Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
 
   9#include "dm-uevent.h"
  10
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/moduleparam.h>
  15#include <linux/blkpg.h>
  16#include <linux/bio.h>
  17#include <linux/mempool.h>
 
  18#include <linux/slab.h>
  19#include <linux/idr.h>
 
  20#include <linux/hdreg.h>
  21#include <linux/delay.h>
  22
  23#include <trace/events/block.h>
 
  24
  25#define DM_MSG_PREFIX "core"
  26
  27#ifdef CONFIG_PRINTK
  28/*
  29 * ratelimit state to be used in DMXXX_LIMIT().
  30 */
  31DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
  32		       DEFAULT_RATELIMIT_INTERVAL,
  33		       DEFAULT_RATELIMIT_BURST);
  34EXPORT_SYMBOL(dm_ratelimit_state);
  35#endif
  36
  37/*
  38 * Cookies are numeric values sent with CHANGE and REMOVE
  39 * uevents while resuming, removing or renaming the device.
  40 */
  41#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  42#define DM_COOKIE_LENGTH 24
  43
  44static const char *_name = DM_NAME;
  45
  46static unsigned int major = 0;
  47static unsigned int _major = 0;
  48
  49static DEFINE_IDR(_minor_idr);
  50
  51static DEFINE_SPINLOCK(_minor_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  52/*
  53 * For bio-based dm.
  54 * One of these is allocated per bio.
  55 */
  56struct dm_io {
  57	struct mapped_device *md;
  58	int error;
  59	atomic_t io_count;
  60	struct bio *bio;
  61	unsigned long start_time;
  62	spinlock_t endio_lock;
 
  63};
  64
  65/*
  66 * For bio-based dm.
  67 * One of these is allocated per target within a bio.  Hopefully
  68 * this will be simplified out one day.
  69 */
 
  70struct dm_target_io {
 
  71	struct dm_io *io;
  72	struct dm_target *ti;
  73	union map_info info;
 
 
 
  74};
  75
  76/*
  77 * For request-based dm.
  78 * One of these is allocated per request.
  79 */
  80struct dm_rq_target_io {
 
 
  81	struct mapped_device *md;
  82	struct dm_target *ti;
  83	struct request *orig, clone;
  84	int error;
  85	union map_info info;
 
 
 
 
  86};
  87
  88/*
  89 * For request-based dm.
  90 * One of these is allocated per bio.
  91 */
  92struct dm_rq_clone_bio_info {
  93	struct bio *orig;
  94	struct dm_rq_target_io *tio;
  95};
  96
  97union map_info *dm_get_mapinfo(struct bio *bio)
  98{
  99	if (bio && bio->bi_private)
 100		return &((struct dm_target_io *)bio->bi_private)->info;
 101	return NULL;
 
 
 102}
 
 103
 104union map_info *dm_get_rq_mapinfo(struct request *rq)
 105{
 106	if (rq && rq->end_io_data)
 107		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
 108	return NULL;
 109}
 110EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
 111
 112#define MINOR_ALLOCED ((void *)-1)
 113
 114/*
 115 * Bits for the md->flags field.
 116 */
 117#define DMF_BLOCK_IO_FOR_SUSPEND 0
 118#define DMF_SUSPENDED 1
 119#define DMF_FROZEN 2
 120#define DMF_FREEING 3
 121#define DMF_DELETING 4
 122#define DMF_NOFLUSH_SUSPENDING 5
 123#define DMF_MERGE_IS_OPTIONAL 6
 
 
 
 
 124
 125/*
 126 * Work processed by per-device workqueue.
 127 */
 128struct mapped_device {
 129	struct rw_semaphore io_lock;
 130	struct mutex suspend_lock;
 131	rwlock_t map_lock;
 132	atomic_t holders;
 133	atomic_t open_count;
 134
 135	unsigned long flags;
 136
 137	struct request_queue *queue;
 138	unsigned type;
 139	/* Protect queue and type against concurrent access. */
 140	struct mutex type_lock;
 141
 142	struct target_type *immutable_target_type;
 143
 144	struct gendisk *disk;
 145	char name[16];
 146
 147	void *interface_ptr;
 148
 149	/*
 150	 * A list of ios that arrived while we were suspended.
 151	 */
 152	atomic_t pending[2];
 153	wait_queue_head_t wait;
 154	struct work_struct work;
 155	struct bio_list deferred;
 156	spinlock_t deferred_lock;
 157
 158	/*
 159	 * Processing queue (flush)
 160	 */
 161	struct workqueue_struct *wq;
 
 162
 163	/*
 164	 * The current mapping.
 165	 */
 166	struct dm_table *map;
 
 167
 168	/*
 169	 * io objects are allocated from here.
 170	 */
 171	mempool_t *io_pool;
 172	mempool_t *tio_pool;
 
 173
 174	struct bio_set *bs;
 
 
 
 175
 176	/*
 177	 * Event handling.
 178	 */
 179	atomic_t event_nr;
 180	wait_queue_head_t eventq;
 181	atomic_t uevent_seq;
 182	struct list_head uevent_list;
 183	spinlock_t uevent_lock; /* Protect access to uevent_list */
 184
 185	/*
 186	 * freeze/thaw support require holding onto a super block
 187	 */
 188	struct super_block *frozen_sb;
 189	struct block_device *bdev;
 190
 191	/* forced geometry settings */
 192	struct hd_geometry geometry;
 
 
 193
 194	/* sysfs handle */
 195	struct kobject kobj;
 
 
 196
 197	/* zero-length flush that will be cloned and submitted to targets */
 198	struct bio flush_bio;
 199};
 200
 201/*
 202 * For mempools pre-allocation at the table loading time.
 203 */
 204struct dm_md_mempools {
 205	mempool_t *io_pool;
 206	mempool_t *tio_pool;
 207	struct bio_set *bs;
 208};
 209
 210#define MIN_IOS 256
 211static struct kmem_cache *_io_cache;
 212static struct kmem_cache *_tio_cache;
 213static struct kmem_cache *_rq_tio_cache;
 214static struct kmem_cache *_rq_bio_info_cache;
 215
 216static int __init local_init(void)
 217{
 218	int r = -ENOMEM;
 219
 220	/* allocate a slab for the dm_ios */
 221	_io_cache = KMEM_CACHE(dm_io, 0);
 222	if (!_io_cache)
 223		return r;
 224
 225	/* allocate a slab for the target ios */
 226	_tio_cache = KMEM_CACHE(dm_target_io, 0);
 227	if (!_tio_cache)
 228		goto out_free_io_cache;
 229
 230	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 231	if (!_rq_tio_cache)
 232		goto out_free_tio_cache;
 233
 234	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
 235	if (!_rq_bio_info_cache)
 236		goto out_free_rq_tio_cache;
 237
 238	r = dm_uevent_init();
 239	if (r)
 240		goto out_free_rq_bio_info_cache;
 
 
 
 
 
 
 241
 242	_major = major;
 243	r = register_blkdev(_major, _name);
 244	if (r < 0)
 245		goto out_uevent_exit;
 246
 247	if (!_major)
 248		_major = r;
 249
 250	return 0;
 251
 
 
 252out_uevent_exit:
 253	dm_uevent_exit();
 254out_free_rq_bio_info_cache:
 255	kmem_cache_destroy(_rq_bio_info_cache);
 256out_free_rq_tio_cache:
 257	kmem_cache_destroy(_rq_tio_cache);
 258out_free_tio_cache:
 259	kmem_cache_destroy(_tio_cache);
 260out_free_io_cache:
 261	kmem_cache_destroy(_io_cache);
 262
 263	return r;
 264}
 265
 266static void local_exit(void)
 267{
 268	kmem_cache_destroy(_rq_bio_info_cache);
 269	kmem_cache_destroy(_rq_tio_cache);
 270	kmem_cache_destroy(_tio_cache);
 271	kmem_cache_destroy(_io_cache);
 272	unregister_blkdev(_major, _name);
 273	dm_uevent_exit();
 274
 275	_major = 0;
 276
 277	DMINFO("cleaned up");
 278}
 279
 280static int (*_inits[])(void) __initdata = {
 281	local_init,
 282	dm_target_init,
 283	dm_linear_init,
 284	dm_stripe_init,
 285	dm_io_init,
 286	dm_kcopyd_init,
 287	dm_interface_init,
 
 288};
 289
 290static void (*_exits[])(void) = {
 291	local_exit,
 292	dm_target_exit,
 293	dm_linear_exit,
 294	dm_stripe_exit,
 295	dm_io_exit,
 296	dm_kcopyd_exit,
 297	dm_interface_exit,
 
 298};
 299
 300static int __init dm_init(void)
 301{
 302	const int count = ARRAY_SIZE(_inits);
 303
 304	int r, i;
 305
 306	for (i = 0; i < count; i++) {
 307		r = _inits[i]();
 308		if (r)
 309			goto bad;
 310	}
 311
 312	return 0;
 313
 314      bad:
 315	while (i--)
 316		_exits[i]();
 317
 318	return r;
 319}
 320
 321static void __exit dm_exit(void)
 322{
 323	int i = ARRAY_SIZE(_exits);
 324
 325	while (i--)
 326		_exits[i]();
 327
 328	/*
 329	 * Should be empty by this point.
 330	 */
 331	idr_remove_all(&_minor_idr);
 332	idr_destroy(&_minor_idr);
 333}
 334
 335/*
 336 * Block device functions
 337 */
 338int dm_deleting_md(struct mapped_device *md)
 339{
 340	return test_bit(DMF_DELETING, &md->flags);
 341}
 342
 343static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 344{
 345	struct mapped_device *md;
 346
 347	spin_lock(&_minor_lock);
 348
 349	md = bdev->bd_disk->private_data;
 350	if (!md)
 351		goto out;
 352
 353	if (test_bit(DMF_FREEING, &md->flags) ||
 354	    dm_deleting_md(md)) {
 355		md = NULL;
 356		goto out;
 357	}
 358
 359	dm_get(md);
 360	atomic_inc(&md->open_count);
 361
 362out:
 363	spin_unlock(&_minor_lock);
 364
 365	return md ? 0 : -ENXIO;
 366}
 367
 368static int dm_blk_close(struct gendisk *disk, fmode_t mode)
 369{
 370	struct mapped_device *md = disk->private_data;
 371
 372	spin_lock(&_minor_lock);
 373
 374	atomic_dec(&md->open_count);
 375	dm_put(md);
 
 376
 377	spin_unlock(&_minor_lock);
 
 
 378
 379	return 0;
 
 
 380}
 381
 382int dm_open_count(struct mapped_device *md)
 383{
 384	return atomic_read(&md->open_count);
 385}
 386
 387/*
 388 * Guarantees nothing is using the device before it's deleted.
 389 */
 390int dm_lock_for_deletion(struct mapped_device *md)
 391{
 392	int r = 0;
 393
 394	spin_lock(&_minor_lock);
 395
 396	if (dm_open_count(md))
 397		r = -EBUSY;
 
 
 
 
 398	else
 399		set_bit(DMF_DELETING, &md->flags);
 400
 401	spin_unlock(&_minor_lock);
 402
 403	return r;
 404}
 405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 407{
 408	struct mapped_device *md = bdev->bd_disk->private_data;
 409
 410	return dm_get_geometry(md, geo);
 411}
 412
 413static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 414			unsigned int cmd, unsigned long arg)
 415{
 416	struct mapped_device *md = bdev->bd_disk->private_data;
 417	struct dm_table *map = dm_get_live_table(md);
 418	struct dm_target *tgt;
 419	int r = -ENOTTY;
 
 420
 421	if (!map || !dm_table_get_size(map))
 422		goto out;
 423
 424	/* We only support devices that have a single target */
 425	if (dm_table_get_num_targets(map) != 1)
 426		goto out;
 427
 428	tgt = dm_table_get_target(map, 0);
 
 
 
 
 429
 430	if (dm_suspended_md(md)) {
 431		r = -EAGAIN;
 
 
 
 
 
 
 432		goto out;
 433	}
 434
 435	if (tgt->type->ioctl)
 436		r = tgt->type->ioctl(tgt, cmd, arg);
 
 
 
 
 
 437
 438out:
 439	dm_table_put(map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 440
 441	return r;
 442}
 443
 444static struct dm_io *alloc_io(struct mapped_device *md)
 
 445{
 446	return mempool_alloc(md->io_pool, GFP_NOIO);
 447}
 448
 449static void free_io(struct mapped_device *md, struct dm_io *io)
 
 450{
 451	mempool_free(io, md->io_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452}
 453
 454static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
 
 
 455{
 456	mempool_free(tio, md->tio_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 457}
 458
 459static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
 460					    gfp_t gfp_mask)
 461{
 462	return mempool_alloc(md->tio_pool, gfp_mask);
 463}
 464
 465static void free_rq_tio(struct dm_rq_target_io *tio)
 
 466{
 467	mempool_free(tio, tio->md->tio_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 468}
 469
 470static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
 471{
 472	return mempool_alloc(md->io_pool, GFP_ATOMIC);
 
 
 473}
 474
 475static void free_bio_info(struct dm_rq_clone_bio_info *info)
 476{
 477	mempool_free(info, info->tio->md->io_pool);
 
 
 
 
 
 
 
 
 
 478}
 479
 480static int md_in_flight(struct mapped_device *md)
 481{
 482	return atomic_read(&md->pending[READ]) +
 483	       atomic_read(&md->pending[WRITE]);
 
 
 484}
 485
 486static void start_io_acct(struct dm_io *io)
 487{
 488	struct mapped_device *md = io->md;
 489	int cpu;
 490	int rw = bio_data_dir(io->bio);
 491
 492	io->start_time = jiffies;
 493
 494	cpu = part_stat_lock();
 495	part_round_stats(cpu, &dm_disk(md)->part0);
 496	part_stat_unlock();
 497	atomic_set(&dm_disk(md)->part0.in_flight[rw],
 498		atomic_inc_return(&md->pending[rw]));
 
 
 499}
 500
 501static void end_io_acct(struct dm_io *io)
 502{
 503	struct mapped_device *md = io->md;
 504	struct bio *bio = io->bio;
 505	unsigned long duration = jiffies - io->start_time;
 506	int pending, cpu;
 507	int rw = bio_data_dir(bio);
 508
 509	cpu = part_stat_lock();
 510	part_round_stats(cpu, &dm_disk(md)->part0);
 511	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
 512	part_stat_unlock();
 513
 514	/*
 515	 * After this is decremented the bio must not be touched if it is
 516	 * a flush.
 517	 */
 518	pending = atomic_dec_return(&md->pending[rw]);
 519	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 520	pending += atomic_read(&md->pending[rw^0x1]);
 521
 522	/* nudge anyone waiting on suspend queue */
 523	if (!pending)
 524		wake_up(&md->wait);
 525}
 526
 527/*
 528 * Add the bio to the list of deferred io.
 529 */
 530static void queue_io(struct mapped_device *md, struct bio *bio)
 531{
 532	unsigned long flags;
 533
 534	spin_lock_irqsave(&md->deferred_lock, flags);
 535	bio_list_add(&md->deferred, bio);
 536	spin_unlock_irqrestore(&md->deferred_lock, flags);
 537	queue_work(md->wq, &md->work);
 538}
 539
 540/*
 541 * Everyone (including functions in this file), should use this
 542 * function to access the md->map field, and make sure they call
 543 * dm_table_put() when finished.
 544 */
 545struct dm_table *dm_get_live_table(struct mapped_device *md)
 546{
 547	struct dm_table *t;
 548	unsigned long flags;
 549
 550	read_lock_irqsave(&md->map_lock, flags);
 551	t = md->map;
 552	if (t)
 553		dm_table_get(t);
 554	read_unlock_irqrestore(&md->map_lock, flags);
 555
 556	return t;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 557}
 558
 559/*
 560 * Get the geometry associated with a dm device
 561 */
 562int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 563{
 564	*geo = md->geometry;
 565
 566	return 0;
 567}
 568
 569/*
 570 * Set the geometry of a device.
 571 */
 572int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 573{
 574	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 575
 576	if (geo->start > sz) {
 577		DMWARN("Start sector is beyond the geometry limits.");
 578		return -EINVAL;
 579	}
 580
 581	md->geometry = *geo;
 582
 583	return 0;
 584}
 585
 586/*-----------------------------------------------------------------
 587 * CRUD START:
 588 *   A more elegant soln is in the works that uses the queue
 589 *   merge fn, unfortunately there are a couple of changes to
 590 *   the block layer that I want to make for this.  So in the
 591 *   interests of getting something for people to use I give
 592 *   you this clearly demarcated crap.
 593 *---------------------------------------------------------------*/
 594
 595static int __noflush_suspending(struct mapped_device *md)
 596{
 597	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 598}
 599
 600/*
 601 * Decrements the number of outstanding ios that a bio has been
 602 * cloned into, completing the original io if necc.
 603 */
 604static void dec_pending(struct dm_io *io, int error)
 605{
 606	unsigned long flags;
 607	int io_error;
 608	struct bio *bio;
 609	struct mapped_device *md = io->md;
 610
 611	/* Push-back supersedes any I/O errors */
 612	if (unlikely(error)) {
 613		spin_lock_irqsave(&io->endio_lock, flags);
 614		if (!(io->error > 0 && __noflush_suspending(md)))
 615			io->error = error;
 616		spin_unlock_irqrestore(&io->endio_lock, flags);
 617	}
 618
 619	if (atomic_dec_and_test(&io->io_count)) {
 620		if (io->error == DM_ENDIO_REQUEUE) {
 621			/*
 622			 * Target requested pushing back the I/O.
 623			 */
 624			spin_lock_irqsave(&md->deferred_lock, flags);
 625			if (__noflush_suspending(md))
 626				bio_list_add_head(&md->deferred, io->bio);
 
 627			else
 628				/* noflush suspend was interrupted. */
 629				io->error = -EIO;
 630			spin_unlock_irqrestore(&md->deferred_lock, flags);
 631		}
 632
 633		io_error = io->error;
 634		bio = io->bio;
 635		end_io_acct(io);
 636		free_io(md, io);
 637
 638		if (io_error == DM_ENDIO_REQUEUE)
 639			return;
 640
 641		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
 642			/*
 643			 * Preflush done for flush with data, reissue
 644			 * without REQ_FLUSH.
 645			 */
 646			bio->bi_rw &= ~REQ_FLUSH;
 647			queue_io(md, bio);
 648		} else {
 649			/* done with normal IO or empty flush */
 650			trace_block_bio_complete(md->queue, bio, io_error);
 651			bio_endio(bio, io_error);
 
 652		}
 653	}
 654}
 655
 656static void clone_endio(struct bio *bio, int error)
 657{
 658	int r = 0;
 659	struct dm_target_io *tio = bio->bi_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 660	struct dm_io *io = tio->io;
 661	struct mapped_device *md = tio->io->md;
 662	dm_endio_fn endio = tio->ti->type->end_io;
 663
 664	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
 665		error = -EIO;
 
 
 
 
 
 
 
 
 
 666
 667	if (endio) {
 668		r = endio(tio->ti, bio, error, &tio->info);
 669		if (r < 0 || r == DM_ENDIO_REQUEUE)
 670			/*
 671			 * error and requeue request are handled
 672			 * in dec_pending().
 673			 */
 674			error = r;
 675		else if (r == DM_ENDIO_INCOMPLETE)
 676			/* The target will handle the io */
 677			return;
 678		else if (r) {
 679			DMWARN("unimplemented target endio return value: %d", r);
 680			BUG();
 681		}
 682	}
 683
 684	/*
 685	 * Store md for cleanup instead of tio which is about to get freed.
 686	 */
 687	bio->bi_private = md->bs;
 688
 689	free_tio(md, tio);
 690	bio_put(bio);
 691	dec_pending(io, error);
 692}
 693
 694/*
 695 * Partial completion handling for request-based dm
 
 696 */
 697static void end_clone_bio(struct bio *clone, int error)
 698{
 699	struct dm_rq_clone_bio_info *info = clone->bi_private;
 700	struct dm_rq_target_io *tio = info->tio;
 701	struct bio *bio = info->orig;
 702	unsigned int nr_bytes = info->orig->bi_size;
 703
 704	bio_put(clone);
 705
 706	if (tio->error)
 707		/*
 708		 * An error has already been detected on the request.
 709		 * Once error occurred, just let clone->end_io() handle
 710		 * the remainder.
 711		 */
 712		return;
 713	else if (error) {
 714		/*
 715		 * Don't notice the error to the upper layer yet.
 716		 * The error handling decision is made by the target driver,
 717		 * when the request is completed.
 718		 */
 719		tio->error = error;
 720		return;
 721	}
 722
 723	/*
 724	 * I/O for the bio successfully completed.
 725	 * Notice the data completion to the upper layer.
 726	 */
 727
 728	/*
 729	 * bios are processed from the head of the list.
 730	 * So the completing bio should always be rq->bio.
 731	 * If it's not, something wrong is happening.
 732	 */
 733	if (tio->orig->bio != bio)
 734		DMERR("bio completion is going in the middle of the request");
 735
 736	/*
 737	 * Update the original request.
 738	 * Do not use blk_end_request() here, because it may complete
 739	 * the original request before the clone, and break the ordering.
 740	 */
 741	blk_update_request(tio->orig, 0, nr_bytes);
 742}
 743
 744/*
 745 * Don't touch any member of the md after calling this function because
 746 * the md may be freed in dm_put() at the end of this function.
 747 * Or do dm_get() before calling this function and dm_put() later.
 748 */
 749static void rq_completed(struct mapped_device *md, int rw, int run_queue)
 750{
 751	atomic_dec(&md->pending[rw]);
 752
 753	/* nudge anyone waiting on suspend queue */
 754	if (!md_in_flight(md))
 755		wake_up(&md->wait);
 756
 757	if (run_queue)
 758		blk_run_queue(md->queue);
 759
 760	/*
 761	 * dm_put() must be at the end of this function. See the comment above
 762	 */
 763	dm_put(md);
 764}
 765
 766static void free_rq_clone(struct request *clone)
 767{
 768	struct dm_rq_target_io *tio = clone->end_io_data;
 769
 770	blk_rq_unprep_clone(clone);
 771	free_rq_tio(tio);
 772}
 773
 774/*
 775 * Complete the clone and the original request.
 776 * Must be called without queue lock.
 777 */
 778static void dm_end_request(struct request *clone, int error)
 779{
 780	int rw = rq_data_dir(clone);
 781	struct dm_rq_target_io *tio = clone->end_io_data;
 782	struct mapped_device *md = tio->md;
 783	struct request *rq = tio->orig;
 784
 785	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
 786		rq->errors = clone->errors;
 787		rq->resid_len = clone->resid_len;
 788
 789		if (rq->sense)
 790			/*
 791			 * We are using the sense buffer of the original
 792			 * request.
 793			 * So setting the length of the sense data is enough.
 794			 */
 795			rq->sense_len = clone->sense_len;
 796	}
 797
 798	free_rq_clone(clone);
 799	blk_end_request_all(rq, error);
 800	rq_completed(md, rw, true);
 801}
 802
 803static void dm_unprep_request(struct request *rq)
 804{
 805	struct request *clone = rq->special;
 
 
 
 
 
 806
 807	rq->special = NULL;
 808	rq->cmd_flags &= ~REQ_DONTPREP;
 809
 810	free_rq_clone(clone);
 811}
 
 812
 813/*
 814 * Requeue the original request of a clone.
 815 */
 816void dm_requeue_unmapped_request(struct request *clone)
 817{
 818	int rw = rq_data_dir(clone);
 819	struct dm_rq_target_io *tio = clone->end_io_data;
 820	struct mapped_device *md = tio->md;
 821	struct request *rq = tio->orig;
 822	struct request_queue *q = rq->q;
 823	unsigned long flags;
 824
 825	dm_unprep_request(rq);
 826
 827	spin_lock_irqsave(q->queue_lock, flags);
 828	blk_requeue_request(q, rq);
 829	spin_unlock_irqrestore(q->queue_lock, flags);
 830
 831	rq_completed(md, rw, 0);
 832}
 833EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
 834
 835static void __stop_queue(struct request_queue *q)
 836{
 837	blk_stop_queue(q);
 838}
 839
 840static void stop_queue(struct request_queue *q)
 
 841{
 842	unsigned long flags;
 
 
 
 
 843
 844	spin_lock_irqsave(q->queue_lock, flags);
 845	__stop_queue(q);
 846	spin_unlock_irqrestore(q->queue_lock, flags);
 847}
 848
 849static void __start_queue(struct request_queue *q)
 850{
 851	if (blk_queue_stopped(q))
 852		blk_start_queue(q);
 853}
 
 
 
 
 854
 855static void start_queue(struct request_queue *q)
 856{
 857	unsigned long flags;
 858
 859	spin_lock_irqsave(q->queue_lock, flags);
 860	__start_queue(q);
 861	spin_unlock_irqrestore(q->queue_lock, flags);
 862}
 863
 864static void dm_done(struct request *clone, int error, bool mapped)
 
 865{
 866	int r = error;
 867	struct dm_rq_target_io *tio = clone->end_io_data;
 868	dm_request_endio_fn rq_end_io = NULL;
 
 869
 870	if (tio->ti) {
 871		rq_end_io = tio->ti->type->rq_end_io;
 
 872
 873		if (mapped && rq_end_io)
 874			r = rq_end_io(tio->ti, clone, error, &tio->info);
 875	}
 876
 877	if (r <= 0)
 878		/* The target wants to complete the I/O */
 879		dm_end_request(clone, r);
 880	else if (r == DM_ENDIO_INCOMPLETE)
 881		/* The target will handle the I/O */
 882		return;
 883	else if (r == DM_ENDIO_REQUEUE)
 884		/* The target wants to requeue the I/O */
 885		dm_requeue_unmapped_request(clone);
 886	else {
 887		DMWARN("unimplemented target endio return value: %d", r);
 888		BUG();
 889	}
 890}
 891
 892/*
 893 * Request completion handler for request-based dm
 894 */
 895static void dm_softirq_done(struct request *rq)
 896{
 897	bool mapped = true;
 898	struct request *clone = rq->completion_data;
 899	struct dm_rq_target_io *tio = clone->end_io_data;
 900
 901	if (rq->cmd_flags & REQ_FAILED)
 902		mapped = false;
 903
 904	dm_done(clone, tio->error, mapped);
 905}
 906
 907/*
 908 * Complete the clone and the original request with the error status
 909 * through softirq context.
 910 */
 911static void dm_complete_request(struct request *clone, int error)
 912{
 913	struct dm_rq_target_io *tio = clone->end_io_data;
 914	struct request *rq = tio->orig;
 
 915
 916	tio->error = error;
 917	rq->completion_data = clone;
 918	blk_complete_request(rq);
 919}
 920
 921/*
 922 * Complete the not-mapped clone and the original request with the error status
 923 * through softirq context.
 924 * Target's rq_end_io() function isn't called.
 925 * This may be used when the target's map_rq() function fails.
 926 */
 927void dm_kill_unmapped_request(struct request *clone, int error)
 928{
 929	struct dm_rq_target_io *tio = clone->end_io_data;
 930	struct request *rq = tio->orig;
 
 
 
 931
 932	rq->cmd_flags |= REQ_FAILED;
 933	dm_complete_request(clone, error);
 934}
 935EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
 936
 937/*
 938 * Called with the queue lock held
 939 */
 940static void end_clone_request(struct request *clone, int error)
 941{
 942	/*
 943	 * For just cleaning up the information of the queue in which
 944	 * the clone was dispatched.
 945	 * The clone is *NOT* freed actually here because it is alloced from
 946	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
 947	 */
 948	__blk_put_request(clone->q, clone);
 949
 950	/*
 951	 * Actual request completion is done in a softirq context which doesn't
 952	 * hold the queue lock.  Otherwise, deadlock could occur because:
 953	 *     - another request may be submitted by the upper level driver
 954	 *       of the stacking during the completion
 955	 *     - the submission which requires queue lock may be done
 956	 *       against this queue
 957	 */
 958	dm_complete_request(clone, error);
 959}
 960
 961/*
 962 * Return maximum size of I/O possible at the supplied sector up to the current
 963 * target boundary.
 964 */
 965static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 966{
 967	sector_t target_offset = dm_target_offset(ti, sector);
 968
 969	return ti->len - target_offset;
 970}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 971
 972static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 973{
 974	sector_t len = max_io_len_target_boundary(sector, ti);
 975
 976	/*
 977	 * Does the target need to split even further ?
 978	 */
 979	if (ti->split_io) {
 980		sector_t boundary;
 981		sector_t offset = dm_target_offset(ti, sector);
 982		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
 983			   - offset;
 984		if (len > boundary)
 985			len = boundary;
 986	}
 987
 988	return len;
 
 
 
 989}
 
 990
 991static void __map_bio(struct dm_target *ti, struct bio *clone,
 992		      struct dm_target_io *tio)
 993{
 994	int r;
 995	sector_t sector;
 996	struct mapped_device *md;
 
 
 
 
 997
 998	clone->bi_end_io = clone_endio;
 999	clone->bi_private = tio;
1000
1001	/*
1002	 * Map the clone.  If r == 0 we don't need to do
1003	 * anything, the target has assumed ownership of
1004	 * this io.
1005	 */
1006	atomic_inc(&tio->io->io_count);
1007	sector = clone->bi_sector;
1008	r = ti->type->map(ti, clone, &tio->info);
1009	if (r == DM_MAPIO_REMAPPED) {
1010		/* the bio has been remapped so dispatch it */
1011
1012		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1013				      tio->io->bio->bi_bdev->bd_dev, sector);
1014
1015		generic_make_request(clone);
1016	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1017		/* error the io and bail out, or requeue it if needed */
1018		md = tio->io->md;
1019		dec_pending(tio->io, r);
1020		/*
1021		 * Store bio_set for cleanup.
1022		 */
1023		clone->bi_end_io = NULL;
1024		clone->bi_private = md->bs;
1025		bio_put(clone);
1026		free_tio(md, tio);
1027	} else if (r) {
 
 
 
 
 
 
 
 
 
1028		DMWARN("unimplemented target map return value: %d", r);
1029		BUG();
1030	}
1031}
1032
1033struct clone_info {
1034	struct mapped_device *md;
1035	struct dm_table *map;
1036	struct bio *bio;
1037	struct dm_io *io;
1038	sector_t sector;
1039	sector_t sector_count;
1040	unsigned short idx;
1041};
1042
1043static void dm_bio_destructor(struct bio *bio)
1044{
1045	struct bio_set *bs = bio->bi_private;
1046
1047	bio_free(bio, bs);
1048}
1049
1050/*
1051 * Creates a little bio that just does part of a bvec.
1052 */
1053static struct bio *split_bvec(struct bio *bio, sector_t sector,
1054			      unsigned short idx, unsigned int offset,
1055			      unsigned int len, struct bio_set *bs)
1056{
1057	struct bio *clone;
1058	struct bio_vec *bv = bio->bi_io_vec + idx;
1059
1060	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1061	clone->bi_destructor = dm_bio_destructor;
1062	*clone->bi_io_vec = *bv;
1063
1064	clone->bi_sector = sector;
1065	clone->bi_bdev = bio->bi_bdev;
1066	clone->bi_rw = bio->bi_rw;
1067	clone->bi_vcnt = 1;
1068	clone->bi_size = to_bytes(len);
1069	clone->bi_io_vec->bv_offset = offset;
1070	clone->bi_io_vec->bv_len = clone->bi_size;
1071	clone->bi_flags |= 1 << BIO_CLONED;
1072
1073	if (bio_integrity(bio)) {
1074		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1075		bio_integrity_trim(clone,
1076				   bio_sector_offset(bio, idx, offset), len);
1077	}
1078
1079	return clone;
1080}
1081
1082/*
1083 * Creates a bio that consists of range of complete bvecs.
1084 */
1085static struct bio *clone_bio(struct bio *bio, sector_t sector,
1086			     unsigned short idx, unsigned short bv_count,
1087			     unsigned int len, struct bio_set *bs)
1088{
1089	struct bio *clone;
1090
1091	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1092	__bio_clone(clone, bio);
1093	clone->bi_destructor = dm_bio_destructor;
1094	clone->bi_sector = sector;
1095	clone->bi_idx = idx;
1096	clone->bi_vcnt = idx + bv_count;
1097	clone->bi_size = to_bytes(len);
1098	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1099
1100	if (bio_integrity(bio)) {
1101		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1102
1103		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1104			bio_integrity_trim(clone,
1105					   bio_sector_offset(bio, idx, 0), len);
1106	}
 
 
 
1107
1108	return clone;
1109}
 
 
1110
1111static struct dm_target_io *alloc_tio(struct clone_info *ci,
1112				      struct dm_target *ti)
1113{
1114	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1115
1116	tio->io = ci->io;
1117	tio->ti = ti;
1118	memset(&tio->info, 0, sizeof(tio->info));
1119
1120	return tio;
1121}
1122
1123static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1124				   unsigned request_nr, sector_t len)
1125{
1126	struct dm_target_io *tio = alloc_tio(ci, ti);
1127	struct bio *clone;
1128
1129	tio->info.target_request_nr = request_nr;
 
1130
1131	/*
1132	 * Discard requests require the bio's inline iovecs be initialized.
1133	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1134	 * and discard, so no need for concern about wasted bvec allocations.
1135	 */
1136	clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1137	__bio_clone(clone, ci->bio);
1138	clone->bi_destructor = dm_bio_destructor;
1139	if (len) {
1140		clone->bi_sector = ci->sector;
1141		clone->bi_size = to_bytes(len);
1142	}
1143
1144	__map_bio(ti, clone, tio);
1145}
 
 
 
 
 
 
 
 
1146
1147static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1148				    unsigned num_requests, sector_t len)
1149{
1150	unsigned request_nr;
 
 
1151
1152	for (request_nr = 0; request_nr < num_requests; request_nr++)
1153		__issue_target_request(ci, ti, request_nr, len);
 
 
 
1154}
1155
1156static int __clone_and_map_empty_flush(struct clone_info *ci)
 
1157{
1158	unsigned target_nr = 0;
1159	struct dm_target *ti;
1160
1161	BUG_ON(bio_has_data(ci->bio));
1162	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1163		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1164
1165	return 0;
 
 
 
 
1166}
1167
1168/*
1169 * Perform all io with a single clone.
1170 */
1171static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1172{
1173	struct bio *clone, *bio = ci->bio;
 
1174	struct dm_target_io *tio;
1175
1176	tio = alloc_tio(ci, ti);
1177	clone = clone_bio(bio, ci->sector, ci->idx,
1178			  bio->bi_vcnt - ci->idx, ci->sector_count,
1179			  ci->md->bs);
1180	__map_bio(ti, clone, tio);
1181	ci->sector_count = 0;
1182}
1183
1184static int __clone_and_map_discard(struct clone_info *ci)
1185{
 
1186	struct dm_target *ti;
1187	sector_t len;
1188
1189	do {
1190		ti = dm_table_find_target(ci->map, ci->sector);
1191		if (!dm_target_is_valid(ti))
1192			return -EIO;
1193
1194		/*
1195		 * Even though the device advertised discard support,
1196		 * that does not mean every target supports it, and
1197		 * reconfiguration might also have changed that since the
1198		 * check was performed.
1199		 */
1200		if (!ti->num_discard_requests)
1201			return -EOPNOTSUPP;
1202
1203		len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1204
1205		__issue_target_requests(ci, ti, ti->num_discard_requests, len);
 
 
1206
1207		ci->sector += len;
1208	} while (ci->sector_count -= len);
1209
1210	return 0;
1211}
1212
1213static int __clone_and_map(struct clone_info *ci)
 
1214{
1215	struct bio *clone, *bio = ci->bio;
1216	struct dm_target *ti;
1217	sector_t len = 0, max;
1218	struct dm_target_io *tio;
 
1219
1220	if (unlikely(bio->bi_rw & REQ_DISCARD))
1221		return __clone_and_map_discard(ci);
1222
1223	ti = dm_table_find_target(ci->map, ci->sector);
1224	if (!dm_target_is_valid(ti))
1225		return -EIO;
1226
1227	max = max_io_len(ci->sector, ti);
1228
1229	if (ci->sector_count <= max) {
1230		/*
1231		 * Optimise for the simple case where we can do all of
1232		 * the remaining io with a single clone.
1233		 */
1234		__clone_and_map_simple(ci, ti);
1235
1236	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1237		/*
1238		 * There are some bvecs that don't span targets.
1239		 * Do as many of these as possible.
1240		 */
1241		int i;
1242		sector_t remaining = max;
1243		sector_t bv_len;
1244
1245		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1246			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1247
1248			if (bv_len > remaining)
1249				break;
1250
1251			remaining -= bv_len;
1252			len += bv_len;
1253		}
1254
1255		tio = alloc_tio(ci, ti);
1256		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1257				  ci->md->bs);
1258		__map_bio(ti, clone, tio);
1259
1260		ci->sector += len;
1261		ci->sector_count -= len;
1262		ci->idx = i;
1263
1264	} else {
1265		/*
1266		 * Handle a bvec that must be split between two or more targets.
1267		 */
1268		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1269		sector_t remaining = to_sector(bv->bv_len);
1270		unsigned int offset = 0;
1271
1272		do {
1273			if (offset) {
1274				ti = dm_table_find_target(ci->map, ci->sector);
1275				if (!dm_target_is_valid(ti))
1276					return -EIO;
1277
1278				max = max_io_len(ci->sector, ti);
1279			}
1280
1281			len = min(remaining, max);
1282
1283			tio = alloc_tio(ci, ti);
1284			clone = split_bvec(bio, ci->sector, ci->idx,
1285					   bv->bv_offset + offset, len,
1286					   ci->md->bs);
1287
1288			__map_bio(ti, clone, tio);
1289
1290			ci->sector += len;
1291			ci->sector_count -= len;
1292			offset += to_bytes(len);
1293		} while (remaining -= len);
1294
1295		ci->idx++;
1296	}
 
1297
1298	return 0;
1299}
1300
1301/*
1302 * Split the bio into several clones and submit it to targets.
1303 */
1304static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1305{
1306	struct clone_info ci;
1307	int error = 0;
1308
1309	ci.map = dm_get_live_table(md);
1310	if (unlikely(!ci.map)) {
1311		bio_io_error(bio);
1312		return;
1313	}
1314
1315	ci.md = md;
1316	ci.io = alloc_io(md);
1317	ci.io->error = 0;
1318	atomic_set(&ci.io->io_count, 1);
1319	ci.io->bio = bio;
1320	ci.io->md = md;
1321	spin_lock_init(&ci.io->endio_lock);
1322	ci.sector = bio->bi_sector;
1323	ci.idx = bio->bi_idx;
1324
1325	start_io_acct(ci.io);
1326	if (bio->bi_rw & REQ_FLUSH) {
1327		ci.bio = &ci.md->flush_bio;
1328		ci.sector_count = 0;
1329		error = __clone_and_map_empty_flush(&ci);
1330		/* dec_pending submits any data associated with flush */
1331	} else {
1332		ci.bio = bio;
1333		ci.sector_count = bio_sectors(bio);
1334		while (ci.sector_count && !error)
1335			error = __clone_and_map(&ci);
1336	}
1337
1338	/* drop the extra reference count */
1339	dec_pending(ci.io, error);
1340	dm_table_put(ci.map);
1341}
1342/*-----------------------------------------------------------------
1343 * CRUD END
1344 *---------------------------------------------------------------*/
1345
1346static int dm_merge_bvec(struct request_queue *q,
1347			 struct bvec_merge_data *bvm,
1348			 struct bio_vec *biovec)
1349{
1350	struct mapped_device *md = q->queuedata;
1351	struct dm_table *map = dm_get_live_table(md);
1352	struct dm_target *ti;
1353	sector_t max_sectors;
1354	int max_size = 0;
1355
1356	if (unlikely(!map))
1357		goto out;
 
 
1358
1359	ti = dm_table_find_target(map, bvm->bi_sector);
1360	if (!dm_target_is_valid(ti))
1361		goto out_table;
 
1362
1363	/*
1364	 * Find maximum amount of I/O that won't need splitting
1365	 */
1366	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1367			  (sector_t) BIO_MAX_SECTORS);
1368	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1369	if (max_size < 0)
1370		max_size = 0;
1371
1372	/*
1373	 * merge_bvec_fn() returns number of bytes
1374	 * it can accept at this offset
1375	 * max is precomputed maximal io size
1376	 */
1377	if (max_size && ti->type->merge)
1378		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1379	/*
1380	 * If the target doesn't support merge method and some of the devices
1381	 * provided their merge_bvec method (we know this by looking at
1382	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1383	 * entries.  So always set max_size to 0, and the code below allows
1384	 * just one page.
1385	 */
1386	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
 
1387
1388		max_size = 0;
1389
1390out_table:
1391	dm_table_put(map);
1392
1393out:
1394	/*
1395	 * Always allow an entire first page
1396	 */
1397	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1398		max_size = biovec->bv_len;
1399
1400	return max_size;
1401}
1402
1403/*
1404 * The request function that just remaps the bio built up by
1405 * dm_merge_bvec.
1406 */
1407static void _dm_request(struct request_queue *q, struct bio *bio)
1408{
1409	int rw = bio_data_dir(bio);
1410	struct mapped_device *md = q->queuedata;
1411	int cpu;
1412
1413	down_read(&md->io_lock);
1414
1415	cpu = part_stat_lock();
1416	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1417	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1418	part_stat_unlock();
1419
1420	/* if we're suspended, we have to queue this io for later */
1421	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1422		up_read(&md->io_lock);
1423
1424		if (bio_rw(bio) != READA)
1425			queue_io(md, bio);
1426		else
1427			bio_io_error(bio);
1428		return;
1429	}
1430
1431	__split_and_process_bio(md, bio);
1432	up_read(&md->io_lock);
1433	return;
1434}
1435
1436static int dm_request_based(struct mapped_device *md)
1437{
1438	return blk_queue_stackable(md->queue);
1439}
1440
1441static void dm_request(struct request_queue *q, struct bio *bio)
1442{
1443	struct mapped_device *md = q->queuedata;
1444
1445	if (dm_request_based(md))
1446		blk_queue_bio(q, bio);
1447	else
1448		_dm_request(q, bio);
1449}
1450
1451void dm_dispatch_request(struct request *rq)
1452{
1453	int r;
1454
1455	if (blk_queue_io_stat(rq->q))
1456		rq->cmd_flags |= REQ_IO_STAT;
1457
1458	rq->start_time = jiffies;
1459	r = blk_insert_cloned_request(rq->q, rq);
1460	if (r)
1461		dm_complete_request(rq, r);
1462}
1463EXPORT_SYMBOL_GPL(dm_dispatch_request);
1464
1465static void dm_rq_bio_destructor(struct bio *bio)
1466{
1467	struct dm_rq_clone_bio_info *info = bio->bi_private;
1468	struct mapped_device *md = info->tio->md;
1469
1470	free_bio_info(info);
1471	bio_free(bio, md->bs);
 
 
 
 
 
 
 
 
1472}
1473
1474static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1475				 void *data)
1476{
1477	struct dm_rq_target_io *tio = data;
1478	struct mapped_device *md = tio->md;
1479	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1480
1481	if (!info)
1482		return -ENOMEM;
1483
1484	info->orig = bio_orig;
1485	info->tio = tio;
1486	bio->bi_end_io = end_clone_bio;
1487	bio->bi_private = info;
1488	bio->bi_destructor = dm_rq_bio_destructor;
 
 
 
 
 
1489
1490	return 0;
1491}
1492
1493static int setup_clone(struct request *clone, struct request *rq,
1494		       struct dm_rq_target_io *tio)
 
 
1495{
 
 
1496	int r;
1497
1498	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1499			      dm_rq_bio_constructor, tio);
1500	if (r)
 
 
1501		return r;
1502
1503	clone->cmd = rq->cmd;
1504	clone->cmd_len = rq->cmd_len;
1505	clone->sense = rq->sense;
1506	clone->buffer = rq->buffer;
1507	clone->end_io = end_clone_request;
1508	clone->end_io_data = tio;
 
 
1509
1510	return 0;
1511}
1512
1513static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1514				gfp_t gfp_mask)
1515{
1516	struct request *clone;
1517	struct dm_rq_target_io *tio;
1518
1519	tio = alloc_rq_tio(md, gfp_mask);
1520	if (!tio)
1521		return NULL;
1522
1523	tio->md = md;
1524	tio->ti = NULL;
1525	tio->orig = rq;
1526	tio->error = 0;
1527	memset(&tio->info, 0, sizeof(tio->info));
1528
1529	clone = &tio->clone;
1530	if (setup_clone(clone, rq, tio)) {
1531		/* -ENOMEM */
1532		free_rq_tio(tio);
1533		return NULL;
1534	}
1535
1536	return clone;
1537}
1538
 
 
 
1539/*
1540 * Called with the queue lock held.
1541 */
1542static int dm_prep_fn(struct request_queue *q, struct request *rq)
 
1543{
1544	struct mapped_device *md = q->queuedata;
1545	struct request *clone;
 
1546
1547	if (unlikely(rq->special)) {
1548		DMWARN("Already has something in rq->special.");
1549		return BLKPREP_KILL;
1550	}
1551
1552	clone = clone_rq(rq, md, GFP_ATOMIC);
1553	if (!clone)
1554		return BLKPREP_DEFER;
1555
1556	rq->special = clone;
1557	rq->cmd_flags |= REQ_DONTPREP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1558
1559	return BLKPREP_OK;
 
 
1560}
1561
1562/*
1563 * Returns:
1564 * 0  : the request has been processed (not requeued)
1565 * !0 : the request has been requeued
1566 */
1567static int map_request(struct dm_target *ti, struct request *clone,
1568		       struct mapped_device *md)
1569{
1570	int r, requeued = 0;
1571	struct dm_rq_target_io *tio = clone->end_io_data;
 
1572
1573	tio->ti = ti;
1574	r = ti->type->map_rq(ti, clone, &tio->info);
1575	switch (r) {
1576	case DM_MAPIO_SUBMITTED:
1577		/* The target has taken the I/O to submit by itself later */
1578		break;
1579	case DM_MAPIO_REMAPPED:
1580		/* The target has remapped the I/O so dispatch it */
1581		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1582				     blk_rq_pos(tio->orig));
1583		dm_dispatch_request(clone);
1584		break;
1585	case DM_MAPIO_REQUEUE:
1586		/* The target wants to requeue the I/O */
1587		dm_requeue_unmapped_request(clone);
1588		requeued = 1;
1589		break;
1590	default:
1591		if (r > 0) {
1592			DMWARN("unimplemented target map return value: %d", r);
1593			BUG();
1594		}
1595
1596		/* The target wants to complete the I/O */
1597		dm_kill_unmapped_request(clone, r);
1598		break;
1599	}
1600
1601	return requeued;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1602}
1603
1604static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1605{
1606	struct request *clone;
1607
1608	blk_start_request(orig);
1609	clone = orig->special;
1610	atomic_inc(&md->pending[rq_data_dir(clone)]);
1611
1612	/*
1613	 * Hold the md reference here for the in-flight I/O.
1614	 * We can't rely on the reference count by device opener,
1615	 * because the device may be closed during the request completion
1616	 * when all bios are completed.
1617	 * See the comment in rq_completed() too.
1618	 */
1619	dm_get(md);
1620
1621	return clone;
 
 
 
 
1622}
1623
1624/*
1625 * q->request_fn for request-based dm.
1626 * Called with the queue lock held.
1627 */
1628static void dm_request_fn(struct request_queue *q)
1629{
1630	struct mapped_device *md = q->queuedata;
1631	struct dm_table *map = dm_get_live_table(md);
1632	struct dm_target *ti;
1633	struct request *rq, *clone;
1634	sector_t pos;
1635
1636	/*
1637	 * For suspend, check blk_queue_stopped() and increment
1638	 * ->pending within a single queue_lock not to increment the
1639	 * number of in-flight I/Os after the queue is stopped in
1640	 * dm_suspend().
1641	 */
1642	while (!blk_queue_stopped(q)) {
1643		rq = blk_peek_request(q);
1644		if (!rq)
1645			goto delay_and_out;
1646
1647		/* always use block 0 to find the target for flushes for now */
1648		pos = 0;
1649		if (!(rq->cmd_flags & REQ_FLUSH))
1650			pos = blk_rq_pos(rq);
1651
1652		ti = dm_table_find_target(map, pos);
1653		if (!dm_target_is_valid(ti)) {
1654			/*
1655			 * Must perform setup, that dm_done() requires,
1656			 * before calling dm_kill_unmapped_request
1657			 */
1658			DMERR_LIMIT("request attempted access beyond the end of device");
1659			clone = dm_start_request(md, rq);
1660			dm_kill_unmapped_request(clone, -EIO);
1661			continue;
1662		}
1663
1664		if (ti->type->busy && ti->type->busy(ti))
1665			goto delay_and_out;
1666
1667		clone = dm_start_request(md, rq);
1668
1669		spin_unlock(q->queue_lock);
1670		if (map_request(ti, clone, md))
1671			goto requeued;
1672
1673		BUG_ON(!irqs_disabled());
1674		spin_lock(q->queue_lock);
1675	}
1676
1677	goto out;
1678
1679requeued:
1680	BUG_ON(!irqs_disabled());
1681	spin_lock(q->queue_lock);
1682
1683delay_and_out:
1684	blk_delay_queue(q, HZ / 10);
1685out:
1686	dm_table_put(map);
1687}
1688
1689int dm_underlying_device_busy(struct request_queue *q)
1690{
1691	return blk_lld_busy(q);
 
1692}
1693EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1694
1695static int dm_lld_busy(struct request_queue *q)
1696{
1697	int r;
1698	struct mapped_device *md = q->queuedata;
1699	struct dm_table *map = dm_get_live_table(md);
 
 
1700
1701	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1702		r = 1;
1703	else
1704		r = dm_table_any_busy_target(map);
1705
1706	dm_table_put(map);
 
 
1707
1708	return r;
 
 
 
 
 
 
 
 
 
 
1709}
1710
1711static int dm_any_congested(void *congested_data, int bdi_bits)
1712{
1713	int r = bdi_bits;
1714	struct mapped_device *md = congested_data;
1715	struct dm_table *map;
1716
1717	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1718		map = dm_get_live_table(md);
1719		if (map) {
1720			/*
1721			 * Request-based dm cares about only own queue for
1722			 * the query about congestion status of request_queue
1723			 */
1724			if (dm_request_based(md))
1725				r = md->queue->backing_dev_info.state &
1726				    bdi_bits;
1727			else
1728				r = dm_table_any_congested(map, bdi_bits);
1729
1730			dm_table_put(map);
1731		}
1732	}
1733
1734	return r;
1735}
1736
1737/*-----------------------------------------------------------------
1738 * An IDR is used to keep track of allocated minor numbers.
1739 *---------------------------------------------------------------*/
1740static void free_minor(int minor)
1741{
1742	spin_lock(&_minor_lock);
1743	idr_remove(&_minor_idr, minor);
1744	spin_unlock(&_minor_lock);
1745}
1746
1747/*
1748 * See if the device with a specific minor # is free.
1749 */
1750static int specific_minor(int minor)
1751{
1752	int r, m;
1753
1754	if (minor >= (1 << MINORBITS))
1755		return -EINVAL;
1756
1757	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1758	if (!r)
1759		return -ENOMEM;
1760
1761	spin_lock(&_minor_lock);
1762
1763	if (idr_find(&_minor_idr, minor)) {
1764		r = -EBUSY;
1765		goto out;
1766	}
1767
1768	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1769	if (r)
1770		goto out;
1771
1772	if (m != minor) {
1773		idr_remove(&_minor_idr, m);
1774		r = -EBUSY;
1775		goto out;
1776	}
1777
1778out:
1779	spin_unlock(&_minor_lock);
1780	return r;
 
 
 
1781}
1782
1783static int next_free_minor(int *minor)
1784{
1785	int r, m;
1786
1787	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1788	if (!r)
1789		return -ENOMEM;
1790
 
1791	spin_lock(&_minor_lock);
1792
1793	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1794	if (r)
1795		goto out;
1796
1797	if (m >= (1 << MINORBITS)) {
1798		idr_remove(&_minor_idr, m);
1799		r = -ENOSPC;
1800		goto out;
1801	}
1802
1803	*minor = m;
1804
1805out:
1806	spin_unlock(&_minor_lock);
1807	return r;
 
 
 
 
1808}
1809
1810static const struct block_device_operations dm_blk_dops;
 
1811
1812static void dm_wq_work(struct work_struct *work);
1813
1814static void dm_init_md_queue(struct mapped_device *md)
1815{
1816	/*
1817	 * Request-based dm devices cannot be stacked on top of bio-based dm
1818	 * devices.  The type of this dm device has not been decided yet.
1819	 * The type is decided at the first table loading time.
1820	 * To prevent problematic device stacking, clear the queue flag
1821	 * for request stacking support until then.
1822	 *
1823	 * This queue is new, so no concurrency on the queue_flags.
1824	 */
1825	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
 
1826
1827	md->queue->queuedata = md;
1828	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1829	md->queue->backing_dev_info.congested_data = md;
1830	blk_queue_make_request(md->queue, dm_request);
1831	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1832	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1833}
1834
1835/*
1836 * Allocate and initialise a blank device with a given minor.
1837 */
1838static struct mapped_device *alloc_dev(int minor)
1839{
1840	int r;
1841	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1842	void *old_md;
1843
 
1844	if (!md) {
1845		DMWARN("unable to allocate device, out of memory.");
1846		return NULL;
1847	}
1848
1849	if (!try_module_get(THIS_MODULE))
1850		goto bad_module_get;
1851
1852	/* get a minor number for the dev */
1853	if (minor == DM_ANY_MINOR)
1854		r = next_free_minor(&minor);
1855	else
1856		r = specific_minor(minor);
1857	if (r < 0)
1858		goto bad_minor;
1859
 
 
 
 
 
 
1860	md->type = DM_TYPE_NONE;
1861	init_rwsem(&md->io_lock);
1862	mutex_init(&md->suspend_lock);
1863	mutex_init(&md->type_lock);
 
1864	spin_lock_init(&md->deferred_lock);
1865	rwlock_init(&md->map_lock);
1866	atomic_set(&md->holders, 1);
1867	atomic_set(&md->open_count, 0);
1868	atomic_set(&md->event_nr, 0);
1869	atomic_set(&md->uevent_seq, 0);
1870	INIT_LIST_HEAD(&md->uevent_list);
 
1871	spin_lock_init(&md->uevent_lock);
1872
1873	md->queue = blk_alloc_queue(GFP_KERNEL);
1874	if (!md->queue)
1875		goto bad_queue;
1876
1877	dm_init_md_queue(md);
1878
1879	md->disk = alloc_disk(1);
1880	if (!md->disk)
1881		goto bad_disk;
1882
1883	atomic_set(&md->pending[0], 0);
1884	atomic_set(&md->pending[1], 0);
1885	init_waitqueue_head(&md->wait);
1886	INIT_WORK(&md->work, dm_wq_work);
1887	init_waitqueue_head(&md->eventq);
 
1888
1889	md->disk->major = _major;
1890	md->disk->first_minor = minor;
1891	md->disk->fops = &dm_blk_dops;
1892	md->disk->queue = md->queue;
1893	md->disk->private_data = md;
1894	sprintf(md->disk->disk_name, "dm-%d", minor);
1895	add_disk(md->disk);
 
 
 
 
 
 
 
 
1896	format_dev_t(md->name, MKDEV(_major, minor));
1897
1898	md->wq = alloc_workqueue("kdmflush",
1899				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1900	if (!md->wq)
1901		goto bad_thread;
1902
1903	md->bdev = bdget_disk(md->disk, 0);
1904	if (!md->bdev)
1905		goto bad_bdev;
1906
1907	bio_init(&md->flush_bio);
1908	md->flush_bio.bi_bdev = md->bdev;
1909	md->flush_bio.bi_rw = WRITE_FLUSH;
1910
1911	/* Populate the mapping, nobody knows we exist yet */
1912	spin_lock(&_minor_lock);
1913	old_md = idr_replace(&_minor_idr, md, minor);
1914	spin_unlock(&_minor_lock);
1915
1916	BUG_ON(old_md != MINOR_ALLOCED);
1917
1918	return md;
1919
1920bad_bdev:
1921	destroy_workqueue(md->wq);
1922bad_thread:
1923	del_gendisk(md->disk);
1924	put_disk(md->disk);
1925bad_disk:
1926	blk_cleanup_queue(md->queue);
1927bad_queue:
1928	free_minor(minor);
1929bad_minor:
1930	module_put(THIS_MODULE);
1931bad_module_get:
1932	kfree(md);
1933	return NULL;
1934}
1935
1936static void unlock_fs(struct mapped_device *md);
1937
1938static void free_dev(struct mapped_device *md)
1939{
1940	int minor = MINOR(disk_devt(md->disk));
1941
1942	unlock_fs(md);
1943	bdput(md->bdev);
1944	destroy_workqueue(md->wq);
1945	if (md->tio_pool)
1946		mempool_destroy(md->tio_pool);
1947	if (md->io_pool)
1948		mempool_destroy(md->io_pool);
1949	if (md->bs)
1950		bioset_free(md->bs);
1951	blk_integrity_unregister(md->disk);
1952	del_gendisk(md->disk);
1953	free_minor(minor);
1954
1955	spin_lock(&_minor_lock);
1956	md->disk->private_data = NULL;
1957	spin_unlock(&_minor_lock);
 
 
1958
1959	put_disk(md->disk);
1960	blk_cleanup_queue(md->queue);
1961	module_put(THIS_MODULE);
1962	kfree(md);
1963}
1964
1965static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1966{
1967	struct dm_md_mempools *p;
 
1968
1969	if (md->io_pool && md->tio_pool && md->bs)
1970		/* the md already has necessary mempools */
1971		goto out;
 
 
 
 
 
1972
1973	p = dm_table_get_md_mempools(t);
1974	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
 
 
 
 
 
 
 
 
 
1975
1976	md->io_pool = p->io_pool;
1977	p->io_pool = NULL;
1978	md->tio_pool = p->tio_pool;
1979	p->tio_pool = NULL;
1980	md->bs = p->bs;
1981	p->bs = NULL;
1982
 
 
 
 
 
 
1983out:
1984	/* mempool bind completed, now no need any mempools in the table */
1985	dm_table_free_md_mempools(t);
 
1986}
1987
1988/*
1989 * Bind a table to the device.
1990 */
1991static void event_callback(void *context)
1992{
1993	unsigned long flags;
1994	LIST_HEAD(uevents);
1995	struct mapped_device *md = (struct mapped_device *) context;
1996
1997	spin_lock_irqsave(&md->uevent_lock, flags);
1998	list_splice_init(&md->uevent_list, &uevents);
1999	spin_unlock_irqrestore(&md->uevent_lock, flags);
2000
2001	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2002
2003	atomic_inc(&md->event_nr);
2004	wake_up(&md->eventq);
 
2005}
2006
2007/*
2008 * Protected by md->suspend_lock obtained by dm_swap_table().
2009 */
2010static void __set_size(struct mapped_device *md, sector_t size)
2011{
 
 
2012	set_capacity(md->disk, size);
2013
2014	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2015}
2016
2017/*
2018 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2019 *
2020 * If this function returns 0, then the device is either a non-dm
2021 * device without a merge_bvec_fn, or it is a dm device that is
2022 * able to split any bios it receives that are too big.
2023 */
2024int dm_queue_merge_is_compulsory(struct request_queue *q)
2025{
2026	struct mapped_device *dev_md;
2027
2028	if (!q->merge_bvec_fn)
2029		return 0;
2030
2031	if (q->make_request_fn == dm_request) {
2032		dev_md = q->queuedata;
2033		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2034			return 0;
2035	}
2036
2037	return 1;
2038}
2039
2040static int dm_device_merge_is_compulsory(struct dm_target *ti,
2041					 struct dm_dev *dev, sector_t start,
2042					 sector_t len, void *data)
2043{
2044	struct block_device *bdev = dev->bdev;
2045	struct request_queue *q = bdev_get_queue(bdev);
2046
2047	return dm_queue_merge_is_compulsory(q);
2048}
2049
2050/*
2051 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2052 * on the properties of the underlying devices.
2053 */
2054static int dm_table_merge_is_optional(struct dm_table *table)
2055{
2056	unsigned i = 0;
2057	struct dm_target *ti;
2058
2059	while (i < dm_table_get_num_targets(table)) {
2060		ti = dm_table_get_target(table, i++);
2061
2062		if (ti->type->iterate_devices &&
2063		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2064			return 0;
2065	}
2066
2067	return 1;
2068}
2069
2070/*
2071 * Returns old map, which caller must destroy.
2072 */
2073static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2074			       struct queue_limits *limits)
2075{
2076	struct dm_table *old_map;
2077	struct request_queue *q = md->queue;
 
2078	sector_t size;
2079	unsigned long flags;
2080	int merge_is_optional;
 
2081
2082	size = dm_table_get_size(t);
2083
2084	/*
2085	 * Wipe any geometry if the size of the table changed.
2086	 */
2087	if (size != get_capacity(md->disk))
2088		memset(&md->geometry, 0, sizeof(md->geometry));
2089
2090	__set_size(md, size);
2091
2092	dm_table_event_callback(t, event_callback, md);
2093
2094	/*
2095	 * The queue hasn't been stopped yet, if the old table type wasn't
2096	 * for request-based during suspension.  So stop it to prevent
2097	 * I/O mapping before resume.
2098	 * This must be done before setting the queue restrictions,
2099	 * because request-based dm may be run just after the setting.
2100	 */
2101	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2102		stop_queue(q);
2103
2104	__bind_mempools(md, t);
 
 
 
 
 
 
 
 
2105
2106	merge_is_optional = dm_table_merge_is_optional(t);
 
 
 
 
2107
2108	write_lock_irqsave(&md->map_lock, flags);
2109	old_map = md->map;
2110	md->map = t;
2111	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2112
2113	dm_table_set_restrictions(t, q, limits);
2114	if (merge_is_optional)
2115		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2116	else
2117		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2118	write_unlock_irqrestore(&md->map_lock, flags);
2119
 
2120	return old_map;
2121}
2122
2123/*
2124 * Returns unbound table for the caller to free.
2125 */
2126static struct dm_table *__unbind(struct mapped_device *md)
2127{
2128	struct dm_table *map = md->map;
2129	unsigned long flags;
2130
2131	if (!map)
2132		return NULL;
2133
2134	dm_table_event_callback(map, NULL, NULL);
2135	write_lock_irqsave(&md->map_lock, flags);
2136	md->map = NULL;
2137	write_unlock_irqrestore(&md->map_lock, flags);
2138
2139	return map;
2140}
2141
2142/*
2143 * Constructor for a new device.
2144 */
2145int dm_create(int minor, struct mapped_device **result)
2146{
 
2147	struct mapped_device *md;
2148
2149	md = alloc_dev(minor);
2150	if (!md)
2151		return -ENXIO;
2152
2153	dm_sysfs_init(md);
 
 
 
 
2154
2155	*result = md;
2156	return 0;
2157}
2158
2159/*
2160 * Functions to manage md->type.
2161 * All are required to hold md->type_lock.
2162 */
2163void dm_lock_md_type(struct mapped_device *md)
2164{
2165	mutex_lock(&md->type_lock);
2166}
2167
2168void dm_unlock_md_type(struct mapped_device *md)
2169{
2170	mutex_unlock(&md->type_lock);
2171}
2172
2173void dm_set_md_type(struct mapped_device *md, unsigned type)
2174{
 
2175	md->type = type;
2176}
2177
2178unsigned dm_get_md_type(struct mapped_device *md)
2179{
2180	return md->type;
2181}
2182
2183struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2184{
2185	return md->immutable_target_type;
2186}
2187
2188/*
2189 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
 
2190 */
2191static int dm_init_request_based_queue(struct mapped_device *md)
2192{
2193	struct request_queue *q = NULL;
2194
2195	if (md->queue->elevator)
2196		return 1;
2197
2198	/* Fully initialize the queue */
2199	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2200	if (!q)
2201		return 0;
2202
2203	md->queue = q;
2204	dm_init_md_queue(md);
2205	blk_queue_softirq_done(md->queue, dm_softirq_done);
2206	blk_queue_prep_rq(md->queue, dm_prep_fn);
2207	blk_queue_lld_busy(md->queue, dm_lld_busy);
2208
2209	elv_register_queue(md->queue);
2210
2211	return 1;
2212}
 
2213
2214/*
2215 * Setup the DM device's queue based on md's type
2216 */
2217int dm_setup_md_queue(struct mapped_device *md)
2218{
2219	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2220	    !dm_init_request_based_queue(md)) {
2221		DMWARN("Cannot initialize queue for request-based mapped device");
2222		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2223	}
2224
 
 
 
 
 
 
 
 
2225	return 0;
2226}
2227
2228static struct mapped_device *dm_find_md(dev_t dev)
2229{
2230	struct mapped_device *md;
2231	unsigned minor = MINOR(dev);
2232
2233	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2234		return NULL;
2235
2236	spin_lock(&_minor_lock);
2237
2238	md = idr_find(&_minor_idr, minor);
2239	if (md && (md == MINOR_ALLOCED ||
2240		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2241		   dm_deleting_md(md) ||
2242		   test_bit(DMF_FREEING, &md->flags))) {
2243		md = NULL;
2244		goto out;
2245	}
2246
2247out:
2248	spin_unlock(&_minor_lock);
2249
2250	return md;
2251}
2252
2253struct mapped_device *dm_get_md(dev_t dev)
2254{
2255	struct mapped_device *md = dm_find_md(dev);
2256
2257	if (md)
2258		dm_get(md);
2259
2260	return md;
2261}
2262EXPORT_SYMBOL_GPL(dm_get_md);
2263
2264void *dm_get_mdptr(struct mapped_device *md)
2265{
2266	return md->interface_ptr;
2267}
2268
2269void dm_set_mdptr(struct mapped_device *md, void *ptr)
2270{
2271	md->interface_ptr = ptr;
2272}
2273
2274void dm_get(struct mapped_device *md)
2275{
2276	atomic_inc(&md->holders);
2277	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2278}
2279
 
 
 
 
 
 
 
 
 
 
 
 
 
2280const char *dm_device_name(struct mapped_device *md)
2281{
2282	return md->name;
2283}
2284EXPORT_SYMBOL_GPL(dm_device_name);
2285
2286static void __dm_destroy(struct mapped_device *md, bool wait)
2287{
2288	struct dm_table *map;
 
2289
2290	might_sleep();
2291
2292	spin_lock(&_minor_lock);
2293	map = dm_get_live_table(md);
2294	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2295	set_bit(DMF_FREEING, &md->flags);
2296	spin_unlock(&_minor_lock);
2297
 
 
 
 
 
 
 
 
2298	if (!dm_suspended_md(md)) {
2299		dm_table_presuspend_targets(map);
2300		dm_table_postsuspend_targets(map);
2301	}
 
 
 
2302
2303	/*
2304	 * Rare, but there may be I/O requests still going to complete,
2305	 * for example.  Wait for all references to disappear.
2306	 * No one should increment the reference count of the mapped_device,
2307	 * after the mapped_device state becomes DMF_FREEING.
2308	 */
2309	if (wait)
2310		while (atomic_read(&md->holders))
2311			msleep(1);
2312	else if (atomic_read(&md->holders))
2313		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2314		       dm_device_name(md), atomic_read(&md->holders));
2315
2316	dm_sysfs_exit(md);
2317	dm_table_put(map);
2318	dm_table_destroy(__unbind(md));
2319	free_dev(md);
2320}
2321
2322void dm_destroy(struct mapped_device *md)
2323{
2324	__dm_destroy(md, true);
2325}
2326
2327void dm_destroy_immediate(struct mapped_device *md)
2328{
2329	__dm_destroy(md, false);
2330}
2331
2332void dm_put(struct mapped_device *md)
2333{
2334	atomic_dec(&md->holders);
2335}
2336EXPORT_SYMBOL_GPL(dm_put);
2337
2338static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2339{
2340	int r = 0;
2341	DECLARE_WAITQUEUE(wait, current);
2342
2343	add_wait_queue(&md->wait, &wait);
2344
2345	while (1) {
2346		set_current_state(interruptible);
2347
2348		if (!md_in_flight(md))
2349			break;
2350
2351		if (interruptible == TASK_INTERRUPTIBLE &&
2352		    signal_pending(current)) {
2353			r = -EINTR;
2354			break;
2355		}
2356
2357		io_schedule();
2358	}
2359	set_current_state(TASK_RUNNING);
2360
2361	remove_wait_queue(&md->wait, &wait);
2362
2363	return r;
2364}
2365
2366/*
2367 * Process the deferred bios
2368 */
2369static void dm_wq_work(struct work_struct *work)
2370{
2371	struct mapped_device *md = container_of(work, struct mapped_device,
2372						work);
2373	struct bio *c;
 
 
2374
2375	down_read(&md->io_lock);
2376
2377	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2378		spin_lock_irq(&md->deferred_lock);
2379		c = bio_list_pop(&md->deferred);
2380		spin_unlock_irq(&md->deferred_lock);
2381
2382		if (!c)
2383			break;
2384
2385		up_read(&md->io_lock);
2386
2387		if (dm_request_based(md))
2388			generic_make_request(c);
2389		else
2390			__split_and_process_bio(md, c);
2391
2392		down_read(&md->io_lock);
2393	}
2394
2395	up_read(&md->io_lock);
2396}
2397
2398static void dm_queue_flush(struct mapped_device *md)
2399{
2400	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2401	smp_mb__after_clear_bit();
2402	queue_work(md->wq, &md->work);
2403}
2404
2405/*
2406 * Swap in a new table, returning the old one for the caller to destroy.
2407 */
2408struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2409{
2410	struct dm_table *map = ERR_PTR(-EINVAL);
2411	struct queue_limits limits;
2412	int r;
2413
2414	mutex_lock(&md->suspend_lock);
2415
2416	/* device must be suspended */
2417	if (!dm_suspended_md(md))
2418		goto out;
2419
2420	r = dm_calculate_queue_limits(table, &limits);
2421	if (r) {
2422		map = ERR_PTR(r);
2423		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2424	}
2425
2426	map = __bind(md, table, &limits);
 
2427
2428out:
2429	mutex_unlock(&md->suspend_lock);
2430	return map;
2431}
2432
2433/*
2434 * Functions to lock and unlock any filesystem running on the
2435 * device.
2436 */
2437static int lock_fs(struct mapped_device *md)
2438{
2439	int r;
2440
2441	WARN_ON(md->frozen_sb);
2442
2443	md->frozen_sb = freeze_bdev(md->bdev);
2444	if (IS_ERR(md->frozen_sb)) {
2445		r = PTR_ERR(md->frozen_sb);
2446		md->frozen_sb = NULL;
2447		return r;
2448	}
2449
2450	set_bit(DMF_FROZEN, &md->flags);
2451
2452	return 0;
2453}
2454
2455static void unlock_fs(struct mapped_device *md)
2456{
2457	if (!test_bit(DMF_FROZEN, &md->flags))
2458		return;
2459
2460	thaw_bdev(md->bdev, md->frozen_sb);
2461	md->frozen_sb = NULL;
2462	clear_bit(DMF_FROZEN, &md->flags);
2463}
2464
2465/*
2466 * We need to be able to change a mapping table under a mounted
2467 * filesystem.  For example we might want to move some data in
2468 * the background.  Before the table can be swapped with
2469 * dm_bind_table, dm_suspend must be called to flush any in
2470 * flight bios and ensure that any further io gets deferred.
2471 */
2472/*
2473 * Suspend mechanism in request-based dm.
2474 *
2475 * 1. Flush all I/Os by lock_fs() if needed.
2476 * 2. Stop dispatching any I/O by stopping the request_queue.
2477 * 3. Wait for all in-flight I/Os to be completed or requeued.
2478 *
2479 * To abort suspend, start the request_queue.
2480 */
2481int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
 
 
 
 
2482{
2483	struct dm_table *map = NULL;
2484	int r = 0;
2485	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2486	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2487
2488	mutex_lock(&md->suspend_lock);
2489
2490	if (dm_suspended_md(md)) {
2491		r = -EINVAL;
2492		goto out_unlock;
2493	}
2494
2495	map = dm_get_live_table(md);
2496
2497	/*
2498	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2499	 * This flag is cleared before dm_suspend returns.
2500	 */
2501	if (noflush)
2502		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 
 
2503
2504	/* This does not get reverted if there's an error later. */
 
 
 
2505	dm_table_presuspend_targets(map);
2506
2507	/*
2508	 * Flush I/O to the device.
2509	 * Any I/O submitted after lock_fs() may not be flushed.
2510	 * noflush takes precedence over do_lockfs.
2511	 * (lock_fs() flushes I/Os and waits for them to complete.)
2512	 */
2513	if (!noflush && do_lockfs) {
2514		r = lock_fs(md);
2515		if (r)
2516			goto out;
 
 
2517	}
2518
2519	/*
2520	 * Here we must make sure that no processes are submitting requests
2521	 * to target drivers i.e. no one may be executing
2522	 * __split_and_process_bio. This is called from dm_request and
2523	 * dm_wq_work.
2524	 *
2525	 * To get all processes out of __split_and_process_bio in dm_request,
2526	 * we take the write lock. To prevent any process from reentering
2527	 * __split_and_process_bio from dm_request and quiesce the thread
2528	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2529	 * flush_workqueue(md->wq).
2530	 */
2531	down_write(&md->io_lock);
2532	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2533	up_write(&md->io_lock);
 
2534
2535	/*
2536	 * Stop md->queue before flushing md->wq in case request-based
2537	 * dm defers requests to md->wq from md->queue.
2538	 */
2539	if (dm_request_based(md))
2540		stop_queue(md->queue);
2541
2542	flush_workqueue(md->wq);
2543
2544	/*
2545	 * At this point no more requests are entering target request routines.
2546	 * We call dm_wait_for_completion to wait for all existing requests
2547	 * to finish.
2548	 */
2549	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
 
 
2550
2551	down_write(&md->io_lock);
2552	if (noflush)
2553		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2554	up_write(&md->io_lock);
 
2555
2556	/* were we interrupted ? */
2557	if (r < 0) {
2558		dm_queue_flush(md);
2559
2560		if (dm_request_based(md))
2561			start_queue(md->queue);
2562
2563		unlock_fs(md);
2564		goto out; /* pushback list is already flushed, so skip flush */
 
2565	}
2566
2567	/*
2568	 * If dm_wait_for_completion returned 0, the device is completely
2569	 * quiescent now. There is no request-processing activity. All new
2570	 * requests are being added to md->deferred list.
2571	 */
2572
2573	set_bit(DMF_SUSPENDED, &md->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2574
2575	dm_table_postsuspend_targets(map);
 
2576
2577out:
2578	dm_table_put(map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2579
2580out_unlock:
2581	mutex_unlock(&md->suspend_lock);
2582	return r;
2583}
2584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2585int dm_resume(struct mapped_device *md)
2586{
2587	int r = -EINVAL;
2588	struct dm_table *map = NULL;
2589
2590	mutex_lock(&md->suspend_lock);
 
 
 
2591	if (!dm_suspended_md(md))
2592		goto out;
2593
2594	map = dm_get_live_table(md);
 
 
 
 
 
 
 
 
 
2595	if (!map || !dm_table_get_size(map))
2596		goto out;
2597
2598	r = dm_table_resume_targets(map);
2599	if (r)
2600		goto out;
2601
2602	dm_queue_flush(md);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2603
2604	/*
2605	 * Flushing deferred I/Os must be done after targets are resumed
2606	 * so that mapping of targets can work correctly.
2607	 * Request-based dm is queueing the deferred I/Os in its request_queue.
 
2608	 */
2609	if (dm_request_based(md))
2610		start_queue(md->queue);
2611
2612	unlock_fs(md);
 
2613
2614	clear_bit(DMF_SUSPENDED, &md->flags);
 
 
2615
2616	r = 0;
2617out:
2618	dm_table_put(map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2619	mutex_unlock(&md->suspend_lock);
 
 
2620
2621	return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2622}
 
2623
2624/*-----------------------------------------------------------------
2625 * Event notification.
2626 *---------------------------------------------------------------*/
2627int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2628		       unsigned cookie)
2629{
2630	char udev_cookie[DM_COOKIE_LENGTH];
2631	char *envp[] = { udev_cookie, NULL };
2632
2633	if (!cookie)
2634		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2635	else {
2636		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2637			 DM_COOKIE_ENV_VAR_NAME, cookie);
2638		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2639					  action, envp);
2640	}
2641}
2642
2643uint32_t dm_next_uevent_seq(struct mapped_device *md)
2644{
2645	return atomic_add_return(1, &md->uevent_seq);
2646}
2647
2648uint32_t dm_get_event_nr(struct mapped_device *md)
2649{
2650	return atomic_read(&md->event_nr);
2651}
2652
2653int dm_wait_event(struct mapped_device *md, int event_nr)
2654{
2655	return wait_event_interruptible(md->eventq,
2656			(event_nr != atomic_read(&md->event_nr)));
2657}
2658
2659void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2660{
2661	unsigned long flags;
2662
2663	spin_lock_irqsave(&md->uevent_lock, flags);
2664	list_add(elist, &md->uevent_list);
2665	spin_unlock_irqrestore(&md->uevent_lock, flags);
2666}
2667
2668/*
2669 * The gendisk is only valid as long as you have a reference
2670 * count on 'md'.
2671 */
2672struct gendisk *dm_disk(struct mapped_device *md)
2673{
2674	return md->disk;
2675}
 
2676
2677struct kobject *dm_kobject(struct mapped_device *md)
2678{
2679	return &md->kobj;
2680}
2681
2682/*
2683 * struct mapped_device should not be exported outside of dm.c
2684 * so use this check to verify that kobj is part of md structure
2685 */
2686struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2687{
2688	struct mapped_device *md;
2689
2690	md = container_of(kobj, struct mapped_device, kobj);
2691	if (&md->kobj != kobj)
2692		return NULL;
2693
2694	if (test_bit(DMF_FREEING, &md->flags) ||
2695	    dm_deleting_md(md))
2696		return NULL;
2697
 
 
 
 
 
2698	dm_get(md);
 
 
 
2699	return md;
2700}
2701
2702int dm_suspended_md(struct mapped_device *md)
2703{
2704	return test_bit(DMF_SUSPENDED, &md->flags);
2705}
2706
 
 
 
 
 
 
 
 
 
 
2707int dm_suspended(struct dm_target *ti)
2708{
2709	return dm_suspended_md(dm_table_get_md(ti->table));
2710}
2711EXPORT_SYMBOL_GPL(dm_suspended);
2712
2713int dm_noflush_suspending(struct dm_target *ti)
2714{
2715	return __noflush_suspending(dm_table_get_md(ti->table));
2716}
2717EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2718
2719struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2720{
2721	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2722	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
 
 
 
 
2723
2724	if (!pools)
2725		return NULL;
2726
2727	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2728			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2729			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2730	if (!pools->io_pool)
2731		goto free_pools_and_out;
2732
2733	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2734			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2735			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2736	if (!pools->tio_pool)
2737		goto free_io_pool_and_out;
2738
2739	pools->bs = bioset_create(pool_size, 0);
2740	if (!pools->bs)
2741		goto free_tio_pool_and_out;
2742
2743	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2744		goto free_bioset_and_out;
2745
2746	return pools;
 
2747
2748free_bioset_and_out:
2749	bioset_free(pools->bs);
 
2750
2751free_tio_pool_and_out:
2752	mempool_destroy(pools->tio_pool);
2753
2754free_io_pool_and_out:
2755	mempool_destroy(pools->io_pool);
2756
2757free_pools_and_out:
2758	kfree(pools);
2759
2760	return NULL;
2761}
2762
2763void dm_free_md_mempools(struct dm_md_mempools *pools)
2764{
2765	if (!pools)
2766		return;
2767
2768	if (pools->io_pool)
2769		mempool_destroy(pools->io_pool);
2770
2771	if (pools->tio_pool)
2772		mempool_destroy(pools->tio_pool);
2773
2774	if (pools->bs)
2775		bioset_free(pools->bs);
 
 
 
 
2776
2777	kfree(pools);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2778}
2779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2780static const struct block_device_operations dm_blk_dops = {
2781	.open = dm_blk_open,
2782	.release = dm_blk_close,
2783	.ioctl = dm_blk_ioctl,
2784	.getgeo = dm_blk_getgeo,
 
 
2785	.owner = THIS_MODULE
2786};
2787
2788EXPORT_SYMBOL(dm_get_mapinfo);
 
 
 
 
 
2789
2790/*
2791 * module hooks
2792 */
2793module_init(dm_init);
2794module_exit(dm_exit);
2795
2796module_param(major, uint, 0);
2797MODULE_PARM_DESC(major, "The major number of the device mapper");
 
 
 
 
 
 
 
2798MODULE_DESCRIPTION(DM_NAME " driver");
2799MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2800MODULE_LICENSE("GPL");
v5.4
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/sched/signal.h>
  16#include <linux/blkpg.h>
  17#include <linux/bio.h>
  18#include <linux/mempool.h>
  19#include <linux/dax.h>
  20#include <linux/slab.h>
  21#include <linux/idr.h>
  22#include <linux/uio.h>
  23#include <linux/hdreg.h>
  24#include <linux/delay.h>
  25#include <linux/wait.h>
  26#include <linux/pr.h>
  27#include <linux/refcount.h>
  28
  29#define DM_MSG_PREFIX "core"
  30
 
 
 
 
 
 
 
 
 
 
  31/*
  32 * Cookies are numeric values sent with CHANGE and REMOVE
  33 * uevents while resuming, removing or renaming the device.
  34 */
  35#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  36#define DM_COOKIE_LENGTH 24
  37
  38static const char *_name = DM_NAME;
  39
  40static unsigned int major = 0;
  41static unsigned int _major = 0;
  42
  43static DEFINE_IDR(_minor_idr);
  44
  45static DEFINE_SPINLOCK(_minor_lock);
  46
  47static void do_deferred_remove(struct work_struct *w);
  48
  49static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  50
  51static struct workqueue_struct *deferred_remove_workqueue;
  52
  53atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  54DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  55
  56void dm_issue_global_event(void)
  57{
  58	atomic_inc(&dm_global_event_nr);
  59	wake_up(&dm_global_eventq);
  60}
  61
  62/*
  63 * One of these is allocated (on-stack) per original bio.
 
  64 */
  65struct clone_info {
  66	struct dm_table *map;
 
 
  67	struct bio *bio;
  68	struct dm_io *io;
  69	sector_t sector;
  70	unsigned sector_count;
  71};
  72
  73/*
  74 * One of these is allocated per clone bio.
 
 
  75 */
  76#define DM_TIO_MAGIC 7282014
  77struct dm_target_io {
  78	unsigned magic;
  79	struct dm_io *io;
  80	struct dm_target *ti;
  81	unsigned target_bio_nr;
  82	unsigned *len_ptr;
  83	bool inside_dm_io;
  84	struct bio clone;
  85};
  86
  87/*
  88 * One of these is allocated per original bio.
  89 * It contains the first clone used for that original.
  90 */
  91#define DM_IO_MAGIC 5191977
  92struct dm_io {
  93	unsigned magic;
  94	struct mapped_device *md;
  95	blk_status_t status;
  96	atomic_t io_count;
  97	struct bio *orig_bio;
  98	unsigned long start_time;
  99	spinlock_t endio_lock;
 100	struct dm_stats_aux stats_aux;
 101	/* last member of dm_target_io is 'struct bio' */
 102	struct dm_target_io tio;
 103};
 104
 105void *dm_per_bio_data(struct bio *bio, size_t data_size)
 106{
 107	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 108	if (!tio->inside_dm_io)
 109		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
 110	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
 111}
 112EXPORT_SYMBOL_GPL(dm_per_bio_data);
 113
 114struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 115{
 116	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 117	if (io->magic == DM_IO_MAGIC)
 118		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
 119	BUG_ON(io->magic != DM_TIO_MAGIC);
 120	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
 121}
 122EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 123
 124unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 125{
 126	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 
 
 127}
 128EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 129
 130#define MINOR_ALLOCED ((void *)-1)
 131
 132/*
 133 * Bits for the md->flags field.
 134 */
 135#define DMF_BLOCK_IO_FOR_SUSPEND 0
 136#define DMF_SUSPENDED 1
 137#define DMF_FROZEN 2
 138#define DMF_FREEING 3
 139#define DMF_DELETING 4
 140#define DMF_NOFLUSH_SUSPENDING 5
 141#define DMF_DEFERRED_REMOVE 6
 142#define DMF_SUSPENDED_INTERNALLY 7
 143
 144#define DM_NUMA_NODE NUMA_NO_NODE
 145static int dm_numa_node = DM_NUMA_NODE;
 146
 147/*
 148 * For mempools pre-allocation at the table loading time.
 149 */
 150struct dm_md_mempools {
 151	struct bio_set bs;
 152	struct bio_set io_bs;
 153};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154
 155struct table_device {
 156	struct list_head list;
 157	refcount_t count;
 158	struct dm_dev dm_dev;
 159};
 
 
 
 160
 161/*
 162 * Bio-based DM's mempools' reserved IOs set by the user.
 163 */
 164#define RESERVED_BIO_BASED_IOS		16
 165static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 166
 167static int __dm_get_module_param_int(int *module_param, int min, int max)
 168{
 169	int param = READ_ONCE(*module_param);
 170	int modified_param = 0;
 171	bool modified = true;
 172
 173	if (param < min)
 174		modified_param = min;
 175	else if (param > max)
 176		modified_param = max;
 177	else
 178		modified = false;
 179
 180	if (modified) {
 181		(void)cmpxchg(module_param, param, modified_param);
 182		param = modified_param;
 183	}
 184
 185	return param;
 186}
 
 
 
 
 
 
 187
 188unsigned __dm_get_module_param(unsigned *module_param,
 189			       unsigned def, unsigned max)
 190{
 191	unsigned param = READ_ONCE(*module_param);
 192	unsigned modified_param = 0;
 193
 194	if (!param)
 195		modified_param = def;
 196	else if (param > max)
 197		modified_param = max;
 198
 199	if (modified_param) {
 200		(void)cmpxchg(module_param, param, modified_param);
 201		param = modified_param;
 202	}
 203
 204	return param;
 205}
 
 206
 207unsigned dm_get_reserved_bio_based_ios(void)
 208{
 209	return __dm_get_module_param(&reserved_bio_based_ios,
 210				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 211}
 212EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 
 
 213
 214static unsigned dm_get_numa_node(void)
 215{
 216	return __dm_get_module_param_int(&dm_numa_node,
 217					 DM_NUMA_NODE, num_online_nodes() - 1);
 218}
 219
 220static int __init local_init(void)
 221{
 222	int r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223
 224	r = dm_uevent_init();
 225	if (r)
 226		return r;
 227
 228	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 229	if (!deferred_remove_workqueue) {
 230		r = -ENOMEM;
 231		goto out_uevent_exit;
 232	}
 233
 234	_major = major;
 235	r = register_blkdev(_major, _name);
 236	if (r < 0)
 237		goto out_free_workqueue;
 238
 239	if (!_major)
 240		_major = r;
 241
 242	return 0;
 243
 244out_free_workqueue:
 245	destroy_workqueue(deferred_remove_workqueue);
 246out_uevent_exit:
 247	dm_uevent_exit();
 
 
 
 
 
 
 
 
 248
 249	return r;
 250}
 251
 252static void local_exit(void)
 253{
 254	flush_scheduled_work();
 255	destroy_workqueue(deferred_remove_workqueue);
 256
 
 257	unregister_blkdev(_major, _name);
 258	dm_uevent_exit();
 259
 260	_major = 0;
 261
 262	DMINFO("cleaned up");
 263}
 264
 265static int (*_inits[])(void) __initdata = {
 266	local_init,
 267	dm_target_init,
 268	dm_linear_init,
 269	dm_stripe_init,
 270	dm_io_init,
 271	dm_kcopyd_init,
 272	dm_interface_init,
 273	dm_statistics_init,
 274};
 275
 276static void (*_exits[])(void) = {
 277	local_exit,
 278	dm_target_exit,
 279	dm_linear_exit,
 280	dm_stripe_exit,
 281	dm_io_exit,
 282	dm_kcopyd_exit,
 283	dm_interface_exit,
 284	dm_statistics_exit,
 285};
 286
 287static int __init dm_init(void)
 288{
 289	const int count = ARRAY_SIZE(_inits);
 290
 291	int r, i;
 292
 293	for (i = 0; i < count; i++) {
 294		r = _inits[i]();
 295		if (r)
 296			goto bad;
 297	}
 298
 299	return 0;
 300
 301      bad:
 302	while (i--)
 303		_exits[i]();
 304
 305	return r;
 306}
 307
 308static void __exit dm_exit(void)
 309{
 310	int i = ARRAY_SIZE(_exits);
 311
 312	while (i--)
 313		_exits[i]();
 314
 315	/*
 316	 * Should be empty by this point.
 317	 */
 
 318	idr_destroy(&_minor_idr);
 319}
 320
 321/*
 322 * Block device functions
 323 */
 324int dm_deleting_md(struct mapped_device *md)
 325{
 326	return test_bit(DMF_DELETING, &md->flags);
 327}
 328
 329static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 330{
 331	struct mapped_device *md;
 332
 333	spin_lock(&_minor_lock);
 334
 335	md = bdev->bd_disk->private_data;
 336	if (!md)
 337		goto out;
 338
 339	if (test_bit(DMF_FREEING, &md->flags) ||
 340	    dm_deleting_md(md)) {
 341		md = NULL;
 342		goto out;
 343	}
 344
 345	dm_get(md);
 346	atomic_inc(&md->open_count);
 
 347out:
 348	spin_unlock(&_minor_lock);
 349
 350	return md ? 0 : -ENXIO;
 351}
 352
 353static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 354{
 355	struct mapped_device *md;
 356
 357	spin_lock(&_minor_lock);
 358
 359	md = disk->private_data;
 360	if (WARN_ON(!md))
 361		goto out;
 362
 363	if (atomic_dec_and_test(&md->open_count) &&
 364	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 365		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 366
 367	dm_put(md);
 368out:
 369	spin_unlock(&_minor_lock);
 370}
 371
 372int dm_open_count(struct mapped_device *md)
 373{
 374	return atomic_read(&md->open_count);
 375}
 376
 377/*
 378 * Guarantees nothing is using the device before it's deleted.
 379 */
 380int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 381{
 382	int r = 0;
 383
 384	spin_lock(&_minor_lock);
 385
 386	if (dm_open_count(md)) {
 387		r = -EBUSY;
 388		if (mark_deferred)
 389			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 390	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 391		r = -EEXIST;
 392	else
 393		set_bit(DMF_DELETING, &md->flags);
 394
 395	spin_unlock(&_minor_lock);
 396
 397	return r;
 398}
 399
 400int dm_cancel_deferred_remove(struct mapped_device *md)
 401{
 402	int r = 0;
 403
 404	spin_lock(&_minor_lock);
 405
 406	if (test_bit(DMF_DELETING, &md->flags))
 407		r = -EBUSY;
 408	else
 409		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 410
 411	spin_unlock(&_minor_lock);
 412
 413	return r;
 414}
 415
 416static void do_deferred_remove(struct work_struct *w)
 417{
 418	dm_deferred_remove();
 419}
 420
 421sector_t dm_get_size(struct mapped_device *md)
 422{
 423	return get_capacity(md->disk);
 424}
 425
 426struct request_queue *dm_get_md_queue(struct mapped_device *md)
 427{
 428	return md->queue;
 429}
 430
 431struct dm_stats *dm_get_stats(struct mapped_device *md)
 432{
 433	return &md->stats;
 434}
 435
 436static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 437{
 438	struct mapped_device *md = bdev->bd_disk->private_data;
 439
 440	return dm_get_geometry(md, geo);
 441}
 442
 443static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
 444			       struct blk_zone *zones, unsigned int *nr_zones)
 445{
 446#ifdef CONFIG_BLK_DEV_ZONED
 447	struct mapped_device *md = disk->private_data;
 448	struct dm_target *tgt;
 449	struct dm_table *map;
 450	int srcu_idx, ret;
 451
 452	if (dm_suspended_md(md))
 453		return -EAGAIN;
 454
 455	map = dm_get_live_table(md, &srcu_idx);
 456	if (!map)
 457		return -EIO;
 458
 459	tgt = dm_table_find_target(map, sector);
 460	if (!tgt) {
 461		ret = -EIO;
 462		goto out;
 463	}
 464
 465	/*
 466	 * If we are executing this, we already know that the block device
 467	 * is a zoned device and so each target should have support for that
 468	 * type of drive. A missing report_zones method means that the target
 469	 * driver has a problem.
 470	 */
 471	if (WARN_ON(!tgt->type->report_zones)) {
 472		ret = -EIO;
 473		goto out;
 474	}
 475
 476	/*
 477	 * blkdev_report_zones() will loop and call this again to cover all the
 478	 * zones of the target, eventually moving on to the next target.
 479	 * So there is no need to loop here trying to fill the entire array
 480	 * of zones.
 481	 */
 482	ret = tgt->type->report_zones(tgt, sector, zones, nr_zones);
 483
 484out:
 485	dm_put_live_table(md, srcu_idx);
 486	return ret;
 487#else
 488	return -ENOTSUPP;
 489#endif
 490}
 491
 492static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 493			    struct block_device **bdev)
 494	__acquires(md->io_barrier)
 495{
 496	struct dm_target *tgt;
 497	struct dm_table *map;
 498	int r;
 499
 500retry:
 501	r = -ENOTTY;
 502	map = dm_get_live_table(md, srcu_idx);
 503	if (!map || !dm_table_get_size(map))
 504		return r;
 505
 506	/* We only support devices that have a single target */
 507	if (dm_table_get_num_targets(map) != 1)
 508		return r;
 509
 510	tgt = dm_table_get_target(map, 0);
 511	if (!tgt->type->prepare_ioctl)
 512		return r;
 513
 514	if (dm_suspended_md(md))
 515		return -EAGAIN;
 516
 517	r = tgt->type->prepare_ioctl(tgt, bdev);
 518	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 519		dm_put_live_table(md, *srcu_idx);
 520		msleep(10);
 521		goto retry;
 522	}
 523
 524	return r;
 525}
 526
 527static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 528	__releases(md->io_barrier)
 529{
 530	dm_put_live_table(md, srcu_idx);
 531}
 532
 533static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 534			unsigned int cmd, unsigned long arg)
 535{
 536	struct mapped_device *md = bdev->bd_disk->private_data;
 537	int r, srcu_idx;
 538
 539	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 540	if (r < 0)
 541		goto out;
 542
 543	if (r > 0) {
 544		/*
 545		 * Target determined this ioctl is being issued against a
 546		 * subset of the parent bdev; require extra privileges.
 547		 */
 548		if (!capable(CAP_SYS_RAWIO)) {
 549			DMWARN_LIMIT(
 550	"%s: sending ioctl %x to DM device without required privilege.",
 551				current->comm, cmd);
 552			r = -ENOIOCTLCMD;
 553			goto out;
 554		}
 555	}
 556
 557	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 558out:
 559	dm_unprepare_ioctl(md, srcu_idx);
 560	return r;
 561}
 562
 563static void start_io_acct(struct dm_io *io);
 564
 565static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 566{
 567	struct dm_io *io;
 568	struct dm_target_io *tio;
 569	struct bio *clone;
 570
 571	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
 572	if (!clone)
 573		return NULL;
 574
 575	tio = container_of(clone, struct dm_target_io, clone);
 576	tio->inside_dm_io = true;
 577	tio->io = NULL;
 578
 579	io = container_of(tio, struct dm_io, tio);
 580	io->magic = DM_IO_MAGIC;
 581	io->status = 0;
 582	atomic_set(&io->io_count, 1);
 583	io->orig_bio = bio;
 584	io->md = md;
 585	spin_lock_init(&io->endio_lock);
 586
 587	start_io_acct(io);
 588
 589	return io;
 590}
 591
 592static void free_io(struct mapped_device *md, struct dm_io *io)
 
 593{
 594	bio_put(&io->tio.clone);
 595}
 596
 597static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 598				      unsigned target_bio_nr, gfp_t gfp_mask)
 599{
 600	struct dm_target_io *tio;
 601
 602	if (!ci->io->tio.io) {
 603		/* the dm_target_io embedded in ci->io is available */
 604		tio = &ci->io->tio;
 605	} else {
 606		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
 607		if (!clone)
 608			return NULL;
 609
 610		tio = container_of(clone, struct dm_target_io, clone);
 611		tio->inside_dm_io = false;
 612	}
 613
 614	tio->magic = DM_TIO_MAGIC;
 615	tio->io = ci->io;
 616	tio->ti = ti;
 617	tio->target_bio_nr = target_bio_nr;
 618
 619	return tio;
 620}
 621
 622static void free_tio(struct dm_target_io *tio)
 623{
 624	if (tio->inside_dm_io)
 625		return;
 626	bio_put(&tio->clone);
 627}
 628
 629static bool md_in_flight_bios(struct mapped_device *md)
 630{
 631	int cpu;
 632	struct hd_struct *part = &dm_disk(md)->part0;
 633	long sum = 0;
 634
 635	for_each_possible_cpu(cpu) {
 636		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
 637		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
 638	}
 639
 640	return sum != 0;
 641}
 642
 643static bool md_in_flight(struct mapped_device *md)
 644{
 645	if (queue_is_mq(md->queue))
 646		return blk_mq_queue_inflight(md->queue);
 647	else
 648		return md_in_flight_bios(md);
 649}
 650
 651static void start_io_acct(struct dm_io *io)
 652{
 653	struct mapped_device *md = io->md;
 654	struct bio *bio = io->orig_bio;
 
 655
 656	io->start_time = jiffies;
 657
 658	generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
 659			      &dm_disk(md)->part0);
 660
 661	if (unlikely(dm_stats_used(&md->stats)))
 662		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 663				    bio->bi_iter.bi_sector, bio_sectors(bio),
 664				    false, 0, &io->stats_aux);
 665}
 666
 667static void end_io_acct(struct dm_io *io)
 668{
 669	struct mapped_device *md = io->md;
 670	struct bio *bio = io->orig_bio;
 671	unsigned long duration = jiffies - io->start_time;
 
 
 672
 673	generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
 674			    io->start_time);
 
 
 675
 676	if (unlikely(dm_stats_used(&md->stats)))
 677		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 678				    bio->bi_iter.bi_sector, bio_sectors(bio),
 679				    true, duration, &io->stats_aux);
 
 
 
 680
 681	/* nudge anyone waiting on suspend queue */
 682	if (unlikely(wq_has_sleeper(&md->wait)))
 683		wake_up(&md->wait);
 684}
 685
 686/*
 687 * Add the bio to the list of deferred io.
 688 */
 689static void queue_io(struct mapped_device *md, struct bio *bio)
 690{
 691	unsigned long flags;
 692
 693	spin_lock_irqsave(&md->deferred_lock, flags);
 694	bio_list_add(&md->deferred, bio);
 695	spin_unlock_irqrestore(&md->deferred_lock, flags);
 696	queue_work(md->wq, &md->work);
 697}
 698
 699/*
 700 * Everyone (including functions in this file), should use this
 701 * function to access the md->map field, and make sure they call
 702 * dm_put_live_table() when finished.
 703 */
 704struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 705{
 706	*srcu_idx = srcu_read_lock(&md->io_barrier);
 
 707
 708	return srcu_dereference(md->map, &md->io_barrier);
 709}
 
 
 
 710
 711void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 712{
 713	srcu_read_unlock(&md->io_barrier, srcu_idx);
 714}
 715
 716void dm_sync_table(struct mapped_device *md)
 717{
 718	synchronize_srcu(&md->io_barrier);
 719	synchronize_rcu_expedited();
 720}
 721
 722/*
 723 * A fast alternative to dm_get_live_table/dm_put_live_table.
 724 * The caller must not block between these two functions.
 725 */
 726static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 727{
 728	rcu_read_lock();
 729	return rcu_dereference(md->map);
 730}
 731
 732static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 733{
 734	rcu_read_unlock();
 735}
 736
 737static char *_dm_claim_ptr = "I belong to device-mapper";
 738
 739/*
 740 * Open a table device so we can use it as a map destination.
 741 */
 742static int open_table_device(struct table_device *td, dev_t dev,
 743			     struct mapped_device *md)
 744{
 745	struct block_device *bdev;
 746
 747	int r;
 748
 749	BUG_ON(td->dm_dev.bdev);
 750
 751	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
 752	if (IS_ERR(bdev))
 753		return PTR_ERR(bdev);
 754
 755	r = bd_link_disk_holder(bdev, dm_disk(md));
 756	if (r) {
 757		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 758		return r;
 759	}
 760
 761	td->dm_dev.bdev = bdev;
 762	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 763	return 0;
 764}
 765
 766/*
 767 * Close a table device that we've been using.
 768 */
 769static void close_table_device(struct table_device *td, struct mapped_device *md)
 770{
 771	if (!td->dm_dev.bdev)
 772		return;
 773
 774	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 775	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 776	put_dax(td->dm_dev.dax_dev);
 777	td->dm_dev.bdev = NULL;
 778	td->dm_dev.dax_dev = NULL;
 779}
 780
 781static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 782					      fmode_t mode)
 783{
 784	struct table_device *td;
 785
 786	list_for_each_entry(td, l, list)
 787		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 788			return td;
 789
 790	return NULL;
 791}
 792
 793int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 794			struct dm_dev **result)
 795{
 796	int r;
 797	struct table_device *td;
 798
 799	mutex_lock(&md->table_devices_lock);
 800	td = find_table_device(&md->table_devices, dev, mode);
 801	if (!td) {
 802		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 803		if (!td) {
 804			mutex_unlock(&md->table_devices_lock);
 805			return -ENOMEM;
 806		}
 807
 808		td->dm_dev.mode = mode;
 809		td->dm_dev.bdev = NULL;
 810
 811		if ((r = open_table_device(td, dev, md))) {
 812			mutex_unlock(&md->table_devices_lock);
 813			kfree(td);
 814			return r;
 815		}
 816
 817		format_dev_t(td->dm_dev.name, dev);
 818
 819		refcount_set(&td->count, 1);
 820		list_add(&td->list, &md->table_devices);
 821	} else {
 822		refcount_inc(&td->count);
 823	}
 824	mutex_unlock(&md->table_devices_lock);
 825
 826	*result = &td->dm_dev;
 827	return 0;
 828}
 829EXPORT_SYMBOL_GPL(dm_get_table_device);
 830
 831void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 832{
 833	struct table_device *td = container_of(d, struct table_device, dm_dev);
 834
 835	mutex_lock(&md->table_devices_lock);
 836	if (refcount_dec_and_test(&td->count)) {
 837		close_table_device(td, md);
 838		list_del(&td->list);
 839		kfree(td);
 840	}
 841	mutex_unlock(&md->table_devices_lock);
 842}
 843EXPORT_SYMBOL(dm_put_table_device);
 844
 845static void free_table_devices(struct list_head *devices)
 846{
 847	struct list_head *tmp, *next;
 848
 849	list_for_each_safe(tmp, next, devices) {
 850		struct table_device *td = list_entry(tmp, struct table_device, list);
 851
 852		DMWARN("dm_destroy: %s still exists with %d references",
 853		       td->dm_dev.name, refcount_read(&td->count));
 854		kfree(td);
 855	}
 856}
 857
 858/*
 859 * Get the geometry associated with a dm device
 860 */
 861int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 862{
 863	*geo = md->geometry;
 864
 865	return 0;
 866}
 867
 868/*
 869 * Set the geometry of a device.
 870 */
 871int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 872{
 873	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 874
 875	if (geo->start > sz) {
 876		DMWARN("Start sector is beyond the geometry limits.");
 877		return -EINVAL;
 878	}
 879
 880	md->geometry = *geo;
 881
 882	return 0;
 883}
 884
 
 
 
 
 
 
 
 
 
 885static int __noflush_suspending(struct mapped_device *md)
 886{
 887	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 888}
 889
 890/*
 891 * Decrements the number of outstanding ios that a bio has been
 892 * cloned into, completing the original io if necc.
 893 */
 894static void dec_pending(struct dm_io *io, blk_status_t error)
 895{
 896	unsigned long flags;
 897	blk_status_t io_error;
 898	struct bio *bio;
 899	struct mapped_device *md = io->md;
 900
 901	/* Push-back supersedes any I/O errors */
 902	if (unlikely(error)) {
 903		spin_lock_irqsave(&io->endio_lock, flags);
 904		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
 905			io->status = error;
 906		spin_unlock_irqrestore(&io->endio_lock, flags);
 907	}
 908
 909	if (atomic_dec_and_test(&io->io_count)) {
 910		if (io->status == BLK_STS_DM_REQUEUE) {
 911			/*
 912			 * Target requested pushing back the I/O.
 913			 */
 914			spin_lock_irqsave(&md->deferred_lock, flags);
 915			if (__noflush_suspending(md))
 916				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
 917				bio_list_add_head(&md->deferred, io->orig_bio);
 918			else
 919				/* noflush suspend was interrupted. */
 920				io->status = BLK_STS_IOERR;
 921			spin_unlock_irqrestore(&md->deferred_lock, flags);
 922		}
 923
 924		io_error = io->status;
 925		bio = io->orig_bio;
 926		end_io_acct(io);
 927		free_io(md, io);
 928
 929		if (io_error == BLK_STS_DM_REQUEUE)
 930			return;
 931
 932		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 933			/*
 934			 * Preflush done for flush with data, reissue
 935			 * without REQ_PREFLUSH.
 936			 */
 937			bio->bi_opf &= ~REQ_PREFLUSH;
 938			queue_io(md, bio);
 939		} else {
 940			/* done with normal IO or empty flush */
 941			if (io_error)
 942				bio->bi_status = io_error;
 943			bio_endio(bio);
 944		}
 945	}
 946}
 947
 948void disable_discard(struct mapped_device *md)
 949{
 950	struct queue_limits *limits = dm_get_queue_limits(md);
 951
 952	/* device doesn't really support DISCARD, disable it */
 953	limits->max_discard_sectors = 0;
 954	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
 955}
 956
 957void disable_write_same(struct mapped_device *md)
 958{
 959	struct queue_limits *limits = dm_get_queue_limits(md);
 960
 961	/* device doesn't really support WRITE SAME, disable it */
 962	limits->max_write_same_sectors = 0;
 963}
 964
 965void disable_write_zeroes(struct mapped_device *md)
 966{
 967	struct queue_limits *limits = dm_get_queue_limits(md);
 968
 969	/* device doesn't really support WRITE ZEROES, disable it */
 970	limits->max_write_zeroes_sectors = 0;
 971}
 972
 973static void clone_endio(struct bio *bio)
 974{
 975	blk_status_t error = bio->bi_status;
 976	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 977	struct dm_io *io = tio->io;
 978	struct mapped_device *md = tio->io->md;
 979	dm_endio_fn endio = tio->ti->type->end_io;
 980
 981	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
 982		if (bio_op(bio) == REQ_OP_DISCARD &&
 983		    !bio->bi_disk->queue->limits.max_discard_sectors)
 984			disable_discard(md);
 985		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
 986			 !bio->bi_disk->queue->limits.max_write_same_sectors)
 987			disable_write_same(md);
 988		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
 989			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
 990			disable_write_zeroes(md);
 991	}
 992
 993	if (endio) {
 994		int r = endio(tio->ti, bio, &error);
 995		switch (r) {
 996		case DM_ENDIO_REQUEUE:
 997			error = BLK_STS_DM_REQUEUE;
 998			/*FALLTHRU*/
 999		case DM_ENDIO_DONE:
1000			break;
1001		case DM_ENDIO_INCOMPLETE:
1002			/* The target will handle the io */
1003			return;
1004		default:
1005			DMWARN("unimplemented target endio return value: %d", r);
1006			BUG();
1007		}
1008	}
1009
1010	free_tio(tio);
 
 
 
 
 
 
1011	dec_pending(io, error);
1012}
1013
1014/*
1015 * Return maximum size of I/O possible at the supplied sector up to the current
1016 * target boundary.
1017 */
1018static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1019{
1020	sector_t target_offset = dm_target_offset(ti, sector);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1021
1022	return ti->len - target_offset;
 
 
 
 
 
1023}
1024
1025static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 
 
 
 
 
1026{
1027	sector_t len = max_io_len_target_boundary(sector, ti);
1028	sector_t offset, max_len;
 
 
 
 
 
 
1029
1030	/*
1031	 * Does the target need to split even further?
1032	 */
1033	if (ti->max_io_len) {
1034		offset = dm_target_offset(ti, sector);
1035		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1036			max_len = sector_div(offset, ti->max_io_len);
1037		else
1038			max_len = offset & (ti->max_io_len - 1);
1039		max_len = ti->max_io_len - max_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1040
1041		if (len > max_len)
1042			len = max_len;
 
 
 
 
 
1043	}
1044
1045	return len;
 
 
1046}
1047
1048int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1049{
1050	if (len > UINT_MAX) {
1051		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1052		      (unsigned long long)len, UINT_MAX);
1053		ti->error = "Maximum size of target IO is too large";
1054		return -EINVAL;
1055	}
1056
1057	ti->max_io_len = (uint32_t) len;
 
1058
1059	return 0;
1060}
1061EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1062
1063static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1064						sector_t sector, int *srcu_idx)
1065	__acquires(md->io_barrier)
 
1066{
1067	struct dm_table *map;
1068	struct dm_target *ti;
 
 
 
 
 
 
1069
1070	map = dm_get_live_table(md, srcu_idx);
1071	if (!map)
1072		return NULL;
1073
1074	ti = dm_table_find_target(map, sector);
1075	if (!ti)
1076		return NULL;
1077
1078	return ti;
 
 
1079}
1080
1081static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1082				 long nr_pages, void **kaddr, pfn_t *pfn)
1083{
1084	struct mapped_device *md = dax_get_private(dax_dev);
1085	sector_t sector = pgoff * PAGE_SECTORS;
1086	struct dm_target *ti;
1087	long len, ret = -EIO;
1088	int srcu_idx;
1089
1090	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
 
 
1091
1092	if (!ti)
1093		goto out;
1094	if (!ti->type->direct_access)
1095		goto out;
1096	len = max_io_len(sector, ti) / PAGE_SECTORS;
1097	if (len < 1)
1098		goto out;
1099	nr_pages = min(len, nr_pages);
1100	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1101
1102 out:
1103	dm_put_live_table(md, srcu_idx);
 
1104
1105	return ret;
 
 
1106}
1107
1108static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1109		int blocksize, sector_t start, sector_t len)
1110{
1111	struct mapped_device *md = dax_get_private(dax_dev);
1112	struct dm_table *map;
1113	int srcu_idx;
1114	bool ret;
1115
1116	map = dm_get_live_table(md, &srcu_idx);
1117	if (!map)
1118		return false;
1119
1120	ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
 
 
1121
1122	dm_put_live_table(md, srcu_idx);
1123
1124	return ret;
 
 
 
 
 
 
 
 
 
 
1125}
1126
1127static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1128				    void *addr, size_t bytes, struct iov_iter *i)
 
 
1129{
1130	struct mapped_device *md = dax_get_private(dax_dev);
1131	sector_t sector = pgoff * PAGE_SECTORS;
1132	struct dm_target *ti;
1133	long ret = 0;
1134	int srcu_idx;
 
1135
1136	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
1137
1138	if (!ti)
1139		goto out;
1140	if (!ti->type->dax_copy_from_iter) {
1141		ret = copy_from_iter(addr, bytes, i);
1142		goto out;
1143	}
1144	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1145 out:
1146	dm_put_live_table(md, srcu_idx);
1147
1148	return ret;
 
 
1149}
1150
1151static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1152		void *addr, size_t bytes, struct iov_iter *i)
 
 
 
 
 
1153{
1154	struct mapped_device *md = dax_get_private(dax_dev);
1155	sector_t sector = pgoff * PAGE_SECTORS;
1156	struct dm_target *ti;
1157	long ret = 0;
1158	int srcu_idx;
1159
1160	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
 
 
1161
1162	if (!ti)
1163		goto out;
1164	if (!ti->type->dax_copy_to_iter) {
1165		ret = copy_to_iter(addr, bytes, i);
1166		goto out;
1167	}
1168	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1169 out:
1170	dm_put_live_table(md, srcu_idx);
 
 
 
1171
1172	return ret;
 
 
 
 
 
 
 
 
1173}
1174
1175/*
1176 * A target may call dm_accept_partial_bio only from the map routine.  It is
1177 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1178 *
1179 * dm_accept_partial_bio informs the dm that the target only wants to process
1180 * additional n_sectors sectors of the bio and the rest of the data should be
1181 * sent in a next bio.
1182 *
1183 * A diagram that explains the arithmetics:
1184 * +--------------------+---------------+-------+
1185 * |         1          |       2       |   3   |
1186 * +--------------------+---------------+-------+
1187 *
1188 * <-------------- *tio->len_ptr --------------->
1189 *                      <------- bi_size ------->
1190 *                      <-- n_sectors -->
1191 *
1192 * Region 1 was already iterated over with bio_advance or similar function.
1193 *	(it may be empty if the target doesn't use bio_advance)
1194 * Region 2 is the remaining bio size that the target wants to process.
1195 *	(it may be empty if region 1 is non-empty, although there is no reason
1196 *	 to make it empty)
1197 * The target requires that region 3 is to be sent in the next bio.
1198 *
1199 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1200 * the partially processed part (the sum of regions 1+2) must be the same for all
1201 * copies of the bio.
1202 */
1203void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1204{
1205	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1206	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1207	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1208	BUG_ON(bi_size > *tio->len_ptr);
1209	BUG_ON(n_sectors > bi_size);
1210	*tio->len_ptr -= bi_size - n_sectors;
1211	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1212}
1213EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1214
1215/*
1216 * The zone descriptors obtained with a zone report indicate
1217 * zone positions within the underlying device of the target. The zone
1218 * descriptors must be remapped to match their position within the dm device.
1219 * The caller target should obtain the zones information using
1220 * blkdev_report_zones() to ensure that remapping for partition offset is
1221 * already handled.
1222 */
1223void dm_remap_zone_report(struct dm_target *ti, sector_t start,
1224			  struct blk_zone *zones, unsigned int *nr_zones)
1225{
1226#ifdef CONFIG_BLK_DEV_ZONED
1227	struct blk_zone *zone;
1228	unsigned int nrz = *nr_zones;
1229	int i;
1230
1231	/*
1232	 * Remap the start sector and write pointer position of the zones in
1233	 * the array. Since we may have obtained from the target underlying
1234	 * device more zones that the target size, also adjust the number
1235	 * of zones.
1236	 */
1237	for (i = 0; i < nrz; i++) {
1238		zone = zones + i;
1239		if (zone->start >= start + ti->len) {
1240			memset(zone, 0, sizeof(struct blk_zone) * (nrz - i));
1241			break;
1242		}
1243
1244		zone->start = zone->start + ti->begin - start;
1245		if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
1246			continue;
1247
1248		if (zone->cond == BLK_ZONE_COND_FULL)
1249			zone->wp = zone->start + zone->len;
1250		else if (zone->cond == BLK_ZONE_COND_EMPTY)
1251			zone->wp = zone->start;
1252		else
1253			zone->wp = zone->wp + ti->begin - start;
 
 
 
 
1254	}
1255
1256	*nr_zones = i;
1257#else /* !CONFIG_BLK_DEV_ZONED */
1258	*nr_zones = 0;
1259#endif
1260}
1261EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1262
1263static blk_qc_t __map_bio(struct dm_target_io *tio)
 
1264{
1265	int r;
1266	sector_t sector;
1267	struct bio *clone = &tio->clone;
1268	struct dm_io *io = tio->io;
1269	struct mapped_device *md = io->md;
1270	struct dm_target *ti = tio->ti;
1271	blk_qc_t ret = BLK_QC_T_NONE;
1272
1273	clone->bi_end_io = clone_endio;
 
1274
1275	/*
1276	 * Map the clone.  If r == 0 we don't need to do
1277	 * anything, the target has assumed ownership of
1278	 * this io.
1279	 */
1280	atomic_inc(&io->io_count);
1281	sector = clone->bi_iter.bi_sector;
 
 
 
 
 
 
1282
1283	r = ti->type->map(ti, clone);
1284	switch (r) {
1285	case DM_MAPIO_SUBMITTED:
1286		break;
1287	case DM_MAPIO_REMAPPED:
1288		/* the bio has been remapped so dispatch it */
1289		trace_block_bio_remap(clone->bi_disk->queue, clone,
1290				      bio_dev(io->orig_bio), sector);
1291		if (md->type == DM_TYPE_NVME_BIO_BASED)
1292			ret = direct_make_request(clone);
1293		else
1294			ret = generic_make_request(clone);
1295		break;
1296	case DM_MAPIO_KILL:
1297		free_tio(tio);
1298		dec_pending(io, BLK_STS_IOERR);
1299		break;
1300	case DM_MAPIO_REQUEUE:
1301		free_tio(tio);
1302		dec_pending(io, BLK_STS_DM_REQUEUE);
1303		break;
1304	default:
1305		DMWARN("unimplemented target map return value: %d", r);
1306		BUG();
1307	}
 
 
 
 
 
 
 
 
 
 
 
1308
1309	return ret;
 
 
 
 
1310}
1311
1312static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
 
 
 
 
 
1313{
1314	bio->bi_iter.bi_sector = sector;
1315	bio->bi_iter.bi_size = to_bytes(len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1316}
1317
1318/*
1319 * Creates a bio that consists of range of complete bvecs.
1320 */
1321static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1322		     sector_t sector, unsigned len)
 
1323{
1324	struct bio *clone = &tio->clone;
1325
1326	__bio_clone_fast(clone, bio);
 
 
 
 
 
 
 
1327
1328	if (bio_integrity(bio)) {
1329		int r;
1330
1331		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1332			     !dm_target_passes_integrity(tio->ti->type))) {
1333			DMWARN("%s: the target %s doesn't support integrity data.",
1334				dm_device_name(tio->io->md),
1335				tio->ti->type->name);
1336			return -EIO;
1337		}
1338
1339		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1340		if (r < 0)
1341			return r;
1342	}
1343
1344	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1345	clone->bi_iter.bi_size = to_bytes(len);
 
 
1346
1347	if (bio_integrity(bio))
1348		bio_integrity_trim(clone);
 
1349
1350	return 0;
1351}
1352
1353static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1354				struct dm_target *ti, unsigned num_bios)
1355{
1356	struct dm_target_io *tio;
1357	int try;
1358
1359	if (!num_bios)
1360		return;
1361
1362	if (num_bios == 1) {
1363		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1364		bio_list_add(blist, &tio->clone);
1365		return;
 
 
 
 
 
 
 
1366	}
1367
1368	for (try = 0; try < 2; try++) {
1369		int bio_nr;
1370		struct bio *bio;
1371
1372		if (try)
1373			mutex_lock(&ci->io->md->table_devices_lock);
1374		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1375			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1376			if (!tio)
1377				break;
1378
1379			bio_list_add(blist, &tio->clone);
1380		}
1381		if (try)
1382			mutex_unlock(&ci->io->md->table_devices_lock);
1383		if (bio_nr == num_bios)
1384			return;
1385
1386		while ((bio = bio_list_pop(blist))) {
1387			tio = container_of(bio, struct dm_target_io, clone);
1388			free_tio(tio);
1389		}
1390	}
1391}
1392
1393static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1394					   struct dm_target_io *tio, unsigned *len)
1395{
1396	struct bio *clone = &tio->clone;
 
1397
1398	tio->len_ptr = len;
 
 
1399
1400	__bio_clone_fast(clone, ci->bio);
1401	if (len)
1402		bio_setup_sector(clone, ci->sector, *len);
1403
1404	return __map_bio(tio);
1405}
1406
1407static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1408				  unsigned num_bios, unsigned *len)
 
 
1409{
1410	struct bio_list blist = BIO_EMPTY_LIST;
1411	struct bio *bio;
1412	struct dm_target_io *tio;
1413
1414	alloc_multiple_bios(&blist, ci, ti, num_bios);
1415
1416	while ((bio = bio_list_pop(&blist))) {
1417		tio = container_of(bio, struct dm_target_io, clone);
1418		(void) __clone_and_map_simple_bio(ci, tio, len);
1419	}
1420}
1421
1422static int __send_empty_flush(struct clone_info *ci)
1423{
1424	unsigned target_nr = 0;
1425	struct dm_target *ti;
 
 
 
 
 
 
1426
1427	/*
1428	 * Empty flush uses a statically initialized bio, as the base for
1429	 * cloning.  However, blkg association requires that a bdev is
1430	 * associated with a gendisk, which doesn't happen until the bdev is
1431	 * opened.  So, blkg association is done at issue time of the flush
1432	 * rather than when the device is created in alloc_dev().
1433	 */
1434	bio_set_dev(ci->bio, ci->io->md->bdev);
 
 
1435
1436	BUG_ON(bio_has_data(ci->bio));
1437	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1438		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1439
1440	bio_disassociate_blkg(ci->bio);
 
1441
1442	return 0;
1443}
1444
1445static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1446				    sector_t sector, unsigned *len)
1447{
1448	struct bio *bio = ci->bio;
 
 
1449	struct dm_target_io *tio;
1450	int r;
1451
1452	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1453	tio->len_ptr = len;
1454	r = clone_bio(tio, bio, sector, *len);
1455	if (r < 0) {
1456		free_tio(tio);
1457		return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1458	}
1459	(void) __map_bio(tio);
1460
1461	return 0;
1462}
1463
1464typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
 
 
 
 
 
 
 
 
 
 
 
 
1465
1466static unsigned get_num_discard_bios(struct dm_target *ti)
1467{
1468	return ti->num_discard_bios;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1469}
 
 
 
1470
1471static unsigned get_num_secure_erase_bios(struct dm_target *ti)
 
 
1472{
1473	return ti->num_secure_erase_bios;
1474}
 
 
 
1475
1476static unsigned get_num_write_same_bios(struct dm_target *ti)
1477{
1478	return ti->num_write_same_bios;
1479}
1480
1481static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1482{
1483	return ti->num_write_zeroes_bios;
1484}
1485
1486static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1487				       unsigned num_bios)
1488{
1489	unsigned len;
 
 
 
 
1490
1491	/*
1492	 * Even though the device advertised support for this type of
1493	 * request, that does not mean every target supports it, and
1494	 * reconfiguration might also have changed that since the
1495	 * check was performed.
 
 
 
 
 
 
 
 
1496	 */
1497	if (!num_bios)
1498		return -EOPNOTSUPP;
1499
1500	len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1501
1502	__send_duplicate_bios(ci, ti, num_bios, &len);
 
1503
1504	ci->sector += len;
1505	ci->sector_count -= len;
 
 
 
 
1506
1507	return 0;
1508}
1509
1510static int __send_discard(struct clone_info *ci, struct dm_target *ti)
 
 
 
 
1511{
1512	return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1513}
1514
1515static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1516{
1517	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1518}
1519
1520static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1521{
1522	return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
 
 
 
 
 
1523}
1524
1525static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1526{
1527	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
 
 
 
 
 
 
 
 
1528}
 
1529
1530static bool is_abnormal_io(struct bio *bio)
1531{
1532	bool r = false;
 
1533
1534	switch (bio_op(bio)) {
1535	case REQ_OP_DISCARD:
1536	case REQ_OP_SECURE_ERASE:
1537	case REQ_OP_WRITE_SAME:
1538	case REQ_OP_WRITE_ZEROES:
1539		r = true;
1540		break;
1541	}
1542
1543	return r;
1544}
1545
1546static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1547				  int *result)
1548{
1549	struct bio *bio = ci->bio;
 
 
 
 
 
1550
1551	if (bio_op(bio) == REQ_OP_DISCARD)
1552		*result = __send_discard(ci, ti);
1553	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1554		*result = __send_secure_erase(ci, ti);
1555	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1556		*result = __send_write_same(ci, ti);
1557	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1558		*result = __send_write_zeroes(ci, ti);
1559	else
1560		return false;
1561
1562	return true;
1563}
1564
1565/*
1566 * Select the correct strategy for processing a non-flush bio.
1567 */
1568static int __split_and_process_non_flush(struct clone_info *ci)
1569{
1570	struct dm_target *ti;
1571	unsigned len;
1572	int r;
1573
1574	ti = dm_table_find_target(ci->map, ci->sector);
1575	if (!ti)
1576		return -EIO;
1577
1578	if (__process_abnormal_io(ci, ti, &r))
1579		return r;
1580
1581	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1582
1583	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1584	if (r < 0)
1585		return r;
1586
1587	ci->sector += len;
1588	ci->sector_count -= len;
1589
1590	return 0;
1591}
1592
1593static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1594			    struct dm_table *map, struct bio *bio)
1595{
1596	ci->map = map;
1597	ci->io = alloc_io(md, bio);
1598	ci->sector = bio->bi_iter.bi_sector;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1599}
1600
1601#define __dm_part_stat_sub(part, field, subnd)	\
1602	(part_stat_get(part, field) -= (subnd))
1603
1604/*
1605 * Entry point to split a bio into clones and submit them to the targets.
1606 */
1607static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1608					struct dm_table *map, struct bio *bio)
1609{
1610	struct clone_info ci;
1611	blk_qc_t ret = BLK_QC_T_NONE;
1612	int error = 0;
1613
1614	init_clone_info(&ci, md, map, bio);
 
 
 
1615
1616	if (bio->bi_opf & REQ_PREFLUSH) {
1617		struct bio flush_bio;
 
1618
1619		/*
1620		 * Use an on-stack bio for this, it's safe since we don't
1621		 * need to reference it after submit. It's just used as
1622		 * the basis for the clone(s).
1623		 */
1624		bio_init(&flush_bio, NULL, 0);
1625		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1626		ci.bio = &flush_bio;
1627		ci.sector_count = 0;
1628		error = __send_empty_flush(&ci);
1629		/* dec_pending submits any data associated with flush */
1630	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1631		ci.bio = bio;
1632		ci.sector_count = 0;
1633		error = __split_and_process_non_flush(&ci);
1634	} else {
1635		ci.bio = bio;
1636		ci.sector_count = bio_sectors(bio);
1637		while (ci.sector_count && !error) {
1638			error = __split_and_process_non_flush(&ci);
1639			if (current->bio_list && ci.sector_count && !error) {
1640				/*
1641				 * Remainder must be passed to generic_make_request()
1642				 * so that it gets handled *after* bios already submitted
1643				 * have been completely processed.
1644				 * We take a clone of the original to store in
1645				 * ci.io->orig_bio to be used by end_io_acct() and
1646				 * for dec_pending to use for completion handling.
1647				 */
1648				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1649							  GFP_NOIO, &md->queue->bio_split);
1650				ci.io->orig_bio = b;
1651
1652				/*
1653				 * Adjust IO stats for each split, otherwise upon queue
1654				 * reentry there will be redundant IO accounting.
1655				 * NOTE: this is a stop-gap fix, a proper fix involves
1656				 * significant refactoring of DM core's bio splitting
1657				 * (by eliminating DM's splitting and just using bio_split)
1658				 */
1659				part_stat_lock();
1660				__dm_part_stat_sub(&dm_disk(md)->part0,
1661						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1662				part_stat_unlock();
1663
1664				bio_chain(b, bio);
1665				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1666				ret = generic_make_request(bio);
1667				break;
1668			}
1669		}
1670	}
1671
1672	/* drop the extra reference count */
1673	dec_pending(ci.io, errno_to_blk_status(error));
1674	return ret;
1675}
1676
1677/*
1678 * Optimized variant of __split_and_process_bio that leverages the
1679 * fact that targets that use it do _not_ have a need to split bios.
 
1680 */
1681static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1682			      struct bio *bio, struct dm_target *ti)
1683{
1684	struct clone_info ci;
1685	blk_qc_t ret = BLK_QC_T_NONE;
1686	int error = 0;
1687
1688	init_clone_info(&ci, md, map, bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1689
1690	if (bio->bi_opf & REQ_PREFLUSH) {
1691		struct bio flush_bio;
 
 
1692
1693		/*
1694		 * Use an on-stack bio for this, it's safe since we don't
1695		 * need to reference it after submit. It's just used as
1696		 * the basis for the clone(s).
1697		 */
1698		bio_init(&flush_bio, NULL, 0);
1699		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1700		ci.bio = &flush_bio;
1701		ci.sector_count = 0;
1702		error = __send_empty_flush(&ci);
1703		/* dec_pending submits any data associated with flush */
1704	} else {
1705		struct dm_target_io *tio;
1706
1707		ci.bio = bio;
1708		ci.sector_count = bio_sectors(bio);
1709		if (__process_abnormal_io(&ci, ti, &error))
1710			goto out;
1711
1712		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1713		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1714	}
1715out:
1716	/* drop the extra reference count */
1717	dec_pending(ci.io, errno_to_blk_status(error));
1718	return ret;
1719}
1720
1721static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1722{
1723	unsigned len, sector_count;
1724
1725	sector_count = bio_sectors(*bio);
1726	len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
 
1727
1728	if (sector_count > len) {
1729		struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
 
 
 
 
 
 
1730
1731		bio_chain(split, *bio);
1732		trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1733		generic_make_request(*bio);
1734		*bio = split;
1735	}
1736}
1737
1738static blk_qc_t dm_process_bio(struct mapped_device *md,
1739			       struct dm_table *map, struct bio *bio)
 
 
 
1740{
1741	blk_qc_t ret = BLK_QC_T_NONE;
1742	struct dm_target *ti = md->immutable_target;
 
 
 
1743
1744	if (unlikely(!map)) {
1745		bio_io_error(bio);
1746		return ret;
1747	}
 
 
 
 
 
 
 
 
 
 
 
1748
1749	if (!ti) {
1750		ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1751		if (unlikely(!ti)) {
1752			bio_io_error(bio);
1753			return ret;
 
 
 
 
 
1754		}
 
 
 
 
 
 
 
 
 
 
 
 
1755	}
1756
1757	/*
1758	 * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1759	 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1760	 * won't be imposed.
1761	 */
1762	if (current->bio_list) {
1763		blk_queue_split(md->queue, &bio);
1764		if (!is_abnormal_io(bio))
1765			dm_queue_split(md, ti, &bio);
1766	}
 
1767
1768	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1769		return __process_bio(md, map, bio, ti);
1770	else
1771		return __split_and_process_bio(md, map, bio);
1772}
 
1773
1774static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1775{
 
1776	struct mapped_device *md = q->queuedata;
1777	blk_qc_t ret = BLK_QC_T_NONE;
1778	int srcu_idx;
1779	struct dm_table *map;
1780
1781	map = dm_get_live_table(md, &srcu_idx);
 
 
 
1782
1783	/* if we're suspended, we have to queue this io for later */
1784	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1785		dm_put_live_table(md, srcu_idx);
1786
1787		if (!(bio->bi_opf & REQ_RAHEAD))
1788			queue_io(md, bio);
1789		else
1790			bio_io_error(bio);
1791		return ret;
1792	}
1793
1794	ret = dm_process_bio(md, map, bio);
1795
1796	dm_put_live_table(md, srcu_idx);
1797	return ret;
1798}
1799
1800static int dm_any_congested(void *congested_data, int bdi_bits)
1801{
1802	int r = bdi_bits;
1803	struct mapped_device *md = congested_data;
1804	struct dm_table *map;
1805
1806	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1807		if (dm_request_based(md)) {
 
1808			/*
1809			 * With request-based DM we only need to check the
1810			 * top-level queue for congestion.
1811			 */
1812			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1813		} else {
1814			map = dm_get_live_table_fast(md);
1815			if (map)
1816				r = dm_table_any_congested(map, bdi_bits);
1817			dm_put_live_table_fast(md);
 
1818		}
1819	}
1820
1821	return r;
1822}
1823
1824/*-----------------------------------------------------------------
1825 * An IDR is used to keep track of allocated minor numbers.
1826 *---------------------------------------------------------------*/
1827static void free_minor(int minor)
1828{
1829	spin_lock(&_minor_lock);
1830	idr_remove(&_minor_idr, minor);
1831	spin_unlock(&_minor_lock);
1832}
1833
1834/*
1835 * See if the device with a specific minor # is free.
1836 */
1837static int specific_minor(int minor)
1838{
1839	int r;
1840
1841	if (minor >= (1 << MINORBITS))
1842		return -EINVAL;
1843
1844	idr_preload(GFP_KERNEL);
 
 
 
1845	spin_lock(&_minor_lock);
1846
1847	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
 
 
 
 
 
 
 
1848
 
 
 
 
 
 
 
1849	spin_unlock(&_minor_lock);
1850	idr_preload_end();
1851	if (r < 0)
1852		return r == -ENOSPC ? -EBUSY : r;
1853	return 0;
1854}
1855
1856static int next_free_minor(int *minor)
1857{
1858	int r;
 
 
 
 
1859
1860	idr_preload(GFP_KERNEL);
1861	spin_lock(&_minor_lock);
1862
1863	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
 
 
 
 
 
 
 
 
 
 
1864
 
1865	spin_unlock(&_minor_lock);
1866	idr_preload_end();
1867	if (r < 0)
1868		return r;
1869	*minor = r;
1870	return 0;
1871}
1872
1873static const struct block_device_operations dm_blk_dops;
1874static const struct dax_operations dm_dax_ops;
1875
1876static void dm_wq_work(struct work_struct *work);
1877
1878static void dm_init_normal_md_queue(struct mapped_device *md)
1879{
1880	/*
1881	 * Initialize aspects of queue that aren't relevant for blk-mq
 
 
 
 
 
 
1882	 */
1883	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1884}
1885
1886static void cleanup_mapped_device(struct mapped_device *md)
1887{
1888	if (md->wq)
1889		destroy_workqueue(md->wq);
1890	bioset_exit(&md->bs);
1891	bioset_exit(&md->io_bs);
1892
1893	if (md->dax_dev) {
1894		kill_dax(md->dax_dev);
1895		put_dax(md->dax_dev);
1896		md->dax_dev = NULL;
1897	}
1898
1899	if (md->disk) {
1900		spin_lock(&_minor_lock);
1901		md->disk->private_data = NULL;
1902		spin_unlock(&_minor_lock);
1903		del_gendisk(md->disk);
1904		put_disk(md->disk);
1905	}
1906
1907	if (md->queue)
1908		blk_cleanup_queue(md->queue);
1909
1910	cleanup_srcu_struct(&md->io_barrier);
1911
1912	if (md->bdev) {
1913		bdput(md->bdev);
1914		md->bdev = NULL;
1915	}
1916
1917	mutex_destroy(&md->suspend_lock);
1918	mutex_destroy(&md->type_lock);
1919	mutex_destroy(&md->table_devices_lock);
1920
1921	dm_mq_cleanup_mapped_device(md);
1922}
1923
1924/*
1925 * Allocate and initialise a blank device with a given minor.
1926 */
1927static struct mapped_device *alloc_dev(int minor)
1928{
1929	int r, numa_node_id = dm_get_numa_node();
1930	struct mapped_device *md;
1931	void *old_md;
1932
1933	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1934	if (!md) {
1935		DMWARN("unable to allocate device, out of memory.");
1936		return NULL;
1937	}
1938
1939	if (!try_module_get(THIS_MODULE))
1940		goto bad_module_get;
1941
1942	/* get a minor number for the dev */
1943	if (minor == DM_ANY_MINOR)
1944		r = next_free_minor(&minor);
1945	else
1946		r = specific_minor(minor);
1947	if (r < 0)
1948		goto bad_minor;
1949
1950	r = init_srcu_struct(&md->io_barrier);
1951	if (r < 0)
1952		goto bad_io_barrier;
1953
1954	md->numa_node_id = numa_node_id;
1955	md->init_tio_pdu = false;
1956	md->type = DM_TYPE_NONE;
 
1957	mutex_init(&md->suspend_lock);
1958	mutex_init(&md->type_lock);
1959	mutex_init(&md->table_devices_lock);
1960	spin_lock_init(&md->deferred_lock);
 
1961	atomic_set(&md->holders, 1);
1962	atomic_set(&md->open_count, 0);
1963	atomic_set(&md->event_nr, 0);
1964	atomic_set(&md->uevent_seq, 0);
1965	INIT_LIST_HEAD(&md->uevent_list);
1966	INIT_LIST_HEAD(&md->table_devices);
1967	spin_lock_init(&md->uevent_lock);
1968
1969	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1970	if (!md->queue)
1971		goto bad;
1972	md->queue->queuedata = md;
1973	md->queue->backing_dev_info->congested_data = md;
1974
1975	md->disk = alloc_disk_node(1, md->numa_node_id);
1976	if (!md->disk)
1977		goto bad;
1978
 
 
1979	init_waitqueue_head(&md->wait);
1980	INIT_WORK(&md->work, dm_wq_work);
1981	init_waitqueue_head(&md->eventq);
1982	init_completion(&md->kobj_holder.completion);
1983
1984	md->disk->major = _major;
1985	md->disk->first_minor = minor;
1986	md->disk->fops = &dm_blk_dops;
1987	md->disk->queue = md->queue;
1988	md->disk->private_data = md;
1989	sprintf(md->disk->disk_name, "dm-%d", minor);
1990
1991	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1992		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1993					&dm_dax_ops, 0);
1994		if (!md->dax_dev)
1995			goto bad;
1996	}
1997
1998	add_disk_no_queue_reg(md->disk);
1999	format_dev_t(md->name, MKDEV(_major, minor));
2000
2001	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
 
2002	if (!md->wq)
2003		goto bad;
2004
2005	md->bdev = bdget_disk(md->disk, 0);
2006	if (!md->bdev)
2007		goto bad;
2008
2009	dm_stats_init(&md->stats);
 
 
2010
2011	/* Populate the mapping, nobody knows we exist yet */
2012	spin_lock(&_minor_lock);
2013	old_md = idr_replace(&_minor_idr, md, minor);
2014	spin_unlock(&_minor_lock);
2015
2016	BUG_ON(old_md != MINOR_ALLOCED);
2017
2018	return md;
2019
2020bad:
2021	cleanup_mapped_device(md);
2022bad_io_barrier:
 
 
 
 
 
2023	free_minor(minor);
2024bad_minor:
2025	module_put(THIS_MODULE);
2026bad_module_get:
2027	kvfree(md);
2028	return NULL;
2029}
2030
2031static void unlock_fs(struct mapped_device *md);
2032
2033static void free_dev(struct mapped_device *md)
2034{
2035	int minor = MINOR(disk_devt(md->disk));
2036
2037	unlock_fs(md);
 
 
 
 
 
 
 
 
 
 
 
2038
2039	cleanup_mapped_device(md);
2040
2041	free_table_devices(&md->table_devices);
2042	dm_stats_cleanup(&md->stats);
2043	free_minor(minor);
2044
 
 
2045	module_put(THIS_MODULE);
2046	kvfree(md);
2047}
2048
2049static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2050{
2051	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2052	int ret = 0;
2053
2054	if (dm_table_bio_based(t)) {
2055		/*
2056		 * The md may already have mempools that need changing.
2057		 * If so, reload bioset because front_pad may have changed
2058		 * because a different table was loaded.
2059		 */
2060		bioset_exit(&md->bs);
2061		bioset_exit(&md->io_bs);
2062
2063	} else if (bioset_initialized(&md->bs)) {
2064		/*
2065		 * There's no need to reload with request-based dm
2066		 * because the size of front_pad doesn't change.
2067		 * Note for future: If you are to reload bioset,
2068		 * prep-ed requests in the queue may refer
2069		 * to bio from the old bioset, so you must walk
2070		 * through the queue to unprep.
2071		 */
2072		goto out;
2073	}
2074
2075	BUG_ON(!p ||
2076	       bioset_initialized(&md->bs) ||
2077	       bioset_initialized(&md->io_bs));
 
 
 
2078
2079	ret = bioset_init_from_src(&md->bs, &p->bs);
2080	if (ret)
2081		goto out;
2082	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2083	if (ret)
2084		bioset_exit(&md->bs);
2085out:
2086	/* mempool bind completed, no longer need any mempools in the table */
2087	dm_table_free_md_mempools(t);
2088	return ret;
2089}
2090
2091/*
2092 * Bind a table to the device.
2093 */
2094static void event_callback(void *context)
2095{
2096	unsigned long flags;
2097	LIST_HEAD(uevents);
2098	struct mapped_device *md = (struct mapped_device *) context;
2099
2100	spin_lock_irqsave(&md->uevent_lock, flags);
2101	list_splice_init(&md->uevent_list, &uevents);
2102	spin_unlock_irqrestore(&md->uevent_lock, flags);
2103
2104	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2105
2106	atomic_inc(&md->event_nr);
2107	wake_up(&md->eventq);
2108	dm_issue_global_event();
2109}
2110
2111/*
2112 * Protected by md->suspend_lock obtained by dm_swap_table().
2113 */
2114static void __set_size(struct mapped_device *md, sector_t size)
2115{
2116	lockdep_assert_held(&md->suspend_lock);
2117
2118	set_capacity(md->disk, size);
2119
2120	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2121}
2122
2123/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2124 * Returns old map, which caller must destroy.
2125 */
2126static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2127			       struct queue_limits *limits)
2128{
2129	struct dm_table *old_map;
2130	struct request_queue *q = md->queue;
2131	bool request_based = dm_table_request_based(t);
2132	sector_t size;
2133	int ret;
2134
2135	lockdep_assert_held(&md->suspend_lock);
2136
2137	size = dm_table_get_size(t);
2138
2139	/*
2140	 * Wipe any geometry if the size of the table changed.
2141	 */
2142	if (size != dm_get_size(md))
2143		memset(&md->geometry, 0, sizeof(md->geometry));
2144
2145	__set_size(md, size);
2146
2147	dm_table_event_callback(t, event_callback, md);
2148
2149	/*
2150	 * The queue hasn't been stopped yet, if the old table type wasn't
2151	 * for request-based during suspension.  So stop it to prevent
2152	 * I/O mapping before resume.
2153	 * This must be done before setting the queue restrictions,
2154	 * because request-based dm may be run just after the setting.
2155	 */
2156	if (request_based)
2157		dm_stop_queue(q);
2158
2159	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2160		/*
2161		 * Leverage the fact that request-based DM targets and
2162		 * NVMe bio based targets are immutable singletons
2163		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2164		 *   and __process_bio.
2165		 */
2166		md->immutable_target = dm_table_get_immutable_target(t);
2167	}
2168
2169	ret = __bind_mempools(md, t);
2170	if (ret) {
2171		old_map = ERR_PTR(ret);
2172		goto out;
2173	}
2174
2175	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2176	rcu_assign_pointer(md->map, (void *)t);
 
2177	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2178
2179	dm_table_set_restrictions(t, q, limits);
2180	if (old_map)
2181		dm_sync_table(md);
 
 
 
2182
2183out:
2184	return old_map;
2185}
2186
2187/*
2188 * Returns unbound table for the caller to free.
2189 */
2190static struct dm_table *__unbind(struct mapped_device *md)
2191{
2192	struct dm_table *map = rcu_dereference_protected(md->map, 1);
 
2193
2194	if (!map)
2195		return NULL;
2196
2197	dm_table_event_callback(map, NULL, NULL);
2198	RCU_INIT_POINTER(md->map, NULL);
2199	dm_sync_table(md);
 
2200
2201	return map;
2202}
2203
2204/*
2205 * Constructor for a new device.
2206 */
2207int dm_create(int minor, struct mapped_device **result)
2208{
2209	int r;
2210	struct mapped_device *md;
2211
2212	md = alloc_dev(minor);
2213	if (!md)
2214		return -ENXIO;
2215
2216	r = dm_sysfs_init(md);
2217	if (r) {
2218		free_dev(md);
2219		return r;
2220	}
2221
2222	*result = md;
2223	return 0;
2224}
2225
2226/*
2227 * Functions to manage md->type.
2228 * All are required to hold md->type_lock.
2229 */
2230void dm_lock_md_type(struct mapped_device *md)
2231{
2232	mutex_lock(&md->type_lock);
2233}
2234
2235void dm_unlock_md_type(struct mapped_device *md)
2236{
2237	mutex_unlock(&md->type_lock);
2238}
2239
2240void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2241{
2242	BUG_ON(!mutex_is_locked(&md->type_lock));
2243	md->type = type;
2244}
2245
2246enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2247{
2248	return md->type;
2249}
2250
2251struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2252{
2253	return md->immutable_target_type;
2254}
2255
2256/*
2257 * The queue_limits are only valid as long as you have a reference
2258 * count on 'md'.
2259 */
2260struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2261{
2262	BUG_ON(!atomic_read(&md->holders));
2263	return &md->queue->limits;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2264}
2265EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2266
2267/*
2268 * Setup the DM device's queue based on md's type
2269 */
2270int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2271{
2272	int r;
2273	struct queue_limits limits;
2274	enum dm_queue_mode type = dm_get_md_type(md);
2275
2276	switch (type) {
2277	case DM_TYPE_REQUEST_BASED:
2278		r = dm_mq_init_request_queue(md, t);
2279		if (r) {
2280			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2281			return r;
2282		}
2283		break;
2284	case DM_TYPE_BIO_BASED:
2285	case DM_TYPE_DAX_BIO_BASED:
2286	case DM_TYPE_NVME_BIO_BASED:
2287		dm_init_normal_md_queue(md);
2288		blk_queue_make_request(md->queue, dm_make_request);
2289		break;
2290	case DM_TYPE_NONE:
2291		WARN_ON_ONCE(true);
2292		break;
2293	}
2294
2295	r = dm_calculate_queue_limits(t, &limits);
2296	if (r) {
2297		DMERR("Cannot calculate initial queue limits");
2298		return r;
2299	}
2300	dm_table_set_restrictions(t, md->queue, &limits);
2301	blk_register_queue(md->disk);
2302
2303	return 0;
2304}
2305
2306struct mapped_device *dm_get_md(dev_t dev)
2307{
2308	struct mapped_device *md;
2309	unsigned minor = MINOR(dev);
2310
2311	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2312		return NULL;
2313
2314	spin_lock(&_minor_lock);
2315
2316	md = idr_find(&_minor_idr, minor);
2317	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2318	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
 
 
2319		md = NULL;
2320		goto out;
2321	}
2322	dm_get(md);
2323out:
2324	spin_unlock(&_minor_lock);
2325
2326	return md;
2327}
 
 
 
 
 
 
 
 
 
 
2328EXPORT_SYMBOL_GPL(dm_get_md);
2329
2330void *dm_get_mdptr(struct mapped_device *md)
2331{
2332	return md->interface_ptr;
2333}
2334
2335void dm_set_mdptr(struct mapped_device *md, void *ptr)
2336{
2337	md->interface_ptr = ptr;
2338}
2339
2340void dm_get(struct mapped_device *md)
2341{
2342	atomic_inc(&md->holders);
2343	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2344}
2345
2346int dm_hold(struct mapped_device *md)
2347{
2348	spin_lock(&_minor_lock);
2349	if (test_bit(DMF_FREEING, &md->flags)) {
2350		spin_unlock(&_minor_lock);
2351		return -EBUSY;
2352	}
2353	dm_get(md);
2354	spin_unlock(&_minor_lock);
2355	return 0;
2356}
2357EXPORT_SYMBOL_GPL(dm_hold);
2358
2359const char *dm_device_name(struct mapped_device *md)
2360{
2361	return md->name;
2362}
2363EXPORT_SYMBOL_GPL(dm_device_name);
2364
2365static void __dm_destroy(struct mapped_device *md, bool wait)
2366{
2367	struct dm_table *map;
2368	int srcu_idx;
2369
2370	might_sleep();
2371
2372	spin_lock(&_minor_lock);
 
2373	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2374	set_bit(DMF_FREEING, &md->flags);
2375	spin_unlock(&_minor_lock);
2376
2377	blk_set_queue_dying(md->queue);
2378
2379	/*
2380	 * Take suspend_lock so that presuspend and postsuspend methods
2381	 * do not race with internal suspend.
2382	 */
2383	mutex_lock(&md->suspend_lock);
2384	map = dm_get_live_table(md, &srcu_idx);
2385	if (!dm_suspended_md(md)) {
2386		dm_table_presuspend_targets(map);
2387		dm_table_postsuspend_targets(map);
2388	}
2389	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2390	dm_put_live_table(md, srcu_idx);
2391	mutex_unlock(&md->suspend_lock);
2392
2393	/*
2394	 * Rare, but there may be I/O requests still going to complete,
2395	 * for example.  Wait for all references to disappear.
2396	 * No one should increment the reference count of the mapped_device,
2397	 * after the mapped_device state becomes DMF_FREEING.
2398	 */
2399	if (wait)
2400		while (atomic_read(&md->holders))
2401			msleep(1);
2402	else if (atomic_read(&md->holders))
2403		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2404		       dm_device_name(md), atomic_read(&md->holders));
2405
2406	dm_sysfs_exit(md);
 
2407	dm_table_destroy(__unbind(md));
2408	free_dev(md);
2409}
2410
2411void dm_destroy(struct mapped_device *md)
2412{
2413	__dm_destroy(md, true);
2414}
2415
2416void dm_destroy_immediate(struct mapped_device *md)
2417{
2418	__dm_destroy(md, false);
2419}
2420
2421void dm_put(struct mapped_device *md)
2422{
2423	atomic_dec(&md->holders);
2424}
2425EXPORT_SYMBOL_GPL(dm_put);
2426
2427static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2428{
2429	int r = 0;
2430	DEFINE_WAIT(wait);
 
 
2431
2432	while (1) {
2433		prepare_to_wait(&md->wait, &wait, task_state);
2434
2435		if (!md_in_flight(md))
2436			break;
2437
2438		if (signal_pending_state(task_state, current)) {
 
2439			r = -EINTR;
2440			break;
2441		}
2442
2443		io_schedule();
2444	}
2445	finish_wait(&md->wait, &wait);
 
 
2446
2447	return r;
2448}
2449
2450/*
2451 * Process the deferred bios
2452 */
2453static void dm_wq_work(struct work_struct *work)
2454{
2455	struct mapped_device *md = container_of(work, struct mapped_device,
2456						work);
2457	struct bio *c;
2458	int srcu_idx;
2459	struct dm_table *map;
2460
2461	map = dm_get_live_table(md, &srcu_idx);
2462
2463	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2464		spin_lock_irq(&md->deferred_lock);
2465		c = bio_list_pop(&md->deferred);
2466		spin_unlock_irq(&md->deferred_lock);
2467
2468		if (!c)
2469			break;
2470
 
 
2471		if (dm_request_based(md))
2472			(void) generic_make_request(c);
2473		else
2474			(void) dm_process_bio(md, map, c);
 
 
2475	}
2476
2477	dm_put_live_table(md, srcu_idx);
2478}
2479
2480static void dm_queue_flush(struct mapped_device *md)
2481{
2482	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2483	smp_mb__after_atomic();
2484	queue_work(md->wq, &md->work);
2485}
2486
2487/*
2488 * Swap in a new table, returning the old one for the caller to destroy.
2489 */
2490struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2491{
2492	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2493	struct queue_limits limits;
2494	int r;
2495
2496	mutex_lock(&md->suspend_lock);
2497
2498	/* device must be suspended */
2499	if (!dm_suspended_md(md))
2500		goto out;
2501
2502	/*
2503	 * If the new table has no data devices, retain the existing limits.
2504	 * This helps multipath with queue_if_no_path if all paths disappear,
2505	 * then new I/O is queued based on these limits, and then some paths
2506	 * reappear.
2507	 */
2508	if (dm_table_has_no_data_devices(table)) {
2509		live_map = dm_get_live_table_fast(md);
2510		if (live_map)
2511			limits = md->queue->limits;
2512		dm_put_live_table_fast(md);
2513	}
2514
2515	if (!live_map) {
2516		r = dm_calculate_queue_limits(table, &limits);
2517		if (r) {
2518			map = ERR_PTR(r);
2519			goto out;
2520		}
2521	}
2522
2523	map = __bind(md, table, &limits);
2524	dm_issue_global_event();
2525
2526out:
2527	mutex_unlock(&md->suspend_lock);
2528	return map;
2529}
2530
2531/*
2532 * Functions to lock and unlock any filesystem running on the
2533 * device.
2534 */
2535static int lock_fs(struct mapped_device *md)
2536{
2537	int r;
2538
2539	WARN_ON(md->frozen_sb);
2540
2541	md->frozen_sb = freeze_bdev(md->bdev);
2542	if (IS_ERR(md->frozen_sb)) {
2543		r = PTR_ERR(md->frozen_sb);
2544		md->frozen_sb = NULL;
2545		return r;
2546	}
2547
2548	set_bit(DMF_FROZEN, &md->flags);
2549
2550	return 0;
2551}
2552
2553static void unlock_fs(struct mapped_device *md)
2554{
2555	if (!test_bit(DMF_FROZEN, &md->flags))
2556		return;
2557
2558	thaw_bdev(md->bdev, md->frozen_sb);
2559	md->frozen_sb = NULL;
2560	clear_bit(DMF_FROZEN, &md->flags);
2561}
2562
2563/*
2564 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2565 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2566 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
 
 
 
 
 
 
 
 
 
2567 *
2568 * If __dm_suspend returns 0, the device is completely quiescent
2569 * now. There is no request-processing activity. All new requests
2570 * are being added to md->deferred list.
2571 */
2572static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2573			unsigned suspend_flags, long task_state,
2574			int dmf_suspended_flag)
2575{
2576	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2577	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2578	int r;
 
 
 
 
 
 
 
 
2579
2580	lockdep_assert_held(&md->suspend_lock);
2581
2582	/*
2583	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2584	 * This flag is cleared before dm_suspend returns.
2585	 */
2586	if (noflush)
2587		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2588	else
2589		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2590
2591	/*
2592	 * This gets reverted if there's an error later and the targets
2593	 * provide the .presuspend_undo hook.
2594	 */
2595	dm_table_presuspend_targets(map);
2596
2597	/*
2598	 * Flush I/O to the device.
2599	 * Any I/O submitted after lock_fs() may not be flushed.
2600	 * noflush takes precedence over do_lockfs.
2601	 * (lock_fs() flushes I/Os and waits for them to complete.)
2602	 */
2603	if (!noflush && do_lockfs) {
2604		r = lock_fs(md);
2605		if (r) {
2606			dm_table_presuspend_undo_targets(map);
2607			return r;
2608		}
2609	}
2610
2611	/*
2612	 * Here we must make sure that no processes are submitting requests
2613	 * to target drivers i.e. no one may be executing
2614	 * __split_and_process_bio. This is called from dm_request and
2615	 * dm_wq_work.
2616	 *
2617	 * To get all processes out of __split_and_process_bio in dm_request,
2618	 * we take the write lock. To prevent any process from reentering
2619	 * __split_and_process_bio from dm_request and quiesce the thread
2620	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2621	 * flush_workqueue(md->wq).
2622	 */
 
2623	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2624	if (map)
2625		synchronize_srcu(&md->io_barrier);
2626
2627	/*
2628	 * Stop md->queue before flushing md->wq in case request-based
2629	 * dm defers requests to md->wq from md->queue.
2630	 */
2631	if (dm_request_based(md))
2632		dm_stop_queue(md->queue);
2633
2634	flush_workqueue(md->wq);
2635
2636	/*
2637	 * At this point no more requests are entering target request routines.
2638	 * We call dm_wait_for_completion to wait for all existing requests
2639	 * to finish.
2640	 */
2641	r = dm_wait_for_completion(md, task_state);
2642	if (!r)
2643		set_bit(dmf_suspended_flag, &md->flags);
2644
 
2645	if (noflush)
2646		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2647	if (map)
2648		synchronize_srcu(&md->io_barrier);
2649
2650	/* were we interrupted ? */
2651	if (r < 0) {
2652		dm_queue_flush(md);
2653
2654		if (dm_request_based(md))
2655			dm_start_queue(md->queue);
2656
2657		unlock_fs(md);
2658		dm_table_presuspend_undo_targets(map);
2659		/* pushback list is already flushed, so skip flush */
2660	}
2661
2662	return r;
2663}
 
 
 
2664
2665/*
2666 * We need to be able to change a mapping table under a mounted
2667 * filesystem.  For example we might want to move some data in
2668 * the background.  Before the table can be swapped with
2669 * dm_bind_table, dm_suspend must be called to flush any in
2670 * flight bios and ensure that any further io gets deferred.
2671 */
2672/*
2673 * Suspend mechanism in request-based dm.
2674 *
2675 * 1. Flush all I/Os by lock_fs() if needed.
2676 * 2. Stop dispatching any I/O by stopping the request_queue.
2677 * 3. Wait for all in-flight I/Os to be completed or requeued.
2678 *
2679 * To abort suspend, start the request_queue.
2680 */
2681int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2682{
2683	struct dm_table *map = NULL;
2684	int r = 0;
2685
2686retry:
2687	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2688
2689	if (dm_suspended_md(md)) {
2690		r = -EINVAL;
2691		goto out_unlock;
2692	}
2693
2694	if (dm_suspended_internally_md(md)) {
2695		/* already internally suspended, wait for internal resume */
2696		mutex_unlock(&md->suspend_lock);
2697		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2698		if (r)
2699			return r;
2700		goto retry;
2701	}
2702
2703	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2704
2705	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2706	if (r)
2707		goto out_unlock;
2708
2709	dm_table_postsuspend_targets(map);
2710
2711out_unlock:
2712	mutex_unlock(&md->suspend_lock);
2713	return r;
2714}
2715
2716static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2717{
2718	if (map) {
2719		int r = dm_table_resume_targets(map);
2720		if (r)
2721			return r;
2722	}
2723
2724	dm_queue_flush(md);
2725
2726	/*
2727	 * Flushing deferred I/Os must be done after targets are resumed
2728	 * so that mapping of targets can work correctly.
2729	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2730	 */
2731	if (dm_request_based(md))
2732		dm_start_queue(md->queue);
2733
2734	unlock_fs(md);
2735
2736	return 0;
2737}
2738
2739int dm_resume(struct mapped_device *md)
2740{
2741	int r;
2742	struct dm_table *map = NULL;
2743
2744retry:
2745	r = -EINVAL;
2746	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2747
2748	if (!dm_suspended_md(md))
2749		goto out;
2750
2751	if (dm_suspended_internally_md(md)) {
2752		/* already internally suspended, wait for internal resume */
2753		mutex_unlock(&md->suspend_lock);
2754		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2755		if (r)
2756			return r;
2757		goto retry;
2758	}
2759
2760	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2761	if (!map || !dm_table_get_size(map))
2762		goto out;
2763
2764	r = __dm_resume(md, map);
2765	if (r)
2766		goto out;
2767
2768	clear_bit(DMF_SUSPENDED, &md->flags);
2769out:
2770	mutex_unlock(&md->suspend_lock);
2771
2772	return r;
2773}
2774
2775/*
2776 * Internal suspend/resume works like userspace-driven suspend. It waits
2777 * until all bios finish and prevents issuing new bios to the target drivers.
2778 * It may be used only from the kernel.
2779 */
2780
2781static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2782{
2783	struct dm_table *map = NULL;
2784
2785	lockdep_assert_held(&md->suspend_lock);
2786
2787	if (md->internal_suspend_count++)
2788		return; /* nested internal suspend */
2789
2790	if (dm_suspended_md(md)) {
2791		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2792		return; /* nest suspend */
2793	}
2794
2795	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2796
2797	/*
2798	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2799	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2800	 * would require changing .presuspend to return an error -- avoid this
2801	 * until there is a need for more elaborate variants of internal suspend.
2802	 */
2803	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2804			    DMF_SUSPENDED_INTERNALLY);
2805
2806	dm_table_postsuspend_targets(map);
2807}
2808
2809static void __dm_internal_resume(struct mapped_device *md)
2810{
2811	BUG_ON(!md->internal_suspend_count);
2812
2813	if (--md->internal_suspend_count)
2814		return; /* resume from nested internal suspend */
2815
2816	if (dm_suspended_md(md))
2817		goto done; /* resume from nested suspend */
2818
2819	/*
2820	 * NOTE: existing callers don't need to call dm_table_resume_targets
2821	 * (which may fail -- so best to avoid it for now by passing NULL map)
2822	 */
2823	(void) __dm_resume(md, NULL);
2824
2825done:
2826	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2827	smp_mb__after_atomic();
2828	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2829}
2830
2831void dm_internal_suspend_noflush(struct mapped_device *md)
2832{
2833	mutex_lock(&md->suspend_lock);
2834	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2835	mutex_unlock(&md->suspend_lock);
2836}
2837EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2838
2839void dm_internal_resume(struct mapped_device *md)
2840{
2841	mutex_lock(&md->suspend_lock);
2842	__dm_internal_resume(md);
2843	mutex_unlock(&md->suspend_lock);
2844}
2845EXPORT_SYMBOL_GPL(dm_internal_resume);
2846
2847/*
2848 * Fast variants of internal suspend/resume hold md->suspend_lock,
2849 * which prevents interaction with userspace-driven suspend.
2850 */
2851
2852void dm_internal_suspend_fast(struct mapped_device *md)
2853{
2854	mutex_lock(&md->suspend_lock);
2855	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2856		return;
2857
2858	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2859	synchronize_srcu(&md->io_barrier);
2860	flush_workqueue(md->wq);
2861	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2862}
2863EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2864
2865void dm_internal_resume_fast(struct mapped_device *md)
2866{
2867	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2868		goto done;
2869
2870	dm_queue_flush(md);
2871
2872done:
2873	mutex_unlock(&md->suspend_lock);
2874}
2875EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2876
2877/*-----------------------------------------------------------------
2878 * Event notification.
2879 *---------------------------------------------------------------*/
2880int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2881		       unsigned cookie)
2882{
2883	char udev_cookie[DM_COOKIE_LENGTH];
2884	char *envp[] = { udev_cookie, NULL };
2885
2886	if (!cookie)
2887		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2888	else {
2889		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2890			 DM_COOKIE_ENV_VAR_NAME, cookie);
2891		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2892					  action, envp);
2893	}
2894}
2895
2896uint32_t dm_next_uevent_seq(struct mapped_device *md)
2897{
2898	return atomic_add_return(1, &md->uevent_seq);
2899}
2900
2901uint32_t dm_get_event_nr(struct mapped_device *md)
2902{
2903	return atomic_read(&md->event_nr);
2904}
2905
2906int dm_wait_event(struct mapped_device *md, int event_nr)
2907{
2908	return wait_event_interruptible(md->eventq,
2909			(event_nr != atomic_read(&md->event_nr)));
2910}
2911
2912void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2913{
2914	unsigned long flags;
2915
2916	spin_lock_irqsave(&md->uevent_lock, flags);
2917	list_add(elist, &md->uevent_list);
2918	spin_unlock_irqrestore(&md->uevent_lock, flags);
2919}
2920
2921/*
2922 * The gendisk is only valid as long as you have a reference
2923 * count on 'md'.
2924 */
2925struct gendisk *dm_disk(struct mapped_device *md)
2926{
2927	return md->disk;
2928}
2929EXPORT_SYMBOL_GPL(dm_disk);
2930
2931struct kobject *dm_kobject(struct mapped_device *md)
2932{
2933	return &md->kobj_holder.kobj;
2934}
2935
 
 
 
 
2936struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2937{
2938	struct mapped_device *md;
2939
2940	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
 
 
 
 
 
 
2941
2942	spin_lock(&_minor_lock);
2943	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2944		md = NULL;
2945		goto out;
2946	}
2947	dm_get(md);
2948out:
2949	spin_unlock(&_minor_lock);
2950
2951	return md;
2952}
2953
2954int dm_suspended_md(struct mapped_device *md)
2955{
2956	return test_bit(DMF_SUSPENDED, &md->flags);
2957}
2958
2959int dm_suspended_internally_md(struct mapped_device *md)
2960{
2961	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2962}
2963
2964int dm_test_deferred_remove_flag(struct mapped_device *md)
2965{
2966	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2967}
2968
2969int dm_suspended(struct dm_target *ti)
2970{
2971	return dm_suspended_md(dm_table_get_md(ti->table));
2972}
2973EXPORT_SYMBOL_GPL(dm_suspended);
2974
2975int dm_noflush_suspending(struct dm_target *ti)
2976{
2977	return __noflush_suspending(dm_table_get_md(ti->table));
2978}
2979EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2980
2981struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2982					    unsigned integrity, unsigned per_io_data_size,
2983					    unsigned min_pool_size)
2984{
2985	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2986	unsigned int pool_size = 0;
2987	unsigned int front_pad, io_front_pad;
2988	int ret;
2989
2990	if (!pools)
2991		return NULL;
2992
2993	switch (type) {
2994	case DM_TYPE_BIO_BASED:
2995	case DM_TYPE_DAX_BIO_BASED:
2996	case DM_TYPE_NVME_BIO_BASED:
2997		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2998		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2999		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3000		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3001		if (ret)
3002			goto out;
3003		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3004			goto out;
3005		break;
3006	case DM_TYPE_REQUEST_BASED:
3007		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3008		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3009		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3010		break;
3011	default:
3012		BUG();
3013	}
3014
3015	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3016	if (ret)
3017		goto out;
3018
3019	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3020		goto out;
3021
3022	return pools;
 
3023
3024out:
3025	dm_free_md_mempools(pools);
3026
3027	return NULL;
3028}
3029
3030void dm_free_md_mempools(struct dm_md_mempools *pools)
3031{
3032	if (!pools)
3033		return;
3034
3035	bioset_exit(&pools->bs);
3036	bioset_exit(&pools->io_bs);
3037
3038	kfree(pools);
3039}
3040
3041struct dm_pr {
3042	u64	old_key;
3043	u64	new_key;
3044	u32	flags;
3045	bool	fail_early;
3046};
3047
3048static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3049		      void *data)
3050{
3051	struct mapped_device *md = bdev->bd_disk->private_data;
3052	struct dm_table *table;
3053	struct dm_target *ti;
3054	int ret = -ENOTTY, srcu_idx;
3055
3056	table = dm_get_live_table(md, &srcu_idx);
3057	if (!table || !dm_table_get_size(table))
3058		goto out;
3059
3060	/* We only support devices that have a single target */
3061	if (dm_table_get_num_targets(table) != 1)
3062		goto out;
3063	ti = dm_table_get_target(table, 0);
3064
3065	ret = -EINVAL;
3066	if (!ti->type->iterate_devices)
3067		goto out;
3068
3069	ret = ti->type->iterate_devices(ti, fn, data);
3070out:
3071	dm_put_live_table(md, srcu_idx);
3072	return ret;
3073}
3074
3075/*
3076 * For register / unregister we need to manually call out to every path.
3077 */
3078static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3079			    sector_t start, sector_t len, void *data)
3080{
3081	struct dm_pr *pr = data;
3082	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3083
3084	if (!ops || !ops->pr_register)
3085		return -EOPNOTSUPP;
3086	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3087}
3088
3089static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3090			  u32 flags)
3091{
3092	struct dm_pr pr = {
3093		.old_key	= old_key,
3094		.new_key	= new_key,
3095		.flags		= flags,
3096		.fail_early	= true,
3097	};
3098	int ret;
3099
3100	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3101	if (ret && new_key) {
3102		/* unregister all paths if we failed to register any path */
3103		pr.old_key = new_key;
3104		pr.new_key = 0;
3105		pr.flags = 0;
3106		pr.fail_early = false;
3107		dm_call_pr(bdev, __dm_pr_register, &pr);
3108	}
3109
3110	return ret;
3111}
3112
3113static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3114			 u32 flags)
3115{
3116	struct mapped_device *md = bdev->bd_disk->private_data;
3117	const struct pr_ops *ops;
3118	int r, srcu_idx;
3119
3120	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3121	if (r < 0)
3122		goto out;
3123
3124	ops = bdev->bd_disk->fops->pr_ops;
3125	if (ops && ops->pr_reserve)
3126		r = ops->pr_reserve(bdev, key, type, flags);
3127	else
3128		r = -EOPNOTSUPP;
3129out:
3130	dm_unprepare_ioctl(md, srcu_idx);
3131	return r;
3132}
3133
3134static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3135{
3136	struct mapped_device *md = bdev->bd_disk->private_data;
3137	const struct pr_ops *ops;
3138	int r, srcu_idx;
3139
3140	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3141	if (r < 0)
3142		goto out;
3143
3144	ops = bdev->bd_disk->fops->pr_ops;
3145	if (ops && ops->pr_release)
3146		r = ops->pr_release(bdev, key, type);
3147	else
3148		r = -EOPNOTSUPP;
3149out:
3150	dm_unprepare_ioctl(md, srcu_idx);
3151	return r;
3152}
3153
3154static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3155			 enum pr_type type, bool abort)
3156{
3157	struct mapped_device *md = bdev->bd_disk->private_data;
3158	const struct pr_ops *ops;
3159	int r, srcu_idx;
3160
3161	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3162	if (r < 0)
3163		goto out;
3164
3165	ops = bdev->bd_disk->fops->pr_ops;
3166	if (ops && ops->pr_preempt)
3167		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3168	else
3169		r = -EOPNOTSUPP;
3170out:
3171	dm_unprepare_ioctl(md, srcu_idx);
3172	return r;
3173}
3174
3175static int dm_pr_clear(struct block_device *bdev, u64 key)
3176{
3177	struct mapped_device *md = bdev->bd_disk->private_data;
3178	const struct pr_ops *ops;
3179	int r, srcu_idx;
3180
3181	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3182	if (r < 0)
3183		goto out;
3184
3185	ops = bdev->bd_disk->fops->pr_ops;
3186	if (ops && ops->pr_clear)
3187		r = ops->pr_clear(bdev, key);
3188	else
3189		r = -EOPNOTSUPP;
3190out:
3191	dm_unprepare_ioctl(md, srcu_idx);
3192	return r;
3193}
3194
3195static const struct pr_ops dm_pr_ops = {
3196	.pr_register	= dm_pr_register,
3197	.pr_reserve	= dm_pr_reserve,
3198	.pr_release	= dm_pr_release,
3199	.pr_preempt	= dm_pr_preempt,
3200	.pr_clear	= dm_pr_clear,
3201};
3202
3203static const struct block_device_operations dm_blk_dops = {
3204	.open = dm_blk_open,
3205	.release = dm_blk_close,
3206	.ioctl = dm_blk_ioctl,
3207	.getgeo = dm_blk_getgeo,
3208	.report_zones = dm_blk_report_zones,
3209	.pr_ops = &dm_pr_ops,
3210	.owner = THIS_MODULE
3211};
3212
3213static const struct dax_operations dm_dax_ops = {
3214	.direct_access = dm_dax_direct_access,
3215	.dax_supported = dm_dax_supported,
3216	.copy_from_iter = dm_dax_copy_from_iter,
3217	.copy_to_iter = dm_dax_copy_to_iter,
3218};
3219
3220/*
3221 * module hooks
3222 */
3223module_init(dm_init);
3224module_exit(dm_exit);
3225
3226module_param(major, uint, 0);
3227MODULE_PARM_DESC(major, "The major number of the device mapper");
3228
3229module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3230MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3231
3232module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3233MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3234
3235MODULE_DESCRIPTION(DM_NAME " driver");
3236MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3237MODULE_LICENSE("GPL");