Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
  3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
  4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the version 2 of the GNU General Public License
  8 * as published by the Free Software Foundation
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, write to the Free Software
 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 18 */
 19
 20#include <linux/module.h>
 21#include <linux/kernel.h>
 22#include <linux/slab.h>
 23#include <linux/netdevice.h>
 24#include <linux/if_arp.h>
 
 25#include <linux/can.h>
 
 26#include <linux/can/dev.h>
 
 27#include <linux/can/netlink.h>
 
 
 28#include <net/rtnetlink.h>
 29
 30#define MOD_DESC "CAN device driver interface"
 31
 32MODULE_DESCRIPTION(MOD_DESC);
 33MODULE_LICENSE("GPL v2");
 34MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
 35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 36#ifdef CONFIG_CAN_CALC_BITTIMING
 37#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
 
 38
 39/*
 40 * Bit-timing calculation derived from:
 41 *
 42 * Code based on LinCAN sources and H8S2638 project
 43 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
 44 * Copyright 2005      Stanislav Marek
 45 * email: pisa@cmp.felk.cvut.cz
 46 *
 47 * Calculates proper bit-timing parameters for a specified bit-rate
 48 * and sample-point, which can then be used to set the bit-timing
 49 * registers of the CAN controller. You can find more information
 50 * in the header file linux/can/netlink.h.
 51 */
 52static int can_update_spt(const struct can_bittiming_const *btc,
 53			  int sampl_pt, int tseg, int *tseg1, int *tseg2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 54{
 55	*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
 56	if (*tseg2 < btc->tseg2_min)
 57		*tseg2 = btc->tseg2_min;
 58	if (*tseg2 > btc->tseg2_max)
 59		*tseg2 = btc->tseg2_max;
 60	*tseg1 = tseg - *tseg2;
 61	if (*tseg1 > btc->tseg1_max) {
 62		*tseg1 = btc->tseg1_max;
 63		*tseg2 = tseg - *tseg1;
 64	}
 65	return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
 66}
 67
 68static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
 69{
 70	struct can_priv *priv = netdev_priv(dev);
 71	const struct can_bittiming_const *btc = priv->bittiming_const;
 72	long rate, best_rate = 0;
 73	long best_error = 1000000000, error = 0;
 74	int best_tseg = 0, best_brp = 0, brp = 0;
 75	int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
 76	int spt_error = 1000, spt = 0, sampl_pt;
 77	u64 v64;
 78
 79	if (!priv->bittiming_const)
 80		return -ENOTSUPP;
 81
 82	/* Use CIA recommended sample points */
 83	if (bt->sample_point) {
 84		sampl_pt = bt->sample_point;
 85	} else {
 86		if (bt->bitrate > 800000)
 87			sampl_pt = 750;
 88		else if (bt->bitrate > 500000)
 89			sampl_pt = 800;
 90		else
 91			sampl_pt = 875;
 92	}
 93
 94	/* tseg even = round down, odd = round up */
 95	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
 96	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
 97		tsegall = 1 + tseg / 2;
 
 98		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
 99		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
100		/* chose brp step which is possible in system */
 
101		brp = (brp / btc->brp_inc) * btc->brp_inc;
102		if ((brp < btc->brp_min) || (brp > btc->brp_max))
103			continue;
104		rate = priv->clock.freq / (brp * tsegall);
105		error = bt->bitrate - rate;
 
 
106		/* tseg brp biterror */
107		if (error < 0)
108			error = -error;
109		if (error > best_error)
110			continue;
111		best_error = error;
112		if (error == 0) {
113			spt = can_update_spt(btc, sampl_pt, tseg / 2,
114					     &tseg1, &tseg2);
115			error = sampl_pt - spt;
116			if (error < 0)
117				error = -error;
118			if (error > spt_error)
119				continue;
120			spt_error = error;
121		}
 
122		best_tseg = tseg / 2;
123		best_brp = brp;
124		best_rate = rate;
125		if (error == 0)
126			break;
127	}
128
129	if (best_error) {
130		/* Error in one-tenth of a percent */
131		error = (best_error * 1000) / bt->bitrate;
132		if (error > CAN_CALC_MAX_ERROR) {
 
 
133			netdev_err(dev,
134				   "bitrate error %ld.%ld%% too high\n",
135				   error / 10, error % 10);
136			return -EDOM;
137		} else {
138			netdev_warn(dev, "bitrate error %ld.%ld%%\n",
139				    error / 10, error % 10);
140		}
 
 
141	}
142
143	/* real sample point */
144	bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
145					  &tseg1, &tseg2);
 
146
147	v64 = (u64)best_brp * 1000000000UL;
148	do_div(v64, priv->clock.freq);
149	bt->tq = (u32)v64;
150	bt->prop_seg = tseg1 / 2;
151	bt->phase_seg1 = tseg1 - bt->prop_seg;
152	bt->phase_seg2 = tseg2;
153
154	/* check for sjw user settings */
155	if (!bt->sjw || !btc->sjw_max)
156		bt->sjw = 1;
157	else {
158		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
159		if (bt->sjw > btc->sjw_max)
160			bt->sjw = btc->sjw_max;
161		/* bt->sjw must not be higher than tseg2 */
162		if (tseg2 < bt->sjw)
163			bt->sjw = tseg2;
164	}
165
166	bt->brp = best_brp;
167	/* real bit-rate */
168	bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
 
 
169
170	return 0;
171}
172#else /* !CONFIG_CAN_CALC_BITTIMING */
173static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
 
174{
175	netdev_err(dev, "bit-timing calculation not available\n");
176	return -EINVAL;
177}
178#endif /* CONFIG_CAN_CALC_BITTIMING */
179
180/*
181 * Checks the validity of the specified bit-timing parameters prop_seg,
182 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
183 * prescaler value brp. You can find more information in the header
184 * file linux/can/netlink.h.
185 */
186static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt)
 
187{
188	struct can_priv *priv = netdev_priv(dev);
189	const struct can_bittiming_const *btc = priv->bittiming_const;
190	int tseg1, alltseg;
191	u64 brp64;
192
193	if (!priv->bittiming_const)
194		return -ENOTSUPP;
195
196	tseg1 = bt->prop_seg + bt->phase_seg1;
197	if (!bt->sjw)
198		bt->sjw = 1;
199	if (bt->sjw > btc->sjw_max ||
200	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
201	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
202		return -ERANGE;
203
204	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
205	if (btc->brp_inc > 1)
206		do_div(brp64, btc->brp_inc);
207	brp64 += 500000000UL - 1;
208	do_div(brp64, 1000000000UL); /* the practicable BRP */
209	if (btc->brp_inc > 1)
210		brp64 *= btc->brp_inc;
211	bt->brp = (u32)brp64;
212
213	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
214		return -EINVAL;
215
216	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
217	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
218	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
219
220	return 0;
221}
222
223static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt)
 
 
 
 
224{
225	struct can_priv *priv = netdev_priv(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226	int err;
227
228	/* Check if the CAN device has bit-timing parameters */
229	if (priv->bittiming_const) {
 
 
 
 
 
 
 
 
 
 
 
 
230
231		/* Non-expert mode? Check if the bitrate has been pre-defined */
232		if (!bt->tq)
233			/* Determine bit-timing parameters */
234			err = can_calc_bittiming(dev, bt);
235		else
236			/* Check bit-timing params and calculate proper brp */
237			err = can_fixup_bittiming(dev, bt);
238		if (err)
239			return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
240	}
 
241
242	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243}
 
244
245/*
246 * Local echo of CAN messages
247 *
248 * CAN network devices *should* support a local echo functionality
249 * (see Documentation/networking/can.txt). To test the handling of CAN
250 * interfaces that do not support the local echo both driver types are
251 * implemented. In the case that the driver does not support the echo
252 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
253 * to perform the echo as a fallback solution.
254 */
255static void can_flush_echo_skb(struct net_device *dev)
256{
257	struct can_priv *priv = netdev_priv(dev);
258	struct net_device_stats *stats = &dev->stats;
259	int i;
260
261	for (i = 0; i < priv->echo_skb_max; i++) {
262		if (priv->echo_skb[i]) {
263			kfree_skb(priv->echo_skb[i]);
264			priv->echo_skb[i] = NULL;
265			stats->tx_dropped++;
266			stats->tx_aborted_errors++;
267		}
268	}
269}
270
271/*
272 * Put the skb on the stack to be looped backed locally lateron
273 *
274 * The function is typically called in the start_xmit function
275 * of the device driver. The driver must protect access to
276 * priv->echo_skb, if necessary.
277 */
278void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
279		      unsigned int idx)
280{
281	struct can_priv *priv = netdev_priv(dev);
282
283	BUG_ON(idx >= priv->echo_skb_max);
284
285	/* check flag whether this packet has to be looped back */
286	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK) {
 
 
287		kfree_skb(skb);
288		return;
289	}
290
291	if (!priv->echo_skb[idx]) {
292		struct sock *srcsk = skb->sk;
293
294		if (atomic_read(&skb->users) != 1) {
295			struct sk_buff *old_skb = skb;
296
297			skb = skb_clone(old_skb, GFP_ATOMIC);
298			kfree_skb(old_skb);
299			if (!skb)
300				return;
301		} else
302			skb_orphan(skb);
303
304		skb->sk = srcsk;
305
306		/* make settings for echo to reduce code in irq context */
307		skb->protocol = htons(ETH_P_CAN);
308		skb->pkt_type = PACKET_BROADCAST;
309		skb->ip_summed = CHECKSUM_UNNECESSARY;
310		skb->dev = dev;
311
312		/* save this skb for tx interrupt echo handling */
313		priv->echo_skb[idx] = skb;
314	} else {
315		/* locking problem with netif_stop_queue() ?? */
316		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
317		kfree_skb(skb);
318	}
319}
320EXPORT_SYMBOL_GPL(can_put_echo_skb);
321
322/*
323 * Get the skb from the stack and loop it back locally
324 *
325 * The function is typically called when the TX done interrupt
326 * is handled in the device driver. The driver must protect
327 * access to priv->echo_skb, if necessary.
328 */
329unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
330{
331	struct can_priv *priv = netdev_priv(dev);
332
333	BUG_ON(idx >= priv->echo_skb_max);
 
 
 
 
334
335	if (priv->echo_skb[idx]) {
 
 
 
336		struct sk_buff *skb = priv->echo_skb[idx];
337		struct can_frame *cf = (struct can_frame *)skb->data;
338		u8 dlc = cf->can_dlc;
339
340		netif_rx(priv->echo_skb[idx]);
341		priv->echo_skb[idx] = NULL;
342
343		return dlc;
344	}
345
346	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
347}
348EXPORT_SYMBOL_GPL(can_get_echo_skb);
349
350/*
351  * Remove the skb from the stack and free it.
352  *
353  * The function is typically called when TX failed.
354  */
355void can_free_echo_skb(struct net_device *dev, unsigned int idx)
356{
357	struct can_priv *priv = netdev_priv(dev);
358
359	BUG_ON(idx >= priv->echo_skb_max);
360
361	if (priv->echo_skb[idx]) {
362		kfree_skb(priv->echo_skb[idx]);
363		priv->echo_skb[idx] = NULL;
364	}
365}
366EXPORT_SYMBOL_GPL(can_free_echo_skb);
367
368/*
369 * CAN device restart for bus-off recovery
370 */
371void can_restart(unsigned long data)
372{
373	struct net_device *dev = (struct net_device *)data;
374	struct can_priv *priv = netdev_priv(dev);
375	struct net_device_stats *stats = &dev->stats;
376	struct sk_buff *skb;
377	struct can_frame *cf;
378	int err;
379
380	BUG_ON(netif_carrier_ok(dev));
381
382	/*
383	 * No synchronization needed because the device is bus-off and
384	 * no messages can come in or go out.
385	 */
386	can_flush_echo_skb(dev);
387
388	/* send restart message upstream */
389	skb = alloc_can_err_skb(dev, &cf);
390	if (skb == NULL) {
391		err = -ENOMEM;
392		goto restart;
393	}
394	cf->can_id |= CAN_ERR_RESTARTED;
395
396	netif_rx(skb);
397
398	stats->rx_packets++;
399	stats->rx_bytes += cf->can_dlc;
400
401restart:
402	netdev_dbg(dev, "restarted\n");
403	priv->can_stats.restarts++;
404
405	/* Now restart the device */
406	err = priv->do_set_mode(dev, CAN_MODE_START);
407
408	netif_carrier_on(dev);
409	if (err)
410		netdev_err(dev, "Error %d during restart", err);
411}
412
 
 
 
 
 
 
 
 
 
413int can_restart_now(struct net_device *dev)
414{
415	struct can_priv *priv = netdev_priv(dev);
416
417	/*
418	 * A manual restart is only permitted if automatic restart is
419	 * disabled and the device is in the bus-off state
420	 */
421	if (priv->restart_ms)
422		return -EINVAL;
423	if (priv->state != CAN_STATE_BUS_OFF)
424		return -EBUSY;
425
426	/* Runs as soon as possible in the timer context */
427	mod_timer(&priv->restart_timer, jiffies);
428
429	return 0;
430}
431
432/*
433 * CAN bus-off
434 *
435 * This functions should be called when the device goes bus-off to
436 * tell the netif layer that no more packets can be sent or received.
437 * If enabled, a timer is started to trigger bus-off recovery.
438 */
439void can_bus_off(struct net_device *dev)
440{
441	struct can_priv *priv = netdev_priv(dev);
442
443	netdev_dbg(dev, "bus-off\n");
444
445	netif_carrier_off(dev);
446	priv->can_stats.bus_off++;
447
448	if (priv->restart_ms)
449		mod_timer(&priv->restart_timer,
450			  jiffies + (priv->restart_ms * HZ) / 1000);
451}
452EXPORT_SYMBOL_GPL(can_bus_off);
453
454static void can_setup(struct net_device *dev)
455{
456	dev->type = ARPHRD_CAN;
457	dev->mtu = sizeof(struct can_frame);
458	dev->hard_header_len = 0;
459	dev->addr_len = 0;
460	dev->tx_queue_len = 10;
461
462	/* New-style flags. */
463	dev->flags = IFF_NOARP;
464	dev->features = NETIF_F_HW_CSUM;
465}
466
467struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
468{
469	struct sk_buff *skb;
470
471	skb = netdev_alloc_skb(dev, sizeof(struct can_frame));
 
472	if (unlikely(!skb))
473		return NULL;
474
475	skb->protocol = htons(ETH_P_CAN);
476	skb->pkt_type = PACKET_BROADCAST;
477	skb->ip_summed = CHECKSUM_UNNECESSARY;
478	*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
479	memset(*cf, 0, sizeof(struct can_frame));
 
 
 
 
 
 
 
 
480
481	return skb;
482}
483EXPORT_SYMBOL_GPL(alloc_can_skb);
484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
485struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
486{
487	struct sk_buff *skb;
488
489	skb = alloc_can_skb(dev, cf);
490	if (unlikely(!skb))
491		return NULL;
492
493	(*cf)->can_id = CAN_ERR_FLAG;
494	(*cf)->can_dlc = CAN_ERR_DLC;
495
496	return skb;
497}
498EXPORT_SYMBOL_GPL(alloc_can_err_skb);
499
500/*
501 * Allocate and setup space for the CAN network device
502 */
503struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
504{
505	struct net_device *dev;
506	struct can_priv *priv;
507	int size;
508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
509	if (echo_skb_max)
510		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
511			echo_skb_max * sizeof(struct sk_buff *);
512	else
513		size = sizeof_priv;
514
515	dev = alloc_netdev(size, "can%d", can_setup);
 
516	if (!dev)
517		return NULL;
518
519	priv = netdev_priv(dev);
 
 
 
520
521	if (echo_skb_max) {
522		priv->echo_skb_max = echo_skb_max;
523		priv->echo_skb = (void *)priv +
524			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
525	}
526
527	priv->state = CAN_STATE_STOPPED;
528
529	init_timer(&priv->restart_timer);
530
531	return dev;
532}
533EXPORT_SYMBOL_GPL(alloc_candev);
534
535/*
536 * Free space of the CAN network device
537 */
538void free_candev(struct net_device *dev)
539{
540	free_netdev(dev);
541}
542EXPORT_SYMBOL_GPL(free_candev);
543
544/*
545 * Common open function when the device gets opened.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
546 *
547 * This function should be called in the open function of the device
548 * driver.
549 */
550int open_candev(struct net_device *dev)
551{
552	struct can_priv *priv = netdev_priv(dev);
553
554	if (!priv->bittiming.tq && !priv->bittiming.bitrate) {
555		netdev_err(dev, "bit-timing not yet defined\n");
556		return -EINVAL;
557	}
558
 
 
 
 
 
 
 
 
559	/* Switch carrier on if device was stopped while in bus-off state */
560	if (!netif_carrier_ok(dev))
561		netif_carrier_on(dev);
562
563	setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
564
565	return 0;
566}
567EXPORT_SYMBOL_GPL(open_candev);
568
569/*
570 * Common close function for cleanup before the device gets closed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
571 *
572 * This function should be called in the close function of the device
573 * driver.
574 */
575void close_candev(struct net_device *dev)
576{
577	struct can_priv *priv = netdev_priv(dev);
578
579	if (del_timer_sync(&priv->restart_timer))
580		dev_put(dev);
581	can_flush_echo_skb(dev);
582}
583EXPORT_SYMBOL_GPL(close_candev);
584
585/*
586 * CAN netlink interface
587 */
588static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
589	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
590	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
591	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
592	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
593	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
594	[IFLA_CAN_BITTIMING_CONST]
595				= { .len = sizeof(struct can_bittiming_const) },
596	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
597	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
 
 
 
 
598};
599
600static int can_changelink(struct net_device *dev,
601			  struct nlattr *tb[], struct nlattr *data[])
602{
603	struct can_priv *priv = netdev_priv(dev);
604	int err;
605
606	/* We need synchronization with dev->stop() */
607	ASSERT_RTNL();
 
 
 
 
 
 
608
609	if (data[IFLA_CAN_CTRLMODE]) {
610		struct can_ctrlmode *cm;
611
612		/* Do not allow changing controller mode while running */
613		if (dev->flags & IFF_UP)
614			return -EBUSY;
615		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
616		if (cm->flags & ~priv->ctrlmode_supported)
617			return -EOPNOTSUPP;
618		priv->ctrlmode &= ~cm->mask;
619		priv->ctrlmode |= cm->flags;
620	}
621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
622	if (data[IFLA_CAN_BITTIMING]) {
623		struct can_bittiming bt;
624
625		/* Do not allow changing bittiming while running */
626		if (dev->flags & IFF_UP)
627			return -EBUSY;
 
 
 
 
 
 
 
 
 
628		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
629		if ((!bt.bitrate && !bt.tq) || (bt.bitrate && bt.tq))
630			return -EINVAL;
631		err = can_get_bittiming(dev, &bt);
 
632		if (err)
633			return err;
 
 
 
 
 
 
 
634		memcpy(&priv->bittiming, &bt, sizeof(bt));
635
636		if (priv->do_set_bittiming) {
637			/* Finally, set the bit-timing registers */
638			err = priv->do_set_bittiming(dev);
639			if (err)
640				return err;
641		}
642	}
643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
644	if (data[IFLA_CAN_RESTART_MS]) {
645		/* Do not allow changing restart delay while running */
646		if (dev->flags & IFF_UP)
647			return -EBUSY;
648		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
649	}
650
651	if (data[IFLA_CAN_RESTART]) {
652		/* Do not allow a restart while not running */
653		if (!(dev->flags & IFF_UP))
654			return -EINVAL;
655		err = can_restart_now(dev);
656		if (err)
657			return err;
658	}
659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
660	return 0;
661}
662
663static size_t can_get_size(const struct net_device *dev)
664{
665	struct can_priv *priv = netdev_priv(dev);
666	size_t size;
667
668	size = nla_total_size(sizeof(u32));   /* IFLA_CAN_STATE */
669	size += sizeof(struct can_ctrlmode);  /* IFLA_CAN_CTRLMODE */
670	size += nla_total_size(sizeof(u32));  /* IFLA_CAN_RESTART_MS */
671	size += sizeof(struct can_bittiming); /* IFLA_CAN_BITTIMING */
672	size += sizeof(struct can_clock);     /* IFLA_CAN_CLOCK */
673	if (priv->do_get_berr_counter)        /* IFLA_CAN_BERR_COUNTER */
674		size += sizeof(struct can_berr_counter);
675	if (priv->bittiming_const)	      /* IFLA_CAN_BITTIMING_CONST */
676		size += sizeof(struct can_bittiming_const);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
677
678	return size;
679}
680
681static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
682{
683	struct can_priv *priv = netdev_priv(dev);
684	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
685	struct can_berr_counter bec;
686	enum can_state state = priv->state;
687
688	if (priv->do_get_state)
689		priv->do_get_state(dev, &state);
690	if (nla_put_u32(skb, IFLA_CAN_STATE, state) ||
 
 
 
 
 
 
 
 
 
 
691	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
692	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
693	    nla_put(skb, IFLA_CAN_BITTIMING,
694		    sizeof(priv->bittiming), &priv->bittiming) ||
695	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) ||
696	    (priv->do_get_berr_counter &&
697	     !priv->do_get_berr_counter(dev, &bec) &&
698	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
699	    (priv->bittiming_const &&
700	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
701		     sizeof(*priv->bittiming_const), priv->bittiming_const)))
702		goto nla_put_failure;
703	return 0;
704
705nla_put_failure:
706	return -EMSGSIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
707}
708
709static size_t can_get_xstats_size(const struct net_device *dev)
710{
711	return sizeof(struct can_device_stats);
712}
713
714static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
715{
716	struct can_priv *priv = netdev_priv(dev);
717
718	if (nla_put(skb, IFLA_INFO_XSTATS,
719		    sizeof(priv->can_stats), &priv->can_stats))
720		goto nla_put_failure;
721	return 0;
722
723nla_put_failure:
724	return -EMSGSIZE;
725}
726
727static int can_newlink(struct net *src_net, struct net_device *dev,
728		       struct nlattr *tb[], struct nlattr *data[])
 
729{
730	return -EOPNOTSUPP;
731}
732
 
 
 
 
733static struct rtnl_link_ops can_link_ops __read_mostly = {
734	.kind		= "can",
735	.maxtype	= IFLA_CAN_MAX,
736	.policy		= can_policy,
737	.setup		= can_setup,
 
738	.newlink	= can_newlink,
739	.changelink	= can_changelink,
 
740	.get_size	= can_get_size,
741	.fill_info	= can_fill_info,
742	.get_xstats_size = can_get_xstats_size,
743	.fill_xstats	= can_fill_xstats,
744};
745
746/*
747 * Register the CAN network device
748 */
749int register_candev(struct net_device *dev)
750{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
751	dev->rtnl_link_ops = &can_link_ops;
 
 
752	return register_netdev(dev);
753}
754EXPORT_SYMBOL_GPL(register_candev);
755
756/*
757 * Unregister the CAN network device
758 */
759void unregister_candev(struct net_device *dev)
760{
761	unregister_netdev(dev);
762}
763EXPORT_SYMBOL_GPL(unregister_candev);
764
 
 
 
 
 
 
 
 
 
 
 
 
765static __init int can_dev_init(void)
766{
767	int err;
768
 
 
769	err = rtnl_link_register(&can_link_ops);
770	if (!err)
771		printk(KERN_INFO MOD_DESC "\n");
772
773	return err;
774}
775module_init(can_dev_init);
776
777static __exit void can_dev_exit(void)
778{
779	rtnl_link_unregister(&can_link_ops);
 
 
780}
781module_exit(can_dev_exit);
782
783MODULE_ALIAS_RTNL_LINK("can");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
   3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
   4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/module.h>
   8#include <linux/kernel.h>
   9#include <linux/slab.h>
  10#include <linux/netdevice.h>
  11#include <linux/if_arp.h>
  12#include <linux/workqueue.h>
  13#include <linux/can.h>
  14#include <linux/can/can-ml.h>
  15#include <linux/can/dev.h>
  16#include <linux/can/skb.h>
  17#include <linux/can/netlink.h>
  18#include <linux/can/led.h>
  19#include <linux/of.h>
  20#include <net/rtnetlink.h>
  21
  22#define MOD_DESC "CAN device driver interface"
  23
  24MODULE_DESCRIPTION(MOD_DESC);
  25MODULE_LICENSE("GPL v2");
  26MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
  27
  28/* CAN DLC to real data length conversion helpers */
  29
  30static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
  31			     8, 12, 16, 20, 24, 32, 48, 64};
  32
  33/* get data length from can_dlc with sanitized can_dlc */
  34u8 can_dlc2len(u8 can_dlc)
  35{
  36	return dlc2len[can_dlc & 0x0F];
  37}
  38EXPORT_SYMBOL_GPL(can_dlc2len);
  39
  40static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,		/* 0 - 8 */
  41			     9, 9, 9, 9,			/* 9 - 12 */
  42			     10, 10, 10, 10,			/* 13 - 16 */
  43			     11, 11, 11, 11,			/* 17 - 20 */
  44			     12, 12, 12, 12,			/* 21 - 24 */
  45			     13, 13, 13, 13, 13, 13, 13, 13,	/* 25 - 32 */
  46			     14, 14, 14, 14, 14, 14, 14, 14,	/* 33 - 40 */
  47			     14, 14, 14, 14, 14, 14, 14, 14,	/* 41 - 48 */
  48			     15, 15, 15, 15, 15, 15, 15, 15,	/* 49 - 56 */
  49			     15, 15, 15, 15, 15, 15, 15, 15};	/* 57 - 64 */
  50
  51/* map the sanitized data length to an appropriate data length code */
  52u8 can_len2dlc(u8 len)
  53{
  54	if (unlikely(len > 64))
  55		return 0xF;
  56
  57	return len2dlc[len];
  58}
  59EXPORT_SYMBOL_GPL(can_len2dlc);
  60
  61#ifdef CONFIG_CAN_CALC_BITTIMING
  62#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
  63#define CAN_CALC_SYNC_SEG 1
  64
  65/* Bit-timing calculation derived from:
 
  66 *
  67 * Code based on LinCAN sources and H8S2638 project
  68 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
  69 * Copyright 2005      Stanislav Marek
  70 * email: pisa@cmp.felk.cvut.cz
  71 *
  72 * Calculates proper bit-timing parameters for a specified bit-rate
  73 * and sample-point, which can then be used to set the bit-timing
  74 * registers of the CAN controller. You can find more information
  75 * in the header file linux/can/netlink.h.
  76 */
  77static int
  78can_update_sample_point(const struct can_bittiming_const *btc,
  79			unsigned int sample_point_nominal, unsigned int tseg,
  80			unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
  81			unsigned int *sample_point_error_ptr)
  82{
  83	unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
  84	unsigned int sample_point, best_sample_point = 0;
  85	unsigned int tseg1, tseg2;
  86	int i;
  87
  88	for (i = 0; i <= 1; i++) {
  89		tseg2 = tseg + CAN_CALC_SYNC_SEG -
  90			(sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) /
  91			1000 - i;
  92		tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
  93		tseg1 = tseg - tseg2;
  94		if (tseg1 > btc->tseg1_max) {
  95			tseg1 = btc->tseg1_max;
  96			tseg2 = tseg - tseg1;
  97		}
  98
  99		sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) /
 100			(tseg + CAN_CALC_SYNC_SEG);
 101		sample_point_error = abs(sample_point_nominal - sample_point);
 102
 103		if (sample_point <= sample_point_nominal &&
 104		    sample_point_error < best_sample_point_error) {
 105			best_sample_point = sample_point;
 106			best_sample_point_error = sample_point_error;
 107			*tseg1_ptr = tseg1;
 108			*tseg2_ptr = tseg2;
 109		}
 110	}
 111
 112	if (sample_point_error_ptr)
 113		*sample_point_error_ptr = best_sample_point_error;
 114
 115	return best_sample_point;
 116}
 117
 118static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
 119			      const struct can_bittiming_const *btc)
 120{
 121	struct can_priv *priv = netdev_priv(dev);
 122	unsigned int bitrate;			/* current bitrate */
 123	unsigned int bitrate_error;		/* difference between current and nominal value */
 124	unsigned int best_bitrate_error = UINT_MAX;
 125	unsigned int sample_point_error;	/* difference between current and nominal value */
 126	unsigned int best_sample_point_error = UINT_MAX;
 127	unsigned int sample_point_nominal;	/* nominal sample point */
 128	unsigned int best_tseg = 0;		/* current best value for tseg */
 129	unsigned int best_brp = 0;		/* current best value for brp */
 130	unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 131	u64 v64;
 132
 133	/* Use CiA recommended sample points */
 
 
 
 134	if (bt->sample_point) {
 135		sample_point_nominal = bt->sample_point;
 136	} else {
 137		if (bt->bitrate > 800000)
 138			sample_point_nominal = 750;
 139		else if (bt->bitrate > 500000)
 140			sample_point_nominal = 800;
 141		else
 142			sample_point_nominal = 875;
 143	}
 144
 145	/* tseg even = round down, odd = round up */
 146	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
 147	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
 148		tsegall = CAN_CALC_SYNC_SEG + tseg / 2;
 149
 150		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
 151		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
 152
 153		/* choose brp step which is possible in system */
 154		brp = (brp / btc->brp_inc) * btc->brp_inc;
 155		if (brp < btc->brp_min || brp > btc->brp_max)
 156			continue;
 157
 158		bitrate = priv->clock.freq / (brp * tsegall);
 159		bitrate_error = abs(bt->bitrate - bitrate);
 160
 161		/* tseg brp biterror */
 162		if (bitrate_error > best_bitrate_error)
 
 
 163			continue;
 164
 165		/* reset sample point error if we have a better bitrate */
 166		if (bitrate_error < best_bitrate_error)
 167			best_sample_point_error = UINT_MAX;
 168
 169		can_update_sample_point(btc, sample_point_nominal, tseg / 2,
 170					&tseg1, &tseg2, &sample_point_error);
 171		if (sample_point_error > best_sample_point_error)
 172			continue;
 173
 174		best_sample_point_error = sample_point_error;
 175		best_bitrate_error = bitrate_error;
 176		best_tseg = tseg / 2;
 177		best_brp = brp;
 178
 179		if (bitrate_error == 0 && sample_point_error == 0)
 180			break;
 181	}
 182
 183	if (best_bitrate_error) {
 184		/* Error in one-tenth of a percent */
 185		v64 = (u64)best_bitrate_error * 1000;
 186		do_div(v64, bt->bitrate);
 187		bitrate_error = (u32)v64;
 188		if (bitrate_error > CAN_CALC_MAX_ERROR) {
 189			netdev_err(dev,
 190				   "bitrate error %d.%d%% too high\n",
 191				   bitrate_error / 10, bitrate_error % 10);
 192			return -EDOM;
 
 
 
 193		}
 194		netdev_warn(dev, "bitrate error %d.%d%%\n",
 195			    bitrate_error / 10, bitrate_error % 10);
 196	}
 197
 198	/* real sample point */
 199	bt->sample_point = can_update_sample_point(btc, sample_point_nominal,
 200						   best_tseg, &tseg1, &tseg2,
 201						   NULL);
 202
 203	v64 = (u64)best_brp * 1000 * 1000 * 1000;
 204	do_div(v64, priv->clock.freq);
 205	bt->tq = (u32)v64;
 206	bt->prop_seg = tseg1 / 2;
 207	bt->phase_seg1 = tseg1 - bt->prop_seg;
 208	bt->phase_seg2 = tseg2;
 209
 210	/* check for sjw user settings */
 211	if (!bt->sjw || !btc->sjw_max) {
 212		bt->sjw = 1;
 213	} else {
 214		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
 215		if (bt->sjw > btc->sjw_max)
 216			bt->sjw = btc->sjw_max;
 217		/* bt->sjw must not be higher than tseg2 */
 218		if (tseg2 < bt->sjw)
 219			bt->sjw = tseg2;
 220	}
 221
 222	bt->brp = best_brp;
 223
 224	/* real bitrate */
 225	bt->bitrate = priv->clock.freq /
 226		(bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2));
 227
 228	return 0;
 229}
 230#else /* !CONFIG_CAN_CALC_BITTIMING */
 231static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
 232			      const struct can_bittiming_const *btc)
 233{
 234	netdev_err(dev, "bit-timing calculation not available\n");
 235	return -EINVAL;
 236}
 237#endif /* CONFIG_CAN_CALC_BITTIMING */
 238
 239/* Checks the validity of the specified bit-timing parameters prop_seg,
 
 240 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
 241 * prescaler value brp. You can find more information in the header
 242 * file linux/can/netlink.h.
 243 */
 244static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
 245			       const struct can_bittiming_const *btc)
 246{
 247	struct can_priv *priv = netdev_priv(dev);
 
 248	int tseg1, alltseg;
 249	u64 brp64;
 250
 
 
 
 251	tseg1 = bt->prop_seg + bt->phase_seg1;
 252	if (!bt->sjw)
 253		bt->sjw = 1;
 254	if (bt->sjw > btc->sjw_max ||
 255	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
 256	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
 257		return -ERANGE;
 258
 259	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
 260	if (btc->brp_inc > 1)
 261		do_div(brp64, btc->brp_inc);
 262	brp64 += 500000000UL - 1;
 263	do_div(brp64, 1000000000UL); /* the practicable BRP */
 264	if (btc->brp_inc > 1)
 265		brp64 *= btc->brp_inc;
 266	bt->brp = (u32)brp64;
 267
 268	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
 269		return -EINVAL;
 270
 271	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
 272	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
 273	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
 274
 275	return 0;
 276}
 277
 278/* Checks the validity of predefined bitrate settings */
 279static int
 280can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
 281		     const u32 *bitrate_const,
 282		     const unsigned int bitrate_const_cnt)
 283{
 284	struct can_priv *priv = netdev_priv(dev);
 285	unsigned int i;
 286
 287	for (i = 0; i < bitrate_const_cnt; i++) {
 288		if (bt->bitrate == bitrate_const[i])
 289			break;
 290	}
 291
 292	if (i >= priv->bitrate_const_cnt)
 293		return -EINVAL;
 294
 295	return 0;
 296}
 297
 298static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
 299			     const struct can_bittiming_const *btc,
 300			     const u32 *bitrate_const,
 301			     const unsigned int bitrate_const_cnt)
 302{
 303	int err;
 304
 305	/* Depending on the given can_bittiming parameter structure the CAN
 306	 * timing parameters are calculated based on the provided bitrate OR
 307	 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
 308	 * provided directly which are then checked and fixed up.
 309	 */
 310	if (!bt->tq && bt->bitrate && btc)
 311		err = can_calc_bittiming(dev, bt, btc);
 312	else if (bt->tq && !bt->bitrate && btc)
 313		err = can_fixup_bittiming(dev, bt, btc);
 314	else if (!bt->tq && bt->bitrate && bitrate_const)
 315		err = can_validate_bitrate(dev, bt, bitrate_const,
 316					   bitrate_const_cnt);
 317	else
 318		err = -EINVAL;
 319
 320	return err;
 321}
 322
 323static void can_update_state_error_stats(struct net_device *dev,
 324					 enum can_state new_state)
 325{
 326	struct can_priv *priv = netdev_priv(dev);
 327
 328	if (new_state <= priv->state)
 329		return;
 330
 331	switch (new_state) {
 332	case CAN_STATE_ERROR_WARNING:
 333		priv->can_stats.error_warning++;
 334		break;
 335	case CAN_STATE_ERROR_PASSIVE:
 336		priv->can_stats.error_passive++;
 337		break;
 338	case CAN_STATE_BUS_OFF:
 339		priv->can_stats.bus_off++;
 340		break;
 341	default:
 342		break;
 343	}
 344}
 345
 346static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
 347{
 348	switch (state) {
 349	case CAN_STATE_ERROR_ACTIVE:
 350		return CAN_ERR_CRTL_ACTIVE;
 351	case CAN_STATE_ERROR_WARNING:
 352		return CAN_ERR_CRTL_TX_WARNING;
 353	case CAN_STATE_ERROR_PASSIVE:
 354		return CAN_ERR_CRTL_TX_PASSIVE;
 355	default:
 356		return 0;
 357	}
 358}
 359
 360static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
 361{
 362	switch (state) {
 363	case CAN_STATE_ERROR_ACTIVE:
 364		return CAN_ERR_CRTL_ACTIVE;
 365	case CAN_STATE_ERROR_WARNING:
 366		return CAN_ERR_CRTL_RX_WARNING;
 367	case CAN_STATE_ERROR_PASSIVE:
 368		return CAN_ERR_CRTL_RX_PASSIVE;
 369	default:
 370		return 0;
 371	}
 372}
 373
 374void can_change_state(struct net_device *dev, struct can_frame *cf,
 375		      enum can_state tx_state, enum can_state rx_state)
 376{
 377	struct can_priv *priv = netdev_priv(dev);
 378	enum can_state new_state = max(tx_state, rx_state);
 379
 380	if (unlikely(new_state == priv->state)) {
 381		netdev_warn(dev, "%s: oops, state did not change", __func__);
 382		return;
 383	}
 384
 385	netdev_dbg(dev, "New error state: %d\n", new_state);
 386
 387	can_update_state_error_stats(dev, new_state);
 388	priv->state = new_state;
 389
 390	if (!cf)
 391		return;
 392
 393	if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
 394		cf->can_id |= CAN_ERR_BUSOFF;
 395		return;
 396	}
 397
 398	cf->can_id |= CAN_ERR_CRTL;
 399	cf->data[1] |= tx_state >= rx_state ?
 400		       can_tx_state_to_frame(dev, tx_state) : 0;
 401	cf->data[1] |= tx_state <= rx_state ?
 402		       can_rx_state_to_frame(dev, rx_state) : 0;
 403}
 404EXPORT_SYMBOL_GPL(can_change_state);
 405
 406/* Local echo of CAN messages
 
 407 *
 408 * CAN network devices *should* support a local echo functionality
 409 * (see Documentation/networking/can.rst). To test the handling of CAN
 410 * interfaces that do not support the local echo both driver types are
 411 * implemented. In the case that the driver does not support the echo
 412 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
 413 * to perform the echo as a fallback solution.
 414 */
 415static void can_flush_echo_skb(struct net_device *dev)
 416{
 417	struct can_priv *priv = netdev_priv(dev);
 418	struct net_device_stats *stats = &dev->stats;
 419	int i;
 420
 421	for (i = 0; i < priv->echo_skb_max; i++) {
 422		if (priv->echo_skb[i]) {
 423			kfree_skb(priv->echo_skb[i]);
 424			priv->echo_skb[i] = NULL;
 425			stats->tx_dropped++;
 426			stats->tx_aborted_errors++;
 427		}
 428	}
 429}
 430
 431/* Put the skb on the stack to be looped backed locally lateron
 
 432 *
 433 * The function is typically called in the start_xmit function
 434 * of the device driver. The driver must protect access to
 435 * priv->echo_skb, if necessary.
 436 */
 437void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
 438		      unsigned int idx)
 439{
 440	struct can_priv *priv = netdev_priv(dev);
 441
 442	BUG_ON(idx >= priv->echo_skb_max);
 443
 444	/* check flag whether this packet has to be looped back */
 445	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
 446	    (skb->protocol != htons(ETH_P_CAN) &&
 447	     skb->protocol != htons(ETH_P_CANFD))) {
 448		kfree_skb(skb);
 449		return;
 450	}
 451
 452	if (!priv->echo_skb[idx]) {
 453		skb = can_create_echo_skb(skb);
 454		if (!skb)
 455			return;
 
 
 
 
 
 
 
 
 
 
 456
 457		/* make settings for echo to reduce code in irq context */
 
 458		skb->pkt_type = PACKET_BROADCAST;
 459		skb->ip_summed = CHECKSUM_UNNECESSARY;
 460		skb->dev = dev;
 461
 462		/* save this skb for tx interrupt echo handling */
 463		priv->echo_skb[idx] = skb;
 464	} else {
 465		/* locking problem with netif_stop_queue() ?? */
 466		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
 467		kfree_skb(skb);
 468	}
 469}
 470EXPORT_SYMBOL_GPL(can_put_echo_skb);
 471
 472struct sk_buff *
 473__can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr)
 
 
 
 
 
 
 474{
 475	struct can_priv *priv = netdev_priv(dev);
 476
 477	if (idx >= priv->echo_skb_max) {
 478		netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n",
 479			   __func__, idx, priv->echo_skb_max);
 480		return NULL;
 481	}
 482
 483	if (priv->echo_skb[idx]) {
 484		/* Using "struct canfd_frame::len" for the frame
 485		 * length is supported on both CAN and CANFD frames.
 486		 */
 487		struct sk_buff *skb = priv->echo_skb[idx];
 488		struct canfd_frame *cf = (struct canfd_frame *)skb->data;
 489		u8 len = cf->len;
 490
 491		*len_ptr = len;
 492		priv->echo_skb[idx] = NULL;
 493
 494		return skb;
 495	}
 496
 497	return NULL;
 498}
 499
 500/* Get the skb from the stack and loop it back locally
 501 *
 502 * The function is typically called when the TX done interrupt
 503 * is handled in the device driver. The driver must protect
 504 * access to priv->echo_skb, if necessary.
 505 */
 506unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
 507{
 508	struct sk_buff *skb;
 509	u8 len;
 510
 511	skb = __can_get_echo_skb(dev, idx, &len);
 512	if (!skb)
 513		return 0;
 514
 515	netif_rx(skb);
 516
 517	return len;
 518}
 519EXPORT_SYMBOL_GPL(can_get_echo_skb);
 520
 521/* Remove the skb from the stack and free it.
 522 *
 523 * The function is typically called when TX failed.
 524 */
 
 525void can_free_echo_skb(struct net_device *dev, unsigned int idx)
 526{
 527	struct can_priv *priv = netdev_priv(dev);
 528
 529	BUG_ON(idx >= priv->echo_skb_max);
 530
 531	if (priv->echo_skb[idx]) {
 532		dev_kfree_skb_any(priv->echo_skb[idx]);
 533		priv->echo_skb[idx] = NULL;
 534	}
 535}
 536EXPORT_SYMBOL_GPL(can_free_echo_skb);
 537
 538/* CAN device restart for bus-off recovery */
 539static void can_restart(struct net_device *dev)
 
 
 540{
 
 541	struct can_priv *priv = netdev_priv(dev);
 542	struct net_device_stats *stats = &dev->stats;
 543	struct sk_buff *skb;
 544	struct can_frame *cf;
 545	int err;
 546
 547	BUG_ON(netif_carrier_ok(dev));
 548
 549	/* No synchronization needed because the device is bus-off and
 
 550	 * no messages can come in or go out.
 551	 */
 552	can_flush_echo_skb(dev);
 553
 554	/* send restart message upstream */
 555	skb = alloc_can_err_skb(dev, &cf);
 556	if (!skb) {
 557		err = -ENOMEM;
 558		goto restart;
 559	}
 560	cf->can_id |= CAN_ERR_RESTARTED;
 561
 562	netif_rx(skb);
 563
 564	stats->rx_packets++;
 565	stats->rx_bytes += cf->can_dlc;
 566
 567restart:
 568	netdev_dbg(dev, "restarted\n");
 569	priv->can_stats.restarts++;
 570
 571	/* Now restart the device */
 572	err = priv->do_set_mode(dev, CAN_MODE_START);
 573
 574	netif_carrier_on(dev);
 575	if (err)
 576		netdev_err(dev, "Error %d during restart", err);
 577}
 578
 579static void can_restart_work(struct work_struct *work)
 580{
 581	struct delayed_work *dwork = to_delayed_work(work);
 582	struct can_priv *priv = container_of(dwork, struct can_priv,
 583					     restart_work);
 584
 585	can_restart(priv->dev);
 586}
 587
 588int can_restart_now(struct net_device *dev)
 589{
 590	struct can_priv *priv = netdev_priv(dev);
 591
 592	/* A manual restart is only permitted if automatic restart is
 
 593	 * disabled and the device is in the bus-off state
 594	 */
 595	if (priv->restart_ms)
 596		return -EINVAL;
 597	if (priv->state != CAN_STATE_BUS_OFF)
 598		return -EBUSY;
 599
 600	cancel_delayed_work_sync(&priv->restart_work);
 601	can_restart(dev);
 602
 603	return 0;
 604}
 605
 606/* CAN bus-off
 
 607 *
 608 * This functions should be called when the device goes bus-off to
 609 * tell the netif layer that no more packets can be sent or received.
 610 * If enabled, a timer is started to trigger bus-off recovery.
 611 */
 612void can_bus_off(struct net_device *dev)
 613{
 614	struct can_priv *priv = netdev_priv(dev);
 615
 616	netdev_info(dev, "bus-off\n");
 617
 618	netif_carrier_off(dev);
 
 619
 620	if (priv->restart_ms)
 621		schedule_delayed_work(&priv->restart_work,
 622				      msecs_to_jiffies(priv->restart_ms));
 623}
 624EXPORT_SYMBOL_GPL(can_bus_off);
 625
 626static void can_setup(struct net_device *dev)
 627{
 628	dev->type = ARPHRD_CAN;
 629	dev->mtu = CAN_MTU;
 630	dev->hard_header_len = 0;
 631	dev->addr_len = 0;
 632	dev->tx_queue_len = 10;
 633
 634	/* New-style flags. */
 635	dev->flags = IFF_NOARP;
 636	dev->features = NETIF_F_HW_CSUM;
 637}
 638
 639struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
 640{
 641	struct sk_buff *skb;
 642
 643	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
 644			       sizeof(struct can_frame));
 645	if (unlikely(!skb))
 646		return NULL;
 647
 648	skb->protocol = htons(ETH_P_CAN);
 649	skb->pkt_type = PACKET_BROADCAST;
 650	skb->ip_summed = CHECKSUM_UNNECESSARY;
 651
 652	skb_reset_mac_header(skb);
 653	skb_reset_network_header(skb);
 654	skb_reset_transport_header(skb);
 655
 656	can_skb_reserve(skb);
 657	can_skb_prv(skb)->ifindex = dev->ifindex;
 658	can_skb_prv(skb)->skbcnt = 0;
 659
 660	*cf = skb_put_zero(skb, sizeof(struct can_frame));
 661
 662	return skb;
 663}
 664EXPORT_SYMBOL_GPL(alloc_can_skb);
 665
 666struct sk_buff *alloc_canfd_skb(struct net_device *dev,
 667				struct canfd_frame **cfd)
 668{
 669	struct sk_buff *skb;
 670
 671	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
 672			       sizeof(struct canfd_frame));
 673	if (unlikely(!skb))
 674		return NULL;
 675
 676	skb->protocol = htons(ETH_P_CANFD);
 677	skb->pkt_type = PACKET_BROADCAST;
 678	skb->ip_summed = CHECKSUM_UNNECESSARY;
 679
 680	skb_reset_mac_header(skb);
 681	skb_reset_network_header(skb);
 682	skb_reset_transport_header(skb);
 683
 684	can_skb_reserve(skb);
 685	can_skb_prv(skb)->ifindex = dev->ifindex;
 686	can_skb_prv(skb)->skbcnt = 0;
 687
 688	*cfd = skb_put_zero(skb, sizeof(struct canfd_frame));
 689
 690	return skb;
 691}
 692EXPORT_SYMBOL_GPL(alloc_canfd_skb);
 693
 694struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
 695{
 696	struct sk_buff *skb;
 697
 698	skb = alloc_can_skb(dev, cf);
 699	if (unlikely(!skb))
 700		return NULL;
 701
 702	(*cf)->can_id = CAN_ERR_FLAG;
 703	(*cf)->can_dlc = CAN_ERR_DLC;
 704
 705	return skb;
 706}
 707EXPORT_SYMBOL_GPL(alloc_can_err_skb);
 708
 709/* Allocate and setup space for the CAN network device */
 710struct net_device *alloc_candev_mqs(int sizeof_priv, unsigned int echo_skb_max,
 711				    unsigned int txqs, unsigned int rxqs)
 
 712{
 713	struct net_device *dev;
 714	struct can_priv *priv;
 715	int size;
 716
 717	/* We put the driver's priv, the CAN mid layer priv and the
 718	 * echo skb into the netdevice's priv. The memory layout for
 719	 * the netdev_priv is like this:
 720	 *
 721	 * +-------------------------+
 722	 * | driver's priv           |
 723	 * +-------------------------+
 724	 * | struct can_ml_priv      |
 725	 * +-------------------------+
 726	 * | array of struct sk_buff |
 727	 * +-------------------------+
 728	 */
 729
 730	size = ALIGN(sizeof_priv, NETDEV_ALIGN) + sizeof(struct can_ml_priv);
 731
 732	if (echo_skb_max)
 733		size = ALIGN(size, sizeof(struct sk_buff *)) +
 734			echo_skb_max * sizeof(struct sk_buff *);
 
 
 735
 736	dev = alloc_netdev_mqs(size, "can%d", NET_NAME_UNKNOWN, can_setup,
 737			       txqs, rxqs);
 738	if (!dev)
 739		return NULL;
 740
 741	priv = netdev_priv(dev);
 742	priv->dev = dev;
 743
 744	dev->ml_priv = (void *)priv + ALIGN(sizeof_priv, NETDEV_ALIGN);
 745
 746	if (echo_skb_max) {
 747		priv->echo_skb_max = echo_skb_max;
 748		priv->echo_skb = (void *)priv +
 749			(size - echo_skb_max * sizeof(struct sk_buff *));
 750	}
 751
 752	priv->state = CAN_STATE_STOPPED;
 753
 754	INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
 755
 756	return dev;
 757}
 758EXPORT_SYMBOL_GPL(alloc_candev_mqs);
 759
 760/* Free space of the CAN network device */
 
 
 761void free_candev(struct net_device *dev)
 762{
 763	free_netdev(dev);
 764}
 765EXPORT_SYMBOL_GPL(free_candev);
 766
 767/* changing MTU and control mode for CAN/CANFD devices */
 768int can_change_mtu(struct net_device *dev, int new_mtu)
 769{
 770	struct can_priv *priv = netdev_priv(dev);
 771
 772	/* Do not allow changing the MTU while running */
 773	if (dev->flags & IFF_UP)
 774		return -EBUSY;
 775
 776	/* allow change of MTU according to the CANFD ability of the device */
 777	switch (new_mtu) {
 778	case CAN_MTU:
 779		/* 'CANFD-only' controllers can not switch to CAN_MTU */
 780		if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
 781			return -EINVAL;
 782
 783		priv->ctrlmode &= ~CAN_CTRLMODE_FD;
 784		break;
 785
 786	case CANFD_MTU:
 787		/* check for potential CANFD ability */
 788		if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
 789		    !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
 790			return -EINVAL;
 791
 792		priv->ctrlmode |= CAN_CTRLMODE_FD;
 793		break;
 794
 795	default:
 796		return -EINVAL;
 797	}
 798
 799	dev->mtu = new_mtu;
 800	return 0;
 801}
 802EXPORT_SYMBOL_GPL(can_change_mtu);
 803
 804/* Common open function when the device gets opened.
 805 *
 806 * This function should be called in the open function of the device
 807 * driver.
 808 */
 809int open_candev(struct net_device *dev)
 810{
 811	struct can_priv *priv = netdev_priv(dev);
 812
 813	if (!priv->bittiming.bitrate) {
 814		netdev_err(dev, "bit-timing not yet defined\n");
 815		return -EINVAL;
 816	}
 817
 818	/* For CAN FD the data bitrate has to be >= the arbitration bitrate */
 819	if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
 820	    (!priv->data_bittiming.bitrate ||
 821	     priv->data_bittiming.bitrate < priv->bittiming.bitrate)) {
 822		netdev_err(dev, "incorrect/missing data bit-timing\n");
 823		return -EINVAL;
 824	}
 825
 826	/* Switch carrier on if device was stopped while in bus-off state */
 827	if (!netif_carrier_ok(dev))
 828		netif_carrier_on(dev);
 829
 
 
 830	return 0;
 831}
 832EXPORT_SYMBOL_GPL(open_candev);
 833
 834#ifdef CONFIG_OF
 835/* Common function that can be used to understand the limitation of
 836 * a transceiver when it provides no means to determine these limitations
 837 * at runtime.
 838 */
 839void of_can_transceiver(struct net_device *dev)
 840{
 841	struct device_node *dn;
 842	struct can_priv *priv = netdev_priv(dev);
 843	struct device_node *np = dev->dev.parent->of_node;
 844	int ret;
 845
 846	dn = of_get_child_by_name(np, "can-transceiver");
 847	if (!dn)
 848		return;
 849
 850	ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max);
 851	of_node_put(dn);
 852	if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max))
 853		netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n");
 854}
 855EXPORT_SYMBOL_GPL(of_can_transceiver);
 856#endif
 857
 858/* Common close function for cleanup before the device gets closed.
 859 *
 860 * This function should be called in the close function of the device
 861 * driver.
 862 */
 863void close_candev(struct net_device *dev)
 864{
 865	struct can_priv *priv = netdev_priv(dev);
 866
 867	cancel_delayed_work_sync(&priv->restart_work);
 
 868	can_flush_echo_skb(dev);
 869}
 870EXPORT_SYMBOL_GPL(close_candev);
 871
 872/* CAN netlink interface */
 
 
 873static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
 874	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
 875	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
 876	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
 877	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
 878	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
 879	[IFLA_CAN_BITTIMING_CONST]
 880				= { .len = sizeof(struct can_bittiming_const) },
 881	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
 882	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
 883	[IFLA_CAN_DATA_BITTIMING]
 884				= { .len = sizeof(struct can_bittiming) },
 885	[IFLA_CAN_DATA_BITTIMING_CONST]
 886				= { .len = sizeof(struct can_bittiming_const) },
 887};
 888
 889static int can_validate(struct nlattr *tb[], struct nlattr *data[],
 890			struct netlink_ext_ack *extack)
 891{
 892	bool is_can_fd = false;
 
 893
 894	/* Make sure that valid CAN FD configurations always consist of
 895	 * - nominal/arbitration bittiming
 896	 * - data bittiming
 897	 * - control mode with CAN_CTRLMODE_FD set
 898	 */
 899
 900	if (!data)
 901		return 0;
 902
 903	if (data[IFLA_CAN_CTRLMODE]) {
 904		struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
 905
 906		is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
 907	}
 908
 909	if (is_can_fd) {
 910		if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
 911			return -EOPNOTSUPP;
 
 
 912	}
 913
 914	if (data[IFLA_CAN_DATA_BITTIMING]) {
 915		if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
 916			return -EOPNOTSUPP;
 917	}
 918
 919	return 0;
 920}
 921
 922static int can_changelink(struct net_device *dev, struct nlattr *tb[],
 923			  struct nlattr *data[],
 924			  struct netlink_ext_ack *extack)
 925{
 926	struct can_priv *priv = netdev_priv(dev);
 927	int err;
 928
 929	/* We need synchronization with dev->stop() */
 930	ASSERT_RTNL();
 931
 932	if (data[IFLA_CAN_BITTIMING]) {
 933		struct can_bittiming bt;
 934
 935		/* Do not allow changing bittiming while running */
 936		if (dev->flags & IFF_UP)
 937			return -EBUSY;
 938
 939		/* Calculate bittiming parameters based on
 940		 * bittiming_const if set, otherwise pass bitrate
 941		 * directly via do_set_bitrate(). Bail out if neither
 942		 * is given.
 943		 */
 944		if (!priv->bittiming_const && !priv->do_set_bittiming)
 945			return -EOPNOTSUPP;
 946
 947		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
 948		err = can_get_bittiming(dev, &bt,
 949					priv->bittiming_const,
 950					priv->bitrate_const,
 951					priv->bitrate_const_cnt);
 952		if (err)
 953			return err;
 954
 955		if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) {
 956			netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n",
 957				   priv->bitrate_max);
 958			return -EINVAL;
 959		}
 960
 961		memcpy(&priv->bittiming, &bt, sizeof(bt));
 962
 963		if (priv->do_set_bittiming) {
 964			/* Finally, set the bit-timing registers */
 965			err = priv->do_set_bittiming(dev);
 966			if (err)
 967				return err;
 968		}
 969	}
 970
 971	if (data[IFLA_CAN_CTRLMODE]) {
 972		struct can_ctrlmode *cm;
 973		u32 ctrlstatic;
 974		u32 maskedflags;
 975
 976		/* Do not allow changing controller mode while running */
 977		if (dev->flags & IFF_UP)
 978			return -EBUSY;
 979		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
 980		ctrlstatic = priv->ctrlmode_static;
 981		maskedflags = cm->flags & cm->mask;
 982
 983		/* check whether provided bits are allowed to be passed */
 984		if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
 985			return -EOPNOTSUPP;
 986
 987		/* do not check for static fd-non-iso if 'fd' is disabled */
 988		if (!(maskedflags & CAN_CTRLMODE_FD))
 989			ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
 990
 991		/* make sure static options are provided by configuration */
 992		if ((maskedflags & ctrlstatic) != ctrlstatic)
 993			return -EOPNOTSUPP;
 994
 995		/* clear bits to be modified and copy the flag values */
 996		priv->ctrlmode &= ~cm->mask;
 997		priv->ctrlmode |= maskedflags;
 998
 999		/* CAN_CTRLMODE_FD can only be set when driver supports FD */
1000		if (priv->ctrlmode & CAN_CTRLMODE_FD)
1001			dev->mtu = CANFD_MTU;
1002		else
1003			dev->mtu = CAN_MTU;
1004	}
1005
1006	if (data[IFLA_CAN_RESTART_MS]) {
1007		/* Do not allow changing restart delay while running */
1008		if (dev->flags & IFF_UP)
1009			return -EBUSY;
1010		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
1011	}
1012
1013	if (data[IFLA_CAN_RESTART]) {
1014		/* Do not allow a restart while not running */
1015		if (!(dev->flags & IFF_UP))
1016			return -EINVAL;
1017		err = can_restart_now(dev);
1018		if (err)
1019			return err;
1020	}
1021
1022	if (data[IFLA_CAN_DATA_BITTIMING]) {
1023		struct can_bittiming dbt;
1024
1025		/* Do not allow changing bittiming while running */
1026		if (dev->flags & IFF_UP)
1027			return -EBUSY;
1028
1029		/* Calculate bittiming parameters based on
1030		 * data_bittiming_const if set, otherwise pass bitrate
1031		 * directly via do_set_bitrate(). Bail out if neither
1032		 * is given.
1033		 */
1034		if (!priv->data_bittiming_const && !priv->do_set_data_bittiming)
1035			return -EOPNOTSUPP;
1036
1037		memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
1038		       sizeof(dbt));
1039		err = can_get_bittiming(dev, &dbt,
1040					priv->data_bittiming_const,
1041					priv->data_bitrate_const,
1042					priv->data_bitrate_const_cnt);
1043		if (err)
1044			return err;
1045
1046		if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) {
1047			netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n",
1048				   priv->bitrate_max);
1049			return -EINVAL;
1050		}
1051
1052		memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
1053
1054		if (priv->do_set_data_bittiming) {
1055			/* Finally, set the bit-timing registers */
1056			err = priv->do_set_data_bittiming(dev);
1057			if (err)
1058				return err;
1059		}
1060	}
1061
1062	if (data[IFLA_CAN_TERMINATION]) {
1063		const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]);
1064		const unsigned int num_term = priv->termination_const_cnt;
1065		unsigned int i;
1066
1067		if (!priv->do_set_termination)
1068			return -EOPNOTSUPP;
1069
1070		/* check whether given value is supported by the interface */
1071		for (i = 0; i < num_term; i++) {
1072			if (termval == priv->termination_const[i])
1073				break;
1074		}
1075		if (i >= num_term)
1076			return -EINVAL;
1077
1078		/* Finally, set the termination value */
1079		err = priv->do_set_termination(dev, termval);
1080		if (err)
1081			return err;
1082
1083		priv->termination = termval;
1084	}
1085
1086	return 0;
1087}
1088
1089static size_t can_get_size(const struct net_device *dev)
1090{
1091	struct can_priv *priv = netdev_priv(dev);
1092	size_t size = 0;
1093
1094	if (priv->bittiming.bitrate)				/* IFLA_CAN_BITTIMING */
1095		size += nla_total_size(sizeof(struct can_bittiming));
1096	if (priv->bittiming_const)				/* IFLA_CAN_BITTIMING_CONST */
1097		size += nla_total_size(sizeof(struct can_bittiming_const));
1098	size += nla_total_size(sizeof(struct can_clock));	/* IFLA_CAN_CLOCK */
1099	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_STATE */
1100	size += nla_total_size(sizeof(struct can_ctrlmode));	/* IFLA_CAN_CTRLMODE */
1101	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_RESTART_MS */
1102	if (priv->do_get_berr_counter)				/* IFLA_CAN_BERR_COUNTER */
1103		size += nla_total_size(sizeof(struct can_berr_counter));
1104	if (priv->data_bittiming.bitrate)			/* IFLA_CAN_DATA_BITTIMING */
1105		size += nla_total_size(sizeof(struct can_bittiming));
1106	if (priv->data_bittiming_const)				/* IFLA_CAN_DATA_BITTIMING_CONST */
1107		size += nla_total_size(sizeof(struct can_bittiming_const));
1108	if (priv->termination_const) {
1109		size += nla_total_size(sizeof(priv->termination));		/* IFLA_CAN_TERMINATION */
1110		size += nla_total_size(sizeof(*priv->termination_const) *	/* IFLA_CAN_TERMINATION_CONST */
1111				       priv->termination_const_cnt);
1112	}
1113	if (priv->bitrate_const)				/* IFLA_CAN_BITRATE_CONST */
1114		size += nla_total_size(sizeof(*priv->bitrate_const) *
1115				       priv->bitrate_const_cnt);
1116	if (priv->data_bitrate_const)				/* IFLA_CAN_DATA_BITRATE_CONST */
1117		size += nla_total_size(sizeof(*priv->data_bitrate_const) *
1118				       priv->data_bitrate_const_cnt);
1119	size += sizeof(priv->bitrate_max);			/* IFLA_CAN_BITRATE_MAX */
1120
1121	return size;
1122}
1123
1124static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
1125{
1126	struct can_priv *priv = netdev_priv(dev);
1127	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
1128	struct can_berr_counter bec;
1129	enum can_state state = priv->state;
1130
1131	if (priv->do_get_state)
1132		priv->do_get_state(dev, &state);
1133
1134	if ((priv->bittiming.bitrate &&
1135	     nla_put(skb, IFLA_CAN_BITTIMING,
1136		     sizeof(priv->bittiming), &priv->bittiming)) ||
1137
1138	    (priv->bittiming_const &&
1139	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1140		     sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1141
1142	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1143	    nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1144	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1145	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1146
 
 
1147	    (priv->do_get_berr_counter &&
1148	     !priv->do_get_berr_counter(dev, &bec) &&
1149	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
 
 
 
 
 
1150
1151	    (priv->data_bittiming.bitrate &&
1152	     nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1153		     sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1154
1155	    (priv->data_bittiming_const &&
1156	     nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1157		     sizeof(*priv->data_bittiming_const),
1158		     priv->data_bittiming_const)) ||
1159
1160	    (priv->termination_const &&
1161	     (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) ||
1162	      nla_put(skb, IFLA_CAN_TERMINATION_CONST,
1163		      sizeof(*priv->termination_const) *
1164		      priv->termination_const_cnt,
1165		      priv->termination_const))) ||
1166
1167	    (priv->bitrate_const &&
1168	     nla_put(skb, IFLA_CAN_BITRATE_CONST,
1169		     sizeof(*priv->bitrate_const) *
1170		     priv->bitrate_const_cnt,
1171		     priv->bitrate_const)) ||
1172
1173	    (priv->data_bitrate_const &&
1174	     nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST,
1175		     sizeof(*priv->data_bitrate_const) *
1176		     priv->data_bitrate_const_cnt,
1177		     priv->data_bitrate_const)) ||
1178
1179	    (nla_put(skb, IFLA_CAN_BITRATE_MAX,
1180		     sizeof(priv->bitrate_max),
1181		     &priv->bitrate_max))
1182	    )
1183
1184		return -EMSGSIZE;
1185
1186	return 0;
1187}
1188
1189static size_t can_get_xstats_size(const struct net_device *dev)
1190{
1191	return sizeof(struct can_device_stats);
1192}
1193
1194static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1195{
1196	struct can_priv *priv = netdev_priv(dev);
1197
1198	if (nla_put(skb, IFLA_INFO_XSTATS,
1199		    sizeof(priv->can_stats), &priv->can_stats))
1200		goto nla_put_failure;
1201	return 0;
1202
1203nla_put_failure:
1204	return -EMSGSIZE;
1205}
1206
1207static int can_newlink(struct net *src_net, struct net_device *dev,
1208		       struct nlattr *tb[], struct nlattr *data[],
1209		       struct netlink_ext_ack *extack)
1210{
1211	return -EOPNOTSUPP;
1212}
1213
1214static void can_dellink(struct net_device *dev, struct list_head *head)
1215{
1216}
1217
1218static struct rtnl_link_ops can_link_ops __read_mostly = {
1219	.kind		= "can",
1220	.maxtype	= IFLA_CAN_MAX,
1221	.policy		= can_policy,
1222	.setup		= can_setup,
1223	.validate	= can_validate,
1224	.newlink	= can_newlink,
1225	.changelink	= can_changelink,
1226	.dellink	= can_dellink,
1227	.get_size	= can_get_size,
1228	.fill_info	= can_fill_info,
1229	.get_xstats_size = can_get_xstats_size,
1230	.fill_xstats	= can_fill_xstats,
1231};
1232
1233/* Register the CAN network device */
 
 
1234int register_candev(struct net_device *dev)
1235{
1236	struct can_priv *priv = netdev_priv(dev);
1237
1238	/* Ensure termination_const, termination_const_cnt and
1239	 * do_set_termination consistency. All must be either set or
1240	 * unset.
1241	 */
1242	if ((!priv->termination_const != !priv->termination_const_cnt) ||
1243	    (!priv->termination_const != !priv->do_set_termination))
1244		return -EINVAL;
1245
1246	if (!priv->bitrate_const != !priv->bitrate_const_cnt)
1247		return -EINVAL;
1248
1249	if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt)
1250		return -EINVAL;
1251
1252	dev->rtnl_link_ops = &can_link_ops;
1253	netif_carrier_off(dev);
1254
1255	return register_netdev(dev);
1256}
1257EXPORT_SYMBOL_GPL(register_candev);
1258
1259/* Unregister the CAN network device */
 
 
1260void unregister_candev(struct net_device *dev)
1261{
1262	unregister_netdev(dev);
1263}
1264EXPORT_SYMBOL_GPL(unregister_candev);
1265
1266/* Test if a network device is a candev based device
1267 * and return the can_priv* if so.
1268 */
1269struct can_priv *safe_candev_priv(struct net_device *dev)
1270{
1271	if (dev->type != ARPHRD_CAN || dev->rtnl_link_ops != &can_link_ops)
1272		return NULL;
1273
1274	return netdev_priv(dev);
1275}
1276EXPORT_SYMBOL_GPL(safe_candev_priv);
1277
1278static __init int can_dev_init(void)
1279{
1280	int err;
1281
1282	can_led_notifier_init();
1283
1284	err = rtnl_link_register(&can_link_ops);
1285	if (!err)
1286		pr_info(MOD_DESC "\n");
1287
1288	return err;
1289}
1290module_init(can_dev_init);
1291
1292static __exit void can_dev_exit(void)
1293{
1294	rtnl_link_unregister(&can_link_ops);
1295
1296	can_led_notifier_exit();
1297}
1298module_exit(can_dev_exit);
1299
1300MODULE_ALIAS_RTNL_LINK("can");