Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
 
   9#include "dm-uevent.h"
  10
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/moduleparam.h>
 
  15#include <linux/blkpg.h>
  16#include <linux/bio.h>
  17#include <linux/mempool.h>
 
  18#include <linux/slab.h>
  19#include <linux/idr.h>
 
  20#include <linux/hdreg.h>
  21#include <linux/delay.h>
  22
  23#include <trace/events/block.h>
 
 
 
 
  24
  25#define DM_MSG_PREFIX "core"
  26
  27#ifdef CONFIG_PRINTK
  28/*
  29 * ratelimit state to be used in DMXXX_LIMIT().
  30 */
  31DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
  32		       DEFAULT_RATELIMIT_INTERVAL,
  33		       DEFAULT_RATELIMIT_BURST);
  34EXPORT_SYMBOL(dm_ratelimit_state);
  35#endif
  36
  37/*
  38 * Cookies are numeric values sent with CHANGE and REMOVE
  39 * uevents while resuming, removing or renaming the device.
  40 */
  41#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  42#define DM_COOKIE_LENGTH 24
  43
  44static const char *_name = DM_NAME;
  45
  46static unsigned int major = 0;
  47static unsigned int _major = 0;
  48
  49static DEFINE_IDR(_minor_idr);
  50
  51static DEFINE_SPINLOCK(_minor_lock);
  52/*
  53 * For bio-based dm.
  54 * One of these is allocated per bio.
  55 */
  56struct dm_io {
  57	struct mapped_device *md;
  58	int error;
  59	atomic_t io_count;
  60	struct bio *bio;
  61	unsigned long start_time;
  62	spinlock_t endio_lock;
  63};
 
 
 
  64
  65/*
  66 * For bio-based dm.
  67 * One of these is allocated per target within a bio.  Hopefully
  68 * this will be simplified out one day.
  69 */
  70struct dm_target_io {
 
 
  71	struct dm_io *io;
  72	struct dm_target *ti;
  73	union map_info info;
  74};
  75
  76/*
  77 * For request-based dm.
  78 * One of these is allocated per request.
  79 */
  80struct dm_rq_target_io {
  81	struct mapped_device *md;
  82	struct dm_target *ti;
  83	struct request *orig, clone;
  84	int error;
  85	union map_info info;
  86};
  87
  88/*
  89 * For request-based dm.
  90 * One of these is allocated per bio.
  91 */
  92struct dm_rq_clone_bio_info {
  93	struct bio *orig;
  94	struct dm_rq_target_io *tio;
  95};
  96
  97union map_info *dm_get_mapinfo(struct bio *bio)
  98{
  99	if (bio && bio->bi_private)
 100		return &((struct dm_target_io *)bio->bi_private)->info;
 101	return NULL;
 
 
 102}
 
 103
 104union map_info *dm_get_rq_mapinfo(struct request *rq)
 105{
 106	if (rq && rq->end_io_data)
 107		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
 108	return NULL;
 109}
 110EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
 111
 112#define MINOR_ALLOCED ((void *)-1)
 113
 114/*
 115 * Bits for the md->flags field.
 116 */
 117#define DMF_BLOCK_IO_FOR_SUSPEND 0
 118#define DMF_SUSPENDED 1
 119#define DMF_FROZEN 2
 120#define DMF_FREEING 3
 121#define DMF_DELETING 4
 122#define DMF_NOFLUSH_SUSPENDING 5
 123#define DMF_MERGE_IS_OPTIONAL 6
 124
 125/*
 126 * Work processed by per-device workqueue.
 127 */
 128struct mapped_device {
 129	struct rw_semaphore io_lock;
 130	struct mutex suspend_lock;
 131	rwlock_t map_lock;
 132	atomic_t holders;
 133	atomic_t open_count;
 134
 135	unsigned long flags;
 136
 137	struct request_queue *queue;
 138	unsigned type;
 139	/* Protect queue and type against concurrent access. */
 140	struct mutex type_lock;
 141
 142	struct target_type *immutable_target_type;
 143
 144	struct gendisk *disk;
 145	char name[16];
 
 
 
 
 
 146
 147	void *interface_ptr;
 
 
 
 
 
 
 148
 149	/*
 150	 * A list of ios that arrived while we were suspended.
 151	 */
 152	atomic_t pending[2];
 153	wait_queue_head_t wait;
 154	struct work_struct work;
 155	struct bio_list deferred;
 156	spinlock_t deferred_lock;
 157
 158	/*
 159	 * Processing queue (flush)
 160	 */
 161	struct workqueue_struct *wq;
 
 162
 163	/*
 164	 * The current mapping.
 165	 */
 166	struct dm_table *map;
 
 167
 168	/*
 169	 * io objects are allocated from here.
 170	 */
 171	mempool_t *io_pool;
 172	mempool_t *tio_pool;
 
 173
 174	struct bio_set *bs;
 
 
 
 175
 176	/*
 177	 * Event handling.
 178	 */
 179	atomic_t event_nr;
 180	wait_queue_head_t eventq;
 181	atomic_t uevent_seq;
 182	struct list_head uevent_list;
 183	spinlock_t uevent_lock; /* Protect access to uevent_list */
 184
 185	/*
 186	 * freeze/thaw support require holding onto a super block
 187	 */
 188	struct super_block *frozen_sb;
 189	struct block_device *bdev;
 190
 191	/* forced geometry settings */
 192	struct hd_geometry geometry;
 
 
 193
 194	/* sysfs handle */
 195	struct kobject kobj;
 
 
 196
 197	/* zero-length flush that will be cloned and submitted to targets */
 198	struct bio flush_bio;
 199};
 200
 201/*
 202 * For mempools pre-allocation at the table loading time.
 203 */
 204struct dm_md_mempools {
 205	mempool_t *io_pool;
 206	mempool_t *tio_pool;
 207	struct bio_set *bs;
 208};
 209
 210#define MIN_IOS 256
 211static struct kmem_cache *_io_cache;
 212static struct kmem_cache *_tio_cache;
 213static struct kmem_cache *_rq_tio_cache;
 214static struct kmem_cache *_rq_bio_info_cache;
 215
 216static int __init local_init(void)
 217{
 218	int r = -ENOMEM;
 219
 220	/* allocate a slab for the dm_ios */
 221	_io_cache = KMEM_CACHE(dm_io, 0);
 222	if (!_io_cache)
 223		return r;
 224
 225	/* allocate a slab for the target ios */
 226	_tio_cache = KMEM_CACHE(dm_target_io, 0);
 227	if (!_tio_cache)
 228		goto out_free_io_cache;
 229
 230	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 231	if (!_rq_tio_cache)
 232		goto out_free_tio_cache;
 233
 234	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
 235	if (!_rq_bio_info_cache)
 236		goto out_free_rq_tio_cache;
 237
 238	r = dm_uevent_init();
 239	if (r)
 240		goto out_free_rq_bio_info_cache;
 
 
 
 
 
 
 241
 242	_major = major;
 243	r = register_blkdev(_major, _name);
 244	if (r < 0)
 245		goto out_uevent_exit;
 246
 247	if (!_major)
 248		_major = r;
 249
 250	return 0;
 251
 
 
 252out_uevent_exit:
 253	dm_uevent_exit();
 254out_free_rq_bio_info_cache:
 255	kmem_cache_destroy(_rq_bio_info_cache);
 256out_free_rq_tio_cache:
 257	kmem_cache_destroy(_rq_tio_cache);
 258out_free_tio_cache:
 259	kmem_cache_destroy(_tio_cache);
 260out_free_io_cache:
 261	kmem_cache_destroy(_io_cache);
 262
 263	return r;
 264}
 265
 266static void local_exit(void)
 267{
 268	kmem_cache_destroy(_rq_bio_info_cache);
 269	kmem_cache_destroy(_rq_tio_cache);
 270	kmem_cache_destroy(_tio_cache);
 271	kmem_cache_destroy(_io_cache);
 272	unregister_blkdev(_major, _name);
 273	dm_uevent_exit();
 274
 275	_major = 0;
 276
 277	DMINFO("cleaned up");
 278}
 279
 280static int (*_inits[])(void) __initdata = {
 281	local_init,
 282	dm_target_init,
 283	dm_linear_init,
 284	dm_stripe_init,
 285	dm_io_init,
 286	dm_kcopyd_init,
 287	dm_interface_init,
 
 288};
 289
 290static void (*_exits[])(void) = {
 291	local_exit,
 292	dm_target_exit,
 293	dm_linear_exit,
 294	dm_stripe_exit,
 295	dm_io_exit,
 296	dm_kcopyd_exit,
 297	dm_interface_exit,
 
 298};
 299
 300static int __init dm_init(void)
 301{
 302	const int count = ARRAY_SIZE(_inits);
 303
 304	int r, i;
 305
 306	for (i = 0; i < count; i++) {
 307		r = _inits[i]();
 308		if (r)
 309			goto bad;
 310	}
 311
 312	return 0;
 313
 314      bad:
 315	while (i--)
 316		_exits[i]();
 317
 318	return r;
 319}
 320
 321static void __exit dm_exit(void)
 322{
 323	int i = ARRAY_SIZE(_exits);
 324
 325	while (i--)
 326		_exits[i]();
 327
 328	/*
 329	 * Should be empty by this point.
 330	 */
 331	idr_remove_all(&_minor_idr);
 332	idr_destroy(&_minor_idr);
 333}
 334
 335/*
 336 * Block device functions
 337 */
 338int dm_deleting_md(struct mapped_device *md)
 339{
 340	return test_bit(DMF_DELETING, &md->flags);
 341}
 342
 343static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 344{
 345	struct mapped_device *md;
 346
 347	spin_lock(&_minor_lock);
 348
 349	md = bdev->bd_disk->private_data;
 350	if (!md)
 351		goto out;
 352
 353	if (test_bit(DMF_FREEING, &md->flags) ||
 354	    dm_deleting_md(md)) {
 355		md = NULL;
 356		goto out;
 357	}
 358
 359	dm_get(md);
 360	atomic_inc(&md->open_count);
 361
 362out:
 363	spin_unlock(&_minor_lock);
 364
 365	return md ? 0 : -ENXIO;
 366}
 367
 368static int dm_blk_close(struct gendisk *disk, fmode_t mode)
 369{
 370	struct mapped_device *md = disk->private_data;
 371
 372	spin_lock(&_minor_lock);
 373
 374	atomic_dec(&md->open_count);
 375	dm_put(md);
 
 376
 377	spin_unlock(&_minor_lock);
 
 
 378
 379	return 0;
 
 
 380}
 381
 382int dm_open_count(struct mapped_device *md)
 383{
 384	return atomic_read(&md->open_count);
 385}
 386
 387/*
 388 * Guarantees nothing is using the device before it's deleted.
 389 */
 390int dm_lock_for_deletion(struct mapped_device *md)
 391{
 392	int r = 0;
 393
 394	spin_lock(&_minor_lock);
 395
 396	if (dm_open_count(md))
 397		r = -EBUSY;
 
 
 
 
 398	else
 399		set_bit(DMF_DELETING, &md->flags);
 400
 401	spin_unlock(&_minor_lock);
 402
 403	return r;
 404}
 405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 407{
 408	struct mapped_device *md = bdev->bd_disk->private_data;
 409
 410	return dm_get_geometry(md, geo);
 411}
 412
 413static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 414			unsigned int cmd, unsigned long arg)
 415{
 416	struct mapped_device *md = bdev->bd_disk->private_data;
 417	struct dm_table *map = dm_get_live_table(md);
 418	struct dm_target *tgt;
 419	int r = -ENOTTY;
 
 420
 
 
 
 421	if (!map || !dm_table_get_size(map))
 422		goto out;
 423
 424	/* We only support devices that have a single target */
 425	if (dm_table_get_num_targets(map) != 1)
 426		goto out;
 427
 428	tgt = dm_table_get_target(map, 0);
 
 
 429
 430	if (dm_suspended_md(md)) {
 431		r = -EAGAIN;
 432		goto out;
 433	}
 434
 435	if (tgt->type->ioctl)
 436		r = tgt->type->ioctl(tgt, cmd, arg);
 437
 438out:
 439	dm_table_put(map);
 
 
 
 
 440
 441	return r;
 442}
 443
 444static struct dm_io *alloc_io(struct mapped_device *md)
 445{
 446	return mempool_alloc(md->io_pool, GFP_NOIO);
 447}
 448
 449static void free_io(struct mapped_device *md, struct dm_io *io)
 
 450{
 451	mempool_free(io, md->io_pool);
 452}
 453
 454static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
 455{
 456	mempool_free(tio, md->tio_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 457}
 458
 459static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
 460					    gfp_t gfp_mask)
 461{
 462	return mempool_alloc(md->tio_pool, gfp_mask);
 
 
 
 463}
 
 464
 465static void free_rq_tio(struct dm_rq_target_io *tio)
 466{
 467	mempool_free(tio, tio->md->tio_pool);
 
 
 
 
 
 
 
 468}
 469
 470static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
 
 471{
 472	return mempool_alloc(md->io_pool, GFP_ATOMIC);
 
 
 
 
 
 
 
 
 
 
 
 473}
 474
 475static void free_bio_info(struct dm_rq_clone_bio_info *info)
 476{
 477	mempool_free(info, info->tio->md->io_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 478}
 479
 480static int md_in_flight(struct mapped_device *md)
 481{
 482	return atomic_read(&md->pending[READ]) +
 483	       atomic_read(&md->pending[WRITE]);
 484}
 485
 486static void start_io_acct(struct dm_io *io)
 
 487{
 488	struct mapped_device *md = io->md;
 489	int cpu;
 490	int rw = bio_data_dir(io->bio);
 
 
 
 
 
 
 
 
 
 
 491
 492	io->start_time = jiffies;
 
 
 
 493
 494	cpu = part_stat_lock();
 495	part_round_stats(cpu, &dm_disk(md)->part0);
 496	part_stat_unlock();
 497	atomic_set(&dm_disk(md)->part0.in_flight[rw],
 498		atomic_inc_return(&md->pending[rw]));
 499}
 500
 501static void end_io_acct(struct dm_io *io)
 502{
 503	struct mapped_device *md = io->md;
 504	struct bio *bio = io->bio;
 505	unsigned long duration = jiffies - io->start_time;
 506	int pending, cpu;
 507	int rw = bio_data_dir(bio);
 508
 509	cpu = part_stat_lock();
 510	part_round_stats(cpu, &dm_disk(md)->part0);
 511	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
 512	part_stat_unlock();
 513
 514	/*
 515	 * After this is decremented the bio must not be touched if it is
 516	 * a flush.
 517	 */
 518	pending = atomic_dec_return(&md->pending[rw]);
 519	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 520	pending += atomic_read(&md->pending[rw^0x1]);
 521
 522	/* nudge anyone waiting on suspend queue */
 523	if (!pending)
 524		wake_up(&md->wait);
 525}
 526
 527/*
 528 * Add the bio to the list of deferred io.
 529 */
 530static void queue_io(struct mapped_device *md, struct bio *bio)
 531{
 532	unsigned long flags;
 533
 534	spin_lock_irqsave(&md->deferred_lock, flags);
 535	bio_list_add(&md->deferred, bio);
 536	spin_unlock_irqrestore(&md->deferred_lock, flags);
 537	queue_work(md->wq, &md->work);
 538}
 539
 540/*
 541 * Everyone (including functions in this file), should use this
 542 * function to access the md->map field, and make sure they call
 543 * dm_table_put() when finished.
 544 */
 545struct dm_table *dm_get_live_table(struct mapped_device *md)
 546{
 547	struct dm_table *t;
 548	unsigned long flags;
 549
 550	read_lock_irqsave(&md->map_lock, flags);
 551	t = md->map;
 552	if (t)
 553		dm_table_get(t);
 554	read_unlock_irqrestore(&md->map_lock, flags);
 555
 556	return t;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 557}
 558
 559/*
 560 * Get the geometry associated with a dm device
 561 */
 562int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 563{
 564	*geo = md->geometry;
 565
 566	return 0;
 567}
 568
 569/*
 570 * Set the geometry of a device.
 571 */
 572int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 573{
 574	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 575
 576	if (geo->start > sz) {
 577		DMWARN("Start sector is beyond the geometry limits.");
 578		return -EINVAL;
 579	}
 580
 581	md->geometry = *geo;
 582
 583	return 0;
 584}
 585
 586/*-----------------------------------------------------------------
 587 * CRUD START:
 588 *   A more elegant soln is in the works that uses the queue
 589 *   merge fn, unfortunately there are a couple of changes to
 590 *   the block layer that I want to make for this.  So in the
 591 *   interests of getting something for people to use I give
 592 *   you this clearly demarcated crap.
 593 *---------------------------------------------------------------*/
 594
 595static int __noflush_suspending(struct mapped_device *md)
 596{
 597	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 598}
 599
 600/*
 601 * Decrements the number of outstanding ios that a bio has been
 602 * cloned into, completing the original io if necc.
 603 */
 604static void dec_pending(struct dm_io *io, int error)
 605{
 606	unsigned long flags;
 607	int io_error;
 608	struct bio *bio;
 609	struct mapped_device *md = io->md;
 
 
 610
 611	/* Push-back supersedes any I/O errors */
 612	if (unlikely(error)) {
 613		spin_lock_irqsave(&io->endio_lock, flags);
 614		if (!(io->error > 0 && __noflush_suspending(md)))
 615			io->error = error;
 616		spin_unlock_irqrestore(&io->endio_lock, flags);
 617	}
 618
 619	if (atomic_dec_and_test(&io->io_count)) {
 620		if (io->error == DM_ENDIO_REQUEUE) {
 
 621			/*
 622			 * Target requested pushing back the I/O.
 623			 */
 624			spin_lock_irqsave(&md->deferred_lock, flags);
 625			if (__noflush_suspending(md))
 626				bio_list_add_head(&md->deferred, io->bio);
 627			else
 628				/* noflush suspend was interrupted. */
 629				io->error = -EIO;
 
 
 
 
 
 
 630			spin_unlock_irqrestore(&md->deferred_lock, flags);
 631		}
 632
 633		io_error = io->error;
 634		bio = io->bio;
 635		end_io_acct(io);
 636		free_io(md, io);
 
 637
 638		if (io_error == DM_ENDIO_REQUEUE)
 639			return;
 640
 641		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
 642			/*
 643			 * Preflush done for flush with data, reissue
 644			 * without REQ_FLUSH.
 645			 */
 646			bio->bi_rw &= ~REQ_FLUSH;
 647			queue_io(md, bio);
 648		} else {
 649			/* done with normal IO or empty flush */
 650			trace_block_bio_complete(md->queue, bio, io_error);
 651			bio_endio(bio, io_error);
 
 652		}
 653	}
 654}
 655
 656static void clone_endio(struct bio *bio, int error)
 657{
 658	int r = 0;
 659	struct dm_target_io *tio = bio->bi_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 660	struct dm_io *io = tio->io;
 661	struct mapped_device *md = tio->io->md;
 662	dm_endio_fn endio = tio->ti->type->end_io;
 
 663
 664	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
 665		error = -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 666
 667	if (endio) {
 668		r = endio(tio->ti, bio, error, &tio->info);
 669		if (r < 0 || r == DM_ENDIO_REQUEUE)
 
 670			/*
 671			 * error and requeue request are handled
 672			 * in dec_pending().
 
 673			 */
 674			error = r;
 675		else if (r == DM_ENDIO_INCOMPLETE)
 
 
 
 
 
 
 676			/* The target will handle the io */
 677			return;
 678		else if (r) {
 679			DMWARN("unimplemented target endio return value: %d", r);
 680			BUG();
 681		}
 682	}
 683
 684	/*
 685	 * Store md for cleanup instead of tio which is about to get freed.
 686	 */
 687	bio->bi_private = md->bs;
 688
 689	free_tio(md, tio);
 690	bio_put(bio);
 691	dec_pending(io, error);
 692}
 693
 694/*
 695 * Partial completion handling for request-based dm
 
 696 */
 697static void end_clone_bio(struct bio *clone, int error)
 
 698{
 699	struct dm_rq_clone_bio_info *info = clone->bi_private;
 700	struct dm_rq_target_io *tio = info->tio;
 701	struct bio *bio = info->orig;
 702	unsigned int nr_bytes = info->orig->bi_size;
 703
 704	bio_put(clone);
 705
 706	if (tio->error)
 707		/*
 708		 * An error has already been detected on the request.
 709		 * Once error occurred, just let clone->end_io() handle
 710		 * the remainder.
 711		 */
 712		return;
 713	else if (error) {
 714		/*
 715		 * Don't notice the error to the upper layer yet.
 716		 * The error handling decision is made by the target driver,
 717		 * when the request is completed.
 718		 */
 719		tio->error = error;
 720		return;
 721	}
 722
 723	/*
 724	 * I/O for the bio successfully completed.
 725	 * Notice the data completion to the upper layer.
 726	 */
 727
 728	/*
 729	 * bios are processed from the head of the list.
 730	 * So the completing bio should always be rq->bio.
 731	 * If it's not, something wrong is happening.
 732	 */
 733	if (tio->orig->bio != bio)
 734		DMERR("bio completion is going in the middle of the request");
 735
 736	/*
 737	 * Update the original request.
 738	 * Do not use blk_end_request() here, because it may complete
 739	 * the original request before the clone, and break the ordering.
 740	 */
 741	blk_update_request(tio->orig, 0, nr_bytes);
 742}
 743
 744/*
 745 * Don't touch any member of the md after calling this function because
 746 * the md may be freed in dm_put() at the end of this function.
 747 * Or do dm_get() before calling this function and dm_put() later.
 748 */
 749static void rq_completed(struct mapped_device *md, int rw, int run_queue)
 750{
 751	atomic_dec(&md->pending[rw]);
 752
 753	/* nudge anyone waiting on suspend queue */
 754	if (!md_in_flight(md))
 755		wake_up(&md->wait);
 756
 757	if (run_queue)
 758		blk_run_queue(md->queue);
 759
 760	/*
 761	 * dm_put() must be at the end of this function. See the comment above
 762	 */
 763	dm_put(md);
 764}
 765
 766static void free_rq_clone(struct request *clone)
 767{
 768	struct dm_rq_target_io *tio = clone->end_io_data;
 
 
 
 
 769
 770	blk_rq_unprep_clone(clone);
 771	free_rq_tio(tio);
 772}
 773
 774/*
 775 * Complete the clone and the original request.
 776 * Must be called without queue lock.
 777 */
 778static void dm_end_request(struct request *clone, int error)
 779{
 780	int rw = rq_data_dir(clone);
 781	struct dm_rq_target_io *tio = clone->end_io_data;
 782	struct mapped_device *md = tio->md;
 783	struct request *rq = tio->orig;
 784
 785	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
 786		rq->errors = clone->errors;
 787		rq->resid_len = clone->resid_len;
 788
 789		if (rq->sense)
 790			/*
 791			 * We are using the sense buffer of the original
 792			 * request.
 793			 * So setting the length of the sense data is enough.
 794			 */
 795			rq->sense_len = clone->sense_len;
 796	}
 797
 798	free_rq_clone(clone);
 799	blk_end_request_all(rq, error);
 800	rq_completed(md, rw, true);
 801}
 
 802
 803static void dm_unprep_request(struct request *rq)
 
 
 804{
 805	struct request *clone = rq->special;
 
 806
 807	rq->special = NULL;
 808	rq->cmd_flags &= ~REQ_DONTPREP;
 
 
 
 
 
 809
 810	free_rq_clone(clone);
 811}
 812
 813/*
 814 * Requeue the original request of a clone.
 815 */
 816void dm_requeue_unmapped_request(struct request *clone)
 817{
 818	int rw = rq_data_dir(clone);
 819	struct dm_rq_target_io *tio = clone->end_io_data;
 820	struct mapped_device *md = tio->md;
 821	struct request *rq = tio->orig;
 822	struct request_queue *q = rq->q;
 823	unsigned long flags;
 824
 825	dm_unprep_request(rq);
 826
 827	spin_lock_irqsave(q->queue_lock, flags);
 828	blk_requeue_request(q, rq);
 829	spin_unlock_irqrestore(q->queue_lock, flags);
 
 
 
 
 
 
 830
 831	rq_completed(md, rw, 0);
 832}
 833EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
 834
 835static void __stop_queue(struct request_queue *q)
 836{
 837	blk_stop_queue(q);
 838}
 839
 840static void stop_queue(struct request_queue *q)
 
 841{
 842	unsigned long flags;
 
 
 
 843
 844	spin_lock_irqsave(q->queue_lock, flags);
 845	__stop_queue(q);
 846	spin_unlock_irqrestore(q->queue_lock, flags);
 847}
 848
 849static void __start_queue(struct request_queue *q)
 850{
 851	if (blk_queue_stopped(q))
 852		blk_start_queue(q);
 853}
 854
 855static void start_queue(struct request_queue *q)
 856{
 857	unsigned long flags;
 858
 859	spin_lock_irqsave(q->queue_lock, flags);
 860	__start_queue(q);
 861	spin_unlock_irqrestore(q->queue_lock, flags);
 862}
 863
 864static void dm_done(struct request *clone, int error, bool mapped)
 
 865{
 866	int r = error;
 867	struct dm_rq_target_io *tio = clone->end_io_data;
 868	dm_request_endio_fn rq_end_io = NULL;
 
 
 869
 870	if (tio->ti) {
 871		rq_end_io = tio->ti->type->rq_end_io;
 872
 873		if (mapped && rq_end_io)
 874			r = rq_end_io(tio->ti, clone, error, &tio->info);
 
 
 
 875	}
 
 
 
 876
 877	if (r <= 0)
 878		/* The target wants to complete the I/O */
 879		dm_end_request(clone, r);
 880	else if (r == DM_ENDIO_INCOMPLETE)
 881		/* The target will handle the I/O */
 882		return;
 883	else if (r == DM_ENDIO_REQUEUE)
 884		/* The target wants to requeue the I/O */
 885		dm_requeue_unmapped_request(clone);
 886	else {
 887		DMWARN("unimplemented target endio return value: %d", r);
 888		BUG();
 889	}
 890}
 891
 892/*
 893 * Request completion handler for request-based dm
 894 */
 895static void dm_softirq_done(struct request *rq)
 896{
 897	bool mapped = true;
 898	struct request *clone = rq->completion_data;
 899	struct dm_rq_target_io *tio = clone->end_io_data;
 900
 901	if (rq->cmd_flags & REQ_FAILED)
 902		mapped = false;
 903
 904	dm_done(clone, tio->error, mapped);
 905}
 906
 907/*
 908 * Complete the clone and the original request with the error status
 909 * through softirq context.
 910 */
 911static void dm_complete_request(struct request *clone, int error)
 912{
 913	struct dm_rq_target_io *tio = clone->end_io_data;
 914	struct request *rq = tio->orig;
 
 915
 916	tio->error = error;
 917	rq->completion_data = clone;
 918	blk_complete_request(rq);
 919}
 920
 921/*
 922 * Complete the not-mapped clone and the original request with the error status
 923 * through softirq context.
 924 * Target's rq_end_io() function isn't called.
 925 * This may be used when the target's map_rq() function fails.
 926 */
 927void dm_kill_unmapped_request(struct request *clone, int error)
 928{
 929	struct dm_rq_target_io *tio = clone->end_io_data;
 930	struct request *rq = tio->orig;
 
 
 
 931
 932	rq->cmd_flags |= REQ_FAILED;
 933	dm_complete_request(clone, error);
 934}
 935EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
 936
 937/*
 938 * Called with the queue lock held
 939 */
 940static void end_clone_request(struct request *clone, int error)
 941{
 942	/*
 943	 * For just cleaning up the information of the queue in which
 944	 * the clone was dispatched.
 945	 * The clone is *NOT* freed actually here because it is alloced from
 946	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
 947	 */
 948	__blk_put_request(clone->q, clone);
 949
 950	/*
 951	 * Actual request completion is done in a softirq context which doesn't
 952	 * hold the queue lock.  Otherwise, deadlock could occur because:
 953	 *     - another request may be submitted by the upper level driver
 954	 *       of the stacking during the completion
 955	 *     - the submission which requires queue lock may be done
 956	 *       against this queue
 957	 */
 958	dm_complete_request(clone, error);
 959}
 960
 961/*
 962 * Return maximum size of I/O possible at the supplied sector up to the current
 963 * target boundary.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964 */
 965static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 966{
 967	sector_t target_offset = dm_target_offset(ti, sector);
 
 968
 969	return ti->len - target_offset;
 
 
 
 
 
 
 
 970}
 
 971
 972static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 973{
 974	sector_t len = max_io_len_target_boundary(sector, ti);
 975
 976	/*
 977	 * Does the target need to split even further ?
 978	 */
 979	if (ti->split_io) {
 980		sector_t boundary;
 981		sector_t offset = dm_target_offset(ti, sector);
 982		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
 983			   - offset;
 984		if (len > boundary)
 985			len = boundary;
 986	}
 987
 988	return len;
 
 
 
 
 989}
 990
 991static void __map_bio(struct dm_target *ti, struct bio *clone,
 992		      struct dm_target_io *tio)
 993{
 994	int r;
 995	sector_t sector;
 996	struct mapped_device *md;
 
 
 
 997
 998	clone->bi_end_io = clone_endio;
 999	clone->bi_private = tio;
1000
1001	/*
1002	 * Map the clone.  If r == 0 we don't need to do
1003	 * anything, the target has assumed ownership of
1004	 * this io.
1005	 */
1006	atomic_inc(&tio->io->io_count);
1007	sector = clone->bi_sector;
1008	r = ti->type->map(ti, clone, &tio->info);
1009	if (r == DM_MAPIO_REMAPPED) {
1010		/* the bio has been remapped so dispatch it */
1011
1012		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1013				      tio->io->bio->bi_bdev->bd_dev, sector);
 
 
 
 
 
1014
1015		generic_make_request(clone);
1016	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1017		/* error the io and bail out, or requeue it if needed */
1018		md = tio->io->md;
1019		dec_pending(tio->io, r);
1020		/*
1021		 * Store bio_set for cleanup.
1022		 */
1023		clone->bi_end_io = NULL;
1024		clone->bi_private = md->bs;
1025		bio_put(clone);
1026		free_tio(md, tio);
1027	} else if (r) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028		DMWARN("unimplemented target map return value: %d", r);
1029		BUG();
1030	}
1031}
1032
1033struct clone_info {
1034	struct mapped_device *md;
1035	struct dm_table *map;
1036	struct bio *bio;
1037	struct dm_io *io;
1038	sector_t sector;
1039	sector_t sector_count;
1040	unsigned short idx;
1041};
1042
1043static void dm_bio_destructor(struct bio *bio)
1044{
1045	struct bio_set *bs = bio->bi_private;
1046
1047	bio_free(bio, bs);
1048}
1049
1050/*
1051 * Creates a little bio that just does part of a bvec.
1052 */
1053static struct bio *split_bvec(struct bio *bio, sector_t sector,
1054			      unsigned short idx, unsigned int offset,
1055			      unsigned int len, struct bio_set *bs)
1056{
1057	struct bio *clone;
1058	struct bio_vec *bv = bio->bi_io_vec + idx;
1059
1060	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1061	clone->bi_destructor = dm_bio_destructor;
1062	*clone->bi_io_vec = *bv;
1063
1064	clone->bi_sector = sector;
1065	clone->bi_bdev = bio->bi_bdev;
1066	clone->bi_rw = bio->bi_rw;
1067	clone->bi_vcnt = 1;
1068	clone->bi_size = to_bytes(len);
1069	clone->bi_io_vec->bv_offset = offset;
1070	clone->bi_io_vec->bv_len = clone->bi_size;
1071	clone->bi_flags |= 1 << BIO_CLONED;
1072
1073	if (bio_integrity(bio)) {
1074		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1075		bio_integrity_trim(clone,
1076				   bio_sector_offset(bio, idx, offset), len);
1077	}
1078
1079	return clone;
1080}
1081
1082/*
1083 * Creates a bio that consists of range of complete bvecs.
1084 */
1085static struct bio *clone_bio(struct bio *bio, sector_t sector,
1086			     unsigned short idx, unsigned short bv_count,
1087			     unsigned int len, struct bio_set *bs)
1088{
1089	struct bio *clone;
 
 
 
1090
1091	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1092	__bio_clone(clone, bio);
1093	clone->bi_destructor = dm_bio_destructor;
1094	clone->bi_sector = sector;
1095	clone->bi_idx = idx;
1096	clone->bi_vcnt = idx + bv_count;
1097	clone->bi_size = to_bytes(len);
1098	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1099
1100	if (bio_integrity(bio)) {
1101		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
 
 
 
 
 
 
1102
1103		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1104			bio_integrity_trim(clone,
1105					   bio_sector_offset(bio, idx, 0), len);
1106	}
1107
1108	return clone;
1109}
1110
1111static struct dm_target_io *alloc_tio(struct clone_info *ci,
1112				      struct dm_target *ti)
1113{
1114	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1115
1116	tio->io = ci->io;
1117	tio->ti = ti;
1118	memset(&tio->info, 0, sizeof(tio->info));
1119
1120	return tio;
1121}
1122
1123static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1124				   unsigned request_nr, sector_t len)
1125{
1126	struct dm_target_io *tio = alloc_tio(ci, ti);
1127	struct bio *clone;
1128
1129	tio->info.target_request_nr = request_nr;
 
1130
1131	/*
1132	 * Discard requests require the bio's inline iovecs be initialized.
1133	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1134	 * and discard, so no need for concern about wasted bvec allocations.
1135	 */
1136	clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1137	__bio_clone(clone, ci->bio);
1138	clone->bi_destructor = dm_bio_destructor;
1139	if (len) {
1140		clone->bi_sector = ci->sector;
1141		clone->bi_size = to_bytes(len);
1142	}
1143
1144	__map_bio(ti, clone, tio);
1145}
 
 
 
 
 
 
 
 
1146
1147static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1148				    unsigned num_requests, sector_t len)
1149{
1150	unsigned request_nr;
 
 
1151
1152	for (request_nr = 0; request_nr < num_requests; request_nr++)
1153		__issue_target_request(ci, ti, request_nr, len);
 
 
 
1154}
1155
1156static int __clone_and_map_empty_flush(struct clone_info *ci)
 
1157{
1158	unsigned target_nr = 0;
1159	struct dm_target *ti;
1160
1161	BUG_ON(bio_has_data(ci->bio));
1162	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1163		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1164
1165	return 0;
 
 
 
 
1166}
1167
1168/*
1169 * Perform all io with a single clone.
1170 */
1171static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1172{
1173	struct bio *clone, *bio = ci->bio;
 
1174	struct dm_target_io *tio;
1175
1176	tio = alloc_tio(ci, ti);
1177	clone = clone_bio(bio, ci->sector, ci->idx,
1178			  bio->bi_vcnt - ci->idx, ci->sector_count,
1179			  ci->md->bs);
1180	__map_bio(ti, clone, tio);
1181	ci->sector_count = 0;
1182}
1183
1184static int __clone_and_map_discard(struct clone_info *ci)
1185{
 
1186	struct dm_target *ti;
1187	sector_t len;
1188
1189	do {
1190		ti = dm_table_find_target(ci->map, ci->sector);
1191		if (!dm_target_is_valid(ti))
1192			return -EIO;
1193
1194		/*
1195		 * Even though the device advertised discard support,
1196		 * that does not mean every target supports it, and
1197		 * reconfiguration might also have changed that since the
1198		 * check was performed.
1199		 */
1200		if (!ti->num_discard_requests)
1201			return -EOPNOTSUPP;
1202
1203		len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
 
 
 
 
 
 
 
1204
1205		__issue_target_requests(ci, ti, ti->num_discard_requests, len);
 
1206
1207		ci->sector += len;
1208	} while (ci->sector_count -= len);
 
1209
 
1210	return 0;
1211}
1212
1213static int __clone_and_map(struct clone_info *ci)
 
1214{
1215	struct bio *clone, *bio = ci->bio;
1216	struct dm_target *ti;
1217	sector_t len = 0, max;
1218	struct dm_target_io *tio;
 
1219
1220	if (unlikely(bio->bi_rw & REQ_DISCARD))
1221		return __clone_and_map_discard(ci);
1222
1223	ti = dm_table_find_target(ci->map, ci->sector);
1224	if (!dm_target_is_valid(ti))
1225		return -EIO;
1226
1227	max = max_io_len(ci->sector, ti);
1228
1229	if (ci->sector_count <= max) {
1230		/*
1231		 * Optimise for the simple case where we can do all of
1232		 * the remaining io with a single clone.
1233		 */
1234		__clone_and_map_simple(ci, ti);
1235
1236	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1237		/*
1238		 * There are some bvecs that don't span targets.
1239		 * Do as many of these as possible.
1240		 */
1241		int i;
1242		sector_t remaining = max;
1243		sector_t bv_len;
1244
1245		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1246			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1247
1248			if (bv_len > remaining)
1249				break;
1250
1251			remaining -= bv_len;
1252			len += bv_len;
1253		}
1254
1255		tio = alloc_tio(ci, ti);
1256		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1257				  ci->md->bs);
1258		__map_bio(ti, clone, tio);
1259
1260		ci->sector += len;
1261		ci->sector_count -= len;
1262		ci->idx = i;
1263
1264	} else {
1265		/*
1266		 * Handle a bvec that must be split between two or more targets.
1267		 */
1268		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1269		sector_t remaining = to_sector(bv->bv_len);
1270		unsigned int offset = 0;
1271
1272		do {
1273			if (offset) {
1274				ti = dm_table_find_target(ci->map, ci->sector);
1275				if (!dm_target_is_valid(ti))
1276					return -EIO;
1277
1278				max = max_io_len(ci->sector, ti);
1279			}
1280
1281			len = min(remaining, max);
1282
1283			tio = alloc_tio(ci, ti);
1284			clone = split_bvec(bio, ci->sector, ci->idx,
1285					   bv->bv_offset + offset, len,
1286					   ci->md->bs);
1287
1288			__map_bio(ti, clone, tio);
1289
1290			ci->sector += len;
1291			ci->sector_count -= len;
1292			offset += to_bytes(len);
1293		} while (remaining -= len);
1294
1295		ci->idx++;
1296	}
 
1297
1298	return 0;
1299}
1300
1301/*
1302 * Split the bio into several clones and submit it to targets.
1303 */
1304static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1305{
1306	struct clone_info ci;
1307	int error = 0;
1308
1309	ci.map = dm_get_live_table(md);
1310	if (unlikely(!ci.map)) {
1311		bio_io_error(bio);
1312		return;
1313	}
1314
1315	ci.md = md;
1316	ci.io = alloc_io(md);
1317	ci.io->error = 0;
1318	atomic_set(&ci.io->io_count, 1);
1319	ci.io->bio = bio;
1320	ci.io->md = md;
1321	spin_lock_init(&ci.io->endio_lock);
1322	ci.sector = bio->bi_sector;
1323	ci.idx = bio->bi_idx;
1324
1325	start_io_acct(ci.io);
1326	if (bio->bi_rw & REQ_FLUSH) {
1327		ci.bio = &ci.md->flush_bio;
1328		ci.sector_count = 0;
1329		error = __clone_and_map_empty_flush(&ci);
1330		/* dec_pending submits any data associated with flush */
1331	} else {
1332		ci.bio = bio;
1333		ci.sector_count = bio_sectors(bio);
1334		while (ci.sector_count && !error)
1335			error = __clone_and_map(&ci);
1336	}
1337
1338	/* drop the extra reference count */
1339	dec_pending(ci.io, error);
1340	dm_table_put(ci.map);
1341}
1342/*-----------------------------------------------------------------
1343 * CRUD END
1344 *---------------------------------------------------------------*/
1345
1346static int dm_merge_bvec(struct request_queue *q,
1347			 struct bvec_merge_data *bvm,
1348			 struct bio_vec *biovec)
1349{
1350	struct mapped_device *md = q->queuedata;
1351	struct dm_table *map = dm_get_live_table(md);
1352	struct dm_target *ti;
1353	sector_t max_sectors;
1354	int max_size = 0;
1355
1356	if (unlikely(!map))
1357		goto out;
1358
1359	ti = dm_table_find_target(map, bvm->bi_sector);
1360	if (!dm_target_is_valid(ti))
1361		goto out_table;
1362
1363	/*
1364	 * Find maximum amount of I/O that won't need splitting
1365	 */
1366	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1367			  (sector_t) BIO_MAX_SECTORS);
1368	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1369	if (max_size < 0)
1370		max_size = 0;
1371
1372	/*
1373	 * merge_bvec_fn() returns number of bytes
1374	 * it can accept at this offset
1375	 * max is precomputed maximal io size
1376	 */
1377	if (max_size && ti->type->merge)
1378		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1379	/*
1380	 * If the target doesn't support merge method and some of the devices
1381	 * provided their merge_bvec method (we know this by looking at
1382	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1383	 * entries.  So always set max_size to 0, and the code below allows
1384	 * just one page.
1385	 */
1386	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
 
1387
1388		max_size = 0;
 
1389
1390out_table:
1391	dm_table_put(map);
1392
1393out:
1394	/*
1395	 * Always allow an entire first page
1396	 */
1397	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1398		max_size = biovec->bv_len;
1399
1400	return max_size;
1401}
1402
1403/*
1404 * The request function that just remaps the bio built up by
1405 * dm_merge_bvec.
1406 */
1407static void _dm_request(struct request_queue *q, struct bio *bio)
1408{
1409	int rw = bio_data_dir(bio);
1410	struct mapped_device *md = q->queuedata;
1411	int cpu;
1412
1413	down_read(&md->io_lock);
1414
1415	cpu = part_stat_lock();
1416	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1417	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1418	part_stat_unlock();
1419
1420	/* if we're suspended, we have to queue this io for later */
1421	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1422		up_read(&md->io_lock);
1423
1424		if (bio_rw(bio) != READA)
1425			queue_io(md, bio);
1426		else
1427			bio_io_error(bio);
1428		return;
 
 
1429	}
1430
1431	__split_and_process_bio(md, bio);
1432	up_read(&md->io_lock);
1433	return;
1434}
1435
1436static int dm_request_based(struct mapped_device *md)
 
1437{
1438	return blk_queue_stackable(md->queue);
1439}
1440
1441static void dm_request(struct request_queue *q, struct bio *bio)
1442{
1443	struct mapped_device *md = q->queuedata;
 
 
 
 
 
 
 
 
 
 
 
 
 
1444
1445	if (dm_request_based(md))
1446		blk_queue_bio(q, bio);
1447	else
1448		_dm_request(q, bio);
1449}
1450
1451void dm_dispatch_request(struct request *rq)
 
 
 
1452{
 
 
1453	int r;
1454
1455	if (blk_queue_io_stat(rq->q))
1456		rq->cmd_flags |= REQ_IO_STAT;
1457
1458	rq->start_time = jiffies;
1459	r = blk_insert_cloned_request(rq->q, rq);
1460	if (r)
1461		dm_complete_request(rq, r);
1462}
1463EXPORT_SYMBOL_GPL(dm_dispatch_request);
1464
1465static void dm_rq_bio_destructor(struct bio *bio)
1466{
1467	struct dm_rq_clone_bio_info *info = bio->bi_private;
1468	struct mapped_device *md = info->tio->md;
1469
1470	free_bio_info(info);
1471	bio_free(bio, md->bs);
1472}
1473
1474static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1475				 void *data)
1476{
1477	struct dm_rq_target_io *tio = data;
1478	struct mapped_device *md = tio->md;
1479	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1480
1481	if (!info)
1482		return -ENOMEM;
1483
1484	info->orig = bio_orig;
1485	info->tio = tio;
1486	bio->bi_end_io = end_clone_bio;
1487	bio->bi_private = info;
1488	bio->bi_destructor = dm_rq_bio_destructor;
1489
1490	return 0;
1491}
1492
1493static int setup_clone(struct request *clone, struct request *rq,
1494		       struct dm_rq_target_io *tio)
1495{
1496	int r;
1497
1498	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1499			      dm_rq_bio_constructor, tio);
1500	if (r)
1501		return r;
1502
1503	clone->cmd = rq->cmd;
1504	clone->cmd_len = rq->cmd_len;
1505	clone->sense = rq->sense;
1506	clone->buffer = rq->buffer;
1507	clone->end_io = end_clone_request;
1508	clone->end_io_data = tio;
1509
1510	return 0;
1511}
1512
1513static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1514				gfp_t gfp_mask)
1515{
1516	struct request *clone;
1517	struct dm_rq_target_io *tio;
1518
1519	tio = alloc_rq_tio(md, gfp_mask);
1520	if (!tio)
1521		return NULL;
1522
1523	tio->md = md;
1524	tio->ti = NULL;
1525	tio->orig = rq;
1526	tio->error = 0;
1527	memset(&tio->info, 0, sizeof(tio->info));
1528
1529	clone = &tio->clone;
1530	if (setup_clone(clone, rq, tio)) {
1531		/* -ENOMEM */
1532		free_rq_tio(tio);
1533		return NULL;
1534	}
1535
1536	return clone;
1537}
1538
1539/*
1540 * Called with the queue lock held.
1541 */
1542static int dm_prep_fn(struct request_queue *q, struct request *rq)
1543{
1544	struct mapped_device *md = q->queuedata;
1545	struct request *clone;
1546
1547	if (unlikely(rq->special)) {
1548		DMWARN("Already has something in rq->special.");
1549		return BLKPREP_KILL;
1550	}
1551
1552	clone = clone_rq(rq, md, GFP_ATOMIC);
1553	if (!clone)
1554		return BLKPREP_DEFER;
1555
1556	rq->special = clone;
1557	rq->cmd_flags |= REQ_DONTPREP;
1558
1559	return BLKPREP_OK;
1560}
1561
1562/*
1563 * Returns:
1564 * 0  : the request has been processed (not requeued)
1565 * !0 : the request has been requeued
1566 */
1567static int map_request(struct dm_target *ti, struct request *clone,
1568		       struct mapped_device *md)
1569{
1570	int r, requeued = 0;
1571	struct dm_rq_target_io *tio = clone->end_io_data;
1572
1573	tio->ti = ti;
1574	r = ti->type->map_rq(ti, clone, &tio->info);
1575	switch (r) {
1576	case DM_MAPIO_SUBMITTED:
1577		/* The target has taken the I/O to submit by itself later */
1578		break;
1579	case DM_MAPIO_REMAPPED:
1580		/* The target has remapped the I/O so dispatch it */
1581		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1582				     blk_rq_pos(tio->orig));
1583		dm_dispatch_request(clone);
1584		break;
1585	case DM_MAPIO_REQUEUE:
1586		/* The target wants to requeue the I/O */
1587		dm_requeue_unmapped_request(clone);
1588		requeued = 1;
1589		break;
1590	default:
1591		if (r > 0) {
1592			DMWARN("unimplemented target map return value: %d", r);
1593			BUG();
1594		}
1595
1596		/* The target wants to complete the I/O */
1597		dm_kill_unmapped_request(clone, r);
1598		break;
1599	}
1600
1601	return requeued;
1602}
1603
1604static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1605{
1606	struct request *clone;
1607
1608	blk_start_request(orig);
1609	clone = orig->special;
1610	atomic_inc(&md->pending[rq_data_dir(clone)]);
1611
1612	/*
1613	 * Hold the md reference here for the in-flight I/O.
1614	 * We can't rely on the reference count by device opener,
1615	 * because the device may be closed during the request completion
1616	 * when all bios are completed.
1617	 * See the comment in rq_completed() too.
1618	 */
1619	dm_get(md);
1620
1621	return clone;
1622}
1623
1624/*
1625 * q->request_fn for request-based dm.
1626 * Called with the queue lock held.
1627 */
1628static void dm_request_fn(struct request_queue *q)
1629{
1630	struct mapped_device *md = q->queuedata;
1631	struct dm_table *map = dm_get_live_table(md);
1632	struct dm_target *ti;
1633	struct request *rq, *clone;
1634	sector_t pos;
1635
1636	/*
1637	 * For suspend, check blk_queue_stopped() and increment
1638	 * ->pending within a single queue_lock not to increment the
1639	 * number of in-flight I/Os after the queue is stopped in
1640	 * dm_suspend().
1641	 */
1642	while (!blk_queue_stopped(q)) {
1643		rq = blk_peek_request(q);
1644		if (!rq)
1645			goto delay_and_out;
1646
1647		/* always use block 0 to find the target for flushes for now */
1648		pos = 0;
1649		if (!(rq->cmd_flags & REQ_FLUSH))
1650			pos = blk_rq_pos(rq);
 
 
 
 
 
 
 
 
1651
1652		ti = dm_table_find_target(map, pos);
1653		if (!dm_target_is_valid(ti)) {
1654			/*
1655			 * Must perform setup, that dm_done() requires,
1656			 * before calling dm_kill_unmapped_request
 
 
 
1657			 */
1658			DMERR_LIMIT("request attempted access beyond the end of device");
1659			clone = dm_start_request(md, rq);
1660			dm_kill_unmapped_request(clone, -EIO);
1661			continue;
 
 
 
 
1662		}
1663
1664		if (ti->type->busy && ti->type->busy(ti))
1665			goto delay_and_out;
1666
1667		clone = dm_start_request(md, rq);
1668
1669		spin_unlock(q->queue_lock);
1670		if (map_request(ti, clone, md))
1671			goto requeued;
1672
1673		BUG_ON(!irqs_disabled());
1674		spin_lock(q->queue_lock);
1675	}
1676
1677	goto out;
1678
1679requeued:
1680	BUG_ON(!irqs_disabled());
1681	spin_lock(q->queue_lock);
1682
1683delay_and_out:
1684	blk_delay_queue(q, HZ / 10);
1685out:
1686	dm_table_put(map);
1687}
1688
1689int dm_underlying_device_busy(struct request_queue *q)
1690{
1691	return blk_lld_busy(q);
1692}
1693EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1694
1695static int dm_lld_busy(struct request_queue *q)
1696{
1697	int r;
1698	struct mapped_device *md = q->queuedata;
1699	struct dm_table *map = dm_get_live_table(md);
1700
1701	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1702		r = 1;
1703	else
1704		r = dm_table_any_busy_target(map);
1705
1706	dm_table_put(map);
1707
1708	return r;
1709}
1710
1711static int dm_any_congested(void *congested_data, int bdi_bits)
1712{
1713	int r = bdi_bits;
1714	struct mapped_device *md = congested_data;
 
1715	struct dm_table *map;
1716
1717	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1718		map = dm_get_live_table(md);
1719		if (map) {
1720			/*
1721			 * Request-based dm cares about only own queue for
1722			 * the query about congestion status of request_queue
1723			 */
1724			if (dm_request_based(md))
1725				r = md->queue->backing_dev_info.state &
1726				    bdi_bits;
1727			else
1728				r = dm_table_any_congested(map, bdi_bits);
1729
1730			dm_table_put(map);
1731		}
 
 
 
 
 
 
 
1732	}
1733
1734	return r;
 
 
 
 
 
 
 
 
 
 
1735}
1736
1737/*-----------------------------------------------------------------
1738 * An IDR is used to keep track of allocated minor numbers.
1739 *---------------------------------------------------------------*/
1740static void free_minor(int minor)
1741{
1742	spin_lock(&_minor_lock);
1743	idr_remove(&_minor_idr, minor);
1744	spin_unlock(&_minor_lock);
1745}
1746
1747/*
1748 * See if the device with a specific minor # is free.
1749 */
1750static int specific_minor(int minor)
1751{
1752	int r, m;
1753
1754	if (minor >= (1 << MINORBITS))
1755		return -EINVAL;
1756
1757	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1758	if (!r)
1759		return -ENOMEM;
1760
1761	spin_lock(&_minor_lock);
1762
1763	if (idr_find(&_minor_idr, minor)) {
1764		r = -EBUSY;
1765		goto out;
1766	}
1767
1768	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1769	if (r)
1770		goto out;
1771
1772	if (m != minor) {
1773		idr_remove(&_minor_idr, m);
1774		r = -EBUSY;
1775		goto out;
1776	}
1777
1778out:
1779	spin_unlock(&_minor_lock);
1780	return r;
 
 
 
1781}
1782
1783static int next_free_minor(int *minor)
1784{
1785	int r, m;
1786
1787	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1788	if (!r)
1789		return -ENOMEM;
1790
 
1791	spin_lock(&_minor_lock);
1792
1793	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1794	if (r)
1795		goto out;
1796
1797	if (m >= (1 << MINORBITS)) {
1798		idr_remove(&_minor_idr, m);
1799		r = -ENOSPC;
1800		goto out;
1801	}
1802
1803	*minor = m;
1804
1805out:
1806	spin_unlock(&_minor_lock);
1807	return r;
 
 
 
 
1808}
1809
1810static const struct block_device_operations dm_blk_dops;
 
 
1811
1812static void dm_wq_work(struct work_struct *work);
1813
1814static void dm_init_md_queue(struct mapped_device *md)
 
1815{
1816	/*
1817	 * Request-based dm devices cannot be stacked on top of bio-based dm
1818	 * devices.  The type of this dm device has not been decided yet.
1819	 * The type is decided at the first table loading time.
1820	 * To prevent problematic device stacking, clear the queue flag
1821	 * for request stacking support until then.
1822	 *
1823	 * This queue is new, so no concurrency on the queue_flags.
1824	 */
1825	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
 
 
 
 
 
 
1826
1827	md->queue->queuedata = md;
1828	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1829	md->queue->backing_dev_info.congested_data = md;
1830	blk_queue_make_request(md->queue, dm_request);
1831	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1832	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1833}
1834
1835/*
1836 * Allocate and initialise a blank device with a given minor.
1837 */
1838static struct mapped_device *alloc_dev(int minor)
1839{
1840	int r;
1841	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1842	void *old_md;
1843
 
1844	if (!md) {
1845		DMWARN("unable to allocate device, out of memory.");
1846		return NULL;
1847	}
1848
1849	if (!try_module_get(THIS_MODULE))
1850		goto bad_module_get;
1851
1852	/* get a minor number for the dev */
1853	if (minor == DM_ANY_MINOR)
1854		r = next_free_minor(&minor);
1855	else
1856		r = specific_minor(minor);
1857	if (r < 0)
1858		goto bad_minor;
1859
 
 
 
 
 
 
1860	md->type = DM_TYPE_NONE;
1861	init_rwsem(&md->io_lock);
1862	mutex_init(&md->suspend_lock);
1863	mutex_init(&md->type_lock);
 
1864	spin_lock_init(&md->deferred_lock);
1865	rwlock_init(&md->map_lock);
1866	atomic_set(&md->holders, 1);
1867	atomic_set(&md->open_count, 0);
1868	atomic_set(&md->event_nr, 0);
1869	atomic_set(&md->uevent_seq, 0);
1870	INIT_LIST_HEAD(&md->uevent_list);
 
1871	spin_lock_init(&md->uevent_lock);
1872
1873	md->queue = blk_alloc_queue(GFP_KERNEL);
1874	if (!md->queue)
1875		goto bad_queue;
1876
1877	dm_init_md_queue(md);
1878
1879	md->disk = alloc_disk(1);
1880	if (!md->disk)
1881		goto bad_disk;
 
1882
1883	atomic_set(&md->pending[0], 0);
1884	atomic_set(&md->pending[1], 0);
1885	init_waitqueue_head(&md->wait);
1886	INIT_WORK(&md->work, dm_wq_work);
1887	init_waitqueue_head(&md->eventq);
 
 
 
 
 
1888
1889	md->disk->major = _major;
1890	md->disk->first_minor = minor;
 
1891	md->disk->fops = &dm_blk_dops;
1892	md->disk->queue = md->queue;
1893	md->disk->private_data = md;
1894	sprintf(md->disk->disk_name, "dm-%d", minor);
1895	add_disk(md->disk);
 
 
 
 
 
 
 
 
1896	format_dev_t(md->name, MKDEV(_major, minor));
1897
1898	md->wq = alloc_workqueue("kdmflush",
1899				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1900	if (!md->wq)
1901		goto bad_thread;
1902
1903	md->bdev = bdget_disk(md->disk, 0);
1904	if (!md->bdev)
1905		goto bad_bdev;
1906
1907	bio_init(&md->flush_bio);
1908	md->flush_bio.bi_bdev = md->bdev;
1909	md->flush_bio.bi_rw = WRITE_FLUSH;
1910
1911	/* Populate the mapping, nobody knows we exist yet */
1912	spin_lock(&_minor_lock);
1913	old_md = idr_replace(&_minor_idr, md, minor);
1914	spin_unlock(&_minor_lock);
1915
1916	BUG_ON(old_md != MINOR_ALLOCED);
1917
1918	return md;
1919
1920bad_bdev:
1921	destroy_workqueue(md->wq);
1922bad_thread:
1923	del_gendisk(md->disk);
1924	put_disk(md->disk);
1925bad_disk:
1926	blk_cleanup_queue(md->queue);
1927bad_queue:
1928	free_minor(minor);
1929bad_minor:
1930	module_put(THIS_MODULE);
1931bad_module_get:
1932	kfree(md);
1933	return NULL;
1934}
1935
1936static void unlock_fs(struct mapped_device *md);
1937
1938static void free_dev(struct mapped_device *md)
1939{
1940	int minor = MINOR(disk_devt(md->disk));
1941
1942	unlock_fs(md);
1943	bdput(md->bdev);
1944	destroy_workqueue(md->wq);
1945	if (md->tio_pool)
1946		mempool_destroy(md->tio_pool);
1947	if (md->io_pool)
1948		mempool_destroy(md->io_pool);
1949	if (md->bs)
1950		bioset_free(md->bs);
1951	blk_integrity_unregister(md->disk);
1952	del_gendisk(md->disk);
1953	free_minor(minor);
1954
1955	spin_lock(&_minor_lock);
1956	md->disk->private_data = NULL;
1957	spin_unlock(&_minor_lock);
 
 
1958
1959	put_disk(md->disk);
1960	blk_cleanup_queue(md->queue);
1961	module_put(THIS_MODULE);
1962	kfree(md);
1963}
1964
1965static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1966{
1967	struct dm_md_mempools *p;
 
1968
1969	if (md->io_pool && md->tio_pool && md->bs)
1970		/* the md already has necessary mempools */
1971		goto out;
 
 
 
 
 
1972
1973	p = dm_table_get_md_mempools(t);
1974	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
 
 
 
 
 
 
 
 
 
1975
1976	md->io_pool = p->io_pool;
1977	p->io_pool = NULL;
1978	md->tio_pool = p->tio_pool;
1979	p->tio_pool = NULL;
1980	md->bs = p->bs;
1981	p->bs = NULL;
1982
 
 
 
 
 
 
1983out:
1984	/* mempool bind completed, now no need any mempools in the table */
1985	dm_table_free_md_mempools(t);
 
1986}
1987
1988/*
1989 * Bind a table to the device.
1990 */
1991static void event_callback(void *context)
1992{
1993	unsigned long flags;
1994	LIST_HEAD(uevents);
1995	struct mapped_device *md = (struct mapped_device *) context;
1996
1997	spin_lock_irqsave(&md->uevent_lock, flags);
1998	list_splice_init(&md->uevent_list, &uevents);
1999	spin_unlock_irqrestore(&md->uevent_lock, flags);
2000
2001	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2002
2003	atomic_inc(&md->event_nr);
2004	wake_up(&md->eventq);
2005}
2006
2007/*
2008 * Protected by md->suspend_lock obtained by dm_swap_table().
2009 */
2010static void __set_size(struct mapped_device *md, sector_t size)
2011{
2012	set_capacity(md->disk, size);
2013
2014	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2015}
2016
2017/*
2018 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2019 *
2020 * If this function returns 0, then the device is either a non-dm
2021 * device without a merge_bvec_fn, or it is a dm device that is
2022 * able to split any bios it receives that are too big.
2023 */
2024int dm_queue_merge_is_compulsory(struct request_queue *q)
2025{
2026	struct mapped_device *dev_md;
2027
2028	if (!q->merge_bvec_fn)
2029		return 0;
2030
2031	if (q->make_request_fn == dm_request) {
2032		dev_md = q->queuedata;
2033		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2034			return 0;
2035	}
2036
2037	return 1;
2038}
2039
2040static int dm_device_merge_is_compulsory(struct dm_target *ti,
2041					 struct dm_dev *dev, sector_t start,
2042					 sector_t len, void *data)
2043{
2044	struct block_device *bdev = dev->bdev;
2045	struct request_queue *q = bdev_get_queue(bdev);
2046
2047	return dm_queue_merge_is_compulsory(q);
2048}
2049
2050/*
2051 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2052 * on the properties of the underlying devices.
2053 */
2054static int dm_table_merge_is_optional(struct dm_table *table)
2055{
2056	unsigned i = 0;
2057	struct dm_target *ti;
2058
2059	while (i < dm_table_get_num_targets(table)) {
2060		ti = dm_table_get_target(table, i++);
2061
2062		if (ti->type->iterate_devices &&
2063		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2064			return 0;
2065	}
2066
2067	return 1;
2068}
2069
2070/*
2071 * Returns old map, which caller must destroy.
2072 */
2073static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2074			       struct queue_limits *limits)
2075{
2076	struct dm_table *old_map;
2077	struct request_queue *q = md->queue;
 
2078	sector_t size;
2079	unsigned long flags;
2080	int merge_is_optional;
 
2081
2082	size = dm_table_get_size(t);
2083
2084	/*
2085	 * Wipe any geometry if the size of the table changed.
2086	 */
2087	if (size != get_capacity(md->disk))
2088		memset(&md->geometry, 0, sizeof(md->geometry));
2089
2090	__set_size(md, size);
 
 
 
2091
2092	dm_table_event_callback(t, event_callback, md);
2093
2094	/*
2095	 * The queue hasn't been stopped yet, if the old table type wasn't
2096	 * for request-based during suspension.  So stop it to prevent
2097	 * I/O mapping before resume.
2098	 * This must be done before setting the queue restrictions,
2099	 * because request-based dm may be run just after the setting.
2100	 */
2101	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2102		stop_queue(q);
2103
2104	__bind_mempools(md, t);
 
 
 
 
 
 
2105
2106	merge_is_optional = dm_table_merge_is_optional(t);
 
 
 
 
 
 
 
 
 
 
2107
2108	write_lock_irqsave(&md->map_lock, flags);
2109	old_map = md->map;
2110	md->map = t;
2111	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2112
2113	dm_table_set_restrictions(t, q, limits);
2114	if (merge_is_optional)
2115		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2116	else
2117		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2118	write_unlock_irqrestore(&md->map_lock, flags);
2119
 
2120	return old_map;
2121}
2122
2123/*
2124 * Returns unbound table for the caller to free.
2125 */
2126static struct dm_table *__unbind(struct mapped_device *md)
2127{
2128	struct dm_table *map = md->map;
2129	unsigned long flags;
2130
2131	if (!map)
2132		return NULL;
2133
2134	dm_table_event_callback(map, NULL, NULL);
2135	write_lock_irqsave(&md->map_lock, flags);
2136	md->map = NULL;
2137	write_unlock_irqrestore(&md->map_lock, flags);
2138
2139	return map;
2140}
2141
2142/*
2143 * Constructor for a new device.
2144 */
2145int dm_create(int minor, struct mapped_device **result)
2146{
 
2147	struct mapped_device *md;
2148
2149	md = alloc_dev(minor);
2150	if (!md)
2151		return -ENXIO;
2152
2153	dm_sysfs_init(md);
 
 
 
 
2154
2155	*result = md;
2156	return 0;
2157}
2158
2159/*
2160 * Functions to manage md->type.
2161 * All are required to hold md->type_lock.
2162 */
2163void dm_lock_md_type(struct mapped_device *md)
2164{
2165	mutex_lock(&md->type_lock);
2166}
2167
2168void dm_unlock_md_type(struct mapped_device *md)
2169{
2170	mutex_unlock(&md->type_lock);
2171}
2172
2173void dm_set_md_type(struct mapped_device *md, unsigned type)
2174{
 
2175	md->type = type;
2176}
2177
2178unsigned dm_get_md_type(struct mapped_device *md)
2179{
2180	return md->type;
2181}
2182
2183struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2184{
2185	return md->immutable_target_type;
2186}
2187
2188/*
2189 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
 
2190 */
2191static int dm_init_request_based_queue(struct mapped_device *md)
2192{
2193	struct request_queue *q = NULL;
2194
2195	if (md->queue->elevator)
2196		return 1;
2197
2198	/* Fully initialize the queue */
2199	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2200	if (!q)
2201		return 0;
2202
2203	md->queue = q;
2204	dm_init_md_queue(md);
2205	blk_queue_softirq_done(md->queue, dm_softirq_done);
2206	blk_queue_prep_rq(md->queue, dm_prep_fn);
2207	blk_queue_lld_busy(md->queue, dm_lld_busy);
2208
2209	elv_register_queue(md->queue);
2210
2211	return 1;
2212}
 
2213
2214/*
2215 * Setup the DM device's queue based on md's type
2216 */
2217int dm_setup_md_queue(struct mapped_device *md)
2218{
2219	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2220	    !dm_init_request_based_queue(md)) {
2221		DMWARN("Cannot initialize queue for request-based mapped device");
2222		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2223	}
2224
 
 
 
 
 
 
 
 
 
 
 
2225	return 0;
2226}
2227
2228static struct mapped_device *dm_find_md(dev_t dev)
2229{
2230	struct mapped_device *md;
2231	unsigned minor = MINOR(dev);
2232
2233	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2234		return NULL;
2235
2236	spin_lock(&_minor_lock);
2237
2238	md = idr_find(&_minor_idr, minor);
2239	if (md && (md == MINOR_ALLOCED ||
2240		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2241		   dm_deleting_md(md) ||
2242		   test_bit(DMF_FREEING, &md->flags))) {
2243		md = NULL;
2244		goto out;
2245	}
2246
2247out:
2248	spin_unlock(&_minor_lock);
2249
2250	return md;
2251}
2252
2253struct mapped_device *dm_get_md(dev_t dev)
2254{
2255	struct mapped_device *md = dm_find_md(dev);
2256
2257	if (md)
2258		dm_get(md);
2259
2260	return md;
2261}
2262EXPORT_SYMBOL_GPL(dm_get_md);
2263
2264void *dm_get_mdptr(struct mapped_device *md)
2265{
2266	return md->interface_ptr;
2267}
2268
2269void dm_set_mdptr(struct mapped_device *md, void *ptr)
2270{
2271	md->interface_ptr = ptr;
2272}
2273
2274void dm_get(struct mapped_device *md)
2275{
2276	atomic_inc(&md->holders);
2277	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2278}
2279
 
 
 
 
 
 
 
 
 
 
 
 
 
2280const char *dm_device_name(struct mapped_device *md)
2281{
2282	return md->name;
2283}
2284EXPORT_SYMBOL_GPL(dm_device_name);
2285
2286static void __dm_destroy(struct mapped_device *md, bool wait)
2287{
2288	struct dm_table *map;
 
2289
2290	might_sleep();
2291
2292	spin_lock(&_minor_lock);
2293	map = dm_get_live_table(md);
2294	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2295	set_bit(DMF_FREEING, &md->flags);
2296	spin_unlock(&_minor_lock);
2297
 
 
 
 
 
 
 
 
2298	if (!dm_suspended_md(md)) {
2299		dm_table_presuspend_targets(map);
 
 
2300		dm_table_postsuspend_targets(map);
2301	}
 
 
 
2302
2303	/*
2304	 * Rare, but there may be I/O requests still going to complete,
2305	 * for example.  Wait for all references to disappear.
2306	 * No one should increment the reference count of the mapped_device,
2307	 * after the mapped_device state becomes DMF_FREEING.
2308	 */
2309	if (wait)
2310		while (atomic_read(&md->holders))
2311			msleep(1);
2312	else if (atomic_read(&md->holders))
2313		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2314		       dm_device_name(md), atomic_read(&md->holders));
2315
2316	dm_sysfs_exit(md);
2317	dm_table_put(map);
2318	dm_table_destroy(__unbind(md));
2319	free_dev(md);
2320}
2321
2322void dm_destroy(struct mapped_device *md)
2323{
2324	__dm_destroy(md, true);
2325}
2326
2327void dm_destroy_immediate(struct mapped_device *md)
2328{
2329	__dm_destroy(md, false);
2330}
2331
2332void dm_put(struct mapped_device *md)
2333{
2334	atomic_dec(&md->holders);
2335}
2336EXPORT_SYMBOL_GPL(dm_put);
2337
2338static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2339{
2340	int r = 0;
2341	DECLARE_WAITQUEUE(wait, current);
 
2342
2343	add_wait_queue(&md->wait, &wait);
 
 
 
2344
2345	while (1) {
2346		set_current_state(interruptible);
2347
2348		if (!md_in_flight(md))
 
 
 
 
 
 
 
 
2349			break;
2350
2351		if (interruptible == TASK_INTERRUPTIBLE &&
2352		    signal_pending(current)) {
2353			r = -EINTR;
2354			break;
2355		}
2356
2357		io_schedule();
2358	}
2359	set_current_state(TASK_RUNNING);
 
 
 
 
 
 
 
2360
2361	remove_wait_queue(&md->wait, &wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
2362
2363	return r;
2364}
2365
2366/*
2367 * Process the deferred bios
2368 */
2369static void dm_wq_work(struct work_struct *work)
2370{
2371	struct mapped_device *md = container_of(work, struct mapped_device,
2372						work);
2373	struct bio *c;
2374
2375	down_read(&md->io_lock);
2376
2377	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2378		spin_lock_irq(&md->deferred_lock);
2379		c = bio_list_pop(&md->deferred);
2380		spin_unlock_irq(&md->deferred_lock);
2381
2382		if (!c)
2383			break;
2384
2385		up_read(&md->io_lock);
2386
2387		if (dm_request_based(md))
2388			generic_make_request(c);
2389		else
2390			__split_and_process_bio(md, c);
2391
2392		down_read(&md->io_lock);
2393	}
2394
2395	up_read(&md->io_lock);
2396}
2397
2398static void dm_queue_flush(struct mapped_device *md)
2399{
2400	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2401	smp_mb__after_clear_bit();
2402	queue_work(md->wq, &md->work);
2403}
2404
2405/*
2406 * Swap in a new table, returning the old one for the caller to destroy.
2407 */
2408struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2409{
2410	struct dm_table *map = ERR_PTR(-EINVAL);
2411	struct queue_limits limits;
2412	int r;
2413
2414	mutex_lock(&md->suspend_lock);
2415
2416	/* device must be suspended */
2417	if (!dm_suspended_md(md))
2418		goto out;
2419
2420	r = dm_calculate_queue_limits(table, &limits);
2421	if (r) {
2422		map = ERR_PTR(r);
2423		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2424	}
2425
2426	map = __bind(md, table, &limits);
 
2427
2428out:
2429	mutex_unlock(&md->suspend_lock);
2430	return map;
2431}
2432
2433/*
2434 * Functions to lock and unlock any filesystem running on the
2435 * device.
2436 */
2437static int lock_fs(struct mapped_device *md)
2438{
2439	int r;
2440
2441	WARN_ON(md->frozen_sb);
2442
2443	md->frozen_sb = freeze_bdev(md->bdev);
2444	if (IS_ERR(md->frozen_sb)) {
2445		r = PTR_ERR(md->frozen_sb);
2446		md->frozen_sb = NULL;
2447		return r;
2448	}
2449
2450	set_bit(DMF_FROZEN, &md->flags);
2451
2452	return 0;
 
 
 
2453}
2454
2455static void unlock_fs(struct mapped_device *md)
2456{
2457	if (!test_bit(DMF_FROZEN, &md->flags))
2458		return;
2459
2460	thaw_bdev(md->bdev, md->frozen_sb);
2461	md->frozen_sb = NULL;
2462	clear_bit(DMF_FROZEN, &md->flags);
2463}
2464
2465/*
2466 * We need to be able to change a mapping table under a mounted
2467 * filesystem.  For example we might want to move some data in
2468 * the background.  Before the table can be swapped with
2469 * dm_bind_table, dm_suspend must be called to flush any in
2470 * flight bios and ensure that any further io gets deferred.
2471 */
2472/*
2473 * Suspend mechanism in request-based dm.
2474 *
2475 * 1. Flush all I/Os by lock_fs() if needed.
2476 * 2. Stop dispatching any I/O by stopping the request_queue.
2477 * 3. Wait for all in-flight I/Os to be completed or requeued.
2478 *
2479 * To abort suspend, start the request_queue.
2480 */
2481int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
 
 
 
 
2482{
2483	struct dm_table *map = NULL;
2484	int r = 0;
2485	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2486	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2487
2488	mutex_lock(&md->suspend_lock);
2489
2490	if (dm_suspended_md(md)) {
2491		r = -EINVAL;
2492		goto out_unlock;
2493	}
2494
2495	map = dm_get_live_table(md);
2496
2497	/*
2498	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2499	 * This flag is cleared before dm_suspend returns.
2500	 */
2501	if (noflush)
2502		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 
 
2503
2504	/* This does not get reverted if there's an error later. */
 
 
 
2505	dm_table_presuspend_targets(map);
2506
2507	/*
2508	 * Flush I/O to the device.
2509	 * Any I/O submitted after lock_fs() may not be flushed.
2510	 * noflush takes precedence over do_lockfs.
2511	 * (lock_fs() flushes I/Os and waits for them to complete.)
2512	 */
2513	if (!noflush && do_lockfs) {
2514		r = lock_fs(md);
2515		if (r)
2516			goto out;
 
 
2517	}
2518
2519	/*
2520	 * Here we must make sure that no processes are submitting requests
2521	 * to target drivers i.e. no one may be executing
2522	 * __split_and_process_bio. This is called from dm_request and
2523	 * dm_wq_work.
2524	 *
2525	 * To get all processes out of __split_and_process_bio in dm_request,
2526	 * we take the write lock. To prevent any process from reentering
2527	 * __split_and_process_bio from dm_request and quiesce the thread
2528	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2529	 * flush_workqueue(md->wq).
2530	 */
2531	down_write(&md->io_lock);
2532	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2533	up_write(&md->io_lock);
 
2534
2535	/*
2536	 * Stop md->queue before flushing md->wq in case request-based
2537	 * dm defers requests to md->wq from md->queue.
2538	 */
2539	if (dm_request_based(md))
2540		stop_queue(md->queue);
2541
2542	flush_workqueue(md->wq);
2543
2544	/*
2545	 * At this point no more requests are entering target request routines.
2546	 * We call dm_wait_for_completion to wait for all existing requests
2547	 * to finish.
2548	 */
2549	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
 
 
2550
2551	down_write(&md->io_lock);
2552	if (noflush)
2553		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2554	up_write(&md->io_lock);
 
2555
2556	/* were we interrupted ? */
2557	if (r < 0) {
2558		dm_queue_flush(md);
2559
2560		if (dm_request_based(md))
2561			start_queue(md->queue);
2562
2563		unlock_fs(md);
2564		goto out; /* pushback list is already flushed, so skip flush */
 
2565	}
2566
2567	/*
2568	 * If dm_wait_for_completion returned 0, the device is completely
2569	 * quiescent now. There is no request-processing activity. All new
2570	 * requests are being added to md->deferred list.
2571	 */
2572
2573	set_bit(DMF_SUSPENDED, &md->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2574
2575	dm_table_postsuspend_targets(map);
 
2576
2577out:
2578	dm_table_put(map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2579
2580out_unlock:
2581	mutex_unlock(&md->suspend_lock);
2582	return r;
2583}
2584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2585int dm_resume(struct mapped_device *md)
2586{
2587	int r = -EINVAL;
2588	struct dm_table *map = NULL;
2589
2590	mutex_lock(&md->suspend_lock);
 
 
 
2591	if (!dm_suspended_md(md))
2592		goto out;
2593
2594	map = dm_get_live_table(md);
 
 
 
 
 
 
 
 
 
2595	if (!map || !dm_table_get_size(map))
2596		goto out;
2597
2598	r = dm_table_resume_targets(map);
2599	if (r)
2600		goto out;
2601
2602	dm_queue_flush(md);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2603
2604	/*
2605	 * Flushing deferred I/Os must be done after targets are resumed
2606	 * so that mapping of targets can work correctly.
2607	 * Request-based dm is queueing the deferred I/Os in its request_queue.
 
2608	 */
2609	if (dm_request_based(md))
2610		start_queue(md->queue);
2611
2612	unlock_fs(md);
 
 
 
2613
2614	clear_bit(DMF_SUSPENDED, &md->flags);
 
 
2615
2616	r = 0;
2617out:
2618	dm_table_put(map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2619	mutex_unlock(&md->suspend_lock);
 
 
2620
2621	return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2622}
 
 
 
 
 
 
 
 
 
 
 
 
 
2623
2624/*-----------------------------------------------------------------
2625 * Event notification.
2626 *---------------------------------------------------------------*/
2627int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2628		       unsigned cookie)
2629{
 
 
2630	char udev_cookie[DM_COOKIE_LENGTH];
2631	char *envp[] = { udev_cookie, NULL };
2632
 
 
2633	if (!cookie)
2634		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2635	else {
2636		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2637			 DM_COOKIE_ENV_VAR_NAME, cookie);
2638		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2639					  action, envp);
2640	}
 
 
 
 
2641}
2642
2643uint32_t dm_next_uevent_seq(struct mapped_device *md)
2644{
2645	return atomic_add_return(1, &md->uevent_seq);
2646}
2647
2648uint32_t dm_get_event_nr(struct mapped_device *md)
2649{
2650	return atomic_read(&md->event_nr);
2651}
2652
2653int dm_wait_event(struct mapped_device *md, int event_nr)
2654{
2655	return wait_event_interruptible(md->eventq,
2656			(event_nr != atomic_read(&md->event_nr)));
2657}
2658
2659void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2660{
2661	unsigned long flags;
2662
2663	spin_lock_irqsave(&md->uevent_lock, flags);
2664	list_add(elist, &md->uevent_list);
2665	spin_unlock_irqrestore(&md->uevent_lock, flags);
2666}
2667
2668/*
2669 * The gendisk is only valid as long as you have a reference
2670 * count on 'md'.
2671 */
2672struct gendisk *dm_disk(struct mapped_device *md)
2673{
2674	return md->disk;
2675}
 
2676
2677struct kobject *dm_kobject(struct mapped_device *md)
2678{
2679	return &md->kobj;
2680}
2681
2682/*
2683 * struct mapped_device should not be exported outside of dm.c
2684 * so use this check to verify that kobj is part of md structure
2685 */
2686struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2687{
2688	struct mapped_device *md;
2689
2690	md = container_of(kobj, struct mapped_device, kobj);
2691	if (&md->kobj != kobj)
2692		return NULL;
2693
2694	if (test_bit(DMF_FREEING, &md->flags) ||
2695	    dm_deleting_md(md))
2696		return NULL;
2697
 
 
 
 
 
2698	dm_get(md);
 
 
 
2699	return md;
2700}
2701
2702int dm_suspended_md(struct mapped_device *md)
2703{
2704	return test_bit(DMF_SUSPENDED, &md->flags);
2705}
2706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2707int dm_suspended(struct dm_target *ti)
2708{
2709	return dm_suspended_md(dm_table_get_md(ti->table));
2710}
2711EXPORT_SYMBOL_GPL(dm_suspended);
2712
 
 
 
 
 
 
2713int dm_noflush_suspending(struct dm_target *ti)
2714{
2715	return __noflush_suspending(dm_table_get_md(ti->table));
2716}
2717EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2718
2719struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2720{
2721	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2722	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
 
 
 
 
2723
2724	if (!pools)
2725		return NULL;
2726
2727	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2728			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2729			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2730	if (!pools->io_pool)
2731		goto free_pools_and_out;
2732
2733	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2734			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2735			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2736	if (!pools->tio_pool)
2737		goto free_io_pool_and_out;
2738
2739	pools->bs = bioset_create(pool_size, 0);
2740	if (!pools->bs)
2741		goto free_tio_pool_and_out;
2742
2743	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2744		goto free_bioset_and_out;
2745
2746	return pools;
2747
2748free_bioset_and_out:
2749	bioset_free(pools->bs);
 
2750
2751free_tio_pool_and_out:
2752	mempool_destroy(pools->tio_pool);
2753
2754free_io_pool_and_out:
2755	mempool_destroy(pools->io_pool);
2756
2757free_pools_and_out:
2758	kfree(pools);
2759
2760	return NULL;
2761}
2762
2763void dm_free_md_mempools(struct dm_md_mempools *pools)
2764{
2765	if (!pools)
2766		return;
2767
2768	if (pools->io_pool)
2769		mempool_destroy(pools->io_pool);
 
 
 
 
 
 
 
 
 
 
2770
2771	if (pools->tio_pool)
2772		mempool_destroy(pools->tio_pool);
 
 
 
 
 
2773
2774	if (pools->bs)
2775		bioset_free(pools->bs);
 
2776
2777	kfree(pools);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2778}
2779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2780static const struct block_device_operations dm_blk_dops = {
 
 
 
 
 
 
 
 
 
 
 
2781	.open = dm_blk_open,
2782	.release = dm_blk_close,
2783	.ioctl = dm_blk_ioctl,
2784	.getgeo = dm_blk_getgeo,
 
2785	.owner = THIS_MODULE
2786};
2787
2788EXPORT_SYMBOL(dm_get_mapinfo);
 
 
 
 
 
 
2789
2790/*
2791 * module hooks
2792 */
2793module_init(dm_init);
2794module_exit(dm_exit);
2795
2796module_param(major, uint, 0);
2797MODULE_PARM_DESC(major, "The major number of the device mapper");
 
 
 
 
 
 
 
 
 
 
2798MODULE_DESCRIPTION(DM_NAME " driver");
2799MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2800MODULE_LICENSE("GPL");
v5.14.15
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/sched/mm.h>
  16#include <linux/sched/signal.h>
  17#include <linux/blkpg.h>
  18#include <linux/bio.h>
  19#include <linux/mempool.h>
  20#include <linux/dax.h>
  21#include <linux/slab.h>
  22#include <linux/idr.h>
  23#include <linux/uio.h>
  24#include <linux/hdreg.h>
  25#include <linux/delay.h>
  26#include <linux/wait.h>
  27#include <linux/pr.h>
  28#include <linux/refcount.h>
  29#include <linux/part_stat.h>
  30#include <linux/blk-crypto.h>
  31#include <linux/keyslot-manager.h>
  32
  33#define DM_MSG_PREFIX "core"
  34
 
 
 
 
 
 
 
 
 
 
  35/*
  36 * Cookies are numeric values sent with CHANGE and REMOVE
  37 * uevents while resuming, removing or renaming the device.
  38 */
  39#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  40#define DM_COOKIE_LENGTH 24
  41
  42static const char *_name = DM_NAME;
  43
  44static unsigned int major = 0;
  45static unsigned int _major = 0;
  46
  47static DEFINE_IDR(_minor_idr);
  48
  49static DEFINE_SPINLOCK(_minor_lock);
  50
  51static void do_deferred_remove(struct work_struct *w);
  52
  53static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  54
  55static struct workqueue_struct *deferred_remove_workqueue;
  56
  57atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  58DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  59
  60void dm_issue_global_event(void)
  61{
  62	atomic_inc(&dm_global_event_nr);
  63	wake_up(&dm_global_eventq);
  64}
  65
  66/*
  67 * One of these is allocated (on-stack) per original bio.
 
 
  68 */
  69struct clone_info {
  70	struct dm_table *map;
  71	struct bio *bio;
  72	struct dm_io *io;
  73	sector_t sector;
  74	unsigned sector_count;
  75};
  76
  77#define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
  78#define DM_IO_BIO_OFFSET \
  79	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
 
 
 
 
 
 
 
 
  80
  81void *dm_per_bio_data(struct bio *bio, size_t data_size)
  82{
  83	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
  84	if (!tio->inside_dm_io)
  85		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
  86	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
  87}
  88EXPORT_SYMBOL_GPL(dm_per_bio_data);
  89
  90struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
  91{
  92	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
  93	if (io->magic == DM_IO_MAGIC)
  94		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
  95	BUG_ON(io->magic != DM_TIO_MAGIC);
  96	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
  97}
  98EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
  99
 100unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 101{
 102	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 
 
 103}
 104EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 105
 106#define MINOR_ALLOCED ((void *)-1)
 107
 108#define DM_NUMA_NODE NUMA_NO_NODE
 109static int dm_numa_node = DM_NUMA_NODE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110
 111#define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
 112static int swap_bios = DEFAULT_SWAP_BIOS;
 113static int get_swap_bios(void)
 114{
 115	int latch = READ_ONCE(swap_bios);
 116	if (unlikely(latch <= 0))
 117		latch = DEFAULT_SWAP_BIOS;
 118	return latch;
 119}
 120
 121/*
 122 * For mempools pre-allocation at the table loading time.
 123 */
 124struct dm_md_mempools {
 125	struct bio_set bs;
 126	struct bio_set io_bs;
 127};
 128
 129struct table_device {
 130	struct list_head list;
 131	refcount_t count;
 132	struct dm_dev dm_dev;
 133};
 
 
 
 134
 135/*
 136 * Bio-based DM's mempools' reserved IOs set by the user.
 137 */
 138#define RESERVED_BIO_BASED_IOS		16
 139static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 140
 141static int __dm_get_module_param_int(int *module_param, int min, int max)
 142{
 143	int param = READ_ONCE(*module_param);
 144	int modified_param = 0;
 145	bool modified = true;
 146
 147	if (param < min)
 148		modified_param = min;
 149	else if (param > max)
 150		modified_param = max;
 151	else
 152		modified = false;
 153
 154	if (modified) {
 155		(void)cmpxchg(module_param, param, modified_param);
 156		param = modified_param;
 157	}
 158
 159	return param;
 160}
 
 
 
 
 
 
 161
 162unsigned __dm_get_module_param(unsigned *module_param,
 163			       unsigned def, unsigned max)
 164{
 165	unsigned param = READ_ONCE(*module_param);
 166	unsigned modified_param = 0;
 167
 168	if (!param)
 169		modified_param = def;
 170	else if (param > max)
 171		modified_param = max;
 172
 173	if (modified_param) {
 174		(void)cmpxchg(module_param, param, modified_param);
 175		param = modified_param;
 176	}
 177
 178	return param;
 179}
 
 180
 181unsigned dm_get_reserved_bio_based_ios(void)
 182{
 183	return __dm_get_module_param(&reserved_bio_based_ios,
 184				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 185}
 186EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 
 
 187
 188static unsigned dm_get_numa_node(void)
 189{
 190	return __dm_get_module_param_int(&dm_numa_node,
 191					 DM_NUMA_NODE, num_online_nodes() - 1);
 192}
 193
 194static int __init local_init(void)
 195{
 196	int r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 197
 198	r = dm_uevent_init();
 199	if (r)
 200		return r;
 201
 202	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 203	if (!deferred_remove_workqueue) {
 204		r = -ENOMEM;
 205		goto out_uevent_exit;
 206	}
 207
 208	_major = major;
 209	r = register_blkdev(_major, _name);
 210	if (r < 0)
 211		goto out_free_workqueue;
 212
 213	if (!_major)
 214		_major = r;
 215
 216	return 0;
 217
 218out_free_workqueue:
 219	destroy_workqueue(deferred_remove_workqueue);
 220out_uevent_exit:
 221	dm_uevent_exit();
 
 
 
 
 
 
 
 
 222
 223	return r;
 224}
 225
 226static void local_exit(void)
 227{
 228	flush_scheduled_work();
 229	destroy_workqueue(deferred_remove_workqueue);
 230
 
 231	unregister_blkdev(_major, _name);
 232	dm_uevent_exit();
 233
 234	_major = 0;
 235
 236	DMINFO("cleaned up");
 237}
 238
 239static int (*_inits[])(void) __initdata = {
 240	local_init,
 241	dm_target_init,
 242	dm_linear_init,
 243	dm_stripe_init,
 244	dm_io_init,
 245	dm_kcopyd_init,
 246	dm_interface_init,
 247	dm_statistics_init,
 248};
 249
 250static void (*_exits[])(void) = {
 251	local_exit,
 252	dm_target_exit,
 253	dm_linear_exit,
 254	dm_stripe_exit,
 255	dm_io_exit,
 256	dm_kcopyd_exit,
 257	dm_interface_exit,
 258	dm_statistics_exit,
 259};
 260
 261static int __init dm_init(void)
 262{
 263	const int count = ARRAY_SIZE(_inits);
 264
 265	int r, i;
 266
 267	for (i = 0; i < count; i++) {
 268		r = _inits[i]();
 269		if (r)
 270			goto bad;
 271	}
 272
 273	return 0;
 274
 275      bad:
 276	while (i--)
 277		_exits[i]();
 278
 279	return r;
 280}
 281
 282static void __exit dm_exit(void)
 283{
 284	int i = ARRAY_SIZE(_exits);
 285
 286	while (i--)
 287		_exits[i]();
 288
 289	/*
 290	 * Should be empty by this point.
 291	 */
 
 292	idr_destroy(&_minor_idr);
 293}
 294
 295/*
 296 * Block device functions
 297 */
 298int dm_deleting_md(struct mapped_device *md)
 299{
 300	return test_bit(DMF_DELETING, &md->flags);
 301}
 302
 303static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 304{
 305	struct mapped_device *md;
 306
 307	spin_lock(&_minor_lock);
 308
 309	md = bdev->bd_disk->private_data;
 310	if (!md)
 311		goto out;
 312
 313	if (test_bit(DMF_FREEING, &md->flags) ||
 314	    dm_deleting_md(md)) {
 315		md = NULL;
 316		goto out;
 317	}
 318
 319	dm_get(md);
 320	atomic_inc(&md->open_count);
 
 321out:
 322	spin_unlock(&_minor_lock);
 323
 324	return md ? 0 : -ENXIO;
 325}
 326
 327static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 328{
 329	struct mapped_device *md;
 330
 331	spin_lock(&_minor_lock);
 332
 333	md = disk->private_data;
 334	if (WARN_ON(!md))
 335		goto out;
 336
 337	if (atomic_dec_and_test(&md->open_count) &&
 338	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 339		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 340
 341	dm_put(md);
 342out:
 343	spin_unlock(&_minor_lock);
 344}
 345
 346int dm_open_count(struct mapped_device *md)
 347{
 348	return atomic_read(&md->open_count);
 349}
 350
 351/*
 352 * Guarantees nothing is using the device before it's deleted.
 353 */
 354int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 355{
 356	int r = 0;
 357
 358	spin_lock(&_minor_lock);
 359
 360	if (dm_open_count(md)) {
 361		r = -EBUSY;
 362		if (mark_deferred)
 363			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 364	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 365		r = -EEXIST;
 366	else
 367		set_bit(DMF_DELETING, &md->flags);
 368
 369	spin_unlock(&_minor_lock);
 370
 371	return r;
 372}
 373
 374int dm_cancel_deferred_remove(struct mapped_device *md)
 375{
 376	int r = 0;
 377
 378	spin_lock(&_minor_lock);
 379
 380	if (test_bit(DMF_DELETING, &md->flags))
 381		r = -EBUSY;
 382	else
 383		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 384
 385	spin_unlock(&_minor_lock);
 386
 387	return r;
 388}
 389
 390static void do_deferred_remove(struct work_struct *w)
 391{
 392	dm_deferred_remove();
 393}
 394
 395static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 396{
 397	struct mapped_device *md = bdev->bd_disk->private_data;
 398
 399	return dm_get_geometry(md, geo);
 400}
 401
 402static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 403			    struct block_device **bdev)
 404{
 
 
 405	struct dm_target *tgt;
 406	struct dm_table *map;
 407	int r;
 408
 409retry:
 410	r = -ENOTTY;
 411	map = dm_get_live_table(md, srcu_idx);
 412	if (!map || !dm_table_get_size(map))
 413		return r;
 414
 415	/* We only support devices that have a single target */
 416	if (dm_table_get_num_targets(map) != 1)
 417		return r;
 418
 419	tgt = dm_table_get_target(map, 0);
 420	if (!tgt->type->prepare_ioctl)
 421		return r;
 422
 423	if (dm_suspended_md(md))
 424		return -EAGAIN;
 
 
 
 
 
 425
 426	r = tgt->type->prepare_ioctl(tgt, bdev);
 427	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 428		dm_put_live_table(md, *srcu_idx);
 429		msleep(10);
 430		goto retry;
 431	}
 432
 433	return r;
 434}
 435
 436static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 437{
 438	dm_put_live_table(md, srcu_idx);
 439}
 440
 441static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 442			unsigned int cmd, unsigned long arg)
 443{
 444	struct mapped_device *md = bdev->bd_disk->private_data;
 445	int r, srcu_idx;
 446
 447	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 448	if (r < 0)
 449		goto out;
 450
 451	if (r > 0) {
 452		/*
 453		 * Target determined this ioctl is being issued against a
 454		 * subset of the parent bdev; require extra privileges.
 455		 */
 456		if (!capable(CAP_SYS_RAWIO)) {
 457			DMDEBUG_LIMIT(
 458	"%s: sending ioctl %x to DM device without required privilege.",
 459				current->comm, cmd);
 460			r = -ENOIOCTLCMD;
 461			goto out;
 462		}
 463	}
 464
 465	if (!bdev->bd_disk->fops->ioctl)
 466		r = -ENOTTY;
 467	else
 468		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
 469out:
 470	dm_unprepare_ioctl(md, srcu_idx);
 471	return r;
 472}
 473
 474u64 dm_start_time_ns_from_clone(struct bio *bio)
 
 475{
 476	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 477	struct dm_io *io = tio->io;
 478
 479	return jiffies_to_nsecs(io->start_time);
 480}
 481EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 482
 483static void start_io_acct(struct dm_io *io)
 484{
 485	struct mapped_device *md = io->md;
 486	struct bio *bio = io->orig_bio;
 487
 488	io->start_time = bio_start_io_acct(bio);
 489	if (unlikely(dm_stats_used(&md->stats)))
 490		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 491				    bio->bi_iter.bi_sector, bio_sectors(bio),
 492				    false, 0, &io->stats_aux);
 493}
 494
 495static void end_io_acct(struct mapped_device *md, struct bio *bio,
 496			unsigned long start_time, struct dm_stats_aux *stats_aux)
 497{
 498	unsigned long duration = jiffies - start_time;
 499
 500	bio_end_io_acct(bio, start_time);
 501
 502	if (unlikely(dm_stats_used(&md->stats)))
 503		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 504				    bio->bi_iter.bi_sector, bio_sectors(bio),
 505				    true, duration, stats_aux);
 506
 507	/* nudge anyone waiting on suspend queue */
 508	if (unlikely(wq_has_sleeper(&md->wait)))
 509		wake_up(&md->wait);
 510}
 511
 512static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 513{
 514	struct dm_io *io;
 515	struct dm_target_io *tio;
 516	struct bio *clone;
 517
 518	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
 519	if (!clone)
 520		return NULL;
 521
 522	tio = container_of(clone, struct dm_target_io, clone);
 523	tio->inside_dm_io = true;
 524	tio->io = NULL;
 525
 526	io = container_of(tio, struct dm_io, tio);
 527	io->magic = DM_IO_MAGIC;
 528	io->status = 0;
 529	atomic_set(&io->io_count, 1);
 530	io->orig_bio = bio;
 531	io->md = md;
 532	spin_lock_init(&io->endio_lock);
 533
 534	start_io_acct(io);
 535
 536	return io;
 537}
 538
 539static void free_io(struct mapped_device *md, struct dm_io *io)
 540{
 541	bio_put(&io->tio.clone);
 
 542}
 543
 544static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 545				      unsigned target_bio_nr, gfp_t gfp_mask)
 546{
 547	struct dm_target_io *tio;
 548
 549	if (!ci->io->tio.io) {
 550		/* the dm_target_io embedded in ci->io is available */
 551		tio = &ci->io->tio;
 552	} else {
 553		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
 554		if (!clone)
 555			return NULL;
 556
 557		tio = container_of(clone, struct dm_target_io, clone);
 558		tio->inside_dm_io = false;
 559	}
 560
 561	tio->magic = DM_TIO_MAGIC;
 562	tio->io = ci->io;
 563	tio->ti = ti;
 564	tio->target_bio_nr = target_bio_nr;
 565
 566	return tio;
 
 
 
 
 567}
 568
 569static void free_tio(struct dm_target_io *tio)
 570{
 571	if (tio->inside_dm_io)
 572		return;
 573	bio_put(&tio->clone);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 574}
 575
 576/*
 577 * Add the bio to the list of deferred io.
 578 */
 579static void queue_io(struct mapped_device *md, struct bio *bio)
 580{
 581	unsigned long flags;
 582
 583	spin_lock_irqsave(&md->deferred_lock, flags);
 584	bio_list_add(&md->deferred, bio);
 585	spin_unlock_irqrestore(&md->deferred_lock, flags);
 586	queue_work(md->wq, &md->work);
 587}
 588
 589/*
 590 * Everyone (including functions in this file), should use this
 591 * function to access the md->map field, and make sure they call
 592 * dm_put_live_table() when finished.
 593 */
 594struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 595{
 596	*srcu_idx = srcu_read_lock(&md->io_barrier);
 
 597
 598	return srcu_dereference(md->map, &md->io_barrier);
 599}
 
 
 
 600
 601void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 602{
 603	srcu_read_unlock(&md->io_barrier, srcu_idx);
 604}
 605
 606void dm_sync_table(struct mapped_device *md)
 607{
 608	synchronize_srcu(&md->io_barrier);
 609	synchronize_rcu_expedited();
 610}
 611
 612/*
 613 * A fast alternative to dm_get_live_table/dm_put_live_table.
 614 * The caller must not block between these two functions.
 615 */
 616static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 617{
 618	rcu_read_lock();
 619	return rcu_dereference(md->map);
 620}
 621
 622static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 623{
 624	rcu_read_unlock();
 625}
 626
 627static char *_dm_claim_ptr = "I belong to device-mapper";
 628
 629/*
 630 * Open a table device so we can use it as a map destination.
 631 */
 632static int open_table_device(struct table_device *td, dev_t dev,
 633			     struct mapped_device *md)
 634{
 635	struct block_device *bdev;
 636
 637	int r;
 638
 639	BUG_ON(td->dm_dev.bdev);
 640
 641	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
 642	if (IS_ERR(bdev))
 643		return PTR_ERR(bdev);
 644
 645	r = bd_link_disk_holder(bdev, dm_disk(md));
 646	if (r) {
 647		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 648		return r;
 649	}
 650
 651	td->dm_dev.bdev = bdev;
 652	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 653	return 0;
 654}
 655
 656/*
 657 * Close a table device that we've been using.
 658 */
 659static void close_table_device(struct table_device *td, struct mapped_device *md)
 660{
 661	if (!td->dm_dev.bdev)
 662		return;
 663
 664	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 665	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 666	put_dax(td->dm_dev.dax_dev);
 667	td->dm_dev.bdev = NULL;
 668	td->dm_dev.dax_dev = NULL;
 669}
 670
 671static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 672					      fmode_t mode)
 673{
 674	struct table_device *td;
 675
 676	list_for_each_entry(td, l, list)
 677		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 678			return td;
 679
 680	return NULL;
 681}
 682
 683int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 684			struct dm_dev **result)
 685{
 686	int r;
 687	struct table_device *td;
 688
 689	mutex_lock(&md->table_devices_lock);
 690	td = find_table_device(&md->table_devices, dev, mode);
 691	if (!td) {
 692		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 693		if (!td) {
 694			mutex_unlock(&md->table_devices_lock);
 695			return -ENOMEM;
 696		}
 697
 698		td->dm_dev.mode = mode;
 699		td->dm_dev.bdev = NULL;
 700
 701		if ((r = open_table_device(td, dev, md))) {
 702			mutex_unlock(&md->table_devices_lock);
 703			kfree(td);
 704			return r;
 705		}
 706
 707		format_dev_t(td->dm_dev.name, dev);
 708
 709		refcount_set(&td->count, 1);
 710		list_add(&td->list, &md->table_devices);
 711	} else {
 712		refcount_inc(&td->count);
 713	}
 714	mutex_unlock(&md->table_devices_lock);
 715
 716	*result = &td->dm_dev;
 717	return 0;
 718}
 719
 720void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 721{
 722	struct table_device *td = container_of(d, struct table_device, dm_dev);
 723
 724	mutex_lock(&md->table_devices_lock);
 725	if (refcount_dec_and_test(&td->count)) {
 726		close_table_device(td, md);
 727		list_del(&td->list);
 728		kfree(td);
 729	}
 730	mutex_unlock(&md->table_devices_lock);
 731}
 732
 733static void free_table_devices(struct list_head *devices)
 734{
 735	struct list_head *tmp, *next;
 736
 737	list_for_each_safe(tmp, next, devices) {
 738		struct table_device *td = list_entry(tmp, struct table_device, list);
 739
 740		DMWARN("dm_destroy: %s still exists with %d references",
 741		       td->dm_dev.name, refcount_read(&td->count));
 742		kfree(td);
 743	}
 744}
 745
 746/*
 747 * Get the geometry associated with a dm device
 748 */
 749int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 750{
 751	*geo = md->geometry;
 752
 753	return 0;
 754}
 755
 756/*
 757 * Set the geometry of a device.
 758 */
 759int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 760{
 761	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 762
 763	if (geo->start > sz) {
 764		DMWARN("Start sector is beyond the geometry limits.");
 765		return -EINVAL;
 766	}
 767
 768	md->geometry = *geo;
 769
 770	return 0;
 771}
 772
 
 
 
 
 
 
 
 
 
 773static int __noflush_suspending(struct mapped_device *md)
 774{
 775	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 776}
 777
 778/*
 779 * Decrements the number of outstanding ios that a bio has been
 780 * cloned into, completing the original io if necc.
 781 */
 782void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
 783{
 784	unsigned long flags;
 785	blk_status_t io_error;
 786	struct bio *bio;
 787	struct mapped_device *md = io->md;
 788	unsigned long start_time = 0;
 789	struct dm_stats_aux stats_aux;
 790
 791	/* Push-back supersedes any I/O errors */
 792	if (unlikely(error)) {
 793		spin_lock_irqsave(&io->endio_lock, flags);
 794		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
 795			io->status = error;
 796		spin_unlock_irqrestore(&io->endio_lock, flags);
 797	}
 798
 799	if (atomic_dec_and_test(&io->io_count)) {
 800		bio = io->orig_bio;
 801		if (io->status == BLK_STS_DM_REQUEUE) {
 802			/*
 803			 * Target requested pushing back the I/O.
 804			 */
 805			spin_lock_irqsave(&md->deferred_lock, flags);
 806			if (__noflush_suspending(md) &&
 807			    !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
 808				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
 809				bio_list_add_head(&md->deferred, bio);
 810			} else {
 811				/*
 812				 * noflush suspend was interrupted or this is
 813				 * a write to a zoned target.
 814				 */
 815				io->status = BLK_STS_IOERR;
 816			}
 817			spin_unlock_irqrestore(&md->deferred_lock, flags);
 818		}
 819
 820		io_error = io->status;
 821		start_time = io->start_time;
 822		stats_aux = io->stats_aux;
 823		free_io(md, io);
 824		end_io_acct(md, bio, start_time, &stats_aux);
 825
 826		if (io_error == BLK_STS_DM_REQUEUE)
 827			return;
 828
 829		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 830			/*
 831			 * Preflush done for flush with data, reissue
 832			 * without REQ_PREFLUSH.
 833			 */
 834			bio->bi_opf &= ~REQ_PREFLUSH;
 835			queue_io(md, bio);
 836		} else {
 837			/* done with normal IO or empty flush */
 838			if (io_error)
 839				bio->bi_status = io_error;
 840			bio_endio(bio);
 841		}
 842	}
 843}
 844
 845void disable_discard(struct mapped_device *md)
 846{
 847	struct queue_limits *limits = dm_get_queue_limits(md);
 848
 849	/* device doesn't really support DISCARD, disable it */
 850	limits->max_discard_sectors = 0;
 851	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
 852}
 853
 854void disable_write_same(struct mapped_device *md)
 855{
 856	struct queue_limits *limits = dm_get_queue_limits(md);
 857
 858	/* device doesn't really support WRITE SAME, disable it */
 859	limits->max_write_same_sectors = 0;
 860}
 861
 862void disable_write_zeroes(struct mapped_device *md)
 863{
 864	struct queue_limits *limits = dm_get_queue_limits(md);
 865
 866	/* device doesn't really support WRITE ZEROES, disable it */
 867	limits->max_write_zeroes_sectors = 0;
 868}
 869
 870static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
 871{
 872	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
 873}
 874
 875static void clone_endio(struct bio *bio)
 876{
 877	blk_status_t error = bio->bi_status;
 878	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 879	struct dm_io *io = tio->io;
 880	struct mapped_device *md = tio->io->md;
 881	dm_endio_fn endio = tio->ti->type->end_io;
 882	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
 883
 884	if (unlikely(error == BLK_STS_TARGET)) {
 885		if (bio_op(bio) == REQ_OP_DISCARD &&
 886		    !q->limits.max_discard_sectors)
 887			disable_discard(md);
 888		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
 889			 !q->limits.max_write_same_sectors)
 890			disable_write_same(md);
 891		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
 892			 !q->limits.max_write_zeroes_sectors)
 893			disable_write_zeroes(md);
 894	}
 895
 896	if (blk_queue_is_zoned(q))
 897		dm_zone_endio(io, bio);
 898
 899	if (endio) {
 900		int r = endio(tio->ti, bio, &error);
 901		switch (r) {
 902		case DM_ENDIO_REQUEUE:
 903			/*
 904			 * Requeuing writes to a sequential zone of a zoned
 905			 * target will break the sequential write pattern:
 906			 * fail such IO.
 907			 */
 908			if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
 909				error = BLK_STS_IOERR;
 910			else
 911				error = BLK_STS_DM_REQUEUE;
 912			fallthrough;
 913		case DM_ENDIO_DONE:
 914			break;
 915		case DM_ENDIO_INCOMPLETE:
 916			/* The target will handle the io */
 917			return;
 918		default:
 919			DMWARN("unimplemented target endio return value: %d", r);
 920			BUG();
 921		}
 922	}
 923
 924	if (unlikely(swap_bios_limit(tio->ti, bio))) {
 925		struct mapped_device *md = io->md;
 926		up(&md->swap_bios_semaphore);
 927	}
 928
 929	free_tio(tio);
 930	dm_io_dec_pending(io, error);
 
 931}
 932
 933/*
 934 * Return maximum size of I/O possible at the supplied sector up to the current
 935 * target boundary.
 936 */
 937static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
 938						  sector_t target_offset)
 939{
 940	return ti->len - target_offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 941}
 942
 943static sector_t max_io_len(struct dm_target *ti, sector_t sector)
 
 
 
 
 
 944{
 945	sector_t target_offset = dm_target_offset(ti, sector);
 946	sector_t len = max_io_len_target_boundary(ti, target_offset);
 947	sector_t max_len;
 
 
 
 
 
 948
 949	/*
 950	 * Does the target need to split IO even further?
 951	 * - varied (per target) IO splitting is a tenet of DM; this
 952	 *   explains why stacked chunk_sectors based splitting via
 953	 *   blk_max_size_offset() isn't possible here. So pass in
 954	 *   ti->max_io_len to override stacked chunk_sectors.
 955	 */
 956	if (ti->max_io_len) {
 957		max_len = blk_max_size_offset(ti->table->md->queue,
 958					      target_offset, ti->max_io_len);
 959		if (len > max_len)
 960			len = max_len;
 961	}
 962
 963	return len;
 
 964}
 965
 966int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
 
 
 
 
 967{
 968	if (len > UINT_MAX) {
 969		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
 970		      (unsigned long long)len, UINT_MAX);
 971		ti->error = "Maximum size of target IO is too large";
 972		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 973	}
 974
 975	ti->max_io_len = (uint32_t) len;
 976
 977	return 0;
 978}
 979EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
 980
 981static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
 982						sector_t sector, int *srcu_idx)
 983	__acquires(md->io_barrier)
 984{
 985	struct dm_table *map;
 986	struct dm_target *ti;
 987
 988	map = dm_get_live_table(md, srcu_idx);
 989	if (!map)
 990		return NULL;
 991
 992	ti = dm_table_find_target(map, sector);
 993	if (!ti)
 994		return NULL;
 995
 996	return ti;
 997}
 998
 999static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1000				 long nr_pages, void **kaddr, pfn_t *pfn)
 
 
1001{
1002	struct mapped_device *md = dax_get_private(dax_dev);
1003	sector_t sector = pgoff * PAGE_SECTORS;
1004	struct dm_target *ti;
1005	long len, ret = -EIO;
1006	int srcu_idx;
 
1007
1008	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1009
1010	if (!ti)
1011		goto out;
1012	if (!ti->type->direct_access)
1013		goto out;
1014	len = max_io_len(ti, sector) / PAGE_SECTORS;
1015	if (len < 1)
1016		goto out;
1017	nr_pages = min(len, nr_pages);
1018	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1019
1020 out:
1021	dm_put_live_table(md, srcu_idx);
 
1022
1023	return ret;
 
 
1024}
1025
1026static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1027		int blocksize, sector_t start, sector_t len)
1028{
1029	struct mapped_device *md = dax_get_private(dax_dev);
1030	struct dm_table *map;
1031	bool ret = false;
1032	int srcu_idx;
1033
1034	map = dm_get_live_table(md, &srcu_idx);
1035	if (!map)
1036		goto out;
 
1037
1038	ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
 
 
 
 
1039
1040out:
1041	dm_put_live_table(md, srcu_idx);
 
1042
1043	return ret;
 
 
1044}
1045
1046static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1047				    void *addr, size_t bytes, struct iov_iter *i)
1048{
1049	struct mapped_device *md = dax_get_private(dax_dev);
1050	sector_t sector = pgoff * PAGE_SECTORS;
1051	struct dm_target *ti;
1052	long ret = 0;
1053	int srcu_idx;
1054
1055	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
1056
1057	if (!ti)
1058		goto out;
1059	if (!ti->type->dax_copy_from_iter) {
1060		ret = copy_from_iter(addr, bytes, i);
1061		goto out;
1062	}
1063	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1064 out:
1065	dm_put_live_table(md, srcu_idx);
1066
1067	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
1068}
1069
1070static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1071		void *addr, size_t bytes, struct iov_iter *i)
 
 
1072{
1073	struct mapped_device *md = dax_get_private(dax_dev);
1074	sector_t sector = pgoff * PAGE_SECTORS;
1075	struct dm_target *ti;
1076	long ret = 0;
1077	int srcu_idx;
 
1078
1079	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
1080
1081	if (!ti)
1082		goto out;
1083	if (!ti->type->dax_copy_to_iter) {
1084		ret = copy_to_iter(addr, bytes, i);
1085		goto out;
1086	}
1087	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1088 out:
1089	dm_put_live_table(md, srcu_idx);
1090
1091	return ret;
 
 
1092}
1093
1094static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1095				  size_t nr_pages)
 
 
 
 
 
1096{
1097	struct mapped_device *md = dax_get_private(dax_dev);
1098	sector_t sector = pgoff * PAGE_SECTORS;
1099	struct dm_target *ti;
1100	int ret = -EIO;
1101	int srcu_idx;
1102
1103	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
 
 
1104
1105	if (!ti)
1106		goto out;
1107	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1108		/*
1109		 * ->zero_page_range() is mandatory dax operation. If we are
1110		 *  here, something is wrong.
1111		 */
1112		goto out;
1113	}
1114	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1115 out:
1116	dm_put_live_table(md, srcu_idx);
1117
1118	return ret;
 
 
 
 
 
 
 
 
1119}
1120
1121/*
1122 * A target may call dm_accept_partial_bio only from the map routine.  It is
1123 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1124 * operations and REQ_OP_ZONE_APPEND (zone append writes).
1125 *
1126 * dm_accept_partial_bio informs the dm that the target only wants to process
1127 * additional n_sectors sectors of the bio and the rest of the data should be
1128 * sent in a next bio.
1129 *
1130 * A diagram that explains the arithmetics:
1131 * +--------------------+---------------+-------+
1132 * |         1          |       2       |   3   |
1133 * +--------------------+---------------+-------+
1134 *
1135 * <-------------- *tio->len_ptr --------------->
1136 *                      <------- bi_size ------->
1137 *                      <-- n_sectors -->
1138 *
1139 * Region 1 was already iterated over with bio_advance or similar function.
1140 *	(it may be empty if the target doesn't use bio_advance)
1141 * Region 2 is the remaining bio size that the target wants to process.
1142 *	(it may be empty if region 1 is non-empty, although there is no reason
1143 *	 to make it empty)
1144 * The target requires that region 3 is to be sent in the next bio.
1145 *
1146 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1147 * the partially processed part (the sum of regions 1+2) must be the same for all
1148 * copies of the bio.
1149 */
1150void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1151{
1152	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1153	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1154
1155	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1156	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1157	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1158	BUG_ON(bi_size > *tio->len_ptr);
1159	BUG_ON(n_sectors > bi_size);
1160
1161	*tio->len_ptr -= bi_size - n_sectors;
1162	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1163}
1164EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1165
1166static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1167{
1168	mutex_lock(&md->swap_bios_lock);
1169	while (latch < md->swap_bios) {
1170		cond_resched();
1171		down(&md->swap_bios_semaphore);
1172		md->swap_bios--;
 
 
 
 
 
 
 
1173	}
1174	while (latch > md->swap_bios) {
1175		cond_resched();
1176		up(&md->swap_bios_semaphore);
1177		md->swap_bios++;
1178	}
1179	mutex_unlock(&md->swap_bios_lock);
1180}
1181
1182static blk_qc_t __map_bio(struct dm_target_io *tio)
 
1183{
1184	int r;
1185	sector_t sector;
1186	struct bio *clone = &tio->clone;
1187	struct dm_io *io = tio->io;
1188	struct dm_target *ti = tio->ti;
1189	blk_qc_t ret = BLK_QC_T_NONE;
1190
1191	clone->bi_end_io = clone_endio;
 
1192
1193	/*
1194	 * Map the clone.  If r == 0 we don't need to do
1195	 * anything, the target has assumed ownership of
1196	 * this io.
1197	 */
1198	dm_io_inc_pending(io);
1199	sector = clone->bi_iter.bi_sector;
 
 
 
1200
1201	if (unlikely(swap_bios_limit(ti, clone))) {
1202		struct mapped_device *md = io->md;
1203		int latch = get_swap_bios();
1204		if (unlikely(latch != md->swap_bios))
1205			__set_swap_bios_limit(md, latch);
1206		down(&md->swap_bios_semaphore);
1207	}
1208
1209	/*
1210	 * Check if the IO needs a special mapping due to zone append emulation
1211	 * on zoned target. In this case, dm_zone_map_bio() calls the target
1212	 * map operation.
1213	 */
1214	if (dm_emulate_zone_append(io->md))
1215		r = dm_zone_map_bio(tio);
1216	else
1217		r = ti->type->map(ti, clone);
1218
1219	switch (r) {
1220	case DM_MAPIO_SUBMITTED:
1221		break;
1222	case DM_MAPIO_REMAPPED:
1223		/* the bio has been remapped so dispatch it */
1224		trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector);
1225		ret = submit_bio_noacct(clone);
1226		break;
1227	case DM_MAPIO_KILL:
1228		if (unlikely(swap_bios_limit(ti, clone))) {
1229			struct mapped_device *md = io->md;
1230			up(&md->swap_bios_semaphore);
1231		}
1232		free_tio(tio);
1233		dm_io_dec_pending(io, BLK_STS_IOERR);
1234		break;
1235	case DM_MAPIO_REQUEUE:
1236		if (unlikely(swap_bios_limit(ti, clone))) {
1237			struct mapped_device *md = io->md;
1238			up(&md->swap_bios_semaphore);
1239		}
1240		free_tio(tio);
1241		dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1242		break;
1243	default:
1244		DMWARN("unimplemented target map return value: %d", r);
1245		BUG();
1246	}
 
1247
1248	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1249}
1250
1251static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
 
 
 
 
 
1252{
1253	bio->bi_iter.bi_sector = sector;
1254	bio->bi_iter.bi_size = to_bytes(len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1255}
1256
1257/*
1258 * Creates a bio that consists of range of complete bvecs.
1259 */
1260static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1261		     sector_t sector, unsigned len)
 
1262{
1263	struct bio *clone = &tio->clone;
1264	int r;
1265
1266	__bio_clone_fast(clone, bio);
1267
1268	r = bio_crypt_clone(clone, bio, GFP_NOIO);
1269	if (r < 0)
1270		return r;
 
 
 
 
 
1271
1272	if (bio_integrity(bio)) {
1273		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1274			     !dm_target_passes_integrity(tio->ti->type))) {
1275			DMWARN("%s: the target %s doesn't support integrity data.",
1276				dm_device_name(tio->io->md),
1277				tio->ti->type->name);
1278			return -EIO;
1279		}
1280
1281		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1282		if (r < 0)
1283			return r;
1284	}
1285
1286	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1287	clone->bi_iter.bi_size = to_bytes(len);
 
 
 
 
 
1288
1289	if (bio_integrity(bio))
1290		bio_integrity_trim(clone);
 
1291
1292	return 0;
1293}
1294
1295static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1296				struct dm_target *ti, unsigned num_bios)
1297{
1298	struct dm_target_io *tio;
1299	int try;
1300
1301	if (!num_bios)
1302		return;
1303
1304	if (num_bios == 1) {
1305		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1306		bio_list_add(blist, &tio->clone);
1307		return;
 
 
 
 
 
 
 
1308	}
1309
1310	for (try = 0; try < 2; try++) {
1311		int bio_nr;
1312		struct bio *bio;
1313
1314		if (try)
1315			mutex_lock(&ci->io->md->table_devices_lock);
1316		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1317			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1318			if (!tio)
1319				break;
1320
1321			bio_list_add(blist, &tio->clone);
1322		}
1323		if (try)
1324			mutex_unlock(&ci->io->md->table_devices_lock);
1325		if (bio_nr == num_bios)
1326			return;
1327
1328		while ((bio = bio_list_pop(blist))) {
1329			tio = container_of(bio, struct dm_target_io, clone);
1330			free_tio(tio);
1331		}
1332	}
1333}
1334
1335static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1336					   struct dm_target_io *tio, unsigned *len)
1337{
1338	struct bio *clone = &tio->clone;
 
1339
1340	tio->len_ptr = len;
 
 
1341
1342	__bio_clone_fast(clone, ci->bio);
1343	if (len)
1344		bio_setup_sector(clone, ci->sector, *len);
1345
1346	return __map_bio(tio);
1347}
1348
1349static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1350				  unsigned num_bios, unsigned *len)
 
 
1351{
1352	struct bio_list blist = BIO_EMPTY_LIST;
1353	struct bio *bio;
1354	struct dm_target_io *tio;
1355
1356	alloc_multiple_bios(&blist, ci, ti, num_bios);
1357
1358	while ((bio = bio_list_pop(&blist))) {
1359		tio = container_of(bio, struct dm_target_io, clone);
1360		(void) __clone_and_map_simple_bio(ci, tio, len);
1361	}
1362}
1363
1364static int __send_empty_flush(struct clone_info *ci)
1365{
1366	unsigned target_nr = 0;
1367	struct dm_target *ti;
1368	struct bio flush_bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1369
1370	/*
1371	 * Use an on-stack bio for this, it's safe since we don't
1372	 * need to reference it after submit. It's just used as
1373	 * the basis for the clone(s).
1374	 */
1375	bio_init(&flush_bio, NULL, 0);
1376	flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1377	bio_set_dev(&flush_bio, ci->io->md->disk->part0);
1378
1379	ci->bio = &flush_bio;
1380	ci->sector_count = 0;
1381
1382	BUG_ON(bio_has_data(ci->bio));
1383	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1384		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1385
1386	bio_uninit(ci->bio);
1387	return 0;
1388}
1389
1390static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1391				    sector_t sector, unsigned *len)
1392{
1393	struct bio *bio = ci->bio;
 
 
1394	struct dm_target_io *tio;
1395	int r;
1396
1397	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1398	tio->len_ptr = len;
1399	r = clone_bio(tio, bio, sector, *len);
1400	if (r < 0) {
1401		free_tio(tio);
1402		return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1403	}
1404	(void) __map_bio(tio);
1405
1406	return 0;
1407}
1408
1409static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1410				       unsigned num_bios)
 
 
1411{
1412	unsigned len;
 
1413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1414	/*
1415	 * Even though the device advertised support for this type of
1416	 * request, that does not mean every target supports it, and
1417	 * reconfiguration might also have changed that since the
1418	 * check was performed.
 
1419	 */
1420	if (!num_bios)
1421		return -EOPNOTSUPP;
1422
1423	len = min_t(sector_t, ci->sector_count,
1424		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1425
1426	__send_duplicate_bios(ci, ti, num_bios, &len);
 
1427
1428	ci->sector += len;
1429	ci->sector_count -= len;
 
 
 
 
1430
1431	return 0;
1432}
1433
1434static bool is_abnormal_io(struct bio *bio)
 
 
 
 
1435{
1436	bool r = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
1437
1438	switch (bio_op(bio)) {
1439	case REQ_OP_DISCARD:
1440	case REQ_OP_SECURE_ERASE:
1441	case REQ_OP_WRITE_SAME:
1442	case REQ_OP_WRITE_ZEROES:
1443		r = true;
1444		break;
1445	}
1446
1447	return r;
 
 
1448}
1449
1450static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1451				  int *result)
1452{
1453	struct bio *bio = ci->bio;
1454	unsigned num_bios = 0;
1455
1456	switch (bio_op(bio)) {
1457	case REQ_OP_DISCARD:
1458		num_bios = ti->num_discard_bios;
1459		break;
1460	case REQ_OP_SECURE_ERASE:
1461		num_bios = ti->num_secure_erase_bios;
1462		break;
1463	case REQ_OP_WRITE_SAME:
1464		num_bios = ti->num_write_same_bios;
1465		break;
1466	case REQ_OP_WRITE_ZEROES:
1467		num_bios = ti->num_write_zeroes_bios;
1468		break;
1469	default:
1470		return false;
1471	}
1472
1473	*result = __send_changing_extent_only(ci, ti, num_bios);
1474	return true;
 
 
1475}
1476
1477/*
1478 * Select the correct strategy for processing a non-flush bio.
1479 */
1480static int __split_and_process_non_flush(struct clone_info *ci)
1481{
1482	struct dm_target *ti;
1483	unsigned len;
1484	int r;
1485
1486	ti = dm_table_find_target(ci->map, ci->sector);
1487	if (!ti)
1488		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1489
1490	if (__process_abnormal_io(ci, ti, &r))
1491		return r;
1492
1493	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
 
 
 
1494
1495	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1496	if (r < 0)
 
1497		return r;
1498
1499	ci->sector += len;
1500	ci->sector_count -= len;
 
 
 
 
1501
1502	return 0;
1503}
1504
1505static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1506			    struct dm_table *map, struct bio *bio)
1507{
1508	ci->map = map;
1509	ci->io = alloc_io(md, bio);
1510	ci->sector = bio->bi_iter.bi_sector;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1511}
1512
1513#define __dm_part_stat_sub(part, field, subnd)	\
1514	(part_stat_get(part, field) -= (subnd))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1515
1516/*
1517 * Entry point to split a bio into clones and submit them to the targets.
 
 
1518 */
1519static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1520					struct dm_table *map, struct bio *bio)
1521{
1522	struct clone_info ci;
1523	blk_qc_t ret = BLK_QC_T_NONE;
1524	int error = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1525
1526	init_clone_info(&ci, md, map, bio);
 
 
 
 
 
 
 
 
 
 
1527
1528	if (bio->bi_opf & REQ_PREFLUSH) {
1529		error = __send_empty_flush(&ci);
1530		/* dm_io_dec_pending submits any data associated with flush */
1531	} else if (op_is_zone_mgmt(bio_op(bio))) {
1532		ci.bio = bio;
1533		ci.sector_count = 0;
1534		error = __split_and_process_non_flush(&ci);
1535	} else {
1536		ci.bio = bio;
1537		ci.sector_count = bio_sectors(bio);
1538		error = __split_and_process_non_flush(&ci);
1539		if (ci.sector_count && !error) {
1540			/*
1541			 * Remainder must be passed to submit_bio_noacct()
1542			 * so that it gets handled *after* bios already submitted
1543			 * have been completely processed.
1544			 * We take a clone of the original to store in
1545			 * ci.io->orig_bio to be used by end_io_acct() and
1546			 * for dec_pending to use for completion handling.
1547			 */
1548			struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1549						  GFP_NOIO, &md->queue->bio_split);
1550			ci.io->orig_bio = b;
1551
 
 
1552			/*
1553			 * Adjust IO stats for each split, otherwise upon queue
1554			 * reentry there will be redundant IO accounting.
1555			 * NOTE: this is a stop-gap fix, a proper fix involves
1556			 * significant refactoring of DM core's bio splitting
1557			 * (by eliminating DM's splitting and just using bio_split)
1558			 */
1559			part_stat_lock();
1560			__dm_part_stat_sub(dm_disk(md)->part0,
1561					   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1562			part_stat_unlock();
1563
1564			bio_chain(b, bio);
1565			trace_block_split(b, bio->bi_iter.bi_sector);
1566			ret = submit_bio_noacct(bio);
1567		}
 
 
 
 
 
 
 
 
 
 
 
 
1568	}
1569
1570	/* drop the extra reference count */
1571	dm_io_dec_pending(ci.io, errno_to_blk_status(error));
1572	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1573}
1574
1575static blk_qc_t dm_submit_bio(struct bio *bio)
1576{
1577	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1578	blk_qc_t ret = BLK_QC_T_NONE;
1579	int srcu_idx;
1580	struct dm_table *map;
1581
1582	map = dm_get_live_table(md, &srcu_idx);
1583	if (unlikely(!map)) {
1584		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1585			    dm_device_name(md));
1586		bio_io_error(bio);
1587		goto out;
1588	}
 
 
 
 
 
1589
1590	/* If suspended, queue this IO for later */
1591	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1592		if (bio->bi_opf & REQ_NOWAIT)
1593			bio_wouldblock_error(bio);
1594		else if (bio->bi_opf & REQ_RAHEAD)
1595			bio_io_error(bio);
1596		else
1597			queue_io(md, bio);
1598		goto out;
1599	}
1600
1601	/*
1602	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1603	 * otherwise associated queue_limits won't be imposed.
1604	 */
1605	if (is_abnormal_io(bio))
1606		blk_queue_split(&bio);
1607
1608	ret = __split_and_process_bio(md, map, bio);
1609out:
1610	dm_put_live_table(md, srcu_idx);
1611	return ret;
1612}
1613
1614/*-----------------------------------------------------------------
1615 * An IDR is used to keep track of allocated minor numbers.
1616 *---------------------------------------------------------------*/
1617static void free_minor(int minor)
1618{
1619	spin_lock(&_minor_lock);
1620	idr_remove(&_minor_idr, minor);
1621	spin_unlock(&_minor_lock);
1622}
1623
1624/*
1625 * See if the device with a specific minor # is free.
1626 */
1627static int specific_minor(int minor)
1628{
1629	int r;
1630
1631	if (minor >= (1 << MINORBITS))
1632		return -EINVAL;
1633
1634	idr_preload(GFP_KERNEL);
 
 
 
1635	spin_lock(&_minor_lock);
1636
1637	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
1638
 
1639	spin_unlock(&_minor_lock);
1640	idr_preload_end();
1641	if (r < 0)
1642		return r == -ENOSPC ? -EBUSY : r;
1643	return 0;
1644}
1645
1646static int next_free_minor(int *minor)
1647{
1648	int r;
 
 
 
 
1649
1650	idr_preload(GFP_KERNEL);
1651	spin_lock(&_minor_lock);
1652
1653	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
 
 
1654
 
 
 
 
 
 
 
 
 
1655	spin_unlock(&_minor_lock);
1656	idr_preload_end();
1657	if (r < 0)
1658		return r;
1659	*minor = r;
1660	return 0;
1661}
1662
1663static const struct block_device_operations dm_blk_dops;
1664static const struct block_device_operations dm_rq_blk_dops;
1665static const struct dax_operations dm_dax_ops;
1666
1667static void dm_wq_work(struct work_struct *work);
1668
1669#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1670static void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1671{
1672	dm_destroy_keyslot_manager(q->ksm);
1673}
1674
1675#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1676
1677static inline void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1678{
1679}
1680#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1681
1682static void cleanup_mapped_device(struct mapped_device *md)
1683{
1684	if (md->wq)
1685		destroy_workqueue(md->wq);
1686	bioset_exit(&md->bs);
1687	bioset_exit(&md->io_bs);
1688
1689	if (md->dax_dev) {
1690		kill_dax(md->dax_dev);
1691		put_dax(md->dax_dev);
1692		md->dax_dev = NULL;
1693	}
1694
1695	if (md->disk) {
1696		spin_lock(&_minor_lock);
1697		md->disk->private_data = NULL;
1698		spin_unlock(&_minor_lock);
1699		del_gendisk(md->disk);
1700	}
1701
1702	if (md->queue)
1703		dm_queue_destroy_keyslot_manager(md->queue);
1704
1705	if (md->disk)
1706		blk_cleanup_disk(md->disk);
1707
1708	cleanup_srcu_struct(&md->io_barrier);
1709
1710	mutex_destroy(&md->suspend_lock);
1711	mutex_destroy(&md->type_lock);
1712	mutex_destroy(&md->table_devices_lock);
1713	mutex_destroy(&md->swap_bios_lock);
1714
1715	dm_mq_cleanup_mapped_device(md);
1716	dm_cleanup_zoned_dev(md);
1717}
1718
1719/*
1720 * Allocate and initialise a blank device with a given minor.
1721 */
1722static struct mapped_device *alloc_dev(int minor)
1723{
1724	int r, numa_node_id = dm_get_numa_node();
1725	struct mapped_device *md;
1726	void *old_md;
1727
1728	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1729	if (!md) {
1730		DMWARN("unable to allocate device, out of memory.");
1731		return NULL;
1732	}
1733
1734	if (!try_module_get(THIS_MODULE))
1735		goto bad_module_get;
1736
1737	/* get a minor number for the dev */
1738	if (minor == DM_ANY_MINOR)
1739		r = next_free_minor(&minor);
1740	else
1741		r = specific_minor(minor);
1742	if (r < 0)
1743		goto bad_minor;
1744
1745	r = init_srcu_struct(&md->io_barrier);
1746	if (r < 0)
1747		goto bad_io_barrier;
1748
1749	md->numa_node_id = numa_node_id;
1750	md->init_tio_pdu = false;
1751	md->type = DM_TYPE_NONE;
 
1752	mutex_init(&md->suspend_lock);
1753	mutex_init(&md->type_lock);
1754	mutex_init(&md->table_devices_lock);
1755	spin_lock_init(&md->deferred_lock);
 
1756	atomic_set(&md->holders, 1);
1757	atomic_set(&md->open_count, 0);
1758	atomic_set(&md->event_nr, 0);
1759	atomic_set(&md->uevent_seq, 0);
1760	INIT_LIST_HEAD(&md->uevent_list);
1761	INIT_LIST_HEAD(&md->table_devices);
1762	spin_lock_init(&md->uevent_lock);
1763
1764	/*
1765	 * default to bio-based until DM table is loaded and md->type
1766	 * established. If request-based table is loaded: blk-mq will
1767	 * override accordingly.
1768	 */
1769	md->disk = blk_alloc_disk(md->numa_node_id);
 
1770	if (!md->disk)
1771		goto bad;
1772	md->queue = md->disk->queue;
1773
 
 
1774	init_waitqueue_head(&md->wait);
1775	INIT_WORK(&md->work, dm_wq_work);
1776	init_waitqueue_head(&md->eventq);
1777	init_completion(&md->kobj_holder.completion);
1778
1779	md->swap_bios = get_swap_bios();
1780	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1781	mutex_init(&md->swap_bios_lock);
1782
1783	md->disk->major = _major;
1784	md->disk->first_minor = minor;
1785	md->disk->minors = 1;
1786	md->disk->fops = &dm_blk_dops;
1787	md->disk->queue = md->queue;
1788	md->disk->private_data = md;
1789	sprintf(md->disk->disk_name, "dm-%d", minor);
1790
1791	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1792		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1793					&dm_dax_ops, 0);
1794		if (IS_ERR(md->dax_dev))
1795			goto bad;
1796	}
1797
1798	add_disk_no_queue_reg(md->disk);
1799	format_dev_t(md->name, MKDEV(_major, minor));
1800
1801	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
 
1802	if (!md->wq)
1803		goto bad;
1804
1805	dm_stats_init(&md->stats);
 
 
 
 
 
 
1806
1807	/* Populate the mapping, nobody knows we exist yet */
1808	spin_lock(&_minor_lock);
1809	old_md = idr_replace(&_minor_idr, md, minor);
1810	spin_unlock(&_minor_lock);
1811
1812	BUG_ON(old_md != MINOR_ALLOCED);
1813
1814	return md;
1815
1816bad:
1817	cleanup_mapped_device(md);
1818bad_io_barrier:
 
 
 
 
 
1819	free_minor(minor);
1820bad_minor:
1821	module_put(THIS_MODULE);
1822bad_module_get:
1823	kvfree(md);
1824	return NULL;
1825}
1826
1827static void unlock_fs(struct mapped_device *md);
1828
1829static void free_dev(struct mapped_device *md)
1830{
1831	int minor = MINOR(disk_devt(md->disk));
1832
1833	unlock_fs(md);
 
 
 
 
 
 
 
 
 
 
 
1834
1835	cleanup_mapped_device(md);
1836
1837	free_table_devices(&md->table_devices);
1838	dm_stats_cleanup(&md->stats);
1839	free_minor(minor);
1840
 
 
1841	module_put(THIS_MODULE);
1842	kvfree(md);
1843}
1844
1845static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1846{
1847	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1848	int ret = 0;
1849
1850	if (dm_table_bio_based(t)) {
1851		/*
1852		 * The md may already have mempools that need changing.
1853		 * If so, reload bioset because front_pad may have changed
1854		 * because a different table was loaded.
1855		 */
1856		bioset_exit(&md->bs);
1857		bioset_exit(&md->io_bs);
1858
1859	} else if (bioset_initialized(&md->bs)) {
1860		/*
1861		 * There's no need to reload with request-based dm
1862		 * because the size of front_pad doesn't change.
1863		 * Note for future: If you are to reload bioset,
1864		 * prep-ed requests in the queue may refer
1865		 * to bio from the old bioset, so you must walk
1866		 * through the queue to unprep.
1867		 */
1868		goto out;
1869	}
1870
1871	BUG_ON(!p ||
1872	       bioset_initialized(&md->bs) ||
1873	       bioset_initialized(&md->io_bs));
 
 
 
1874
1875	ret = bioset_init_from_src(&md->bs, &p->bs);
1876	if (ret)
1877		goto out;
1878	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1879	if (ret)
1880		bioset_exit(&md->bs);
1881out:
1882	/* mempool bind completed, no longer need any mempools in the table */
1883	dm_table_free_md_mempools(t);
1884	return ret;
1885}
1886
1887/*
1888 * Bind a table to the device.
1889 */
1890static void event_callback(void *context)
1891{
1892	unsigned long flags;
1893	LIST_HEAD(uevents);
1894	struct mapped_device *md = (struct mapped_device *) context;
1895
1896	spin_lock_irqsave(&md->uevent_lock, flags);
1897	list_splice_init(&md->uevent_list, &uevents);
1898	spin_unlock_irqrestore(&md->uevent_lock, flags);
1899
1900	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1901
1902	atomic_inc(&md->event_nr);
1903	wake_up(&md->eventq);
1904	dm_issue_global_event();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1905}
1906
1907/*
1908 * Returns old map, which caller must destroy.
1909 */
1910static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1911			       struct queue_limits *limits)
1912{
1913	struct dm_table *old_map;
1914	struct request_queue *q = md->queue;
1915	bool request_based = dm_table_request_based(t);
1916	sector_t size;
1917	int ret;
1918
1919	lockdep_assert_held(&md->suspend_lock);
1920
1921	size = dm_table_get_size(t);
1922
1923	/*
1924	 * Wipe any geometry if the size of the table changed.
1925	 */
1926	if (size != dm_get_size(md))
1927		memset(&md->geometry, 0, sizeof(md->geometry));
1928
1929	if (!get_capacity(md->disk))
1930		set_capacity(md->disk, size);
1931	else
1932		set_capacity_and_notify(md->disk, size);
1933
1934	dm_table_event_callback(t, event_callback, md);
1935
1936	/*
1937	 * The queue hasn't been stopped yet, if the old table type wasn't
1938	 * for request-based during suspension.  So stop it to prevent
1939	 * I/O mapping before resume.
1940	 * This must be done before setting the queue restrictions,
1941	 * because request-based dm may be run just after the setting.
1942	 */
1943	if (request_based)
1944		dm_stop_queue(q);
1945
1946	if (request_based) {
1947		/*
1948		 * Leverage the fact that request-based DM targets are
1949		 * immutable singletons - used to optimize dm_mq_queue_rq.
1950		 */
1951		md->immutable_target = dm_table_get_immutable_target(t);
1952	}
1953
1954	ret = __bind_mempools(md, t);
1955	if (ret) {
1956		old_map = ERR_PTR(ret);
1957		goto out;
1958	}
1959
1960	ret = dm_table_set_restrictions(t, q, limits);
1961	if (ret) {
1962		old_map = ERR_PTR(ret);
1963		goto out;
1964	}
1965
1966	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1967	rcu_assign_pointer(md->map, (void *)t);
 
1968	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1969
1970	if (old_map)
1971		dm_sync_table(md);
 
 
 
 
1972
1973out:
1974	return old_map;
1975}
1976
1977/*
1978 * Returns unbound table for the caller to free.
1979 */
1980static struct dm_table *__unbind(struct mapped_device *md)
1981{
1982	struct dm_table *map = rcu_dereference_protected(md->map, 1);
 
1983
1984	if (!map)
1985		return NULL;
1986
1987	dm_table_event_callback(map, NULL, NULL);
1988	RCU_INIT_POINTER(md->map, NULL);
1989	dm_sync_table(md);
 
1990
1991	return map;
1992}
1993
1994/*
1995 * Constructor for a new device.
1996 */
1997int dm_create(int minor, struct mapped_device **result)
1998{
1999	int r;
2000	struct mapped_device *md;
2001
2002	md = alloc_dev(minor);
2003	if (!md)
2004		return -ENXIO;
2005
2006	r = dm_sysfs_init(md);
2007	if (r) {
2008		free_dev(md);
2009		return r;
2010	}
2011
2012	*result = md;
2013	return 0;
2014}
2015
2016/*
2017 * Functions to manage md->type.
2018 * All are required to hold md->type_lock.
2019 */
2020void dm_lock_md_type(struct mapped_device *md)
2021{
2022	mutex_lock(&md->type_lock);
2023}
2024
2025void dm_unlock_md_type(struct mapped_device *md)
2026{
2027	mutex_unlock(&md->type_lock);
2028}
2029
2030void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2031{
2032	BUG_ON(!mutex_is_locked(&md->type_lock));
2033	md->type = type;
2034}
2035
2036enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2037{
2038	return md->type;
2039}
2040
2041struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2042{
2043	return md->immutable_target_type;
2044}
2045
2046/*
2047 * The queue_limits are only valid as long as you have a reference
2048 * count on 'md'.
2049 */
2050struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2051{
2052	BUG_ON(!atomic_read(&md->holders));
2053	return &md->queue->limits;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2054}
2055EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2056
2057/*
2058 * Setup the DM device's queue based on md's type
2059 */
2060int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2061{
2062	int r;
2063	struct queue_limits limits;
2064	enum dm_queue_mode type = dm_get_md_type(md);
2065
2066	switch (type) {
2067	case DM_TYPE_REQUEST_BASED:
2068		md->disk->fops = &dm_rq_blk_dops;
2069		r = dm_mq_init_request_queue(md, t);
2070		if (r) {
2071			DMERR("Cannot initialize queue for request-based dm mapped device");
2072			return r;
2073		}
2074		break;
2075	case DM_TYPE_BIO_BASED:
2076	case DM_TYPE_DAX_BIO_BASED:
2077		break;
2078	case DM_TYPE_NONE:
2079		WARN_ON_ONCE(true);
2080		break;
2081	}
2082
2083	r = dm_calculate_queue_limits(t, &limits);
2084	if (r) {
2085		DMERR("Cannot calculate initial queue limits");
2086		return r;
2087	}
2088	r = dm_table_set_restrictions(t, md->queue, &limits);
2089	if (r)
2090		return r;
2091
2092	blk_register_queue(md->disk);
2093
2094	return 0;
2095}
2096
2097struct mapped_device *dm_get_md(dev_t dev)
2098{
2099	struct mapped_device *md;
2100	unsigned minor = MINOR(dev);
2101
2102	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2103		return NULL;
2104
2105	spin_lock(&_minor_lock);
2106
2107	md = idr_find(&_minor_idr, minor);
2108	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2109	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
 
 
2110		md = NULL;
2111		goto out;
2112	}
2113	dm_get(md);
2114out:
2115	spin_unlock(&_minor_lock);
2116
2117	return md;
2118}
 
 
 
 
 
 
 
 
 
 
2119EXPORT_SYMBOL_GPL(dm_get_md);
2120
2121void *dm_get_mdptr(struct mapped_device *md)
2122{
2123	return md->interface_ptr;
2124}
2125
2126void dm_set_mdptr(struct mapped_device *md, void *ptr)
2127{
2128	md->interface_ptr = ptr;
2129}
2130
2131void dm_get(struct mapped_device *md)
2132{
2133	atomic_inc(&md->holders);
2134	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2135}
2136
2137int dm_hold(struct mapped_device *md)
2138{
2139	spin_lock(&_minor_lock);
2140	if (test_bit(DMF_FREEING, &md->flags)) {
2141		spin_unlock(&_minor_lock);
2142		return -EBUSY;
2143	}
2144	dm_get(md);
2145	spin_unlock(&_minor_lock);
2146	return 0;
2147}
2148EXPORT_SYMBOL_GPL(dm_hold);
2149
2150const char *dm_device_name(struct mapped_device *md)
2151{
2152	return md->name;
2153}
2154EXPORT_SYMBOL_GPL(dm_device_name);
2155
2156static void __dm_destroy(struct mapped_device *md, bool wait)
2157{
2158	struct dm_table *map;
2159	int srcu_idx;
2160
2161	might_sleep();
2162
2163	spin_lock(&_minor_lock);
 
2164	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2165	set_bit(DMF_FREEING, &md->flags);
2166	spin_unlock(&_minor_lock);
2167
2168	blk_set_queue_dying(md->queue);
2169
2170	/*
2171	 * Take suspend_lock so that presuspend and postsuspend methods
2172	 * do not race with internal suspend.
2173	 */
2174	mutex_lock(&md->suspend_lock);
2175	map = dm_get_live_table(md, &srcu_idx);
2176	if (!dm_suspended_md(md)) {
2177		dm_table_presuspend_targets(map);
2178		set_bit(DMF_SUSPENDED, &md->flags);
2179		set_bit(DMF_POST_SUSPENDING, &md->flags);
2180		dm_table_postsuspend_targets(map);
2181	}
2182	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2183	dm_put_live_table(md, srcu_idx);
2184	mutex_unlock(&md->suspend_lock);
2185
2186	/*
2187	 * Rare, but there may be I/O requests still going to complete,
2188	 * for example.  Wait for all references to disappear.
2189	 * No one should increment the reference count of the mapped_device,
2190	 * after the mapped_device state becomes DMF_FREEING.
2191	 */
2192	if (wait)
2193		while (atomic_read(&md->holders))
2194			msleep(1);
2195	else if (atomic_read(&md->holders))
2196		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2197		       dm_device_name(md), atomic_read(&md->holders));
2198
2199	dm_sysfs_exit(md);
 
2200	dm_table_destroy(__unbind(md));
2201	free_dev(md);
2202}
2203
2204void dm_destroy(struct mapped_device *md)
2205{
2206	__dm_destroy(md, true);
2207}
2208
2209void dm_destroy_immediate(struct mapped_device *md)
2210{
2211	__dm_destroy(md, false);
2212}
2213
2214void dm_put(struct mapped_device *md)
2215{
2216	atomic_dec(&md->holders);
2217}
2218EXPORT_SYMBOL_GPL(dm_put);
2219
2220static bool md_in_flight_bios(struct mapped_device *md)
2221{
2222	int cpu;
2223	struct block_device *part = dm_disk(md)->part0;
2224	long sum = 0;
2225
2226	for_each_possible_cpu(cpu) {
2227		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2228		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2229	}
2230
2231	return sum != 0;
2232}
2233
2234static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2235{
2236	int r = 0;
2237	DEFINE_WAIT(wait);
2238
2239	while (true) {
2240		prepare_to_wait(&md->wait, &wait, task_state);
2241
2242		if (!md_in_flight_bios(md))
2243			break;
2244
2245		if (signal_pending_state(task_state, current)) {
 
2246			r = -EINTR;
2247			break;
2248		}
2249
2250		io_schedule();
2251	}
2252	finish_wait(&md->wait, &wait);
2253
2254	return r;
2255}
2256
2257static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2258{
2259	int r = 0;
2260
2261	if (!queue_is_mq(md->queue))
2262		return dm_wait_for_bios_completion(md, task_state);
2263
2264	while (true) {
2265		if (!blk_mq_queue_inflight(md->queue))
2266			break;
2267
2268		if (signal_pending_state(task_state, current)) {
2269			r = -EINTR;
2270			break;
2271		}
2272
2273		msleep(5);
2274	}
2275
2276	return r;
2277}
2278
2279/*
2280 * Process the deferred bios
2281 */
2282static void dm_wq_work(struct work_struct *work)
2283{
2284	struct mapped_device *md = container_of(work, struct mapped_device, work);
2285	struct bio *bio;
 
 
 
2286
2287	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2288		spin_lock_irq(&md->deferred_lock);
2289		bio = bio_list_pop(&md->deferred);
2290		spin_unlock_irq(&md->deferred_lock);
2291
2292		if (!bio)
2293			break;
2294
2295		submit_bio_noacct(bio);
 
 
 
 
 
 
 
2296	}
 
 
2297}
2298
2299static void dm_queue_flush(struct mapped_device *md)
2300{
2301	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2302	smp_mb__after_atomic();
2303	queue_work(md->wq, &md->work);
2304}
2305
2306/*
2307 * Swap in a new table, returning the old one for the caller to destroy.
2308 */
2309struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2310{
2311	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2312	struct queue_limits limits;
2313	int r;
2314
2315	mutex_lock(&md->suspend_lock);
2316
2317	/* device must be suspended */
2318	if (!dm_suspended_md(md))
2319		goto out;
2320
2321	/*
2322	 * If the new table has no data devices, retain the existing limits.
2323	 * This helps multipath with queue_if_no_path if all paths disappear,
2324	 * then new I/O is queued based on these limits, and then some paths
2325	 * reappear.
2326	 */
2327	if (dm_table_has_no_data_devices(table)) {
2328		live_map = dm_get_live_table_fast(md);
2329		if (live_map)
2330			limits = md->queue->limits;
2331		dm_put_live_table_fast(md);
2332	}
2333
2334	if (!live_map) {
2335		r = dm_calculate_queue_limits(table, &limits);
2336		if (r) {
2337			map = ERR_PTR(r);
2338			goto out;
2339		}
2340	}
2341
2342	map = __bind(md, table, &limits);
2343	dm_issue_global_event();
2344
2345out:
2346	mutex_unlock(&md->suspend_lock);
2347	return map;
2348}
2349
2350/*
2351 * Functions to lock and unlock any filesystem running on the
2352 * device.
2353 */
2354static int lock_fs(struct mapped_device *md)
2355{
2356	int r;
2357
2358	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
 
 
 
 
 
 
 
 
 
2359
2360	r = freeze_bdev(md->disk->part0);
2361	if (!r)
2362		set_bit(DMF_FROZEN, &md->flags);
2363	return r;
2364}
2365
2366static void unlock_fs(struct mapped_device *md)
2367{
2368	if (!test_bit(DMF_FROZEN, &md->flags))
2369		return;
2370	thaw_bdev(md->disk->part0);
 
 
2371	clear_bit(DMF_FROZEN, &md->flags);
2372}
2373
2374/*
2375 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2376 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2377 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
 
 
 
 
 
 
 
 
 
2378 *
2379 * If __dm_suspend returns 0, the device is completely quiescent
2380 * now. There is no request-processing activity. All new requests
2381 * are being added to md->deferred list.
2382 */
2383static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2384			unsigned suspend_flags, unsigned int task_state,
2385			int dmf_suspended_flag)
2386{
2387	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2388	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2389	int r;
 
 
 
 
 
 
 
 
2390
2391	lockdep_assert_held(&md->suspend_lock);
2392
2393	/*
2394	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2395	 * This flag is cleared before dm_suspend returns.
2396	 */
2397	if (noflush)
2398		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2399	else
2400		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2401
2402	/*
2403	 * This gets reverted if there's an error later and the targets
2404	 * provide the .presuspend_undo hook.
2405	 */
2406	dm_table_presuspend_targets(map);
2407
2408	/*
2409	 * Flush I/O to the device.
2410	 * Any I/O submitted after lock_fs() may not be flushed.
2411	 * noflush takes precedence over do_lockfs.
2412	 * (lock_fs() flushes I/Os and waits for them to complete.)
2413	 */
2414	if (!noflush && do_lockfs) {
2415		r = lock_fs(md);
2416		if (r) {
2417			dm_table_presuspend_undo_targets(map);
2418			return r;
2419		}
2420	}
2421
2422	/*
2423	 * Here we must make sure that no processes are submitting requests
2424	 * to target drivers i.e. no one may be executing
2425	 * __split_and_process_bio from dm_submit_bio.
 
2426	 *
2427	 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2428	 * we take the write lock. To prevent any process from reentering
2429	 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2430	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2431	 * flush_workqueue(md->wq).
2432	 */
 
2433	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2434	if (map)
2435		synchronize_srcu(&md->io_barrier);
2436
2437	/*
2438	 * Stop md->queue before flushing md->wq in case request-based
2439	 * dm defers requests to md->wq from md->queue.
2440	 */
2441	if (dm_request_based(md))
2442		dm_stop_queue(md->queue);
2443
2444	flush_workqueue(md->wq);
2445
2446	/*
2447	 * At this point no more requests are entering target request routines.
2448	 * We call dm_wait_for_completion to wait for all existing requests
2449	 * to finish.
2450	 */
2451	r = dm_wait_for_completion(md, task_state);
2452	if (!r)
2453		set_bit(dmf_suspended_flag, &md->flags);
2454
 
2455	if (noflush)
2456		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2457	if (map)
2458		synchronize_srcu(&md->io_barrier);
2459
2460	/* were we interrupted ? */
2461	if (r < 0) {
2462		dm_queue_flush(md);
2463
2464		if (dm_request_based(md))
2465			dm_start_queue(md->queue);
2466
2467		unlock_fs(md);
2468		dm_table_presuspend_undo_targets(map);
2469		/* pushback list is already flushed, so skip flush */
2470	}
2471
2472	return r;
2473}
 
 
 
2474
2475/*
2476 * We need to be able to change a mapping table under a mounted
2477 * filesystem.  For example we might want to move some data in
2478 * the background.  Before the table can be swapped with
2479 * dm_bind_table, dm_suspend must be called to flush any in
2480 * flight bios and ensure that any further io gets deferred.
2481 */
2482/*
2483 * Suspend mechanism in request-based dm.
2484 *
2485 * 1. Flush all I/Os by lock_fs() if needed.
2486 * 2. Stop dispatching any I/O by stopping the request_queue.
2487 * 3. Wait for all in-flight I/Os to be completed or requeued.
2488 *
2489 * To abort suspend, start the request_queue.
2490 */
2491int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2492{
2493	struct dm_table *map = NULL;
2494	int r = 0;
2495
2496retry:
2497	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2498
2499	if (dm_suspended_md(md)) {
2500		r = -EINVAL;
2501		goto out_unlock;
2502	}
2503
2504	if (dm_suspended_internally_md(md)) {
2505		/* already internally suspended, wait for internal resume */
2506		mutex_unlock(&md->suspend_lock);
2507		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2508		if (r)
2509			return r;
2510		goto retry;
2511	}
2512
2513	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2514
2515	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2516	if (r)
2517		goto out_unlock;
2518
2519	set_bit(DMF_POST_SUSPENDING, &md->flags);
2520	dm_table_postsuspend_targets(map);
2521	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2522
2523out_unlock:
2524	mutex_unlock(&md->suspend_lock);
2525	return r;
2526}
2527
2528static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2529{
2530	if (map) {
2531		int r = dm_table_resume_targets(map);
2532		if (r)
2533			return r;
2534	}
2535
2536	dm_queue_flush(md);
2537
2538	/*
2539	 * Flushing deferred I/Os must be done after targets are resumed
2540	 * so that mapping of targets can work correctly.
2541	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2542	 */
2543	if (dm_request_based(md))
2544		dm_start_queue(md->queue);
2545
2546	unlock_fs(md);
2547
2548	return 0;
2549}
2550
2551int dm_resume(struct mapped_device *md)
2552{
2553	int r;
2554	struct dm_table *map = NULL;
2555
2556retry:
2557	r = -EINVAL;
2558	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2559
2560	if (!dm_suspended_md(md))
2561		goto out;
2562
2563	if (dm_suspended_internally_md(md)) {
2564		/* already internally suspended, wait for internal resume */
2565		mutex_unlock(&md->suspend_lock);
2566		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2567		if (r)
2568			return r;
2569		goto retry;
2570	}
2571
2572	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2573	if (!map || !dm_table_get_size(map))
2574		goto out;
2575
2576	r = __dm_resume(md, map);
2577	if (r)
2578		goto out;
2579
2580	clear_bit(DMF_SUSPENDED, &md->flags);
2581out:
2582	mutex_unlock(&md->suspend_lock);
2583
2584	return r;
2585}
2586
2587/*
2588 * Internal suspend/resume works like userspace-driven suspend. It waits
2589 * until all bios finish and prevents issuing new bios to the target drivers.
2590 * It may be used only from the kernel.
2591 */
2592
2593static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2594{
2595	struct dm_table *map = NULL;
2596
2597	lockdep_assert_held(&md->suspend_lock);
2598
2599	if (md->internal_suspend_count++)
2600		return; /* nested internal suspend */
2601
2602	if (dm_suspended_md(md)) {
2603		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2604		return; /* nest suspend */
2605	}
2606
2607	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2608
2609	/*
2610	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2611	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2612	 * would require changing .presuspend to return an error -- avoid this
2613	 * until there is a need for more elaborate variants of internal suspend.
2614	 */
2615	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2616			    DMF_SUSPENDED_INTERNALLY);
2617
2618	set_bit(DMF_POST_SUSPENDING, &md->flags);
2619	dm_table_postsuspend_targets(map);
2620	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2621}
2622
2623static void __dm_internal_resume(struct mapped_device *md)
2624{
2625	BUG_ON(!md->internal_suspend_count);
2626
2627	if (--md->internal_suspend_count)
2628		return; /* resume from nested internal suspend */
2629
2630	if (dm_suspended_md(md))
2631		goto done; /* resume from nested suspend */
2632
2633	/*
2634	 * NOTE: existing callers don't need to call dm_table_resume_targets
2635	 * (which may fail -- so best to avoid it for now by passing NULL map)
2636	 */
2637	(void) __dm_resume(md, NULL);
2638
2639done:
2640	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2641	smp_mb__after_atomic();
2642	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2643}
2644
2645void dm_internal_suspend_noflush(struct mapped_device *md)
2646{
2647	mutex_lock(&md->suspend_lock);
2648	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2649	mutex_unlock(&md->suspend_lock);
2650}
2651EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2652
2653void dm_internal_resume(struct mapped_device *md)
2654{
2655	mutex_lock(&md->suspend_lock);
2656	__dm_internal_resume(md);
2657	mutex_unlock(&md->suspend_lock);
2658}
2659EXPORT_SYMBOL_GPL(dm_internal_resume);
2660
2661/*
2662 * Fast variants of internal suspend/resume hold md->suspend_lock,
2663 * which prevents interaction with userspace-driven suspend.
2664 */
2665
2666void dm_internal_suspend_fast(struct mapped_device *md)
2667{
2668	mutex_lock(&md->suspend_lock);
2669	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2670		return;
2671
2672	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2673	synchronize_srcu(&md->io_barrier);
2674	flush_workqueue(md->wq);
2675	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2676}
2677EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2678
2679void dm_internal_resume_fast(struct mapped_device *md)
2680{
2681	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2682		goto done;
2683
2684	dm_queue_flush(md);
2685
2686done:
2687	mutex_unlock(&md->suspend_lock);
2688}
2689EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2690
2691/*-----------------------------------------------------------------
2692 * Event notification.
2693 *---------------------------------------------------------------*/
2694int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2695		       unsigned cookie)
2696{
2697	int r;
2698	unsigned noio_flag;
2699	char udev_cookie[DM_COOKIE_LENGTH];
2700	char *envp[] = { udev_cookie, NULL };
2701
2702	noio_flag = memalloc_noio_save();
2703
2704	if (!cookie)
2705		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2706	else {
2707		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2708			 DM_COOKIE_ENV_VAR_NAME, cookie);
2709		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2710				       action, envp);
2711	}
2712
2713	memalloc_noio_restore(noio_flag);
2714
2715	return r;
2716}
2717
2718uint32_t dm_next_uevent_seq(struct mapped_device *md)
2719{
2720	return atomic_add_return(1, &md->uevent_seq);
2721}
2722
2723uint32_t dm_get_event_nr(struct mapped_device *md)
2724{
2725	return atomic_read(&md->event_nr);
2726}
2727
2728int dm_wait_event(struct mapped_device *md, int event_nr)
2729{
2730	return wait_event_interruptible(md->eventq,
2731			(event_nr != atomic_read(&md->event_nr)));
2732}
2733
2734void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2735{
2736	unsigned long flags;
2737
2738	spin_lock_irqsave(&md->uevent_lock, flags);
2739	list_add(elist, &md->uevent_list);
2740	spin_unlock_irqrestore(&md->uevent_lock, flags);
2741}
2742
2743/*
2744 * The gendisk is only valid as long as you have a reference
2745 * count on 'md'.
2746 */
2747struct gendisk *dm_disk(struct mapped_device *md)
2748{
2749	return md->disk;
2750}
2751EXPORT_SYMBOL_GPL(dm_disk);
2752
2753struct kobject *dm_kobject(struct mapped_device *md)
2754{
2755	return &md->kobj_holder.kobj;
2756}
2757
 
 
 
 
2758struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2759{
2760	struct mapped_device *md;
2761
2762	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
 
 
 
 
 
 
2763
2764	spin_lock(&_minor_lock);
2765	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2766		md = NULL;
2767		goto out;
2768	}
2769	dm_get(md);
2770out:
2771	spin_unlock(&_minor_lock);
2772
2773	return md;
2774}
2775
2776int dm_suspended_md(struct mapped_device *md)
2777{
2778	return test_bit(DMF_SUSPENDED, &md->flags);
2779}
2780
2781static int dm_post_suspending_md(struct mapped_device *md)
2782{
2783	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2784}
2785
2786int dm_suspended_internally_md(struct mapped_device *md)
2787{
2788	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2789}
2790
2791int dm_test_deferred_remove_flag(struct mapped_device *md)
2792{
2793	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2794}
2795
2796int dm_suspended(struct dm_target *ti)
2797{
2798	return dm_suspended_md(ti->table->md);
2799}
2800EXPORT_SYMBOL_GPL(dm_suspended);
2801
2802int dm_post_suspending(struct dm_target *ti)
2803{
2804	return dm_post_suspending_md(ti->table->md);
2805}
2806EXPORT_SYMBOL_GPL(dm_post_suspending);
2807
2808int dm_noflush_suspending(struct dm_target *ti)
2809{
2810	return __noflush_suspending(ti->table->md);
2811}
2812EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2813
2814struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2815					    unsigned integrity, unsigned per_io_data_size,
2816					    unsigned min_pool_size)
2817{
2818	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2819	unsigned int pool_size = 0;
2820	unsigned int front_pad, io_front_pad;
2821	int ret;
2822
2823	if (!pools)
2824		return NULL;
2825
2826	switch (type) {
2827	case DM_TYPE_BIO_BASED:
2828	case DM_TYPE_DAX_BIO_BASED:
2829		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2830		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2831		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2832		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2833		if (ret)
2834			goto out;
2835		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2836			goto out;
2837		break;
2838	case DM_TYPE_REQUEST_BASED:
2839		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2840		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2841		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2842		break;
2843	default:
2844		BUG();
2845	}
2846
2847	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2848	if (ret)
2849		goto out;
2850
2851	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2852		goto out;
2853
2854	return pools;
 
2855
2856out:
2857	dm_free_md_mempools(pools);
2858
2859	return NULL;
2860}
2861
2862void dm_free_md_mempools(struct dm_md_mempools *pools)
2863{
2864	if (!pools)
2865		return;
2866
2867	bioset_exit(&pools->bs);
2868	bioset_exit(&pools->io_bs);
2869
2870	kfree(pools);
2871}
2872
2873struct dm_pr {
2874	u64	old_key;
2875	u64	new_key;
2876	u32	flags;
2877	bool	fail_early;
2878};
2879
2880static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2881		      void *data)
2882{
2883	struct mapped_device *md = bdev->bd_disk->private_data;
2884	struct dm_table *table;
2885	struct dm_target *ti;
2886	int ret = -ENOTTY, srcu_idx;
2887
2888	table = dm_get_live_table(md, &srcu_idx);
2889	if (!table || !dm_table_get_size(table))
2890		goto out;
2891
2892	/* We only support devices that have a single target */
2893	if (dm_table_get_num_targets(table) != 1)
2894		goto out;
2895	ti = dm_table_get_target(table, 0);
2896
2897	ret = -EINVAL;
2898	if (!ti->type->iterate_devices)
2899		goto out;
2900
2901	ret = ti->type->iterate_devices(ti, fn, data);
2902out:
2903	dm_put_live_table(md, srcu_idx);
2904	return ret;
2905}
2906
2907/*
2908 * For register / unregister we need to manually call out to every path.
2909 */
2910static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2911			    sector_t start, sector_t len, void *data)
2912{
2913	struct dm_pr *pr = data;
2914	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2915
2916	if (!ops || !ops->pr_register)
2917		return -EOPNOTSUPP;
2918	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2919}
2920
2921static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2922			  u32 flags)
2923{
2924	struct dm_pr pr = {
2925		.old_key	= old_key,
2926		.new_key	= new_key,
2927		.flags		= flags,
2928		.fail_early	= true,
2929	};
2930	int ret;
2931
2932	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2933	if (ret && new_key) {
2934		/* unregister all paths if we failed to register any path */
2935		pr.old_key = new_key;
2936		pr.new_key = 0;
2937		pr.flags = 0;
2938		pr.fail_early = false;
2939		dm_call_pr(bdev, __dm_pr_register, &pr);
2940	}
2941
2942	return ret;
2943}
2944
2945static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2946			 u32 flags)
2947{
2948	struct mapped_device *md = bdev->bd_disk->private_data;
2949	const struct pr_ops *ops;
2950	int r, srcu_idx;
2951
2952	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2953	if (r < 0)
2954		goto out;
2955
2956	ops = bdev->bd_disk->fops->pr_ops;
2957	if (ops && ops->pr_reserve)
2958		r = ops->pr_reserve(bdev, key, type, flags);
2959	else
2960		r = -EOPNOTSUPP;
2961out:
2962	dm_unprepare_ioctl(md, srcu_idx);
2963	return r;
2964}
2965
2966static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2967{
2968	struct mapped_device *md = bdev->bd_disk->private_data;
2969	const struct pr_ops *ops;
2970	int r, srcu_idx;
2971
2972	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2973	if (r < 0)
2974		goto out;
2975
2976	ops = bdev->bd_disk->fops->pr_ops;
2977	if (ops && ops->pr_release)
2978		r = ops->pr_release(bdev, key, type);
2979	else
2980		r = -EOPNOTSUPP;
2981out:
2982	dm_unprepare_ioctl(md, srcu_idx);
2983	return r;
2984}
2985
2986static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2987			 enum pr_type type, bool abort)
2988{
2989	struct mapped_device *md = bdev->bd_disk->private_data;
2990	const struct pr_ops *ops;
2991	int r, srcu_idx;
2992
2993	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2994	if (r < 0)
2995		goto out;
2996
2997	ops = bdev->bd_disk->fops->pr_ops;
2998	if (ops && ops->pr_preempt)
2999		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3000	else
3001		r = -EOPNOTSUPP;
3002out:
3003	dm_unprepare_ioctl(md, srcu_idx);
3004	return r;
3005}
3006
3007static int dm_pr_clear(struct block_device *bdev, u64 key)
3008{
3009	struct mapped_device *md = bdev->bd_disk->private_data;
3010	const struct pr_ops *ops;
3011	int r, srcu_idx;
3012
3013	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3014	if (r < 0)
3015		goto out;
3016
3017	ops = bdev->bd_disk->fops->pr_ops;
3018	if (ops && ops->pr_clear)
3019		r = ops->pr_clear(bdev, key);
3020	else
3021		r = -EOPNOTSUPP;
3022out:
3023	dm_unprepare_ioctl(md, srcu_idx);
3024	return r;
3025}
3026
3027static const struct pr_ops dm_pr_ops = {
3028	.pr_register	= dm_pr_register,
3029	.pr_reserve	= dm_pr_reserve,
3030	.pr_release	= dm_pr_release,
3031	.pr_preempt	= dm_pr_preempt,
3032	.pr_clear	= dm_pr_clear,
3033};
3034
3035static const struct block_device_operations dm_blk_dops = {
3036	.submit_bio = dm_submit_bio,
3037	.open = dm_blk_open,
3038	.release = dm_blk_close,
3039	.ioctl = dm_blk_ioctl,
3040	.getgeo = dm_blk_getgeo,
3041	.report_zones = dm_blk_report_zones,
3042	.pr_ops = &dm_pr_ops,
3043	.owner = THIS_MODULE
3044};
3045
3046static const struct block_device_operations dm_rq_blk_dops = {
3047	.open = dm_blk_open,
3048	.release = dm_blk_close,
3049	.ioctl = dm_blk_ioctl,
3050	.getgeo = dm_blk_getgeo,
3051	.pr_ops = &dm_pr_ops,
3052	.owner = THIS_MODULE
3053};
3054
3055static const struct dax_operations dm_dax_ops = {
3056	.direct_access = dm_dax_direct_access,
3057	.dax_supported = dm_dax_supported,
3058	.copy_from_iter = dm_dax_copy_from_iter,
3059	.copy_to_iter = dm_dax_copy_to_iter,
3060	.zero_page_range = dm_dax_zero_page_range,
3061};
3062
3063/*
3064 * module hooks
3065 */
3066module_init(dm_init);
3067module_exit(dm_exit);
3068
3069module_param(major, uint, 0);
3070MODULE_PARM_DESC(major, "The major number of the device mapper");
3071
3072module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3073MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3074
3075module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3076MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3077
3078module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3079MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3080
3081MODULE_DESCRIPTION(DM_NAME " driver");
3082MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3083MODULE_LICENSE("GPL");