.h"
  30#include "hash.h"
  31
  32/* magic values for the inode_only field in btrfs_log_inode:
  33 *
  34 * LOG_INODE_ALL means to log everything
  35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  36 * during log replay
  37 */
  38#define LOG_INODE_ALL 0
  39#define LOG_INODE_EXISTS 1
  40
  41/*
  42 * directory trouble cases
  43 *
  44 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  45 * log, we must force a full commit before doing an fsync of the directory
  46 * where the unlink was done.
  47 * ---> record transid of last unlink/rename per directory
  48 *
  49 * mkdir foo/some_dir
  50 * normal commit
  51 * rename foo/some_dir foo2/some_dir
  52 * mkdir foo/some_dir
  53 * fsync foo/some_dir/some_file
  54 *
  55 * The fsync above will unlink the original some_dir without recording
  56 * it in its new location (foo2).  After a crash, some_dir will be gone
  57 * unless the fsync of some_file forces a full commit
  58 *
  59 * 2) we must log any new names for any file or dir that is in the fsync
  60 * log. ---> check inode while renaming/linking.
  61 *
  62 * 2a) we must log any new names for any file or dir during rename
  63 * when the directory they are being removed from was logged.
  64 * ---> check inode and old parent dir during rename
  65 *
  66 *  2a is actually the more important variant.  With the extra logging
  67 *  a crash might unlink the old name without recreating the new one
  68 *
  69 * 3) after a crash, we must go through any directories with a link count
  70 * of zero and redo the rm -rf
  71 *
  72 * mkdir f1/foo
  73 * normal commit
  74 * rm -rf f1/foo
  75 * fsync(f1)
  76 *
  77 * The directory f1 was fully removed from the FS, but fsync was never
  78 * called on f1, only its parent dir.  After a crash the rm -rf must
  79 * be replayed.  This must be able to recurse down the entire
  80 * directory tree.  The inode link count fixup code takes care of the
  81 * ugly details.
  82 */
  83
  84/*
  85 * stages for the tree walking.  The first
  86 * stage (0) is to only pin down the blocks we find
  87 * the second stage (1) is to make sure that all the inodes
  88 * we find in the log are created in the subvolume.
  89 *
  90 * The last stage is to deal with directories and links and extents
  91 * and all the other fun semantics
  92 */
  93#define LOG_WALK_PIN_ONLY 0
  94#define LOG_WALK_REPLAY_INODES 1
  95#define LOG_WALK_REPLAY_DIR_INDEX 2
  96#define LOG_WALK_REPLAY_ALL 3
  97
  98static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  99			     struct btrfs_root *root, struct inode *inode,
 100			     int inode_only);
 101static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 102			     struct btrfs_root *root,
 103			     struct btrfs_path *path, u64 objectid);
 104static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 105				       struct btrfs_root *root,
 106				       struct btrfs_root *log,
 107				       struct btrfs_path *path,
 108				       u64 dirid, int del_all);
 109
 110/*
 111 * tree logging is a special write ahead log used to make sure that
 112 * fsyncs and O_SYNCs can happen without doing full tree commits.
 113 *
 114 * Full tree commits are expensive because they require commonly
 115 * modified blocks to be recowed, creating many dirty pages in the
 116 * extent tree an 4x-6x higher write load than ext3.
 117 *
 118 * Instead of doing a tree commit on every fsync, we use the
 119 * key ranges and transaction ids to find items for a given file or directory
 120 * that have changed in this transaction.  Those items are copied into
 121 * a special tree (one per subvolume root), that tree is written to disk
 122 * and then the fsync is considered complete.
 123 *
 124 * After a crash, items are copied out of the log-tree back into the
 125 * subvolume tree.  Any file data extents found are recorded in the extent
 126 * allocation tree, and the log-tree freed.
 127 *
 128 * The log tree is read three times, once to pin down all the extents it is
 129 * using in ram and once, once to create all the inodes logged in the tree
 130 * and once to do all the other items.
 131 */
 132
 133/*
 134 * start a sub transaction and setup the log tree
 135 * this increments the log tree writer count to make the people
 136 * syncing the tree wait for us to finish
 137 */
 138static int start_log_trans(struct btrfs_trans_handle *trans,
 139			   struct btrfs_root *root,
 140			   struct btrfs_log_ctx *ctx)
 141{
 142	int index;
 143	int ret;
 
 144
 145	mutex_lock(&root->log_mutex);
 146	if (root->log_root) {
 147		if (ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) ==
 148		    trans->transid) {
 149			ret = -EAGAIN;
 150			goto out;
 151		}
 152
 153		if (!root->log_start_pid) {
 154			root->log_start_pid = current->pid;
 155			root->log_multiple_pids = false;
 156		} else if (root->log_start_pid != current->pid) {
 157			root->log_multiple_pids = true;
 158		}
 159
 160		atomic_inc(&root->log_batch);
 161		atomic_inc(&root->log_writers);
 162		if (ctx) {
 163			index = root->log_transid % 2;
 164			list_add_tail(&ctx->list, &root->log_ctxs[index]);
 165			ctx->log_transid = root->log_transid;
 166		}
 167		mutex_unlock(&root->log_mutex);
 168		return 0;
 169	}
 170
 171	ret = 0;
 172	mutex_lock(&root->fs_info->tree_log_mutex);
 173	if (!root->fs_info->log_root_tree)
 174		ret = btrfs_init_log_root_tree(trans, root->fs_info);
 175	mutex_unlock(&root->fs_info->tree_log_mutex);
 176	if (ret)
 177		goto out;
 178
 179	if (!root->log_root) {
 180		ret = btrfs_add_log_tree(trans, root);
 181		if (ret)
 182			goto out;
 183	}
 184	root->log_multiple_pids = false;
 185	root->log_start_pid = current->pid;
 186	atomic_inc(&root->log_batch);
 187	atomic_inc(&root->log_writers);
 188	if (ctx) {
 189		index = root->log_transid % 2;
 190		list_add_tail(&ctx->list, &root->log_ctxs[index]);
 191		ctx->log_transid = root->log_transid;
 192	}
 193out:
 194	mutex_unlock(&root->log_mutex);
 195	return ret;
 196}
 197
 198/*
 199 * returns 0 if there was a log transaction running and we were able
 200 * to join, or returns -ENOENT if there were not transactions
 201 * in progress
 202 */
 203static int join_running_log_trans(struct btrfs_root *root)
 204{
 205	int ret = -ENOENT;
 206
 207	smp_mb();
 208	if (!root->log_root)
 209		return -ENOENT;
 210
 211	mutex_lock(&root->log_mutex);
 212	if (root->log_root) {
 213		ret = 0;
 214		atomic_inc(&root->log_writers);
 215	}
 216	mutex_unlock(&root->log_mutex);
 217	return ret;
 218}
 219
 220/*
 221 * This either makes the current running log transaction wait
 222 * until you call btrfs_end_log_trans() or it makes any future
 223 * log transactions wait until you call btrfs_end_log_trans()
 224 */
 225int btrfs_pin_log_trans(struct btrfs_root *root)
 226{
 227	int ret = -ENOENT;
 228
 229	mutex_lock(&root->log_mutex);
 230	atomic_inc(&root->log_writers);
 231	mutex_unlock(&root->log_mutex);
 232	return ret;
 233}
 234
 235/*
 236 * indicate we're done making changes to the log tree
 237 * and wake up anyone waiting to do a sync
 238 */
 239void btrfs_end_log_trans(struct btrfs_root *root)
 240{
 241	if (atomic_dec_and_test(&root->log_writers)) {
 242		smp_mb();
 243		if (waitqueue_active(&root->log_writer_wait))
 244			wake_up(&root->log_writer_wait);
 245	}
 246}
 247
 248
 249/*
 250 * the walk control struct is used to pass state down the chain when
 251 * processing the log tree.  The stage field tells us which part
 252 * of the log tree processing we are currently doing.  The others
 253 * are state fields used for that specific part
 254 */
 255struct walk_control {
 256	/* should we free the extent on disk when done?  This is used
 257	 * at transaction commit time while freeing a log tree
 258	 */
 259	int free;
 260
 261	/* should we write out the extent buffer?  This is used
 262	 * while flushing the log tree to disk during a sync
 263	 */
 264	int write;
 265
 266	/* should we wait for the extent buffer io to finish?  Also used
 267	 * while flushing the log tree to disk for a sync
 268	 */
 269	int wait;
 270
 271	/* pin only walk, we record which extents on disk belong to the
 272	 * log trees
 273	 */
 274	int pin;
 275
 276	/* what stage of the replay code we're currently in */
 277	int stage;
 278
 279	/* the root we are currently replaying */
 280	struct btrfs_root *replay_dest;
 281
 282	/* the trans handle for the current replay */
 283	struct btrfs_trans_handle *trans;
 284
 285	/* the function that gets used to process blocks we find in the
 286	 * tree.  Note the extent_buffer might not be up to date when it is
 287	 * passed in, and it must be checked or read if you need the data
 288	 * inside it
 289	 */
 290	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 291			    struct walk_control *wc, u64 gen);
 292};
 293
 294/*
 295 * process_func used to pin down extents, write them or wait on them
 296 */
 297static int process_one_buffer(struct btrfs_root *log,
 298			      struct extent_buffer *eb,
 299			      struct walk_control *wc, u64 gen)
 300{
 301	int ret = 0;
 302
 303	/*
 304	 * If this fs is mixed then we need to be able to process the leaves to
 305	 * pin down any logged extents, so we have to read the block.
 306	 */
 307	if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
 308		ret = btrfs_read_buffer(eb, gen);
 309		if (ret)
 310			return ret;
 311	}
 312
 313	if (wc->pin)
 314		ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
 315						      eb->start, eb->len);
 
 316
 317	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
 318		if (wc->pin && btrfs_header_level(eb) == 0)
 319			ret = btrfs_exclude_logged_extents(log, eb);
 320		if (wc->write)
 321			btrfs_write_tree_block(eb);
 322		if (wc->wait)
 323			btrfs_wait_tree_block_writeback(eb);
 324	}
 325	return ret;
 326}
 327
 328/*
 329 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 330 * to the src data we are copying out.
 331 *
 332 * root is the tree we are copying into, and path is a scratch
 333 * path for use in this function (it should be released on entry and
 334 * will be released on exit).
 335 *
 336 * If the key is already in the destination tree the existing item is
 337 * overwritten.  If the existing item isn't big enough, it is extended.
 338 * If it is too large, it is truncated.
 339 *
 340 * If the key isn't in the destination yet, a new item is inserted.
 341 */
 342static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 343				   struct btrfs_root *root,
 344				   struct btrfs_path *path,
 345				   struct extent_buffer *eb, int slot,
 346				   struct btrfs_key *key)
 347{
 348	int ret;
 349	u32 item_size;
 350	u64 saved_i_size = 0;
 351	int save_old_i_size = 0;
 352	unsigned long src_ptr;
 353	unsigned long dst_ptr;
 354	int overwrite_root = 0;
 355	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 356
 357	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 358		overwrite_root = 1;
 359
 360	item_size = btrfs_item_size_nr(eb, slot);
 361	src_ptr = btrfs_item_ptr_offset(eb, slot);
 362
 363	/* look for the key in the destination tree */
 364	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 365	if (ret < 0)
 366		return ret;
 367
 368	if (ret == 0) {
 369		char *src_copy;
 370		char *dst_copy;
 371		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 372						  path->slots[0]);
 373		if (dst_size != item_size)
 374			goto insert;
 375
 376		if (item_size == 0) {
 377			btrfs_release_path(path);
 378			return 0;
 379		}
 380		dst_copy = kmalloc(item_size, GFP_NOFS);
 381		src_copy = kmalloc(item_size, GFP_NOFS);
 382		if (!dst_copy || !src_copy) {
 383			btrfs_release_path(path);
 384			kfree(dst_copy);
 385			kfree(src_copy);
 386			return -ENOMEM;
 387		}
 388
 389		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 390
 391		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 392		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 393				   item_size);
 394		ret = memcmp(dst_copy, src_copy, item_size);
 395
 396		kfree(dst_copy);
 397		kfree(src_copy);
 398		/*
 399		 * they have the same contents, just return, this saves
 400		 * us from cowing blocks in the destination tree and doing
 401		 * extra writes that may not have been done by a previous
 402		 * sync
 403		 */
 404		if (ret == 0) {
 405			btrfs_release_path(path);
 406			return 0;
 407		}
 408
 409		/*
 410		 * We need to load the old nbytes into the inode so when we
 411		 * replay the extents we've logged we get the right nbytes.
 412		 */
 413		if (inode_item) {
 414			struct btrfs_inode_item *item;
 415			u64 nbytes;
 416			u32 mode;
 417
 418			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 419					      struct btrfs_inode_item);
 420			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 421			item = btrfs_item_ptr(eb, slot,
 422					      struct btrfs_inode_item);
 423			btrfs_set_inode_nbytes(eb, item, nbytes);
 424
 425			/*
 426			 * If this is a directory we need to reset the i_size to
 427			 * 0 so that we can set it up properly when replaying
 428			 * the rest of the items in this log.
 429			 */
 430			mode = btrfs_inode_mode(eb, item);
 431			if (S_ISDIR(mode))
 432				btrfs_set_inode_size(eb, item, 0);
 433		}
 434	} else if (inode_item) {
 435		struct btrfs_inode_item *item;
 436		u32 mode;
 437
 438		/*
 439		 * New inode, set nbytes to 0 so that the nbytes comes out
 440		 * properly when we replay the extents.
 441		 */
 442		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 443		btrfs_set_inode_nbytes(eb, item, 0);
 444
 445		/*
 446		 * If this is a directory we need to reset the i_size to 0 so
 447		 * that we can set it up properly when replaying the rest of
 448		 * the items in this log.
 449		 */
 450		mode = btrfs_inode_mode(eb, item);
 451		if (S_ISDIR(mode))
 452			btrfs_set_inode_size(eb, item, 0);
 453	}
 454insert:
 455	btrfs_release_path(path);
 456	/* try to insert the key into the destination tree */
 457	ret = btrfs_insert_empty_item(trans, root, path,
 458				      key, item_size);
 459
 460	/* make sure any existing item is the correct size */
 461	if (ret == -EEXIST) {
 462		u32 found_size;
 463		found_size = btrfs_item_size_nr(path->nodes[0],
 464						path->slots[0]);
 465		if (found_size > item_size)
 466			btrfs_truncate_item(root, path, item_size, 1);
 467		else if (found_size < item_size)
 468			btrfs_extend_item(root, path,
 469					  item_size - found_size);
 470	} else if (ret) {
 471		return ret;
 472	}
 473	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 474					path->slots[0]);
 475
 476	/* don't overwrite an existing inode if the generation number
 477	 * was logged as zero.  This is done when the tree logging code
 478	 * is just logging an inode to make sure it exists after recovery.
 479	 *
 480	 * Also, don't overwrite i_size on directories during replay.
 481	 * log replay inserts and removes directory items based on the
 482	 * state of the tree found in the subvolume, and i_size is modified
 483	 * as it goes
 484	 */
 485	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 486		struct btrfs_inode_item *src_item;
 487		struct btrfs_inode_item *dst_item;
 488
 489		src_item = (struct btrfs_inode_item *)src_ptr;
 490		dst_item = (struct btrfs_inode_item *)dst_ptr;
 491
 492		if (btrfs_inode_generation(eb, src_item) == 0)
 493			goto no_copy;
 494
 495		if (overwrite_root &&
 496		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 497		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 498			save_old_i_size = 1;
 499			saved_i_size = btrfs_inode_size(path->nodes[0],
 500							dst_item);
 501		}
 502	}
 503
 504	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 505			   src_ptr, item_size);
 506
 507	if (save_old_i_size) {
 508		struct btrfs_inode_item *dst_item;
 509		dst_item = (struct btrfs_inode_item *)dst_ptr;
 510		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 511	}
 512
 513	/* make sure the generation is filled in */
 514	if (key->type == BTRFS_INODE_ITEM_KEY) {
 515		struct btrfs_inode_item *dst_item;
 516		dst_item = (struct btrfs_inode_item *)dst_ptr;
 517		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 518			btrfs_set_inode_generation(path->nodes[0], dst_item,
 519						   trans->transid);
 520		}
 521	}
 522no_copy:
 523	btrfs_mark_buffer_dirty(path->nodes[0]);
 524	btrfs_release_path(path);
 525	return 0;
 526}
 527
 528/*
 529 * simple helper to read an inode off the disk from a given root
 530 * This can only be called for subvolume roots and not for the log
 531 */
 532static noinline struct inode *read_one_inode(struct btrfs_root *root,
 533					     u64 objectid)
 534{
 535	struct btrfs_key key;
 536	struct inode *inode;
 537
 538	key.objectid = objectid;
 539	key.type = BTRFS_INODE_ITEM_KEY;
 540	key.offset = 0;
 541	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
 542	if (IS_ERR(inode)) {
 543		inode = NULL;
 544	} else if (is_bad_inode(inode)) {
 545		iput(inode);
 546		inode = NULL;
 547	}
 548	return inode;
 549}
 550
 551/* replays a single extent in 'eb' at 'slot' with 'key' into the
 552 * subvolume 'root'.  path is released on entry and should be released
 553 * on exit.
 554 *
 555 * extents in the log tree have not been allocated out of the extent
 556 * tree yet.  So, this completes the allocation, taking a reference
 557 * as required if the extent already exists or creating a new extent
 558 * if it isn't in the extent allocation tree yet.
 559 *
 560 * The extent is inserted into the file, dropping any existing extents
 561 * from the file that overlap the new one.
 562 */
 563static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 564				      struct btrfs_root *root,
 565				      struct btrfs_path *path,
 566				      struct extent_buffer *eb, int slot,
 567				      struct btrfs_key *key)
 568{
 569	int found_type;
 
 570	u64 extent_end;
 
 571	u64 start = key->offset;
 572	u64 nbytes = 0;
 573	struct btrfs_file_extent_item *item;
 574	struct inode *inode = NULL;
 575	unsigned long size;
 576	int ret = 0;
 577
 578	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 579	found_type = btrfs_file_extent_type(eb, item);
 580
 581	if (found_type == BTRFS_FILE_EXTENT_REG ||
 582	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 583		nbytes = btrfs_file_extent_num_bytes(eb, item);
 584		extent_end = start + nbytes;
 585
 586		/*
 587		 * We don't add to the inodes nbytes if we are prealloc or a
 588		 * hole.
 589		 */
 590		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 591			nbytes = 0;
 592	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 593		size = btrfs_file_extent_inline_len(eb, slot, item);
 594		nbytes = btrfs_file_extent_ram_bytes(eb, item);
 595		extent_end = ALIGN(start + size, root->sectorsize);
 596	} else {
 597		ret = 0;
 598		goto out;
 599	}
 600
 601	inode = read_one_inode(root, key->objectid);
 602	if (!inode) {
 603		ret = -EIO;
 604		goto out;
 605	}
 606
 607	/*
 608	 * first check to see if we already have this extent in the
 609	 * file.  This must be done before the btrfs_drop_extents run
 610	 * so we don't try to drop this extent.
 611	 */
 612	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
 613				       start, 0);
 614
 615	if (ret == 0 &&
 616	    (found_type == BTRFS_FILE_EXTENT_REG ||
 617	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 618		struct btrfs_file_extent_item cmp1;
 619		struct btrfs_file_extent_item cmp2;
 620		struct btrfs_file_extent_item *existing;
 621		struct extent_buffer *leaf;
 622
 623		leaf = path->nodes[0];
 624		existing = btrfs_item_ptr(leaf, path->slots[0],
 625					  struct btrfs_file_extent_item);
 626
 627		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 628				   sizeof(cmp1));
 629		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 630				   sizeof(cmp2));
 631
 632		/*
 633		 * we already have a pointer to this exact extent,
 634		 * we don't have to do anything
 635		 */
 636		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 637			btrfs_release_path(path);
 638			goto out;
 639		}
 640	}
 641	btrfs_release_path(path);
 642
 
 643	/* drop any overlapping extents */
 644	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
 645	if (ret)
 646		goto out;
 647
 648	if (found_type == BTRFS_FILE_EXTENT_REG ||
 649	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 650		u64 offset;
 651		unsigned long dest_offset;
 652		struct btrfs_key ins;
 653
 654		ret = btrfs_insert_empty_item(trans, root, path, key,
 655					      sizeof(*item));
 656		if (ret)
 657			goto out;
 658		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 659						    path->slots[0]);
 660		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 661				(unsigned long)item,  sizeof(*item));
 662
 663		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 664		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 665		ins.type = BTRFS_EXTENT_ITEM_KEY;
 666		offset = key->offset - btrfs_file_extent_offset(eb, item);
 667
 668		if (ins.objectid > 0) {
 669			u64 csum_start;
 670			u64 csum_end;
 671			LIST_HEAD(ordered_sums);
 672			/*
 673			 * is this extent already allocated in the extent
 674			 * allocation tree?  If so, just add a reference
 675			 */
 676			ret = btrfs_lookup_extent(root, ins.objectid,
 677						ins.offset);
 678			if (ret == 0) {
 679				ret = btrfs_inc_extent_ref(trans, root,
 680						ins.objectid, ins.offset,
 681						0, root->root_key.objectid,
 682						key->objectid, offset, 0);
 683				if (ret)
 684					goto out;
 685			} else {
 686				/*
 687				 * insert the extent pointer in the extent
 688				 * allocation tree
 689				 */
 690				ret = btrfs_alloc_logged_file_extent(trans,
 691						root, root->root_key.objectid,
 692						key->objectid, offset, &ins);
 693				if (ret)
 694					goto out;
 695			}
 696			btrfs_release_path(path);
 697
 698			if (btrfs_file_extent_compression(eb, item)) {
 699				csum_start = ins.objectid;
 700				csum_end = csum_start + ins.offset;
 701			} else {
 702				csum_start = ins.objectid +
 703					btrfs_file_extent_offset(eb, item);
 704				csum_end = csum_start +
 705					btrfs_file_extent_num_bytes(eb, item);
 706			}
 707
 708			ret = btrfs_lookup_csums_range(root->log_root,
 709						csum_start, csum_end - 1,
 710						&ordered_sums, 0);
 711			if (ret)
 712				goto out;
 713			while (!list_empty(&ordered_sums)) {
 714				struct btrfs_ordered_sum *sums;
 715				sums = list_entry(ordered_sums.next,
 716						struct btrfs_ordered_sum,
 717						list);
 718				if (!ret)
 719					ret = btrfs_csum_file_blocks(trans,
 720						root->fs_info->csum_root,
 721						sums);
 
 722				list_del(&sums->list);
 723				kfree(sums);
 724			}
 725			if (ret)
 726				goto out;
 727		} else {
 728			btrfs_release_path(path);
 729		}
 730	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 731		/* inline extents are easy, we just overwrite them */
 732		ret = overwrite_item(trans, root, path, eb, slot, key);
 733		if (ret)
 734			goto out;
 735	}
 736
 737	inode_add_bytes(inode, nbytes);
 738	ret = btrfs_update_inode(trans, root, inode);
 739out:
 740	if (inode)
 741		iput(inode);
 742	return ret;
 743}
 744
 745/*
 746 * when cleaning up conflicts between the directory names in the
 747 * subvolume, directory names in the log and directory names in the
 748 * inode back references, we may have to unlink inodes from directories.
 749 *
 750 * This is a helper function to do the unlink of a specific directory
 751 * item
 752 */
 753static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 754				      struct btrfs_root *root,
 755				      struct btrfs_path *path,
 756				      struct inode *dir,
 757				      struct btrfs_dir_item *di)
 758{
 759	struct inode *inode;
 760	char *name;
 761	int name_len;
 762	struct extent_buffer *leaf;
 763	struct btrfs_key location;
 764	int ret;
 765
 766	leaf = path->nodes[0];
 767
 768	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 769	name_len = btrfs_dir_name_len(leaf, di);
 770	name = kmalloc(name_len, GFP_NOFS);
 771	if (!name)
 772		return -ENOMEM;
 773
 774	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 775	btrfs_release_path(path);
 776
 777	inode = read_one_inode(root, location.objectid);
 778	if (!inode) {
 779		ret = -EIO;
 780		goto out;
 781	}
 782
 783	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 784	if (ret)
 785		goto out;
 786
 787	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
 788	if (ret)
 789		goto out;
 790	else
 791		ret = btrfs_run_delayed_items(trans, root);
 792out:
 793	kfree(name);
 
 794	iput(inode);
 
 
 795	return ret;
 796}
 797
 798/*
 799 * helper function to see if a given name and sequence number found
 800 * in an inode back reference are already in a directory and correctly
 801 * point to this inode
 802 */
 803static noinline int inode_in_dir(struct btrfs_root *root,
 804				 struct btrfs_path *path,
 805				 u64 dirid, u64 objectid, u64 index,
 806				 const char *name, int name_len)
 807{
 808	struct btrfs_dir_item *di;
 809	struct btrfs_key location;
 810	int match = 0;
 811
 812	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 813					 index, name, name_len, 0);
 814	if (di && !IS_ERR(di)) {
 815		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 816		if (location.objectid != objectid)
 817			goto out;
 818	} else
 819		goto out;
 820	btrfs_release_path(path);
 821
 822	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 823	if (di && !IS_ERR(di)) {
 824		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 825		if (location.objectid != objectid)
 826			goto out;
 827	} else
 828		goto out;
 829	match = 1;
 830out:
 831	btrfs_release_path(path);
 832	return match;
 833}
 834
 835/*
 836 * helper function to check a log tree for a named back reference in
 837 * an inode.  This is used to decide if a back reference that is
 838 * found in the subvolume conflicts with what we find in the log.
 839 *
 840 * inode backreferences may have multiple refs in a single item,
 841 * during replay we process one reference at a time, and we don't
 842 * want to delete valid links to a file from the subvolume if that
 843 * link is also in the log.
 844 */
 845static noinline int backref_in_log(struct btrfs_root *log,
 846				   struct btrfs_key *key,
 847				   u64 ref_objectid,
 848				   char *name, int namelen)
 849{
 850	struct btrfs_path *path;
 851	struct btrfs_inode_ref *ref;
 852	unsigned long ptr;
 853	unsigned long ptr_end;
 854	unsigned long name_ptr;
 855	int found_name_len;
 856	int item_size;
 857	int ret;
 858	int match = 0;
 859
 860	path = btrfs_alloc_path();
 861	if (!path)
 862		return -ENOMEM;
 863
 864	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 865	if (ret != 0)
 866		goto out;
 867
 
 868	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 869
 870	if (key->type == BTRFS_INODE_EXTREF_KEY) {
 871		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
 872						   name, namelen, NULL))
 873			match = 1;
 874
 875		goto out;
 876	}
 877
 878	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 879	ptr_end = ptr + item_size;
 880	while (ptr < ptr_end) {
 881		ref = (struct btrfs_inode_ref *)ptr;
 882		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 883		if (found_name_len == namelen) {
 884			name_ptr = (unsigned long)(ref + 1);
 885			ret = memcmp_extent_buffer(path->nodes[0], name,
 886						   name_ptr, namelen);
 887			if (ret == 0) {
 888				match = 1;
 889				goto out;
 890			}
 891		}
 892		ptr = (unsigned long)(ref + 1) + found_name_len;
 893	}
 894out:
 895	btrfs_free_path(path);
 896	return match;
 897}
 898
 899static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
 
 
 
 
 
 
 
 900				  struct btrfs_root *root,
 
 901				  struct btrfs_path *path,
 902				  struct btrfs_root *log_root,
 903				  struct inode *dir, struct inode *inode,
 904				  struct extent_buffer *eb,
 905				  u64 inode_objectid, u64 parent_objectid,
 906				  u64 ref_index, char *name, int namelen,
 907				  int *search_done)
 908{
 
 
 
 
 
 
 
 
 909	int ret;
 910	char *victim_name;
 911	int victim_name_len;
 912	struct extent_buffer *leaf;
 913	struct btrfs_dir_item *di;
 914	struct btrfs_key search_key;
 915	struct btrfs_inode_extref *extref;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 916
 917again:
 918	/* Search old style refs */
 919	search_key.objectid = inode_objectid;
 920	search_key.type = BTRFS_INODE_REF_KEY;
 921	search_key.offset = parent_objectid;
 922	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923	if (ret == 0) {
 
 
 924		struct btrfs_inode_ref *victim_ref;
 925		unsigned long ptr;
 926		unsigned long ptr_end;
 927
 928		leaf = path->nodes[0];
 929
 930		/* are we trying to overwrite a back ref for the root directory
 931		 * if so, just jump out, we're done
 932		 */
 933		if (search_key.objectid == search_key.offset)
 934			return 1;
 935
 936		/* check all the names in this back reference to see
 937		 * if they are in the log.  if so, we allow them to stay
 938		 * otherwise they must be unlinked as a conflict
 939		 */
 940		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
 941		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
 942		while (ptr < ptr_end) {
 943			victim_ref = (struct btrfs_inode_ref *)ptr;
 944			victim_name_len = btrfs_inode_ref_name_len(leaf,
 945								   victim_ref);
 946			victim_name = kmalloc(victim_name_len, GFP_NOFS);
 947			if (!victim_name)
 948				return -ENOMEM;
 949
 950			read_extent_buffer(leaf, victim_name,
 951					   (unsigned long)(victim_ref + 1),
 952					   victim_name_len);
 953
 954			if (!backref_in_log(log_root, &search_key,
 955					    parent_objectid,
 956					    victim_name,
 957					    victim_name_len)) {
 958				inc_nlink(inode);
 959				btrfs_release_path(path);
 960
 961				ret = btrfs_unlink_inode(trans, root, dir,
 962							 inode, victim_name,
 963							 victim_name_len);
 964				kfree(victim_name);
 965				if (ret)
 966					return ret;
 967				ret = btrfs_run_delayed_items(trans, root);
 968				if (ret)
 969					return ret;
 970				*search_done = 1;
 971				goto again;
 972			}
 973			kfree(victim_name);
 974
 975			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
 976		}
 
 977
 978		/*
 979		 * NOTE: we have searched root tree and checked the
 980		 * coresponding ref, it does not need to check again.
 981		 */
 982		*search_done = 1;
 983	}
 984	btrfs_release_path(path);
 985
 986	/* Same search but for extended refs */
 987	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
 988					   inode_objectid, parent_objectid, 0,
 989					   0);
 990	if (!IS_ERR_OR_NULL(extref)) {
 991		u32 item_size;
 992		u32 cur_offset = 0;
 993		unsigned long base;
 994		struct inode *victim_parent;
 995
 996		leaf = path->nodes[0];
 997
 998		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 999		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1000
1001		while (cur_offset < item_size) {
1002			extref = (struct btrfs_inode_extref *)base + cur_offset;
1003
1004			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1005
1006			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1007				goto next;
1008
1009			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1010			if (!victim_name)
1011				return -ENOMEM;
1012			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1013					   victim_name_len);
1014
1015			search_key.objectid = inode_objectid;
1016			search_key.type = BTRFS_INODE_EXTREF_KEY;
1017			search_key.offset = btrfs_extref_hash(parent_objectid,
1018							      victim_name,
1019							      victim_name_len);
1020			ret = 0;
1021			if (!backref_in_log(log_root, &search_key,
1022					    parent_objectid, victim_name,
1023					    victim_name_len)) {
1024				ret = -ENOENT;
1025				victim_parent = read_one_inode(root,
1026							       parent_objectid);
1027				if (victim_parent) {
1028					inc_nlink(inode);
1029					btrfs_release_path(path);
1030
1031					ret = btrfs_unlink_inode(trans, root,
1032								 victim_parent,
1033								 inode,
1034								 victim_name,
1035								 victim_name_len);
1036					if (!ret)
1037						ret = btrfs_run_delayed_items(
1038								  trans, root);
1039				}
1040				iput(victim_parent);
1041				kfree(victim_name);
1042				if (ret)
1043					return ret;
1044				*search_done = 1;
1045				goto again;
1046			}
1047			kfree(victim_name);
1048			if (ret)
1049				return ret;
1050next:
1051			cur_offset += victim_name_len + sizeof(*extref);
1052		}
1053		*search_done = 1;
1054	}
1055	btrfs_release_path(path);
1056
1057	/* look for a conflicting sequence number */
1058	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1059					 ref_index, name, namelen, 0);
 
1060	if (di && !IS_ERR(di)) {
1061		ret = drop_one_dir_item(trans, root, path, dir, di);
1062		if (ret)
1063			return ret;
1064	}
1065	btrfs_release_path(path);
1066
1067	/* look for a conflicing name */
1068	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1069				   name, namelen, 0);
1070	if (di && !IS_ERR(di)) {
1071		ret = drop_one_dir_item(trans, root, path, dir, di);
1072		if (ret)
1073			return ret;
1074	}
1075	btrfs_release_path(path);
1076
1077	return 0;
1078}
 
 
 
1079
1080static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1081			     u32 *namelen, char **name, u64 *index,
1082			     u64 *parent_objectid)
1083{
1084	struct btrfs_inode_extref *extref;
1085
1086	extref = (struct btrfs_inode_extref *)ref_ptr;
1087
1088	*namelen = btrfs_inode_extref_name_len(eb, extref);
1089	*name = kmalloc(*namelen, GFP_NOFS);
1090	if (*name == NULL)
1091		return -ENOMEM;
1092
1093	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1094			   *namelen);
1095
1096	*index = btrfs_inode_extref_index(eb, extref);
1097	if (parent_objectid)
1098		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1099
1100	return 0;
1101}
1102
1103static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1104			  u32 *namelen, char **name, u64 *index)
1105{
1106	struct btrfs_inode_ref *ref;
1107
1108	ref = (struct btrfs_inode_ref *)ref_ptr;
1109
1110	*namelen = btrfs_inode_ref_name_len(eb, ref);
1111	*name = kmalloc(*namelen, GFP_NOFS);
1112	if (*name == NULL)
1113		return -ENOMEM;
1114
1115	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1116
1117	*index = btrfs_inode_ref_index(eb, ref);
1118
1119	return 0;
1120}
1121
1122/*
1123 * replay one inode back reference item found in the log tree.
1124 * eb, slot and key refer to the buffer and key found in the log tree.
1125 * root is the destination we are replaying into, and path is for temp
1126 * use by this function.  (it should be released on return).
1127 */
1128static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1129				  struct btrfs_root *root,
1130				  struct btrfs_root *log,
1131				  struct btrfs_path *path,
1132				  struct extent_buffer *eb, int slot,
1133				  struct btrfs_key *key)
1134{
1135	struct inode *dir = NULL;
1136	struct inode *inode = NULL;
1137	unsigned long ref_ptr;
1138	unsigned long ref_end;
1139	char *name = NULL;
1140	int namelen;
1141	int ret;
1142	int search_done = 0;
1143	int log_ref_ver = 0;
1144	u64 parent_objectid;
1145	u64 inode_objectid;
1146	u64 ref_index = 0;
1147	int ref_struct_size;
1148
1149	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1150	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1151
1152	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1153		struct btrfs_inode_extref *r;
1154
1155		ref_struct_size = sizeof(struct btrfs_inode_extref);
1156		log_ref_ver = 1;
1157		r = (struct btrfs_inode_extref *)ref_ptr;
1158		parent_objectid = btrfs_inode_extref_parent(eb, r);
1159	} else {
1160		ref_struct_size = sizeof(struct btrfs_inode_ref);
1161		parent_objectid = key->offset;
1162	}
1163	inode_objectid = key->objectid;
1164
1165	/*
1166	 * it is possible that we didn't log all the parent directories
1167	 * for a given inode.  If we don't find the dir, just don't
1168	 * copy the back ref in.  The link count fixup code will take
1169	 * care of the rest
1170	 */
1171	dir = read_one_inode(root, parent_objectid);
1172	if (!dir) {
1173		ret = -ENOENT;
1174		goto out;
1175	}
1176
1177	inode = read_one_inode(root, inode_objectid);
1178	if (!inode) {
1179		ret = -EIO;
1180		goto out;
1181	}
1182
1183	while (ref_ptr < ref_end) {
1184		if (log_ref_ver) {
1185			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1186						&ref_index, &parent_objectid);
1187			/*
1188			 * parent object can change from one array
1189			 * item to another.
1190			 */
1191			if (!dir)
1192				dir = read_one_inode(root, parent_objectid);
1193			if (!dir) {
1194				ret = -ENOENT;
1195				goto out;
1196			}
1197		} else {
1198			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1199					     &ref_index);
1200		}
1201		if (ret)
1202			goto out;
1203
1204		/* if we already have a perfect match, we're done */
1205		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1206				  ref_index, name, namelen)) {
1207			/*
1208			 * look for a conflicting back reference in the
1209			 * metadata. if we find one we have to unlink that name
1210			 * of the file before we add our new link.  Later on, we
1211			 * overwrite any existing back reference, and we don't
1212			 * want to create dangling pointers in the directory.
1213			 */
1214
1215			if (!search_done) {
1216				ret = __add_inode_ref(trans, root, path, log,
1217						      dir, inode, eb,
1218						      inode_objectid,
1219						      parent_objectid,
1220						      ref_index, name, namelen,
1221						      &search_done);
1222				if (ret) {
1223					if (ret == 1)
1224						ret = 0;
1225					goto out;
1226				}
1227			}
1228
1229			/* insert our name */
1230			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1231					     0, ref_index);
1232			if (ret)
1233				goto out;
1234
1235			btrfs_update_inode(trans, root, inode);
1236		}
1237
1238		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1239		kfree(name);
1240		name = NULL;
1241		if (log_ref_ver) {
1242			iput(dir);
1243			dir = NULL;
1244		}
1245	}
1246
1247	/* finally write the back reference in the inode */
1248	ret = overwrite_item(trans, root, path, eb, slot, key);
1249out:
 
 
1250	btrfs_release_path(path);
1251	kfree(name);
1252	iput(dir);
1253	iput(inode);
1254	return ret;
1255}
1256
1257static int insert_orphan_item(struct btrfs_trans_handle *trans,
1258			      struct btrfs_root *root, u64 offset)
1259{
1260	int ret;
1261	ret = btrfs_find_item(root, NULL, BTRFS_ORPHAN_OBJECTID,
1262			offset, BTRFS_ORPHAN_ITEM_KEY, NULL);
1263	if (ret > 0)
1264		ret = btrfs_insert_orphan_item(trans, root, offset);
1265	return ret;
1266}
1267
1268static int count_inode_extrefs(struct btrfs_root *root,
1269			       struct inode *inode, struct btrfs_path *path)
1270{
1271	int ret = 0;
1272	int name_len;
1273	unsigned int nlink = 0;
1274	u32 item_size;
1275	u32 cur_offset = 0;
1276	u64 inode_objectid = btrfs_ino(inode);
1277	u64 offset = 0;
1278	unsigned long ptr;
1279	struct btrfs_inode_extref *extref;
1280	struct extent_buffer *leaf;
1281
1282	while (1) {
1283		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1284					    &extref, &offset);
1285		if (ret)
1286			break;
1287
1288		leaf = path->nodes[0];
1289		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1290		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1291
1292		while (cur_offset < item_size) {
1293			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1294			name_len = btrfs_inode_extref_name_len(leaf, extref);
1295
1296			nlink++;
1297
1298			cur_offset += name_len + sizeof(*extref);
1299		}
1300
1301		offset++;
1302		btrfs_release_path(path);
1303	}
1304	btrfs_release_path(path);
1305
1306	if (ret < 0)
1307		return ret;
1308	return nlink;
1309}
1310
1311static int count_inode_refs(struct btrfs_root *root,
1312			       struct inode *inode, struct btrfs_path *path)
1313{
 
1314	int ret;
1315	struct btrfs_key key;
1316	unsigned int nlink = 0;
1317	unsigned long ptr;
1318	unsigned long ptr_end;
1319	int name_len;
1320	u64 ino = btrfs_ino(inode);
1321
1322	key.objectid = ino;
1323	key.type = BTRFS_INODE_REF_KEY;
1324	key.offset = (u64)-1;
1325
 
 
 
 
1326	while (1) {
1327		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1328		if (ret < 0)
1329			break;
1330		if (ret > 0) {
1331			if (path->slots[0] == 0)
1332				break;
1333			path->slots[0]--;
1334		}
1335process_slot:
1336		btrfs_item_key_to_cpu(path->nodes[0], &key,
1337				      path->slots[0]);
1338		if (key.objectid != ino ||
1339		    key.type != BTRFS_INODE_REF_KEY)
1340			break;
1341		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1342		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1343						   path->slots[0]);
1344		while (ptr < ptr_end) {
1345			struct btrfs_inode_ref *ref;
1346
1347			ref = (struct btrfs_inode_ref *)ptr;
1348			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1349							    ref);
1350			ptr = (unsigned long)(ref + 1) + name_len;
1351			nlink++;
1352		}
1353
1354		if (key.offset == 0)
1355			break;
1356		if (path->slots[0] > 0) {
1357			path->slots[0]--;
1358			goto process_slot;
1359		}
1360		key.offset--;
1361		btrfs_release_path(path);
1362	}
1363	btrfs_release_path(path);
1364
1365	return nlink;
1366}
1367
1368/*
1369 * There are a few corners where the link count of the file can't
1370 * be properly maintained during replay.  So, instead of adding
1371 * lots of complexity to the log code, we just scan the backrefs
1372 * for any file that has been through replay.
1373 *
1374 * The scan will update the link count on the inode to reflect the
1375 * number of back refs found.  If it goes down to zero, the iput
1376 * will free the inode.
1377 */
1378static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1379					   struct btrfs_root *root,
1380					   struct inode *inode)
1381{
1382	struct btrfs_path *path;
1383	int ret;
1384	u64 nlink = 0;
1385	u64 ino = btrfs_ino(inode);
1386
1387	path = btrfs_alloc_path();
1388	if (!path)
1389		return -ENOMEM;
1390
1391	ret = count_inode_refs(root, inode, path);
1392	if (ret < 0)
1393		goto out;
1394
1395	nlink = ret;
1396
1397	ret = count_inode_extrefs(root, inode, path);
1398	if (ret == -ENOENT)
1399		ret = 0;
1400
1401	if (ret < 0)
1402		goto out;
1403
1404	nlink += ret;
1405
1406	ret = 0;
1407
1408	if (nlink != inode->i_nlink) {
1409		set_nlink(inode, nlink);
1410		btrfs_update_inode(trans, root, inode);
1411	}
1412	BTRFS_I(inode)->index_cnt = (u64)-1;
1413
1414	if (inode->i_nlink == 0) {
1415		if (S_ISDIR(inode->i_mode)) {
1416			ret = replay_dir_deletes(trans, root, NULL, path,
1417						 ino, 1);
1418			if (ret)
1419				goto out;
1420		}
1421		ret = insert_orphan_item(trans, root, ino);
 
1422	}
 
1423
1424out:
1425	btrfs_free_path(path);
1426	return ret;
1427}
1428
1429static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1430					    struct btrfs_root *root,
1431					    struct btrfs_path *path)
1432{
1433	int ret;
1434	struct btrfs_key key;
1435	struct inode *inode;
1436
1437	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1438	key.type = BTRFS_ORPHAN_ITEM_KEY;
1439	key.offset = (u64)-1;
1440	while (1) {
1441		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1442		if (ret < 0)
1443			break;
1444
1445		if (ret == 1) {
1446			if (path->slots[0] == 0)
1447				break;
1448			path->slots[0]--;
1449		}
1450
1451		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1452		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1453		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1454			break;
1455
1456		ret = btrfs_del_item(trans, root, path);
1457		if (ret)
1458			goto out;
1459
1460		btrfs_release_path(path);
1461		inode = read_one_inode(root, key.offset);
1462		if (!inode)
1463			return -EIO;
1464
1465		ret = fixup_inode_link_count(trans, root, inode);
 
 
1466		iput(inode);
1467		if (ret)
1468			goto out;
1469
1470		/*
1471		 * fixup on a directory may create new entries,
1472		 * make sure we always look for the highset possible
1473		 * offset
1474		 */
1475		key.offset = (u64)-1;
1476	}
1477	ret = 0;
1478out:
1479	btrfs_release_path(path);
1480	return ret;
1481}
1482
1483
1484/*
1485 * record a given inode in the fixup dir so we can check its link
1486 * count when replay is done.  The link count is incremented here
1487 * so the inode won't go away until we check it
1488 */
1489static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1490				      struct btrfs_root *root,
1491				      struct btrfs_path *path,
1492				      u64 objectid)
1493{
1494	struct btrfs_key key;
1495	int ret = 0;
1496	struct inode *inode;
1497
1498	inode = read_one_inode(root, objectid);
1499	if (!inode)
1500		return -EIO;
1501
1502	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1503	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1504	key.offset = objectid;
1505
1506	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1507
1508	btrfs_release_path(path);
1509	if (ret == 0) {
1510		if (!inode->i_nlink)
1511			set_nlink(inode, 1);
1512		else
1513			inc_nlink(inode);
1514		ret = btrfs_update_inode(trans, root, inode);
1515	} else if (ret == -EEXIST) {
1516		ret = 0;
1517	} else {
1518		BUG(); /* Logic Error */
1519	}
1520	iput(inode);
1521
1522	return ret;
1523}
1524
1525/*
1526 * when replaying the log for a directory, we only insert names
1527 * for inodes that actually exist.  This means an fsync on a directory
1528 * does not implicitly fsync all the new files in it
1529 */
1530static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1531				    struct btrfs_root *root,
1532				    struct btrfs_path *path,
1533				    u64 dirid, u64 index,
1534				    char *name, int name_len, u8 type,
1535				    struct btrfs_key *location)
1536{
1537	struct inode *inode;
1538	struct inode *dir;
1539	int ret;
1540
1541	inode = read_one_inode(root, location->objectid);
1542	if (!inode)
1543		return -ENOENT;
1544
1545	dir = read_one_inode(root, dirid);
1546	if (!dir) {
1547		iput(inode);
1548		return -EIO;
1549	}
1550
1551	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1552
1553	/* FIXME, put inode into FIXUP list */
1554
1555	iput(inode);
1556	iput(dir);
1557	return ret;
1558}
1559
1560/*
1561 * take a single entry in a log directory item and replay it into
1562 * the subvolume.
1563 *
1564 * if a conflicting item exists in the subdirectory already,
1565 * the inode it points to is unlinked and put into the link count
1566 * fix up tree.
1567 *
1568 * If a name from the log points to a file or directory that does
1569 * not exist in the FS, it is skipped.  fsyncs on directories
1570 * do not force down inodes inside that directory, just changes to the
1571 * names or unlinks in a directory.
1572 */
1573static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1574				    struct btrfs_root *root,
1575				    struct btrfs_path *path,
1576				    struct extent_buffer *eb,
1577				    struct btrfs_dir_item *di,
1578				    struct btrfs_key *key)
1579{
1580	char *name;
1581	int name_len;
1582	struct btrfs_dir_item *dst_di;
1583	struct btrfs_key found_key;
1584	struct btrfs_key log_key;
1585	struct inode *dir;
1586	u8 log_type;
1587	int exists;
1588	int ret = 0;
1589	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1590
1591	dir = read_one_inode(root, key->objectid);
1592	if (!dir)
1593		return -EIO;
1594
1595	name_len = btrfs_dir_name_len(eb, di);
1596	name = kmalloc(name_len, GFP_NOFS);
1597	if (!name) {
1598		ret = -ENOMEM;
1599		goto out;
1600	}
1601
1602	log_type = btrfs_dir_type(eb, di);
1603	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1604		   name_len);
1605
1606	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1607	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1608	if (exists == 0)
1609		exists = 1;
1610	else
1611		exists = 0;
1612	btrfs_release_path(path);
1613
1614	if (key->type == BTRFS_DIR_ITEM_KEY) {
1615		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1616				       name, name_len, 1);
1617	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1618		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1619						     key->objectid,
1620						     key->offset, name,
1621						     name_len, 1);
1622	} else {
1623		/* Corruption */
1624		ret = -EINVAL;
1625		goto out;
1626	}
1627	if (IS_ERR_OR_NULL(dst_di)) {
1628		/* we need a sequence number to insert, so we only
1629		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1630		 */
1631		if (key->type != BTRFS_DIR_INDEX_KEY)
1632			goto out;
1633		goto insert;
1634	}
1635
1636	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1637	/* the existing item matches the logged item */
1638	if (found_key.objectid == log_key.objectid &&
1639	    found_key.type == log_key.type &&
1640	    found_key.offset == log_key.offset &&
1641	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1642		goto out;
1643	}
1644
1645	/*
1646	 * don't drop the conflicting directory entry if the inode
1647	 * for the new entry doesn't exist
1648	 */
1649	if (!exists)
1650		goto out;
1651
1652	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1653	if (ret)
1654		goto out;
1655
1656	if (key->type == BTRFS_DIR_INDEX_KEY)
1657		goto insert;
1658out:
1659	btrfs_release_path(path);
1660	if (!ret && update_size) {
1661		btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1662		ret = btrfs_update_inode(trans, root, dir);
1663	}
1664	kfree(name);
1665	iput(dir);
1666	return ret;
1667
1668insert:
1669	btrfs_release_path(path);
1670	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1671			      name, name_len, log_type, &log_key);
1672	if (ret && ret != -ENOENT)
1673		goto out;
1674	update_size = false;
1675	ret = 0;
1676	goto out;
1677}
1678
1679/*
1680 * find all the names in a directory item and reconcile them into
1681 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1682 * one name in a directory item, but the same code gets used for
1683 * both directory index types
1684 */
1685static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1686					struct btrfs_root *root,
1687					struct btrfs_path *path,
1688					struct extent_buffer *eb, int slot,
1689					struct btrfs_key *key)
1690{
1691	int ret;
1692	u32 item_size = btrfs_item_size_nr(eb, slot);
1693	struct btrfs_dir_item *di;
1694	int name_len;
1695	unsigned long ptr;
1696	unsigned long ptr_end;
1697
1698	ptr = btrfs_item_ptr_offset(eb, slot);
1699	ptr_end = ptr + item_size;
1700	while (ptr < ptr_end) {
1701		di = (struct btrfs_dir_item *)ptr;
1702		if (verify_dir_item(root, eb, di))
1703			return -EIO;
1704		name_len = btrfs_dir_name_len(eb, di);
1705		ret = replay_one_name(trans, root, path, eb, di, key);
1706		if (ret)
1707			return ret;
1708		ptr = (unsigned long)(di + 1);
1709		ptr += name_len;
1710	}
1711	return 0;
1712}
1713
1714/*
1715 * directory replay has two parts.  There are the standard directory
1716 * items in the log copied from the subvolume, and range items
1717 * created in the log while the subvolume was logged.
1718 *
1719 * The range items tell us which parts of the key space the log
1720 * is authoritative for.  During replay, if a key in the subvolume
1721 * directory is in a logged range item, but not actually in the log
1722 * that means it was deleted from the directory before the fsync
1723 * and should be removed.
1724 */
1725static noinline int find_dir_range(struct btrfs_root *root,
1726				   struct btrfs_path *path,
1727				   u64 dirid, int key_type,
1728				   u64 *start_ret, u64 *end_ret)
1729{
1730	struct btrfs_key key;
1731	u64 found_end;
1732	struct btrfs_dir_log_item *item;
1733	int ret;
1734	int nritems;
1735
1736	if (*start_ret == (u64)-1)
1737		return 1;
1738
1739	key.objectid = dirid;
1740	key.type = key_type;
1741	key.offset = *start_ret;
1742
1743	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1744	if (ret < 0)
1745		goto out;
1746	if (ret > 0) {
1747		if (path->slots[0] == 0)
1748			goto out;
1749		path->slots[0]--;
1750	}
1751	if (ret != 0)
1752		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1753
1754	if (key.type != key_type || key.objectid != dirid) {
1755		ret = 1;
1756		goto next;
1757	}
1758	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1759			      struct btrfs_dir_log_item);
1760	found_end = btrfs_dir_log_end(path->nodes[0], item);
1761
1762	if (*start_ret >= key.offset && *start_ret <= found_end) {
1763		ret = 0;
1764		*start_ret = key.offset;
1765		*end_ret = found_end;
1766		goto out;
1767	}
1768	ret = 1;
1769next:
1770	/* check the next slot in the tree to see if it is a valid item */
1771	nritems = btrfs_header_nritems(path->nodes[0]);
1772	if (path->slots[0] >= nritems) {
1773		ret = btrfs_next_leaf(root, path);
1774		if (ret)
1775			goto out;
1776	} else {
1777		path->slots[0]++;
1778	}
1779
1780	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1781
1782	if (key.type != key_type || key.objectid != dirid) {
1783		ret = 1;
1784		goto out;
1785	}
1786	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1787			      struct btrfs_dir_log_item);
1788	found_end = btrfs_dir_log_end(path->nodes[0], item);
1789	*start_ret = key.offset;
1790	*end_ret = found_end;
1791	ret = 0;
1792out:
1793	btrfs_release_path(path);
1794	return ret;
1795}
1796
1797/*
1798 * this looks for a given directory item in the log.  If the directory
1799 * item is not in the log, the item is removed and the inode it points
1800 * to is unlinked
1801 */
1802static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1803				      struct btrfs_root *root,
1804				      struct btrfs_root *log,
1805				      struct btrfs_path *path,
1806				      struct btrfs_path *log_path,
1807				      struct inode *dir,
1808				      struct btrfs_key *dir_key)
1809{
1810	int ret;
1811	struct extent_buffer *eb;
1812	int slot;
1813	u32 item_size;
1814	struct btrfs_dir_item *di;
1815	struct btrfs_dir_item *log_di;
1816	int name_len;
1817	unsigned long ptr;
1818	unsigned long ptr_end;
1819	char *name;
1820	struct inode *inode;
1821	struct btrfs_key location;
1822
1823again:
1824	eb = path->nodes[0];
1825	slot = path->slots[0];
1826	item_size = btrfs_item_size_nr(eb, slot);
1827	ptr = btrfs_item_ptr_offset(eb, slot);
1828	ptr_end = ptr + item_size;
1829	while (ptr < ptr_end) {
1830		di = (struct btrfs_dir_item *)ptr;
1831		if (verify_dir_item(root, eb, di)) {
1832			ret = -EIO;
1833			goto out;
1834		}
1835
1836		name_len = btrfs_dir_name_len(eb, di);
1837		name = kmalloc(name_len, GFP_NOFS);
1838		if (!name) {
1839			ret = -ENOMEM;
1840			goto out;
1841		}
1842		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1843				  name_len);
1844		log_di = NULL;
1845		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1846			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1847						       dir_key->objectid,
1848						       name, name_len, 0);
1849		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1850			log_di = btrfs_lookup_dir_index_item(trans, log,
1851						     log_path,
1852						     dir_key->objectid,
1853						     dir_key->offset,
1854						     name, name_len, 0);
1855		}
1856		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
1857			btrfs_dir_item_key_to_cpu(eb, di, &location);
1858			btrfs_release_path(path);
1859			btrfs_release_path(log_path);
1860			inode = read_one_inode(root, location.objectid);
1861			if (!inode) {
1862				kfree(name);
1863				return -EIO;
1864			}
1865
1866			ret = link_to_fixup_dir(trans, root,
1867						path, location.objectid);
1868			if (ret) {
1869				kfree(name);
1870				iput(inode);
1871				goto out;
1872			}
1873
1874			inc_nlink(inode);
1875			ret = btrfs_unlink_inode(trans, root, dir, inode,
1876						 name, name_len);
1877			if (!ret)
1878				ret = btrfs_run_delayed_items(trans, root);
 
 
1879			kfree(name);
1880			iput(inode);
1881			if (ret)
1882				goto out;
1883
1884			/* there might still be more names under this key
1885			 * check and repeat if required
1886			 */
1887			ret = btrfs_search_slot(NULL, root, dir_key, path,
1888						0, 0);
1889			if (ret == 0)
1890				goto again;
1891			ret = 0;
1892			goto out;
1893		} else if (IS_ERR(log_di)) {
1894			kfree(name);
1895			return PTR_ERR(log_di);
1896		}
1897		btrfs_release_path(log_path);
1898		kfree(name);
1899
1900		ptr = (unsigned long)(di + 1);
1901		ptr += name_len;
1902	}
1903	ret = 0;
1904out:
1905	btrfs_release_path(path);
1906	btrfs_release_path(log_path);
1907	return ret;
1908}
1909
1910/*
1911 * deletion replay happens before we copy any new directory items
1912 * out of the log or out of backreferences from inodes.  It
1913 * scans the log to find ranges of keys that log is authoritative for,
1914 * and then scans the directory to find items in those ranges that are
1915 * not present in the log.
1916 *
1917 * Anything we don't find in the log is unlinked and removed from the
1918 * directory.
1919 */
1920static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1921				       struct btrfs_root *root,
1922				       struct btrfs_root *log,
1923				       struct btrfs_path *path,
1924				       u64 dirid, int del_all)
1925{
1926	u64 range_start;
1927	u64 range_end;
1928	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1929	int ret = 0;
1930	struct btrfs_key dir_key;
1931	struct btrfs_key found_key;
1932	struct btrfs_path *log_path;
1933	struct inode *dir;
1934
1935	dir_key.objectid = dirid;
1936	dir_key.type = BTRFS_DIR_ITEM_KEY;
1937	log_path = btrfs_alloc_path();
1938	if (!log_path)
1939		return -ENOMEM;
1940
1941	dir = read_one_inode(root, dirid);
1942	/* it isn't an error if the inode isn't there, that can happen
1943	 * because we replay the deletes before we copy in the inode item
1944	 * from the log
1945	 */
1946	if (!dir) {
1947		btrfs_free_path(log_path);
1948		return 0;
1949	}
1950again:
1951	range_start = 0;
1952	range_end = 0;
1953	while (1) {
1954		if (del_all)
1955			range_end = (u64)-1;
1956		else {
1957			ret = find_dir_range(log, path, dirid, key_type,
1958					     &range_start, &range_end);
1959			if (ret != 0)
1960				break;
1961		}
1962
1963		dir_key.offset = range_start;
1964		while (1) {
1965			int nritems;
1966			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1967						0, 0);
1968			if (ret < 0)
1969				goto out;
1970
1971			nritems = btrfs_header_nritems(path->nodes[0]);
1972			if (path->slots[0] >= nritems) {
1973				ret = btrfs_next_leaf(root, path);
1974				if (ret)
1975					break;
1976			}
1977			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1978					      path->slots[0]);
1979			if (found_key.objectid != dirid ||
1980			    found_key.type != dir_key.type)
1981				goto next_type;
1982
1983			if (found_key.offset > range_end)
1984				break;
1985
1986			ret = check_item_in_log(trans, root, log, path,
1987						log_path, dir,
1988						&found_key);
1989			if (ret)
1990				goto out;
1991			if (found_key.offset == (u64)-1)
1992				break;
1993			dir_key.offset = found_key.offset + 1;
1994		}
1995		btrfs_release_path(path);
1996		if (range_end == (u64)-1)
1997			break;
1998		range_start = range_end + 1;
1999	}
2000
2001next_type:
2002	ret = 0;
2003	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2004		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2005		dir_key.type = BTRFS_DIR_INDEX_KEY;
2006		btrfs_release_path(path);
2007		goto again;
2008	}
2009out:
2010	btrfs_release_path(path);
2011	btrfs_free_path(log_path);
2012	iput(dir);
2013	return ret;
2014}
2015
2016/*
2017 * the process_func used to replay items from the log tree.  This
2018 * gets called in two different stages.  The first stage just looks
2019 * for inodes and makes sure they are all copied into the subvolume.
2020 *
2021 * The second stage copies all the other item types from the log into
2022 * the subvolume.  The two stage approach is slower, but gets rid of
2023 * lots of complexity around inodes referencing other inodes that exist
2024 * only in the log (references come from either directory items or inode
2025 * back refs).
2026 */
2027static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2028			     struct walk_control *wc, u64 gen)
2029{
2030	int nritems;
2031	struct btrfs_path *path;
2032	struct btrfs_root *root = wc->replay_dest;
2033	struct btrfs_key key;
2034	int level;
2035	int i;
2036	int ret;
2037
2038	ret = btrfs_read_buffer(eb, gen);
2039	if (ret)
2040		return ret;
2041
2042	level = btrfs_header_level(eb);
2043
2044	if (level != 0)
2045		return 0;
2046
2047	path = btrfs_alloc_path();
2048	if (!path)
2049		return -ENOMEM;
2050
2051	nritems = btrfs_header_nritems(eb);
2052	for (i = 0; i < nritems; i++) {
2053		btrfs_item_key_to_cpu(eb, &key, i);
2054
2055		/* inode keys are done during the first stage */
2056		if (key.type == BTRFS_INODE_ITEM_KEY &&
2057		    wc->stage == LOG_WALK_REPLAY_INODES) {
2058			struct btrfs_inode_item *inode_item;
2059			u32 mode;
2060
2061			inode_item = btrfs_item_ptr(eb, i,
2062					    struct btrfs_inode_item);
2063			mode = btrfs_inode_mode(eb, inode_item);
2064			if (S_ISDIR(mode)) {
2065				ret = replay_dir_deletes(wc->trans,
2066					 root, log, path, key.objectid, 0);
2067				if (ret)
2068					break;
2069			}
2070			ret = overwrite_item(wc->trans, root, path,
2071					     eb, i, &key);
2072			if (ret)
2073				break;
2074
2075			/* for regular files, make sure corresponding
2076			 * orhpan item exist. extents past the new EOF
2077			 * will be truncated later by orphan cleanup.
2078			 */
2079			if (S_ISREG(mode)) {
2080				ret = insert_orphan_item(wc->trans, root,
2081							 key.objectid);
2082				if (ret)
2083					break;
2084			}
2085
2086			ret = link_to_fixup_dir(wc->trans, root,
2087						path, key.objectid);
2088			if (ret)
2089				break;
2090		}
2091
2092		if (key.type == BTRFS_DIR_INDEX_KEY &&
2093		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2094			ret = replay_one_dir_item(wc->trans, root, path,
2095						  eb, i, &key);
2096			if (ret)
2097				break;
2098		}
2099
2100		if (wc->stage < LOG_WALK_REPLAY_ALL)
2101			continue;
2102
2103		/* these keys are simply copied */
2104		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2105			ret = overwrite_item(wc->trans, root, path,
2106					     eb, i, &key);
2107			if (ret)
2108				break;
2109		} else if (key.type == BTRFS_INODE_REF_KEY ||
2110			   key.type == BTRFS_INODE_EXTREF_KEY) {
2111			ret = add_inode_ref(wc->trans, root, log, path,
2112					    eb, i, &key);
2113			if (ret && ret != -ENOENT)
2114				break;
2115			ret = 0;
2116		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2117			ret = replay_one_extent(wc->trans, root, path,
2118						eb, i, &key);
2119			if (ret)
2120				break;
2121		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2122			ret = replay_one_dir_item(wc->trans, root, path,
2123						  eb, i, &key);
2124			if (ret)
2125				break;
2126		}
2127	}
2128	btrfs_free_path(path);
2129	return ret;
2130}
2131
2132static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2133				   struct btrfs_root *root,
2134				   struct btrfs_path *path, int *level,
2135				   struct walk_control *wc)
2136{
2137	u64 root_owner;
2138	u64 bytenr;
2139	u64 ptr_gen;
2140	struct extent_buffer *next;
2141	struct extent_buffer *cur;
2142	struct extent_buffer *parent;
2143	u32 blocksize;
2144	int ret = 0;
2145
2146	WARN_ON(*level < 0);
2147	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2148
2149	while (*level > 0) {
2150		WARN_ON(*level < 0);
2151		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2152		cur = path->nodes[*level];
2153
2154		WARN_ON(btrfs_header_level(cur) != *level);
 
2155
2156		if (path->slots[*level] >=
2157		    btrfs_header_nritems(cur))
2158			break;
2159
2160		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2161		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2162		blocksize = btrfs_level_size(root, *level - 1);
2163
2164		parent = path->nodes[*level];
2165		root_owner = btrfs_header_owner(parent);
2166
2167		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2168		if (!next)
2169			return -ENOMEM;
2170
2171		if (*level == 1) {
2172			ret = wc->process_func(root, next, wc, ptr_gen);
2173			if (ret) {
2174				free_extent_buffer(next);
2175				return ret;
2176			}
2177
2178			path->slots[*level]++;
2179			if (wc->free) {
2180				ret = btrfs_read_buffer(next, ptr_gen);
2181				if (ret) {
2182					free_extent_buffer(next);
2183					return ret;
2184				}
2185
2186				if (trans) {
2187					btrfs_tree_lock(next);
2188					btrfs_set_lock_blocking(next);
2189					clean_tree_block(trans, root, next);
2190					btrfs_wait_tree_block_writeback(next);
2191					btrfs_tree_unlock(next);
2192				}
2193
2194				WARN_ON(root_owner !=
2195					BTRFS_TREE_LOG_OBJECTID);
2196				ret = btrfs_free_and_pin_reserved_extent(root,
2197							 bytenr, blocksize);
2198				if (ret) {
2199					free_extent_buffer(next);
2200					return ret;
2201				}
2202			}
2203			free_extent_buffer(next);
2204			continue;
2205		}
2206		ret = btrfs_read_buffer(next, ptr_gen);
2207		if (ret) {
2208			free_extent_buffer(next);
2209			return ret;
2210		}
2211
2212		WARN_ON(*level <= 0);
2213		if (path->nodes[*level-1])
2214			free_extent_buffer(path->nodes[*level-1]);
2215		path->nodes[*level-1] = next;
2216		*level = btrfs_header_level(next);
2217		path->slots[*level] = 0;
2218		cond_resched();
2219	}
2220	WARN_ON(*level < 0);
2221	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2222
2223	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2224
2225	cond_resched();
2226	return 0;
2227}
2228
2229static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2230				 struct btrfs_root *root,
2231				 struct btrfs_path *path, int *level,
2232				 struct walk_control *wc)
2233{
2234	u64 root_owner;
2235	int i;
2236	int slot;
2237	int ret;
2238
2239	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2240		slot = path->slots[i];
2241		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2242			path->slots[i]++;
2243			*level = i;
2244			WARN_ON(*level == 0);
2245			return 0;
2246		} else {
2247			struct extent_buffer *parent;
2248			if (path->nodes[*level] == root->node)
2249				parent = path->nodes[*level];
2250			else
2251				parent = path->nodes[*level + 1];
2252
2253			root_owner = btrfs_header_owner(parent);
2254			ret = wc->process_func(root, path->nodes[*level], wc,
2255				 btrfs_header_generation(path->nodes[*level]));
2256			if (ret)
2257				return ret;
2258
2259			if (wc->free) {
2260				struct extent_buffer *next;
2261
2262				next = path->nodes[*level];
2263
2264				if (trans) {
2265					btrfs_tree_lock(next);
2266					btrfs_set_lock_blocking(next);
2267					clean_tree_block(trans, root, next);
2268					btrfs_wait_tree_block_writeback(next);
2269					btrfs_tree_unlock(next);
2270				}
2271
2272				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2273				ret = btrfs_free_and_pin_reserved_extent(root,
2274						path->nodes[*level]->start,
2275						path->nodes[*level]->len);
2276				if (ret)
2277					return ret;
2278			}
2279			free_extent_buffer(path->nodes[*level]);
2280			path->nodes[*level] = NULL;
2281			*level = i + 1;
2282		}
2283	}
2284	return 1;
2285}
2286
2287/*
2288 * drop the reference count on the tree rooted at 'snap'.  This traverses
2289 * the tree freeing any blocks that have a ref count of zero after being
2290 * decremented.
2291 */
2292static int walk_log_tree(struct btrfs_trans_handle *trans,
2293			 struct btrfs_root *log, struct walk_control *wc)
2294{
2295	int ret = 0;
2296	int wret;
2297	int level;
2298	struct btrfs_path *path;
 
2299	int orig_level;
2300
2301	path = btrfs_alloc_path();
2302	if (!path)
2303		return -ENOMEM;
2304
2305	level = btrfs_header_level(log->node);
2306	orig_level = level;
2307	path->nodes[level] = log->node;
2308	extent_buffer_get(log->node);
2309	path->slots[level] = 0;
2310
2311	while (1) {
2312		wret = walk_down_log_tree(trans, log, path, &level, wc);
2313		if (wret > 0)
2314			break;
2315		if (wret < 0) {
2316			ret = wret;
2317			goto out;
2318		}
2319
2320		wret = walk_up_log_tree(trans, log, path, &level, wc);
2321		if (wret > 0)
2322			break;
2323		if (wret < 0) {
2324			ret = wret;
2325			goto out;
2326		}
2327	}
2328
2329	/* was the root node processed? if not, catch it here */
2330	if (path->nodes[orig_level]) {
2331		ret = wc->process_func(log, path->nodes[orig_level], wc,
2332			 btrfs_header_generation(path->nodes[orig_level]));
2333		if (ret)
2334			goto out;
2335		if (wc->free) {
2336			struct extent_buffer *next;
2337
2338			next = path->nodes[orig_level];
2339
2340			if (trans) {
2341				btrfs_tree_lock(next);
2342				btrfs_set_lock_blocking(next);
2343				clean_tree_block(trans, log, next);
2344				btrfs_wait_tree_block_writeback(next);
2345				btrfs_tree_unlock(next);
2346			}
2347
2348			WARN_ON(log->root_key.objectid !=
2349				BTRFS_TREE_LOG_OBJECTID);
2350			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2351							 next->len);
2352			if (ret)
2353				goto out;
2354		}
2355	}
2356
2357out:
 
 
 
 
 
 
2358	btrfs_free_path(path);
2359	return ret;
2360}
2361
2362/*
2363 * helper function to update the item for a given subvolumes log root
2364 * in the tree of log roots
2365 */
2366static int update_log_root(struct btrfs_trans_handle *trans,
2367			   struct btrfs_root *log)
2368{
2369	int ret;
2370
2371	if (log->log_transid == 1) {
2372		/* insert root item on the first sync */
2373		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2374				&log->root_key, &log->root_item);
2375	} else {
2376		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2377				&log->root_key, &log->root_item);
2378	}
2379	return ret;
2380}
2381
2382static void wait_log_commit(struct btrfs_trans_handle *trans,
2383			    struct btrfs_root *root, int transid)
2384{
2385	DEFINE_WAIT(wait);
2386	int index = transid % 2;
2387
2388	/*
2389	 * we only allow two pending log transactions at a time,
2390	 * so we know that if ours is more than 2 older than the
2391	 * current transaction, we're done
2392	 */
2393	do {
2394		prepare_to_wait(&root->log_commit_wait[index],
2395				&wait, TASK_UNINTERRUPTIBLE);
2396		mutex_unlock(&root->log_mutex);
2397
2398		if (root->log_transid_committed < transid &&
 
2399		    atomic_read(&root->log_commit[index]))
2400			schedule();
2401
2402		finish_wait(&root->log_commit_wait[index], &wait);
2403		mutex_lock(&root->log_mutex);
2404	} while (root->log_transid_committed < transid &&
 
2405		 atomic_read(&root->log_commit[index]));
 
2406}
2407
2408static void wait_for_writer(struct btrfs_trans_handle *trans,
2409			    struct btrfs_root *root)
2410{
2411	DEFINE_WAIT(wait);
2412
2413	while (atomic_read(&root->log_writers)) {
2414		prepare_to_wait(&root->log_writer_wait,
2415				&wait, TASK_UNINTERRUPTIBLE);
2416		mutex_unlock(&root->log_mutex);
2417		if (atomic_read(&root->log_writers))
 
2418			schedule();
2419		mutex_lock(&root->log_mutex);
2420		finish_wait(&root->log_writer_wait, &wait);
2421	}
2422}
2423
2424static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2425					struct btrfs_log_ctx *ctx)
2426{
2427	if (!ctx)
2428		return;
2429
2430	mutex_lock(&root->log_mutex);
2431	list_del_init(&ctx->list);
2432	mutex_unlock(&root->log_mutex);
2433}
2434
2435/* 
2436 * Invoked in log mutex context, or be sure there is no other task which
2437 * can access the list.
2438 */
2439static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2440					     int index, int error)
2441{
2442	struct btrfs_log_ctx *ctx;
2443
2444	if (!error) {
2445		INIT_LIST_HEAD(&root->log_ctxs[index]);
2446		return;
2447	}
2448
2449	list_for_each_entry(ctx, &root->log_ctxs[index], list)
2450		ctx->log_ret = error;
2451
2452	INIT_LIST_HEAD(&root->log_ctxs[index]);
2453}
2454
2455/*
2456 * btrfs_sync_log does sends a given tree log down to the disk and
2457 * updates the super blocks to record it.  When this call is done,
2458 * you know that any inodes previously logged are safely on disk only
2459 * if it returns 0.
2460 *
2461 * Any other return value means you need to call btrfs_commit_transaction.
2462 * Some of the edge cases for fsyncing directories that have had unlinks
2463 * or renames done in the past mean that sometimes the only safe
2464 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2465 * that has happened.
2466 */
2467int btrfs_sync_log(struct btrfs_trans_handle *trans,
2468		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2469{
2470	int index1;
2471	int index2;
2472	int mark;
2473	int ret;
2474	struct btrfs_root *log = root->log_root;
2475	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2476	int log_transid = 0;
2477	struct btrfs_log_ctx root_log_ctx;
2478	struct blk_plug plug;
2479
2480	mutex_lock(&root->log_mutex);
2481	log_transid = ctx->log_transid;
2482	if (root->log_transid_committed >= log_transid) {
2483		mutex_unlock(&root->log_mutex);
2484		return ctx->log_ret;
2485	}
2486
2487	index1 = log_transid % 2;
2488	if (atomic_read(&root->log_commit[index1])) {
2489		wait_log_commit(trans, root, log_transid);
2490		mutex_unlock(&root->log_mutex);
2491		return ctx->log_ret;
2492	}
2493	ASSERT(log_transid == root->log_transid);
2494	atomic_set(&root->log_commit[index1], 1);
2495
2496	/* wait for previous tree log sync to complete */
2497	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2498		wait_log_commit(trans, root, log_transid - 1);
2499
2500	while (1) {
2501		int batch = atomic_read(&root->log_batch);
2502		/* when we're on an ssd, just kick the log commit out */
2503		if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2504			mutex_unlock(&root->log_mutex);
2505			schedule_timeout_uninterruptible(1);
2506			mutex_lock(&root->log_mutex);
2507		}
2508		wait_for_writer(trans, root);
2509		if (batch == atomic_read(&root->log_batch))
2510			break;
2511	}
2512
2513	/* bail out if we need to do a full commit */
2514	if (ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) ==
2515	    trans->transid) {
2516		ret = -EAGAIN;
2517		btrfs_free_logged_extents(log, log_transid);
2518		mutex_unlock(&root->log_mutex);
2519		goto out;
2520	}
2521
 
2522	if (log_transid % 2 == 0)
2523		mark = EXTENT_DIRTY;
2524	else
2525		mark = EXTENT_NEW;
2526
2527	/* we start IO on  all the marked extents here, but we don't actually
2528	 * wait for them until later.
2529	 */
2530	blk_start_plug(&plug);
2531	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2532	if (ret) {
2533		blk_finish_plug(&plug);
2534		btrfs_abort_transaction(trans, root, ret);
2535		btrfs_free_logged_extents(log, log_transid);
2536		ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) =
2537								trans->transid;
2538		mutex_unlock(&root->log_mutex);
2539		goto out;
2540	}
2541
2542	btrfs_set_root_node(&log->root_item, log->node);
2543
 
2544	root->log_transid++;
2545	log->log_transid = root->log_transid;
2546	root->log_start_pid = 0;
 
2547	/*
2548	 * IO has been started, blocks of the log tree have WRITTEN flag set
2549	 * in their headers. new modifications of the log will be written to
2550	 * new positions. so it's safe to allow log writers to go in.
2551	 */
2552	mutex_unlock(&root->log_mutex);
2553
2554	btrfs_init_log_ctx(&root_log_ctx);
2555
2556	mutex_lock(&log_root_tree->log_mutex);
2557	atomic_inc(&log_root_tree->log_batch);
2558	atomic_inc(&log_root_tree->log_writers);
2559
2560	index2 = log_root_tree->log_transid % 2;
2561	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2562	root_log_ctx.log_transid = log_root_tree->log_transid;
2563
2564	mutex_unlock(&log_root_tree->log_mutex);
2565
2566	ret = update_log_root(trans, log);
2567
2568	mutex_lock(&log_root_tree->log_mutex);
2569	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2570		smp_mb();
2571		if (waitqueue_active(&log_root_tree->log_writer_wait))
2572			wake_up(&log_root_tree->log_writer_wait);
2573	}
2574
2575	if (ret) {
2576		if (!list_empty(&root_log_ctx.list))
2577			list_del_init(&root_log_ctx.list);
2578
2579		blk_finish_plug(&plug);
2580		ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) =
2581								trans->transid;
2582		if (ret != -ENOSPC) {
2583			btrfs_abort_transaction(trans, root, ret);
2584			mutex_unlock(&log_root_tree->log_mutex);
2585			goto out;
2586		}
 
2587		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2588		btrfs_free_logged_extents(log, log_transid);
2589		mutex_unlock(&log_root_tree->log_mutex);
2590		ret = -EAGAIN;
2591		goto out;
2592	}
2593
2594	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2595		mutex_unlock(&log_root_tree->log_mutex);
2596		ret = root_log_ctx.log_ret;
2597		goto out;
2598	}
2599
2600	index2 = root_log_ctx.log_transid % 2;
2601	if (atomic_read(&log_root_tree->log_commit[index2])) {
2602		blk_finish_plug(&plug);
2603		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2604		wait_log_commit(trans, log_root_tree,
2605				root_log_ctx.log_transid);
2606		btrfs_free_logged_extents(log, log_transid);
2607		mutex_unlock(&log_root_tree->log_mutex);
2608		ret = root_log_ctx.log_ret;
2609		goto out;
2610	}
2611	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2612	atomic_set(&log_root_tree->log_commit[index2], 1);
2613
2614	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2615		wait_log_commit(trans, log_root_tree,
2616				root_log_ctx.log_transid - 1);
2617	}
2618
2619	wait_for_writer(trans, log_root_tree);
2620
2621	/*
2622	 * now that we've moved on to the tree of log tree roots,
2623	 * check the full commit flag again
2624	 */
2625	if (ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) ==
2626	    trans->transid) {
2627		blk_finish_plug(&plug);
2628		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2629		btrfs_free_logged_extents(log, log_transid);
2630		mutex_unlock(&log_root_tree->log_mutex);
2631		ret = -EAGAIN;
2632		goto out_wake_log_root;
2633	}
2634
2635	ret = btrfs_write_marked_extents(log_root_tree,
2636					 &log_root_tree->dirty_log_pages,
2637					 EXTENT_DIRTY | EXTENT_NEW);
2638	blk_finish_plug(&plug);
2639	if (ret) {
2640		ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) =
2641								trans->transid;
2642		btrfs_abort_transaction(trans, root, ret);
2643		btrfs_free_logged_extents(log, log_transid);
2644		mutex_unlock(&log_root_tree->log_mutex);
2645		goto out_wake_log_root;
2646	}
2647	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2648	btrfs_wait_marked_extents(log_root_tree,
2649				  &log_root_tree->dirty_log_pages,
2650				  EXTENT_NEW | EXTENT_DIRTY);
2651	btrfs_wait_logged_extents(log, log_transid);
2652
2653	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2654				log_root_tree->node->start);
2655	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2656				btrfs_header_level(log_root_tree->node));
2657
 
2658	log_root_tree->log_transid++;
 
 
2659	mutex_unlock(&log_root_tree->log_mutex);
2660
2661	/*
2662	 * nobody else is going to jump in and write the the ctree
2663	 * super here because the log_commit atomic below is protecting
2664	 * us.  We must be called with a transaction handle pinning
2665	 * the running transaction open, so a full commit can't hop
2666	 * in and cause problems either.
2667	 */
2668	ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2669	if (ret) {
2670		ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) =
2671								trans->transid;
2672		btrfs_abort_transaction(trans, root, ret);
2673		goto out_wake_log_root;
2674	}
2675
2676	mutex_lock(&root->log_mutex);
2677	if (root->last_log_commit < log_transid)
2678		root->last_log_commit = log_transid;
2679	mutex_unlock(&root->log_mutex);
2680
2681out_wake_log_root:
2682	/*
2683	 * We needn't get log_mutex here because we are sure all
2684	 * the other tasks are blocked.
2685	 */
2686	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2687
2688	mutex_lock(&log_root_tree->log_mutex);
2689	log_root_tree->log_transid_committed++;
2690	atomic_set(&log_root_tree->log_commit[index2], 0);
2691	mutex_unlock(&log_root_tree->log_mutex);
2692
2693	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2694		wake_up(&log_root_tree->log_commit_wait[index2]);
2695out:
2696	/* See above. */
2697	btrfs_remove_all_log_ctxs(root, index1, ret);
2698
2699	mutex_lock(&root->log_mutex);
2700	root->log_transid_committed++;
2701	atomic_set(&root->log_commit[index1], 0);
2702	mutex_unlock(&root->log_mutex);
2703
2704	if (waitqueue_active(&root->log_commit_wait[index1]))
2705		wake_up(&root->log_commit_wait[index1]);
2706	return ret;
2707}
2708
2709static void free_log_tree(struct btrfs_trans_handle *trans,
2710			  struct btrfs_root *log)
2711{
2712	int ret;
2713	u64 start;
2714	u64 end;
2715	struct walk_control wc = {
2716		.free = 1,
2717		.process_func = process_one_buffer
2718	};
2719
2720	ret = walk_log_tree(trans, log, &wc);
2721	/* I don't think this can happen but just in case */
2722	if (ret)
2723		btrfs_abort_transaction(trans, log, ret);
2724
2725	while (1) {
2726		ret = find_first_extent_bit(&log->dirty_log_pages,
2727				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2728				NULL);
2729		if (ret)
2730			break;
2731
2732		clear_extent_bits(&log->dirty_log_pages, start, end,
2733				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2734	}
2735
2736	/*
2737	 * We may have short-circuited the log tree with the full commit logic
2738	 * and left ordered extents on our list, so clear these out to keep us
2739	 * from leaking inodes and memory.
2740	 */
2741	btrfs_free_logged_extents(log, 0);
2742	btrfs_free_logged_extents(log, 1);
2743
2744	free_extent_buffer(log->node);
2745	kfree(log);
2746}
2747
2748/*
2749 * free all the extents used by the tree log.  This should be called
2750 * at commit time of the full transaction
2751 */
2752int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2753{
2754	if (root->log_root) {
2755		free_log_tree(trans, root->log_root);
2756		root->log_root = NULL;
2757	}
2758	return 0;
2759}
2760
2761int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2762			     struct btrfs_fs_info *fs_info)
2763{
2764	if (fs_info->log_root_tree) {
2765		free_log_tree(trans, fs_info->log_root_tree);
2766		fs_info->log_root_tree = NULL;
2767	}
2768	return 0;
2769}
2770
2771/*
2772 * If both a file and directory are logged, and unlinks or renames are
2773 * mixed in, we have a few interesting corners:
2774 *
2775 * create file X in dir Y
2776 * link file X to X.link in dir Y
2777 * fsync file X
2778 * unlink file X but leave X.link
2779 * fsync dir Y
2780 *
2781 * After a crash we would expect only X.link to exist.  But file X
2782 * didn't get fsync'd again so the log has back refs for X and X.link.
2783 *
2784 * We solve this by removing directory entries and inode backrefs from the
2785 * log when a file that was logged in the current transaction is
2786 * unlinked.  Any later fsync will include the updated log entries, and
2787 * we'll be able to reconstruct the proper directory items from backrefs.
2788 *
2789 * This optimizations allows us to avoid relogging the entire inode
2790 * or the entire directory.
2791 */
2792int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2793				 struct btrfs_root *root,
2794				 const char *name, int name_len,
2795				 struct inode *dir, u64 index)
2796{
2797	struct btrfs_root *log;
2798	struct btrfs_dir_item *di;
2799	struct btrfs_path *path;
2800	int ret;
2801	int err = 0;
2802	int bytes_del = 0;
2803	u64 dir_ino = btrfs_ino(dir);
2804
2805	if (BTRFS_I(dir)->logged_trans < trans->transid)
2806		return 0;
2807
2808	ret = join_running_log_trans(root);
2809	if (ret)
2810		return 0;
2811
2812	mutex_lock(&BTRFS_I(dir)->log_mutex);
2813
2814	log = root->log_root;
2815	path = btrfs_alloc_path();
2816	if (!path) {
2817		err = -ENOMEM;
2818		goto out_unlock;
2819	}
2820
2821	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2822				   name, name_len, -1);
2823	if (IS_ERR(di)) {
2824		err = PTR_ERR(di);
2825		goto fail;
2826	}
2827	if (di) {
2828		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2829		bytes_del += name_len;
2830		if (ret) {
2831			err = ret;
2832			goto fail;
2833		}
2834	}
2835	btrfs_release_path(path);
2836	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2837					 index, name, name_len, -1);
2838	if (IS_ERR(di)) {
2839		err = PTR_ERR(di);
2840		goto fail;
2841	}
2842	if (di) {
2843		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2844		bytes_del += name_len;
2845		if (ret) {
2846			err = ret;
2847			goto fail;
2848		}
2849	}
2850
2851	/* update the directory size in the log to reflect the names
2852	 * we have removed
2853	 */
2854	if (bytes_del) {
2855		struct btrfs_key key;
2856
2857		key.objectid = dir_ino;
2858		key.offset = 0;
2859		key.type = BTRFS_INODE_ITEM_KEY;
2860		btrfs_release_path(path);
2861
2862		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2863		if (ret < 0) {
2864			err = ret;
2865			goto fail;
2866		}
2867		if (ret == 0) {
2868			struct btrfs_inode_item *item;
2869			u64 i_size;
2870
2871			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2872					      struct btrfs_inode_item);
2873			i_size = btrfs_inode_size(path->nodes[0], item);
2874			if (i_size > bytes_del)
2875				i_size -= bytes_del;
2876			else
2877				i_size = 0;
2878			btrfs_set_inode_size(path->nodes[0], item, i_size);
2879			btrfs_mark_buffer_dirty(path->nodes[0]);
2880		} else
2881			ret = 0;
2882		btrfs_release_path(path);
2883	}
2884fail:
2885	btrfs_free_path(path);
2886out_unlock:
2887	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2888	if (ret == -ENOSPC) {
2889		root->fs_info->last_trans_log_full_commit = trans->transid;
2890		ret = 0;
2891	} else if (ret < 0)
2892		btrfs_abort_transaction(trans, root, ret);
2893
2894	btrfs_end_log_trans(root);
2895
2896	return err;
2897}
2898
2899/* see comments for btrfs_del_dir_entries_in_log */
2900int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2901			       struct btrfs_root *root,
2902			       const char *name, int name_len,
2903			       struct inode *inode, u64 dirid)
2904{
2905	struct btrfs_root *log;
2906	u64 index;
2907	int ret;
2908
2909	if (BTRFS_I(inode)->logged_trans < trans->transid)
2910		return 0;
2911
2912	ret = join_running_log_trans(root);
2913	if (ret)
2914		return 0;
2915	log = root->log_root;
2916	mutex_lock(&BTRFS_I(inode)->log_mutex);
2917
2918	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2919				  dirid, &index);
2920	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2921	if (ret == -ENOSPC) {
2922		root->fs_info->last_trans_log_full_commit = trans->transid;
2923		ret = 0;
2924	} else if (ret < 0 && ret != -ENOENT)
2925		btrfs_abort_transaction(trans, root, ret);
2926	btrfs_end_log_trans(root);
2927
2928	return ret;
2929}
2930
2931/*
2932 * creates a range item in the log for 'dirid'.  first_offset and
2933 * last_offset tell us which parts of the key space the log should
2934 * be considered authoritative for.
2935 */
2936static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2937				       struct btrfs_root *log,
2938				       struct btrfs_path *path,
2939				       int key_type, u64 dirid,
2940				       u64 first_offset, u64 last_offset)
2941{
2942	int ret;
2943	struct btrfs_key key;
2944	struct btrfs_dir_log_item *item;
2945
2946	key.objectid = dirid;
2947	key.offset = first_offset;
2948	if (key_type == BTRFS_DIR_ITEM_KEY)
2949		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2950	else
2951		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2952	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2953	if (ret)
2954		return ret;
2955
2956	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2957			      struct btrfs_dir_log_item);
2958	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2959	btrfs_mark_buffer_dirty(path->nodes[0]);
2960	btrfs_release_path(path);
2961	return 0;
2962}
2963
2964/*
2965 * log all the items included in the current transaction for a given
2966 * directory.  This also creates the range items in the log tree required
2967 * to replay anything deleted before the fsync
2968 */
2969static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2970			  struct btrfs_root *root, struct inode *inode,
2971			  struct btrfs_path *path,
2972			  struct btrfs_path *dst_path, int key_type,
2973			  u64 min_offset, u64 *last_offset_ret)
2974{
2975	struct btrfs_key min_key;
 
2976	struct btrfs_root *log = root->log_root;
2977	struct extent_buffer *src;
2978	int err = 0;
2979	int ret;
2980	int i;
2981	int nritems;
2982	u64 first_offset = min_offset;
2983	u64 last_offset = (u64)-1;
2984	u64 ino = btrfs_ino(inode);
2985
2986	log = root->log_root;
 
 
 
2987
2988	min_key.objectid = ino;
2989	min_key.type = key_type;
2990	min_key.offset = min_offset;
2991
2992	path->keep_locks = 1;
2993
2994	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
 
2995
2996	/*
2997	 * we didn't find anything from this transaction, see if there
2998	 * is anything at all
2999	 */
3000	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3001		min_key.objectid = ino;
3002		min_key.type = key_type;
3003		min_key.offset = (u64)-1;
3004		btrfs_release_path(path);
3005		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3006		if (ret < 0) {
3007			btrfs_release_path(path);
3008			return ret;
3009		}
3010		ret = btrfs_previous_item(root, path, ino, key_type);
3011
3012		/* if ret == 0 there are items for this type,
3013		 * create a range to tell us the last key of this type.
3014		 * otherwise, there are no items in this directory after
3015		 * *min_offset, and we create a range to indicate that.
3016		 */
3017		if (ret == 0) {
3018			struct btrfs_key tmp;
3019			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3020					      path->slots[0]);
3021			if (key_type == tmp.type)
3022				first_offset = max(min_offset, tmp.offset) + 1;
3023		}
3024		goto done;
3025	}
3026
3027	/* go backward to find any previous key */
3028	ret = btrfs_previous_item(root, path, ino, key_type);
3029	if (ret == 0) {
3030		struct btrfs_key tmp;
3031		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3032		if (key_type == tmp.type) {
3033			first_offset = tmp.offset;
3034			ret = overwrite_item(trans, log, dst_path,
3035					     path->nodes[0], path->slots[0],
3036					     &tmp);
3037			if (ret) {
3038				err = ret;
3039				goto done;
3040			}
3041		}
3042	}
3043	btrfs_release_path(path);
3044
3045	/* find the first key from this transaction again */
3046	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3047	if (WARN_ON(ret != 0))
 
3048		goto done;
 
3049
3050	/*
3051	 * we have a block from this transaction, log every item in it
3052	 * from our directory
3053	 */
3054	while (1) {
3055		struct btrfs_key tmp;
3056		src = path->nodes[0];
3057		nritems = btrfs_header_nritems(src);
3058		for (i = path->slots[0]; i < nritems; i++) {
3059			btrfs_item_key_to_cpu(src, &min_key, i);
3060
3061			if (min_key.objectid != ino || min_key.type != key_type)
3062				goto done;
3063			ret = overwrite_item(trans, log, dst_path, src, i,
3064					     &min_key);
3065			if (ret) {
3066				err = ret;
3067				goto done;
3068			}
3069		}
3070		path->slots[0] = nritems;
3071
3072		/*
3073		 * look ahead to the next item and see if it is also
3074		 * from this directory and from this transaction
3075		 */
3076		ret = btrfs_next_leaf(root, path);
3077		if (ret == 1) {
3078			last_offset = (u64)-1;
3079			goto done;
3080		}
3081		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3082		if (tmp.objectid != ino || tmp.type != key_type) {
3083			last_offset = (u64)-1;
3084			goto done;
3085		}
3086		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3087			ret = overwrite_item(trans, log, dst_path,
3088					     path->nodes[0], path->slots[0],
3089					     &tmp);
3090			if (ret)
3091				err = ret;
3092			else
3093				last_offset = tmp.offset;
3094			goto done;
3095		}
3096	}
3097done:
3098	btrfs_release_path(path);
3099	btrfs_release_path(dst_path);
3100
3101	if (err == 0) {
3102		*last_offset_ret = last_offset;
3103		/*
3104		 * insert the log range keys to indicate where the log
3105		 * is valid
3106		 */
3107		ret = insert_dir_log_key(trans, log, path, key_type,
3108					 ino, first_offset, last_offset);
3109		if (ret)
3110			err = ret;
3111	}
3112	return err;
3113}
3114
3115/*
3116 * logging directories is very similar to logging inodes, We find all the items
3117 * from the current transaction and write them to the log.
3118 *
3119 * The recovery code scans the directory in the subvolume, and if it finds a
3120 * key in the range logged that is not present in the log tree, then it means
3121 * that dir entry was unlinked during the transaction.
3122 *
3123 * In order for that scan to work, we must include one key smaller than
3124 * the smallest logged by this transaction and one key larger than the largest
3125 * key logged by this transaction.
3126 */
3127static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3128			  struct btrfs_root *root, struct inode *inode,
3129			  struct btrfs_path *path,
3130			  struct btrfs_path *dst_path)
3131{
3132	u64 min_key;
3133	u64 max_key;
3134	int ret;
3135	int key_type = BTRFS_DIR_ITEM_KEY;
3136
3137again:
3138	min_key = 0;
3139	max_key = 0;
3140	while (1) {
3141		ret = log_dir_items(trans, root, inode, path,
3142				    dst_path, key_type, min_key,
3143				    &max_key);
3144		if (ret)
3145			return ret;
3146		if (max_key == (u64)-1)
3147			break;
3148		min_key = max_key + 1;
3149	}
3150
3151	if (key_type == BTRFS_DIR_ITEM_KEY) {
3152		key_type = BTRFS_DIR_INDEX_KEY;
3153		goto again;
3154	}
3155	return 0;
3156}
3157
3158/*
3159 * a helper function to drop items from the log before we relog an
3160 * inode.  max_key_type indicates the highest item type to remove.
3161 * This cannot be run for file data extents because it does not
3162 * free the extents they point to.
3163 */
3164static int drop_objectid_items(struct btrfs_trans_handle *trans,
3165				  struct btrfs_root *log,
3166				  struct btrfs_path *path,
3167				  u64 objectid, int max_key_type)
3168{
3169	int ret;
3170	struct btrfs_key key;
3171	struct btrfs_key found_key;
3172	int start_slot;
3173
3174	key.objectid = objectid;
3175	key.type = max_key_type;
3176	key.offset = (u64)-1;
3177
3178	while (1) {
3179		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3180		BUG_ON(ret == 0); /* Logic error */
3181		if (ret < 0)
3182			break;
3183
3184		if (path->slots[0] == 0)
3185			break;
3186
3187		path->slots[0]--;
3188		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3189				      path->slots[0]);
3190
3191		if (found_key.objectid != objectid)
3192			break;
3193
3194		found_key.offset = 0;
3195		found_key.type = 0;
3196		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3197				       &start_slot);
3198
3199		ret = btrfs_del_items(trans, log, path, start_slot,
3200				      path->slots[0] - start_slot + 1);
3201		/*
3202		 * If start slot isn't 0 then we don't need to re-search, we've
3203		 * found the last guy with the objectid in this tree.
3204		 */
3205		if (ret || start_slot != 0)
3206			break;
3207		btrfs_release_path(path);
3208	}
3209	btrfs_release_path(path);
3210	if (ret > 0)
3211		ret = 0;
3212	return ret;
3213}
3214
3215static void fill_inode_item(struct btrfs_trans_handle *trans,
3216			    struct extent_buffer *leaf,
3217			    struct btrfs_inode_item *item,
3218			    struct inode *inode, int log_inode_only)
3219{
3220	struct btrfs_map_token token;
3221
3222	btrfs_init_map_token(&token);
3223
3224	if (log_inode_only) {
3225		/* set the generation to zero so the recover code
3226		 * can tell the difference between an logging
3227		 * just to say 'this inode exists' and a logging
3228		 * to say 'update this inode with these values'
3229		 */
3230		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3231		btrfs_set_token_inode_size(leaf, item, 0, &token);
3232	} else {
3233		btrfs_set_token_inode_generation(leaf, item,
3234						 BTRFS_I(inode)->generation,
3235						 &token);
3236		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3237	}
3238
3239	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3240	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3241	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3242	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3243
3244	btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3245				     inode->i_atime.tv_sec, &token);
3246	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3247				      inode->i_atime.tv_nsec, &token);
3248
3249	btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3250				     inode->i_mtime.tv_sec, &token);
3251	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3252				      inode->i_mtime.tv_nsec, &token);
3253
3254	btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3255				     inode->i_ctime.tv_sec, &token);
3256	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3257				      inode->i_ctime.tv_nsec, &token);
3258
3259	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3260				     &token);
3261
3262	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3263	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3264	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3265	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3266	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3267}
3268
3269static int log_inode_item(struct btrfs_trans_handle *trans,
3270			  struct btrfs_root *log, struct btrfs_path *path,
3271			  struct inode *inode)
3272{
3273	struct btrfs_inode_item *inode_item;
3274	int ret;
3275
3276	ret = btrfs_insert_empty_item(trans, log, path,
3277				      &BTRFS_I(inode)->location,
3278				      sizeof(*inode_item));
3279	if (ret && ret != -EEXIST)
3280		return ret;
3281	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3282				    struct btrfs_inode_item);
3283	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3284	btrfs_release_path(path);
3285	return 0;
3286}
3287
3288static noinline int copy_items(struct btrfs_trans_handle *trans,
3289			       struct inode *inode,
3290			       struct btrfs_path *dst_path,
3291			       struct btrfs_path *src_path, u64 *last_extent,
3292			       int start_slot, int nr, int inode_only)
3293{
3294	unsigned long src_offset;
3295	unsigned long dst_offset;
3296	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3297	struct btrfs_file_extent_item *extent;
3298	struct btrfs_inode_item *inode_item;
3299	struct extent_buffer *src = src_path->nodes[0];
3300	struct btrfs_key first_key, last_key, key;
3301	int ret;
3302	struct btrfs_key *ins_keys;
3303	u32 *ins_sizes;
3304	char *ins_data;
3305	int i;
3306	struct list_head ordered_sums;
3307	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3308	bool has_extents = false;
3309	bool need_find_last_extent = (*last_extent == 0);
3310	bool done = false;
3311
3312	INIT_LIST_HEAD(&ordered_sums);
3313
3314	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3315			   nr * sizeof(u32), GFP_NOFS);
3316	if (!ins_data)
3317		return -ENOMEM;
3318
3319	first_key.objectid = (u64)-1;
3320
3321	ins_sizes = (u32 *)ins_data;
3322	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3323
3324	for (i = 0; i < nr; i++) {
3325		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3326		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3327	}
3328	ret = btrfs_insert_empty_items(trans, log, dst_path,
3329				       ins_keys, ins_sizes, nr);
3330	if (ret) {
3331		kfree(ins_data);
3332		return ret;
3333	}
3334
3335	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3336		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3337						   dst_path->slots[0]);
3338
3339		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3340
3341		if ((i == (nr - 1)))
3342			last_key = ins_keys[i];
3343
3344		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
 
3345			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3346						    dst_path->slots[0],
3347						    struct btrfs_inode_item);
3348			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3349					inode, inode_only == LOG_INODE_EXISTS);
3350		} else {
3351			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3352					   src_offset, ins_sizes[i]);
3353		}
3354
3355		/*
3356		 * We set need_find_last_extent here in case we know we were
3357		 * processing other items and then walk into the first extent in
3358		 * the inode.  If we don't hit an extent then nothing changes,
3359		 * we'll do the last search the next time around.
3360		 */
3361		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3362			has_extents = true;
3363			if (need_find_last_extent &&
3364			    first_key.objectid == (u64)-1)
3365				first_key = ins_keys[i];
3366		} else {
3367			need_find_last_extent = false;
3368		}
3369
3370		/* take a reference on file data extents so that truncates
3371		 * or deletes of this inode don't have to relog the inode
3372		 * again
3373		 */
3374		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3375		    !skip_csum) {
3376			int found_type;
3377			extent = btrfs_item_ptr(src, start_slot + i,
3378						struct btrfs_file_extent_item);
3379
3380			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3381				continue;
3382
3383			found_type = btrfs_file_extent_type(src, extent);
3384			if (found_type == BTRFS_FILE_EXTENT_REG) {
 
3385				u64 ds, dl, cs, cl;
3386				ds = btrfs_file_extent_disk_bytenr(src,
3387								extent);
3388				/* ds == 0 is a hole */
3389				if (ds == 0)
3390					continue;
3391
3392				dl = btrfs_file_extent_disk_num_bytes(src,
3393								extent);
3394				cs = btrfs_file_extent_offset(src, extent);
3395				cl = btrfs_file_extent_num_bytes(src,
3396								extent);
3397				if (btrfs_file_extent_compression(src,
3398								  extent)) {
3399					cs = 0;
3400					cl = dl;
3401				}
3402
3403				ret = btrfs_lookup_csums_range(
3404						log->fs_info->csum_root,
3405						ds + cs, ds + cs + cl - 1,
3406						&ordered_sums, 0);
3407				if (ret) {
3408					btrfs_release_path(dst_path);
3409					kfree(ins_data);
3410					return ret;
3411				}
3412			}
3413		}
3414	}
3415
3416	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3417	btrfs_release_path(dst_path);
3418	kfree(ins_data);
3419
3420	/*
3421	 * we have to do this after the loop above to avoid changing the
3422	 * log tree while trying to change the log tree.
3423	 */
3424	ret = 0;
3425	while (!list_empty(&ordered_sums)) {
3426		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3427						   struct btrfs_ordered_sum,
3428						   list);
3429		if (!ret)
3430			ret = btrfs_csum_file_blocks(trans, log, sums);
3431		list_del(&sums->list);
3432		kfree(sums);
3433	}
3434
3435	if (!has_extents)
3436		return ret;
3437
3438	/*
3439	 * Because we use btrfs_search_forward we could skip leaves that were
3440	 * not modified and then assume *last_extent is valid when it really
3441	 * isn't.  So back up to the previous leaf and read the end of the last
3442	 * extent before we go and fill in holes.
3443	 */
3444	if (need_find_last_extent) {
3445		u64 len;
3446
3447		ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3448		if (ret < 0)
3449			return ret;
3450		if (ret)
3451			goto fill_holes;
3452		if (src_path->slots[0])
3453			src_path->slots[0]--;
3454		src = src_path->nodes[0];
3455		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3456		if (key.objectid != btrfs_ino(inode) ||
3457		    key.type != BTRFS_EXTENT_DATA_KEY)
3458			goto fill_holes;
3459		extent = btrfs_item_ptr(src, src_path->slots[0],
3460					struct btrfs_file_extent_item);
3461		if (btrfs_file_extent_type(src, extent) ==
3462		    BTRFS_FILE_EXTENT_INLINE) {
3463			len = btrfs_file_extent_inline_len(src,
3464							   src_path->slots[0],
3465							   extent);
3466			*last_extent = ALIGN(key.offset + len,
3467					     log->sectorsize);
3468		} else {
3469			len = btrfs_file_extent_num_bytes(src, extent);
3470			*last_extent = key.offset + len;
3471		}
3472	}
3473fill_holes:
3474	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3475	 * things could have happened
3476	 *
3477	 * 1) A merge could have happened, so we could currently be on a leaf
3478	 * that holds what we were copying in the first place.
3479	 * 2) A split could have happened, and now not all of the items we want
3480	 * are on the same leaf.
3481	 *
3482	 * So we need to adjust how we search for holes, we need to drop the
3483	 * path and re-search for the first extent key we found, and then walk
3484	 * forward until we hit the last one we copied.
3485	 */
3486	if (need_find_last_extent) {
3487		/* btrfs_prev_leaf could return 1 without releasing the path */
3488		btrfs_release_path(src_path);
3489		ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3490					src_path, 0, 0);
3491		if (ret < 0)
3492			return ret;
3493		ASSERT(ret == 0);
3494		src = src_path->nodes[0];
3495		i = src_path->slots[0];
3496	} else {
3497		i = start_slot;
3498	}
3499
3500	/*
3501	 * Ok so here we need to go through and fill in any holes we may have
3502	 * to make sure that holes are punched for those areas in case they had
3503	 * extents previously.
3504	 */
3505	while (!done) {
3506		u64 offset, len;
3507		u64 extent_end;
3508
3509		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3510			ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3511			if (ret < 0)
3512				return ret;
3513			ASSERT(ret == 0);
3514			src = src_path->nodes[0];
3515			i = 0;
3516		}
3517
3518		btrfs_item_key_to_cpu(src, &key, i);
3519		if (!btrfs_comp_cpu_keys(&key, &last_key))
3520			done = true;
3521		if (key.objectid != btrfs_ino(inode) ||
3522		    key.type != BTRFS_EXTENT_DATA_KEY) {
3523			i++;
3524			continue;
3525		}
3526		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3527		if (btrfs_file_extent_type(src, extent) ==
3528		    BTRFS_FILE_EXTENT_INLINE) {
3529			len = btrfs_file_extent_inline_len(src, i, extent);
3530			extent_end = ALIGN(key.offset + len, log->sectorsize);
3531		} else {
3532			len = btrfs_file_extent_num_bytes(src, extent);
3533			extent_end = key.offset + len;
3534		}
3535		i++;
3536
3537		if (*last_extent == key.offset) {
3538			*last_extent = extent_end;
3539			continue;
3540		}
3541		offset = *last_extent;
3542		len = key.offset - *last_extent;
3543		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3544					       offset, 0, 0, len, 0, len, 0,
3545					       0, 0);
3546		if (ret)
3547			break;
3548		*last_extent = offset + len;
3549	}
3550	/*
3551	 * Need to let the callers know we dropped the path so they should
3552	 * re-search.
3553	 */
3554	if (!ret && need_find_last_extent)
3555		ret = 1;
3556	return ret;
3557}
3558
3559static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3560{
3561	struct extent_map *em1, *em2;
3562
3563	em1 = list_entry(a, struct extent_map, list);
3564	em2 = list_entry(b, struct extent_map, list);
3565
3566	if (em1->start < em2->start)
3567		return -1;
3568	else if (em1->start > em2->start)
3569		return 1;
3570	return 0;
3571}
3572
3573static int log_one_extent(struct btrfs_trans_handle *trans,
3574			  struct inode *inode, struct btrfs_root *root,
3575			  struct extent_map *em, struct btrfs_path *path,
3576			  struct list_head *logged_list)
3577{
3578	struct btrfs_root *log = root->log_root;
3579	struct btrfs_file_extent_item *fi;
3580	struct extent_buffer *leaf;
3581	struct btrfs_ordered_extent *ordered;
3582	struct list_head ordered_sums;
3583	struct btrfs_map_token token;
3584	struct btrfs_key key;
3585	u64 mod_start = em->mod_start;
3586	u64 mod_len = em->mod_len;
3587	u64 csum_offset;
3588	u64 csum_len;
3589	u64 extent_offset = em->start - em->orig_start;
3590	u64 block_len;
3591	int ret;
3592	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3593	int extent_inserted = 0;
3594
3595	INIT_LIST_HEAD(&ordered_sums);
3596	btrfs_init_map_token(&token);
3597
3598	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3599				   em->start + em->len, NULL, 0, 1,
3600				   sizeof(*fi), &extent_inserted);
3601	if (ret)
3602		return ret;
3603
3604	if (!extent_inserted) {
3605		key.objectid = btrfs_ino(inode);
3606		key.type = BTRFS_EXTENT_DATA_KEY;
3607		key.offset = em->start;
3608
3609		ret = btrfs_insert_empty_item(trans, log, path, &key,
3610					      sizeof(*fi));
3611		if (ret)
3612			return ret;
3613	}
3614	leaf = path->nodes[0];
3615	fi = btrfs_item_ptr(leaf, path->slots[0],
3616			    struct btrfs_file_extent_item);
3617
3618	btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3619					       &token);
3620	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3621		skip_csum = true;
3622		btrfs_set_token_file_extent_type(leaf, fi,
3623						 BTRFS_FILE_EXTENT_PREALLOC,
3624						 &token);
3625	} else {
3626		btrfs_set_token_file_extent_type(leaf, fi,
3627						 BTRFS_FILE_EXTENT_REG,
3628						 &token);
3629		if (em->block_start == EXTENT_MAP_HOLE)
3630			skip_csum = true;
3631	}
3632
3633	block_len = max(em->block_len, em->orig_block_len);
3634	if (em->compress_type != BTRFS_COMPRESS_NONE) {
3635		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3636							em->block_start,
3637							&token);
3638		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3639							   &token);
3640	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3641		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3642							em->block_start -
3643							extent_offset, &token);
3644		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3645							   &token);
3646	} else {
3647		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3648		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3649							   &token);
3650	}
3651
3652	btrfs_set_token_file_extent_offset(leaf, fi,
3653					   em->start - em->orig_start,
3654					   &token);
3655	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3656	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3657	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3658						&token);
3659	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3660	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3661	btrfs_mark_buffer_dirty(leaf);
3662
3663	btrfs_release_path(path);
3664	if (ret) {
3665		return ret;
3666	}
3667
3668	if (skip_csum)
3669		return 0;
3670
3671	/*
3672	 * First check and see if our csums are on our outstanding ordered
3673	 * extents.
3674	 */
3675	list_for_each_entry(ordered, logged_list, log_list) {
3676		struct btrfs_ordered_sum *sum;
3677
3678		if (!mod_len)
3679			break;
3680
3681		if (ordered->file_offset + ordered->len <= mod_start ||
3682		    mod_start + mod_len <= ordered->file_offset)
3683			continue;
3684
3685		/*
3686		 * We are going to copy all the csums on this ordered extent, so
3687		 * go ahead and adjust mod_start and mod_len in case this
3688		 * ordered extent has already been logged.
3689		 */
3690		if (ordered->file_offset > mod_start) {
3691			if (ordered->file_offset + ordered->len >=
3692			    mod_start + mod_len)
3693				mod_len = ordered->file_offset - mod_start;
3694			/*
3695			 * If we have this case
3696			 *
3697			 * |--------- logged extent ---------|
3698			 *       |----- ordered extent ----|
3699			 *
3700			 * Just don't mess with mod_start and mod_len, we'll
3701			 * just end up logging more csums than we need and it
3702			 * will be ok.
3703			 */
3704		} else {
3705			if (ordered->file_offset + ordered->len <
3706			    mod_start + mod_len) {
3707				mod_len = (mod_start + mod_len) -
3708					(ordered->file_offset + ordered->len);
3709				mod_start = ordered->file_offset +
3710					ordered->len;
3711			} else {
3712				mod_len = 0;
3713			}
3714		}
3715
3716		/*
3717		 * To keep us from looping for the above case of an ordered
3718		 * extent that falls inside of the logged extent.
3719		 */
3720		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3721				     &ordered->flags))
3722			continue;
3723
3724		if (ordered->csum_bytes_left) {
3725			btrfs_start_ordered_extent(inode, ordered, 0);
3726			wait_event(ordered->wait,
3727				   ordered->csum_bytes_left == 0);
3728		}
3729
3730		list_for_each_entry(sum, &ordered->list, list) {
3731			ret = btrfs_csum_file_blocks(trans, log, sum);
3732			if (ret)
3733				goto unlocked;
3734		}
3735
3736	}
3737unlocked:
3738
3739	if (!mod_len || ret)
3740		return ret;
3741
3742	if (em->compress_type) {
3743		csum_offset = 0;
3744		csum_len = block_len;
3745	} else {
3746		csum_offset = mod_start - em->start;
3747		csum_len = mod_len;
3748	}
3749
3750	/* block start is already adjusted for the file extent offset. */
3751	ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3752				       em->block_start + csum_offset,
3753				       em->block_start + csum_offset +
3754				       csum_len - 1, &ordered_sums, 0);
3755	if (ret)
3756		return ret;
3757
3758	while (!list_empty(&ordered_sums)) {
3759		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3760						   struct btrfs_ordered_sum,
3761						   list);
3762		if (!ret)
3763			ret = btrfs_csum_file_blocks(trans, log, sums);
3764		list_del(&sums->list);
3765		kfree(sums);
3766	}
3767
3768	return ret;
3769}
3770
3771static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3772				     struct btrfs_root *root,
3773				     struct inode *inode,
3774				     struct btrfs_path *path,
3775				     struct list_head *logged_list)
3776{
3777	struct extent_map *em, *n;
3778	struct list_head extents;
3779	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3780	u64 test_gen;
3781	int ret = 0;
3782	int num = 0;
3783
3784	INIT_LIST_HEAD(&extents);
3785
3786	write_lock(&tree->lock);
3787	test_gen = root->fs_info->last_trans_committed;
3788
3789	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3790		list_del_init(&em->list);
3791
3792		/*
3793		 * Just an arbitrary number, this can be really CPU intensive
3794		 * once we start getting a lot of extents, and really once we
3795		 * have a bunch of extents we just want to commit since it will
3796		 * be faster.
3797		 */
3798		if (++num > 32768) {
3799			list_del_init(&tree->modified_extents);
3800			ret = -EFBIG;
3801			goto process;
3802		}
3803
3804		if (em->generation <= test_gen)
3805			continue;
3806		/* Need a ref to keep it from getting evicted from cache */
3807		atomic_inc(&em->refs);
3808		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3809		list_add_tail(&em->list, &extents);
3810		num++;
3811	}
3812
3813	list_sort(NULL, &extents, extent_cmp);
3814
3815process:
3816	while (!list_empty(&extents)) {
3817		em = list_entry(extents.next, struct extent_map, list);
3818
3819		list_del_init(&em->list);
3820
3821		/*
3822		 * If we had an error we just need to delete everybody from our
3823		 * private list.
3824		 */
3825		if (ret) {
3826			clear_em_logging(tree, em);
3827			free_extent_map(em);
3828			continue;
3829		}
3830
3831		write_unlock(&tree->lock);
3832
3833		ret = log_one_extent(trans, inode, root, em, path, logged_list);
3834		write_lock(&tree->lock);
3835		clear_em_logging(tree, em);
3836		free_extent_map(em);
3837	}
3838	WARN_ON(!list_empty(&extents));
3839	write_unlock(&tree->lock);
3840
3841	btrfs_release_path(path);
3842	return ret;
3843}
3844
3845/* log a single inode in the tree log.
3846 * At least one parent directory for this inode must exist in the tree
3847 * or be logged already.
3848 *
3849 * Any items from this inode changed by the current transaction are copied
3850 * to the log tree.  An extra reference is taken on any extents in this
3851 * file, allowing us to avoid a whole pile of corner cases around logging
3852 * blocks that have been removed from the tree.
3853 *
3854 * See LOG_INODE_ALL and related defines for a description of what inode_only
3855 * does.
3856 *
3857 * This handles both files and directories.
3858 */
3859static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3860			     struct btrfs_root *root, struct inode *inode,
3861			     int inode_only)
3862{
3863	struct btrfs_path *path;
3864	struct btrfs_path *dst_path;
3865	struct btrfs_key min_key;
3866	struct btrfs_key max_key;
3867	struct btrfs_root *log = root->log_root;
3868	struct extent_buffer *src = NULL;
3869	LIST_HEAD(logged_list);
3870	u64 last_extent = 0;
3871	int err = 0;
3872	int ret;
3873	int nritems;
3874	int ins_start_slot = 0;
3875	int ins_nr;
3876	bool fast_search = false;
3877	u64 ino = btrfs_ino(inode);
3878
 
 
3879	path = btrfs_alloc_path();
3880	if (!path)
3881		return -ENOMEM;
3882	dst_path = btrfs_alloc_path();
3883	if (!dst_path) {
3884		btrfs_free_path(path);
3885		return -ENOMEM;
3886	}
3887
3888	min_key.objectid = ino;
3889	min_key.type = BTRFS_INODE_ITEM_KEY;
3890	min_key.offset = 0;
3891
3892	max_key.objectid = ino;
3893
 
 
 
3894
3895	/* today the code can only do partial logging of directories */
3896	if (S_ISDIR(inode->i_mode) ||
3897	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3898		       &BTRFS_I(inode)->runtime_flags) &&
3899	     inode_only == LOG_INODE_EXISTS))
3900		max_key.type = BTRFS_XATTR_ITEM_KEY;
3901	else
3902		max_key.type = (u8)-1;
3903	max_key.offset = (u64)-1;
3904
3905	/* Only run delayed items if we are a dir or a new file */
3906	if (S_ISDIR(inode->i_mode) ||
3907	    BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3908		ret = btrfs_commit_inode_delayed_items(trans, inode);
3909		if (ret) {
3910			btrfs_free_path(path);
3911			btrfs_free_path(dst_path);
3912			return ret;
3913		}
3914	}
3915
3916	mutex_lock(&BTRFS_I(inode)->log_mutex);
3917
3918	btrfs_get_logged_extents(inode, &logged_list);
3919
3920	/*
3921	 * a brute force approach to making sure we get the most uptodate
3922	 * copies of everything.
3923	 */
3924	if (S_ISDIR(inode->i_mode)) {
3925		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3926
3927		if (inode_only == LOG_INODE_EXISTS)
3928			max_key_type = BTRFS_XATTR_ITEM_KEY;
3929		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3930	} else {
3931		if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3932				       &BTRFS_I(inode)->runtime_flags)) {
3933			clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3934				  &BTRFS_I(inode)->runtime_flags);
3935			ret = btrfs_truncate_inode_items(trans, log,
3936							 inode, 0, 0);
3937		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3938					      &BTRFS_I(inode)->runtime_flags) ||
3939			   inode_only == LOG_INODE_EXISTS) {
3940			if (inode_only == LOG_INODE_ALL)
3941				fast_search = true;
3942			max_key.type = BTRFS_XATTR_ITEM_KEY;
3943			ret = drop_objectid_items(trans, log, path, ino,
3944						  max_key.type);
3945		} else {
3946			if (inode_only == LOG_INODE_ALL)
3947				fast_search = true;
3948			ret = log_inode_item(trans, log, dst_path, inode);
3949			if (ret) {
3950				err = ret;
3951				goto out_unlock;
3952			}
3953			goto log_extents;
3954		}
3955
3956	}
3957	if (ret) {
3958		err = ret;
3959		goto out_unlock;
3960	}
3961	path->keep_locks = 1;
3962
3963	while (1) {
3964		ins_nr = 0;
3965		ret = btrfs_search_forward(root, &min_key,
3966					   path, trans->transid);
3967		if (ret != 0)
3968			break;
3969again:
3970		/* note, ins_nr might be > 0 here, cleanup outside the loop */
3971		if (min_key.objectid != ino)
3972			break;
3973		if (min_key.type > max_key.type)
3974			break;
3975
3976		src = path->nodes[0];
3977		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3978			ins_nr++;
3979			goto next_slot;
3980		} else if (!ins_nr) {
3981			ins_start_slot = path->slots[0];
3982			ins_nr = 1;
3983			goto next_slot;
3984		}
3985
3986		ret = copy_items(trans, inode, dst_path, path, &last_extent,
3987				 ins_start_slot, ins_nr, inode_only);
3988		if (ret < 0) {
3989			err = ret;
3990			goto out_unlock;
3991		} if (ret) {
3992			ins_nr = 0;
3993			btrfs_release_path(path);
3994			continue;
3995		}
3996		ins_nr = 1;
3997		ins_start_slot = path->slots[0];
3998next_slot:
3999
4000		nritems = btrfs_header_nritems(path->nodes[0]);
4001		path->slots[0]++;
4002		if (path->slots[0] < nritems) {
4003			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4004					      path->slots[0]);
4005			goto again;
4006		}
4007		if (ins_nr) {
4008			ret = copy_items(trans, inode, dst_path, path,
4009					 &last_extent, ins_start_slot,
4010					 ins_nr, inode_only);
4011			if (ret < 0) {
4012				err = ret;
4013				goto out_unlock;
4014			}
4015			ret = 0;
4016			ins_nr = 0;
4017		}
4018		btrfs_release_path(path);
4019
4020		if (min_key.offset < (u64)-1) {
4021			min_key.offset++;
4022		} else if (min_key.type < max_key.type) {
4023			min_key.type++;
4024			min_key.offset = 0;
4025		} else {
 
4026			break;
4027		}
4028	}
4029	if (ins_nr) {
4030		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4031				 ins_start_slot, ins_nr, inode_only);
4032		if (ret < 0) {
 
4033			err = ret;
4034			goto out_unlock;
4035		}
4036		ret = 0;
4037		ins_nr = 0;
4038	}
4039
4040log_extents:
4041	btrfs_release_path(path);
4042	btrfs_release_path(dst_path);
4043	if (fast_search) {
4044		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4045						&logged_list);
4046		if (ret) {
4047			err = ret;
4048			goto out_unlock;
4049		}
4050	} else if (inode_only == LOG_INODE_ALL) {
4051		struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4052		struct extent_map *em, *n;
4053
4054		write_lock(&tree->lock);
4055		list_for_each_entry_safe(em, n, &tree->modified_extents, list)
4056			list_del_init(&em->list);
4057		write_unlock(&tree->lock);
4058	}
4059
4060	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
 
 
4061		ret = log_directory_changes(trans, root, inode, path, dst_path);
4062		if (ret) {
4063			err = ret;
4064			goto out_unlock;
4065		}
4066	}
4067	BTRFS_I(inode)->logged_trans = trans->transid;
4068	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4069out_unlock:
4070	if (unlikely(err))
4071		btrfs_put_logged_extents(&logged_list);
4072	else
4073		btrfs_submit_logged_extents(&logged_list, log);
4074	mutex_unlock(&BTRFS_I(inode)->log_mutex);
4075
4076	btrfs_free_path(path);
4077	btrfs_free_path(dst_path);
4078	return err;
4079}
4080
4081/*
4082 * follow the dentry parent pointers up the chain and see if any
4083 * of the directories in it require a full commit before they can
4084 * be logged.  Returns zero if nothing special needs to be done or 1 if
4085 * a full commit is required.
4086 */
4087static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4088					       struct inode *inode,
4089					       struct dentry *parent,
4090					       struct super_block *sb,
4091					       u64 last_committed)
4092{
4093	int ret = 0;
4094	struct btrfs_root *root;
4095	struct dentry *old_parent = NULL;
4096	struct inode *orig_inode = inode;
4097
4098	/*
4099	 * for regular files, if its inode is already on disk, we don't
4100	 * have to worry about the parents at all.  This is because
4101	 * we can use the last_unlink_trans field to record renames
4102	 * and other fun in this file.
4103	 */
4104	if (S_ISREG(inode->i_mode) &&
4105	    BTRFS_I(inode)->generation <= last_committed &&
4106	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
4107			goto out;
4108
4109	if (!S_ISDIR(inode->i_mode)) {
4110		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4111			goto out;
4112		inode = parent->d_inode;
4113	}
4114
4115	while (1) {
4116		/*
4117		 * If we are logging a directory then we start with our inode,
4118		 * not our parents inode, so we need to skipp setting the
4119		 * logged_trans so that further down in the log code we don't
4120		 * think this inode has already been logged.
4121		 */
4122		if (inode != orig_inode)
4123			BTRFS_I(inode)->logged_trans = trans->transid;
4124		smp_mb();
4125
4126		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4127			root = BTRFS_I(inode)->root;
4128
4129			/*
4130			 * make sure any commits to the log are forced
4131			 * to be full commits
4132			 */
4133			root->fs_info->last_trans_log_full_commit =
4134				trans->transid;
4135			ret = 1;
4136			break;
4137		}
4138
4139		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4140			break;
4141
4142		if (IS_ROOT(parent))
4143			break;
4144
4145		parent = dget_parent(parent);
4146		dput(old_parent);
4147		old_parent = parent;
4148		inode = parent->d_inode;
4149
4150	}
4151	dput(old_parent);
4152out:
4153	return ret;
4154}
4155
4156/*
4157 * helper function around btrfs_log_inode to make sure newly created
4158 * parent directories also end up in the log.  A minimal inode and backref
4159 * only logging is done of any parent directories that are older than
4160 * the last committed transaction
4161 */
4162static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4163			    	  struct btrfs_root *root, struct inode *inode,
4164			    	  struct dentry *parent, int exists_only,
4165				  struct btrfs_log_ctx *ctx)
4166{
4167	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
4168	struct super_block *sb;
4169	struct dentry *old_parent = NULL;
4170	int ret = 0;
4171	u64 last_committed = root->fs_info->last_trans_committed;
4172
4173	sb = inode->i_sb;
4174
4175	if (btrfs_test_opt(root, NOTREELOG)) {
4176		ret = 1;
4177		goto end_no_trans;
4178	}
4179
4180	if (root->fs_info->last_trans_log_full_commit >
4181	    root->fs_info->last_trans_committed) {
4182		ret = 1;
4183		goto end_no_trans;
4184	}
4185
4186	if (root != BTRFS_I(inode)->root ||
4187	    btrfs_root_refs(&root->root_item) == 0) {
4188		ret = 1;
4189		goto end_no_trans;
4190	}
4191
4192	ret = check_parent_dirs_for_sync(trans, inode, parent,
4193					 sb, last_committed);
4194	if (ret)
4195		goto end_no_trans;
4196
4197	if (btrfs_inode_in_log(inode, trans->transid)) {
4198		ret = BTRFS_NO_LOG_SYNC;
4199		goto end_no_trans;
4200	}
4201
4202	ret = start_log_trans(trans, root, ctx);
4203	if (ret)
4204		goto end_no_trans;
4205
4206	ret = btrfs_log_inode(trans, root, inode, inode_only);
4207	if (ret)
4208		goto end_trans;
4209
4210	/*
4211	 * for regular files, if its inode is already on disk, we don't
4212	 * have to worry about the parents at all.  This is because
4213	 * we can use the last_unlink_trans field to record renames
4214	 * and other fun in this file.
4215	 */
4216	if (S_ISREG(inode->i_mode) &&
4217	    BTRFS_I(inode)->generation <= last_committed &&
4218	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4219		ret = 0;
4220		goto end_trans;
4221	}
4222
4223	inode_only = LOG_INODE_EXISTS;
4224	while (1) {
4225		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4226			break;
4227
4228		inode = parent->d_inode;
4229		if (root != BTRFS_I(inode)->root)
4230			break;
4231
4232		if (BTRFS_I(inode)->generation >
4233		    root->fs_info->last_trans_committed) {
4234			ret = btrfs_log_inode(trans, root, inode, inode_only);
4235			if (ret)
4236				goto end_trans;
4237		}
4238		if (IS_ROOT(parent))
4239			break;
4240
4241		parent = dget_parent(parent);
4242		dput(old_parent);
4243		old_parent = parent;
4244	}
4245	ret = 0;
4246end_trans:
4247	dput(old_parent);
4248	if (ret < 0) {
 
4249		root->fs_info->last_trans_log_full_commit = trans->transid;
4250		ret = 1;
4251	}
4252
4253	if (ret)
4254		btrfs_remove_log_ctx(root, ctx);
4255	btrfs_end_log_trans(root);
4256end_no_trans:
4257	return ret;
4258}
4259
4260/*
4261 * it is not safe to log dentry if the chunk root has added new
4262 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
4263 * If this returns 1, you must commit the transaction to safely get your
4264 * data on disk.
4265 */
4266int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4267			  struct btrfs_root *root, struct dentry *dentry,
4268			  struct btrfs_log_ctx *ctx)
4269{
4270	struct dentry *parent = dget_parent(dentry);
4271	int ret;
4272
4273	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent,
4274				     0, ctx);
4275	dput(parent);
4276
4277	return ret;
4278}
4279
4280/*
4281 * should be called during mount to recover any replay any log trees
4282 * from the FS
4283 */
4284int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4285{
4286	int ret;
4287	struct btrfs_path *path;
4288	struct btrfs_trans_handle *trans;
4289	struct btrfs_key key;
4290	struct btrfs_key found_key;
4291	struct btrfs_key tmp_key;
4292	struct btrfs_root *log;
4293	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4294	struct walk_control wc = {
4295		.process_func = process_one_buffer,
4296		.stage = 0,
4297	};
4298
4299	path = btrfs_alloc_path();
4300	if (!path)
4301		return -ENOMEM;
4302
4303	fs_info->log_root_recovering = 1;
4304
4305	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4306	if (IS_ERR(trans)) {
4307		ret = PTR_ERR(trans);
4308		goto error;
4309	}
4310
4311	wc.trans = trans;
4312	wc.pin = 1;
4313
4314	ret = walk_log_tree(trans, log_root_tree, &wc);
4315	if (ret) {
4316		btrfs_error(fs_info, ret, "Failed to pin buffers while "
4317			    "recovering log root tree.");
4318		goto error;
4319	}
4320
4321again:
4322	key.objectid = BTRFS_TREE_LOG_OBJECTID;
4323	key.offset = (u64)-1;
4324	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4325
4326	while (1) {
4327		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4328
4329		if (ret < 0) {
4330			btrfs_error(fs_info, ret,
4331				    "Couldn't find tree log root.");
4332			goto error;
4333		}
4334		if (ret > 0) {
4335			if (path->slots[0] == 0)
4336				break;
4337			path->slots[0]--;
4338		}
4339		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4340				      path->slots[0]);
4341		btrfs_release_path(path);
4342		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4343			break;
4344
4345		log = btrfs_read_fs_root(log_root_tree, &found_key);
 
4346		if (IS_ERR(log)) {
4347			ret = PTR_ERR(log);
4348			btrfs_error(fs_info, ret,
4349				    "Couldn't read tree log root.");
4350			goto error;
4351		}
4352
4353		tmp_key.objectid = found_key.offset;
4354		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4355		tmp_key.offset = (u64)-1;
4356
4357		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4358		if (IS_ERR(wc.replay_dest)) {
4359			ret = PTR_ERR(wc.replay_dest);
4360			free_extent_buffer(log->node);
4361			free_extent_buffer(log->commit_root);
4362			kfree(log);
4363			btrfs_error(fs_info, ret, "Couldn't read target root "
4364				    "for tree log recovery.");
4365			goto error;
4366		}
4367
4368		wc.replay_dest->log_root = log;
4369		btrfs_record_root_in_trans(trans, wc.replay_dest);
4370		ret = walk_log_tree(trans, log, &wc);
 
4371
4372		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4373			ret = fixup_inode_link_counts(trans, wc.replay_dest,
4374						      path);
 
4375		}
4376
4377		key.offset = found_key.offset - 1;
4378		wc.replay_dest->log_root = NULL;
4379		free_extent_buffer(log->node);
4380		free_extent_buffer(log->commit_root);
4381		kfree(log);
4382
4383		if (ret)
4384			goto error;
4385
4386		if (found_key.offset == 0)
4387			break;
4388	}
4389	btrfs_release_path(path);
4390
4391	/* step one is to pin it all, step two is to replay just inodes */
4392	if (wc.pin) {
4393		wc.pin = 0;
4394		wc.process_func = replay_one_buffer;
4395		wc.stage = LOG_WALK_REPLAY_INODES;
4396		goto again;
4397	}
4398	/* step three is to replay everything */
4399	if (wc.stage < LOG_WALK_REPLAY_ALL) {
4400		wc.stage++;
4401		goto again;
4402	}
4403
4404	btrfs_free_path(path);
4405
4406	/* step 4: commit the transaction, which also unpins the blocks */
4407	ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4408	if (ret)
4409		return ret;
4410
4411	free_extent_buffer(log_root_tree->node);
4412	log_root_tree->log_root = NULL;
4413	fs_info->log_root_recovering = 0;
 
 
 
 
4414	kfree(log_root_tree);
 
4415
4416	return 0;
4417error:
4418	if (wc.trans)
4419		btrfs_end_transaction(wc.trans, fs_info->tree_root);
4420	btrfs_free_path(path);
4421	return ret;
4422}
4423
4424/*
4425 * there are some corner cases where we want to force a full
4426 * commit instead of allowing a directory to be logged.
4427 *
4428 * They revolve around files there were unlinked from the directory, and
4429 * this function updates the parent directory so that a full commit is
4430 * properly done if it is fsync'd later after the unlinks are done.
4431 */
4432void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4433			     struct inode *dir, struct inode *inode,
4434			     int for_rename)
4435{
4436	/*
4437	 * when we're logging a file, if it hasn't been renamed
4438	 * or unlinked, and its inode is fully committed on disk,
4439	 * we don't have to worry about walking up the directory chain
4440	 * to log its parents.
4441	 *
4442	 * So, we use the last_unlink_trans field to put this transid
4443	 * into the file.  When the file is logged we check it and
4444	 * don't log the parents if the file is fully on disk.
4445	 */
4446	if (S_ISREG(inode->i_mode))
4447		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4448
4449	/*
4450	 * if this directory was already logged any new
4451	 * names for this file/dir will get recorded
4452	 */
4453	smp_mb();
4454	if (BTRFS_I(dir)->logged_trans == trans->transid)
4455		return;
4456
4457	/*
4458	 * if the inode we're about to unlink was logged,
4459	 * the log will be properly updated for any new names
4460	 */
4461	if (BTRFS_I(inode)->logged_trans == trans->transid)
4462		return;
4463
4464	/*
4465	 * when renaming files across directories, if the directory
4466	 * there we're unlinking from gets fsync'd later on, there's
4467	 * no way to find the destination directory later and fsync it
4468	 * properly.  So, we have to be conservative and force commits
4469	 * so the new name gets discovered.
4470	 */
4471	if (for_rename)
4472		goto record;
4473
4474	/* we can safely do the unlink without any special recording */
4475	return;
4476
4477record:
4478	BTRFS_I(dir)->last_unlink_trans = trans->transid;
4479}
4480
4481/*
4482 * Call this after adding a new name for a file and it will properly
4483 * update the log to reflect the new name.
4484 *
4485 * It will return zero if all goes well, and it will return 1 if a
4486 * full transaction commit is required.
4487 */
4488int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4489			struct inode *inode, struct inode *old_dir,
4490			struct dentry *parent)
4491{
4492	struct btrfs_root * root = BTRFS_I(inode)->root;
4493
4494	/*
4495	 * this will force the logging code to walk the dentry chain
4496	 * up for the file
4497	 */
4498	if (S_ISREG(inode->i_mode))
4499		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4500
4501	/*
4502	 * if this inode hasn't been logged and directory we're renaming it
4503	 * from hasn't been logged, we don't need to log it
4504	 */
4505	if (BTRFS_I(inode)->logged_trans <=
4506	    root->fs_info->last_trans_committed &&
4507	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4508		    root->fs_info->last_trans_committed))
4509		return 0;
4510
4511	return btrfs_log_inode_parent(trans, root, inode, parent, 1, NULL);
4512}
4513