Loading...
1/*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm.h"
9#include "dm-uevent.h"
10
11#include <linux/init.h>
12#include <linux/module.h>
13#include <linux/mutex.h>
14#include <linux/moduleparam.h>
15#include <linux/blkpg.h>
16#include <linux/bio.h>
17#include <linux/mempool.h>
18#include <linux/slab.h>
19#include <linux/idr.h>
20#include <linux/hdreg.h>
21#include <linux/delay.h>
22
23#include <trace/events/block.h>
24
25#define DM_MSG_PREFIX "core"
26
27#ifdef CONFIG_PRINTK
28/*
29 * ratelimit state to be used in DMXXX_LIMIT().
30 */
31DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34EXPORT_SYMBOL(dm_ratelimit_state);
35#endif
36
37/*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42#define DM_COOKIE_LENGTH 24
43
44static const char *_name = DM_NAME;
45
46static unsigned int major = 0;
47static unsigned int _major = 0;
48
49static DEFINE_IDR(_minor_idr);
50
51static DEFINE_SPINLOCK(_minor_lock);
52/*
53 * For bio-based dm.
54 * One of these is allocated per bio.
55 */
56struct dm_io {
57 struct mapped_device *md;
58 int error;
59 atomic_t io_count;
60 struct bio *bio;
61 unsigned long start_time;
62 spinlock_t endio_lock;
63};
64
65/*
66 * For bio-based dm.
67 * One of these is allocated per target within a bio. Hopefully
68 * this will be simplified out one day.
69 */
70struct dm_target_io {
71 struct dm_io *io;
72 struct dm_target *ti;
73 union map_info info;
74};
75
76/*
77 * For request-based dm.
78 * One of these is allocated per request.
79 */
80struct dm_rq_target_io {
81 struct mapped_device *md;
82 struct dm_target *ti;
83 struct request *orig, clone;
84 int error;
85 union map_info info;
86};
87
88/*
89 * For request-based dm.
90 * One of these is allocated per bio.
91 */
92struct dm_rq_clone_bio_info {
93 struct bio *orig;
94 struct dm_rq_target_io *tio;
95};
96
97union map_info *dm_get_mapinfo(struct bio *bio)
98{
99 if (bio && bio->bi_private)
100 return &((struct dm_target_io *)bio->bi_private)->info;
101 return NULL;
102}
103
104union map_info *dm_get_rq_mapinfo(struct request *rq)
105{
106 if (rq && rq->end_io_data)
107 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
108 return NULL;
109}
110EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
111
112#define MINOR_ALLOCED ((void *)-1)
113
114/*
115 * Bits for the md->flags field.
116 */
117#define DMF_BLOCK_IO_FOR_SUSPEND 0
118#define DMF_SUSPENDED 1
119#define DMF_FROZEN 2
120#define DMF_FREEING 3
121#define DMF_DELETING 4
122#define DMF_NOFLUSH_SUSPENDING 5
123#define DMF_MERGE_IS_OPTIONAL 6
124
125/*
126 * Work processed by per-device workqueue.
127 */
128struct mapped_device {
129 struct rw_semaphore io_lock;
130 struct mutex suspend_lock;
131 rwlock_t map_lock;
132 atomic_t holders;
133 atomic_t open_count;
134
135 unsigned long flags;
136
137 struct request_queue *queue;
138 unsigned type;
139 /* Protect queue and type against concurrent access. */
140 struct mutex type_lock;
141
142 struct target_type *immutable_target_type;
143
144 struct gendisk *disk;
145 char name[16];
146
147 void *interface_ptr;
148
149 /*
150 * A list of ios that arrived while we were suspended.
151 */
152 atomic_t pending[2];
153 wait_queue_head_t wait;
154 struct work_struct work;
155 struct bio_list deferred;
156 spinlock_t deferred_lock;
157
158 /*
159 * Processing queue (flush)
160 */
161 struct workqueue_struct *wq;
162
163 /*
164 * The current mapping.
165 */
166 struct dm_table *map;
167
168 /*
169 * io objects are allocated from here.
170 */
171 mempool_t *io_pool;
172 mempool_t *tio_pool;
173
174 struct bio_set *bs;
175
176 /*
177 * Event handling.
178 */
179 atomic_t event_nr;
180 wait_queue_head_t eventq;
181 atomic_t uevent_seq;
182 struct list_head uevent_list;
183 spinlock_t uevent_lock; /* Protect access to uevent_list */
184
185 /*
186 * freeze/thaw support require holding onto a super block
187 */
188 struct super_block *frozen_sb;
189 struct block_device *bdev;
190
191 /* forced geometry settings */
192 struct hd_geometry geometry;
193
194 /* sysfs handle */
195 struct kobject kobj;
196
197 /* zero-length flush that will be cloned and submitted to targets */
198 struct bio flush_bio;
199};
200
201/*
202 * For mempools pre-allocation at the table loading time.
203 */
204struct dm_md_mempools {
205 mempool_t *io_pool;
206 mempool_t *tio_pool;
207 struct bio_set *bs;
208};
209
210#define MIN_IOS 256
211static struct kmem_cache *_io_cache;
212static struct kmem_cache *_tio_cache;
213static struct kmem_cache *_rq_tio_cache;
214static struct kmem_cache *_rq_bio_info_cache;
215
216static int __init local_init(void)
217{
218 int r = -ENOMEM;
219
220 /* allocate a slab for the dm_ios */
221 _io_cache = KMEM_CACHE(dm_io, 0);
222 if (!_io_cache)
223 return r;
224
225 /* allocate a slab for the target ios */
226 _tio_cache = KMEM_CACHE(dm_target_io, 0);
227 if (!_tio_cache)
228 goto out_free_io_cache;
229
230 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
231 if (!_rq_tio_cache)
232 goto out_free_tio_cache;
233
234 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
235 if (!_rq_bio_info_cache)
236 goto out_free_rq_tio_cache;
237
238 r = dm_uevent_init();
239 if (r)
240 goto out_free_rq_bio_info_cache;
241
242 _major = major;
243 r = register_blkdev(_major, _name);
244 if (r < 0)
245 goto out_uevent_exit;
246
247 if (!_major)
248 _major = r;
249
250 return 0;
251
252out_uevent_exit:
253 dm_uevent_exit();
254out_free_rq_bio_info_cache:
255 kmem_cache_destroy(_rq_bio_info_cache);
256out_free_rq_tio_cache:
257 kmem_cache_destroy(_rq_tio_cache);
258out_free_tio_cache:
259 kmem_cache_destroy(_tio_cache);
260out_free_io_cache:
261 kmem_cache_destroy(_io_cache);
262
263 return r;
264}
265
266static void local_exit(void)
267{
268 kmem_cache_destroy(_rq_bio_info_cache);
269 kmem_cache_destroy(_rq_tio_cache);
270 kmem_cache_destroy(_tio_cache);
271 kmem_cache_destroy(_io_cache);
272 unregister_blkdev(_major, _name);
273 dm_uevent_exit();
274
275 _major = 0;
276
277 DMINFO("cleaned up");
278}
279
280static int (*_inits[])(void) __initdata = {
281 local_init,
282 dm_target_init,
283 dm_linear_init,
284 dm_stripe_init,
285 dm_io_init,
286 dm_kcopyd_init,
287 dm_interface_init,
288};
289
290static void (*_exits[])(void) = {
291 local_exit,
292 dm_target_exit,
293 dm_linear_exit,
294 dm_stripe_exit,
295 dm_io_exit,
296 dm_kcopyd_exit,
297 dm_interface_exit,
298};
299
300static int __init dm_init(void)
301{
302 const int count = ARRAY_SIZE(_inits);
303
304 int r, i;
305
306 for (i = 0; i < count; i++) {
307 r = _inits[i]();
308 if (r)
309 goto bad;
310 }
311
312 return 0;
313
314 bad:
315 while (i--)
316 _exits[i]();
317
318 return r;
319}
320
321static void __exit dm_exit(void)
322{
323 int i = ARRAY_SIZE(_exits);
324
325 while (i--)
326 _exits[i]();
327
328 /*
329 * Should be empty by this point.
330 */
331 idr_remove_all(&_minor_idr);
332 idr_destroy(&_minor_idr);
333}
334
335/*
336 * Block device functions
337 */
338int dm_deleting_md(struct mapped_device *md)
339{
340 return test_bit(DMF_DELETING, &md->flags);
341}
342
343static int dm_blk_open(struct block_device *bdev, fmode_t mode)
344{
345 struct mapped_device *md;
346
347 spin_lock(&_minor_lock);
348
349 md = bdev->bd_disk->private_data;
350 if (!md)
351 goto out;
352
353 if (test_bit(DMF_FREEING, &md->flags) ||
354 dm_deleting_md(md)) {
355 md = NULL;
356 goto out;
357 }
358
359 dm_get(md);
360 atomic_inc(&md->open_count);
361
362out:
363 spin_unlock(&_minor_lock);
364
365 return md ? 0 : -ENXIO;
366}
367
368static int dm_blk_close(struct gendisk *disk, fmode_t mode)
369{
370 struct mapped_device *md = disk->private_data;
371
372 spin_lock(&_minor_lock);
373
374 atomic_dec(&md->open_count);
375 dm_put(md);
376
377 spin_unlock(&_minor_lock);
378
379 return 0;
380}
381
382int dm_open_count(struct mapped_device *md)
383{
384 return atomic_read(&md->open_count);
385}
386
387/*
388 * Guarantees nothing is using the device before it's deleted.
389 */
390int dm_lock_for_deletion(struct mapped_device *md)
391{
392 int r = 0;
393
394 spin_lock(&_minor_lock);
395
396 if (dm_open_count(md))
397 r = -EBUSY;
398 else
399 set_bit(DMF_DELETING, &md->flags);
400
401 spin_unlock(&_minor_lock);
402
403 return r;
404}
405
406static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407{
408 struct mapped_device *md = bdev->bd_disk->private_data;
409
410 return dm_get_geometry(md, geo);
411}
412
413static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
414 unsigned int cmd, unsigned long arg)
415{
416 struct mapped_device *md = bdev->bd_disk->private_data;
417 struct dm_table *map = dm_get_live_table(md);
418 struct dm_target *tgt;
419 int r = -ENOTTY;
420
421 if (!map || !dm_table_get_size(map))
422 goto out;
423
424 /* We only support devices that have a single target */
425 if (dm_table_get_num_targets(map) != 1)
426 goto out;
427
428 tgt = dm_table_get_target(map, 0);
429
430 if (dm_suspended_md(md)) {
431 r = -EAGAIN;
432 goto out;
433 }
434
435 if (tgt->type->ioctl)
436 r = tgt->type->ioctl(tgt, cmd, arg);
437
438out:
439 dm_table_put(map);
440
441 return r;
442}
443
444static struct dm_io *alloc_io(struct mapped_device *md)
445{
446 return mempool_alloc(md->io_pool, GFP_NOIO);
447}
448
449static void free_io(struct mapped_device *md, struct dm_io *io)
450{
451 mempool_free(io, md->io_pool);
452}
453
454static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
455{
456 mempool_free(tio, md->tio_pool);
457}
458
459static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
460 gfp_t gfp_mask)
461{
462 return mempool_alloc(md->tio_pool, gfp_mask);
463}
464
465static void free_rq_tio(struct dm_rq_target_io *tio)
466{
467 mempool_free(tio, tio->md->tio_pool);
468}
469
470static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
471{
472 return mempool_alloc(md->io_pool, GFP_ATOMIC);
473}
474
475static void free_bio_info(struct dm_rq_clone_bio_info *info)
476{
477 mempool_free(info, info->tio->md->io_pool);
478}
479
480static int md_in_flight(struct mapped_device *md)
481{
482 return atomic_read(&md->pending[READ]) +
483 atomic_read(&md->pending[WRITE]);
484}
485
486static void start_io_acct(struct dm_io *io)
487{
488 struct mapped_device *md = io->md;
489 int cpu;
490 int rw = bio_data_dir(io->bio);
491
492 io->start_time = jiffies;
493
494 cpu = part_stat_lock();
495 part_round_stats(cpu, &dm_disk(md)->part0);
496 part_stat_unlock();
497 atomic_set(&dm_disk(md)->part0.in_flight[rw],
498 atomic_inc_return(&md->pending[rw]));
499}
500
501static void end_io_acct(struct dm_io *io)
502{
503 struct mapped_device *md = io->md;
504 struct bio *bio = io->bio;
505 unsigned long duration = jiffies - io->start_time;
506 int pending, cpu;
507 int rw = bio_data_dir(bio);
508
509 cpu = part_stat_lock();
510 part_round_stats(cpu, &dm_disk(md)->part0);
511 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
512 part_stat_unlock();
513
514 /*
515 * After this is decremented the bio must not be touched if it is
516 * a flush.
517 */
518 pending = atomic_dec_return(&md->pending[rw]);
519 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
520 pending += atomic_read(&md->pending[rw^0x1]);
521
522 /* nudge anyone waiting on suspend queue */
523 if (!pending)
524 wake_up(&md->wait);
525}
526
527/*
528 * Add the bio to the list of deferred io.
529 */
530static void queue_io(struct mapped_device *md, struct bio *bio)
531{
532 unsigned long flags;
533
534 spin_lock_irqsave(&md->deferred_lock, flags);
535 bio_list_add(&md->deferred, bio);
536 spin_unlock_irqrestore(&md->deferred_lock, flags);
537 queue_work(md->wq, &md->work);
538}
539
540/*
541 * Everyone (including functions in this file), should use this
542 * function to access the md->map field, and make sure they call
543 * dm_table_put() when finished.
544 */
545struct dm_table *dm_get_live_table(struct mapped_device *md)
546{
547 struct dm_table *t;
548 unsigned long flags;
549
550 read_lock_irqsave(&md->map_lock, flags);
551 t = md->map;
552 if (t)
553 dm_table_get(t);
554 read_unlock_irqrestore(&md->map_lock, flags);
555
556 return t;
557}
558
559/*
560 * Get the geometry associated with a dm device
561 */
562int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
563{
564 *geo = md->geometry;
565
566 return 0;
567}
568
569/*
570 * Set the geometry of a device.
571 */
572int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
573{
574 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
575
576 if (geo->start > sz) {
577 DMWARN("Start sector is beyond the geometry limits.");
578 return -EINVAL;
579 }
580
581 md->geometry = *geo;
582
583 return 0;
584}
585
586/*-----------------------------------------------------------------
587 * CRUD START:
588 * A more elegant soln is in the works that uses the queue
589 * merge fn, unfortunately there are a couple of changes to
590 * the block layer that I want to make for this. So in the
591 * interests of getting something for people to use I give
592 * you this clearly demarcated crap.
593 *---------------------------------------------------------------*/
594
595static int __noflush_suspending(struct mapped_device *md)
596{
597 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
598}
599
600/*
601 * Decrements the number of outstanding ios that a bio has been
602 * cloned into, completing the original io if necc.
603 */
604static void dec_pending(struct dm_io *io, int error)
605{
606 unsigned long flags;
607 int io_error;
608 struct bio *bio;
609 struct mapped_device *md = io->md;
610
611 /* Push-back supersedes any I/O errors */
612 if (unlikely(error)) {
613 spin_lock_irqsave(&io->endio_lock, flags);
614 if (!(io->error > 0 && __noflush_suspending(md)))
615 io->error = error;
616 spin_unlock_irqrestore(&io->endio_lock, flags);
617 }
618
619 if (atomic_dec_and_test(&io->io_count)) {
620 if (io->error == DM_ENDIO_REQUEUE) {
621 /*
622 * Target requested pushing back the I/O.
623 */
624 spin_lock_irqsave(&md->deferred_lock, flags);
625 if (__noflush_suspending(md))
626 bio_list_add_head(&md->deferred, io->bio);
627 else
628 /* noflush suspend was interrupted. */
629 io->error = -EIO;
630 spin_unlock_irqrestore(&md->deferred_lock, flags);
631 }
632
633 io_error = io->error;
634 bio = io->bio;
635 end_io_acct(io);
636 free_io(md, io);
637
638 if (io_error == DM_ENDIO_REQUEUE)
639 return;
640
641 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
642 /*
643 * Preflush done for flush with data, reissue
644 * without REQ_FLUSH.
645 */
646 bio->bi_rw &= ~REQ_FLUSH;
647 queue_io(md, bio);
648 } else {
649 /* done with normal IO or empty flush */
650 trace_block_bio_complete(md->queue, bio, io_error);
651 bio_endio(bio, io_error);
652 }
653 }
654}
655
656static void clone_endio(struct bio *bio, int error)
657{
658 int r = 0;
659 struct dm_target_io *tio = bio->bi_private;
660 struct dm_io *io = tio->io;
661 struct mapped_device *md = tio->io->md;
662 dm_endio_fn endio = tio->ti->type->end_io;
663
664 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
665 error = -EIO;
666
667 if (endio) {
668 r = endio(tio->ti, bio, error, &tio->info);
669 if (r < 0 || r == DM_ENDIO_REQUEUE)
670 /*
671 * error and requeue request are handled
672 * in dec_pending().
673 */
674 error = r;
675 else if (r == DM_ENDIO_INCOMPLETE)
676 /* The target will handle the io */
677 return;
678 else if (r) {
679 DMWARN("unimplemented target endio return value: %d", r);
680 BUG();
681 }
682 }
683
684 /*
685 * Store md for cleanup instead of tio which is about to get freed.
686 */
687 bio->bi_private = md->bs;
688
689 free_tio(md, tio);
690 bio_put(bio);
691 dec_pending(io, error);
692}
693
694/*
695 * Partial completion handling for request-based dm
696 */
697static void end_clone_bio(struct bio *clone, int error)
698{
699 struct dm_rq_clone_bio_info *info = clone->bi_private;
700 struct dm_rq_target_io *tio = info->tio;
701 struct bio *bio = info->orig;
702 unsigned int nr_bytes = info->orig->bi_size;
703
704 bio_put(clone);
705
706 if (tio->error)
707 /*
708 * An error has already been detected on the request.
709 * Once error occurred, just let clone->end_io() handle
710 * the remainder.
711 */
712 return;
713 else if (error) {
714 /*
715 * Don't notice the error to the upper layer yet.
716 * The error handling decision is made by the target driver,
717 * when the request is completed.
718 */
719 tio->error = error;
720 return;
721 }
722
723 /*
724 * I/O for the bio successfully completed.
725 * Notice the data completion to the upper layer.
726 */
727
728 /*
729 * bios are processed from the head of the list.
730 * So the completing bio should always be rq->bio.
731 * If it's not, something wrong is happening.
732 */
733 if (tio->orig->bio != bio)
734 DMERR("bio completion is going in the middle of the request");
735
736 /*
737 * Update the original request.
738 * Do not use blk_end_request() here, because it may complete
739 * the original request before the clone, and break the ordering.
740 */
741 blk_update_request(tio->orig, 0, nr_bytes);
742}
743
744/*
745 * Don't touch any member of the md after calling this function because
746 * the md may be freed in dm_put() at the end of this function.
747 * Or do dm_get() before calling this function and dm_put() later.
748 */
749static void rq_completed(struct mapped_device *md, int rw, int run_queue)
750{
751 atomic_dec(&md->pending[rw]);
752
753 /* nudge anyone waiting on suspend queue */
754 if (!md_in_flight(md))
755 wake_up(&md->wait);
756
757 if (run_queue)
758 blk_run_queue(md->queue);
759
760 /*
761 * dm_put() must be at the end of this function. See the comment above
762 */
763 dm_put(md);
764}
765
766static void free_rq_clone(struct request *clone)
767{
768 struct dm_rq_target_io *tio = clone->end_io_data;
769
770 blk_rq_unprep_clone(clone);
771 free_rq_tio(tio);
772}
773
774/*
775 * Complete the clone and the original request.
776 * Must be called without queue lock.
777 */
778static void dm_end_request(struct request *clone, int error)
779{
780 int rw = rq_data_dir(clone);
781 struct dm_rq_target_io *tio = clone->end_io_data;
782 struct mapped_device *md = tio->md;
783 struct request *rq = tio->orig;
784
785 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
786 rq->errors = clone->errors;
787 rq->resid_len = clone->resid_len;
788
789 if (rq->sense)
790 /*
791 * We are using the sense buffer of the original
792 * request.
793 * So setting the length of the sense data is enough.
794 */
795 rq->sense_len = clone->sense_len;
796 }
797
798 free_rq_clone(clone);
799 blk_end_request_all(rq, error);
800 rq_completed(md, rw, true);
801}
802
803static void dm_unprep_request(struct request *rq)
804{
805 struct request *clone = rq->special;
806
807 rq->special = NULL;
808 rq->cmd_flags &= ~REQ_DONTPREP;
809
810 free_rq_clone(clone);
811}
812
813/*
814 * Requeue the original request of a clone.
815 */
816void dm_requeue_unmapped_request(struct request *clone)
817{
818 int rw = rq_data_dir(clone);
819 struct dm_rq_target_io *tio = clone->end_io_data;
820 struct mapped_device *md = tio->md;
821 struct request *rq = tio->orig;
822 struct request_queue *q = rq->q;
823 unsigned long flags;
824
825 dm_unprep_request(rq);
826
827 spin_lock_irqsave(q->queue_lock, flags);
828 blk_requeue_request(q, rq);
829 spin_unlock_irqrestore(q->queue_lock, flags);
830
831 rq_completed(md, rw, 0);
832}
833EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
834
835static void __stop_queue(struct request_queue *q)
836{
837 blk_stop_queue(q);
838}
839
840static void stop_queue(struct request_queue *q)
841{
842 unsigned long flags;
843
844 spin_lock_irqsave(q->queue_lock, flags);
845 __stop_queue(q);
846 spin_unlock_irqrestore(q->queue_lock, flags);
847}
848
849static void __start_queue(struct request_queue *q)
850{
851 if (blk_queue_stopped(q))
852 blk_start_queue(q);
853}
854
855static void start_queue(struct request_queue *q)
856{
857 unsigned long flags;
858
859 spin_lock_irqsave(q->queue_lock, flags);
860 __start_queue(q);
861 spin_unlock_irqrestore(q->queue_lock, flags);
862}
863
864static void dm_done(struct request *clone, int error, bool mapped)
865{
866 int r = error;
867 struct dm_rq_target_io *tio = clone->end_io_data;
868 dm_request_endio_fn rq_end_io = NULL;
869
870 if (tio->ti) {
871 rq_end_io = tio->ti->type->rq_end_io;
872
873 if (mapped && rq_end_io)
874 r = rq_end_io(tio->ti, clone, error, &tio->info);
875 }
876
877 if (r <= 0)
878 /* The target wants to complete the I/O */
879 dm_end_request(clone, r);
880 else if (r == DM_ENDIO_INCOMPLETE)
881 /* The target will handle the I/O */
882 return;
883 else if (r == DM_ENDIO_REQUEUE)
884 /* The target wants to requeue the I/O */
885 dm_requeue_unmapped_request(clone);
886 else {
887 DMWARN("unimplemented target endio return value: %d", r);
888 BUG();
889 }
890}
891
892/*
893 * Request completion handler for request-based dm
894 */
895static void dm_softirq_done(struct request *rq)
896{
897 bool mapped = true;
898 struct request *clone = rq->completion_data;
899 struct dm_rq_target_io *tio = clone->end_io_data;
900
901 if (rq->cmd_flags & REQ_FAILED)
902 mapped = false;
903
904 dm_done(clone, tio->error, mapped);
905}
906
907/*
908 * Complete the clone and the original request with the error status
909 * through softirq context.
910 */
911static void dm_complete_request(struct request *clone, int error)
912{
913 struct dm_rq_target_io *tio = clone->end_io_data;
914 struct request *rq = tio->orig;
915
916 tio->error = error;
917 rq->completion_data = clone;
918 blk_complete_request(rq);
919}
920
921/*
922 * Complete the not-mapped clone and the original request with the error status
923 * through softirq context.
924 * Target's rq_end_io() function isn't called.
925 * This may be used when the target's map_rq() function fails.
926 */
927void dm_kill_unmapped_request(struct request *clone, int error)
928{
929 struct dm_rq_target_io *tio = clone->end_io_data;
930 struct request *rq = tio->orig;
931
932 rq->cmd_flags |= REQ_FAILED;
933 dm_complete_request(clone, error);
934}
935EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
936
937/*
938 * Called with the queue lock held
939 */
940static void end_clone_request(struct request *clone, int error)
941{
942 /*
943 * For just cleaning up the information of the queue in which
944 * the clone was dispatched.
945 * The clone is *NOT* freed actually here because it is alloced from
946 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
947 */
948 __blk_put_request(clone->q, clone);
949
950 /*
951 * Actual request completion is done in a softirq context which doesn't
952 * hold the queue lock. Otherwise, deadlock could occur because:
953 * - another request may be submitted by the upper level driver
954 * of the stacking during the completion
955 * - the submission which requires queue lock may be done
956 * against this queue
957 */
958 dm_complete_request(clone, error);
959}
960
961/*
962 * Return maximum size of I/O possible at the supplied sector up to the current
963 * target boundary.
964 */
965static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
966{
967 sector_t target_offset = dm_target_offset(ti, sector);
968
969 return ti->len - target_offset;
970}
971
972static sector_t max_io_len(sector_t sector, struct dm_target *ti)
973{
974 sector_t len = max_io_len_target_boundary(sector, ti);
975
976 /*
977 * Does the target need to split even further ?
978 */
979 if (ti->split_io) {
980 sector_t boundary;
981 sector_t offset = dm_target_offset(ti, sector);
982 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
983 - offset;
984 if (len > boundary)
985 len = boundary;
986 }
987
988 return len;
989}
990
991static void __map_bio(struct dm_target *ti, struct bio *clone,
992 struct dm_target_io *tio)
993{
994 int r;
995 sector_t sector;
996 struct mapped_device *md;
997
998 clone->bi_end_io = clone_endio;
999 clone->bi_private = tio;
1000
1001 /*
1002 * Map the clone. If r == 0 we don't need to do
1003 * anything, the target has assumed ownership of
1004 * this io.
1005 */
1006 atomic_inc(&tio->io->io_count);
1007 sector = clone->bi_sector;
1008 r = ti->type->map(ti, clone, &tio->info);
1009 if (r == DM_MAPIO_REMAPPED) {
1010 /* the bio has been remapped so dispatch it */
1011
1012 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1013 tio->io->bio->bi_bdev->bd_dev, sector);
1014
1015 generic_make_request(clone);
1016 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1017 /* error the io and bail out, or requeue it if needed */
1018 md = tio->io->md;
1019 dec_pending(tio->io, r);
1020 /*
1021 * Store bio_set for cleanup.
1022 */
1023 clone->bi_end_io = NULL;
1024 clone->bi_private = md->bs;
1025 bio_put(clone);
1026 free_tio(md, tio);
1027 } else if (r) {
1028 DMWARN("unimplemented target map return value: %d", r);
1029 BUG();
1030 }
1031}
1032
1033struct clone_info {
1034 struct mapped_device *md;
1035 struct dm_table *map;
1036 struct bio *bio;
1037 struct dm_io *io;
1038 sector_t sector;
1039 sector_t sector_count;
1040 unsigned short idx;
1041};
1042
1043static void dm_bio_destructor(struct bio *bio)
1044{
1045 struct bio_set *bs = bio->bi_private;
1046
1047 bio_free(bio, bs);
1048}
1049
1050/*
1051 * Creates a little bio that just does part of a bvec.
1052 */
1053static struct bio *split_bvec(struct bio *bio, sector_t sector,
1054 unsigned short idx, unsigned int offset,
1055 unsigned int len, struct bio_set *bs)
1056{
1057 struct bio *clone;
1058 struct bio_vec *bv = bio->bi_io_vec + idx;
1059
1060 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1061 clone->bi_destructor = dm_bio_destructor;
1062 *clone->bi_io_vec = *bv;
1063
1064 clone->bi_sector = sector;
1065 clone->bi_bdev = bio->bi_bdev;
1066 clone->bi_rw = bio->bi_rw;
1067 clone->bi_vcnt = 1;
1068 clone->bi_size = to_bytes(len);
1069 clone->bi_io_vec->bv_offset = offset;
1070 clone->bi_io_vec->bv_len = clone->bi_size;
1071 clone->bi_flags |= 1 << BIO_CLONED;
1072
1073 if (bio_integrity(bio)) {
1074 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1075 bio_integrity_trim(clone,
1076 bio_sector_offset(bio, idx, offset), len);
1077 }
1078
1079 return clone;
1080}
1081
1082/*
1083 * Creates a bio that consists of range of complete bvecs.
1084 */
1085static struct bio *clone_bio(struct bio *bio, sector_t sector,
1086 unsigned short idx, unsigned short bv_count,
1087 unsigned int len, struct bio_set *bs)
1088{
1089 struct bio *clone;
1090
1091 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1092 __bio_clone(clone, bio);
1093 clone->bi_destructor = dm_bio_destructor;
1094 clone->bi_sector = sector;
1095 clone->bi_idx = idx;
1096 clone->bi_vcnt = idx + bv_count;
1097 clone->bi_size = to_bytes(len);
1098 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1099
1100 if (bio_integrity(bio)) {
1101 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1102
1103 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1104 bio_integrity_trim(clone,
1105 bio_sector_offset(bio, idx, 0), len);
1106 }
1107
1108 return clone;
1109}
1110
1111static struct dm_target_io *alloc_tio(struct clone_info *ci,
1112 struct dm_target *ti)
1113{
1114 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1115
1116 tio->io = ci->io;
1117 tio->ti = ti;
1118 memset(&tio->info, 0, sizeof(tio->info));
1119
1120 return tio;
1121}
1122
1123static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1124 unsigned request_nr, sector_t len)
1125{
1126 struct dm_target_io *tio = alloc_tio(ci, ti);
1127 struct bio *clone;
1128
1129 tio->info.target_request_nr = request_nr;
1130
1131 /*
1132 * Discard requests require the bio's inline iovecs be initialized.
1133 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1134 * and discard, so no need for concern about wasted bvec allocations.
1135 */
1136 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1137 __bio_clone(clone, ci->bio);
1138 clone->bi_destructor = dm_bio_destructor;
1139 if (len) {
1140 clone->bi_sector = ci->sector;
1141 clone->bi_size = to_bytes(len);
1142 }
1143
1144 __map_bio(ti, clone, tio);
1145}
1146
1147static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1148 unsigned num_requests, sector_t len)
1149{
1150 unsigned request_nr;
1151
1152 for (request_nr = 0; request_nr < num_requests; request_nr++)
1153 __issue_target_request(ci, ti, request_nr, len);
1154}
1155
1156static int __clone_and_map_empty_flush(struct clone_info *ci)
1157{
1158 unsigned target_nr = 0;
1159 struct dm_target *ti;
1160
1161 BUG_ON(bio_has_data(ci->bio));
1162 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1163 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1164
1165 return 0;
1166}
1167
1168/*
1169 * Perform all io with a single clone.
1170 */
1171static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1172{
1173 struct bio *clone, *bio = ci->bio;
1174 struct dm_target_io *tio;
1175
1176 tio = alloc_tio(ci, ti);
1177 clone = clone_bio(bio, ci->sector, ci->idx,
1178 bio->bi_vcnt - ci->idx, ci->sector_count,
1179 ci->md->bs);
1180 __map_bio(ti, clone, tio);
1181 ci->sector_count = 0;
1182}
1183
1184static int __clone_and_map_discard(struct clone_info *ci)
1185{
1186 struct dm_target *ti;
1187 sector_t len;
1188
1189 do {
1190 ti = dm_table_find_target(ci->map, ci->sector);
1191 if (!dm_target_is_valid(ti))
1192 return -EIO;
1193
1194 /*
1195 * Even though the device advertised discard support,
1196 * that does not mean every target supports it, and
1197 * reconfiguration might also have changed that since the
1198 * check was performed.
1199 */
1200 if (!ti->num_discard_requests)
1201 return -EOPNOTSUPP;
1202
1203 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1204
1205 __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1206
1207 ci->sector += len;
1208 } while (ci->sector_count -= len);
1209
1210 return 0;
1211}
1212
1213static int __clone_and_map(struct clone_info *ci)
1214{
1215 struct bio *clone, *bio = ci->bio;
1216 struct dm_target *ti;
1217 sector_t len = 0, max;
1218 struct dm_target_io *tio;
1219
1220 if (unlikely(bio->bi_rw & REQ_DISCARD))
1221 return __clone_and_map_discard(ci);
1222
1223 ti = dm_table_find_target(ci->map, ci->sector);
1224 if (!dm_target_is_valid(ti))
1225 return -EIO;
1226
1227 max = max_io_len(ci->sector, ti);
1228
1229 if (ci->sector_count <= max) {
1230 /*
1231 * Optimise for the simple case where we can do all of
1232 * the remaining io with a single clone.
1233 */
1234 __clone_and_map_simple(ci, ti);
1235
1236 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1237 /*
1238 * There are some bvecs that don't span targets.
1239 * Do as many of these as possible.
1240 */
1241 int i;
1242 sector_t remaining = max;
1243 sector_t bv_len;
1244
1245 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1246 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1247
1248 if (bv_len > remaining)
1249 break;
1250
1251 remaining -= bv_len;
1252 len += bv_len;
1253 }
1254
1255 tio = alloc_tio(ci, ti);
1256 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1257 ci->md->bs);
1258 __map_bio(ti, clone, tio);
1259
1260 ci->sector += len;
1261 ci->sector_count -= len;
1262 ci->idx = i;
1263
1264 } else {
1265 /*
1266 * Handle a bvec that must be split between two or more targets.
1267 */
1268 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1269 sector_t remaining = to_sector(bv->bv_len);
1270 unsigned int offset = 0;
1271
1272 do {
1273 if (offset) {
1274 ti = dm_table_find_target(ci->map, ci->sector);
1275 if (!dm_target_is_valid(ti))
1276 return -EIO;
1277
1278 max = max_io_len(ci->sector, ti);
1279 }
1280
1281 len = min(remaining, max);
1282
1283 tio = alloc_tio(ci, ti);
1284 clone = split_bvec(bio, ci->sector, ci->idx,
1285 bv->bv_offset + offset, len,
1286 ci->md->bs);
1287
1288 __map_bio(ti, clone, tio);
1289
1290 ci->sector += len;
1291 ci->sector_count -= len;
1292 offset += to_bytes(len);
1293 } while (remaining -= len);
1294
1295 ci->idx++;
1296 }
1297
1298 return 0;
1299}
1300
1301/*
1302 * Split the bio into several clones and submit it to targets.
1303 */
1304static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1305{
1306 struct clone_info ci;
1307 int error = 0;
1308
1309 ci.map = dm_get_live_table(md);
1310 if (unlikely(!ci.map)) {
1311 bio_io_error(bio);
1312 return;
1313 }
1314
1315 ci.md = md;
1316 ci.io = alloc_io(md);
1317 ci.io->error = 0;
1318 atomic_set(&ci.io->io_count, 1);
1319 ci.io->bio = bio;
1320 ci.io->md = md;
1321 spin_lock_init(&ci.io->endio_lock);
1322 ci.sector = bio->bi_sector;
1323 ci.idx = bio->bi_idx;
1324
1325 start_io_acct(ci.io);
1326 if (bio->bi_rw & REQ_FLUSH) {
1327 ci.bio = &ci.md->flush_bio;
1328 ci.sector_count = 0;
1329 error = __clone_and_map_empty_flush(&ci);
1330 /* dec_pending submits any data associated with flush */
1331 } else {
1332 ci.bio = bio;
1333 ci.sector_count = bio_sectors(bio);
1334 while (ci.sector_count && !error)
1335 error = __clone_and_map(&ci);
1336 }
1337
1338 /* drop the extra reference count */
1339 dec_pending(ci.io, error);
1340 dm_table_put(ci.map);
1341}
1342/*-----------------------------------------------------------------
1343 * CRUD END
1344 *---------------------------------------------------------------*/
1345
1346static int dm_merge_bvec(struct request_queue *q,
1347 struct bvec_merge_data *bvm,
1348 struct bio_vec *biovec)
1349{
1350 struct mapped_device *md = q->queuedata;
1351 struct dm_table *map = dm_get_live_table(md);
1352 struct dm_target *ti;
1353 sector_t max_sectors;
1354 int max_size = 0;
1355
1356 if (unlikely(!map))
1357 goto out;
1358
1359 ti = dm_table_find_target(map, bvm->bi_sector);
1360 if (!dm_target_is_valid(ti))
1361 goto out_table;
1362
1363 /*
1364 * Find maximum amount of I/O that won't need splitting
1365 */
1366 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1367 (sector_t) BIO_MAX_SECTORS);
1368 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1369 if (max_size < 0)
1370 max_size = 0;
1371
1372 /*
1373 * merge_bvec_fn() returns number of bytes
1374 * it can accept at this offset
1375 * max is precomputed maximal io size
1376 */
1377 if (max_size && ti->type->merge)
1378 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1379 /*
1380 * If the target doesn't support merge method and some of the devices
1381 * provided their merge_bvec method (we know this by looking at
1382 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1383 * entries. So always set max_size to 0, and the code below allows
1384 * just one page.
1385 */
1386 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1387
1388 max_size = 0;
1389
1390out_table:
1391 dm_table_put(map);
1392
1393out:
1394 /*
1395 * Always allow an entire first page
1396 */
1397 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1398 max_size = biovec->bv_len;
1399
1400 return max_size;
1401}
1402
1403/*
1404 * The request function that just remaps the bio built up by
1405 * dm_merge_bvec.
1406 */
1407static void _dm_request(struct request_queue *q, struct bio *bio)
1408{
1409 int rw = bio_data_dir(bio);
1410 struct mapped_device *md = q->queuedata;
1411 int cpu;
1412
1413 down_read(&md->io_lock);
1414
1415 cpu = part_stat_lock();
1416 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1417 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1418 part_stat_unlock();
1419
1420 /* if we're suspended, we have to queue this io for later */
1421 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1422 up_read(&md->io_lock);
1423
1424 if (bio_rw(bio) != READA)
1425 queue_io(md, bio);
1426 else
1427 bio_io_error(bio);
1428 return;
1429 }
1430
1431 __split_and_process_bio(md, bio);
1432 up_read(&md->io_lock);
1433 return;
1434}
1435
1436static int dm_request_based(struct mapped_device *md)
1437{
1438 return blk_queue_stackable(md->queue);
1439}
1440
1441static void dm_request(struct request_queue *q, struct bio *bio)
1442{
1443 struct mapped_device *md = q->queuedata;
1444
1445 if (dm_request_based(md))
1446 blk_queue_bio(q, bio);
1447 else
1448 _dm_request(q, bio);
1449}
1450
1451void dm_dispatch_request(struct request *rq)
1452{
1453 int r;
1454
1455 if (blk_queue_io_stat(rq->q))
1456 rq->cmd_flags |= REQ_IO_STAT;
1457
1458 rq->start_time = jiffies;
1459 r = blk_insert_cloned_request(rq->q, rq);
1460 if (r)
1461 dm_complete_request(rq, r);
1462}
1463EXPORT_SYMBOL_GPL(dm_dispatch_request);
1464
1465static void dm_rq_bio_destructor(struct bio *bio)
1466{
1467 struct dm_rq_clone_bio_info *info = bio->bi_private;
1468 struct mapped_device *md = info->tio->md;
1469
1470 free_bio_info(info);
1471 bio_free(bio, md->bs);
1472}
1473
1474static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1475 void *data)
1476{
1477 struct dm_rq_target_io *tio = data;
1478 struct mapped_device *md = tio->md;
1479 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1480
1481 if (!info)
1482 return -ENOMEM;
1483
1484 info->orig = bio_orig;
1485 info->tio = tio;
1486 bio->bi_end_io = end_clone_bio;
1487 bio->bi_private = info;
1488 bio->bi_destructor = dm_rq_bio_destructor;
1489
1490 return 0;
1491}
1492
1493static int setup_clone(struct request *clone, struct request *rq,
1494 struct dm_rq_target_io *tio)
1495{
1496 int r;
1497
1498 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1499 dm_rq_bio_constructor, tio);
1500 if (r)
1501 return r;
1502
1503 clone->cmd = rq->cmd;
1504 clone->cmd_len = rq->cmd_len;
1505 clone->sense = rq->sense;
1506 clone->buffer = rq->buffer;
1507 clone->end_io = end_clone_request;
1508 clone->end_io_data = tio;
1509
1510 return 0;
1511}
1512
1513static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1514 gfp_t gfp_mask)
1515{
1516 struct request *clone;
1517 struct dm_rq_target_io *tio;
1518
1519 tio = alloc_rq_tio(md, gfp_mask);
1520 if (!tio)
1521 return NULL;
1522
1523 tio->md = md;
1524 tio->ti = NULL;
1525 tio->orig = rq;
1526 tio->error = 0;
1527 memset(&tio->info, 0, sizeof(tio->info));
1528
1529 clone = &tio->clone;
1530 if (setup_clone(clone, rq, tio)) {
1531 /* -ENOMEM */
1532 free_rq_tio(tio);
1533 return NULL;
1534 }
1535
1536 return clone;
1537}
1538
1539/*
1540 * Called with the queue lock held.
1541 */
1542static int dm_prep_fn(struct request_queue *q, struct request *rq)
1543{
1544 struct mapped_device *md = q->queuedata;
1545 struct request *clone;
1546
1547 if (unlikely(rq->special)) {
1548 DMWARN("Already has something in rq->special.");
1549 return BLKPREP_KILL;
1550 }
1551
1552 clone = clone_rq(rq, md, GFP_ATOMIC);
1553 if (!clone)
1554 return BLKPREP_DEFER;
1555
1556 rq->special = clone;
1557 rq->cmd_flags |= REQ_DONTPREP;
1558
1559 return BLKPREP_OK;
1560}
1561
1562/*
1563 * Returns:
1564 * 0 : the request has been processed (not requeued)
1565 * !0 : the request has been requeued
1566 */
1567static int map_request(struct dm_target *ti, struct request *clone,
1568 struct mapped_device *md)
1569{
1570 int r, requeued = 0;
1571 struct dm_rq_target_io *tio = clone->end_io_data;
1572
1573 tio->ti = ti;
1574 r = ti->type->map_rq(ti, clone, &tio->info);
1575 switch (r) {
1576 case DM_MAPIO_SUBMITTED:
1577 /* The target has taken the I/O to submit by itself later */
1578 break;
1579 case DM_MAPIO_REMAPPED:
1580 /* The target has remapped the I/O so dispatch it */
1581 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1582 blk_rq_pos(tio->orig));
1583 dm_dispatch_request(clone);
1584 break;
1585 case DM_MAPIO_REQUEUE:
1586 /* The target wants to requeue the I/O */
1587 dm_requeue_unmapped_request(clone);
1588 requeued = 1;
1589 break;
1590 default:
1591 if (r > 0) {
1592 DMWARN("unimplemented target map return value: %d", r);
1593 BUG();
1594 }
1595
1596 /* The target wants to complete the I/O */
1597 dm_kill_unmapped_request(clone, r);
1598 break;
1599 }
1600
1601 return requeued;
1602}
1603
1604static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1605{
1606 struct request *clone;
1607
1608 blk_start_request(orig);
1609 clone = orig->special;
1610 atomic_inc(&md->pending[rq_data_dir(clone)]);
1611
1612 /*
1613 * Hold the md reference here for the in-flight I/O.
1614 * We can't rely on the reference count by device opener,
1615 * because the device may be closed during the request completion
1616 * when all bios are completed.
1617 * See the comment in rq_completed() too.
1618 */
1619 dm_get(md);
1620
1621 return clone;
1622}
1623
1624/*
1625 * q->request_fn for request-based dm.
1626 * Called with the queue lock held.
1627 */
1628static void dm_request_fn(struct request_queue *q)
1629{
1630 struct mapped_device *md = q->queuedata;
1631 struct dm_table *map = dm_get_live_table(md);
1632 struct dm_target *ti;
1633 struct request *rq, *clone;
1634 sector_t pos;
1635
1636 /*
1637 * For suspend, check blk_queue_stopped() and increment
1638 * ->pending within a single queue_lock not to increment the
1639 * number of in-flight I/Os after the queue is stopped in
1640 * dm_suspend().
1641 */
1642 while (!blk_queue_stopped(q)) {
1643 rq = blk_peek_request(q);
1644 if (!rq)
1645 goto delay_and_out;
1646
1647 /* always use block 0 to find the target for flushes for now */
1648 pos = 0;
1649 if (!(rq->cmd_flags & REQ_FLUSH))
1650 pos = blk_rq_pos(rq);
1651
1652 ti = dm_table_find_target(map, pos);
1653 if (!dm_target_is_valid(ti)) {
1654 /*
1655 * Must perform setup, that dm_done() requires,
1656 * before calling dm_kill_unmapped_request
1657 */
1658 DMERR_LIMIT("request attempted access beyond the end of device");
1659 clone = dm_start_request(md, rq);
1660 dm_kill_unmapped_request(clone, -EIO);
1661 continue;
1662 }
1663
1664 if (ti->type->busy && ti->type->busy(ti))
1665 goto delay_and_out;
1666
1667 clone = dm_start_request(md, rq);
1668
1669 spin_unlock(q->queue_lock);
1670 if (map_request(ti, clone, md))
1671 goto requeued;
1672
1673 BUG_ON(!irqs_disabled());
1674 spin_lock(q->queue_lock);
1675 }
1676
1677 goto out;
1678
1679requeued:
1680 BUG_ON(!irqs_disabled());
1681 spin_lock(q->queue_lock);
1682
1683delay_and_out:
1684 blk_delay_queue(q, HZ / 10);
1685out:
1686 dm_table_put(map);
1687}
1688
1689int dm_underlying_device_busy(struct request_queue *q)
1690{
1691 return blk_lld_busy(q);
1692}
1693EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1694
1695static int dm_lld_busy(struct request_queue *q)
1696{
1697 int r;
1698 struct mapped_device *md = q->queuedata;
1699 struct dm_table *map = dm_get_live_table(md);
1700
1701 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1702 r = 1;
1703 else
1704 r = dm_table_any_busy_target(map);
1705
1706 dm_table_put(map);
1707
1708 return r;
1709}
1710
1711static int dm_any_congested(void *congested_data, int bdi_bits)
1712{
1713 int r = bdi_bits;
1714 struct mapped_device *md = congested_data;
1715 struct dm_table *map;
1716
1717 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1718 map = dm_get_live_table(md);
1719 if (map) {
1720 /*
1721 * Request-based dm cares about only own queue for
1722 * the query about congestion status of request_queue
1723 */
1724 if (dm_request_based(md))
1725 r = md->queue->backing_dev_info.state &
1726 bdi_bits;
1727 else
1728 r = dm_table_any_congested(map, bdi_bits);
1729
1730 dm_table_put(map);
1731 }
1732 }
1733
1734 return r;
1735}
1736
1737/*-----------------------------------------------------------------
1738 * An IDR is used to keep track of allocated minor numbers.
1739 *---------------------------------------------------------------*/
1740static void free_minor(int minor)
1741{
1742 spin_lock(&_minor_lock);
1743 idr_remove(&_minor_idr, minor);
1744 spin_unlock(&_minor_lock);
1745}
1746
1747/*
1748 * See if the device with a specific minor # is free.
1749 */
1750static int specific_minor(int minor)
1751{
1752 int r, m;
1753
1754 if (minor >= (1 << MINORBITS))
1755 return -EINVAL;
1756
1757 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1758 if (!r)
1759 return -ENOMEM;
1760
1761 spin_lock(&_minor_lock);
1762
1763 if (idr_find(&_minor_idr, minor)) {
1764 r = -EBUSY;
1765 goto out;
1766 }
1767
1768 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1769 if (r)
1770 goto out;
1771
1772 if (m != minor) {
1773 idr_remove(&_minor_idr, m);
1774 r = -EBUSY;
1775 goto out;
1776 }
1777
1778out:
1779 spin_unlock(&_minor_lock);
1780 return r;
1781}
1782
1783static int next_free_minor(int *minor)
1784{
1785 int r, m;
1786
1787 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1788 if (!r)
1789 return -ENOMEM;
1790
1791 spin_lock(&_minor_lock);
1792
1793 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1794 if (r)
1795 goto out;
1796
1797 if (m >= (1 << MINORBITS)) {
1798 idr_remove(&_minor_idr, m);
1799 r = -ENOSPC;
1800 goto out;
1801 }
1802
1803 *minor = m;
1804
1805out:
1806 spin_unlock(&_minor_lock);
1807 return r;
1808}
1809
1810static const struct block_device_operations dm_blk_dops;
1811
1812static void dm_wq_work(struct work_struct *work);
1813
1814static void dm_init_md_queue(struct mapped_device *md)
1815{
1816 /*
1817 * Request-based dm devices cannot be stacked on top of bio-based dm
1818 * devices. The type of this dm device has not been decided yet.
1819 * The type is decided at the first table loading time.
1820 * To prevent problematic device stacking, clear the queue flag
1821 * for request stacking support until then.
1822 *
1823 * This queue is new, so no concurrency on the queue_flags.
1824 */
1825 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1826
1827 md->queue->queuedata = md;
1828 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1829 md->queue->backing_dev_info.congested_data = md;
1830 blk_queue_make_request(md->queue, dm_request);
1831 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1832 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1833}
1834
1835/*
1836 * Allocate and initialise a blank device with a given minor.
1837 */
1838static struct mapped_device *alloc_dev(int minor)
1839{
1840 int r;
1841 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1842 void *old_md;
1843
1844 if (!md) {
1845 DMWARN("unable to allocate device, out of memory.");
1846 return NULL;
1847 }
1848
1849 if (!try_module_get(THIS_MODULE))
1850 goto bad_module_get;
1851
1852 /* get a minor number for the dev */
1853 if (minor == DM_ANY_MINOR)
1854 r = next_free_minor(&minor);
1855 else
1856 r = specific_minor(minor);
1857 if (r < 0)
1858 goto bad_minor;
1859
1860 md->type = DM_TYPE_NONE;
1861 init_rwsem(&md->io_lock);
1862 mutex_init(&md->suspend_lock);
1863 mutex_init(&md->type_lock);
1864 spin_lock_init(&md->deferred_lock);
1865 rwlock_init(&md->map_lock);
1866 atomic_set(&md->holders, 1);
1867 atomic_set(&md->open_count, 0);
1868 atomic_set(&md->event_nr, 0);
1869 atomic_set(&md->uevent_seq, 0);
1870 INIT_LIST_HEAD(&md->uevent_list);
1871 spin_lock_init(&md->uevent_lock);
1872
1873 md->queue = blk_alloc_queue(GFP_KERNEL);
1874 if (!md->queue)
1875 goto bad_queue;
1876
1877 dm_init_md_queue(md);
1878
1879 md->disk = alloc_disk(1);
1880 if (!md->disk)
1881 goto bad_disk;
1882
1883 atomic_set(&md->pending[0], 0);
1884 atomic_set(&md->pending[1], 0);
1885 init_waitqueue_head(&md->wait);
1886 INIT_WORK(&md->work, dm_wq_work);
1887 init_waitqueue_head(&md->eventq);
1888
1889 md->disk->major = _major;
1890 md->disk->first_minor = minor;
1891 md->disk->fops = &dm_blk_dops;
1892 md->disk->queue = md->queue;
1893 md->disk->private_data = md;
1894 sprintf(md->disk->disk_name, "dm-%d", minor);
1895 add_disk(md->disk);
1896 format_dev_t(md->name, MKDEV(_major, minor));
1897
1898 md->wq = alloc_workqueue("kdmflush",
1899 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1900 if (!md->wq)
1901 goto bad_thread;
1902
1903 md->bdev = bdget_disk(md->disk, 0);
1904 if (!md->bdev)
1905 goto bad_bdev;
1906
1907 bio_init(&md->flush_bio);
1908 md->flush_bio.bi_bdev = md->bdev;
1909 md->flush_bio.bi_rw = WRITE_FLUSH;
1910
1911 /* Populate the mapping, nobody knows we exist yet */
1912 spin_lock(&_minor_lock);
1913 old_md = idr_replace(&_minor_idr, md, minor);
1914 spin_unlock(&_minor_lock);
1915
1916 BUG_ON(old_md != MINOR_ALLOCED);
1917
1918 return md;
1919
1920bad_bdev:
1921 destroy_workqueue(md->wq);
1922bad_thread:
1923 del_gendisk(md->disk);
1924 put_disk(md->disk);
1925bad_disk:
1926 blk_cleanup_queue(md->queue);
1927bad_queue:
1928 free_minor(minor);
1929bad_minor:
1930 module_put(THIS_MODULE);
1931bad_module_get:
1932 kfree(md);
1933 return NULL;
1934}
1935
1936static void unlock_fs(struct mapped_device *md);
1937
1938static void free_dev(struct mapped_device *md)
1939{
1940 int minor = MINOR(disk_devt(md->disk));
1941
1942 unlock_fs(md);
1943 bdput(md->bdev);
1944 destroy_workqueue(md->wq);
1945 if (md->tio_pool)
1946 mempool_destroy(md->tio_pool);
1947 if (md->io_pool)
1948 mempool_destroy(md->io_pool);
1949 if (md->bs)
1950 bioset_free(md->bs);
1951 blk_integrity_unregister(md->disk);
1952 del_gendisk(md->disk);
1953 free_minor(minor);
1954
1955 spin_lock(&_minor_lock);
1956 md->disk->private_data = NULL;
1957 spin_unlock(&_minor_lock);
1958
1959 put_disk(md->disk);
1960 blk_cleanup_queue(md->queue);
1961 module_put(THIS_MODULE);
1962 kfree(md);
1963}
1964
1965static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1966{
1967 struct dm_md_mempools *p;
1968
1969 if (md->io_pool && md->tio_pool && md->bs)
1970 /* the md already has necessary mempools */
1971 goto out;
1972
1973 p = dm_table_get_md_mempools(t);
1974 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1975
1976 md->io_pool = p->io_pool;
1977 p->io_pool = NULL;
1978 md->tio_pool = p->tio_pool;
1979 p->tio_pool = NULL;
1980 md->bs = p->bs;
1981 p->bs = NULL;
1982
1983out:
1984 /* mempool bind completed, now no need any mempools in the table */
1985 dm_table_free_md_mempools(t);
1986}
1987
1988/*
1989 * Bind a table to the device.
1990 */
1991static void event_callback(void *context)
1992{
1993 unsigned long flags;
1994 LIST_HEAD(uevents);
1995 struct mapped_device *md = (struct mapped_device *) context;
1996
1997 spin_lock_irqsave(&md->uevent_lock, flags);
1998 list_splice_init(&md->uevent_list, &uevents);
1999 spin_unlock_irqrestore(&md->uevent_lock, flags);
2000
2001 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2002
2003 atomic_inc(&md->event_nr);
2004 wake_up(&md->eventq);
2005}
2006
2007/*
2008 * Protected by md->suspend_lock obtained by dm_swap_table().
2009 */
2010static void __set_size(struct mapped_device *md, sector_t size)
2011{
2012 set_capacity(md->disk, size);
2013
2014 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2015}
2016
2017/*
2018 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2019 *
2020 * If this function returns 0, then the device is either a non-dm
2021 * device without a merge_bvec_fn, or it is a dm device that is
2022 * able to split any bios it receives that are too big.
2023 */
2024int dm_queue_merge_is_compulsory(struct request_queue *q)
2025{
2026 struct mapped_device *dev_md;
2027
2028 if (!q->merge_bvec_fn)
2029 return 0;
2030
2031 if (q->make_request_fn == dm_request) {
2032 dev_md = q->queuedata;
2033 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2034 return 0;
2035 }
2036
2037 return 1;
2038}
2039
2040static int dm_device_merge_is_compulsory(struct dm_target *ti,
2041 struct dm_dev *dev, sector_t start,
2042 sector_t len, void *data)
2043{
2044 struct block_device *bdev = dev->bdev;
2045 struct request_queue *q = bdev_get_queue(bdev);
2046
2047 return dm_queue_merge_is_compulsory(q);
2048}
2049
2050/*
2051 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2052 * on the properties of the underlying devices.
2053 */
2054static int dm_table_merge_is_optional(struct dm_table *table)
2055{
2056 unsigned i = 0;
2057 struct dm_target *ti;
2058
2059 while (i < dm_table_get_num_targets(table)) {
2060 ti = dm_table_get_target(table, i++);
2061
2062 if (ti->type->iterate_devices &&
2063 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2064 return 0;
2065 }
2066
2067 return 1;
2068}
2069
2070/*
2071 * Returns old map, which caller must destroy.
2072 */
2073static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2074 struct queue_limits *limits)
2075{
2076 struct dm_table *old_map;
2077 struct request_queue *q = md->queue;
2078 sector_t size;
2079 unsigned long flags;
2080 int merge_is_optional;
2081
2082 size = dm_table_get_size(t);
2083
2084 /*
2085 * Wipe any geometry if the size of the table changed.
2086 */
2087 if (size != get_capacity(md->disk))
2088 memset(&md->geometry, 0, sizeof(md->geometry));
2089
2090 __set_size(md, size);
2091
2092 dm_table_event_callback(t, event_callback, md);
2093
2094 /*
2095 * The queue hasn't been stopped yet, if the old table type wasn't
2096 * for request-based during suspension. So stop it to prevent
2097 * I/O mapping before resume.
2098 * This must be done before setting the queue restrictions,
2099 * because request-based dm may be run just after the setting.
2100 */
2101 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2102 stop_queue(q);
2103
2104 __bind_mempools(md, t);
2105
2106 merge_is_optional = dm_table_merge_is_optional(t);
2107
2108 write_lock_irqsave(&md->map_lock, flags);
2109 old_map = md->map;
2110 md->map = t;
2111 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2112
2113 dm_table_set_restrictions(t, q, limits);
2114 if (merge_is_optional)
2115 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2116 else
2117 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2118 write_unlock_irqrestore(&md->map_lock, flags);
2119
2120 return old_map;
2121}
2122
2123/*
2124 * Returns unbound table for the caller to free.
2125 */
2126static struct dm_table *__unbind(struct mapped_device *md)
2127{
2128 struct dm_table *map = md->map;
2129 unsigned long flags;
2130
2131 if (!map)
2132 return NULL;
2133
2134 dm_table_event_callback(map, NULL, NULL);
2135 write_lock_irqsave(&md->map_lock, flags);
2136 md->map = NULL;
2137 write_unlock_irqrestore(&md->map_lock, flags);
2138
2139 return map;
2140}
2141
2142/*
2143 * Constructor for a new device.
2144 */
2145int dm_create(int minor, struct mapped_device **result)
2146{
2147 struct mapped_device *md;
2148
2149 md = alloc_dev(minor);
2150 if (!md)
2151 return -ENXIO;
2152
2153 dm_sysfs_init(md);
2154
2155 *result = md;
2156 return 0;
2157}
2158
2159/*
2160 * Functions to manage md->type.
2161 * All are required to hold md->type_lock.
2162 */
2163void dm_lock_md_type(struct mapped_device *md)
2164{
2165 mutex_lock(&md->type_lock);
2166}
2167
2168void dm_unlock_md_type(struct mapped_device *md)
2169{
2170 mutex_unlock(&md->type_lock);
2171}
2172
2173void dm_set_md_type(struct mapped_device *md, unsigned type)
2174{
2175 md->type = type;
2176}
2177
2178unsigned dm_get_md_type(struct mapped_device *md)
2179{
2180 return md->type;
2181}
2182
2183struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2184{
2185 return md->immutable_target_type;
2186}
2187
2188/*
2189 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2190 */
2191static int dm_init_request_based_queue(struct mapped_device *md)
2192{
2193 struct request_queue *q = NULL;
2194
2195 if (md->queue->elevator)
2196 return 1;
2197
2198 /* Fully initialize the queue */
2199 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2200 if (!q)
2201 return 0;
2202
2203 md->queue = q;
2204 dm_init_md_queue(md);
2205 blk_queue_softirq_done(md->queue, dm_softirq_done);
2206 blk_queue_prep_rq(md->queue, dm_prep_fn);
2207 blk_queue_lld_busy(md->queue, dm_lld_busy);
2208
2209 elv_register_queue(md->queue);
2210
2211 return 1;
2212}
2213
2214/*
2215 * Setup the DM device's queue based on md's type
2216 */
2217int dm_setup_md_queue(struct mapped_device *md)
2218{
2219 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2220 !dm_init_request_based_queue(md)) {
2221 DMWARN("Cannot initialize queue for request-based mapped device");
2222 return -EINVAL;
2223 }
2224
2225 return 0;
2226}
2227
2228static struct mapped_device *dm_find_md(dev_t dev)
2229{
2230 struct mapped_device *md;
2231 unsigned minor = MINOR(dev);
2232
2233 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2234 return NULL;
2235
2236 spin_lock(&_minor_lock);
2237
2238 md = idr_find(&_minor_idr, minor);
2239 if (md && (md == MINOR_ALLOCED ||
2240 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2241 dm_deleting_md(md) ||
2242 test_bit(DMF_FREEING, &md->flags))) {
2243 md = NULL;
2244 goto out;
2245 }
2246
2247out:
2248 spin_unlock(&_minor_lock);
2249
2250 return md;
2251}
2252
2253struct mapped_device *dm_get_md(dev_t dev)
2254{
2255 struct mapped_device *md = dm_find_md(dev);
2256
2257 if (md)
2258 dm_get(md);
2259
2260 return md;
2261}
2262EXPORT_SYMBOL_GPL(dm_get_md);
2263
2264void *dm_get_mdptr(struct mapped_device *md)
2265{
2266 return md->interface_ptr;
2267}
2268
2269void dm_set_mdptr(struct mapped_device *md, void *ptr)
2270{
2271 md->interface_ptr = ptr;
2272}
2273
2274void dm_get(struct mapped_device *md)
2275{
2276 atomic_inc(&md->holders);
2277 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2278}
2279
2280const char *dm_device_name(struct mapped_device *md)
2281{
2282 return md->name;
2283}
2284EXPORT_SYMBOL_GPL(dm_device_name);
2285
2286static void __dm_destroy(struct mapped_device *md, bool wait)
2287{
2288 struct dm_table *map;
2289
2290 might_sleep();
2291
2292 spin_lock(&_minor_lock);
2293 map = dm_get_live_table(md);
2294 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2295 set_bit(DMF_FREEING, &md->flags);
2296 spin_unlock(&_minor_lock);
2297
2298 if (!dm_suspended_md(md)) {
2299 dm_table_presuspend_targets(map);
2300 dm_table_postsuspend_targets(map);
2301 }
2302
2303 /*
2304 * Rare, but there may be I/O requests still going to complete,
2305 * for example. Wait for all references to disappear.
2306 * No one should increment the reference count of the mapped_device,
2307 * after the mapped_device state becomes DMF_FREEING.
2308 */
2309 if (wait)
2310 while (atomic_read(&md->holders))
2311 msleep(1);
2312 else if (atomic_read(&md->holders))
2313 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2314 dm_device_name(md), atomic_read(&md->holders));
2315
2316 dm_sysfs_exit(md);
2317 dm_table_put(map);
2318 dm_table_destroy(__unbind(md));
2319 free_dev(md);
2320}
2321
2322void dm_destroy(struct mapped_device *md)
2323{
2324 __dm_destroy(md, true);
2325}
2326
2327void dm_destroy_immediate(struct mapped_device *md)
2328{
2329 __dm_destroy(md, false);
2330}
2331
2332void dm_put(struct mapped_device *md)
2333{
2334 atomic_dec(&md->holders);
2335}
2336EXPORT_SYMBOL_GPL(dm_put);
2337
2338static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2339{
2340 int r = 0;
2341 DECLARE_WAITQUEUE(wait, current);
2342
2343 add_wait_queue(&md->wait, &wait);
2344
2345 while (1) {
2346 set_current_state(interruptible);
2347
2348 if (!md_in_flight(md))
2349 break;
2350
2351 if (interruptible == TASK_INTERRUPTIBLE &&
2352 signal_pending(current)) {
2353 r = -EINTR;
2354 break;
2355 }
2356
2357 io_schedule();
2358 }
2359 set_current_state(TASK_RUNNING);
2360
2361 remove_wait_queue(&md->wait, &wait);
2362
2363 return r;
2364}
2365
2366/*
2367 * Process the deferred bios
2368 */
2369static void dm_wq_work(struct work_struct *work)
2370{
2371 struct mapped_device *md = container_of(work, struct mapped_device,
2372 work);
2373 struct bio *c;
2374
2375 down_read(&md->io_lock);
2376
2377 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2378 spin_lock_irq(&md->deferred_lock);
2379 c = bio_list_pop(&md->deferred);
2380 spin_unlock_irq(&md->deferred_lock);
2381
2382 if (!c)
2383 break;
2384
2385 up_read(&md->io_lock);
2386
2387 if (dm_request_based(md))
2388 generic_make_request(c);
2389 else
2390 __split_and_process_bio(md, c);
2391
2392 down_read(&md->io_lock);
2393 }
2394
2395 up_read(&md->io_lock);
2396}
2397
2398static void dm_queue_flush(struct mapped_device *md)
2399{
2400 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2401 smp_mb__after_clear_bit();
2402 queue_work(md->wq, &md->work);
2403}
2404
2405/*
2406 * Swap in a new table, returning the old one for the caller to destroy.
2407 */
2408struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2409{
2410 struct dm_table *map = ERR_PTR(-EINVAL);
2411 struct queue_limits limits;
2412 int r;
2413
2414 mutex_lock(&md->suspend_lock);
2415
2416 /* device must be suspended */
2417 if (!dm_suspended_md(md))
2418 goto out;
2419
2420 r = dm_calculate_queue_limits(table, &limits);
2421 if (r) {
2422 map = ERR_PTR(r);
2423 goto out;
2424 }
2425
2426 map = __bind(md, table, &limits);
2427
2428out:
2429 mutex_unlock(&md->suspend_lock);
2430 return map;
2431}
2432
2433/*
2434 * Functions to lock and unlock any filesystem running on the
2435 * device.
2436 */
2437static int lock_fs(struct mapped_device *md)
2438{
2439 int r;
2440
2441 WARN_ON(md->frozen_sb);
2442
2443 md->frozen_sb = freeze_bdev(md->bdev);
2444 if (IS_ERR(md->frozen_sb)) {
2445 r = PTR_ERR(md->frozen_sb);
2446 md->frozen_sb = NULL;
2447 return r;
2448 }
2449
2450 set_bit(DMF_FROZEN, &md->flags);
2451
2452 return 0;
2453}
2454
2455static void unlock_fs(struct mapped_device *md)
2456{
2457 if (!test_bit(DMF_FROZEN, &md->flags))
2458 return;
2459
2460 thaw_bdev(md->bdev, md->frozen_sb);
2461 md->frozen_sb = NULL;
2462 clear_bit(DMF_FROZEN, &md->flags);
2463}
2464
2465/*
2466 * We need to be able to change a mapping table under a mounted
2467 * filesystem. For example we might want to move some data in
2468 * the background. Before the table can be swapped with
2469 * dm_bind_table, dm_suspend must be called to flush any in
2470 * flight bios and ensure that any further io gets deferred.
2471 */
2472/*
2473 * Suspend mechanism in request-based dm.
2474 *
2475 * 1. Flush all I/Os by lock_fs() if needed.
2476 * 2. Stop dispatching any I/O by stopping the request_queue.
2477 * 3. Wait for all in-flight I/Os to be completed or requeued.
2478 *
2479 * To abort suspend, start the request_queue.
2480 */
2481int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2482{
2483 struct dm_table *map = NULL;
2484 int r = 0;
2485 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2486 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2487
2488 mutex_lock(&md->suspend_lock);
2489
2490 if (dm_suspended_md(md)) {
2491 r = -EINVAL;
2492 goto out_unlock;
2493 }
2494
2495 map = dm_get_live_table(md);
2496
2497 /*
2498 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2499 * This flag is cleared before dm_suspend returns.
2500 */
2501 if (noflush)
2502 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2503
2504 /* This does not get reverted if there's an error later. */
2505 dm_table_presuspend_targets(map);
2506
2507 /*
2508 * Flush I/O to the device.
2509 * Any I/O submitted after lock_fs() may not be flushed.
2510 * noflush takes precedence over do_lockfs.
2511 * (lock_fs() flushes I/Os and waits for them to complete.)
2512 */
2513 if (!noflush && do_lockfs) {
2514 r = lock_fs(md);
2515 if (r)
2516 goto out;
2517 }
2518
2519 /*
2520 * Here we must make sure that no processes are submitting requests
2521 * to target drivers i.e. no one may be executing
2522 * __split_and_process_bio. This is called from dm_request and
2523 * dm_wq_work.
2524 *
2525 * To get all processes out of __split_and_process_bio in dm_request,
2526 * we take the write lock. To prevent any process from reentering
2527 * __split_and_process_bio from dm_request and quiesce the thread
2528 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2529 * flush_workqueue(md->wq).
2530 */
2531 down_write(&md->io_lock);
2532 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2533 up_write(&md->io_lock);
2534
2535 /*
2536 * Stop md->queue before flushing md->wq in case request-based
2537 * dm defers requests to md->wq from md->queue.
2538 */
2539 if (dm_request_based(md))
2540 stop_queue(md->queue);
2541
2542 flush_workqueue(md->wq);
2543
2544 /*
2545 * At this point no more requests are entering target request routines.
2546 * We call dm_wait_for_completion to wait for all existing requests
2547 * to finish.
2548 */
2549 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2550
2551 down_write(&md->io_lock);
2552 if (noflush)
2553 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2554 up_write(&md->io_lock);
2555
2556 /* were we interrupted ? */
2557 if (r < 0) {
2558 dm_queue_flush(md);
2559
2560 if (dm_request_based(md))
2561 start_queue(md->queue);
2562
2563 unlock_fs(md);
2564 goto out; /* pushback list is already flushed, so skip flush */
2565 }
2566
2567 /*
2568 * If dm_wait_for_completion returned 0, the device is completely
2569 * quiescent now. There is no request-processing activity. All new
2570 * requests are being added to md->deferred list.
2571 */
2572
2573 set_bit(DMF_SUSPENDED, &md->flags);
2574
2575 dm_table_postsuspend_targets(map);
2576
2577out:
2578 dm_table_put(map);
2579
2580out_unlock:
2581 mutex_unlock(&md->suspend_lock);
2582 return r;
2583}
2584
2585int dm_resume(struct mapped_device *md)
2586{
2587 int r = -EINVAL;
2588 struct dm_table *map = NULL;
2589
2590 mutex_lock(&md->suspend_lock);
2591 if (!dm_suspended_md(md))
2592 goto out;
2593
2594 map = dm_get_live_table(md);
2595 if (!map || !dm_table_get_size(map))
2596 goto out;
2597
2598 r = dm_table_resume_targets(map);
2599 if (r)
2600 goto out;
2601
2602 dm_queue_flush(md);
2603
2604 /*
2605 * Flushing deferred I/Os must be done after targets are resumed
2606 * so that mapping of targets can work correctly.
2607 * Request-based dm is queueing the deferred I/Os in its request_queue.
2608 */
2609 if (dm_request_based(md))
2610 start_queue(md->queue);
2611
2612 unlock_fs(md);
2613
2614 clear_bit(DMF_SUSPENDED, &md->flags);
2615
2616 r = 0;
2617out:
2618 dm_table_put(map);
2619 mutex_unlock(&md->suspend_lock);
2620
2621 return r;
2622}
2623
2624/*-----------------------------------------------------------------
2625 * Event notification.
2626 *---------------------------------------------------------------*/
2627int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2628 unsigned cookie)
2629{
2630 char udev_cookie[DM_COOKIE_LENGTH];
2631 char *envp[] = { udev_cookie, NULL };
2632
2633 if (!cookie)
2634 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2635 else {
2636 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2637 DM_COOKIE_ENV_VAR_NAME, cookie);
2638 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2639 action, envp);
2640 }
2641}
2642
2643uint32_t dm_next_uevent_seq(struct mapped_device *md)
2644{
2645 return atomic_add_return(1, &md->uevent_seq);
2646}
2647
2648uint32_t dm_get_event_nr(struct mapped_device *md)
2649{
2650 return atomic_read(&md->event_nr);
2651}
2652
2653int dm_wait_event(struct mapped_device *md, int event_nr)
2654{
2655 return wait_event_interruptible(md->eventq,
2656 (event_nr != atomic_read(&md->event_nr)));
2657}
2658
2659void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2660{
2661 unsigned long flags;
2662
2663 spin_lock_irqsave(&md->uevent_lock, flags);
2664 list_add(elist, &md->uevent_list);
2665 spin_unlock_irqrestore(&md->uevent_lock, flags);
2666}
2667
2668/*
2669 * The gendisk is only valid as long as you have a reference
2670 * count on 'md'.
2671 */
2672struct gendisk *dm_disk(struct mapped_device *md)
2673{
2674 return md->disk;
2675}
2676
2677struct kobject *dm_kobject(struct mapped_device *md)
2678{
2679 return &md->kobj;
2680}
2681
2682/*
2683 * struct mapped_device should not be exported outside of dm.c
2684 * so use this check to verify that kobj is part of md structure
2685 */
2686struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2687{
2688 struct mapped_device *md;
2689
2690 md = container_of(kobj, struct mapped_device, kobj);
2691 if (&md->kobj != kobj)
2692 return NULL;
2693
2694 if (test_bit(DMF_FREEING, &md->flags) ||
2695 dm_deleting_md(md))
2696 return NULL;
2697
2698 dm_get(md);
2699 return md;
2700}
2701
2702int dm_suspended_md(struct mapped_device *md)
2703{
2704 return test_bit(DMF_SUSPENDED, &md->flags);
2705}
2706
2707int dm_suspended(struct dm_target *ti)
2708{
2709 return dm_suspended_md(dm_table_get_md(ti->table));
2710}
2711EXPORT_SYMBOL_GPL(dm_suspended);
2712
2713int dm_noflush_suspending(struct dm_target *ti)
2714{
2715 return __noflush_suspending(dm_table_get_md(ti->table));
2716}
2717EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2718
2719struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2720{
2721 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2722 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2723
2724 if (!pools)
2725 return NULL;
2726
2727 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2728 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2729 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2730 if (!pools->io_pool)
2731 goto free_pools_and_out;
2732
2733 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2734 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2735 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2736 if (!pools->tio_pool)
2737 goto free_io_pool_and_out;
2738
2739 pools->bs = bioset_create(pool_size, 0);
2740 if (!pools->bs)
2741 goto free_tio_pool_and_out;
2742
2743 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2744 goto free_bioset_and_out;
2745
2746 return pools;
2747
2748free_bioset_and_out:
2749 bioset_free(pools->bs);
2750
2751free_tio_pool_and_out:
2752 mempool_destroy(pools->tio_pool);
2753
2754free_io_pool_and_out:
2755 mempool_destroy(pools->io_pool);
2756
2757free_pools_and_out:
2758 kfree(pools);
2759
2760 return NULL;
2761}
2762
2763void dm_free_md_mempools(struct dm_md_mempools *pools)
2764{
2765 if (!pools)
2766 return;
2767
2768 if (pools->io_pool)
2769 mempool_destroy(pools->io_pool);
2770
2771 if (pools->tio_pool)
2772 mempool_destroy(pools->tio_pool);
2773
2774 if (pools->bs)
2775 bioset_free(pools->bs);
2776
2777 kfree(pools);
2778}
2779
2780static const struct block_device_operations dm_blk_dops = {
2781 .open = dm_blk_open,
2782 .release = dm_blk_close,
2783 .ioctl = dm_blk_ioctl,
2784 .getgeo = dm_blk_getgeo,
2785 .owner = THIS_MODULE
2786};
2787
2788EXPORT_SYMBOL(dm_get_mapinfo);
2789
2790/*
2791 * module hooks
2792 */
2793module_init(dm_init);
2794module_exit(dm_exit);
2795
2796module_param(major, uint, 0);
2797MODULE_PARM_DESC(major, "The major number of the device mapper");
2798MODULE_DESCRIPTION(DM_NAME " driver");
2799MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2800MODULE_LICENSE("GPL");
1/*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm-core.h"
9#include "dm-rq.h"
10#include "dm-uevent.h"
11
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/mutex.h>
15#include <linux/sched/mm.h>
16#include <linux/sched/signal.h>
17#include <linux/blkpg.h>
18#include <linux/bio.h>
19#include <linux/mempool.h>
20#include <linux/dax.h>
21#include <linux/slab.h>
22#include <linux/idr.h>
23#include <linux/uio.h>
24#include <linux/hdreg.h>
25#include <linux/delay.h>
26#include <linux/wait.h>
27#include <linux/pr.h>
28#include <linux/refcount.h>
29#include <linux/part_stat.h>
30#include <linux/blk-crypto.h>
31#include <linux/keyslot-manager.h>
32
33#define DM_MSG_PREFIX "core"
34
35/*
36 * Cookies are numeric values sent with CHANGE and REMOVE
37 * uevents while resuming, removing or renaming the device.
38 */
39#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
40#define DM_COOKIE_LENGTH 24
41
42static const char *_name = DM_NAME;
43
44static unsigned int major = 0;
45static unsigned int _major = 0;
46
47static DEFINE_IDR(_minor_idr);
48
49static DEFINE_SPINLOCK(_minor_lock);
50
51static void do_deferred_remove(struct work_struct *w);
52
53static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
54
55static struct workqueue_struct *deferred_remove_workqueue;
56
57atomic_t dm_global_event_nr = ATOMIC_INIT(0);
58DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
59
60void dm_issue_global_event(void)
61{
62 atomic_inc(&dm_global_event_nr);
63 wake_up(&dm_global_eventq);
64}
65
66/*
67 * One of these is allocated (on-stack) per original bio.
68 */
69struct clone_info {
70 struct dm_table *map;
71 struct bio *bio;
72 struct dm_io *io;
73 sector_t sector;
74 unsigned sector_count;
75};
76
77#define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
78#define DM_IO_BIO_OFFSET \
79 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
80
81void *dm_per_bio_data(struct bio *bio, size_t data_size)
82{
83 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
84 if (!tio->inside_dm_io)
85 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
86 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
87}
88EXPORT_SYMBOL_GPL(dm_per_bio_data);
89
90struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
91{
92 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
93 if (io->magic == DM_IO_MAGIC)
94 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
95 BUG_ON(io->magic != DM_TIO_MAGIC);
96 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
97}
98EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
99
100unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
101{
102 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
103}
104EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
105
106#define MINOR_ALLOCED ((void *)-1)
107
108#define DM_NUMA_NODE NUMA_NO_NODE
109static int dm_numa_node = DM_NUMA_NODE;
110
111#define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
112static int swap_bios = DEFAULT_SWAP_BIOS;
113static int get_swap_bios(void)
114{
115 int latch = READ_ONCE(swap_bios);
116 if (unlikely(latch <= 0))
117 latch = DEFAULT_SWAP_BIOS;
118 return latch;
119}
120
121/*
122 * For mempools pre-allocation at the table loading time.
123 */
124struct dm_md_mempools {
125 struct bio_set bs;
126 struct bio_set io_bs;
127};
128
129struct table_device {
130 struct list_head list;
131 refcount_t count;
132 struct dm_dev dm_dev;
133};
134
135/*
136 * Bio-based DM's mempools' reserved IOs set by the user.
137 */
138#define RESERVED_BIO_BASED_IOS 16
139static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
140
141static int __dm_get_module_param_int(int *module_param, int min, int max)
142{
143 int param = READ_ONCE(*module_param);
144 int modified_param = 0;
145 bool modified = true;
146
147 if (param < min)
148 modified_param = min;
149 else if (param > max)
150 modified_param = max;
151 else
152 modified = false;
153
154 if (modified) {
155 (void)cmpxchg(module_param, param, modified_param);
156 param = modified_param;
157 }
158
159 return param;
160}
161
162unsigned __dm_get_module_param(unsigned *module_param,
163 unsigned def, unsigned max)
164{
165 unsigned param = READ_ONCE(*module_param);
166 unsigned modified_param = 0;
167
168 if (!param)
169 modified_param = def;
170 else if (param > max)
171 modified_param = max;
172
173 if (modified_param) {
174 (void)cmpxchg(module_param, param, modified_param);
175 param = modified_param;
176 }
177
178 return param;
179}
180
181unsigned dm_get_reserved_bio_based_ios(void)
182{
183 return __dm_get_module_param(&reserved_bio_based_ios,
184 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
185}
186EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
187
188static unsigned dm_get_numa_node(void)
189{
190 return __dm_get_module_param_int(&dm_numa_node,
191 DM_NUMA_NODE, num_online_nodes() - 1);
192}
193
194static int __init local_init(void)
195{
196 int r;
197
198 r = dm_uevent_init();
199 if (r)
200 return r;
201
202 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
203 if (!deferred_remove_workqueue) {
204 r = -ENOMEM;
205 goto out_uevent_exit;
206 }
207
208 _major = major;
209 r = register_blkdev(_major, _name);
210 if (r < 0)
211 goto out_free_workqueue;
212
213 if (!_major)
214 _major = r;
215
216 return 0;
217
218out_free_workqueue:
219 destroy_workqueue(deferred_remove_workqueue);
220out_uevent_exit:
221 dm_uevent_exit();
222
223 return r;
224}
225
226static void local_exit(void)
227{
228 flush_scheduled_work();
229 destroy_workqueue(deferred_remove_workqueue);
230
231 unregister_blkdev(_major, _name);
232 dm_uevent_exit();
233
234 _major = 0;
235
236 DMINFO("cleaned up");
237}
238
239static int (*_inits[])(void) __initdata = {
240 local_init,
241 dm_target_init,
242 dm_linear_init,
243 dm_stripe_init,
244 dm_io_init,
245 dm_kcopyd_init,
246 dm_interface_init,
247 dm_statistics_init,
248};
249
250static void (*_exits[])(void) = {
251 local_exit,
252 dm_target_exit,
253 dm_linear_exit,
254 dm_stripe_exit,
255 dm_io_exit,
256 dm_kcopyd_exit,
257 dm_interface_exit,
258 dm_statistics_exit,
259};
260
261static int __init dm_init(void)
262{
263 const int count = ARRAY_SIZE(_inits);
264
265 int r, i;
266
267 for (i = 0; i < count; i++) {
268 r = _inits[i]();
269 if (r)
270 goto bad;
271 }
272
273 return 0;
274
275 bad:
276 while (i--)
277 _exits[i]();
278
279 return r;
280}
281
282static void __exit dm_exit(void)
283{
284 int i = ARRAY_SIZE(_exits);
285
286 while (i--)
287 _exits[i]();
288
289 /*
290 * Should be empty by this point.
291 */
292 idr_destroy(&_minor_idr);
293}
294
295/*
296 * Block device functions
297 */
298int dm_deleting_md(struct mapped_device *md)
299{
300 return test_bit(DMF_DELETING, &md->flags);
301}
302
303static int dm_blk_open(struct block_device *bdev, fmode_t mode)
304{
305 struct mapped_device *md;
306
307 spin_lock(&_minor_lock);
308
309 md = bdev->bd_disk->private_data;
310 if (!md)
311 goto out;
312
313 if (test_bit(DMF_FREEING, &md->flags) ||
314 dm_deleting_md(md)) {
315 md = NULL;
316 goto out;
317 }
318
319 dm_get(md);
320 atomic_inc(&md->open_count);
321out:
322 spin_unlock(&_minor_lock);
323
324 return md ? 0 : -ENXIO;
325}
326
327static void dm_blk_close(struct gendisk *disk, fmode_t mode)
328{
329 struct mapped_device *md;
330
331 spin_lock(&_minor_lock);
332
333 md = disk->private_data;
334 if (WARN_ON(!md))
335 goto out;
336
337 if (atomic_dec_and_test(&md->open_count) &&
338 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
339 queue_work(deferred_remove_workqueue, &deferred_remove_work);
340
341 dm_put(md);
342out:
343 spin_unlock(&_minor_lock);
344}
345
346int dm_open_count(struct mapped_device *md)
347{
348 return atomic_read(&md->open_count);
349}
350
351/*
352 * Guarantees nothing is using the device before it's deleted.
353 */
354int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
355{
356 int r = 0;
357
358 spin_lock(&_minor_lock);
359
360 if (dm_open_count(md)) {
361 r = -EBUSY;
362 if (mark_deferred)
363 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
364 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
365 r = -EEXIST;
366 else
367 set_bit(DMF_DELETING, &md->flags);
368
369 spin_unlock(&_minor_lock);
370
371 return r;
372}
373
374int dm_cancel_deferred_remove(struct mapped_device *md)
375{
376 int r = 0;
377
378 spin_lock(&_minor_lock);
379
380 if (test_bit(DMF_DELETING, &md->flags))
381 r = -EBUSY;
382 else
383 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
384
385 spin_unlock(&_minor_lock);
386
387 return r;
388}
389
390static void do_deferred_remove(struct work_struct *w)
391{
392 dm_deferred_remove();
393}
394
395static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
396{
397 struct mapped_device *md = bdev->bd_disk->private_data;
398
399 return dm_get_geometry(md, geo);
400}
401
402static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
403 struct block_device **bdev)
404{
405 struct dm_target *tgt;
406 struct dm_table *map;
407 int r;
408
409retry:
410 r = -ENOTTY;
411 map = dm_get_live_table(md, srcu_idx);
412 if (!map || !dm_table_get_size(map))
413 return r;
414
415 /* We only support devices that have a single target */
416 if (dm_table_get_num_targets(map) != 1)
417 return r;
418
419 tgt = dm_table_get_target(map, 0);
420 if (!tgt->type->prepare_ioctl)
421 return r;
422
423 if (dm_suspended_md(md))
424 return -EAGAIN;
425
426 r = tgt->type->prepare_ioctl(tgt, bdev);
427 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
428 dm_put_live_table(md, *srcu_idx);
429 msleep(10);
430 goto retry;
431 }
432
433 return r;
434}
435
436static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
437{
438 dm_put_live_table(md, srcu_idx);
439}
440
441static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
442 unsigned int cmd, unsigned long arg)
443{
444 struct mapped_device *md = bdev->bd_disk->private_data;
445 int r, srcu_idx;
446
447 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
448 if (r < 0)
449 goto out;
450
451 if (r > 0) {
452 /*
453 * Target determined this ioctl is being issued against a
454 * subset of the parent bdev; require extra privileges.
455 */
456 if (!capable(CAP_SYS_RAWIO)) {
457 DMDEBUG_LIMIT(
458 "%s: sending ioctl %x to DM device without required privilege.",
459 current->comm, cmd);
460 r = -ENOIOCTLCMD;
461 goto out;
462 }
463 }
464
465 if (!bdev->bd_disk->fops->ioctl)
466 r = -ENOTTY;
467 else
468 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
469out:
470 dm_unprepare_ioctl(md, srcu_idx);
471 return r;
472}
473
474u64 dm_start_time_ns_from_clone(struct bio *bio)
475{
476 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
477 struct dm_io *io = tio->io;
478
479 return jiffies_to_nsecs(io->start_time);
480}
481EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
482
483static void start_io_acct(struct dm_io *io)
484{
485 struct mapped_device *md = io->md;
486 struct bio *bio = io->orig_bio;
487
488 io->start_time = bio_start_io_acct(bio);
489 if (unlikely(dm_stats_used(&md->stats)))
490 dm_stats_account_io(&md->stats, bio_data_dir(bio),
491 bio->bi_iter.bi_sector, bio_sectors(bio),
492 false, 0, &io->stats_aux);
493}
494
495static void end_io_acct(struct mapped_device *md, struct bio *bio,
496 unsigned long start_time, struct dm_stats_aux *stats_aux)
497{
498 unsigned long duration = jiffies - start_time;
499
500 bio_end_io_acct(bio, start_time);
501
502 if (unlikely(dm_stats_used(&md->stats)))
503 dm_stats_account_io(&md->stats, bio_data_dir(bio),
504 bio->bi_iter.bi_sector, bio_sectors(bio),
505 true, duration, stats_aux);
506
507 /* nudge anyone waiting on suspend queue */
508 if (unlikely(wq_has_sleeper(&md->wait)))
509 wake_up(&md->wait);
510}
511
512static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
513{
514 struct dm_io *io;
515 struct dm_target_io *tio;
516 struct bio *clone;
517
518 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
519 if (!clone)
520 return NULL;
521
522 tio = container_of(clone, struct dm_target_io, clone);
523 tio->inside_dm_io = true;
524 tio->io = NULL;
525
526 io = container_of(tio, struct dm_io, tio);
527 io->magic = DM_IO_MAGIC;
528 io->status = 0;
529 atomic_set(&io->io_count, 1);
530 io->orig_bio = bio;
531 io->md = md;
532 spin_lock_init(&io->endio_lock);
533
534 start_io_acct(io);
535
536 return io;
537}
538
539static void free_io(struct mapped_device *md, struct dm_io *io)
540{
541 bio_put(&io->tio.clone);
542}
543
544static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
545 unsigned target_bio_nr, gfp_t gfp_mask)
546{
547 struct dm_target_io *tio;
548
549 if (!ci->io->tio.io) {
550 /* the dm_target_io embedded in ci->io is available */
551 tio = &ci->io->tio;
552 } else {
553 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
554 if (!clone)
555 return NULL;
556
557 tio = container_of(clone, struct dm_target_io, clone);
558 tio->inside_dm_io = false;
559 }
560
561 tio->magic = DM_TIO_MAGIC;
562 tio->io = ci->io;
563 tio->ti = ti;
564 tio->target_bio_nr = target_bio_nr;
565
566 return tio;
567}
568
569static void free_tio(struct dm_target_io *tio)
570{
571 if (tio->inside_dm_io)
572 return;
573 bio_put(&tio->clone);
574}
575
576/*
577 * Add the bio to the list of deferred io.
578 */
579static void queue_io(struct mapped_device *md, struct bio *bio)
580{
581 unsigned long flags;
582
583 spin_lock_irqsave(&md->deferred_lock, flags);
584 bio_list_add(&md->deferred, bio);
585 spin_unlock_irqrestore(&md->deferred_lock, flags);
586 queue_work(md->wq, &md->work);
587}
588
589/*
590 * Everyone (including functions in this file), should use this
591 * function to access the md->map field, and make sure they call
592 * dm_put_live_table() when finished.
593 */
594struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
595{
596 *srcu_idx = srcu_read_lock(&md->io_barrier);
597
598 return srcu_dereference(md->map, &md->io_barrier);
599}
600
601void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
602{
603 srcu_read_unlock(&md->io_barrier, srcu_idx);
604}
605
606void dm_sync_table(struct mapped_device *md)
607{
608 synchronize_srcu(&md->io_barrier);
609 synchronize_rcu_expedited();
610}
611
612/*
613 * A fast alternative to dm_get_live_table/dm_put_live_table.
614 * The caller must not block between these two functions.
615 */
616static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
617{
618 rcu_read_lock();
619 return rcu_dereference(md->map);
620}
621
622static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
623{
624 rcu_read_unlock();
625}
626
627static char *_dm_claim_ptr = "I belong to device-mapper";
628
629/*
630 * Open a table device so we can use it as a map destination.
631 */
632static int open_table_device(struct table_device *td, dev_t dev,
633 struct mapped_device *md)
634{
635 struct block_device *bdev;
636
637 int r;
638
639 BUG_ON(td->dm_dev.bdev);
640
641 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
642 if (IS_ERR(bdev))
643 return PTR_ERR(bdev);
644
645 r = bd_link_disk_holder(bdev, dm_disk(md));
646 if (r) {
647 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
648 return r;
649 }
650
651 td->dm_dev.bdev = bdev;
652 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
653 return 0;
654}
655
656/*
657 * Close a table device that we've been using.
658 */
659static void close_table_device(struct table_device *td, struct mapped_device *md)
660{
661 if (!td->dm_dev.bdev)
662 return;
663
664 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
665 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
666 put_dax(td->dm_dev.dax_dev);
667 td->dm_dev.bdev = NULL;
668 td->dm_dev.dax_dev = NULL;
669}
670
671static struct table_device *find_table_device(struct list_head *l, dev_t dev,
672 fmode_t mode)
673{
674 struct table_device *td;
675
676 list_for_each_entry(td, l, list)
677 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
678 return td;
679
680 return NULL;
681}
682
683int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
684 struct dm_dev **result)
685{
686 int r;
687 struct table_device *td;
688
689 mutex_lock(&md->table_devices_lock);
690 td = find_table_device(&md->table_devices, dev, mode);
691 if (!td) {
692 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
693 if (!td) {
694 mutex_unlock(&md->table_devices_lock);
695 return -ENOMEM;
696 }
697
698 td->dm_dev.mode = mode;
699 td->dm_dev.bdev = NULL;
700
701 if ((r = open_table_device(td, dev, md))) {
702 mutex_unlock(&md->table_devices_lock);
703 kfree(td);
704 return r;
705 }
706
707 format_dev_t(td->dm_dev.name, dev);
708
709 refcount_set(&td->count, 1);
710 list_add(&td->list, &md->table_devices);
711 } else {
712 refcount_inc(&td->count);
713 }
714 mutex_unlock(&md->table_devices_lock);
715
716 *result = &td->dm_dev;
717 return 0;
718}
719
720void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
721{
722 struct table_device *td = container_of(d, struct table_device, dm_dev);
723
724 mutex_lock(&md->table_devices_lock);
725 if (refcount_dec_and_test(&td->count)) {
726 close_table_device(td, md);
727 list_del(&td->list);
728 kfree(td);
729 }
730 mutex_unlock(&md->table_devices_lock);
731}
732
733static void free_table_devices(struct list_head *devices)
734{
735 struct list_head *tmp, *next;
736
737 list_for_each_safe(tmp, next, devices) {
738 struct table_device *td = list_entry(tmp, struct table_device, list);
739
740 DMWARN("dm_destroy: %s still exists with %d references",
741 td->dm_dev.name, refcount_read(&td->count));
742 kfree(td);
743 }
744}
745
746/*
747 * Get the geometry associated with a dm device
748 */
749int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
750{
751 *geo = md->geometry;
752
753 return 0;
754}
755
756/*
757 * Set the geometry of a device.
758 */
759int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
760{
761 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
762
763 if (geo->start > sz) {
764 DMWARN("Start sector is beyond the geometry limits.");
765 return -EINVAL;
766 }
767
768 md->geometry = *geo;
769
770 return 0;
771}
772
773static int __noflush_suspending(struct mapped_device *md)
774{
775 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
776}
777
778/*
779 * Decrements the number of outstanding ios that a bio has been
780 * cloned into, completing the original io if necc.
781 */
782void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
783{
784 unsigned long flags;
785 blk_status_t io_error;
786 struct bio *bio;
787 struct mapped_device *md = io->md;
788 unsigned long start_time = 0;
789 struct dm_stats_aux stats_aux;
790
791 /* Push-back supersedes any I/O errors */
792 if (unlikely(error)) {
793 spin_lock_irqsave(&io->endio_lock, flags);
794 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
795 io->status = error;
796 spin_unlock_irqrestore(&io->endio_lock, flags);
797 }
798
799 if (atomic_dec_and_test(&io->io_count)) {
800 bio = io->orig_bio;
801 if (io->status == BLK_STS_DM_REQUEUE) {
802 /*
803 * Target requested pushing back the I/O.
804 */
805 spin_lock_irqsave(&md->deferred_lock, flags);
806 if (__noflush_suspending(md) &&
807 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
808 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
809 bio_list_add_head(&md->deferred, bio);
810 } else {
811 /*
812 * noflush suspend was interrupted or this is
813 * a write to a zoned target.
814 */
815 io->status = BLK_STS_IOERR;
816 }
817 spin_unlock_irqrestore(&md->deferred_lock, flags);
818 }
819
820 io_error = io->status;
821 start_time = io->start_time;
822 stats_aux = io->stats_aux;
823 free_io(md, io);
824 end_io_acct(md, bio, start_time, &stats_aux);
825
826 if (io_error == BLK_STS_DM_REQUEUE)
827 return;
828
829 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
830 /*
831 * Preflush done for flush with data, reissue
832 * without REQ_PREFLUSH.
833 */
834 bio->bi_opf &= ~REQ_PREFLUSH;
835 queue_io(md, bio);
836 } else {
837 /* done with normal IO or empty flush */
838 if (io_error)
839 bio->bi_status = io_error;
840 bio_endio(bio);
841 }
842 }
843}
844
845void disable_discard(struct mapped_device *md)
846{
847 struct queue_limits *limits = dm_get_queue_limits(md);
848
849 /* device doesn't really support DISCARD, disable it */
850 limits->max_discard_sectors = 0;
851 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
852}
853
854void disable_write_same(struct mapped_device *md)
855{
856 struct queue_limits *limits = dm_get_queue_limits(md);
857
858 /* device doesn't really support WRITE SAME, disable it */
859 limits->max_write_same_sectors = 0;
860}
861
862void disable_write_zeroes(struct mapped_device *md)
863{
864 struct queue_limits *limits = dm_get_queue_limits(md);
865
866 /* device doesn't really support WRITE ZEROES, disable it */
867 limits->max_write_zeroes_sectors = 0;
868}
869
870static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
871{
872 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
873}
874
875static void clone_endio(struct bio *bio)
876{
877 blk_status_t error = bio->bi_status;
878 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
879 struct dm_io *io = tio->io;
880 struct mapped_device *md = tio->io->md;
881 dm_endio_fn endio = tio->ti->type->end_io;
882 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
883
884 if (unlikely(error == BLK_STS_TARGET)) {
885 if (bio_op(bio) == REQ_OP_DISCARD &&
886 !q->limits.max_discard_sectors)
887 disable_discard(md);
888 else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
889 !q->limits.max_write_same_sectors)
890 disable_write_same(md);
891 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
892 !q->limits.max_write_zeroes_sectors)
893 disable_write_zeroes(md);
894 }
895
896 if (blk_queue_is_zoned(q))
897 dm_zone_endio(io, bio);
898
899 if (endio) {
900 int r = endio(tio->ti, bio, &error);
901 switch (r) {
902 case DM_ENDIO_REQUEUE:
903 /*
904 * Requeuing writes to a sequential zone of a zoned
905 * target will break the sequential write pattern:
906 * fail such IO.
907 */
908 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
909 error = BLK_STS_IOERR;
910 else
911 error = BLK_STS_DM_REQUEUE;
912 fallthrough;
913 case DM_ENDIO_DONE:
914 break;
915 case DM_ENDIO_INCOMPLETE:
916 /* The target will handle the io */
917 return;
918 default:
919 DMWARN("unimplemented target endio return value: %d", r);
920 BUG();
921 }
922 }
923
924 if (unlikely(swap_bios_limit(tio->ti, bio))) {
925 struct mapped_device *md = io->md;
926 up(&md->swap_bios_semaphore);
927 }
928
929 free_tio(tio);
930 dm_io_dec_pending(io, error);
931}
932
933/*
934 * Return maximum size of I/O possible at the supplied sector up to the current
935 * target boundary.
936 */
937static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
938 sector_t target_offset)
939{
940 return ti->len - target_offset;
941}
942
943static sector_t max_io_len(struct dm_target *ti, sector_t sector)
944{
945 sector_t target_offset = dm_target_offset(ti, sector);
946 sector_t len = max_io_len_target_boundary(ti, target_offset);
947 sector_t max_len;
948
949 /*
950 * Does the target need to split IO even further?
951 * - varied (per target) IO splitting is a tenet of DM; this
952 * explains why stacked chunk_sectors based splitting via
953 * blk_max_size_offset() isn't possible here. So pass in
954 * ti->max_io_len to override stacked chunk_sectors.
955 */
956 if (ti->max_io_len) {
957 max_len = blk_max_size_offset(ti->table->md->queue,
958 target_offset, ti->max_io_len);
959 if (len > max_len)
960 len = max_len;
961 }
962
963 return len;
964}
965
966int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
967{
968 if (len > UINT_MAX) {
969 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
970 (unsigned long long)len, UINT_MAX);
971 ti->error = "Maximum size of target IO is too large";
972 return -EINVAL;
973 }
974
975 ti->max_io_len = (uint32_t) len;
976
977 return 0;
978}
979EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
980
981static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
982 sector_t sector, int *srcu_idx)
983 __acquires(md->io_barrier)
984{
985 struct dm_table *map;
986 struct dm_target *ti;
987
988 map = dm_get_live_table(md, srcu_idx);
989 if (!map)
990 return NULL;
991
992 ti = dm_table_find_target(map, sector);
993 if (!ti)
994 return NULL;
995
996 return ti;
997}
998
999static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1000 long nr_pages, void **kaddr, pfn_t *pfn)
1001{
1002 struct mapped_device *md = dax_get_private(dax_dev);
1003 sector_t sector = pgoff * PAGE_SECTORS;
1004 struct dm_target *ti;
1005 long len, ret = -EIO;
1006 int srcu_idx;
1007
1008 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1009
1010 if (!ti)
1011 goto out;
1012 if (!ti->type->direct_access)
1013 goto out;
1014 len = max_io_len(ti, sector) / PAGE_SECTORS;
1015 if (len < 1)
1016 goto out;
1017 nr_pages = min(len, nr_pages);
1018 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1019
1020 out:
1021 dm_put_live_table(md, srcu_idx);
1022
1023 return ret;
1024}
1025
1026static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1027 int blocksize, sector_t start, sector_t len)
1028{
1029 struct mapped_device *md = dax_get_private(dax_dev);
1030 struct dm_table *map;
1031 bool ret = false;
1032 int srcu_idx;
1033
1034 map = dm_get_live_table(md, &srcu_idx);
1035 if (!map)
1036 goto out;
1037
1038 ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1039
1040out:
1041 dm_put_live_table(md, srcu_idx);
1042
1043 return ret;
1044}
1045
1046static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1047 void *addr, size_t bytes, struct iov_iter *i)
1048{
1049 struct mapped_device *md = dax_get_private(dax_dev);
1050 sector_t sector = pgoff * PAGE_SECTORS;
1051 struct dm_target *ti;
1052 long ret = 0;
1053 int srcu_idx;
1054
1055 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1056
1057 if (!ti)
1058 goto out;
1059 if (!ti->type->dax_copy_from_iter) {
1060 ret = copy_from_iter(addr, bytes, i);
1061 goto out;
1062 }
1063 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1064 out:
1065 dm_put_live_table(md, srcu_idx);
1066
1067 return ret;
1068}
1069
1070static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1071 void *addr, size_t bytes, struct iov_iter *i)
1072{
1073 struct mapped_device *md = dax_get_private(dax_dev);
1074 sector_t sector = pgoff * PAGE_SECTORS;
1075 struct dm_target *ti;
1076 long ret = 0;
1077 int srcu_idx;
1078
1079 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1080
1081 if (!ti)
1082 goto out;
1083 if (!ti->type->dax_copy_to_iter) {
1084 ret = copy_to_iter(addr, bytes, i);
1085 goto out;
1086 }
1087 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1088 out:
1089 dm_put_live_table(md, srcu_idx);
1090
1091 return ret;
1092}
1093
1094static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1095 size_t nr_pages)
1096{
1097 struct mapped_device *md = dax_get_private(dax_dev);
1098 sector_t sector = pgoff * PAGE_SECTORS;
1099 struct dm_target *ti;
1100 int ret = -EIO;
1101 int srcu_idx;
1102
1103 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1104
1105 if (!ti)
1106 goto out;
1107 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1108 /*
1109 * ->zero_page_range() is mandatory dax operation. If we are
1110 * here, something is wrong.
1111 */
1112 goto out;
1113 }
1114 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1115 out:
1116 dm_put_live_table(md, srcu_idx);
1117
1118 return ret;
1119}
1120
1121/*
1122 * A target may call dm_accept_partial_bio only from the map routine. It is
1123 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1124 * operations and REQ_OP_ZONE_APPEND (zone append writes).
1125 *
1126 * dm_accept_partial_bio informs the dm that the target only wants to process
1127 * additional n_sectors sectors of the bio and the rest of the data should be
1128 * sent in a next bio.
1129 *
1130 * A diagram that explains the arithmetics:
1131 * +--------------------+---------------+-------+
1132 * | 1 | 2 | 3 |
1133 * +--------------------+---------------+-------+
1134 *
1135 * <-------------- *tio->len_ptr --------------->
1136 * <------- bi_size ------->
1137 * <-- n_sectors -->
1138 *
1139 * Region 1 was already iterated over with bio_advance or similar function.
1140 * (it may be empty if the target doesn't use bio_advance)
1141 * Region 2 is the remaining bio size that the target wants to process.
1142 * (it may be empty if region 1 is non-empty, although there is no reason
1143 * to make it empty)
1144 * The target requires that region 3 is to be sent in the next bio.
1145 *
1146 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1147 * the partially processed part (the sum of regions 1+2) must be the same for all
1148 * copies of the bio.
1149 */
1150void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1151{
1152 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1153 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1154
1155 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1156 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1157 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1158 BUG_ON(bi_size > *tio->len_ptr);
1159 BUG_ON(n_sectors > bi_size);
1160
1161 *tio->len_ptr -= bi_size - n_sectors;
1162 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1163}
1164EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1165
1166static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1167{
1168 mutex_lock(&md->swap_bios_lock);
1169 while (latch < md->swap_bios) {
1170 cond_resched();
1171 down(&md->swap_bios_semaphore);
1172 md->swap_bios--;
1173 }
1174 while (latch > md->swap_bios) {
1175 cond_resched();
1176 up(&md->swap_bios_semaphore);
1177 md->swap_bios++;
1178 }
1179 mutex_unlock(&md->swap_bios_lock);
1180}
1181
1182static blk_qc_t __map_bio(struct dm_target_io *tio)
1183{
1184 int r;
1185 sector_t sector;
1186 struct bio *clone = &tio->clone;
1187 struct dm_io *io = tio->io;
1188 struct dm_target *ti = tio->ti;
1189 blk_qc_t ret = BLK_QC_T_NONE;
1190
1191 clone->bi_end_io = clone_endio;
1192
1193 /*
1194 * Map the clone. If r == 0 we don't need to do
1195 * anything, the target has assumed ownership of
1196 * this io.
1197 */
1198 dm_io_inc_pending(io);
1199 sector = clone->bi_iter.bi_sector;
1200
1201 if (unlikely(swap_bios_limit(ti, clone))) {
1202 struct mapped_device *md = io->md;
1203 int latch = get_swap_bios();
1204 if (unlikely(latch != md->swap_bios))
1205 __set_swap_bios_limit(md, latch);
1206 down(&md->swap_bios_semaphore);
1207 }
1208
1209 /*
1210 * Check if the IO needs a special mapping due to zone append emulation
1211 * on zoned target. In this case, dm_zone_map_bio() calls the target
1212 * map operation.
1213 */
1214 if (dm_emulate_zone_append(io->md))
1215 r = dm_zone_map_bio(tio);
1216 else
1217 r = ti->type->map(ti, clone);
1218
1219 switch (r) {
1220 case DM_MAPIO_SUBMITTED:
1221 break;
1222 case DM_MAPIO_REMAPPED:
1223 /* the bio has been remapped so dispatch it */
1224 trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector);
1225 ret = submit_bio_noacct(clone);
1226 break;
1227 case DM_MAPIO_KILL:
1228 if (unlikely(swap_bios_limit(ti, clone))) {
1229 struct mapped_device *md = io->md;
1230 up(&md->swap_bios_semaphore);
1231 }
1232 free_tio(tio);
1233 dm_io_dec_pending(io, BLK_STS_IOERR);
1234 break;
1235 case DM_MAPIO_REQUEUE:
1236 if (unlikely(swap_bios_limit(ti, clone))) {
1237 struct mapped_device *md = io->md;
1238 up(&md->swap_bios_semaphore);
1239 }
1240 free_tio(tio);
1241 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1242 break;
1243 default:
1244 DMWARN("unimplemented target map return value: %d", r);
1245 BUG();
1246 }
1247
1248 return ret;
1249}
1250
1251static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1252{
1253 bio->bi_iter.bi_sector = sector;
1254 bio->bi_iter.bi_size = to_bytes(len);
1255}
1256
1257/*
1258 * Creates a bio that consists of range of complete bvecs.
1259 */
1260static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1261 sector_t sector, unsigned len)
1262{
1263 struct bio *clone = &tio->clone;
1264 int r;
1265
1266 __bio_clone_fast(clone, bio);
1267
1268 r = bio_crypt_clone(clone, bio, GFP_NOIO);
1269 if (r < 0)
1270 return r;
1271
1272 if (bio_integrity(bio)) {
1273 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1274 !dm_target_passes_integrity(tio->ti->type))) {
1275 DMWARN("%s: the target %s doesn't support integrity data.",
1276 dm_device_name(tio->io->md),
1277 tio->ti->type->name);
1278 return -EIO;
1279 }
1280
1281 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1282 if (r < 0)
1283 return r;
1284 }
1285
1286 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1287 clone->bi_iter.bi_size = to_bytes(len);
1288
1289 if (bio_integrity(bio))
1290 bio_integrity_trim(clone);
1291
1292 return 0;
1293}
1294
1295static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1296 struct dm_target *ti, unsigned num_bios)
1297{
1298 struct dm_target_io *tio;
1299 int try;
1300
1301 if (!num_bios)
1302 return;
1303
1304 if (num_bios == 1) {
1305 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1306 bio_list_add(blist, &tio->clone);
1307 return;
1308 }
1309
1310 for (try = 0; try < 2; try++) {
1311 int bio_nr;
1312 struct bio *bio;
1313
1314 if (try)
1315 mutex_lock(&ci->io->md->table_devices_lock);
1316 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1317 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1318 if (!tio)
1319 break;
1320
1321 bio_list_add(blist, &tio->clone);
1322 }
1323 if (try)
1324 mutex_unlock(&ci->io->md->table_devices_lock);
1325 if (bio_nr == num_bios)
1326 return;
1327
1328 while ((bio = bio_list_pop(blist))) {
1329 tio = container_of(bio, struct dm_target_io, clone);
1330 free_tio(tio);
1331 }
1332 }
1333}
1334
1335static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1336 struct dm_target_io *tio, unsigned *len)
1337{
1338 struct bio *clone = &tio->clone;
1339
1340 tio->len_ptr = len;
1341
1342 __bio_clone_fast(clone, ci->bio);
1343 if (len)
1344 bio_setup_sector(clone, ci->sector, *len);
1345
1346 return __map_bio(tio);
1347}
1348
1349static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1350 unsigned num_bios, unsigned *len)
1351{
1352 struct bio_list blist = BIO_EMPTY_LIST;
1353 struct bio *bio;
1354 struct dm_target_io *tio;
1355
1356 alloc_multiple_bios(&blist, ci, ti, num_bios);
1357
1358 while ((bio = bio_list_pop(&blist))) {
1359 tio = container_of(bio, struct dm_target_io, clone);
1360 (void) __clone_and_map_simple_bio(ci, tio, len);
1361 }
1362}
1363
1364static int __send_empty_flush(struct clone_info *ci)
1365{
1366 unsigned target_nr = 0;
1367 struct dm_target *ti;
1368 struct bio flush_bio;
1369
1370 /*
1371 * Use an on-stack bio for this, it's safe since we don't
1372 * need to reference it after submit. It's just used as
1373 * the basis for the clone(s).
1374 */
1375 bio_init(&flush_bio, NULL, 0);
1376 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1377 bio_set_dev(&flush_bio, ci->io->md->disk->part0);
1378
1379 ci->bio = &flush_bio;
1380 ci->sector_count = 0;
1381
1382 BUG_ON(bio_has_data(ci->bio));
1383 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1384 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1385
1386 bio_uninit(ci->bio);
1387 return 0;
1388}
1389
1390static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1391 sector_t sector, unsigned *len)
1392{
1393 struct bio *bio = ci->bio;
1394 struct dm_target_io *tio;
1395 int r;
1396
1397 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1398 tio->len_ptr = len;
1399 r = clone_bio(tio, bio, sector, *len);
1400 if (r < 0) {
1401 free_tio(tio);
1402 return r;
1403 }
1404 (void) __map_bio(tio);
1405
1406 return 0;
1407}
1408
1409static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1410 unsigned num_bios)
1411{
1412 unsigned len;
1413
1414 /*
1415 * Even though the device advertised support for this type of
1416 * request, that does not mean every target supports it, and
1417 * reconfiguration might also have changed that since the
1418 * check was performed.
1419 */
1420 if (!num_bios)
1421 return -EOPNOTSUPP;
1422
1423 len = min_t(sector_t, ci->sector_count,
1424 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1425
1426 __send_duplicate_bios(ci, ti, num_bios, &len);
1427
1428 ci->sector += len;
1429 ci->sector_count -= len;
1430
1431 return 0;
1432}
1433
1434static bool is_abnormal_io(struct bio *bio)
1435{
1436 bool r = false;
1437
1438 switch (bio_op(bio)) {
1439 case REQ_OP_DISCARD:
1440 case REQ_OP_SECURE_ERASE:
1441 case REQ_OP_WRITE_SAME:
1442 case REQ_OP_WRITE_ZEROES:
1443 r = true;
1444 break;
1445 }
1446
1447 return r;
1448}
1449
1450static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1451 int *result)
1452{
1453 struct bio *bio = ci->bio;
1454 unsigned num_bios = 0;
1455
1456 switch (bio_op(bio)) {
1457 case REQ_OP_DISCARD:
1458 num_bios = ti->num_discard_bios;
1459 break;
1460 case REQ_OP_SECURE_ERASE:
1461 num_bios = ti->num_secure_erase_bios;
1462 break;
1463 case REQ_OP_WRITE_SAME:
1464 num_bios = ti->num_write_same_bios;
1465 break;
1466 case REQ_OP_WRITE_ZEROES:
1467 num_bios = ti->num_write_zeroes_bios;
1468 break;
1469 default:
1470 return false;
1471 }
1472
1473 *result = __send_changing_extent_only(ci, ti, num_bios);
1474 return true;
1475}
1476
1477/*
1478 * Select the correct strategy for processing a non-flush bio.
1479 */
1480static int __split_and_process_non_flush(struct clone_info *ci)
1481{
1482 struct dm_target *ti;
1483 unsigned len;
1484 int r;
1485
1486 ti = dm_table_find_target(ci->map, ci->sector);
1487 if (!ti)
1488 return -EIO;
1489
1490 if (__process_abnormal_io(ci, ti, &r))
1491 return r;
1492
1493 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1494
1495 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1496 if (r < 0)
1497 return r;
1498
1499 ci->sector += len;
1500 ci->sector_count -= len;
1501
1502 return 0;
1503}
1504
1505static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1506 struct dm_table *map, struct bio *bio)
1507{
1508 ci->map = map;
1509 ci->io = alloc_io(md, bio);
1510 ci->sector = bio->bi_iter.bi_sector;
1511}
1512
1513#define __dm_part_stat_sub(part, field, subnd) \
1514 (part_stat_get(part, field) -= (subnd))
1515
1516/*
1517 * Entry point to split a bio into clones and submit them to the targets.
1518 */
1519static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1520 struct dm_table *map, struct bio *bio)
1521{
1522 struct clone_info ci;
1523 blk_qc_t ret = BLK_QC_T_NONE;
1524 int error = 0;
1525
1526 init_clone_info(&ci, md, map, bio);
1527
1528 if (bio->bi_opf & REQ_PREFLUSH) {
1529 error = __send_empty_flush(&ci);
1530 /* dm_io_dec_pending submits any data associated with flush */
1531 } else if (op_is_zone_mgmt(bio_op(bio))) {
1532 ci.bio = bio;
1533 ci.sector_count = 0;
1534 error = __split_and_process_non_flush(&ci);
1535 } else {
1536 ci.bio = bio;
1537 ci.sector_count = bio_sectors(bio);
1538 error = __split_and_process_non_flush(&ci);
1539 if (ci.sector_count && !error) {
1540 /*
1541 * Remainder must be passed to submit_bio_noacct()
1542 * so that it gets handled *after* bios already submitted
1543 * have been completely processed.
1544 * We take a clone of the original to store in
1545 * ci.io->orig_bio to be used by end_io_acct() and
1546 * for dec_pending to use for completion handling.
1547 */
1548 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1549 GFP_NOIO, &md->queue->bio_split);
1550 ci.io->orig_bio = b;
1551
1552 /*
1553 * Adjust IO stats for each split, otherwise upon queue
1554 * reentry there will be redundant IO accounting.
1555 * NOTE: this is a stop-gap fix, a proper fix involves
1556 * significant refactoring of DM core's bio splitting
1557 * (by eliminating DM's splitting and just using bio_split)
1558 */
1559 part_stat_lock();
1560 __dm_part_stat_sub(dm_disk(md)->part0,
1561 sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1562 part_stat_unlock();
1563
1564 bio_chain(b, bio);
1565 trace_block_split(b, bio->bi_iter.bi_sector);
1566 ret = submit_bio_noacct(bio);
1567 }
1568 }
1569
1570 /* drop the extra reference count */
1571 dm_io_dec_pending(ci.io, errno_to_blk_status(error));
1572 return ret;
1573}
1574
1575static blk_qc_t dm_submit_bio(struct bio *bio)
1576{
1577 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1578 blk_qc_t ret = BLK_QC_T_NONE;
1579 int srcu_idx;
1580 struct dm_table *map;
1581
1582 map = dm_get_live_table(md, &srcu_idx);
1583 if (unlikely(!map)) {
1584 DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1585 dm_device_name(md));
1586 bio_io_error(bio);
1587 goto out;
1588 }
1589
1590 /* If suspended, queue this IO for later */
1591 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1592 if (bio->bi_opf & REQ_NOWAIT)
1593 bio_wouldblock_error(bio);
1594 else if (bio->bi_opf & REQ_RAHEAD)
1595 bio_io_error(bio);
1596 else
1597 queue_io(md, bio);
1598 goto out;
1599 }
1600
1601 /*
1602 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1603 * otherwise associated queue_limits won't be imposed.
1604 */
1605 if (is_abnormal_io(bio))
1606 blk_queue_split(&bio);
1607
1608 ret = __split_and_process_bio(md, map, bio);
1609out:
1610 dm_put_live_table(md, srcu_idx);
1611 return ret;
1612}
1613
1614/*-----------------------------------------------------------------
1615 * An IDR is used to keep track of allocated minor numbers.
1616 *---------------------------------------------------------------*/
1617static void free_minor(int minor)
1618{
1619 spin_lock(&_minor_lock);
1620 idr_remove(&_minor_idr, minor);
1621 spin_unlock(&_minor_lock);
1622}
1623
1624/*
1625 * See if the device with a specific minor # is free.
1626 */
1627static int specific_minor(int minor)
1628{
1629 int r;
1630
1631 if (minor >= (1 << MINORBITS))
1632 return -EINVAL;
1633
1634 idr_preload(GFP_KERNEL);
1635 spin_lock(&_minor_lock);
1636
1637 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1638
1639 spin_unlock(&_minor_lock);
1640 idr_preload_end();
1641 if (r < 0)
1642 return r == -ENOSPC ? -EBUSY : r;
1643 return 0;
1644}
1645
1646static int next_free_minor(int *minor)
1647{
1648 int r;
1649
1650 idr_preload(GFP_KERNEL);
1651 spin_lock(&_minor_lock);
1652
1653 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1654
1655 spin_unlock(&_minor_lock);
1656 idr_preload_end();
1657 if (r < 0)
1658 return r;
1659 *minor = r;
1660 return 0;
1661}
1662
1663static const struct block_device_operations dm_blk_dops;
1664static const struct block_device_operations dm_rq_blk_dops;
1665static const struct dax_operations dm_dax_ops;
1666
1667static void dm_wq_work(struct work_struct *work);
1668
1669#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1670static void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1671{
1672 dm_destroy_keyslot_manager(q->ksm);
1673}
1674
1675#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1676
1677static inline void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1678{
1679}
1680#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1681
1682static void cleanup_mapped_device(struct mapped_device *md)
1683{
1684 if (md->wq)
1685 destroy_workqueue(md->wq);
1686 bioset_exit(&md->bs);
1687 bioset_exit(&md->io_bs);
1688
1689 if (md->dax_dev) {
1690 kill_dax(md->dax_dev);
1691 put_dax(md->dax_dev);
1692 md->dax_dev = NULL;
1693 }
1694
1695 if (md->disk) {
1696 spin_lock(&_minor_lock);
1697 md->disk->private_data = NULL;
1698 spin_unlock(&_minor_lock);
1699 del_gendisk(md->disk);
1700 }
1701
1702 if (md->queue)
1703 dm_queue_destroy_keyslot_manager(md->queue);
1704
1705 if (md->disk)
1706 blk_cleanup_disk(md->disk);
1707
1708 cleanup_srcu_struct(&md->io_barrier);
1709
1710 mutex_destroy(&md->suspend_lock);
1711 mutex_destroy(&md->type_lock);
1712 mutex_destroy(&md->table_devices_lock);
1713 mutex_destroy(&md->swap_bios_lock);
1714
1715 dm_mq_cleanup_mapped_device(md);
1716 dm_cleanup_zoned_dev(md);
1717}
1718
1719/*
1720 * Allocate and initialise a blank device with a given minor.
1721 */
1722static struct mapped_device *alloc_dev(int minor)
1723{
1724 int r, numa_node_id = dm_get_numa_node();
1725 struct mapped_device *md;
1726 void *old_md;
1727
1728 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1729 if (!md) {
1730 DMWARN("unable to allocate device, out of memory.");
1731 return NULL;
1732 }
1733
1734 if (!try_module_get(THIS_MODULE))
1735 goto bad_module_get;
1736
1737 /* get a minor number for the dev */
1738 if (minor == DM_ANY_MINOR)
1739 r = next_free_minor(&minor);
1740 else
1741 r = specific_minor(minor);
1742 if (r < 0)
1743 goto bad_minor;
1744
1745 r = init_srcu_struct(&md->io_barrier);
1746 if (r < 0)
1747 goto bad_io_barrier;
1748
1749 md->numa_node_id = numa_node_id;
1750 md->init_tio_pdu = false;
1751 md->type = DM_TYPE_NONE;
1752 mutex_init(&md->suspend_lock);
1753 mutex_init(&md->type_lock);
1754 mutex_init(&md->table_devices_lock);
1755 spin_lock_init(&md->deferred_lock);
1756 atomic_set(&md->holders, 1);
1757 atomic_set(&md->open_count, 0);
1758 atomic_set(&md->event_nr, 0);
1759 atomic_set(&md->uevent_seq, 0);
1760 INIT_LIST_HEAD(&md->uevent_list);
1761 INIT_LIST_HEAD(&md->table_devices);
1762 spin_lock_init(&md->uevent_lock);
1763
1764 /*
1765 * default to bio-based until DM table is loaded and md->type
1766 * established. If request-based table is loaded: blk-mq will
1767 * override accordingly.
1768 */
1769 md->disk = blk_alloc_disk(md->numa_node_id);
1770 if (!md->disk)
1771 goto bad;
1772 md->queue = md->disk->queue;
1773
1774 init_waitqueue_head(&md->wait);
1775 INIT_WORK(&md->work, dm_wq_work);
1776 init_waitqueue_head(&md->eventq);
1777 init_completion(&md->kobj_holder.completion);
1778
1779 md->swap_bios = get_swap_bios();
1780 sema_init(&md->swap_bios_semaphore, md->swap_bios);
1781 mutex_init(&md->swap_bios_lock);
1782
1783 md->disk->major = _major;
1784 md->disk->first_minor = minor;
1785 md->disk->minors = 1;
1786 md->disk->fops = &dm_blk_dops;
1787 md->disk->queue = md->queue;
1788 md->disk->private_data = md;
1789 sprintf(md->disk->disk_name, "dm-%d", minor);
1790
1791 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1792 md->dax_dev = alloc_dax(md, md->disk->disk_name,
1793 &dm_dax_ops, 0);
1794 if (IS_ERR(md->dax_dev))
1795 goto bad;
1796 }
1797
1798 add_disk_no_queue_reg(md->disk);
1799 format_dev_t(md->name, MKDEV(_major, minor));
1800
1801 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1802 if (!md->wq)
1803 goto bad;
1804
1805 dm_stats_init(&md->stats);
1806
1807 /* Populate the mapping, nobody knows we exist yet */
1808 spin_lock(&_minor_lock);
1809 old_md = idr_replace(&_minor_idr, md, minor);
1810 spin_unlock(&_minor_lock);
1811
1812 BUG_ON(old_md != MINOR_ALLOCED);
1813
1814 return md;
1815
1816bad:
1817 cleanup_mapped_device(md);
1818bad_io_barrier:
1819 free_minor(minor);
1820bad_minor:
1821 module_put(THIS_MODULE);
1822bad_module_get:
1823 kvfree(md);
1824 return NULL;
1825}
1826
1827static void unlock_fs(struct mapped_device *md);
1828
1829static void free_dev(struct mapped_device *md)
1830{
1831 int minor = MINOR(disk_devt(md->disk));
1832
1833 unlock_fs(md);
1834
1835 cleanup_mapped_device(md);
1836
1837 free_table_devices(&md->table_devices);
1838 dm_stats_cleanup(&md->stats);
1839 free_minor(minor);
1840
1841 module_put(THIS_MODULE);
1842 kvfree(md);
1843}
1844
1845static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1846{
1847 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1848 int ret = 0;
1849
1850 if (dm_table_bio_based(t)) {
1851 /*
1852 * The md may already have mempools that need changing.
1853 * If so, reload bioset because front_pad may have changed
1854 * because a different table was loaded.
1855 */
1856 bioset_exit(&md->bs);
1857 bioset_exit(&md->io_bs);
1858
1859 } else if (bioset_initialized(&md->bs)) {
1860 /*
1861 * There's no need to reload with request-based dm
1862 * because the size of front_pad doesn't change.
1863 * Note for future: If you are to reload bioset,
1864 * prep-ed requests in the queue may refer
1865 * to bio from the old bioset, so you must walk
1866 * through the queue to unprep.
1867 */
1868 goto out;
1869 }
1870
1871 BUG_ON(!p ||
1872 bioset_initialized(&md->bs) ||
1873 bioset_initialized(&md->io_bs));
1874
1875 ret = bioset_init_from_src(&md->bs, &p->bs);
1876 if (ret)
1877 goto out;
1878 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1879 if (ret)
1880 bioset_exit(&md->bs);
1881out:
1882 /* mempool bind completed, no longer need any mempools in the table */
1883 dm_table_free_md_mempools(t);
1884 return ret;
1885}
1886
1887/*
1888 * Bind a table to the device.
1889 */
1890static void event_callback(void *context)
1891{
1892 unsigned long flags;
1893 LIST_HEAD(uevents);
1894 struct mapped_device *md = (struct mapped_device *) context;
1895
1896 spin_lock_irqsave(&md->uevent_lock, flags);
1897 list_splice_init(&md->uevent_list, &uevents);
1898 spin_unlock_irqrestore(&md->uevent_lock, flags);
1899
1900 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1901
1902 atomic_inc(&md->event_nr);
1903 wake_up(&md->eventq);
1904 dm_issue_global_event();
1905}
1906
1907/*
1908 * Returns old map, which caller must destroy.
1909 */
1910static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1911 struct queue_limits *limits)
1912{
1913 struct dm_table *old_map;
1914 struct request_queue *q = md->queue;
1915 bool request_based = dm_table_request_based(t);
1916 sector_t size;
1917 int ret;
1918
1919 lockdep_assert_held(&md->suspend_lock);
1920
1921 size = dm_table_get_size(t);
1922
1923 /*
1924 * Wipe any geometry if the size of the table changed.
1925 */
1926 if (size != dm_get_size(md))
1927 memset(&md->geometry, 0, sizeof(md->geometry));
1928
1929 if (!get_capacity(md->disk))
1930 set_capacity(md->disk, size);
1931 else
1932 set_capacity_and_notify(md->disk, size);
1933
1934 dm_table_event_callback(t, event_callback, md);
1935
1936 /*
1937 * The queue hasn't been stopped yet, if the old table type wasn't
1938 * for request-based during suspension. So stop it to prevent
1939 * I/O mapping before resume.
1940 * This must be done before setting the queue restrictions,
1941 * because request-based dm may be run just after the setting.
1942 */
1943 if (request_based)
1944 dm_stop_queue(q);
1945
1946 if (request_based) {
1947 /*
1948 * Leverage the fact that request-based DM targets are
1949 * immutable singletons - used to optimize dm_mq_queue_rq.
1950 */
1951 md->immutable_target = dm_table_get_immutable_target(t);
1952 }
1953
1954 ret = __bind_mempools(md, t);
1955 if (ret) {
1956 old_map = ERR_PTR(ret);
1957 goto out;
1958 }
1959
1960 ret = dm_table_set_restrictions(t, q, limits);
1961 if (ret) {
1962 old_map = ERR_PTR(ret);
1963 goto out;
1964 }
1965
1966 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1967 rcu_assign_pointer(md->map, (void *)t);
1968 md->immutable_target_type = dm_table_get_immutable_target_type(t);
1969
1970 if (old_map)
1971 dm_sync_table(md);
1972
1973out:
1974 return old_map;
1975}
1976
1977/*
1978 * Returns unbound table for the caller to free.
1979 */
1980static struct dm_table *__unbind(struct mapped_device *md)
1981{
1982 struct dm_table *map = rcu_dereference_protected(md->map, 1);
1983
1984 if (!map)
1985 return NULL;
1986
1987 dm_table_event_callback(map, NULL, NULL);
1988 RCU_INIT_POINTER(md->map, NULL);
1989 dm_sync_table(md);
1990
1991 return map;
1992}
1993
1994/*
1995 * Constructor for a new device.
1996 */
1997int dm_create(int minor, struct mapped_device **result)
1998{
1999 int r;
2000 struct mapped_device *md;
2001
2002 md = alloc_dev(minor);
2003 if (!md)
2004 return -ENXIO;
2005
2006 r = dm_sysfs_init(md);
2007 if (r) {
2008 free_dev(md);
2009 return r;
2010 }
2011
2012 *result = md;
2013 return 0;
2014}
2015
2016/*
2017 * Functions to manage md->type.
2018 * All are required to hold md->type_lock.
2019 */
2020void dm_lock_md_type(struct mapped_device *md)
2021{
2022 mutex_lock(&md->type_lock);
2023}
2024
2025void dm_unlock_md_type(struct mapped_device *md)
2026{
2027 mutex_unlock(&md->type_lock);
2028}
2029
2030void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2031{
2032 BUG_ON(!mutex_is_locked(&md->type_lock));
2033 md->type = type;
2034}
2035
2036enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2037{
2038 return md->type;
2039}
2040
2041struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2042{
2043 return md->immutable_target_type;
2044}
2045
2046/*
2047 * The queue_limits are only valid as long as you have a reference
2048 * count on 'md'.
2049 */
2050struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2051{
2052 BUG_ON(!atomic_read(&md->holders));
2053 return &md->queue->limits;
2054}
2055EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2056
2057/*
2058 * Setup the DM device's queue based on md's type
2059 */
2060int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2061{
2062 int r;
2063 struct queue_limits limits;
2064 enum dm_queue_mode type = dm_get_md_type(md);
2065
2066 switch (type) {
2067 case DM_TYPE_REQUEST_BASED:
2068 md->disk->fops = &dm_rq_blk_dops;
2069 r = dm_mq_init_request_queue(md, t);
2070 if (r) {
2071 DMERR("Cannot initialize queue for request-based dm mapped device");
2072 return r;
2073 }
2074 break;
2075 case DM_TYPE_BIO_BASED:
2076 case DM_TYPE_DAX_BIO_BASED:
2077 break;
2078 case DM_TYPE_NONE:
2079 WARN_ON_ONCE(true);
2080 break;
2081 }
2082
2083 r = dm_calculate_queue_limits(t, &limits);
2084 if (r) {
2085 DMERR("Cannot calculate initial queue limits");
2086 return r;
2087 }
2088 r = dm_table_set_restrictions(t, md->queue, &limits);
2089 if (r)
2090 return r;
2091
2092 blk_register_queue(md->disk);
2093
2094 return 0;
2095}
2096
2097struct mapped_device *dm_get_md(dev_t dev)
2098{
2099 struct mapped_device *md;
2100 unsigned minor = MINOR(dev);
2101
2102 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2103 return NULL;
2104
2105 spin_lock(&_minor_lock);
2106
2107 md = idr_find(&_minor_idr, minor);
2108 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2109 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2110 md = NULL;
2111 goto out;
2112 }
2113 dm_get(md);
2114out:
2115 spin_unlock(&_minor_lock);
2116
2117 return md;
2118}
2119EXPORT_SYMBOL_GPL(dm_get_md);
2120
2121void *dm_get_mdptr(struct mapped_device *md)
2122{
2123 return md->interface_ptr;
2124}
2125
2126void dm_set_mdptr(struct mapped_device *md, void *ptr)
2127{
2128 md->interface_ptr = ptr;
2129}
2130
2131void dm_get(struct mapped_device *md)
2132{
2133 atomic_inc(&md->holders);
2134 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2135}
2136
2137int dm_hold(struct mapped_device *md)
2138{
2139 spin_lock(&_minor_lock);
2140 if (test_bit(DMF_FREEING, &md->flags)) {
2141 spin_unlock(&_minor_lock);
2142 return -EBUSY;
2143 }
2144 dm_get(md);
2145 spin_unlock(&_minor_lock);
2146 return 0;
2147}
2148EXPORT_SYMBOL_GPL(dm_hold);
2149
2150const char *dm_device_name(struct mapped_device *md)
2151{
2152 return md->name;
2153}
2154EXPORT_SYMBOL_GPL(dm_device_name);
2155
2156static void __dm_destroy(struct mapped_device *md, bool wait)
2157{
2158 struct dm_table *map;
2159 int srcu_idx;
2160
2161 might_sleep();
2162
2163 spin_lock(&_minor_lock);
2164 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2165 set_bit(DMF_FREEING, &md->flags);
2166 spin_unlock(&_minor_lock);
2167
2168 blk_set_queue_dying(md->queue);
2169
2170 /*
2171 * Take suspend_lock so that presuspend and postsuspend methods
2172 * do not race with internal suspend.
2173 */
2174 mutex_lock(&md->suspend_lock);
2175 map = dm_get_live_table(md, &srcu_idx);
2176 if (!dm_suspended_md(md)) {
2177 dm_table_presuspend_targets(map);
2178 set_bit(DMF_SUSPENDED, &md->flags);
2179 set_bit(DMF_POST_SUSPENDING, &md->flags);
2180 dm_table_postsuspend_targets(map);
2181 }
2182 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2183 dm_put_live_table(md, srcu_idx);
2184 mutex_unlock(&md->suspend_lock);
2185
2186 /*
2187 * Rare, but there may be I/O requests still going to complete,
2188 * for example. Wait for all references to disappear.
2189 * No one should increment the reference count of the mapped_device,
2190 * after the mapped_device state becomes DMF_FREEING.
2191 */
2192 if (wait)
2193 while (atomic_read(&md->holders))
2194 msleep(1);
2195 else if (atomic_read(&md->holders))
2196 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2197 dm_device_name(md), atomic_read(&md->holders));
2198
2199 dm_sysfs_exit(md);
2200 dm_table_destroy(__unbind(md));
2201 free_dev(md);
2202}
2203
2204void dm_destroy(struct mapped_device *md)
2205{
2206 __dm_destroy(md, true);
2207}
2208
2209void dm_destroy_immediate(struct mapped_device *md)
2210{
2211 __dm_destroy(md, false);
2212}
2213
2214void dm_put(struct mapped_device *md)
2215{
2216 atomic_dec(&md->holders);
2217}
2218EXPORT_SYMBOL_GPL(dm_put);
2219
2220static bool md_in_flight_bios(struct mapped_device *md)
2221{
2222 int cpu;
2223 struct block_device *part = dm_disk(md)->part0;
2224 long sum = 0;
2225
2226 for_each_possible_cpu(cpu) {
2227 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2228 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2229 }
2230
2231 return sum != 0;
2232}
2233
2234static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2235{
2236 int r = 0;
2237 DEFINE_WAIT(wait);
2238
2239 while (true) {
2240 prepare_to_wait(&md->wait, &wait, task_state);
2241
2242 if (!md_in_flight_bios(md))
2243 break;
2244
2245 if (signal_pending_state(task_state, current)) {
2246 r = -EINTR;
2247 break;
2248 }
2249
2250 io_schedule();
2251 }
2252 finish_wait(&md->wait, &wait);
2253
2254 return r;
2255}
2256
2257static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2258{
2259 int r = 0;
2260
2261 if (!queue_is_mq(md->queue))
2262 return dm_wait_for_bios_completion(md, task_state);
2263
2264 while (true) {
2265 if (!blk_mq_queue_inflight(md->queue))
2266 break;
2267
2268 if (signal_pending_state(task_state, current)) {
2269 r = -EINTR;
2270 break;
2271 }
2272
2273 msleep(5);
2274 }
2275
2276 return r;
2277}
2278
2279/*
2280 * Process the deferred bios
2281 */
2282static void dm_wq_work(struct work_struct *work)
2283{
2284 struct mapped_device *md = container_of(work, struct mapped_device, work);
2285 struct bio *bio;
2286
2287 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2288 spin_lock_irq(&md->deferred_lock);
2289 bio = bio_list_pop(&md->deferred);
2290 spin_unlock_irq(&md->deferred_lock);
2291
2292 if (!bio)
2293 break;
2294
2295 submit_bio_noacct(bio);
2296 }
2297}
2298
2299static void dm_queue_flush(struct mapped_device *md)
2300{
2301 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2302 smp_mb__after_atomic();
2303 queue_work(md->wq, &md->work);
2304}
2305
2306/*
2307 * Swap in a new table, returning the old one for the caller to destroy.
2308 */
2309struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2310{
2311 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2312 struct queue_limits limits;
2313 int r;
2314
2315 mutex_lock(&md->suspend_lock);
2316
2317 /* device must be suspended */
2318 if (!dm_suspended_md(md))
2319 goto out;
2320
2321 /*
2322 * If the new table has no data devices, retain the existing limits.
2323 * This helps multipath with queue_if_no_path if all paths disappear,
2324 * then new I/O is queued based on these limits, and then some paths
2325 * reappear.
2326 */
2327 if (dm_table_has_no_data_devices(table)) {
2328 live_map = dm_get_live_table_fast(md);
2329 if (live_map)
2330 limits = md->queue->limits;
2331 dm_put_live_table_fast(md);
2332 }
2333
2334 if (!live_map) {
2335 r = dm_calculate_queue_limits(table, &limits);
2336 if (r) {
2337 map = ERR_PTR(r);
2338 goto out;
2339 }
2340 }
2341
2342 map = __bind(md, table, &limits);
2343 dm_issue_global_event();
2344
2345out:
2346 mutex_unlock(&md->suspend_lock);
2347 return map;
2348}
2349
2350/*
2351 * Functions to lock and unlock any filesystem running on the
2352 * device.
2353 */
2354static int lock_fs(struct mapped_device *md)
2355{
2356 int r;
2357
2358 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2359
2360 r = freeze_bdev(md->disk->part0);
2361 if (!r)
2362 set_bit(DMF_FROZEN, &md->flags);
2363 return r;
2364}
2365
2366static void unlock_fs(struct mapped_device *md)
2367{
2368 if (!test_bit(DMF_FROZEN, &md->flags))
2369 return;
2370 thaw_bdev(md->disk->part0);
2371 clear_bit(DMF_FROZEN, &md->flags);
2372}
2373
2374/*
2375 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2376 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2377 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2378 *
2379 * If __dm_suspend returns 0, the device is completely quiescent
2380 * now. There is no request-processing activity. All new requests
2381 * are being added to md->deferred list.
2382 */
2383static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2384 unsigned suspend_flags, unsigned int task_state,
2385 int dmf_suspended_flag)
2386{
2387 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2388 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2389 int r;
2390
2391 lockdep_assert_held(&md->suspend_lock);
2392
2393 /*
2394 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2395 * This flag is cleared before dm_suspend returns.
2396 */
2397 if (noflush)
2398 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2399 else
2400 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2401
2402 /*
2403 * This gets reverted if there's an error later and the targets
2404 * provide the .presuspend_undo hook.
2405 */
2406 dm_table_presuspend_targets(map);
2407
2408 /*
2409 * Flush I/O to the device.
2410 * Any I/O submitted after lock_fs() may not be flushed.
2411 * noflush takes precedence over do_lockfs.
2412 * (lock_fs() flushes I/Os and waits for them to complete.)
2413 */
2414 if (!noflush && do_lockfs) {
2415 r = lock_fs(md);
2416 if (r) {
2417 dm_table_presuspend_undo_targets(map);
2418 return r;
2419 }
2420 }
2421
2422 /*
2423 * Here we must make sure that no processes are submitting requests
2424 * to target drivers i.e. no one may be executing
2425 * __split_and_process_bio from dm_submit_bio.
2426 *
2427 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2428 * we take the write lock. To prevent any process from reentering
2429 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2430 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2431 * flush_workqueue(md->wq).
2432 */
2433 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2434 if (map)
2435 synchronize_srcu(&md->io_barrier);
2436
2437 /*
2438 * Stop md->queue before flushing md->wq in case request-based
2439 * dm defers requests to md->wq from md->queue.
2440 */
2441 if (dm_request_based(md))
2442 dm_stop_queue(md->queue);
2443
2444 flush_workqueue(md->wq);
2445
2446 /*
2447 * At this point no more requests are entering target request routines.
2448 * We call dm_wait_for_completion to wait for all existing requests
2449 * to finish.
2450 */
2451 r = dm_wait_for_completion(md, task_state);
2452 if (!r)
2453 set_bit(dmf_suspended_flag, &md->flags);
2454
2455 if (noflush)
2456 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2457 if (map)
2458 synchronize_srcu(&md->io_barrier);
2459
2460 /* were we interrupted ? */
2461 if (r < 0) {
2462 dm_queue_flush(md);
2463
2464 if (dm_request_based(md))
2465 dm_start_queue(md->queue);
2466
2467 unlock_fs(md);
2468 dm_table_presuspend_undo_targets(map);
2469 /* pushback list is already flushed, so skip flush */
2470 }
2471
2472 return r;
2473}
2474
2475/*
2476 * We need to be able to change a mapping table under a mounted
2477 * filesystem. For example we might want to move some data in
2478 * the background. Before the table can be swapped with
2479 * dm_bind_table, dm_suspend must be called to flush any in
2480 * flight bios and ensure that any further io gets deferred.
2481 */
2482/*
2483 * Suspend mechanism in request-based dm.
2484 *
2485 * 1. Flush all I/Os by lock_fs() if needed.
2486 * 2. Stop dispatching any I/O by stopping the request_queue.
2487 * 3. Wait for all in-flight I/Os to be completed or requeued.
2488 *
2489 * To abort suspend, start the request_queue.
2490 */
2491int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2492{
2493 struct dm_table *map = NULL;
2494 int r = 0;
2495
2496retry:
2497 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2498
2499 if (dm_suspended_md(md)) {
2500 r = -EINVAL;
2501 goto out_unlock;
2502 }
2503
2504 if (dm_suspended_internally_md(md)) {
2505 /* already internally suspended, wait for internal resume */
2506 mutex_unlock(&md->suspend_lock);
2507 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2508 if (r)
2509 return r;
2510 goto retry;
2511 }
2512
2513 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2514
2515 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2516 if (r)
2517 goto out_unlock;
2518
2519 set_bit(DMF_POST_SUSPENDING, &md->flags);
2520 dm_table_postsuspend_targets(map);
2521 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2522
2523out_unlock:
2524 mutex_unlock(&md->suspend_lock);
2525 return r;
2526}
2527
2528static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2529{
2530 if (map) {
2531 int r = dm_table_resume_targets(map);
2532 if (r)
2533 return r;
2534 }
2535
2536 dm_queue_flush(md);
2537
2538 /*
2539 * Flushing deferred I/Os must be done after targets are resumed
2540 * so that mapping of targets can work correctly.
2541 * Request-based dm is queueing the deferred I/Os in its request_queue.
2542 */
2543 if (dm_request_based(md))
2544 dm_start_queue(md->queue);
2545
2546 unlock_fs(md);
2547
2548 return 0;
2549}
2550
2551int dm_resume(struct mapped_device *md)
2552{
2553 int r;
2554 struct dm_table *map = NULL;
2555
2556retry:
2557 r = -EINVAL;
2558 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2559
2560 if (!dm_suspended_md(md))
2561 goto out;
2562
2563 if (dm_suspended_internally_md(md)) {
2564 /* already internally suspended, wait for internal resume */
2565 mutex_unlock(&md->suspend_lock);
2566 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2567 if (r)
2568 return r;
2569 goto retry;
2570 }
2571
2572 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2573 if (!map || !dm_table_get_size(map))
2574 goto out;
2575
2576 r = __dm_resume(md, map);
2577 if (r)
2578 goto out;
2579
2580 clear_bit(DMF_SUSPENDED, &md->flags);
2581out:
2582 mutex_unlock(&md->suspend_lock);
2583
2584 return r;
2585}
2586
2587/*
2588 * Internal suspend/resume works like userspace-driven suspend. It waits
2589 * until all bios finish and prevents issuing new bios to the target drivers.
2590 * It may be used only from the kernel.
2591 */
2592
2593static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2594{
2595 struct dm_table *map = NULL;
2596
2597 lockdep_assert_held(&md->suspend_lock);
2598
2599 if (md->internal_suspend_count++)
2600 return; /* nested internal suspend */
2601
2602 if (dm_suspended_md(md)) {
2603 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2604 return; /* nest suspend */
2605 }
2606
2607 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2608
2609 /*
2610 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2611 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2612 * would require changing .presuspend to return an error -- avoid this
2613 * until there is a need for more elaborate variants of internal suspend.
2614 */
2615 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2616 DMF_SUSPENDED_INTERNALLY);
2617
2618 set_bit(DMF_POST_SUSPENDING, &md->flags);
2619 dm_table_postsuspend_targets(map);
2620 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2621}
2622
2623static void __dm_internal_resume(struct mapped_device *md)
2624{
2625 BUG_ON(!md->internal_suspend_count);
2626
2627 if (--md->internal_suspend_count)
2628 return; /* resume from nested internal suspend */
2629
2630 if (dm_suspended_md(md))
2631 goto done; /* resume from nested suspend */
2632
2633 /*
2634 * NOTE: existing callers don't need to call dm_table_resume_targets
2635 * (which may fail -- so best to avoid it for now by passing NULL map)
2636 */
2637 (void) __dm_resume(md, NULL);
2638
2639done:
2640 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2641 smp_mb__after_atomic();
2642 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2643}
2644
2645void dm_internal_suspend_noflush(struct mapped_device *md)
2646{
2647 mutex_lock(&md->suspend_lock);
2648 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2649 mutex_unlock(&md->suspend_lock);
2650}
2651EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2652
2653void dm_internal_resume(struct mapped_device *md)
2654{
2655 mutex_lock(&md->suspend_lock);
2656 __dm_internal_resume(md);
2657 mutex_unlock(&md->suspend_lock);
2658}
2659EXPORT_SYMBOL_GPL(dm_internal_resume);
2660
2661/*
2662 * Fast variants of internal suspend/resume hold md->suspend_lock,
2663 * which prevents interaction with userspace-driven suspend.
2664 */
2665
2666void dm_internal_suspend_fast(struct mapped_device *md)
2667{
2668 mutex_lock(&md->suspend_lock);
2669 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2670 return;
2671
2672 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2673 synchronize_srcu(&md->io_barrier);
2674 flush_workqueue(md->wq);
2675 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2676}
2677EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2678
2679void dm_internal_resume_fast(struct mapped_device *md)
2680{
2681 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2682 goto done;
2683
2684 dm_queue_flush(md);
2685
2686done:
2687 mutex_unlock(&md->suspend_lock);
2688}
2689EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2690
2691/*-----------------------------------------------------------------
2692 * Event notification.
2693 *---------------------------------------------------------------*/
2694int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2695 unsigned cookie)
2696{
2697 int r;
2698 unsigned noio_flag;
2699 char udev_cookie[DM_COOKIE_LENGTH];
2700 char *envp[] = { udev_cookie, NULL };
2701
2702 noio_flag = memalloc_noio_save();
2703
2704 if (!cookie)
2705 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2706 else {
2707 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2708 DM_COOKIE_ENV_VAR_NAME, cookie);
2709 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2710 action, envp);
2711 }
2712
2713 memalloc_noio_restore(noio_flag);
2714
2715 return r;
2716}
2717
2718uint32_t dm_next_uevent_seq(struct mapped_device *md)
2719{
2720 return atomic_add_return(1, &md->uevent_seq);
2721}
2722
2723uint32_t dm_get_event_nr(struct mapped_device *md)
2724{
2725 return atomic_read(&md->event_nr);
2726}
2727
2728int dm_wait_event(struct mapped_device *md, int event_nr)
2729{
2730 return wait_event_interruptible(md->eventq,
2731 (event_nr != atomic_read(&md->event_nr)));
2732}
2733
2734void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2735{
2736 unsigned long flags;
2737
2738 spin_lock_irqsave(&md->uevent_lock, flags);
2739 list_add(elist, &md->uevent_list);
2740 spin_unlock_irqrestore(&md->uevent_lock, flags);
2741}
2742
2743/*
2744 * The gendisk is only valid as long as you have a reference
2745 * count on 'md'.
2746 */
2747struct gendisk *dm_disk(struct mapped_device *md)
2748{
2749 return md->disk;
2750}
2751EXPORT_SYMBOL_GPL(dm_disk);
2752
2753struct kobject *dm_kobject(struct mapped_device *md)
2754{
2755 return &md->kobj_holder.kobj;
2756}
2757
2758struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2759{
2760 struct mapped_device *md;
2761
2762 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2763
2764 spin_lock(&_minor_lock);
2765 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2766 md = NULL;
2767 goto out;
2768 }
2769 dm_get(md);
2770out:
2771 spin_unlock(&_minor_lock);
2772
2773 return md;
2774}
2775
2776int dm_suspended_md(struct mapped_device *md)
2777{
2778 return test_bit(DMF_SUSPENDED, &md->flags);
2779}
2780
2781static int dm_post_suspending_md(struct mapped_device *md)
2782{
2783 return test_bit(DMF_POST_SUSPENDING, &md->flags);
2784}
2785
2786int dm_suspended_internally_md(struct mapped_device *md)
2787{
2788 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2789}
2790
2791int dm_test_deferred_remove_flag(struct mapped_device *md)
2792{
2793 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2794}
2795
2796int dm_suspended(struct dm_target *ti)
2797{
2798 return dm_suspended_md(ti->table->md);
2799}
2800EXPORT_SYMBOL_GPL(dm_suspended);
2801
2802int dm_post_suspending(struct dm_target *ti)
2803{
2804 return dm_post_suspending_md(ti->table->md);
2805}
2806EXPORT_SYMBOL_GPL(dm_post_suspending);
2807
2808int dm_noflush_suspending(struct dm_target *ti)
2809{
2810 return __noflush_suspending(ti->table->md);
2811}
2812EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2813
2814struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2815 unsigned integrity, unsigned per_io_data_size,
2816 unsigned min_pool_size)
2817{
2818 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2819 unsigned int pool_size = 0;
2820 unsigned int front_pad, io_front_pad;
2821 int ret;
2822
2823 if (!pools)
2824 return NULL;
2825
2826 switch (type) {
2827 case DM_TYPE_BIO_BASED:
2828 case DM_TYPE_DAX_BIO_BASED:
2829 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2830 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2831 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2832 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2833 if (ret)
2834 goto out;
2835 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2836 goto out;
2837 break;
2838 case DM_TYPE_REQUEST_BASED:
2839 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2840 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2841 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2842 break;
2843 default:
2844 BUG();
2845 }
2846
2847 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2848 if (ret)
2849 goto out;
2850
2851 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2852 goto out;
2853
2854 return pools;
2855
2856out:
2857 dm_free_md_mempools(pools);
2858
2859 return NULL;
2860}
2861
2862void dm_free_md_mempools(struct dm_md_mempools *pools)
2863{
2864 if (!pools)
2865 return;
2866
2867 bioset_exit(&pools->bs);
2868 bioset_exit(&pools->io_bs);
2869
2870 kfree(pools);
2871}
2872
2873struct dm_pr {
2874 u64 old_key;
2875 u64 new_key;
2876 u32 flags;
2877 bool fail_early;
2878};
2879
2880static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2881 void *data)
2882{
2883 struct mapped_device *md = bdev->bd_disk->private_data;
2884 struct dm_table *table;
2885 struct dm_target *ti;
2886 int ret = -ENOTTY, srcu_idx;
2887
2888 table = dm_get_live_table(md, &srcu_idx);
2889 if (!table || !dm_table_get_size(table))
2890 goto out;
2891
2892 /* We only support devices that have a single target */
2893 if (dm_table_get_num_targets(table) != 1)
2894 goto out;
2895 ti = dm_table_get_target(table, 0);
2896
2897 ret = -EINVAL;
2898 if (!ti->type->iterate_devices)
2899 goto out;
2900
2901 ret = ti->type->iterate_devices(ti, fn, data);
2902out:
2903 dm_put_live_table(md, srcu_idx);
2904 return ret;
2905}
2906
2907/*
2908 * For register / unregister we need to manually call out to every path.
2909 */
2910static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2911 sector_t start, sector_t len, void *data)
2912{
2913 struct dm_pr *pr = data;
2914 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2915
2916 if (!ops || !ops->pr_register)
2917 return -EOPNOTSUPP;
2918 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2919}
2920
2921static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2922 u32 flags)
2923{
2924 struct dm_pr pr = {
2925 .old_key = old_key,
2926 .new_key = new_key,
2927 .flags = flags,
2928 .fail_early = true,
2929 };
2930 int ret;
2931
2932 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2933 if (ret && new_key) {
2934 /* unregister all paths if we failed to register any path */
2935 pr.old_key = new_key;
2936 pr.new_key = 0;
2937 pr.flags = 0;
2938 pr.fail_early = false;
2939 dm_call_pr(bdev, __dm_pr_register, &pr);
2940 }
2941
2942 return ret;
2943}
2944
2945static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2946 u32 flags)
2947{
2948 struct mapped_device *md = bdev->bd_disk->private_data;
2949 const struct pr_ops *ops;
2950 int r, srcu_idx;
2951
2952 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2953 if (r < 0)
2954 goto out;
2955
2956 ops = bdev->bd_disk->fops->pr_ops;
2957 if (ops && ops->pr_reserve)
2958 r = ops->pr_reserve(bdev, key, type, flags);
2959 else
2960 r = -EOPNOTSUPP;
2961out:
2962 dm_unprepare_ioctl(md, srcu_idx);
2963 return r;
2964}
2965
2966static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2967{
2968 struct mapped_device *md = bdev->bd_disk->private_data;
2969 const struct pr_ops *ops;
2970 int r, srcu_idx;
2971
2972 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2973 if (r < 0)
2974 goto out;
2975
2976 ops = bdev->bd_disk->fops->pr_ops;
2977 if (ops && ops->pr_release)
2978 r = ops->pr_release(bdev, key, type);
2979 else
2980 r = -EOPNOTSUPP;
2981out:
2982 dm_unprepare_ioctl(md, srcu_idx);
2983 return r;
2984}
2985
2986static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2987 enum pr_type type, bool abort)
2988{
2989 struct mapped_device *md = bdev->bd_disk->private_data;
2990 const struct pr_ops *ops;
2991 int r, srcu_idx;
2992
2993 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2994 if (r < 0)
2995 goto out;
2996
2997 ops = bdev->bd_disk->fops->pr_ops;
2998 if (ops && ops->pr_preempt)
2999 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3000 else
3001 r = -EOPNOTSUPP;
3002out:
3003 dm_unprepare_ioctl(md, srcu_idx);
3004 return r;
3005}
3006
3007static int dm_pr_clear(struct block_device *bdev, u64 key)
3008{
3009 struct mapped_device *md = bdev->bd_disk->private_data;
3010 const struct pr_ops *ops;
3011 int r, srcu_idx;
3012
3013 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3014 if (r < 0)
3015 goto out;
3016
3017 ops = bdev->bd_disk->fops->pr_ops;
3018 if (ops && ops->pr_clear)
3019 r = ops->pr_clear(bdev, key);
3020 else
3021 r = -EOPNOTSUPP;
3022out:
3023 dm_unprepare_ioctl(md, srcu_idx);
3024 return r;
3025}
3026
3027static const struct pr_ops dm_pr_ops = {
3028 .pr_register = dm_pr_register,
3029 .pr_reserve = dm_pr_reserve,
3030 .pr_release = dm_pr_release,
3031 .pr_preempt = dm_pr_preempt,
3032 .pr_clear = dm_pr_clear,
3033};
3034
3035static const struct block_device_operations dm_blk_dops = {
3036 .submit_bio = dm_submit_bio,
3037 .open = dm_blk_open,
3038 .release = dm_blk_close,
3039 .ioctl = dm_blk_ioctl,
3040 .getgeo = dm_blk_getgeo,
3041 .report_zones = dm_blk_report_zones,
3042 .pr_ops = &dm_pr_ops,
3043 .owner = THIS_MODULE
3044};
3045
3046static const struct block_device_operations dm_rq_blk_dops = {
3047 .open = dm_blk_open,
3048 .release = dm_blk_close,
3049 .ioctl = dm_blk_ioctl,
3050 .getgeo = dm_blk_getgeo,
3051 .pr_ops = &dm_pr_ops,
3052 .owner = THIS_MODULE
3053};
3054
3055static const struct dax_operations dm_dax_ops = {
3056 .direct_access = dm_dax_direct_access,
3057 .dax_supported = dm_dax_supported,
3058 .copy_from_iter = dm_dax_copy_from_iter,
3059 .copy_to_iter = dm_dax_copy_to_iter,
3060 .zero_page_range = dm_dax_zero_page_range,
3061};
3062
3063/*
3064 * module hooks
3065 */
3066module_init(dm_init);
3067module_exit(dm_exit);
3068
3069module_param(major, uint, 0);
3070MODULE_PARM_DESC(major, "The major number of the device mapper");
3071
3072module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3073MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3074
3075module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3076MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3077
3078module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3079MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3080
3081MODULE_DESCRIPTION(DM_NAME " driver");
3082MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3083MODULE_LICENSE("GPL");