Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// STMicroelectronics STM32 SPI Controller driver (master mode only)
   4//
   5// Copyright (C) 2017, STMicroelectronics - All Rights Reserved
   6// Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
   7
   8#include <linux/debugfs.h>
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/dmaengine.h>
  12#include <linux/gpio.h>
  13#include <linux/interrupt.h>
  14#include <linux/iopoll.h>
  15#include <linux/module.h>
  16#include <linux/of_platform.h>
  17#include <linux/pm_runtime.h>
  18#include <linux/reset.h>
  19#include <linux/spi/spi.h>
  20
  21#define DRIVER_NAME "spi_stm32"
  22
  23/* STM32F4 SPI registers */
  24#define STM32F4_SPI_CR1			0x00
  25#define STM32F4_SPI_CR2			0x04
  26#define STM32F4_SPI_SR			0x08
  27#define STM32F4_SPI_DR			0x0C
  28#define STM32F4_SPI_I2SCFGR		0x1C
  29
  30/* STM32F4_SPI_CR1 bit fields */
  31#define STM32F4_SPI_CR1_CPHA		BIT(0)
  32#define STM32F4_SPI_CR1_CPOL		BIT(1)
  33#define STM32F4_SPI_CR1_MSTR		BIT(2)
  34#define STM32F4_SPI_CR1_BR_SHIFT	3
  35#define STM32F4_SPI_CR1_BR		GENMASK(5, 3)
  36#define STM32F4_SPI_CR1_SPE		BIT(6)
  37#define STM32F4_SPI_CR1_LSBFRST		BIT(7)
  38#define STM32F4_SPI_CR1_SSI		BIT(8)
  39#define STM32F4_SPI_CR1_SSM		BIT(9)
  40#define STM32F4_SPI_CR1_RXONLY		BIT(10)
  41#define STM32F4_SPI_CR1_DFF		BIT(11)
  42#define STM32F4_SPI_CR1_CRCNEXT		BIT(12)
  43#define STM32F4_SPI_CR1_CRCEN		BIT(13)
  44#define STM32F4_SPI_CR1_BIDIOE		BIT(14)
  45#define STM32F4_SPI_CR1_BIDIMODE	BIT(15)
  46#define STM32F4_SPI_CR1_BR_MIN		0
  47#define STM32F4_SPI_CR1_BR_MAX		(GENMASK(5, 3) >> 3)
  48
  49/* STM32F4_SPI_CR2 bit fields */
  50#define STM32F4_SPI_CR2_RXDMAEN		BIT(0)
  51#define STM32F4_SPI_CR2_TXDMAEN		BIT(1)
  52#define STM32F4_SPI_CR2_SSOE		BIT(2)
  53#define STM32F4_SPI_CR2_FRF		BIT(4)
  54#define STM32F4_SPI_CR2_ERRIE		BIT(5)
  55#define STM32F4_SPI_CR2_RXNEIE		BIT(6)
  56#define STM32F4_SPI_CR2_TXEIE		BIT(7)
  57
  58/* STM32F4_SPI_SR bit fields */
  59#define STM32F4_SPI_SR_RXNE		BIT(0)
  60#define STM32F4_SPI_SR_TXE		BIT(1)
  61#define STM32F4_SPI_SR_CHSIDE		BIT(2)
  62#define STM32F4_SPI_SR_UDR		BIT(3)
  63#define STM32F4_SPI_SR_CRCERR		BIT(4)
  64#define STM32F4_SPI_SR_MODF		BIT(5)
  65#define STM32F4_SPI_SR_OVR		BIT(6)
  66#define STM32F4_SPI_SR_BSY		BIT(7)
  67#define STM32F4_SPI_SR_FRE		BIT(8)
  68
  69/* STM32F4_SPI_I2SCFGR bit fields */
  70#define STM32F4_SPI_I2SCFGR_I2SMOD	BIT(11)
  71
  72/* STM32F4 SPI Baud Rate min/max divisor */
  73#define STM32F4_SPI_BR_DIV_MIN		(2 << STM32F4_SPI_CR1_BR_MIN)
  74#define STM32F4_SPI_BR_DIV_MAX		(2 << STM32F4_SPI_CR1_BR_MAX)
  75
  76/* STM32H7 SPI registers */
  77#define STM32H7_SPI_CR1			0x00
  78#define STM32H7_SPI_CR2			0x04
  79#define STM32H7_SPI_CFG1		0x08
  80#define STM32H7_SPI_CFG2		0x0C
  81#define STM32H7_SPI_IER			0x10
  82#define STM32H7_SPI_SR			0x14
  83#define STM32H7_SPI_IFCR		0x18
  84#define STM32H7_SPI_TXDR		0x20
  85#define STM32H7_SPI_RXDR		0x30
  86#define STM32H7_SPI_I2SCFGR		0x50
  87
  88/* STM32H7_SPI_CR1 bit fields */
  89#define STM32H7_SPI_CR1_SPE		BIT(0)
  90#define STM32H7_SPI_CR1_MASRX		BIT(8)
  91#define STM32H7_SPI_CR1_CSTART		BIT(9)
  92#define STM32H7_SPI_CR1_CSUSP		BIT(10)
  93#define STM32H7_SPI_CR1_HDDIR		BIT(11)
  94#define STM32H7_SPI_CR1_SSI		BIT(12)
  95
  96/* STM32H7_SPI_CR2 bit fields */
  97#define STM32H7_SPI_CR2_TSIZE_SHIFT	0
  98#define STM32H7_SPI_CR2_TSIZE		GENMASK(15, 0)
  99
 100/* STM32H7_SPI_CFG1 bit fields */
 101#define STM32H7_SPI_CFG1_DSIZE_SHIFT	0
 102#define STM32H7_SPI_CFG1_DSIZE		GENMASK(4, 0)
 103#define STM32H7_SPI_CFG1_FTHLV_SHIFT	5
 104#define STM32H7_SPI_CFG1_FTHLV		GENMASK(8, 5)
 105#define STM32H7_SPI_CFG1_RXDMAEN	BIT(14)
 106#define STM32H7_SPI_CFG1_TXDMAEN	BIT(15)
 107#define STM32H7_SPI_CFG1_MBR_SHIFT	28
 108#define STM32H7_SPI_CFG1_MBR		GENMASK(30, 28)
 109#define STM32H7_SPI_CFG1_MBR_MIN	0
 110#define STM32H7_SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)
 111
 112/* STM32H7_SPI_CFG2 bit fields */
 113#define STM32H7_SPI_CFG2_MIDI_SHIFT	4
 114#define STM32H7_SPI_CFG2_MIDI		GENMASK(7, 4)
 115#define STM32H7_SPI_CFG2_COMM_SHIFT	17
 116#define STM32H7_SPI_CFG2_COMM		GENMASK(18, 17)
 117#define STM32H7_SPI_CFG2_SP_SHIFT	19
 118#define STM32H7_SPI_CFG2_SP		GENMASK(21, 19)
 119#define STM32H7_SPI_CFG2_MASTER		BIT(22)
 120#define STM32H7_SPI_CFG2_LSBFRST	BIT(23)
 121#define STM32H7_SPI_CFG2_CPHA		BIT(24)
 122#define STM32H7_SPI_CFG2_CPOL		BIT(25)
 123#define STM32H7_SPI_CFG2_SSM		BIT(26)
 124#define STM32H7_SPI_CFG2_AFCNTR		BIT(31)
 125
 126/* STM32H7_SPI_IER bit fields */
 127#define STM32H7_SPI_IER_RXPIE		BIT(0)
 128#define STM32H7_SPI_IER_TXPIE		BIT(1)
 129#define STM32H7_SPI_IER_DXPIE		BIT(2)
 130#define STM32H7_SPI_IER_EOTIE		BIT(3)
 131#define STM32H7_SPI_IER_TXTFIE		BIT(4)
 132#define STM32H7_SPI_IER_OVRIE		BIT(6)
 133#define STM32H7_SPI_IER_MODFIE		BIT(9)
 134#define STM32H7_SPI_IER_ALL		GENMASK(10, 0)
 135
 136/* STM32H7_SPI_SR bit fields */
 137#define STM32H7_SPI_SR_RXP		BIT(0)
 138#define STM32H7_SPI_SR_TXP		BIT(1)
 139#define STM32H7_SPI_SR_EOT		BIT(3)
 140#define STM32H7_SPI_SR_OVR		BIT(6)
 141#define STM32H7_SPI_SR_MODF		BIT(9)
 142#define STM32H7_SPI_SR_SUSP		BIT(11)
 143#define STM32H7_SPI_SR_RXPLVL_SHIFT	13
 144#define STM32H7_SPI_SR_RXPLVL		GENMASK(14, 13)
 145#define STM32H7_SPI_SR_RXWNE		BIT(15)
 146
 147/* STM32H7_SPI_IFCR bit fields */
 148#define STM32H7_SPI_IFCR_ALL		GENMASK(11, 3)
 149
 150/* STM32H7_SPI_I2SCFGR bit fields */
 151#define STM32H7_SPI_I2SCFGR_I2SMOD	BIT(0)
 152
 153/* STM32H7 SPI Master Baud Rate min/max divisor */
 154#define STM32H7_SPI_MBR_DIV_MIN		(2 << STM32H7_SPI_CFG1_MBR_MIN)
 155#define STM32H7_SPI_MBR_DIV_MAX		(2 << STM32H7_SPI_CFG1_MBR_MAX)
 156
 157/* STM32H7 SPI Communication mode */
 158#define STM32H7_SPI_FULL_DUPLEX		0
 159#define STM32H7_SPI_SIMPLEX_TX		1
 160#define STM32H7_SPI_SIMPLEX_RX		2
 161#define STM32H7_SPI_HALF_DUPLEX		3
 162
 163/* SPI Communication type */
 164#define SPI_FULL_DUPLEX		0
 165#define SPI_SIMPLEX_TX		1
 166#define SPI_SIMPLEX_RX		2
 167#define SPI_3WIRE_TX		3
 168#define SPI_3WIRE_RX		4
 169
 170#define SPI_1HZ_NS		1000000000
 171
 172/*
 173 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
 174 * without fifo buffers.
 175 */
 176#define SPI_DMA_MIN_BYTES	16
 177
 178/**
 179 * stm32_spi_reg - stm32 SPI register & bitfield desc
 180 * @reg:		register offset
 181 * @mask:		bitfield mask
 182 * @shift:		left shift
 183 */
 184struct stm32_spi_reg {
 185	int reg;
 186	int mask;
 187	int shift;
 188};
 189
 190/**
 191 * stm32_spi_regspec - stm32 registers definition, compatible dependent data
 192 * en: enable register and SPI enable bit
 193 * dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
 194 * dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
 195 * cpol: clock polarity register and polarity bit
 196 * cpha: clock phase register and phase bit
 197 * lsb_first: LSB transmitted first register and bit
 198 * br: baud rate register and bitfields
 199 * rx: SPI RX data register
 200 * tx: SPI TX data register
 201 */
 202struct stm32_spi_regspec {
 203	const struct stm32_spi_reg en;
 204	const struct stm32_spi_reg dma_rx_en;
 205	const struct stm32_spi_reg dma_tx_en;
 206	const struct stm32_spi_reg cpol;
 207	const struct stm32_spi_reg cpha;
 208	const struct stm32_spi_reg lsb_first;
 209	const struct stm32_spi_reg br;
 210	const struct stm32_spi_reg rx;
 211	const struct stm32_spi_reg tx;
 212};
 213
 214struct stm32_spi;
 215
 216/**
 217 * stm32_spi_cfg - stm32 compatible configuration data
 218 * @regs: registers descriptions
 219 * @get_fifo_size: routine to get fifo size
 220 * @get_bpw_mask: routine to get bits per word mask
 221 * @disable: routine to disable controller
 222 * @config: routine to configure controller as SPI Master
 223 * @set_bpw: routine to configure registers to for bits per word
 224 * @set_mode: routine to configure registers to desired mode
 225 * @set_data_idleness: optional routine to configure registers to desired idle
 226 * time between frames (if driver has this functionality)
 227 * set_number_of_data: optional routine to configure registers to desired
 228 * number of data (if driver has this functionality)
 229 * @can_dma: routine to determine if the transfer is eligible for DMA use
 230 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
 231 * using DMA
 232 * @dma_rx cb: routine to call after DMA RX channel operation is complete
 233 * @dma_tx cb: routine to call after DMA TX channel operation is complete
 234 * @transfer_one_irq: routine to configure interrupts for driver
 235 * @irq_handler_event: Interrupt handler for SPI controller events
 236 * @irq_handler_thread: thread of interrupt handler for SPI controller
 237 * @baud_rate_div_min: minimum baud rate divisor
 238 * @baud_rate_div_max: maximum baud rate divisor
 239 * @has_fifo: boolean to know if fifo is used for driver
 240 * @has_startbit: boolean to know if start bit is used to start transfer
 241 */
 242struct stm32_spi_cfg {
 243	const struct stm32_spi_regspec *regs;
 244	int (*get_fifo_size)(struct stm32_spi *spi);
 245	int (*get_bpw_mask)(struct stm32_spi *spi);
 246	void (*disable)(struct stm32_spi *spi);
 247	int (*config)(struct stm32_spi *spi);
 248	void (*set_bpw)(struct stm32_spi *spi);
 249	int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
 250	void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
 251	int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
 252	void (*transfer_one_dma_start)(struct stm32_spi *spi);
 253	void (*dma_rx_cb)(void *data);
 254	void (*dma_tx_cb)(void *data);
 255	int (*transfer_one_irq)(struct stm32_spi *spi);
 256	irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
 257	irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
 258	unsigned int baud_rate_div_min;
 259	unsigned int baud_rate_div_max;
 260	bool has_fifo;
 261};
 262
 263/**
 264 * struct stm32_spi - private data of the SPI controller
 265 * @dev: driver model representation of the controller
 266 * @master: controller master interface
 267 * @cfg: compatible configuration data
 268 * @base: virtual memory area
 269 * @clk: hw kernel clock feeding the SPI clock generator
 270 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
 271 * @rst: SPI controller reset line
 272 * @lock: prevent I/O concurrent access
 273 * @irq: SPI controller interrupt line
 274 * @fifo_size: size of the embedded fifo in bytes
 275 * @cur_midi: master inter-data idleness in ns
 276 * @cur_speed: speed configured in Hz
 277 * @cur_bpw: number of bits in a single SPI data frame
 278 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
 279 * @cur_comm: SPI communication mode
 280 * @cur_xferlen: current transfer length in bytes
 281 * @cur_usedma: boolean to know if dma is used in current transfer
 282 * @tx_buf: data to be written, or NULL
 283 * @rx_buf: data to be read, or NULL
 284 * @tx_len: number of data to be written in bytes
 285 * @rx_len: number of data to be read in bytes
 286 * @dma_tx: dma channel for TX transfer
 287 * @dma_rx: dma channel for RX transfer
 288 * @phys_addr: SPI registers physical base address
 289 */
 290struct stm32_spi {
 291	struct device *dev;
 292	struct spi_master *master;
 293	const struct stm32_spi_cfg *cfg;
 294	void __iomem *base;
 295	struct clk *clk;
 296	u32 clk_rate;
 297	struct reset_control *rst;
 298	spinlock_t lock; /* prevent I/O concurrent access */
 299	int irq;
 300	unsigned int fifo_size;
 301
 302	unsigned int cur_midi;
 303	unsigned int cur_speed;
 304	unsigned int cur_bpw;
 305	unsigned int cur_fthlv;
 306	unsigned int cur_comm;
 307	unsigned int cur_xferlen;
 308	bool cur_usedma;
 309
 310	const void *tx_buf;
 311	void *rx_buf;
 312	int tx_len;
 313	int rx_len;
 314	struct dma_chan *dma_tx;
 315	struct dma_chan *dma_rx;
 316	dma_addr_t phys_addr;
 317};
 318
 319static const struct stm32_spi_regspec stm32f4_spi_regspec = {
 320	.en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
 321
 322	.dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
 323	.dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
 324
 325	.cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
 326	.cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
 327	.lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
 328	.br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
 329
 330	.rx = { STM32F4_SPI_DR },
 331	.tx = { STM32F4_SPI_DR },
 332};
 333
 334static const struct stm32_spi_regspec stm32h7_spi_regspec = {
 335	/* SPI data transfer is enabled but spi_ker_ck is idle.
 336	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
 337	 */
 338	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
 339
 340	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
 341	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
 342
 343	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
 344	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
 345	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
 346	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
 347		STM32H7_SPI_CFG1_MBR_SHIFT },
 348
 349	.rx = { STM32H7_SPI_RXDR },
 350	.tx = { STM32H7_SPI_TXDR },
 351};
 352
 353static inline void stm32_spi_set_bits(struct stm32_spi *spi,
 354				      u32 offset, u32 bits)
 355{
 356	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
 357		       spi->base + offset);
 358}
 359
 360static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
 361				      u32 offset, u32 bits)
 362{
 363	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
 364		       spi->base + offset);
 365}
 366
 367/**
 368 * stm32h7_spi_get_fifo_size - Return fifo size
 369 * @spi: pointer to the spi controller data structure
 370 */
 371static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
 372{
 373	unsigned long flags;
 374	u32 count = 0;
 375
 376	spin_lock_irqsave(&spi->lock, flags);
 377
 378	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 379
 380	while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
 381		writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
 382
 383	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 384
 385	spin_unlock_irqrestore(&spi->lock, flags);
 386
 387	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
 388
 389	return count;
 390}
 391
 392/**
 393 * stm32f4_spi_get_bpw_mask - Return bits per word mask
 394 * @spi: pointer to the spi controller data structure
 395 */
 396static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
 397{
 398	dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
 399	return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
 400}
 401
 402/**
 403 * stm32h7_spi_get_bpw_mask - Return bits per word mask
 404 * @spi: pointer to the spi controller data structure
 405 */
 406static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
 407{
 408	unsigned long flags;
 409	u32 cfg1, max_bpw;
 410
 411	spin_lock_irqsave(&spi->lock, flags);
 412
 413	/*
 414	 * The most significant bit at DSIZE bit field is reserved when the
 415	 * maximum data size of periperal instances is limited to 16-bit
 416	 */
 417	stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
 418
 419	cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
 420	max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
 421		  STM32H7_SPI_CFG1_DSIZE_SHIFT;
 422	max_bpw += 1;
 423
 424	spin_unlock_irqrestore(&spi->lock, flags);
 425
 426	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
 427
 428	return SPI_BPW_RANGE_MASK(4, max_bpw);
 429}
 430
 431/**
 432 * stm32_spi_prepare_mbr - Determine baud rate divisor value
 433 * @spi: pointer to the spi controller data structure
 434 * @speed_hz: requested speed
 435 * @min_div: minimum baud rate divisor
 436 * @max_div: maximum baud rate divisor
 437 *
 438 * Return baud rate divisor value in case of success or -EINVAL
 439 */
 440static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
 441				 u32 min_div, u32 max_div)
 442{
 443	u32 div, mbrdiv;
 444
 445	div = DIV_ROUND_UP(spi->clk_rate, speed_hz);
 446
 447	/*
 448	 * SPI framework set xfer->speed_hz to master->max_speed_hz if
 449	 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
 450	 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
 451	 * no need to check it there.
 452	 * However, we need to ensure the following calculations.
 453	 */
 454	if ((div < min_div) || (div > max_div))
 455		return -EINVAL;
 456
 457	/* Determine the first power of 2 greater than or equal to div */
 458	if (div & (div - 1))
 459		mbrdiv = fls(div);
 460	else
 461		mbrdiv = fls(div) - 1;
 462
 463	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
 464
 465	return mbrdiv - 1;
 466}
 467
 468/**
 469 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
 470 * @spi: pointer to the spi controller data structure
 471 */
 472static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi)
 473{
 474	u32 fthlv, half_fifo;
 475
 476	/* data packet should not exceed 1/2 of fifo space */
 477	half_fifo = (spi->fifo_size / 2);
 478
 479	if (spi->cur_bpw <= 8)
 480		fthlv = half_fifo;
 481	else if (spi->cur_bpw <= 16)
 482		fthlv = half_fifo / 2;
 483	else
 484		fthlv = half_fifo / 4;
 485
 486	/* align packet size with data registers access */
 487	if (spi->cur_bpw > 8)
 488		fthlv -= (fthlv % 2); /* multiple of 2 */
 489	else
 490		fthlv -= (fthlv % 4); /* multiple of 4 */
 491
 492	return fthlv;
 493}
 494
 495/**
 496 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
 497 * @spi: pointer to the spi controller data structure
 498 *
 499 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 500 * tx_buf end.
 501 */
 502static void stm32f4_spi_write_tx(struct stm32_spi *spi)
 503{
 504	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
 505				  STM32F4_SPI_SR_TXE)) {
 506		u32 offs = spi->cur_xferlen - spi->tx_len;
 507
 508		if (spi->cur_bpw == 16) {
 509			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
 510
 511			writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
 512			spi->tx_len -= sizeof(u16);
 513		} else {
 514			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
 515
 516			writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
 517			spi->tx_len -= sizeof(u8);
 518		}
 519	}
 520
 521	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
 522}
 523
 524/**
 525 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
 526 * @spi: pointer to the spi controller data structure
 527 *
 528 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 529 * tx_buf end.
 530 */
 531static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
 532{
 533	while ((spi->tx_len > 0) &&
 534		       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
 535			STM32H7_SPI_SR_TXP)) {
 536		u32 offs = spi->cur_xferlen - spi->tx_len;
 537
 538		if (spi->tx_len >= sizeof(u32)) {
 539			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
 540
 541			writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
 542			spi->tx_len -= sizeof(u32);
 543		} else if (spi->tx_len >= sizeof(u16)) {
 544			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
 545
 546			writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
 547			spi->tx_len -= sizeof(u16);
 548		} else {
 549			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
 550
 551			writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
 552			spi->tx_len -= sizeof(u8);
 553		}
 554	}
 555
 556	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
 557}
 558
 559/**
 560 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
 561 * @spi: pointer to the spi controller data structure
 562 *
 563 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 564 * rx_buf end.
 565 */
 566static void stm32f4_spi_read_rx(struct stm32_spi *spi)
 567{
 568	if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
 569				  STM32F4_SPI_SR_RXNE)) {
 570		u32 offs = spi->cur_xferlen - spi->rx_len;
 571
 572		if (spi->cur_bpw == 16) {
 573			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
 574
 575			*rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
 576			spi->rx_len -= sizeof(u16);
 577		} else {
 578			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
 579
 580			*rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
 581			spi->rx_len -= sizeof(u8);
 582		}
 583	}
 584
 585	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
 586}
 587
 588/**
 589 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
 590 * @spi: pointer to the spi controller data structure
 591 *
 592 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 593 * rx_buf end.
 594 */
 595static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
 596{
 597	u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 598	u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
 599		     STM32H7_SPI_SR_RXPLVL_SHIFT;
 600
 601	while ((spi->rx_len > 0) &&
 602	       ((sr & STM32H7_SPI_SR_RXP) ||
 603		(flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
 604		u32 offs = spi->cur_xferlen - spi->rx_len;
 605
 606		if ((spi->rx_len >= sizeof(u32)) ||
 607		    (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
 608			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
 609
 610			*rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
 611			spi->rx_len -= sizeof(u32);
 612		} else if ((spi->rx_len >= sizeof(u16)) ||
 613			   (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
 614			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
 615
 616			*rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
 617			spi->rx_len -= sizeof(u16);
 618		} else {
 619			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
 620
 621			*rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
 622			spi->rx_len -= sizeof(u8);
 623		}
 624
 625		sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 626		rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
 627			 STM32H7_SPI_SR_RXPLVL_SHIFT;
 628	}
 629
 630	dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
 631		flush ? "(flush)" : "", spi->rx_len);
 632}
 633
 634/**
 635 * stm32_spi_enable - Enable SPI controller
 636 * @spi: pointer to the spi controller data structure
 637 */
 638static void stm32_spi_enable(struct stm32_spi *spi)
 639{
 640	dev_dbg(spi->dev, "enable controller\n");
 641
 642	stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
 643			   spi->cfg->regs->en.mask);
 644}
 645
 646/**
 647 * stm32f4_spi_disable - Disable SPI controller
 648 * @spi: pointer to the spi controller data structure
 649 */
 650static void stm32f4_spi_disable(struct stm32_spi *spi)
 651{
 652	unsigned long flags;
 653	u32 sr;
 654
 655	dev_dbg(spi->dev, "disable controller\n");
 656
 657	spin_lock_irqsave(&spi->lock, flags);
 658
 659	if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
 660	      STM32F4_SPI_CR1_SPE)) {
 661		spin_unlock_irqrestore(&spi->lock, flags);
 662		return;
 663	}
 664
 665	/* Disable interrupts */
 666	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
 667						 STM32F4_SPI_CR2_RXNEIE |
 668						 STM32F4_SPI_CR2_ERRIE);
 669
 670	/* Wait until BSY = 0 */
 671	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
 672					      sr, !(sr & STM32F4_SPI_SR_BSY),
 673					      10, 100000) < 0) {
 674		dev_warn(spi->dev, "disabling condition timeout\n");
 675	}
 676
 677	if (spi->cur_usedma && spi->dma_tx)
 678		dmaengine_terminate_all(spi->dma_tx);
 679	if (spi->cur_usedma && spi->dma_rx)
 680		dmaengine_terminate_all(spi->dma_rx);
 681
 682	stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
 683
 684	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
 685						 STM32F4_SPI_CR2_RXDMAEN);
 686
 687	/* Sequence to clear OVR flag */
 688	readl_relaxed(spi->base + STM32F4_SPI_DR);
 689	readl_relaxed(spi->base + STM32F4_SPI_SR);
 690
 691	spin_unlock_irqrestore(&spi->lock, flags);
 692}
 693
 694/**
 695 * stm32h7_spi_disable - Disable SPI controller
 696 * @spi: pointer to the spi controller data structure
 697 *
 698 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
 699 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
 700 * RX-Fifo.
 701 * Normally, if TSIZE has been configured, we should relax the hardware at the
 702 * reception of the EOT interrupt. But in case of error, EOT will not be
 703 * raised. So the subsystem unprepare_message call allows us to properly
 704 * complete the transfer from an hardware point of view.
 705 */
 706static void stm32h7_spi_disable(struct stm32_spi *spi)
 707{
 708	unsigned long flags;
 709	u32 cr1, sr;
 710
 711	dev_dbg(spi->dev, "disable controller\n");
 712
 713	spin_lock_irqsave(&spi->lock, flags);
 714
 715	cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
 716
 717	if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
 718		spin_unlock_irqrestore(&spi->lock, flags);
 719		return;
 720	}
 721
 722	/* Wait on EOT or suspend the flow */
 723	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
 724					      sr, !(sr & STM32H7_SPI_SR_EOT),
 725					      10, 100000) < 0) {
 726		if (cr1 & STM32H7_SPI_CR1_CSTART) {
 727			writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
 728				       spi->base + STM32H7_SPI_CR1);
 729			if (readl_relaxed_poll_timeout_atomic(
 730						spi->base + STM32H7_SPI_SR,
 731						sr, !(sr & STM32H7_SPI_SR_SUSP),
 732						10, 100000) < 0)
 733				dev_warn(spi->dev,
 734					 "Suspend request timeout\n");
 735		}
 736	}
 737
 738	if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
 739		stm32h7_spi_read_rxfifo(spi, true);
 740
 741	if (spi->cur_usedma && spi->dma_tx)
 742		dmaengine_terminate_all(spi->dma_tx);
 743	if (spi->cur_usedma && spi->dma_rx)
 744		dmaengine_terminate_all(spi->dma_rx);
 745
 746	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 747
 748	stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
 749						STM32H7_SPI_CFG1_RXDMAEN);
 750
 751	/* Disable interrupts and clear status flags */
 752	writel_relaxed(0, spi->base + STM32H7_SPI_IER);
 753	writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
 754
 755	spin_unlock_irqrestore(&spi->lock, flags);
 756}
 757
 758/**
 759 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
 760 *
 761 * If driver has fifo and the current transfer size is greater than fifo size,
 762 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
 763 */
 764static bool stm32_spi_can_dma(struct spi_master *master,
 765			      struct spi_device *spi_dev,
 766			      struct spi_transfer *transfer)
 767{
 768	unsigned int dma_size;
 769	struct stm32_spi *spi = spi_master_get_devdata(master);
 770
 771	if (spi->cfg->has_fifo)
 772		dma_size = spi->fifo_size;
 773	else
 774		dma_size = SPI_DMA_MIN_BYTES;
 775
 776	dev_dbg(spi->dev, "%s: %s\n", __func__,
 777		(transfer->len > dma_size) ? "true" : "false");
 778
 779	return (transfer->len > dma_size);
 780}
 781
 782/**
 783 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
 784 * @irq: interrupt line
 785 * @dev_id: SPI controller master interface
 786 */
 787static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
 788{
 789	struct spi_master *master = dev_id;
 790	struct stm32_spi *spi = spi_master_get_devdata(master);
 791	u32 sr, mask = 0;
 792	unsigned long flags;
 793	bool end = false;
 794
 795	spin_lock_irqsave(&spi->lock, flags);
 796
 797	sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
 798	/*
 799	 * BSY flag is not handled in interrupt but it is normal behavior when
 800	 * this flag is set.
 801	 */
 802	sr &= ~STM32F4_SPI_SR_BSY;
 803
 804	if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
 805				 spi->cur_comm == SPI_3WIRE_TX)) {
 806		/* OVR flag shouldn't be handled for TX only mode */
 807		sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
 808		mask |= STM32F4_SPI_SR_TXE;
 809	}
 810
 811	if (!spi->cur_usedma && spi->cur_comm == SPI_FULL_DUPLEX) {
 812		/* TXE flag is set and is handled when RXNE flag occurs */
 813		sr &= ~STM32F4_SPI_SR_TXE;
 814		mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
 815	}
 816
 817	if (!(sr & mask)) {
 818		dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
 819		spin_unlock_irqrestore(&spi->lock, flags);
 820		return IRQ_NONE;
 821	}
 822
 823	if (sr & STM32F4_SPI_SR_OVR) {
 824		dev_warn(spi->dev, "Overrun: received value discarded\n");
 825
 826		/* Sequence to clear OVR flag */
 827		readl_relaxed(spi->base + STM32F4_SPI_DR);
 828		readl_relaxed(spi->base + STM32F4_SPI_SR);
 829
 830		/*
 831		 * If overrun is detected, it means that something went wrong,
 832		 * so stop the current transfer. Transfer can wait for next
 833		 * RXNE but DR is already read and end never happens.
 834		 */
 835		end = true;
 836		goto end_irq;
 837	}
 838
 839	if (sr & STM32F4_SPI_SR_TXE) {
 840		if (spi->tx_buf)
 841			stm32f4_spi_write_tx(spi);
 842		if (spi->tx_len == 0)
 843			end = true;
 844	}
 845
 846	if (sr & STM32F4_SPI_SR_RXNE) {
 847		stm32f4_spi_read_rx(spi);
 848		if (spi->rx_len == 0)
 849			end = true;
 850		else /* Load data for discontinuous mode */
 851			stm32f4_spi_write_tx(spi);
 852	}
 853
 854end_irq:
 855	if (end) {
 856		/* Immediately disable interrupts to do not generate new one */
 857		stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
 858					STM32F4_SPI_CR2_TXEIE |
 859					STM32F4_SPI_CR2_RXNEIE |
 860					STM32F4_SPI_CR2_ERRIE);
 861		spin_unlock_irqrestore(&spi->lock, flags);
 862		return IRQ_WAKE_THREAD;
 863	}
 864
 865	spin_unlock_irqrestore(&spi->lock, flags);
 866	return IRQ_HANDLED;
 867}
 868
 869/**
 870 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
 871 * @irq: interrupt line
 872 * @dev_id: SPI controller master interface
 873 */
 874static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
 875{
 876	struct spi_master *master = dev_id;
 877	struct stm32_spi *spi = spi_master_get_devdata(master);
 878
 879	spi_finalize_current_transfer(master);
 880	stm32f4_spi_disable(spi);
 881
 882	return IRQ_HANDLED;
 883}
 884
 885/**
 886 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
 887 * @irq: interrupt line
 888 * @dev_id: SPI controller master interface
 889 */
 890static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
 891{
 892	struct spi_master *master = dev_id;
 893	struct stm32_spi *spi = spi_master_get_devdata(master);
 894	u32 sr, ier, mask;
 895	unsigned long flags;
 896	bool end = false;
 897
 898	spin_lock_irqsave(&spi->lock, flags);
 899
 900	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 901	ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
 902
 903	mask = ier;
 904	/* EOTIE is triggered on EOT, SUSP and TXC events. */
 905	mask |= STM32H7_SPI_SR_SUSP;
 906	/*
 907	 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
 908	 * Full-Duplex, need to poll RXP event to know if there are remaining
 909	 * data, before disabling SPI.
 910	 */
 911	if (spi->rx_buf && !spi->cur_usedma)
 912		mask |= STM32H7_SPI_SR_RXP;
 913
 914	if (!(sr & mask)) {
 915		dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
 916			sr, ier);
 917		spin_unlock_irqrestore(&spi->lock, flags);
 918		return IRQ_NONE;
 919	}
 920
 921	if (sr & STM32H7_SPI_SR_SUSP) {
 922		dev_warn(spi->dev, "Communication suspended\n");
 923		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 924			stm32h7_spi_read_rxfifo(spi, false);
 925		/*
 926		 * If communication is suspended while using DMA, it means
 927		 * that something went wrong, so stop the current transfer
 928		 */
 929		if (spi->cur_usedma)
 930			end = true;
 931	}
 932
 933	if (sr & STM32H7_SPI_SR_MODF) {
 934		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
 935		end = true;
 936	}
 937
 938	if (sr & STM32H7_SPI_SR_OVR) {
 939		dev_warn(spi->dev, "Overrun: received value discarded\n");
 940		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 941			stm32h7_spi_read_rxfifo(spi, false);
 942		/*
 943		 * If overrun is detected while using DMA, it means that
 944		 * something went wrong, so stop the current transfer
 945		 */
 946		if (spi->cur_usedma)
 947			end = true;
 948	}
 949
 950	if (sr & STM32H7_SPI_SR_EOT) {
 951		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 952			stm32h7_spi_read_rxfifo(spi, true);
 953		end = true;
 954	}
 955
 956	if (sr & STM32H7_SPI_SR_TXP)
 957		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
 958			stm32h7_spi_write_txfifo(spi);
 959
 960	if (sr & STM32H7_SPI_SR_RXP)
 961		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 962			stm32h7_spi_read_rxfifo(spi, false);
 963
 964	writel_relaxed(mask, spi->base + STM32H7_SPI_IFCR);
 965
 966	spin_unlock_irqrestore(&spi->lock, flags);
 967
 968	if (end) {
 969		spi_finalize_current_transfer(master);
 970		stm32h7_spi_disable(spi);
 971	}
 972
 973	return IRQ_HANDLED;
 974}
 975
 976/**
 977 * stm32_spi_setup - setup device chip select
 978 */
 979static int stm32_spi_setup(struct spi_device *spi_dev)
 980{
 981	int ret = 0;
 982
 983	if (!gpio_is_valid(spi_dev->cs_gpio)) {
 984		dev_err(&spi_dev->dev, "%d is not a valid gpio\n",
 985			spi_dev->cs_gpio);
 986		return -EINVAL;
 987	}
 988
 989	dev_dbg(&spi_dev->dev, "%s: set gpio%d output %s\n", __func__,
 990		spi_dev->cs_gpio,
 991		(spi_dev->mode & SPI_CS_HIGH) ? "low" : "high");
 992
 993	ret = gpio_direction_output(spi_dev->cs_gpio,
 994				    !(spi_dev->mode & SPI_CS_HIGH));
 995
 996	return ret;
 997}
 998
 999/**
1000 * stm32_spi_prepare_msg - set up the controller to transfer a single message
1001 */
1002static int stm32_spi_prepare_msg(struct spi_master *master,
1003				 struct spi_message *msg)
1004{
1005	struct stm32_spi *spi = spi_master_get_devdata(master);
1006	struct spi_device *spi_dev = msg->spi;
1007	struct device_node *np = spi_dev->dev.of_node;
1008	unsigned long flags;
1009	u32 clrb = 0, setb = 0;
1010
1011	/* SPI slave device may need time between data frames */
1012	spi->cur_midi = 0;
1013	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
1014		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
1015
1016	if (spi_dev->mode & SPI_CPOL)
1017		setb |= spi->cfg->regs->cpol.mask;
1018	else
1019		clrb |= spi->cfg->regs->cpol.mask;
1020
1021	if (spi_dev->mode & SPI_CPHA)
1022		setb |= spi->cfg->regs->cpha.mask;
1023	else
1024		clrb |= spi->cfg->regs->cpha.mask;
1025
1026	if (spi_dev->mode & SPI_LSB_FIRST)
1027		setb |= spi->cfg->regs->lsb_first.mask;
1028	else
1029		clrb |= spi->cfg->regs->lsb_first.mask;
1030
1031	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1032		spi_dev->mode & SPI_CPOL,
1033		spi_dev->mode & SPI_CPHA,
1034		spi_dev->mode & SPI_LSB_FIRST,
1035		spi_dev->mode & SPI_CS_HIGH);
1036
1037	spin_lock_irqsave(&spi->lock, flags);
1038
1039	/* CPOL, CPHA and LSB FIRST bits have common register */
1040	if (clrb || setb)
1041		writel_relaxed(
1042			(readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1043			 ~clrb) | setb,
1044			spi->base + spi->cfg->regs->cpol.reg);
1045
1046	spin_unlock_irqrestore(&spi->lock, flags);
1047
1048	return 0;
1049}
1050
1051/**
1052 * stm32f4_spi_dma_tx_cb - dma callback
1053 *
1054 * DMA callback is called when the transfer is complete for DMA TX channel.
1055 */
1056static void stm32f4_spi_dma_tx_cb(void *data)
1057{
1058	struct stm32_spi *spi = data;
1059
1060	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1061		spi_finalize_current_transfer(spi->master);
1062		stm32f4_spi_disable(spi);
1063	}
1064}
1065
1066/**
1067 * stm32f4_spi_dma_rx_cb - dma callback
1068 *
1069 * DMA callback is called when the transfer is complete for DMA RX channel.
1070 */
1071static void stm32f4_spi_dma_rx_cb(void *data)
1072{
1073	struct stm32_spi *spi = data;
1074
1075	spi_finalize_current_transfer(spi->master);
1076	stm32f4_spi_disable(spi);
1077}
1078
1079/**
1080 * stm32h7_spi_dma_cb - dma callback
1081 *
1082 * DMA callback is called when the transfer is complete or when an error
1083 * occurs. If the transfer is complete, EOT flag is raised.
1084 */
1085static void stm32h7_spi_dma_cb(void *data)
1086{
1087	struct stm32_spi *spi = data;
1088	unsigned long flags;
1089	u32 sr;
1090
1091	spin_lock_irqsave(&spi->lock, flags);
1092
1093	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1094
1095	spin_unlock_irqrestore(&spi->lock, flags);
1096
1097	if (!(sr & STM32H7_SPI_SR_EOT))
1098		dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1099
1100	/* Now wait for EOT, or SUSP or OVR in case of error */
1101}
1102
1103/**
1104 * stm32_spi_dma_config - configure dma slave channel depending on current
1105 *			  transfer bits_per_word.
1106 */
1107static void stm32_spi_dma_config(struct stm32_spi *spi,
1108				 struct dma_slave_config *dma_conf,
1109				 enum dma_transfer_direction dir)
1110{
1111	enum dma_slave_buswidth buswidth;
1112	u32 maxburst;
1113
1114	if (spi->cur_bpw <= 8)
1115		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1116	else if (spi->cur_bpw <= 16)
1117		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1118	else
1119		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1120
1121	if (spi->cfg->has_fifo) {
1122		/* Valid for DMA Half or Full Fifo threshold */
1123		if (spi->cur_fthlv == 2)
1124			maxburst = 1;
1125		else
1126			maxburst = spi->cur_fthlv;
1127	} else {
1128		maxburst = 1;
1129	}
1130
1131	memset(dma_conf, 0, sizeof(struct dma_slave_config));
1132	dma_conf->direction = dir;
1133	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1134		dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1135		dma_conf->src_addr_width = buswidth;
1136		dma_conf->src_maxburst = maxburst;
1137
1138		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1139			buswidth, maxburst);
1140	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1141		dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1142		dma_conf->dst_addr_width = buswidth;
1143		dma_conf->dst_maxburst = maxburst;
1144
1145		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1146			buswidth, maxburst);
1147	}
1148}
1149
1150/**
1151 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1152 *				  interrupts
1153 *
1154 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1155 * in progress.
1156 */
1157static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1158{
1159	unsigned long flags;
1160	u32 cr2 = 0;
1161
1162	/* Enable the interrupts relative to the current communication mode */
1163	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1164		cr2 |= STM32F4_SPI_CR2_TXEIE;
1165	} else if (spi->cur_comm == SPI_FULL_DUPLEX) {
1166		/* In transmit-only mode, the OVR flag is set in the SR register
1167		 * since the received data are never read. Therefore set OVR
1168		 * interrupt only when rx buffer is available.
1169		 */
1170		cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1171	} else {
1172		return -EINVAL;
1173	}
1174
1175	spin_lock_irqsave(&spi->lock, flags);
1176
1177	stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1178
1179	stm32_spi_enable(spi);
1180
1181	/* starting data transfer when buffer is loaded */
1182	if (spi->tx_buf)
1183		stm32f4_spi_write_tx(spi);
1184
1185	spin_unlock_irqrestore(&spi->lock, flags);
1186
1187	return 1;
1188}
1189
1190/**
1191 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1192 *				  interrupts
1193 *
1194 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1195 * in progress.
1196 */
1197static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1198{
1199	unsigned long flags;
1200	u32 ier = 0;
1201
1202	/* Enable the interrupts relative to the current communication mode */
1203	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
1204		ier |= STM32H7_SPI_IER_DXPIE;
1205	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
1206		ier |= STM32H7_SPI_IER_TXPIE;
1207	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
1208		ier |= STM32H7_SPI_IER_RXPIE;
1209
1210	/* Enable the interrupts relative to the end of transfer */
1211	ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1212	       STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1213
1214	spin_lock_irqsave(&spi->lock, flags);
1215
1216	stm32_spi_enable(spi);
1217
1218	/* Be sure to have data in fifo before starting data transfer */
1219	if (spi->tx_buf)
1220		stm32h7_spi_write_txfifo(spi);
1221
1222	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1223
1224	writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1225
1226	spin_unlock_irqrestore(&spi->lock, flags);
1227
1228	return 1;
1229}
1230
1231/**
1232 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1233 *					transfer using DMA
1234 */
1235static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1236{
1237	/* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1238	if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1239	    spi->cur_comm == SPI_FULL_DUPLEX) {
1240		/*
1241		 * In transmit-only mode, the OVR flag is set in the SR register
1242		 * since the received data are never read. Therefore set OVR
1243		 * interrupt only when rx buffer is available.
1244		 */
1245		stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1246	}
1247
1248	stm32_spi_enable(spi);
1249}
1250
1251/**
1252 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1253 *					transfer using DMA
1254 */
1255static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1256{
1257	/* Enable the interrupts relative to the end of transfer */
1258	stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1259						 STM32H7_SPI_IER_TXTFIE |
1260						 STM32H7_SPI_IER_OVRIE |
1261						 STM32H7_SPI_IER_MODFIE);
1262
1263	stm32_spi_enable(spi);
1264
1265	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1266}
1267
1268/**
1269 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1270 *
1271 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1272 * in progress.
1273 */
1274static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1275				      struct spi_transfer *xfer)
1276{
1277	struct dma_slave_config tx_dma_conf, rx_dma_conf;
1278	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1279	unsigned long flags;
1280
1281	spin_lock_irqsave(&spi->lock, flags);
1282
1283	rx_dma_desc = NULL;
1284	if (spi->rx_buf && spi->dma_rx) {
1285		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1286		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1287
1288		/* Enable Rx DMA request */
1289		stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1290				   spi->cfg->regs->dma_rx_en.mask);
1291
1292		rx_dma_desc = dmaengine_prep_slave_sg(
1293					spi->dma_rx, xfer->rx_sg.sgl,
1294					xfer->rx_sg.nents,
1295					rx_dma_conf.direction,
1296					DMA_PREP_INTERRUPT);
1297	}
1298
1299	tx_dma_desc = NULL;
1300	if (spi->tx_buf && spi->dma_tx) {
1301		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1302		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1303
1304		tx_dma_desc = dmaengine_prep_slave_sg(
1305					spi->dma_tx, xfer->tx_sg.sgl,
1306					xfer->tx_sg.nents,
1307					tx_dma_conf.direction,
1308					DMA_PREP_INTERRUPT);
1309	}
1310
1311	if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1312	    (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1313		goto dma_desc_error;
1314
1315	if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1316		goto dma_desc_error;
1317
1318	if (rx_dma_desc) {
1319		rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1320		rx_dma_desc->callback_param = spi;
1321
1322		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1323			dev_err(spi->dev, "Rx DMA submit failed\n");
1324			goto dma_desc_error;
1325		}
1326		/* Enable Rx DMA channel */
1327		dma_async_issue_pending(spi->dma_rx);
1328	}
1329
1330	if (tx_dma_desc) {
1331		if (spi->cur_comm == SPI_SIMPLEX_TX ||
1332		    spi->cur_comm == SPI_3WIRE_TX) {
1333			tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1334			tx_dma_desc->callback_param = spi;
1335		}
1336
1337		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1338			dev_err(spi->dev, "Tx DMA submit failed\n");
1339			goto dma_submit_error;
1340		}
1341		/* Enable Tx DMA channel */
1342		dma_async_issue_pending(spi->dma_tx);
1343
1344		/* Enable Tx DMA request */
1345		stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1346				   spi->cfg->regs->dma_tx_en.mask);
1347	}
1348
1349	spi->cfg->transfer_one_dma_start(spi);
1350
1351	spin_unlock_irqrestore(&spi->lock, flags);
1352
1353	return 1;
1354
1355dma_submit_error:
1356	if (spi->dma_rx)
1357		dmaengine_terminate_all(spi->dma_rx);
1358
1359dma_desc_error:
1360	stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1361			   spi->cfg->regs->dma_rx_en.mask);
1362
1363	spin_unlock_irqrestore(&spi->lock, flags);
1364
1365	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1366
1367	spi->cur_usedma = false;
1368	return spi->cfg->transfer_one_irq(spi);
1369}
1370
1371/**
1372 * stm32f4_spi_set_bpw - Configure bits per word
1373 * @spi: pointer to the spi controller data structure
1374 */
1375static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1376{
1377	if (spi->cur_bpw == 16)
1378		stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1379	else
1380		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1381}
1382
1383/**
1384 * stm32h7_spi_set_bpw - configure bits per word
1385 * @spi: pointer to the spi controller data structure
1386 */
1387static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1388{
1389	u32 bpw, fthlv;
1390	u32 cfg1_clrb = 0, cfg1_setb = 0;
1391
1392	bpw = spi->cur_bpw - 1;
1393
1394	cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1395	cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
1396		     STM32H7_SPI_CFG1_DSIZE;
1397
1398	spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi);
1399	fthlv = spi->cur_fthlv - 1;
1400
1401	cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1402	cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
1403		     STM32H7_SPI_CFG1_FTHLV;
1404
1405	writel_relaxed(
1406		(readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1407		 ~cfg1_clrb) | cfg1_setb,
1408		spi->base + STM32H7_SPI_CFG1);
1409}
1410
1411/**
1412 * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1413 * @spi: pointer to the spi controller data structure
1414 * @mbrdiv: baud rate divisor value
1415 */
1416static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1417{
1418	u32 clrb = 0, setb = 0;
1419
1420	clrb |= spi->cfg->regs->br.mask;
1421	setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
1422		spi->cfg->regs->br.mask;
1423
1424	writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1425			~clrb) | setb,
1426		       spi->base + spi->cfg->regs->br.reg);
1427}
1428
1429/**
1430 * stm32_spi_communication_type - return transfer communication type
1431 * @spi_dev: pointer to the spi device
1432 * transfer: pointer to spi transfer
1433 */
1434static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1435						 struct spi_transfer *transfer)
1436{
1437	unsigned int type = SPI_FULL_DUPLEX;
1438
1439	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1440		/*
1441		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1442		 * is forbidden and unvalidated by SPI subsystem so depending
1443		 * on the valid buffer, we can determine the direction of the
1444		 * transfer.
1445		 */
1446		if (!transfer->tx_buf)
1447			type = SPI_3WIRE_RX;
1448		else
1449			type = SPI_3WIRE_TX;
1450	} else {
1451		if (!transfer->tx_buf)
1452			type = SPI_SIMPLEX_RX;
1453		else if (!transfer->rx_buf)
1454			type = SPI_SIMPLEX_TX;
1455	}
1456
1457	return type;
1458}
1459
1460/**
1461 * stm32f4_spi_set_mode - configure communication mode
1462 * @spi: pointer to the spi controller data structure
1463 * @comm_type: type of communication to configure
1464 */
1465static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1466{
1467	if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1468		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1469					STM32F4_SPI_CR1_BIDIMODE |
1470					STM32F4_SPI_CR1_BIDIOE);
1471	} else if (comm_type == SPI_FULL_DUPLEX) {
1472		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1473					STM32F4_SPI_CR1_BIDIMODE |
1474					STM32F4_SPI_CR1_BIDIOE);
1475	} else {
1476		return -EINVAL;
1477	}
1478
1479	return 0;
1480}
1481
1482/**
1483 * stm32h7_spi_set_mode - configure communication mode
1484 * @spi: pointer to the spi controller data structure
1485 * @comm_type: type of communication to configure
1486 */
1487static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1488{
1489	u32 mode;
1490	u32 cfg2_clrb = 0, cfg2_setb = 0;
1491
1492	if (comm_type == SPI_3WIRE_RX) {
1493		mode = STM32H7_SPI_HALF_DUPLEX;
1494		stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1495	} else if (comm_type == SPI_3WIRE_TX) {
1496		mode = STM32H7_SPI_HALF_DUPLEX;
1497		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1498	} else if (comm_type == SPI_SIMPLEX_RX) {
1499		mode = STM32H7_SPI_SIMPLEX_RX;
1500	} else if (comm_type == SPI_SIMPLEX_TX) {
1501		mode = STM32H7_SPI_SIMPLEX_TX;
1502	} else {
1503		mode = STM32H7_SPI_FULL_DUPLEX;
1504	}
1505
1506	cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1507	cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
1508		     STM32H7_SPI_CFG2_COMM;
1509
1510	writel_relaxed(
1511		(readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1512		 ~cfg2_clrb) | cfg2_setb,
1513		spi->base + STM32H7_SPI_CFG2);
1514
1515	return 0;
1516}
1517
1518/**
1519 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1520 *			       consecutive data frames in master mode
1521 * @spi: pointer to the spi controller data structure
1522 * @len: transfer len
1523 */
1524static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1525{
1526	u32 cfg2_clrb = 0, cfg2_setb = 0;
1527
1528	cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1529	if ((len > 1) && (spi->cur_midi > 0)) {
1530		u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
1531		u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1532			       (u32)STM32H7_SPI_CFG2_MIDI >>
1533			       STM32H7_SPI_CFG2_MIDI_SHIFT);
1534
1535		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1536			sck_period_ns, midi, midi * sck_period_ns);
1537		cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
1538			     STM32H7_SPI_CFG2_MIDI;
1539	}
1540
1541	writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1542			~cfg2_clrb) | cfg2_setb,
1543		       spi->base + STM32H7_SPI_CFG2);
1544}
1545
1546/**
1547 * stm32h7_spi_number_of_data - configure number of data at current transfer
1548 * @spi: pointer to the spi controller data structure
1549 * @len: transfer length
1550 */
1551static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1552{
1553	u32 cr2_clrb = 0, cr2_setb = 0;
1554
1555	if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
1556			 STM32H7_SPI_CR2_TSIZE_SHIFT)) {
1557		cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
1558		cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
1559		writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
1560				~cr2_clrb) | cr2_setb,
1561			       spi->base + STM32H7_SPI_CR2);
1562	} else {
1563		return -EMSGSIZE;
1564	}
1565
1566	return 0;
1567}
1568
1569/**
1570 * stm32_spi_transfer_one_setup - common setup to transfer a single
1571 *				  spi_transfer either using DMA or
1572 *				  interrupts.
1573 */
1574static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1575					struct spi_device *spi_dev,
1576					struct spi_transfer *transfer)
1577{
1578	unsigned long flags;
1579	unsigned int comm_type;
1580	int nb_words, ret = 0;
1581
1582	spin_lock_irqsave(&spi->lock, flags);
1583
1584	if (spi->cur_bpw != transfer->bits_per_word) {
1585		spi->cur_bpw = transfer->bits_per_word;
1586		spi->cfg->set_bpw(spi);
1587	}
1588
1589	if (spi->cur_speed != transfer->speed_hz) {
1590		int mbr;
1591
1592		/* Update spi->cur_speed with real clock speed */
1593		mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1594					    spi->cfg->baud_rate_div_min,
1595					    spi->cfg->baud_rate_div_max);
1596		if (mbr < 0) {
1597			ret = mbr;
1598			goto out;
1599		}
1600
1601		transfer->speed_hz = spi->cur_speed;
1602		stm32_spi_set_mbr(spi, mbr);
1603	}
1604
1605	comm_type = stm32_spi_communication_type(spi_dev, transfer);
1606	if (spi->cur_comm != comm_type) {
1607		ret = spi->cfg->set_mode(spi, comm_type);
1608
1609		if (ret < 0)
1610			goto out;
1611
1612		spi->cur_comm = comm_type;
1613	}
1614
1615	if (spi->cfg->set_data_idleness)
1616		spi->cfg->set_data_idleness(spi, transfer->len);
1617
1618	if (spi->cur_bpw <= 8)
1619		nb_words = transfer->len;
1620	else if (spi->cur_bpw <= 16)
1621		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1622	else
1623		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1624
1625	if (spi->cfg->set_number_of_data) {
1626		ret = spi->cfg->set_number_of_data(spi, nb_words);
1627		if (ret < 0)
1628			goto out;
1629	}
1630
1631	spi->cur_xferlen = transfer->len;
1632
1633	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1634		spi->cur_comm);
1635	dev_dbg(spi->dev,
1636		"data frame of %d-bit, data packet of %d data frames\n",
1637		spi->cur_bpw, spi->cur_fthlv);
1638	dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1639	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1640		spi->cur_xferlen, nb_words);
1641	dev_dbg(spi->dev, "dma %s\n",
1642		(spi->cur_usedma) ? "enabled" : "disabled");
1643
1644out:
1645	spin_unlock_irqrestore(&spi->lock, flags);
1646
1647	return ret;
1648}
1649
1650/**
1651 * stm32_spi_transfer_one - transfer a single spi_transfer
1652 *
1653 * It must return 0 if the transfer is finished or 1 if the transfer is still
1654 * in progress.
1655 */
1656static int stm32_spi_transfer_one(struct spi_master *master,
1657				  struct spi_device *spi_dev,
1658				  struct spi_transfer *transfer)
1659{
1660	struct stm32_spi *spi = spi_master_get_devdata(master);
1661	int ret;
1662
1663	spi->tx_buf = transfer->tx_buf;
1664	spi->rx_buf = transfer->rx_buf;
1665	spi->tx_len = spi->tx_buf ? transfer->len : 0;
1666	spi->rx_len = spi->rx_buf ? transfer->len : 0;
1667
1668	spi->cur_usedma = (master->can_dma &&
1669			   master->can_dma(master, spi_dev, transfer));
1670
1671	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1672	if (ret) {
1673		dev_err(spi->dev, "SPI transfer setup failed\n");
1674		return ret;
1675	}
1676
1677	if (spi->cur_usedma)
1678		return stm32_spi_transfer_one_dma(spi, transfer);
1679	else
1680		return spi->cfg->transfer_one_irq(spi);
1681}
1682
1683/**
1684 * stm32_spi_unprepare_msg - relax the hardware
1685 */
1686static int stm32_spi_unprepare_msg(struct spi_master *master,
1687				   struct spi_message *msg)
1688{
1689	struct stm32_spi *spi = spi_master_get_devdata(master);
1690
1691	spi->cfg->disable(spi);
1692
1693	return 0;
1694}
1695
1696/**
1697 * stm32f4_spi_config - Configure SPI controller as SPI master
1698 */
1699static int stm32f4_spi_config(struct stm32_spi *spi)
1700{
1701	unsigned long flags;
1702
1703	spin_lock_irqsave(&spi->lock, flags);
1704
1705	/* Ensure I2SMOD bit is kept cleared */
1706	stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1707			   STM32F4_SPI_I2SCFGR_I2SMOD);
1708
1709	/*
1710	 * - SS input value high
1711	 * - transmitter half duplex direction
1712	 * - Set the master mode (default Motorola mode)
1713	 * - Consider 1 master/n slaves configuration and
1714	 *   SS input value is determined by the SSI bit
1715	 */
1716	stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1717						 STM32F4_SPI_CR1_BIDIOE |
1718						 STM32F4_SPI_CR1_MSTR |
1719						 STM32F4_SPI_CR1_SSM);
1720
1721	spin_unlock_irqrestore(&spi->lock, flags);
1722
1723	return 0;
1724}
1725
1726/**
1727 * stm32h7_spi_config - Configure SPI controller as SPI master
1728 */
1729static int stm32h7_spi_config(struct stm32_spi *spi)
1730{
1731	unsigned long flags;
1732
1733	spin_lock_irqsave(&spi->lock, flags);
1734
1735	/* Ensure I2SMOD bit is kept cleared */
1736	stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1737			   STM32H7_SPI_I2SCFGR_I2SMOD);
1738
1739	/*
1740	 * - SS input value high
1741	 * - transmitter half duplex direction
1742	 * - automatic communication suspend when RX-Fifo is full
1743	 */
1744	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1745						 STM32H7_SPI_CR1_HDDIR |
1746						 STM32H7_SPI_CR1_MASRX);
1747
1748	/*
1749	 * - Set the master mode (default Motorola mode)
1750	 * - Consider 1 master/n slaves configuration and
1751	 *   SS input value is determined by the SSI bit
1752	 * - keep control of all associated GPIOs
1753	 */
1754	stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1755						  STM32H7_SPI_CFG2_SSM |
1756						  STM32H7_SPI_CFG2_AFCNTR);
1757
1758	spin_unlock_irqrestore(&spi->lock, flags);
1759
1760	return 0;
1761}
1762
1763static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1764	.regs = &stm32f4_spi_regspec,
1765	.get_bpw_mask = stm32f4_spi_get_bpw_mask,
1766	.disable = stm32f4_spi_disable,
1767	.config = stm32f4_spi_config,
1768	.set_bpw = stm32f4_spi_set_bpw,
1769	.set_mode = stm32f4_spi_set_mode,
1770	.transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1771	.dma_tx_cb = stm32f4_spi_dma_tx_cb,
1772	.dma_rx_cb = stm32f4_spi_dma_rx_cb,
1773	.transfer_one_irq = stm32f4_spi_transfer_one_irq,
1774	.irq_handler_event = stm32f4_spi_irq_event,
1775	.irq_handler_thread = stm32f4_spi_irq_thread,
1776	.baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1777	.baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1778	.has_fifo = false,
1779};
1780
1781static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1782	.regs = &stm32h7_spi_regspec,
1783	.get_fifo_size = stm32h7_spi_get_fifo_size,
1784	.get_bpw_mask = stm32h7_spi_get_bpw_mask,
1785	.disable = stm32h7_spi_disable,
1786	.config = stm32h7_spi_config,
1787	.set_bpw = stm32h7_spi_set_bpw,
1788	.set_mode = stm32h7_spi_set_mode,
1789	.set_data_idleness = stm32h7_spi_data_idleness,
1790	.set_number_of_data = stm32h7_spi_number_of_data,
1791	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1792	.dma_rx_cb = stm32h7_spi_dma_cb,
1793	.dma_tx_cb = stm32h7_spi_dma_cb,
1794	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
1795	.irq_handler_thread = stm32h7_spi_irq_thread,
1796	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1797	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1798	.has_fifo = true,
1799};
1800
1801static const struct of_device_id stm32_spi_of_match[] = {
1802	{ .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1803	{ .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1804	{},
1805};
1806MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1807
1808static int stm32_spi_probe(struct platform_device *pdev)
1809{
1810	struct spi_master *master;
1811	struct stm32_spi *spi;
1812	struct resource *res;
1813	int i, ret;
1814
1815	master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1816	if (!master) {
1817		dev_err(&pdev->dev, "spi master allocation failed\n");
1818		return -ENOMEM;
1819	}
1820	platform_set_drvdata(pdev, master);
1821
1822	spi = spi_master_get_devdata(master);
1823	spi->dev = &pdev->dev;
1824	spi->master = master;
1825	spin_lock_init(&spi->lock);
1826
1827	spi->cfg = (const struct stm32_spi_cfg *)
1828		of_match_device(pdev->dev.driver->of_match_table,
1829				&pdev->dev)->data;
1830
1831	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1832	spi->base = devm_ioremap_resource(&pdev->dev, res);
1833	if (IS_ERR(spi->base)) {
1834		ret = PTR_ERR(spi->base);
1835		goto err_master_put;
1836	}
1837
1838	spi->phys_addr = (dma_addr_t)res->start;
1839
1840	spi->irq = platform_get_irq(pdev, 0);
1841	if (spi->irq <= 0) {
1842		ret = spi->irq;
1843		if (ret != -EPROBE_DEFER)
1844			dev_err(&pdev->dev, "failed to get irq: %d\n", ret);
1845		goto err_master_put;
1846	}
1847	ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1848					spi->cfg->irq_handler_event,
1849					spi->cfg->irq_handler_thread,
1850					IRQF_ONESHOT, pdev->name, master);
1851	if (ret) {
1852		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1853			ret);
1854		goto err_master_put;
1855	}
1856
1857	spi->clk = devm_clk_get(&pdev->dev, NULL);
1858	if (IS_ERR(spi->clk)) {
1859		ret = PTR_ERR(spi->clk);
1860		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1861		goto err_master_put;
1862	}
1863
1864	ret = clk_prepare_enable(spi->clk);
1865	if (ret) {
1866		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1867		goto err_master_put;
1868	}
1869	spi->clk_rate = clk_get_rate(spi->clk);
1870	if (!spi->clk_rate) {
1871		dev_err(&pdev->dev, "clk rate = 0\n");
1872		ret = -EINVAL;
1873		goto err_clk_disable;
1874	}
1875
1876	spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1877	if (!IS_ERR(spi->rst)) {
1878		reset_control_assert(spi->rst);
1879		udelay(2);
1880		reset_control_deassert(spi->rst);
1881	}
1882
1883	if (spi->cfg->has_fifo)
1884		spi->fifo_size = spi->cfg->get_fifo_size(spi);
1885
1886	ret = spi->cfg->config(spi);
1887	if (ret) {
1888		dev_err(&pdev->dev, "controller configuration failed: %d\n",
1889			ret);
1890		goto err_clk_disable;
1891	}
1892
1893	master->dev.of_node = pdev->dev.of_node;
1894	master->auto_runtime_pm = true;
1895	master->bus_num = pdev->id;
1896	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1897			    SPI_3WIRE;
1898	master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1899	master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1900	master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1901	master->setup = stm32_spi_setup;
1902	master->prepare_message = stm32_spi_prepare_msg;
1903	master->transfer_one = stm32_spi_transfer_one;
1904	master->unprepare_message = stm32_spi_unprepare_msg;
1905
1906	spi->dma_tx = dma_request_slave_channel(spi->dev, "tx");
1907	if (!spi->dma_tx)
1908		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1909	else
1910		master->dma_tx = spi->dma_tx;
1911
1912	spi->dma_rx = dma_request_slave_channel(spi->dev, "rx");
1913	if (!spi->dma_rx)
1914		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1915	else
1916		master->dma_rx = spi->dma_rx;
1917
1918	if (spi->dma_tx || spi->dma_rx)
1919		master->can_dma = stm32_spi_can_dma;
1920
1921	pm_runtime_set_active(&pdev->dev);
1922	pm_runtime_enable(&pdev->dev);
1923
1924	ret = devm_spi_register_master(&pdev->dev, master);
1925	if (ret) {
1926		dev_err(&pdev->dev, "spi master registration failed: %d\n",
1927			ret);
1928		goto err_dma_release;
1929	}
1930
1931	if (!master->cs_gpios) {
1932		dev_err(&pdev->dev, "no CS gpios available\n");
1933		ret = -EINVAL;
1934		goto err_dma_release;
1935	}
1936
1937	for (i = 0; i < master->num_chipselect; i++) {
1938		if (!gpio_is_valid(master->cs_gpios[i])) {
1939			dev_err(&pdev->dev, "%i is not a valid gpio\n",
1940				master->cs_gpios[i]);
1941			ret = -EINVAL;
1942			goto err_dma_release;
1943		}
1944
1945		ret = devm_gpio_request(&pdev->dev, master->cs_gpios[i],
1946					DRIVER_NAME);
1947		if (ret) {
1948			dev_err(&pdev->dev, "can't get CS gpio %i\n",
1949				master->cs_gpios[i]);
1950			goto err_dma_release;
1951		}
1952	}
1953
1954	dev_info(&pdev->dev, "driver initialized\n");
1955
1956	return 0;
1957
1958err_dma_release:
1959	if (spi->dma_tx)
1960		dma_release_channel(spi->dma_tx);
1961	if (spi->dma_rx)
1962		dma_release_channel(spi->dma_rx);
1963
1964	pm_runtime_disable(&pdev->dev);
1965err_clk_disable:
1966	clk_disable_unprepare(spi->clk);
1967err_master_put:
1968	spi_master_put(master);
1969
1970	return ret;
1971}
1972
1973static int stm32_spi_remove(struct platform_device *pdev)
1974{
1975	struct spi_master *master = platform_get_drvdata(pdev);
1976	struct stm32_spi *spi = spi_master_get_devdata(master);
1977
1978	spi->cfg->disable(spi);
1979
1980	if (master->dma_tx)
1981		dma_release_channel(master->dma_tx);
1982	if (master->dma_rx)
1983		dma_release_channel(master->dma_rx);
1984
1985	clk_disable_unprepare(spi->clk);
1986
1987	pm_runtime_disable(&pdev->dev);
1988
1989	return 0;
1990}
1991
1992#ifdef CONFIG_PM
1993static int stm32_spi_runtime_suspend(struct device *dev)
1994{
1995	struct spi_master *master = dev_get_drvdata(dev);
1996	struct stm32_spi *spi = spi_master_get_devdata(master);
1997
1998	clk_disable_unprepare(spi->clk);
1999
2000	return 0;
2001}
2002
2003static int stm32_spi_runtime_resume(struct device *dev)
2004{
2005	struct spi_master *master = dev_get_drvdata(dev);
2006	struct stm32_spi *spi = spi_master_get_devdata(master);
2007
2008	return clk_prepare_enable(spi->clk);
2009}
2010#endif
2011
2012#ifdef CONFIG_PM_SLEEP
2013static int stm32_spi_suspend(struct device *dev)
2014{
2015	struct spi_master *master = dev_get_drvdata(dev);
2016	int ret;
2017
2018	ret = spi_master_suspend(master);
2019	if (ret)
2020		return ret;
2021
2022	return pm_runtime_force_suspend(dev);
2023}
2024
2025static int stm32_spi_resume(struct device *dev)
2026{
2027	struct spi_master *master = dev_get_drvdata(dev);
2028	struct stm32_spi *spi = spi_master_get_devdata(master);
2029	int ret;
2030
2031	ret = pm_runtime_force_resume(dev);
2032	if (ret)
2033		return ret;
2034
2035	ret = spi_master_resume(master);
2036	if (ret)
2037		clk_disable_unprepare(spi->clk);
2038
2039	return ret;
2040}
2041#endif
2042
2043static const struct dev_pm_ops stm32_spi_pm_ops = {
2044	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2045	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2046			   stm32_spi_runtime_resume, NULL)
2047};
2048
2049static struct platform_driver stm32_spi_driver = {
2050	.probe = stm32_spi_probe,
2051	.remove = stm32_spi_remove,
2052	.driver = {
2053		.name = DRIVER_NAME,
2054		.pm = &stm32_spi_pm_ops,
2055		.of_match_table = stm32_spi_of_match,
2056	},
2057};
2058
2059module_platform_driver(stm32_spi_driver);
2060
2061MODULE_ALIAS("platform:" DRIVER_NAME);
2062MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2063MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2064MODULE_LICENSE("GPL v2");