Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * STMicroelectronics STM32 SPI Controller driver (master mode only)
   3 *
   4 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
   5 * Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
   6 *
   7 * License terms: GPL V2.0.
   8 *
   9 * spi_stm32 driver is free software; you can redistribute it and/or modify it
  10 * under the terms of the GNU General Public License version 2 as published by
  11 * the Free Software Foundation.
  12 *
  13 * spi_stm32 driver is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
  16 * details.
  17 *
  18 * You should have received a copy of the GNU General Public License along with
  19 * spi_stm32 driver. If not, see <http://www.gnu.org/licenses/>.
  20 */
  21#include <linux/debugfs.h>
  22#include <linux/clk.h>
  23#include <linux/delay.h>
  24#include <linux/dmaengine.h>
  25#include <linux/gpio.h>
  26#include <linux/interrupt.h>
  27#include <linux/iopoll.h>
  28#include <linux/module.h>
  29#include <linux/of_platform.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/reset.h>
  32#include <linux/spi/spi.h>
  33
  34#define DRIVER_NAME "spi_stm32"
  35
  36/* STM32 SPI registers */
  37#define STM32_SPI_CR1		0x00
  38#define STM32_SPI_CR2		0x04
  39#define STM32_SPI_CFG1		0x08
  40#define STM32_SPI_CFG2		0x0C
  41#define STM32_SPI_IER		0x10
  42#define STM32_SPI_SR		0x14
  43#define STM32_SPI_IFCR		0x18
  44#define STM32_SPI_TXDR		0x20
  45#define STM32_SPI_RXDR		0x30
  46#define STM32_SPI_I2SCFGR	0x50
  47
  48/* STM32_SPI_CR1 bit fields */
  49#define SPI_CR1_SPE		BIT(0)
  50#define SPI_CR1_MASRX		BIT(8)
  51#define SPI_CR1_CSTART		BIT(9)
  52#define SPI_CR1_CSUSP		BIT(10)
  53#define SPI_CR1_HDDIR		BIT(11)
  54#define SPI_CR1_SSI		BIT(12)
  55
  56/* STM32_SPI_CR2 bit fields */
  57#define SPI_CR2_TSIZE_SHIFT	0
  58#define SPI_CR2_TSIZE		GENMASK(15, 0)
  59
  60/* STM32_SPI_CFG1 bit fields */
  61#define SPI_CFG1_DSIZE_SHIFT	0
  62#define SPI_CFG1_DSIZE		GENMASK(4, 0)
  63#define SPI_CFG1_FTHLV_SHIFT	5
  64#define SPI_CFG1_FTHLV		GENMASK(8, 5)
  65#define SPI_CFG1_RXDMAEN	BIT(14)
  66#define SPI_CFG1_TXDMAEN	BIT(15)
  67#define SPI_CFG1_MBR_SHIFT	28
  68#define SPI_CFG1_MBR		GENMASK(30, 28)
  69#define SPI_CFG1_MBR_MIN	0
  70#define SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)
  71
  72/* STM32_SPI_CFG2 bit fields */
  73#define SPI_CFG2_MIDI_SHIFT	4
  74#define SPI_CFG2_MIDI		GENMASK(7, 4)
  75#define SPI_CFG2_COMM_SHIFT	17
  76#define SPI_CFG2_COMM		GENMASK(18, 17)
  77#define SPI_CFG2_SP_SHIFT	19
  78#define SPI_CFG2_SP		GENMASK(21, 19)
  79#define SPI_CFG2_MASTER		BIT(22)
  80#define SPI_CFG2_LSBFRST	BIT(23)
  81#define SPI_CFG2_CPHA		BIT(24)
  82#define SPI_CFG2_CPOL		BIT(25)
  83#define SPI_CFG2_SSM		BIT(26)
  84#define SPI_CFG2_AFCNTR		BIT(31)
  85
  86/* STM32_SPI_IER bit fields */
  87#define SPI_IER_RXPIE		BIT(0)
  88#define SPI_IER_TXPIE		BIT(1)
  89#define SPI_IER_DXPIE		BIT(2)
  90#define SPI_IER_EOTIE		BIT(3)
  91#define SPI_IER_TXTFIE		BIT(4)
  92#define SPI_IER_OVRIE		BIT(6)
  93#define SPI_IER_MODFIE		BIT(9)
  94#define SPI_IER_ALL		GENMASK(10, 0)
  95
  96/* STM32_SPI_SR bit fields */
  97#define SPI_SR_RXP		BIT(0)
  98#define SPI_SR_TXP		BIT(1)
  99#define SPI_SR_EOT		BIT(3)
 100#define SPI_SR_OVR		BIT(6)
 101#define SPI_SR_MODF		BIT(9)
 102#define SPI_SR_SUSP		BIT(11)
 103#define SPI_SR_RXPLVL_SHIFT	13
 104#define SPI_SR_RXPLVL		GENMASK(14, 13)
 105#define SPI_SR_RXWNE		BIT(15)
 106
 107/* STM32_SPI_IFCR bit fields */
 108#define SPI_IFCR_ALL		GENMASK(11, 3)
 109
 110/* STM32_SPI_I2SCFGR bit fields */
 111#define SPI_I2SCFGR_I2SMOD	BIT(0)
 112
 113/* SPI Master Baud Rate min/max divisor */
 114#define SPI_MBR_DIV_MIN		(2 << SPI_CFG1_MBR_MIN)
 115#define SPI_MBR_DIV_MAX		(2 << SPI_CFG1_MBR_MAX)
 116
 117/* SPI Communication mode */
 118#define SPI_FULL_DUPLEX		0
 119#define SPI_SIMPLEX_TX		1
 120#define SPI_SIMPLEX_RX		2
 121#define SPI_HALF_DUPLEX		3
 122
 123#define SPI_1HZ_NS		1000000000
 124
 125/**
 126 * struct stm32_spi - private data of the SPI controller
 127 * @dev: driver model representation of the controller
 128 * @master: controller master interface
 129 * @base: virtual memory area
 130 * @clk: hw kernel clock feeding the SPI clock generator
 131 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
 132 * @rst: SPI controller reset line
 133 * @lock: prevent I/O concurrent access
 134 * @irq: SPI controller interrupt line
 135 * @fifo_size: size of the embedded fifo in bytes
 136 * @cur_midi: master inter-data idleness in ns
 137 * @cur_speed: speed configured in Hz
 138 * @cur_bpw: number of bits in a single SPI data frame
 139 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
 140 * @cur_comm: SPI communication mode
 141 * @cur_xferlen: current transfer length in bytes
 142 * @cur_usedma: boolean to know if dma is used in current transfer
 143 * @tx_buf: data to be written, or NULL
 144 * @rx_buf: data to be read, or NULL
 145 * @tx_len: number of data to be written in bytes
 146 * @rx_len: number of data to be read in bytes
 147 * @dma_tx: dma channel for TX transfer
 148 * @dma_rx: dma channel for RX transfer
 149 * @phys_addr: SPI registers physical base address
 150 */
 151struct stm32_spi {
 152	struct device *dev;
 153	struct spi_master *master;
 154	void __iomem *base;
 155	struct clk *clk;
 156	u32 clk_rate;
 157	struct reset_control *rst;
 158	spinlock_t lock; /* prevent I/O concurrent access */
 159	int irq;
 160	unsigned int fifo_size;
 161
 162	unsigned int cur_midi;
 163	unsigned int cur_speed;
 164	unsigned int cur_bpw;
 165	unsigned int cur_fthlv;
 166	unsigned int cur_comm;
 167	unsigned int cur_xferlen;
 168	bool cur_usedma;
 169
 170	const void *tx_buf;
 171	void *rx_buf;
 172	int tx_len;
 173	int rx_len;
 174	struct dma_chan *dma_tx;
 175	struct dma_chan *dma_rx;
 176	dma_addr_t phys_addr;
 177};
 178
 179static inline void stm32_spi_set_bits(struct stm32_spi *spi,
 180				      u32 offset, u32 bits)
 181{
 182	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
 183		       spi->base + offset);
 184}
 185
 186static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
 187				      u32 offset, u32 bits)
 188{
 189	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
 190		       spi->base + offset);
 191}
 192
 193/**
 194 * stm32_spi_get_fifo_size - Return fifo size
 195 * @spi: pointer to the spi controller data structure
 196 */
 197static int stm32_spi_get_fifo_size(struct stm32_spi *spi)
 198{
 199	unsigned long flags;
 200	u32 count = 0;
 201
 202	spin_lock_irqsave(&spi->lock, flags);
 203
 204	stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_SPE);
 205
 206	while (readl_relaxed(spi->base + STM32_SPI_SR) & SPI_SR_TXP)
 207		writeb_relaxed(++count, spi->base + STM32_SPI_TXDR);
 208
 209	stm32_spi_clr_bits(spi, STM32_SPI_CR1, SPI_CR1_SPE);
 210
 211	spin_unlock_irqrestore(&spi->lock, flags);
 212
 213	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
 214
 215	return count;
 216}
 217
 218/**
 219 * stm32_spi_get_bpw_mask - Return bits per word mask
 220 * @spi: pointer to the spi controller data structure
 221 */
 222static int stm32_spi_get_bpw_mask(struct stm32_spi *spi)
 223{
 224	unsigned long flags;
 225	u32 cfg1, max_bpw;
 226
 227	spin_lock_irqsave(&spi->lock, flags);
 228
 229	/*
 230	 * The most significant bit at DSIZE bit field is reserved when the
 231	 * maximum data size of periperal instances is limited to 16-bit
 232	 */
 233	stm32_spi_set_bits(spi, STM32_SPI_CFG1, SPI_CFG1_DSIZE);
 234
 235	cfg1 = readl_relaxed(spi->base + STM32_SPI_CFG1);
 236	max_bpw = (cfg1 & SPI_CFG1_DSIZE) >> SPI_CFG1_DSIZE_SHIFT;
 237	max_bpw += 1;
 238
 239	spin_unlock_irqrestore(&spi->lock, flags);
 240
 241	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
 242
 243	return SPI_BPW_RANGE_MASK(4, max_bpw);
 244}
 245
 246/**
 247 * stm32_spi_prepare_mbr - Determine SPI_CFG1.MBR value
 248 * @spi: pointer to the spi controller data structure
 249 * @speed_hz: requested speed
 250 *
 251 * Return SPI_CFG1.MBR value in case of success or -EINVAL
 252 */
 253static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz)
 254{
 255	u32 div, mbrdiv;
 256
 257	div = DIV_ROUND_UP(spi->clk_rate, speed_hz);
 258
 259	/*
 260	 * SPI framework set xfer->speed_hz to master->max_speed_hz if
 261	 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
 262	 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
 263	 * no need to check it there.
 264	 * However, we need to ensure the following calculations.
 265	 */
 266	if (div < SPI_MBR_DIV_MIN ||
 267	    div > SPI_MBR_DIV_MAX)
 268		return -EINVAL;
 269
 270	/* Determine the first power of 2 greater than or equal to div */
 271	if (div & (div - 1))
 272		mbrdiv = fls(div);
 273	else
 274		mbrdiv = fls(div) - 1;
 275
 276	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
 277
 278	return mbrdiv - 1;
 279}
 280
 281/**
 282 * stm32_spi_prepare_fthlv - Determine FIFO threshold level
 283 * @spi: pointer to the spi controller data structure
 284 */
 285static u32 stm32_spi_prepare_fthlv(struct stm32_spi *spi)
 286{
 287	u32 fthlv, half_fifo;
 288
 289	/* data packet should not exceed 1/2 of fifo space */
 290	half_fifo = (spi->fifo_size / 2);
 291
 292	if (spi->cur_bpw <= 8)
 293		fthlv = half_fifo;
 294	else if (spi->cur_bpw <= 16)
 295		fthlv = half_fifo / 2;
 296	else
 297		fthlv = half_fifo / 4;
 298
 299	/* align packet size with data registers access */
 300	if (spi->cur_bpw > 8)
 301		fthlv -= (fthlv % 2); /* multiple of 2 */
 302	else
 303		fthlv -= (fthlv % 4); /* multiple of 4 */
 304
 305	return fthlv;
 306}
 307
 308/**
 309 * stm32_spi_write_txfifo - Write bytes in Transmit Data Register
 310 * @spi: pointer to the spi controller data structure
 311 *
 312 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 313 * tx_buf end.
 314 */
 315static void stm32_spi_write_txfifo(struct stm32_spi *spi)
 316{
 317	while ((spi->tx_len > 0) &&
 318	       (readl_relaxed(spi->base + STM32_SPI_SR) & SPI_SR_TXP)) {
 319		u32 offs = spi->cur_xferlen - spi->tx_len;
 320
 321		if (spi->tx_len >= sizeof(u32)) {
 322			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
 323
 324			writel_relaxed(*tx_buf32, spi->base + STM32_SPI_TXDR);
 325			spi->tx_len -= sizeof(u32);
 326		} else if (spi->tx_len >= sizeof(u16)) {
 327			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
 328
 329			writew_relaxed(*tx_buf16, spi->base + STM32_SPI_TXDR);
 330			spi->tx_len -= sizeof(u16);
 331		} else {
 332			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
 333
 334			writeb_relaxed(*tx_buf8, spi->base + STM32_SPI_TXDR);
 335			spi->tx_len -= sizeof(u8);
 336		}
 337	}
 338
 339	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
 340}
 341
 342/**
 343 * stm32_spi_read_rxfifo - Read bytes in Receive Data Register
 344 * @spi: pointer to the spi controller data structure
 345 *
 346 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 347 * rx_buf end.
 348 */
 349static void stm32_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
 350{
 351	u32 sr = readl_relaxed(spi->base + STM32_SPI_SR);
 352	u32 rxplvl = (sr & SPI_SR_RXPLVL) >> SPI_SR_RXPLVL_SHIFT;
 353
 354	while ((spi->rx_len > 0) &&
 355	       ((sr & SPI_SR_RXP) ||
 356		(flush && ((sr & SPI_SR_RXWNE) || (rxplvl > 0))))) {
 357		u32 offs = spi->cur_xferlen - spi->rx_len;
 358
 359		if ((spi->rx_len >= sizeof(u32)) ||
 360		    (flush && (sr & SPI_SR_RXWNE))) {
 361			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
 362
 363			*rx_buf32 = readl_relaxed(spi->base + STM32_SPI_RXDR);
 364			spi->rx_len -= sizeof(u32);
 365		} else if ((spi->rx_len >= sizeof(u16)) ||
 366			   (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
 367			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
 368
 369			*rx_buf16 = readw_relaxed(spi->base + STM32_SPI_RXDR);
 370			spi->rx_len -= sizeof(u16);
 371		} else {
 372			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
 373
 374			*rx_buf8 = readb_relaxed(spi->base + STM32_SPI_RXDR);
 375			spi->rx_len -= sizeof(u8);
 376		}
 377
 378		sr = readl_relaxed(spi->base + STM32_SPI_SR);
 379		rxplvl = (sr & SPI_SR_RXPLVL) >> SPI_SR_RXPLVL_SHIFT;
 380	}
 381
 382	dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
 383		flush ? "(flush)" : "", spi->rx_len);
 384}
 385
 386/**
 387 * stm32_spi_enable - Enable SPI controller
 388 * @spi: pointer to the spi controller data structure
 389 *
 390 * SPI data transfer is enabled but spi_ker_ck is idle.
 391 * SPI_CFG1 and SPI_CFG2 are now write protected.
 392 */
 393static void stm32_spi_enable(struct stm32_spi *spi)
 394{
 395	dev_dbg(spi->dev, "enable controller\n");
 396
 397	stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_SPE);
 398}
 399
 400/**
 401 * stm32_spi_disable - Disable SPI controller
 402 * @spi: pointer to the spi controller data structure
 403 *
 404 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
 405 * loss, use stm32_spi_read_rxfifo(flush) to read the remaining bytes in
 406 * RX-Fifo.
 407 */
 408static void stm32_spi_disable(struct stm32_spi *spi)
 409{
 410	unsigned long flags;
 411	u32 cr1, sr;
 412
 413	dev_dbg(spi->dev, "disable controller\n");
 414
 415	spin_lock_irqsave(&spi->lock, flags);
 416
 417	cr1 = readl_relaxed(spi->base + STM32_SPI_CR1);
 418
 419	if (!(cr1 & SPI_CR1_SPE)) {
 420		spin_unlock_irqrestore(&spi->lock, flags);
 421		return;
 422	}
 423
 424	/* Wait on EOT or suspend the flow */
 425	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32_SPI_SR,
 426					      sr, !(sr & SPI_SR_EOT),
 427					      10, 100000) < 0) {
 428		if (cr1 & SPI_CR1_CSTART) {
 429			writel_relaxed(cr1 | SPI_CR1_CSUSP,
 430				       spi->base + STM32_SPI_CR1);
 431			if (readl_relaxed_poll_timeout_atomic(
 432						spi->base + STM32_SPI_SR,
 433						sr, !(sr & SPI_SR_SUSP),
 434						10, 100000) < 0)
 435				dev_warn(spi->dev,
 436					 "Suspend request timeout\n");
 437		}
 438	}
 439
 440	if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
 441		stm32_spi_read_rxfifo(spi, true);
 442
 443	if (spi->cur_usedma && spi->tx_buf)
 444		dmaengine_terminate_all(spi->dma_tx);
 445	if (spi->cur_usedma && spi->rx_buf)
 446		dmaengine_terminate_all(spi->dma_rx);
 447
 448	stm32_spi_clr_bits(spi, STM32_SPI_CR1, SPI_CR1_SPE);
 449
 450	stm32_spi_clr_bits(spi, STM32_SPI_CFG1, SPI_CFG1_TXDMAEN |
 451						SPI_CFG1_RXDMAEN);
 452
 453	/* Disable interrupts and clear status flags */
 454	writel_relaxed(0, spi->base + STM32_SPI_IER);
 455	writel_relaxed(SPI_IFCR_ALL, spi->base + STM32_SPI_IFCR);
 456
 457	spin_unlock_irqrestore(&spi->lock, flags);
 458}
 459
 460/**
 461 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
 462 *
 463 * If the current transfer size is greater than fifo size, use DMA.
 464 */
 465static bool stm32_spi_can_dma(struct spi_master *master,
 466			      struct spi_device *spi_dev,
 467			      struct spi_transfer *transfer)
 468{
 469	struct stm32_spi *spi = spi_master_get_devdata(master);
 470
 471	dev_dbg(spi->dev, "%s: %s\n", __func__,
 472		(transfer->len > spi->fifo_size) ? "true" : "false");
 473
 474	return (transfer->len > spi->fifo_size);
 475}
 476
 477/**
 478 * stm32_spi_irq - Interrupt handler for SPI controller events
 479 * @irq: interrupt line
 480 * @dev_id: SPI controller master interface
 481 */
 482static irqreturn_t stm32_spi_irq(int irq, void *dev_id)
 483{
 484	struct spi_master *master = dev_id;
 485	struct stm32_spi *spi = spi_master_get_devdata(master);
 486	u32 sr, ier, mask;
 487	unsigned long flags;
 488	bool end = false;
 489
 490	spin_lock_irqsave(&spi->lock, flags);
 491
 492	sr = readl_relaxed(spi->base + STM32_SPI_SR);
 493	ier = readl_relaxed(spi->base + STM32_SPI_IER);
 494
 495	mask = ier;
 496	/* EOTIE is triggered on EOT, SUSP and TXC events. */
 497	mask |= SPI_SR_SUSP;
 498	/*
 499	 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
 500	 * Full-Duplex, need to poll RXP event to know if there are remaining
 501	 * data, before disabling SPI.
 502	 */
 503	if (spi->rx_buf && !spi->cur_usedma)
 504		mask |= SPI_SR_RXP;
 505
 506	if (!(sr & mask)) {
 507		dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
 508			sr, ier);
 509		spin_unlock_irqrestore(&spi->lock, flags);
 510		return IRQ_NONE;
 511	}
 512
 513	if (sr & SPI_SR_SUSP) {
 514		dev_warn(spi->dev, "Communication suspended\n");
 515		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 516			stm32_spi_read_rxfifo(spi, false);
 517		/*
 518		 * If communication is suspended while using DMA, it means
 519		 * that something went wrong, so stop the current transfer
 520		 */
 521		if (spi->cur_usedma)
 522			end = true;
 523	}
 524
 525	if (sr & SPI_SR_MODF) {
 526		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
 527		end = true;
 528	}
 529
 530	if (sr & SPI_SR_OVR) {
 531		dev_warn(spi->dev, "Overrun: received value discarded\n");
 532		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 533			stm32_spi_read_rxfifo(spi, false);
 534		/*
 535		 * If overrun is detected while using DMA, it means that
 536		 * something went wrong, so stop the current transfer
 537		 */
 538		if (spi->cur_usedma)
 539			end = true;
 540	}
 541
 542	if (sr & SPI_SR_EOT) {
 543		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 544			stm32_spi_read_rxfifo(spi, true);
 545		end = true;
 546	}
 547
 548	if (sr & SPI_SR_TXP)
 549		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
 550			stm32_spi_write_txfifo(spi);
 551
 552	if (sr & SPI_SR_RXP)
 553		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 554			stm32_spi_read_rxfifo(spi, false);
 555
 556	writel_relaxed(mask, spi->base + STM32_SPI_IFCR);
 557
 558	spin_unlock_irqrestore(&spi->lock, flags);
 559
 560	if (end) {
 561		spi_finalize_current_transfer(master);
 562		stm32_spi_disable(spi);
 563	}
 564
 565	return IRQ_HANDLED;
 566}
 567
 568/**
 569 * stm32_spi_setup - setup device chip select
 570 */
 571static int stm32_spi_setup(struct spi_device *spi_dev)
 572{
 573	int ret = 0;
 574
 575	if (!gpio_is_valid(spi_dev->cs_gpio)) {
 576		dev_err(&spi_dev->dev, "%d is not a valid gpio\n",
 577			spi_dev->cs_gpio);
 578		return -EINVAL;
 579	}
 580
 581	dev_dbg(&spi_dev->dev, "%s: set gpio%d output %s\n", __func__,
 582		spi_dev->cs_gpio,
 583		(spi_dev->mode & SPI_CS_HIGH) ? "low" : "high");
 584
 585	ret = gpio_direction_output(spi_dev->cs_gpio,
 586				    !(spi_dev->mode & SPI_CS_HIGH));
 587
 588	return ret;
 589}
 590
 591/**
 592 * stm32_spi_prepare_msg - set up the controller to transfer a single message
 593 */
 594static int stm32_spi_prepare_msg(struct spi_master *master,
 595				 struct spi_message *msg)
 596{
 597	struct stm32_spi *spi = spi_master_get_devdata(master);
 598	struct spi_device *spi_dev = msg->spi;
 599	struct device_node *np = spi_dev->dev.of_node;
 600	unsigned long flags;
 601	u32 cfg2_clrb = 0, cfg2_setb = 0;
 602
 603	/* SPI slave device may need time between data frames */
 604	spi->cur_midi = 0;
 605	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
 606		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
 607
 608	if (spi_dev->mode & SPI_CPOL)
 609		cfg2_setb |= SPI_CFG2_CPOL;
 610	else
 611		cfg2_clrb |= SPI_CFG2_CPOL;
 612
 613	if (spi_dev->mode & SPI_CPHA)
 614		cfg2_setb |= SPI_CFG2_CPHA;
 615	else
 616		cfg2_clrb |= SPI_CFG2_CPHA;
 617
 618	if (spi_dev->mode & SPI_LSB_FIRST)
 619		cfg2_setb |= SPI_CFG2_LSBFRST;
 620	else
 621		cfg2_clrb |= SPI_CFG2_LSBFRST;
 622
 623	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
 624		spi_dev->mode & SPI_CPOL,
 625		spi_dev->mode & SPI_CPHA,
 626		spi_dev->mode & SPI_LSB_FIRST,
 627		spi_dev->mode & SPI_CS_HIGH);
 628
 629	spin_lock_irqsave(&spi->lock, flags);
 630
 631	if (cfg2_clrb || cfg2_setb)
 632		writel_relaxed(
 633			(readl_relaxed(spi->base + STM32_SPI_CFG2) &
 634				~cfg2_clrb) | cfg2_setb,
 635			       spi->base + STM32_SPI_CFG2);
 636
 637	spin_unlock_irqrestore(&spi->lock, flags);
 638
 639	return 0;
 640}
 641
 642/**
 643 * stm32_spi_dma_cb - dma callback
 644 *
 645 * DMA callback is called when the transfer is complete or when an error
 646 * occurs. If the transfer is complete, EOT flag is raised.
 647 */
 648static void stm32_spi_dma_cb(void *data)
 649{
 650	struct stm32_spi *spi = data;
 651	unsigned long flags;
 652	u32 sr;
 653
 654	spin_lock_irqsave(&spi->lock, flags);
 655
 656	sr = readl_relaxed(spi->base + STM32_SPI_SR);
 657
 658	spin_unlock_irqrestore(&spi->lock, flags);
 659
 660	if (!(sr & SPI_SR_EOT))
 661		dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
 662
 663	/* Now wait for EOT, or SUSP or OVR in case of error */
 664}
 665
 666/**
 667 * stm32_spi_dma_config - configure dma slave channel depending on current
 668 *			  transfer bits_per_word.
 669 */
 670static void stm32_spi_dma_config(struct stm32_spi *spi,
 671				 struct dma_slave_config *dma_conf,
 672				 enum dma_transfer_direction dir)
 673{
 674	enum dma_slave_buswidth buswidth;
 675	u32 maxburst;
 676
 677	if (spi->cur_bpw <= 8)
 678		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
 679	else if (spi->cur_bpw <= 16)
 680		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
 681	else
 682		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
 683
 684	/* Valid for DMA Half or Full Fifo threshold */
 685	if (spi->cur_fthlv == 2)
 686		maxburst = 1;
 687	else
 688		maxburst = spi->cur_fthlv;
 689
 690	memset(dma_conf, 0, sizeof(struct dma_slave_config));
 691	dma_conf->direction = dir;
 692	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
 693		dma_conf->src_addr = spi->phys_addr + STM32_SPI_RXDR;
 694		dma_conf->src_addr_width = buswidth;
 695		dma_conf->src_maxburst = maxburst;
 696
 697		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
 698			buswidth, maxburst);
 699	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
 700		dma_conf->dst_addr = spi->phys_addr + STM32_SPI_TXDR;
 701		dma_conf->dst_addr_width = buswidth;
 702		dma_conf->dst_maxburst = maxburst;
 703
 704		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
 705			buswidth, maxburst);
 706	}
 707}
 708
 709/**
 710 * stm32_spi_transfer_one_irq - transfer a single spi_transfer using
 711 *				interrupts
 712 *
 713 * It must returns 0 if the transfer is finished or 1 if the transfer is still
 714 * in progress.
 715 */
 716static int stm32_spi_transfer_one_irq(struct stm32_spi *spi)
 717{
 718	unsigned long flags;
 719	u32 ier = 0;
 720
 721	/* Enable the interrupts relative to the current communication mode */
 722	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
 723		ier |= SPI_IER_DXPIE;
 724	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
 725		ier |= SPI_IER_TXPIE;
 726	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
 727		ier |= SPI_IER_RXPIE;
 728
 729	/* Enable the interrupts relative to the end of transfer */
 730	ier |= SPI_IER_EOTIE | SPI_IER_TXTFIE |	SPI_IER_OVRIE |	SPI_IER_MODFIE;
 731
 732	spin_lock_irqsave(&spi->lock, flags);
 733
 734	stm32_spi_enable(spi);
 735
 736	/* Be sure to have data in fifo before starting data transfer */
 737	if (spi->tx_buf)
 738		stm32_spi_write_txfifo(spi);
 739
 740	stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_CSTART);
 741
 742	writel_relaxed(ier, spi->base + STM32_SPI_IER);
 743
 744	spin_unlock_irqrestore(&spi->lock, flags);
 745
 746	return 1;
 747}
 748
 749/**
 750 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
 751 *
 752 * It must returns 0 if the transfer is finished or 1 if the transfer is still
 753 * in progress.
 754 */
 755static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
 756				      struct spi_transfer *xfer)
 757{
 758	struct dma_slave_config tx_dma_conf, rx_dma_conf;
 759	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
 760	unsigned long flags;
 761	u32 ier = 0;
 762
 763	spin_lock_irqsave(&spi->lock, flags);
 764
 765	rx_dma_desc = NULL;
 766	if (spi->rx_buf) {
 767		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
 768		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
 769
 770		/* Enable Rx DMA request */
 771		stm32_spi_set_bits(spi, STM32_SPI_CFG1, SPI_CFG1_RXDMAEN);
 772
 773		rx_dma_desc = dmaengine_prep_slave_sg(
 774					spi->dma_rx, xfer->rx_sg.sgl,
 775					xfer->rx_sg.nents,
 776					rx_dma_conf.direction,
 777					DMA_PREP_INTERRUPT);
 778	}
 779
 780	tx_dma_desc = NULL;
 781	if (spi->tx_buf) {
 782		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
 783		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
 784
 785		tx_dma_desc = dmaengine_prep_slave_sg(
 786					spi->dma_tx, xfer->tx_sg.sgl,
 787					xfer->tx_sg.nents,
 788					tx_dma_conf.direction,
 789					DMA_PREP_INTERRUPT);
 790	}
 791
 792	if ((spi->tx_buf && !tx_dma_desc) ||
 793	    (spi->rx_buf && !rx_dma_desc))
 794		goto dma_desc_error;
 795
 796	if (rx_dma_desc) {
 797		rx_dma_desc->callback = stm32_spi_dma_cb;
 798		rx_dma_desc->callback_param = spi;
 799
 800		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
 801			dev_err(spi->dev, "Rx DMA submit failed\n");
 802			goto dma_desc_error;
 803		}
 804		/* Enable Rx DMA channel */
 805		dma_async_issue_pending(spi->dma_rx);
 806	}
 807
 808	if (tx_dma_desc) {
 809		if (spi->cur_comm == SPI_SIMPLEX_TX) {
 810			tx_dma_desc->callback = stm32_spi_dma_cb;
 811			tx_dma_desc->callback_param = spi;
 812		}
 813
 814		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
 815			dev_err(spi->dev, "Tx DMA submit failed\n");
 816			goto dma_submit_error;
 817		}
 818		/* Enable Tx DMA channel */
 819		dma_async_issue_pending(spi->dma_tx);
 820
 821		/* Enable Tx DMA request */
 822		stm32_spi_set_bits(spi, STM32_SPI_CFG1, SPI_CFG1_TXDMAEN);
 823	}
 824
 825	/* Enable the interrupts relative to the end of transfer */
 826	ier |= SPI_IER_EOTIE | SPI_IER_TXTFIE |	SPI_IER_OVRIE |	SPI_IER_MODFIE;
 827	writel_relaxed(ier, spi->base + STM32_SPI_IER);
 828
 829	stm32_spi_enable(spi);
 830
 831	stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_CSTART);
 832
 833	spin_unlock_irqrestore(&spi->lock, flags);
 834
 835	return 1;
 836
 837dma_submit_error:
 838	if (spi->rx_buf)
 839		dmaengine_terminate_all(spi->dma_rx);
 840
 841dma_desc_error:
 842	stm32_spi_clr_bits(spi, STM32_SPI_CFG1, SPI_CFG1_RXDMAEN);
 843
 844	spin_unlock_irqrestore(&spi->lock, flags);
 845
 846	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
 847
 848	return stm32_spi_transfer_one_irq(spi);
 849}
 850
 851/**
 852 * stm32_spi_transfer_one_setup - common setup to transfer a single
 853 *				  spi_transfer either using DMA or
 854 *				  interrupts.
 855 */
 856static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
 857					struct spi_device *spi_dev,
 858					struct spi_transfer *transfer)
 859{
 860	unsigned long flags;
 861	u32 cfg1_clrb = 0, cfg1_setb = 0, cfg2_clrb = 0, cfg2_setb = 0;
 862	u32 mode, nb_words;
 863	int ret = 0;
 864
 865	spin_lock_irqsave(&spi->lock, flags);
 866
 867	if (spi->cur_bpw != transfer->bits_per_word) {
 868		u32 bpw, fthlv;
 869
 870		spi->cur_bpw = transfer->bits_per_word;
 871		bpw = spi->cur_bpw - 1;
 872
 873		cfg1_clrb |= SPI_CFG1_DSIZE;
 874		cfg1_setb |= (bpw << SPI_CFG1_DSIZE_SHIFT) & SPI_CFG1_DSIZE;
 875
 876		spi->cur_fthlv = stm32_spi_prepare_fthlv(spi);
 877		fthlv = spi->cur_fthlv - 1;
 878
 879		cfg1_clrb |= SPI_CFG1_FTHLV;
 880		cfg1_setb |= (fthlv << SPI_CFG1_FTHLV_SHIFT) & SPI_CFG1_FTHLV;
 881	}
 882
 883	if (spi->cur_speed != transfer->speed_hz) {
 884		int mbr;
 885
 886		/* Update spi->cur_speed with real clock speed */
 887		mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz);
 888		if (mbr < 0) {
 889			ret = mbr;
 890			goto out;
 891		}
 892
 893		transfer->speed_hz = spi->cur_speed;
 894
 895		cfg1_clrb |= SPI_CFG1_MBR;
 896		cfg1_setb |= ((u32)mbr << SPI_CFG1_MBR_SHIFT) & SPI_CFG1_MBR;
 897	}
 898
 899	if (cfg1_clrb || cfg1_setb)
 900		writel_relaxed((readl_relaxed(spi->base + STM32_SPI_CFG1) &
 901				~cfg1_clrb) | cfg1_setb,
 902			       spi->base + STM32_SPI_CFG1);
 903
 904	mode = SPI_FULL_DUPLEX;
 905	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
 906		/*
 907		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
 908		 * is forbidden und unvalidated by SPI subsystem so depending
 909		 * on the valid buffer, we can determine the direction of the
 910		 * transfer.
 911		 */
 912		mode = SPI_HALF_DUPLEX;
 913		if (!transfer->tx_buf)
 914			stm32_spi_clr_bits(spi, STM32_SPI_CR1, SPI_CR1_HDDIR);
 915		else if (!transfer->rx_buf)
 916			stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_HDDIR);
 917	} else {
 918		if (!transfer->tx_buf)
 919			mode = SPI_SIMPLEX_RX;
 920		else if (!transfer->rx_buf)
 921			mode = SPI_SIMPLEX_TX;
 922	}
 923	if (spi->cur_comm != mode) {
 924		spi->cur_comm = mode;
 925
 926		cfg2_clrb |= SPI_CFG2_COMM;
 927		cfg2_setb |= (mode << SPI_CFG2_COMM_SHIFT) & SPI_CFG2_COMM;
 928	}
 929
 930	cfg2_clrb |= SPI_CFG2_MIDI;
 931	if ((transfer->len > 1) && (spi->cur_midi > 0)) {
 932		u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
 933		u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
 934			       (u32)SPI_CFG2_MIDI >> SPI_CFG2_MIDI_SHIFT);
 935
 936		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
 937			sck_period_ns, midi, midi * sck_period_ns);
 938
 939		cfg2_setb |= (midi << SPI_CFG2_MIDI_SHIFT) & SPI_CFG2_MIDI;
 940	}
 941
 942	if (cfg2_clrb || cfg2_setb)
 943		writel_relaxed((readl_relaxed(spi->base + STM32_SPI_CFG2) &
 944				~cfg2_clrb) | cfg2_setb,
 945			       spi->base + STM32_SPI_CFG2);
 946
 947	if (spi->cur_bpw <= 8)
 948		nb_words = transfer->len;
 949	else if (spi->cur_bpw <= 16)
 950		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
 951	else
 952		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
 953	nb_words <<= SPI_CR2_TSIZE_SHIFT;
 954
 955	if (nb_words <= SPI_CR2_TSIZE) {
 956		writel_relaxed(nb_words, spi->base + STM32_SPI_CR2);
 957	} else {
 958		ret = -EMSGSIZE;
 959		goto out;
 960	}
 961
 962	spi->cur_xferlen = transfer->len;
 963
 964	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
 965		spi->cur_comm);
 966	dev_dbg(spi->dev,
 967		"data frame of %d-bit, data packet of %d data frames\n",
 968		spi->cur_bpw, spi->cur_fthlv);
 969	dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
 970	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
 971		spi->cur_xferlen, nb_words);
 972	dev_dbg(spi->dev, "dma %s\n",
 973		(spi->cur_usedma) ? "enabled" : "disabled");
 974
 975out:
 976	spin_unlock_irqrestore(&spi->lock, flags);
 977
 978	return ret;
 979}
 980
 981/**
 982 * stm32_spi_transfer_one - transfer a single spi_transfer
 983 *
 984 * It must return 0 if the transfer is finished or 1 if the transfer is still
 985 * in progress.
 986 */
 987static int stm32_spi_transfer_one(struct spi_master *master,
 988				  struct spi_device *spi_dev,
 989				  struct spi_transfer *transfer)
 990{
 991	struct stm32_spi *spi = spi_master_get_devdata(master);
 992	int ret;
 993
 994	spi->tx_buf = transfer->tx_buf;
 995	spi->rx_buf = transfer->rx_buf;
 996	spi->tx_len = spi->tx_buf ? transfer->len : 0;
 997	spi->rx_len = spi->rx_buf ? transfer->len : 0;
 998
 999	spi->cur_usedma = (master->can_dma &&
1000			   stm32_spi_can_dma(master, spi_dev, transfer));
1001
1002	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1003	if (ret) {
1004		dev_err(spi->dev, "SPI transfer setup failed\n");
1005		return ret;
1006	}
1007
1008	if (spi->cur_usedma)
1009		return stm32_spi_transfer_one_dma(spi, transfer);
1010	else
1011		return stm32_spi_transfer_one_irq(spi);
1012}
1013
1014/**
1015 * stm32_spi_unprepare_msg - relax the hardware
1016 *
1017 * Normally, if TSIZE has been configured, we should relax the hardware at the
1018 * reception of the EOT interrupt. But in case of error, EOT will not be
1019 * raised. So the subsystem unprepare_message call allows us to properly
1020 * complete the transfer from an hardware point of view.
1021 */
1022static int stm32_spi_unprepare_msg(struct spi_master *master,
1023				   struct spi_message *msg)
1024{
1025	struct stm32_spi *spi = spi_master_get_devdata(master);
1026
1027	stm32_spi_disable(spi);
1028
1029	return 0;
1030}
1031
1032/**
1033 * stm32_spi_config - Configure SPI controller as SPI master
1034 */
1035static int stm32_spi_config(struct stm32_spi *spi)
1036{
1037	unsigned long flags;
1038
1039	spin_lock_irqsave(&spi->lock, flags);
1040
1041	/* Ensure I2SMOD bit is kept cleared */
1042	stm32_spi_clr_bits(spi, STM32_SPI_I2SCFGR, SPI_I2SCFGR_I2SMOD);
1043
1044	/*
1045	 * - SS input value high
1046	 * - transmitter half duplex direction
1047	 * - automatic communication suspend when RX-Fifo is full
1048	 */
1049	stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_SSI |
1050					       SPI_CR1_HDDIR |
1051					       SPI_CR1_MASRX);
1052
1053	/*
1054	 * - Set the master mode (default Motorola mode)
1055	 * - Consider 1 master/n slaves configuration and
1056	 *   SS input value is determined by the SSI bit
1057	 * - keep control of all associated GPIOs
1058	 */
1059	stm32_spi_set_bits(spi, STM32_SPI_CFG2, SPI_CFG2_MASTER |
1060						SPI_CFG2_SSM |
1061						SPI_CFG2_AFCNTR);
1062
1063	spin_unlock_irqrestore(&spi->lock, flags);
1064
1065	return 0;
1066}
1067
1068static const struct of_device_id stm32_spi_of_match[] = {
1069	{ .compatible = "st,stm32h7-spi", },
1070	{},
1071};
1072MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1073
1074static int stm32_spi_probe(struct platform_device *pdev)
1075{
1076	struct spi_master *master;
1077	struct stm32_spi *spi;
1078	struct resource *res;
1079	int i, ret;
1080
1081	master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1082	if (!master) {
1083		dev_err(&pdev->dev, "spi master allocation failed\n");
1084		return -ENOMEM;
1085	}
1086	platform_set_drvdata(pdev, master);
1087
1088	spi = spi_master_get_devdata(master);
1089	spi->dev = &pdev->dev;
1090	spi->master = master;
1091	spin_lock_init(&spi->lock);
1092
1093	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1094	spi->base = devm_ioremap_resource(&pdev->dev, res);
1095	if (IS_ERR(spi->base)) {
1096		ret = PTR_ERR(spi->base);
1097		goto err_master_put;
1098	}
1099	spi->phys_addr = (dma_addr_t)res->start;
1100
1101	spi->irq = platform_get_irq(pdev, 0);
1102	if (spi->irq <= 0) {
1103		dev_err(&pdev->dev, "no irq: %d\n", spi->irq);
1104		ret = -ENOENT;
1105		goto err_master_put;
1106	}
1107	ret = devm_request_threaded_irq(&pdev->dev, spi->irq, NULL,
1108					stm32_spi_irq, IRQF_ONESHOT,
1109					pdev->name, master);
1110	if (ret) {
1111		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1112			ret);
1113		goto err_master_put;
1114	}
1115
1116	spi->clk = devm_clk_get(&pdev->dev, 0);
1117	if (IS_ERR(spi->clk)) {
1118		ret = PTR_ERR(spi->clk);
1119		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1120		goto err_master_put;
1121	}
1122
1123	ret = clk_prepare_enable(spi->clk);
1124	if (ret) {
1125		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1126		goto err_master_put;
1127	}
1128	spi->clk_rate = clk_get_rate(spi->clk);
1129	if (!spi->clk_rate) {
1130		dev_err(&pdev->dev, "clk rate = 0\n");
1131		ret = -EINVAL;
1132		goto err_master_put;
1133	}
1134
1135	spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1136	if (!IS_ERR(spi->rst)) {
1137		reset_control_assert(spi->rst);
1138		udelay(2);
1139		reset_control_deassert(spi->rst);
1140	}
1141
1142	spi->fifo_size = stm32_spi_get_fifo_size(spi);
1143
1144	ret = stm32_spi_config(spi);
1145	if (ret) {
1146		dev_err(&pdev->dev, "controller configuration failed: %d\n",
1147			ret);
1148		goto err_clk_disable;
1149	}
1150
1151	master->dev.of_node = pdev->dev.of_node;
1152	master->auto_runtime_pm = true;
1153	master->bus_num = pdev->id;
1154	master->mode_bits = SPI_MODE_3 | SPI_CS_HIGH | SPI_LSB_FIRST |
1155			    SPI_3WIRE | SPI_LOOP;
1156	master->bits_per_word_mask = stm32_spi_get_bpw_mask(spi);
1157	master->max_speed_hz = spi->clk_rate / SPI_MBR_DIV_MIN;
1158	master->min_speed_hz = spi->clk_rate / SPI_MBR_DIV_MAX;
1159	master->setup = stm32_spi_setup;
1160	master->prepare_message = stm32_spi_prepare_msg;
1161	master->transfer_one = stm32_spi_transfer_one;
1162	master->unprepare_message = stm32_spi_unprepare_msg;
1163
1164	spi->dma_tx = dma_request_slave_channel(spi->dev, "tx");
1165	if (!spi->dma_tx)
1166		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1167	else
1168		master->dma_tx = spi->dma_tx;
1169
1170	spi->dma_rx = dma_request_slave_channel(spi->dev, "rx");
1171	if (!spi->dma_rx)
1172		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1173	else
1174		master->dma_rx = spi->dma_rx;
1175
1176	if (spi->dma_tx || spi->dma_rx)
1177		master->can_dma = stm32_spi_can_dma;
1178
1179	pm_runtime_set_active(&pdev->dev);
1180	pm_runtime_enable(&pdev->dev);
1181
1182	ret = devm_spi_register_master(&pdev->dev, master);
1183	if (ret) {
1184		dev_err(&pdev->dev, "spi master registration failed: %d\n",
1185			ret);
1186		goto err_dma_release;
1187	}
1188
1189	if (!master->cs_gpios) {
1190		dev_err(&pdev->dev, "no CS gpios available\n");
1191		ret = -EINVAL;
1192		goto err_dma_release;
1193	}
1194
1195	for (i = 0; i < master->num_chipselect; i++) {
1196		if (!gpio_is_valid(master->cs_gpios[i])) {
1197			dev_err(&pdev->dev, "%i is not a valid gpio\n",
1198				master->cs_gpios[i]);
1199			ret = -EINVAL;
1200			goto err_dma_release;
1201		}
1202
1203		ret = devm_gpio_request(&pdev->dev, master->cs_gpios[i],
1204					DRIVER_NAME);
1205		if (ret) {
1206			dev_err(&pdev->dev, "can't get CS gpio %i\n",
1207				master->cs_gpios[i]);
1208			goto err_dma_release;
1209		}
1210	}
1211
1212	dev_info(&pdev->dev, "driver initialized\n");
1213
1214	return 0;
1215
1216err_dma_release:
1217	if (spi->dma_tx)
1218		dma_release_channel(spi->dma_tx);
1219	if (spi->dma_rx)
1220		dma_release_channel(spi->dma_rx);
1221
1222	pm_runtime_disable(&pdev->dev);
1223err_clk_disable:
1224	clk_disable_unprepare(spi->clk);
1225err_master_put:
1226	spi_master_put(master);
1227
1228	return ret;
1229}
1230
1231static int stm32_spi_remove(struct platform_device *pdev)
1232{
1233	struct spi_master *master = platform_get_drvdata(pdev);
1234	struct stm32_spi *spi = spi_master_get_devdata(master);
1235
1236	stm32_spi_disable(spi);
1237
1238	if (master->dma_tx)
1239		dma_release_channel(master->dma_tx);
1240	if (master->dma_rx)
1241		dma_release_channel(master->dma_rx);
1242
1243	clk_disable_unprepare(spi->clk);
1244
1245	pm_runtime_disable(&pdev->dev);
1246
1247	return 0;
1248}
1249
1250#ifdef CONFIG_PM
1251static int stm32_spi_runtime_suspend(struct device *dev)
1252{
1253	struct spi_master *master = dev_get_drvdata(dev);
1254	struct stm32_spi *spi = spi_master_get_devdata(master);
1255
1256	clk_disable_unprepare(spi->clk);
1257
1258	return 0;
1259}
1260
1261static int stm32_spi_runtime_resume(struct device *dev)
1262{
1263	struct spi_master *master = dev_get_drvdata(dev);
1264	struct stm32_spi *spi = spi_master_get_devdata(master);
1265
1266	return clk_prepare_enable(spi->clk);
1267}
1268#endif
1269
1270#ifdef CONFIG_PM_SLEEP
1271static int stm32_spi_suspend(struct device *dev)
1272{
1273	struct spi_master *master = dev_get_drvdata(dev);
1274	int ret;
1275
1276	ret = spi_master_suspend(master);
1277	if (ret)
1278		return ret;
1279
1280	return pm_runtime_force_suspend(dev);
1281}
1282
1283static int stm32_spi_resume(struct device *dev)
1284{
1285	struct spi_master *master = dev_get_drvdata(dev);
1286	struct stm32_spi *spi = spi_master_get_devdata(master);
1287	int ret;
1288
1289	ret = pm_runtime_force_resume(dev);
1290	if (ret)
1291		return ret;
1292
1293	ret = spi_master_resume(master);
1294	if (ret)
1295		clk_disable_unprepare(spi->clk);
1296
1297	return ret;
1298}
1299#endif
1300
1301static const struct dev_pm_ops stm32_spi_pm_ops = {
1302	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
1303	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
1304			   stm32_spi_runtime_resume, NULL)
1305};
1306
1307static struct platform_driver stm32_spi_driver = {
1308	.probe = stm32_spi_probe,
1309	.remove = stm32_spi_remove,
1310	.driver = {
1311		.name = DRIVER_NAME,
1312		.pm = &stm32_spi_pm_ops,
1313		.of_match_table = stm32_spi_of_match,
1314	},
1315};
1316
1317module_platform_driver(stm32_spi_driver);
1318
1319MODULE_ALIAS("platform:" DRIVER_NAME);
1320MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
1321MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
1322MODULE_LICENSE("GPL v2");