Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
  3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
  4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the version 2 of the GNU General Public License
  8 * as published by the Free Software Foundation
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, write to the Free Software
 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 18 */
 19
 20#include <linux/module.h>
 21#include <linux/kernel.h>
 22#include <linux/slab.h>
 23#include <linux/netdevice.h>
 24#include <linux/if_arp.h>
 25#include <linux/can.h>
 26#include <linux/can/dev.h>
 
 27#include <linux/can/netlink.h>
 
 28#include <net/rtnetlink.h>
 29
 30#define MOD_DESC "CAN device driver interface"
 31
 32MODULE_DESCRIPTION(MOD_DESC);
 33MODULE_LICENSE("GPL v2");
 34MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
 35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 36#ifdef CONFIG_CAN_CALC_BITTIMING
 37#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
 38
 39/*
 40 * Bit-timing calculation derived from:
 41 *
 42 * Code based on LinCAN sources and H8S2638 project
 43 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
 44 * Copyright 2005      Stanislav Marek
 45 * email: pisa@cmp.felk.cvut.cz
 46 *
 47 * Calculates proper bit-timing parameters for a specified bit-rate
 48 * and sample-point, which can then be used to set the bit-timing
 49 * registers of the CAN controller. You can find more information
 50 * in the header file linux/can/netlink.h.
 51 */
 52static int can_update_spt(const struct can_bittiming_const *btc,
 53			  int sampl_pt, int tseg, int *tseg1, int *tseg2)
 54{
 55	*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
 56	if (*tseg2 < btc->tseg2_min)
 57		*tseg2 = btc->tseg2_min;
 58	if (*tseg2 > btc->tseg2_max)
 59		*tseg2 = btc->tseg2_max;
 60	*tseg1 = tseg - *tseg2;
 61	if (*tseg1 > btc->tseg1_max) {
 62		*tseg1 = btc->tseg1_max;
 63		*tseg2 = tseg - *tseg1;
 64	}
 65	return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
 66}
 67
 68static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
 
 69{
 70	struct can_priv *priv = netdev_priv(dev);
 71	const struct can_bittiming_const *btc = priv->bittiming_const;
 72	long rate, best_rate = 0;
 73	long best_error = 1000000000, error = 0;
 74	int best_tseg = 0, best_brp = 0, brp = 0;
 75	int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
 76	int spt_error = 1000, spt = 0, sampl_pt;
 
 77	u64 v64;
 78
 79	if (!priv->bittiming_const)
 80		return -ENOTSUPP;
 81
 82	/* Use CIA recommended sample points */
 83	if (bt->sample_point) {
 84		sampl_pt = bt->sample_point;
 85	} else {
 86		if (bt->bitrate > 800000)
 87			sampl_pt = 750;
 88		else if (bt->bitrate > 500000)
 89			sampl_pt = 800;
 90		else
 91			sampl_pt = 875;
 92	}
 93
 94	/* tseg even = round down, odd = round up */
 95	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
 96	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
 97		tsegall = 1 + tseg / 2;
 98		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
 99		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
100		/* chose brp step which is possible in system */
101		brp = (brp / btc->brp_inc) * btc->brp_inc;
102		if ((brp < btc->brp_min) || (brp > btc->brp_max))
103			continue;
104		rate = priv->clock.freq / (brp * tsegall);
105		error = bt->bitrate - rate;
106		/* tseg brp biterror */
107		if (error < 0)
108			error = -error;
109		if (error > best_error)
110			continue;
111		best_error = error;
112		if (error == 0) {
113			spt = can_update_spt(btc, sampl_pt, tseg / 2,
114					     &tseg1, &tseg2);
115			error = sampl_pt - spt;
116			if (error < 0)
117				error = -error;
118			if (error > spt_error)
119				continue;
120			spt_error = error;
121		}
122		best_tseg = tseg / 2;
123		best_brp = brp;
124		best_rate = rate;
125		if (error == 0)
126			break;
127	}
128
129	if (best_error) {
130		/* Error in one-tenth of a percent */
131		error = (best_error * 1000) / bt->bitrate;
132		if (error > CAN_CALC_MAX_ERROR) {
133			netdev_err(dev,
134				   "bitrate error %ld.%ld%% too high\n",
135				   error / 10, error % 10);
136			return -EDOM;
137		} else {
138			netdev_warn(dev, "bitrate error %ld.%ld%%\n",
139				    error / 10, error % 10);
140		}
141	}
142
143	/* real sample point */
144	bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
145					  &tseg1, &tseg2);
146
147	v64 = (u64)best_brp * 1000000000UL;
148	do_div(v64, priv->clock.freq);
149	bt->tq = (u32)v64;
150	bt->prop_seg = tseg1 / 2;
151	bt->phase_seg1 = tseg1 - bt->prop_seg;
152	bt->phase_seg2 = tseg2;
153
154	/* check for sjw user settings */
155	if (!bt->sjw || !btc->sjw_max)
156		bt->sjw = 1;
157	else {
158		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
159		if (bt->sjw > btc->sjw_max)
160			bt->sjw = btc->sjw_max;
161		/* bt->sjw must not be higher than tseg2 */
162		if (tseg2 < bt->sjw)
163			bt->sjw = tseg2;
164	}
165
166	bt->brp = best_brp;
167	/* real bit-rate */
168	bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
169
170	return 0;
171}
172#else /* !CONFIG_CAN_CALC_BITTIMING */
173static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
 
174{
175	netdev_err(dev, "bit-timing calculation not available\n");
176	return -EINVAL;
177}
178#endif /* CONFIG_CAN_CALC_BITTIMING */
179
180/*
181 * Checks the validity of the specified bit-timing parameters prop_seg,
182 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
183 * prescaler value brp. You can find more information in the header
184 * file linux/can/netlink.h.
185 */
186static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt)
 
187{
188	struct can_priv *priv = netdev_priv(dev);
189	const struct can_bittiming_const *btc = priv->bittiming_const;
190	int tseg1, alltseg;
191	u64 brp64;
192
193	if (!priv->bittiming_const)
194		return -ENOTSUPP;
195
196	tseg1 = bt->prop_seg + bt->phase_seg1;
197	if (!bt->sjw)
198		bt->sjw = 1;
199	if (bt->sjw > btc->sjw_max ||
200	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
201	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
202		return -ERANGE;
203
204	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
205	if (btc->brp_inc > 1)
206		do_div(brp64, btc->brp_inc);
207	brp64 += 500000000UL - 1;
208	do_div(brp64, 1000000000UL); /* the practicable BRP */
209	if (btc->brp_inc > 1)
210		brp64 *= btc->brp_inc;
211	bt->brp = (u32)brp64;
212
213	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
214		return -EINVAL;
215
216	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
217	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
218	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
219
220	return 0;
221}
222
223static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt)
 
224{
225	struct can_priv *priv = netdev_priv(dev);
226	int err;
227
228	/* Check if the CAN device has bit-timing parameters */
229	if (priv->bittiming_const) {
 
230
231		/* Non-expert mode? Check if the bitrate has been pre-defined */
232		if (!bt->tq)
233			/* Determine bit-timing parameters */
234			err = can_calc_bittiming(dev, bt);
235		else
236			/* Check bit-timing params and calculate proper brp */
237			err = can_fixup_bittiming(dev, bt);
238		if (err)
239			return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
240	}
 
241
242	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243}
 
244
245/*
246 * Local echo of CAN messages
247 *
248 * CAN network devices *should* support a local echo functionality
249 * (see Documentation/networking/can.txt). To test the handling of CAN
250 * interfaces that do not support the local echo both driver types are
251 * implemented. In the case that the driver does not support the echo
252 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
253 * to perform the echo as a fallback solution.
254 */
255static void can_flush_echo_skb(struct net_device *dev)
256{
257	struct can_priv *priv = netdev_priv(dev);
258	struct net_device_stats *stats = &dev->stats;
259	int i;
260
261	for (i = 0; i < priv->echo_skb_max; i++) {
262		if (priv->echo_skb[i]) {
263			kfree_skb(priv->echo_skb[i]);
264			priv->echo_skb[i] = NULL;
265			stats->tx_dropped++;
266			stats->tx_aborted_errors++;
267		}
268	}
269}
270
271/*
272 * Put the skb on the stack to be looped backed locally lateron
273 *
274 * The function is typically called in the start_xmit function
275 * of the device driver. The driver must protect access to
276 * priv->echo_skb, if necessary.
277 */
278void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
279		      unsigned int idx)
280{
281	struct can_priv *priv = netdev_priv(dev);
282
283	BUG_ON(idx >= priv->echo_skb_max);
284
285	/* check flag whether this packet has to be looped back */
286	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK) {
 
 
287		kfree_skb(skb);
288		return;
289	}
290
291	if (!priv->echo_skb[idx]) {
292		struct sock *srcsk = skb->sk;
293
294		if (atomic_read(&skb->users) != 1) {
295			struct sk_buff *old_skb = skb;
296
297			skb = skb_clone(old_skb, GFP_ATOMIC);
298			kfree_skb(old_skb);
299			if (!skb)
300				return;
301		} else
302			skb_orphan(skb);
303
304		skb->sk = srcsk;
 
 
305
306		/* make settings for echo to reduce code in irq context */
307		skb->protocol = htons(ETH_P_CAN);
308		skb->pkt_type = PACKET_BROADCAST;
309		skb->ip_summed = CHECKSUM_UNNECESSARY;
310		skb->dev = dev;
311
312		/* save this skb for tx interrupt echo handling */
313		priv->echo_skb[idx] = skb;
314	} else {
315		/* locking problem with netif_stop_queue() ?? */
316		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
317		kfree_skb(skb);
318	}
319}
320EXPORT_SYMBOL_GPL(can_put_echo_skb);
321
322/*
323 * Get the skb from the stack and loop it back locally
324 *
325 * The function is typically called when the TX done interrupt
326 * is handled in the device driver. The driver must protect
327 * access to priv->echo_skb, if necessary.
328 */
329unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
330{
331	struct can_priv *priv = netdev_priv(dev);
332
333	BUG_ON(idx >= priv->echo_skb_max);
334
335	if (priv->echo_skb[idx]) {
336		struct sk_buff *skb = priv->echo_skb[idx];
337		struct can_frame *cf = (struct can_frame *)skb->data;
338		u8 dlc = cf->can_dlc;
339
340		netif_rx(priv->echo_skb[idx]);
341		priv->echo_skb[idx] = NULL;
342
343		return dlc;
344	}
345
346	return 0;
347}
348EXPORT_SYMBOL_GPL(can_get_echo_skb);
349
350/*
351  * Remove the skb from the stack and free it.
352  *
353  * The function is typically called when TX failed.
354  */
355void can_free_echo_skb(struct net_device *dev, unsigned int idx)
356{
357	struct can_priv *priv = netdev_priv(dev);
358
359	BUG_ON(idx >= priv->echo_skb_max);
360
361	if (priv->echo_skb[idx]) {
362		kfree_skb(priv->echo_skb[idx]);
363		priv->echo_skb[idx] = NULL;
364	}
365}
366EXPORT_SYMBOL_GPL(can_free_echo_skb);
367
368/*
369 * CAN device restart for bus-off recovery
370 */
371void can_restart(unsigned long data)
372{
373	struct net_device *dev = (struct net_device *)data;
374	struct can_priv *priv = netdev_priv(dev);
375	struct net_device_stats *stats = &dev->stats;
376	struct sk_buff *skb;
377	struct can_frame *cf;
378	int err;
379
380	BUG_ON(netif_carrier_ok(dev));
381
382	/*
383	 * No synchronization needed because the device is bus-off and
384	 * no messages can come in or go out.
385	 */
386	can_flush_echo_skb(dev);
387
388	/* send restart message upstream */
389	skb = alloc_can_err_skb(dev, &cf);
390	if (skb == NULL) {
391		err = -ENOMEM;
392		goto restart;
393	}
394	cf->can_id |= CAN_ERR_RESTARTED;
395
396	netif_rx(skb);
397
398	stats->rx_packets++;
399	stats->rx_bytes += cf->can_dlc;
400
401restart:
402	netdev_dbg(dev, "restarted\n");
403	priv->can_stats.restarts++;
404
405	/* Now restart the device */
406	err = priv->do_set_mode(dev, CAN_MODE_START);
407
408	netif_carrier_on(dev);
409	if (err)
410		netdev_err(dev, "Error %d during restart", err);
411}
412
413int can_restart_now(struct net_device *dev)
414{
415	struct can_priv *priv = netdev_priv(dev);
416
417	/*
418	 * A manual restart is only permitted if automatic restart is
419	 * disabled and the device is in the bus-off state
420	 */
421	if (priv->restart_ms)
422		return -EINVAL;
423	if (priv->state != CAN_STATE_BUS_OFF)
424		return -EBUSY;
425
426	/* Runs as soon as possible in the timer context */
427	mod_timer(&priv->restart_timer, jiffies);
428
429	return 0;
430}
431
432/*
433 * CAN bus-off
434 *
435 * This functions should be called when the device goes bus-off to
436 * tell the netif layer that no more packets can be sent or received.
437 * If enabled, a timer is started to trigger bus-off recovery.
438 */
439void can_bus_off(struct net_device *dev)
440{
441	struct can_priv *priv = netdev_priv(dev);
442
443	netdev_dbg(dev, "bus-off\n");
444
445	netif_carrier_off(dev);
446	priv->can_stats.bus_off++;
447
448	if (priv->restart_ms)
449		mod_timer(&priv->restart_timer,
450			  jiffies + (priv->restart_ms * HZ) / 1000);
451}
452EXPORT_SYMBOL_GPL(can_bus_off);
453
454static void can_setup(struct net_device *dev)
455{
456	dev->type = ARPHRD_CAN;
457	dev->mtu = sizeof(struct can_frame);
458	dev->hard_header_len = 0;
459	dev->addr_len = 0;
460	dev->tx_queue_len = 10;
461
462	/* New-style flags. */
463	dev->flags = IFF_NOARP;
464	dev->features = NETIF_F_HW_CSUM;
465}
466
467struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
468{
469	struct sk_buff *skb;
470
471	skb = netdev_alloc_skb(dev, sizeof(struct can_frame));
 
472	if (unlikely(!skb))
473		return NULL;
474
475	skb->protocol = htons(ETH_P_CAN);
476	skb->pkt_type = PACKET_BROADCAST;
477	skb->ip_summed = CHECKSUM_UNNECESSARY;
 
 
 
 
 
 
 
 
 
478	*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
479	memset(*cf, 0, sizeof(struct can_frame));
480
481	return skb;
482}
483EXPORT_SYMBOL_GPL(alloc_can_skb);
484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
485struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
486{
487	struct sk_buff *skb;
488
489	skb = alloc_can_skb(dev, cf);
490	if (unlikely(!skb))
491		return NULL;
492
493	(*cf)->can_id = CAN_ERR_FLAG;
494	(*cf)->can_dlc = CAN_ERR_DLC;
495
496	return skb;
497}
498EXPORT_SYMBOL_GPL(alloc_can_err_skb);
499
500/*
501 * Allocate and setup space for the CAN network device
502 */
503struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
504{
505	struct net_device *dev;
506	struct can_priv *priv;
507	int size;
508
509	if (echo_skb_max)
510		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
511			echo_skb_max * sizeof(struct sk_buff *);
512	else
513		size = sizeof_priv;
514
515	dev = alloc_netdev(size, "can%d", can_setup);
516	if (!dev)
517		return NULL;
518
519	priv = netdev_priv(dev);
520
521	if (echo_skb_max) {
522		priv->echo_skb_max = echo_skb_max;
523		priv->echo_skb = (void *)priv +
524			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
525	}
526
527	priv->state = CAN_STATE_STOPPED;
528
529	init_timer(&priv->restart_timer);
530
531	return dev;
532}
533EXPORT_SYMBOL_GPL(alloc_candev);
534
535/*
536 * Free space of the CAN network device
537 */
538void free_candev(struct net_device *dev)
539{
540	free_netdev(dev);
541}
542EXPORT_SYMBOL_GPL(free_candev);
543
544/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
545 * Common open function when the device gets opened.
546 *
547 * This function should be called in the open function of the device
548 * driver.
549 */
550int open_candev(struct net_device *dev)
551{
552	struct can_priv *priv = netdev_priv(dev);
553
554	if (!priv->bittiming.tq && !priv->bittiming.bitrate) {
555		netdev_err(dev, "bit-timing not yet defined\n");
556		return -EINVAL;
557	}
558
 
 
 
 
 
 
 
 
559	/* Switch carrier on if device was stopped while in bus-off state */
560	if (!netif_carrier_ok(dev))
561		netif_carrier_on(dev);
562
563	setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
564
565	return 0;
566}
567EXPORT_SYMBOL_GPL(open_candev);
568
569/*
570 * Common close function for cleanup before the device gets closed.
571 *
572 * This function should be called in the close function of the device
573 * driver.
574 */
575void close_candev(struct net_device *dev)
576{
577	struct can_priv *priv = netdev_priv(dev);
578
579	if (del_timer_sync(&priv->restart_timer))
580		dev_put(dev);
581	can_flush_echo_skb(dev);
582}
583EXPORT_SYMBOL_GPL(close_candev);
584
585/*
586 * CAN netlink interface
587 */
588static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
589	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
590	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
591	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
592	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
593	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
594	[IFLA_CAN_BITTIMING_CONST]
595				= { .len = sizeof(struct can_bittiming_const) },
596	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
597	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
 
 
 
 
598};
599
600static int can_changelink(struct net_device *dev,
601			  struct nlattr *tb[], struct nlattr *data[])
602{
603	struct can_priv *priv = netdev_priv(dev);
604	int err;
605
606	/* We need synchronization with dev->stop() */
607	ASSERT_RTNL();
608
609	if (data[IFLA_CAN_CTRLMODE]) {
610		struct can_ctrlmode *cm;
611
612		/* Do not allow changing controller mode while running */
613		if (dev->flags & IFF_UP)
614			return -EBUSY;
615		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
616		if (cm->flags & ~priv->ctrlmode_supported)
617			return -EOPNOTSUPP;
618		priv->ctrlmode &= ~cm->mask;
619		priv->ctrlmode |= cm->flags;
620	}
621
622	if (data[IFLA_CAN_BITTIMING]) {
623		struct can_bittiming bt;
624
625		/* Do not allow changing bittiming while running */
626		if (dev->flags & IFF_UP)
627			return -EBUSY;
628		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
629		if ((!bt.bitrate && !bt.tq) || (bt.bitrate && bt.tq))
630			return -EINVAL;
631		err = can_get_bittiming(dev, &bt);
632		if (err)
633			return err;
634		memcpy(&priv->bittiming, &bt, sizeof(bt));
635
636		if (priv->do_set_bittiming) {
637			/* Finally, set the bit-timing registers */
638			err = priv->do_set_bittiming(dev);
639			if (err)
640				return err;
641		}
642	}
643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
644	if (data[IFLA_CAN_RESTART_MS]) {
645		/* Do not allow changing restart delay while running */
646		if (dev->flags & IFF_UP)
647			return -EBUSY;
648		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
649	}
650
651	if (data[IFLA_CAN_RESTART]) {
652		/* Do not allow a restart while not running */
653		if (!(dev->flags & IFF_UP))
654			return -EINVAL;
655		err = can_restart_now(dev);
656		if (err)
657			return err;
658	}
659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
660	return 0;
661}
662
663static size_t can_get_size(const struct net_device *dev)
664{
665	struct can_priv *priv = netdev_priv(dev);
666	size_t size;
667
668	size = nla_total_size(sizeof(u32));   /* IFLA_CAN_STATE */
669	size += sizeof(struct can_ctrlmode);  /* IFLA_CAN_CTRLMODE */
670	size += nla_total_size(sizeof(u32));  /* IFLA_CAN_RESTART_MS */
671	size += sizeof(struct can_bittiming); /* IFLA_CAN_BITTIMING */
672	size += sizeof(struct can_clock);     /* IFLA_CAN_CLOCK */
673	if (priv->do_get_berr_counter)        /* IFLA_CAN_BERR_COUNTER */
674		size += sizeof(struct can_berr_counter);
675	if (priv->bittiming_const)	      /* IFLA_CAN_BITTIMING_CONST */
676		size += sizeof(struct can_bittiming_const);
 
 
 
 
 
677
678	return size;
679}
680
681static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
682{
683	struct can_priv *priv = netdev_priv(dev);
684	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
685	struct can_berr_counter bec;
686	enum can_state state = priv->state;
687
688	if (priv->do_get_state)
689		priv->do_get_state(dev, &state);
690	if (nla_put_u32(skb, IFLA_CAN_STATE, state) ||
 
 
 
 
 
 
 
 
 
 
691	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
692	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
693	    nla_put(skb, IFLA_CAN_BITTIMING,
694		    sizeof(priv->bittiming), &priv->bittiming) ||
695	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) ||
696	    (priv->do_get_berr_counter &&
697	     !priv->do_get_berr_counter(dev, &bec) &&
698	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
699	    (priv->bittiming_const &&
700	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
701		     sizeof(*priv->bittiming_const), priv->bittiming_const)))
702		goto nla_put_failure;
703	return 0;
704
705nla_put_failure:
706	return -EMSGSIZE;
 
 
 
 
 
 
 
 
 
707}
708
709static size_t can_get_xstats_size(const struct net_device *dev)
710{
711	return sizeof(struct can_device_stats);
712}
713
714static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
715{
716	struct can_priv *priv = netdev_priv(dev);
717
718	if (nla_put(skb, IFLA_INFO_XSTATS,
719		    sizeof(priv->can_stats), &priv->can_stats))
720		goto nla_put_failure;
721	return 0;
722
723nla_put_failure:
724	return -EMSGSIZE;
725}
726
727static int can_newlink(struct net *src_net, struct net_device *dev,
728		       struct nlattr *tb[], struct nlattr *data[])
729{
730	return -EOPNOTSUPP;
731}
732
733static struct rtnl_link_ops can_link_ops __read_mostly = {
734	.kind		= "can",
735	.maxtype	= IFLA_CAN_MAX,
736	.policy		= can_policy,
737	.setup		= can_setup,
738	.newlink	= can_newlink,
739	.changelink	= can_changelink,
740	.get_size	= can_get_size,
741	.fill_info	= can_fill_info,
742	.get_xstats_size = can_get_xstats_size,
743	.fill_xstats	= can_fill_xstats,
744};
745
746/*
747 * Register the CAN network device
748 */
749int register_candev(struct net_device *dev)
750{
751	dev->rtnl_link_ops = &can_link_ops;
752	return register_netdev(dev);
753}
754EXPORT_SYMBOL_GPL(register_candev);
755
756/*
757 * Unregister the CAN network device
758 */
759void unregister_candev(struct net_device *dev)
760{
761	unregister_netdev(dev);
762}
763EXPORT_SYMBOL_GPL(unregister_candev);
764
 
 
 
 
 
 
 
 
 
 
 
 
 
765static __init int can_dev_init(void)
766{
767	int err;
768
 
 
769	err = rtnl_link_register(&can_link_ops);
770	if (!err)
771		printk(KERN_INFO MOD_DESC "\n");
772
773	return err;
774}
775module_init(can_dev_init);
776
777static __exit void can_dev_exit(void)
778{
779	rtnl_link_unregister(&can_link_ops);
 
 
780}
781module_exit(can_dev_exit);
782
783MODULE_ALIAS_RTNL_LINK("can");
v4.6
   1/*
   2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
   3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
   4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the version 2 of the GNU General Public License
   8 * as published by the Free Software Foundation
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 
  17 */
  18
  19#include <linux/module.h>
  20#include <linux/kernel.h>
  21#include <linux/slab.h>
  22#include <linux/netdevice.h>
  23#include <linux/if_arp.h>
  24#include <linux/can.h>
  25#include <linux/can/dev.h>
  26#include <linux/can/skb.h>
  27#include <linux/can/netlink.h>
  28#include <linux/can/led.h>
  29#include <net/rtnetlink.h>
  30
  31#define MOD_DESC "CAN device driver interface"
  32
  33MODULE_DESCRIPTION(MOD_DESC);
  34MODULE_LICENSE("GPL v2");
  35MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
  36
  37/* CAN DLC to real data length conversion helpers */
  38
  39static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
  40			     8, 12, 16, 20, 24, 32, 48, 64};
  41
  42/* get data length from can_dlc with sanitized can_dlc */
  43u8 can_dlc2len(u8 can_dlc)
  44{
  45	return dlc2len[can_dlc & 0x0F];
  46}
  47EXPORT_SYMBOL_GPL(can_dlc2len);
  48
  49static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,		/* 0 - 8 */
  50			     9, 9, 9, 9,			/* 9 - 12 */
  51			     10, 10, 10, 10,			/* 13 - 16 */
  52			     11, 11, 11, 11,			/* 17 - 20 */
  53			     12, 12, 12, 12,			/* 21 - 24 */
  54			     13, 13, 13, 13, 13, 13, 13, 13,	/* 25 - 32 */
  55			     14, 14, 14, 14, 14, 14, 14, 14,	/* 33 - 40 */
  56			     14, 14, 14, 14, 14, 14, 14, 14,	/* 41 - 48 */
  57			     15, 15, 15, 15, 15, 15, 15, 15,	/* 49 - 56 */
  58			     15, 15, 15, 15, 15, 15, 15, 15};	/* 57 - 64 */
  59
  60/* map the sanitized data length to an appropriate data length code */
  61u8 can_len2dlc(u8 len)
  62{
  63	if (unlikely(len > 64))
  64		return 0xF;
  65
  66	return len2dlc[len];
  67}
  68EXPORT_SYMBOL_GPL(can_len2dlc);
  69
  70#ifdef CONFIG_CAN_CALC_BITTIMING
  71#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
  72
  73/*
  74 * Bit-timing calculation derived from:
  75 *
  76 * Code based on LinCAN sources and H8S2638 project
  77 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
  78 * Copyright 2005      Stanislav Marek
  79 * email: pisa@cmp.felk.cvut.cz
  80 *
  81 * Calculates proper bit-timing parameters for a specified bit-rate
  82 * and sample-point, which can then be used to set the bit-timing
  83 * registers of the CAN controller. You can find more information
  84 * in the header file linux/can/netlink.h.
  85 */
  86static int can_update_spt(const struct can_bittiming_const *btc,
  87			  int sampl_pt, int tseg, int *tseg1, int *tseg2)
  88{
  89	*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
  90	if (*tseg2 < btc->tseg2_min)
  91		*tseg2 = btc->tseg2_min;
  92	if (*tseg2 > btc->tseg2_max)
  93		*tseg2 = btc->tseg2_max;
  94	*tseg1 = tseg - *tseg2;
  95	if (*tseg1 > btc->tseg1_max) {
  96		*tseg1 = btc->tseg1_max;
  97		*tseg2 = tseg - *tseg1;
  98	}
  99	return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
 100}
 101
 102static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
 103			      const struct can_bittiming_const *btc)
 104{
 105	struct can_priv *priv = netdev_priv(dev);
 
 
 106	long best_error = 1000000000, error = 0;
 107	int best_tseg = 0, best_brp = 0, brp = 0;
 108	int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
 109	int spt_error = 1000, spt = 0, sampl_pt;
 110	long rate;
 111	u64 v64;
 112
 113	/* Use CiA recommended sample points */
 
 
 
 114	if (bt->sample_point) {
 115		sampl_pt = bt->sample_point;
 116	} else {
 117		if (bt->bitrate > 800000)
 118			sampl_pt = 750;
 119		else if (bt->bitrate > 500000)
 120			sampl_pt = 800;
 121		else
 122			sampl_pt = 875;
 123	}
 124
 125	/* tseg even = round down, odd = round up */
 126	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
 127	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
 128		tsegall = 1 + tseg / 2;
 129		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
 130		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
 131		/* chose brp step which is possible in system */
 132		brp = (brp / btc->brp_inc) * btc->brp_inc;
 133		if ((brp < btc->brp_min) || (brp > btc->brp_max))
 134			continue;
 135		rate = priv->clock.freq / (brp * tsegall);
 136		error = bt->bitrate - rate;
 137		/* tseg brp biterror */
 138		if (error < 0)
 139			error = -error;
 140		if (error > best_error)
 141			continue;
 142		best_error = error;
 143		if (error == 0) {
 144			spt = can_update_spt(btc, sampl_pt, tseg / 2,
 145					     &tseg1, &tseg2);
 146			error = sampl_pt - spt;
 147			if (error < 0)
 148				error = -error;
 149			if (error > spt_error)
 150				continue;
 151			spt_error = error;
 152		}
 153		best_tseg = tseg / 2;
 154		best_brp = brp;
 
 155		if (error == 0)
 156			break;
 157	}
 158
 159	if (best_error) {
 160		/* Error in one-tenth of a percent */
 161		error = (best_error * 1000) / bt->bitrate;
 162		if (error > CAN_CALC_MAX_ERROR) {
 163			netdev_err(dev,
 164				   "bitrate error %ld.%ld%% too high\n",
 165				   error / 10, error % 10);
 166			return -EDOM;
 167		} else {
 168			netdev_warn(dev, "bitrate error %ld.%ld%%\n",
 169				    error / 10, error % 10);
 170		}
 171	}
 172
 173	/* real sample point */
 174	bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
 175					  &tseg1, &tseg2);
 176
 177	v64 = (u64)best_brp * 1000000000UL;
 178	do_div(v64, priv->clock.freq);
 179	bt->tq = (u32)v64;
 180	bt->prop_seg = tseg1 / 2;
 181	bt->phase_seg1 = tseg1 - bt->prop_seg;
 182	bt->phase_seg2 = tseg2;
 183
 184	/* check for sjw user settings */
 185	if (!bt->sjw || !btc->sjw_max)
 186		bt->sjw = 1;
 187	else {
 188		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
 189		if (bt->sjw > btc->sjw_max)
 190			bt->sjw = btc->sjw_max;
 191		/* bt->sjw must not be higher than tseg2 */
 192		if (tseg2 < bt->sjw)
 193			bt->sjw = tseg2;
 194	}
 195
 196	bt->brp = best_brp;
 197	/* real bit-rate */
 198	bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
 199
 200	return 0;
 201}
 202#else /* !CONFIG_CAN_CALC_BITTIMING */
 203static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
 204			      const struct can_bittiming_const *btc)
 205{
 206	netdev_err(dev, "bit-timing calculation not available\n");
 207	return -EINVAL;
 208}
 209#endif /* CONFIG_CAN_CALC_BITTIMING */
 210
 211/*
 212 * Checks the validity of the specified bit-timing parameters prop_seg,
 213 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
 214 * prescaler value brp. You can find more information in the header
 215 * file linux/can/netlink.h.
 216 */
 217static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
 218			       const struct can_bittiming_const *btc)
 219{
 220	struct can_priv *priv = netdev_priv(dev);
 
 221	int tseg1, alltseg;
 222	u64 brp64;
 223
 
 
 
 224	tseg1 = bt->prop_seg + bt->phase_seg1;
 225	if (!bt->sjw)
 226		bt->sjw = 1;
 227	if (bt->sjw > btc->sjw_max ||
 228	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
 229	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
 230		return -ERANGE;
 231
 232	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
 233	if (btc->brp_inc > 1)
 234		do_div(brp64, btc->brp_inc);
 235	brp64 += 500000000UL - 1;
 236	do_div(brp64, 1000000000UL); /* the practicable BRP */
 237	if (btc->brp_inc > 1)
 238		brp64 *= btc->brp_inc;
 239	bt->brp = (u32)brp64;
 240
 241	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
 242		return -EINVAL;
 243
 244	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
 245	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
 246	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
 247
 248	return 0;
 249}
 250
 251static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
 252			     const struct can_bittiming_const *btc)
 253{
 
 254	int err;
 255
 256	/* Check if the CAN device has bit-timing parameters */
 257	if (!btc)
 258		return -EOPNOTSUPP;
 259
 260	/*
 261	 * Depending on the given can_bittiming parameter structure the CAN
 262	 * timing parameters are calculated based on the provided bitrate OR
 263	 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
 264	 * provided directly which are then checked and fixed up.
 265	 */
 266	if (!bt->tq && bt->bitrate)
 267		err = can_calc_bittiming(dev, bt, btc);
 268	else if (bt->tq && !bt->bitrate)
 269		err = can_fixup_bittiming(dev, bt, btc);
 270	else
 271		err = -EINVAL;
 272
 273	return err;
 274}
 275
 276static void can_update_state_error_stats(struct net_device *dev,
 277					 enum can_state new_state)
 278{
 279	struct can_priv *priv = netdev_priv(dev);
 280
 281	if (new_state <= priv->state)
 282		return;
 283
 284	switch (new_state) {
 285	case CAN_STATE_ERROR_WARNING:
 286		priv->can_stats.error_warning++;
 287		break;
 288	case CAN_STATE_ERROR_PASSIVE:
 289		priv->can_stats.error_passive++;
 290		break;
 291	case CAN_STATE_BUS_OFF:
 292		priv->can_stats.bus_off++;
 293		break;
 294	default:
 295		break;
 296	}
 297}
 298
 299static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
 300{
 301	switch (state) {
 302	case CAN_STATE_ERROR_ACTIVE:
 303		return CAN_ERR_CRTL_ACTIVE;
 304	case CAN_STATE_ERROR_WARNING:
 305		return CAN_ERR_CRTL_TX_WARNING;
 306	case CAN_STATE_ERROR_PASSIVE:
 307		return CAN_ERR_CRTL_TX_PASSIVE;
 308	default:
 309		return 0;
 310	}
 311}
 312
 313static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
 314{
 315	switch (state) {
 316	case CAN_STATE_ERROR_ACTIVE:
 317		return CAN_ERR_CRTL_ACTIVE;
 318	case CAN_STATE_ERROR_WARNING:
 319		return CAN_ERR_CRTL_RX_WARNING;
 320	case CAN_STATE_ERROR_PASSIVE:
 321		return CAN_ERR_CRTL_RX_PASSIVE;
 322	default:
 323		return 0;
 324	}
 325}
 326
 327void can_change_state(struct net_device *dev, struct can_frame *cf,
 328		      enum can_state tx_state, enum can_state rx_state)
 329{
 330	struct can_priv *priv = netdev_priv(dev);
 331	enum can_state new_state = max(tx_state, rx_state);
 332
 333	if (unlikely(new_state == priv->state)) {
 334		netdev_warn(dev, "%s: oops, state did not change", __func__);
 335		return;
 336	}
 337
 338	netdev_dbg(dev, "New error state: %d\n", new_state);
 339
 340	can_update_state_error_stats(dev, new_state);
 341	priv->state = new_state;
 342
 343	if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
 344		cf->can_id |= CAN_ERR_BUSOFF;
 345		return;
 346	}
 347
 348	cf->can_id |= CAN_ERR_CRTL;
 349	cf->data[1] |= tx_state >= rx_state ?
 350		       can_tx_state_to_frame(dev, tx_state) : 0;
 351	cf->data[1] |= tx_state <= rx_state ?
 352		       can_rx_state_to_frame(dev, rx_state) : 0;
 353}
 354EXPORT_SYMBOL_GPL(can_change_state);
 355
 356/*
 357 * Local echo of CAN messages
 358 *
 359 * CAN network devices *should* support a local echo functionality
 360 * (see Documentation/networking/can.txt). To test the handling of CAN
 361 * interfaces that do not support the local echo both driver types are
 362 * implemented. In the case that the driver does not support the echo
 363 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
 364 * to perform the echo as a fallback solution.
 365 */
 366static void can_flush_echo_skb(struct net_device *dev)
 367{
 368	struct can_priv *priv = netdev_priv(dev);
 369	struct net_device_stats *stats = &dev->stats;
 370	int i;
 371
 372	for (i = 0; i < priv->echo_skb_max; i++) {
 373		if (priv->echo_skb[i]) {
 374			kfree_skb(priv->echo_skb[i]);
 375			priv->echo_skb[i] = NULL;
 376			stats->tx_dropped++;
 377			stats->tx_aborted_errors++;
 378		}
 379	}
 380}
 381
 382/*
 383 * Put the skb on the stack to be looped backed locally lateron
 384 *
 385 * The function is typically called in the start_xmit function
 386 * of the device driver. The driver must protect access to
 387 * priv->echo_skb, if necessary.
 388 */
 389void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
 390		      unsigned int idx)
 391{
 392	struct can_priv *priv = netdev_priv(dev);
 393
 394	BUG_ON(idx >= priv->echo_skb_max);
 395
 396	/* check flag whether this packet has to be looped back */
 397	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
 398	    (skb->protocol != htons(ETH_P_CAN) &&
 399	     skb->protocol != htons(ETH_P_CANFD))) {
 400		kfree_skb(skb);
 401		return;
 402	}
 403
 404	if (!priv->echo_skb[idx]) {
 
 
 
 
 
 
 
 
 
 
 
 405
 406		skb = can_create_echo_skb(skb);
 407		if (!skb)
 408			return;
 409
 410		/* make settings for echo to reduce code in irq context */
 
 411		skb->pkt_type = PACKET_BROADCAST;
 412		skb->ip_summed = CHECKSUM_UNNECESSARY;
 413		skb->dev = dev;
 414
 415		/* save this skb for tx interrupt echo handling */
 416		priv->echo_skb[idx] = skb;
 417	} else {
 418		/* locking problem with netif_stop_queue() ?? */
 419		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
 420		kfree_skb(skb);
 421	}
 422}
 423EXPORT_SYMBOL_GPL(can_put_echo_skb);
 424
 425/*
 426 * Get the skb from the stack and loop it back locally
 427 *
 428 * The function is typically called when the TX done interrupt
 429 * is handled in the device driver. The driver must protect
 430 * access to priv->echo_skb, if necessary.
 431 */
 432unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
 433{
 434	struct can_priv *priv = netdev_priv(dev);
 435
 436	BUG_ON(idx >= priv->echo_skb_max);
 437
 438	if (priv->echo_skb[idx]) {
 439		struct sk_buff *skb = priv->echo_skb[idx];
 440		struct can_frame *cf = (struct can_frame *)skb->data;
 441		u8 dlc = cf->can_dlc;
 442
 443		netif_rx(priv->echo_skb[idx]);
 444		priv->echo_skb[idx] = NULL;
 445
 446		return dlc;
 447	}
 448
 449	return 0;
 450}
 451EXPORT_SYMBOL_GPL(can_get_echo_skb);
 452
 453/*
 454  * Remove the skb from the stack and free it.
 455  *
 456  * The function is typically called when TX failed.
 457  */
 458void can_free_echo_skb(struct net_device *dev, unsigned int idx)
 459{
 460	struct can_priv *priv = netdev_priv(dev);
 461
 462	BUG_ON(idx >= priv->echo_skb_max);
 463
 464	if (priv->echo_skb[idx]) {
 465		dev_kfree_skb_any(priv->echo_skb[idx]);
 466		priv->echo_skb[idx] = NULL;
 467	}
 468}
 469EXPORT_SYMBOL_GPL(can_free_echo_skb);
 470
 471/*
 472 * CAN device restart for bus-off recovery
 473 */
 474static void can_restart(unsigned long data)
 475{
 476	struct net_device *dev = (struct net_device *)data;
 477	struct can_priv *priv = netdev_priv(dev);
 478	struct net_device_stats *stats = &dev->stats;
 479	struct sk_buff *skb;
 480	struct can_frame *cf;
 481	int err;
 482
 483	BUG_ON(netif_carrier_ok(dev));
 484
 485	/*
 486	 * No synchronization needed because the device is bus-off and
 487	 * no messages can come in or go out.
 488	 */
 489	can_flush_echo_skb(dev);
 490
 491	/* send restart message upstream */
 492	skb = alloc_can_err_skb(dev, &cf);
 493	if (skb == NULL) {
 494		err = -ENOMEM;
 495		goto restart;
 496	}
 497	cf->can_id |= CAN_ERR_RESTARTED;
 498
 499	netif_rx(skb);
 500
 501	stats->rx_packets++;
 502	stats->rx_bytes += cf->can_dlc;
 503
 504restart:
 505	netdev_dbg(dev, "restarted\n");
 506	priv->can_stats.restarts++;
 507
 508	/* Now restart the device */
 509	err = priv->do_set_mode(dev, CAN_MODE_START);
 510
 511	netif_carrier_on(dev);
 512	if (err)
 513		netdev_err(dev, "Error %d during restart", err);
 514}
 515
 516int can_restart_now(struct net_device *dev)
 517{
 518	struct can_priv *priv = netdev_priv(dev);
 519
 520	/*
 521	 * A manual restart is only permitted if automatic restart is
 522	 * disabled and the device is in the bus-off state
 523	 */
 524	if (priv->restart_ms)
 525		return -EINVAL;
 526	if (priv->state != CAN_STATE_BUS_OFF)
 527		return -EBUSY;
 528
 529	/* Runs as soon as possible in the timer context */
 530	mod_timer(&priv->restart_timer, jiffies);
 531
 532	return 0;
 533}
 534
 535/*
 536 * CAN bus-off
 537 *
 538 * This functions should be called when the device goes bus-off to
 539 * tell the netif layer that no more packets can be sent or received.
 540 * If enabled, a timer is started to trigger bus-off recovery.
 541 */
 542void can_bus_off(struct net_device *dev)
 543{
 544	struct can_priv *priv = netdev_priv(dev);
 545
 546	netdev_dbg(dev, "bus-off\n");
 547
 548	netif_carrier_off(dev);
 
 549
 550	if (priv->restart_ms)
 551		mod_timer(&priv->restart_timer,
 552			  jiffies + (priv->restart_ms * HZ) / 1000);
 553}
 554EXPORT_SYMBOL_GPL(can_bus_off);
 555
 556static void can_setup(struct net_device *dev)
 557{
 558	dev->type = ARPHRD_CAN;
 559	dev->mtu = CAN_MTU;
 560	dev->hard_header_len = 0;
 561	dev->addr_len = 0;
 562	dev->tx_queue_len = 10;
 563
 564	/* New-style flags. */
 565	dev->flags = IFF_NOARP;
 566	dev->features = NETIF_F_HW_CSUM;
 567}
 568
 569struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
 570{
 571	struct sk_buff *skb;
 572
 573	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
 574			       sizeof(struct can_frame));
 575	if (unlikely(!skb))
 576		return NULL;
 577
 578	skb->protocol = htons(ETH_P_CAN);
 579	skb->pkt_type = PACKET_BROADCAST;
 580	skb->ip_summed = CHECKSUM_UNNECESSARY;
 581
 582	skb_reset_mac_header(skb);
 583	skb_reset_network_header(skb);
 584	skb_reset_transport_header(skb);
 585
 586	can_skb_reserve(skb);
 587	can_skb_prv(skb)->ifindex = dev->ifindex;
 588	can_skb_prv(skb)->skbcnt = 0;
 589
 590	*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
 591	memset(*cf, 0, sizeof(struct can_frame));
 592
 593	return skb;
 594}
 595EXPORT_SYMBOL_GPL(alloc_can_skb);
 596
 597struct sk_buff *alloc_canfd_skb(struct net_device *dev,
 598				struct canfd_frame **cfd)
 599{
 600	struct sk_buff *skb;
 601
 602	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
 603			       sizeof(struct canfd_frame));
 604	if (unlikely(!skb))
 605		return NULL;
 606
 607	skb->protocol = htons(ETH_P_CANFD);
 608	skb->pkt_type = PACKET_BROADCAST;
 609	skb->ip_summed = CHECKSUM_UNNECESSARY;
 610
 611	skb_reset_mac_header(skb);
 612	skb_reset_network_header(skb);
 613	skb_reset_transport_header(skb);
 614
 615	can_skb_reserve(skb);
 616	can_skb_prv(skb)->ifindex = dev->ifindex;
 617	can_skb_prv(skb)->skbcnt = 0;
 618
 619	*cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
 620	memset(*cfd, 0, sizeof(struct canfd_frame));
 621
 622	return skb;
 623}
 624EXPORT_SYMBOL_GPL(alloc_canfd_skb);
 625
 626struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
 627{
 628	struct sk_buff *skb;
 629
 630	skb = alloc_can_skb(dev, cf);
 631	if (unlikely(!skb))
 632		return NULL;
 633
 634	(*cf)->can_id = CAN_ERR_FLAG;
 635	(*cf)->can_dlc = CAN_ERR_DLC;
 636
 637	return skb;
 638}
 639EXPORT_SYMBOL_GPL(alloc_can_err_skb);
 640
 641/*
 642 * Allocate and setup space for the CAN network device
 643 */
 644struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
 645{
 646	struct net_device *dev;
 647	struct can_priv *priv;
 648	int size;
 649
 650	if (echo_skb_max)
 651		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
 652			echo_skb_max * sizeof(struct sk_buff *);
 653	else
 654		size = sizeof_priv;
 655
 656	dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
 657	if (!dev)
 658		return NULL;
 659
 660	priv = netdev_priv(dev);
 661
 662	if (echo_skb_max) {
 663		priv->echo_skb_max = echo_skb_max;
 664		priv->echo_skb = (void *)priv +
 665			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
 666	}
 667
 668	priv->state = CAN_STATE_STOPPED;
 669
 670	init_timer(&priv->restart_timer);
 671
 672	return dev;
 673}
 674EXPORT_SYMBOL_GPL(alloc_candev);
 675
 676/*
 677 * Free space of the CAN network device
 678 */
 679void free_candev(struct net_device *dev)
 680{
 681	free_netdev(dev);
 682}
 683EXPORT_SYMBOL_GPL(free_candev);
 684
 685/*
 686 * changing MTU and control mode for CAN/CANFD devices
 687 */
 688int can_change_mtu(struct net_device *dev, int new_mtu)
 689{
 690	struct can_priv *priv = netdev_priv(dev);
 691
 692	/* Do not allow changing the MTU while running */
 693	if (dev->flags & IFF_UP)
 694		return -EBUSY;
 695
 696	/* allow change of MTU according to the CANFD ability of the device */
 697	switch (new_mtu) {
 698	case CAN_MTU:
 699		priv->ctrlmode &= ~CAN_CTRLMODE_FD;
 700		break;
 701
 702	case CANFD_MTU:
 703		if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD))
 704			return -EINVAL;
 705
 706		priv->ctrlmode |= CAN_CTRLMODE_FD;
 707		break;
 708
 709	default:
 710		return -EINVAL;
 711	}
 712
 713	dev->mtu = new_mtu;
 714	return 0;
 715}
 716EXPORT_SYMBOL_GPL(can_change_mtu);
 717
 718/*
 719 * Common open function when the device gets opened.
 720 *
 721 * This function should be called in the open function of the device
 722 * driver.
 723 */
 724int open_candev(struct net_device *dev)
 725{
 726	struct can_priv *priv = netdev_priv(dev);
 727
 728	if (!priv->bittiming.bitrate) {
 729		netdev_err(dev, "bit-timing not yet defined\n");
 730		return -EINVAL;
 731	}
 732
 733	/* For CAN FD the data bitrate has to be >= the arbitration bitrate */
 734	if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
 735	    (!priv->data_bittiming.bitrate ||
 736	     (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
 737		netdev_err(dev, "incorrect/missing data bit-timing\n");
 738		return -EINVAL;
 739	}
 740
 741	/* Switch carrier on if device was stopped while in bus-off state */
 742	if (!netif_carrier_ok(dev))
 743		netif_carrier_on(dev);
 744
 745	setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
 746
 747	return 0;
 748}
 749EXPORT_SYMBOL_GPL(open_candev);
 750
 751/*
 752 * Common close function for cleanup before the device gets closed.
 753 *
 754 * This function should be called in the close function of the device
 755 * driver.
 756 */
 757void close_candev(struct net_device *dev)
 758{
 759	struct can_priv *priv = netdev_priv(dev);
 760
 761	del_timer_sync(&priv->restart_timer);
 
 762	can_flush_echo_skb(dev);
 763}
 764EXPORT_SYMBOL_GPL(close_candev);
 765
 766/*
 767 * CAN netlink interface
 768 */
 769static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
 770	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
 771	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
 772	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
 773	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
 774	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
 775	[IFLA_CAN_BITTIMING_CONST]
 776				= { .len = sizeof(struct can_bittiming_const) },
 777	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
 778	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
 779	[IFLA_CAN_DATA_BITTIMING]
 780				= { .len = sizeof(struct can_bittiming) },
 781	[IFLA_CAN_DATA_BITTIMING_CONST]
 782				= { .len = sizeof(struct can_bittiming_const) },
 783};
 784
 785static int can_changelink(struct net_device *dev,
 786			  struct nlattr *tb[], struct nlattr *data[])
 787{
 788	struct can_priv *priv = netdev_priv(dev);
 789	int err;
 790
 791	/* We need synchronization with dev->stop() */
 792	ASSERT_RTNL();
 793
 
 
 
 
 
 
 
 
 
 
 
 
 
 794	if (data[IFLA_CAN_BITTIMING]) {
 795		struct can_bittiming bt;
 796
 797		/* Do not allow changing bittiming while running */
 798		if (dev->flags & IFF_UP)
 799			return -EBUSY;
 800		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
 801		err = can_get_bittiming(dev, &bt, priv->bittiming_const);
 
 
 802		if (err)
 803			return err;
 804		memcpy(&priv->bittiming, &bt, sizeof(bt));
 805
 806		if (priv->do_set_bittiming) {
 807			/* Finally, set the bit-timing registers */
 808			err = priv->do_set_bittiming(dev);
 809			if (err)
 810				return err;
 811		}
 812	}
 813
 814	if (data[IFLA_CAN_CTRLMODE]) {
 815		struct can_ctrlmode *cm;
 816
 817		/* Do not allow changing controller mode while running */
 818		if (dev->flags & IFF_UP)
 819			return -EBUSY;
 820		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
 821
 822		/* check whether changed bits are allowed to be modified */
 823		if (cm->mask & ~priv->ctrlmode_supported)
 824			return -EOPNOTSUPP;
 825
 826		/* clear bits to be modified and copy the flag values */
 827		priv->ctrlmode &= ~cm->mask;
 828		priv->ctrlmode |= (cm->flags & cm->mask);
 829
 830		/* CAN_CTRLMODE_FD can only be set when driver supports FD */
 831		if (priv->ctrlmode & CAN_CTRLMODE_FD)
 832			dev->mtu = CANFD_MTU;
 833		else
 834			dev->mtu = CAN_MTU;
 835	}
 836
 837	if (data[IFLA_CAN_RESTART_MS]) {
 838		/* Do not allow changing restart delay while running */
 839		if (dev->flags & IFF_UP)
 840			return -EBUSY;
 841		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
 842	}
 843
 844	if (data[IFLA_CAN_RESTART]) {
 845		/* Do not allow a restart while not running */
 846		if (!(dev->flags & IFF_UP))
 847			return -EINVAL;
 848		err = can_restart_now(dev);
 849		if (err)
 850			return err;
 851	}
 852
 853	if (data[IFLA_CAN_DATA_BITTIMING]) {
 854		struct can_bittiming dbt;
 855
 856		/* Do not allow changing bittiming while running */
 857		if (dev->flags & IFF_UP)
 858			return -EBUSY;
 859		memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
 860		       sizeof(dbt));
 861		err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
 862		if (err)
 863			return err;
 864		memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
 865
 866		if (priv->do_set_data_bittiming) {
 867			/* Finally, set the bit-timing registers */
 868			err = priv->do_set_data_bittiming(dev);
 869			if (err)
 870				return err;
 871		}
 872	}
 873
 874	return 0;
 875}
 876
 877static size_t can_get_size(const struct net_device *dev)
 878{
 879	struct can_priv *priv = netdev_priv(dev);
 880	size_t size = 0;
 881
 882	if (priv->bittiming.bitrate)				/* IFLA_CAN_BITTIMING */
 883		size += nla_total_size(sizeof(struct can_bittiming));
 884	if (priv->bittiming_const)				/* IFLA_CAN_BITTIMING_CONST */
 885		size += nla_total_size(sizeof(struct can_bittiming_const));
 886	size += nla_total_size(sizeof(struct can_clock));	/* IFLA_CAN_CLOCK */
 887	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_STATE */
 888	size += nla_total_size(sizeof(struct can_ctrlmode));	/* IFLA_CAN_CTRLMODE */
 889	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_RESTART_MS */
 890	if (priv->do_get_berr_counter)				/* IFLA_CAN_BERR_COUNTER */
 891		size += nla_total_size(sizeof(struct can_berr_counter));
 892	if (priv->data_bittiming.bitrate)			/* IFLA_CAN_DATA_BITTIMING */
 893		size += nla_total_size(sizeof(struct can_bittiming));
 894	if (priv->data_bittiming_const)				/* IFLA_CAN_DATA_BITTIMING_CONST */
 895		size += nla_total_size(sizeof(struct can_bittiming_const));
 896
 897	return size;
 898}
 899
 900static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
 901{
 902	struct can_priv *priv = netdev_priv(dev);
 903	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
 904	struct can_berr_counter bec;
 905	enum can_state state = priv->state;
 906
 907	if (priv->do_get_state)
 908		priv->do_get_state(dev, &state);
 909
 910	if ((priv->bittiming.bitrate &&
 911	     nla_put(skb, IFLA_CAN_BITTIMING,
 912		     sizeof(priv->bittiming), &priv->bittiming)) ||
 913
 914	    (priv->bittiming_const &&
 915	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
 916		     sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
 917
 918	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
 919	    nla_put_u32(skb, IFLA_CAN_STATE, state) ||
 920	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
 921	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
 922
 
 
 923	    (priv->do_get_berr_counter &&
 924	     !priv->do_get_berr_counter(dev, &bec) &&
 925	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
 
 
 
 
 
 926
 927	    (priv->data_bittiming.bitrate &&
 928	     nla_put(skb, IFLA_CAN_DATA_BITTIMING,
 929		     sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
 930
 931	    (priv->data_bittiming_const &&
 932	     nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
 933		     sizeof(*priv->data_bittiming_const),
 934		     priv->data_bittiming_const)))
 935		return -EMSGSIZE;
 936
 937	return 0;
 938}
 939
 940static size_t can_get_xstats_size(const struct net_device *dev)
 941{
 942	return sizeof(struct can_device_stats);
 943}
 944
 945static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
 946{
 947	struct can_priv *priv = netdev_priv(dev);
 948
 949	if (nla_put(skb, IFLA_INFO_XSTATS,
 950		    sizeof(priv->can_stats), &priv->can_stats))
 951		goto nla_put_failure;
 952	return 0;
 953
 954nla_put_failure:
 955	return -EMSGSIZE;
 956}
 957
 958static int can_newlink(struct net *src_net, struct net_device *dev,
 959		       struct nlattr *tb[], struct nlattr *data[])
 960{
 961	return -EOPNOTSUPP;
 962}
 963
 964static struct rtnl_link_ops can_link_ops __read_mostly = {
 965	.kind		= "can",
 966	.maxtype	= IFLA_CAN_MAX,
 967	.policy		= can_policy,
 968	.setup		= can_setup,
 969	.newlink	= can_newlink,
 970	.changelink	= can_changelink,
 971	.get_size	= can_get_size,
 972	.fill_info	= can_fill_info,
 973	.get_xstats_size = can_get_xstats_size,
 974	.fill_xstats	= can_fill_xstats,
 975};
 976
 977/*
 978 * Register the CAN network device
 979 */
 980int register_candev(struct net_device *dev)
 981{
 982	dev->rtnl_link_ops = &can_link_ops;
 983	return register_netdev(dev);
 984}
 985EXPORT_SYMBOL_GPL(register_candev);
 986
 987/*
 988 * Unregister the CAN network device
 989 */
 990void unregister_candev(struct net_device *dev)
 991{
 992	unregister_netdev(dev);
 993}
 994EXPORT_SYMBOL_GPL(unregister_candev);
 995
 996/*
 997 * Test if a network device is a candev based device
 998 * and return the can_priv* if so.
 999 */
1000struct can_priv *safe_candev_priv(struct net_device *dev)
1001{
1002	if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
1003		return NULL;
1004
1005	return netdev_priv(dev);
1006}
1007EXPORT_SYMBOL_GPL(safe_candev_priv);
1008
1009static __init int can_dev_init(void)
1010{
1011	int err;
1012
1013	can_led_notifier_init();
1014
1015	err = rtnl_link_register(&can_link_ops);
1016	if (!err)
1017		printk(KERN_INFO MOD_DESC "\n");
1018
1019	return err;
1020}
1021module_init(can_dev_init);
1022
1023static __exit void can_dev_exit(void)
1024{
1025	rtnl_link_unregister(&can_link_ops);
1026
1027	can_led_notifier_exit();
1028}
1029module_exit(can_dev_exit);
1030
1031MODULE_ALIAS_RTNL_LINK("can");