Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
   7 *	      Chris Vance, <cvance@nai.com>
   8 *	      Wayne Salamon, <wsalamon@nai.com>
   9 *	      James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *					   Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *			    <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *	Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  20 *
  21 *	This program is free software; you can redistribute it and/or modify
  22 *	it under the terms of the GNU General Public License version 2,
  23 *	as published by the Free Software Foundation.
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/kd.h>
  28#include <linux/kernel.h>
 
  29#include <linux/tracehook.h>
  30#include <linux/errno.h>
  31#include <linux/sched.h>
  32#include <linux/security.h>
 
  33#include <linux/xattr.h>
  34#include <linux/capability.h>
  35#include <linux/unistd.h>
  36#include <linux/mm.h>
  37#include <linux/mman.h>
  38#include <linux/slab.h>
  39#include <linux/pagemap.h>
  40#include <linux/proc_fs.h>
  41#include <linux/swap.h>
  42#include <linux/spinlock.h>
  43#include <linux/syscalls.h>
  44#include <linux/dcache.h>
  45#include <linux/file.h>
  46#include <linux/fdtable.h>
  47#include <linux/namei.h>
  48#include <linux/mount.h>
 
 
  49#include <linux/netfilter_ipv4.h>
  50#include <linux/netfilter_ipv6.h>
  51#include <linux/tty.h>
  52#include <net/icmp.h>
  53#include <net/ip.h>		/* for local_port_range[] */
  54#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
 
  55#include <net/net_namespace.h>
  56#include <net/netlabel.h>
  57#include <linux/uaccess.h>
  58#include <asm/ioctls.h>
  59#include <linux/atomic.h>
  60#include <linux/bitops.h>
  61#include <linux/interrupt.h>
  62#include <linux/netdevice.h>	/* for network interface checks */
  63#include <linux/netlink.h>
  64#include <linux/tcp.h>
  65#include <linux/udp.h>
  66#include <linux/dccp.h>
 
 
  67#include <linux/quota.h>
  68#include <linux/un.h>		/* for Unix socket types */
  69#include <net/af_unix.h>	/* for Unix socket types */
  70#include <linux/parser.h>
  71#include <linux/nfs_mount.h>
  72#include <net/ipv6.h>
  73#include <linux/hugetlb.h>
  74#include <linux/personality.h>
  75#include <linux/audit.h>
  76#include <linux/string.h>
  77#include <linux/selinux.h>
  78#include <linux/mutex.h>
  79#include <linux/posix-timers.h>
  80#include <linux/syslog.h>
  81#include <linux/user_namespace.h>
  82#include <linux/export.h>
  83#include <linux/msg.h>
  84#include <linux/shm.h>
 
 
 
 
 
 
  85
  86#include "avc.h"
  87#include "objsec.h"
  88#include "netif.h"
  89#include "netnode.h"
  90#include "netport.h"
 
  91#include "xfrm.h"
  92#include "netlabel.h"
  93#include "audit.h"
  94#include "avc_ss.h"
  95
  96#define NUM_SEL_MNT_OPTS 5
  97
  98extern struct security_operations *security_ops;
  99
 100/* SECMARK reference count */
 101static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 102
 103#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 104int selinux_enforcing;
 105
 106static int __init enforcing_setup(char *str)
 107{
 108	unsigned long enforcing;
 109	if (!strict_strtoul(str, 0, &enforcing))
 110		selinux_enforcing = enforcing ? 1 : 0;
 111	return 1;
 112}
 113__setup("enforcing=", enforcing_setup);
 
 
 114#endif
 115
 
 116#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 117int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 118
 119static int __init selinux_enabled_setup(char *str)
 120{
 121	unsigned long enabled;
 122	if (!strict_strtoul(str, 0, &enabled))
 123		selinux_enabled = enabled ? 1 : 0;
 124	return 1;
 125}
 126__setup("selinux=", selinux_enabled_setup);
 127#else
 128int selinux_enabled = 1;
 129#endif
 130
 131static struct kmem_cache *sel_inode_cache;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132
 133/**
 134 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 135 *
 136 * Description:
 137 * This function checks the SECMARK reference counter to see if any SECMARK
 138 * targets are currently configured, if the reference counter is greater than
 139 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 140 * enabled, false (0) if SECMARK is disabled.
 
 141 *
 142 */
 143static int selinux_secmark_enabled(void)
 144{
 145	return (atomic_read(&selinux_secmark_refcount) > 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 146}
 147
 148/*
 149 * initialise the security for the init task
 150 */
 151static void cred_init_security(void)
 152{
 153	struct cred *cred = (struct cred *) current->real_cred;
 154	struct task_security_struct *tsec;
 155
 156	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 157	if (!tsec)
 158		panic("SELinux:  Failed to initialize initial task.\n");
 159
 160	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 161	cred->security = tsec;
 162}
 163
 164/*
 165 * get the security ID of a set of credentials
 166 */
 167static inline u32 cred_sid(const struct cred *cred)
 168{
 169	const struct task_security_struct *tsec;
 170
 171	tsec = cred->security;
 172	return tsec->sid;
 173}
 174
 175/*
 176 * get the objective security ID of a task
 177 */
 178static inline u32 task_sid(const struct task_struct *task)
 179{
 180	u32 sid;
 181
 182	rcu_read_lock();
 183	sid = cred_sid(__task_cred(task));
 184	rcu_read_unlock();
 185	return sid;
 186}
 187
 188/*
 189 * get the subjective security ID of the current task
 190 */
 191static inline u32 current_sid(void)
 192{
 193	const struct task_security_struct *tsec = current_security();
 194
 195	return tsec->sid;
 
 
 
 196}
 197
 198/* Allocate and free functions for each kind of security blob. */
 199
 200static int inode_alloc_security(struct inode *inode)
 
 201{
 202	struct inode_security_struct *isec;
 203	u32 sid = current_sid();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 204
 205	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 206	if (!isec)
 207		return -ENOMEM;
 208
 209	mutex_init(&isec->lock);
 210	INIT_LIST_HEAD(&isec->list);
 211	isec->inode = inode;
 212	isec->sid = SECINITSID_UNLABELED;
 213	isec->sclass = SECCLASS_FILE;
 214	isec->task_sid = sid;
 215	inode->i_security = isec;
 
 
 
 
 
 
 
 
 
 
 
 216
 
 
 
 
 
 
 
 217	return 0;
 218}
 219
 220static void inode_free_security(struct inode *inode)
 221{
 222	struct inode_security_struct *isec = inode->i_security;
 223	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 224
 225	spin_lock(&sbsec->isec_lock);
 226	if (!list_empty(&isec->list))
 227		list_del_init(&isec->list);
 228	spin_unlock(&sbsec->isec_lock);
 229
 230	inode->i_security = NULL;
 231	kmem_cache_free(sel_inode_cache, isec);
 232}
 233
 234static int file_alloc_security(struct file *file)
 235{
 236	struct file_security_struct *fsec;
 237	u32 sid = current_sid();
 238
 239	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
 240	if (!fsec)
 241		return -ENOMEM;
 242
 243	fsec->sid = sid;
 244	fsec->fown_sid = sid;
 245	file->f_security = fsec;
 246
 247	return 0;
 
 
 
 248}
 249
 250static void file_free_security(struct file *file)
 
 
 
 251{
 252	struct file_security_struct *fsec = file->f_security;
 253	file->f_security = NULL;
 254	kfree(fsec);
 255}
 256
 257static int superblock_alloc_security(struct super_block *sb)
 258{
 259	struct superblock_security_struct *sbsec;
 260
 261	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 262	if (!sbsec)
 263		return -ENOMEM;
 264
 265	mutex_init(&sbsec->lock);
 266	INIT_LIST_HEAD(&sbsec->isec_head);
 267	spin_lock_init(&sbsec->isec_lock);
 268	sbsec->sb = sb;
 269	sbsec->sid = SECINITSID_UNLABELED;
 270	sbsec->def_sid = SECINITSID_FILE;
 271	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 272	sb->s_security = sbsec;
 273
 274	return 0;
 
 275}
 276
 277static void superblock_free_security(struct super_block *sb)
 278{
 279	struct superblock_security_struct *sbsec = sb->s_security;
 280	sb->s_security = NULL;
 281	kfree(sbsec);
 282}
 283
 284/* The file system's label must be initialized prior to use. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 285
 286static const char *labeling_behaviors[6] = {
 287	"uses xattr",
 288	"uses transition SIDs",
 289	"uses task SIDs",
 290	"uses genfs_contexts",
 291	"not configured for labeling",
 292	"uses mountpoint labeling",
 293};
 294
 295static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 296
 297static inline int inode_doinit(struct inode *inode)
 298{
 299	return inode_doinit_with_dentry(inode, NULL);
 
 
 
 
 
 300}
 301
 302enum {
 303	Opt_error = -1,
 304	Opt_context = 1,
 
 305	Opt_fscontext = 2,
 306	Opt_defcontext = 3,
 307	Opt_rootcontext = 4,
 308	Opt_labelsupport = 5,
 309};
 310
 311static const match_table_t tokens = {
 312	{Opt_context, CONTEXT_STR "%s"},
 313	{Opt_fscontext, FSCONTEXT_STR "%s"},
 314	{Opt_defcontext, DEFCONTEXT_STR "%s"},
 315	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 316	{Opt_labelsupport, LABELSUPP_STR},
 317	{Opt_error, NULL},
 
 
 
 
 
 318};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319
 320#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 321
 322static int may_context_mount_sb_relabel(u32 sid,
 323			struct superblock_security_struct *sbsec,
 324			const struct cred *cred)
 325{
 326	const struct task_security_struct *tsec = cred->security;
 327	int rc;
 328
 329	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 330			  FILESYSTEM__RELABELFROM, NULL);
 331	if (rc)
 332		return rc;
 333
 334	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 
 335			  FILESYSTEM__RELABELTO, NULL);
 336	return rc;
 337}
 338
 339static int may_context_mount_inode_relabel(u32 sid,
 340			struct superblock_security_struct *sbsec,
 341			const struct cred *cred)
 342{
 343	const struct task_security_struct *tsec = cred->security;
 344	int rc;
 345	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 346			  FILESYSTEM__RELABELFROM, NULL);
 347	if (rc)
 348		return rc;
 349
 350	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 351			  FILESYSTEM__ASSOCIATE, NULL);
 352	return rc;
 353}
 354
 355static int sb_finish_set_opts(struct super_block *sb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 356{
 357	struct superblock_security_struct *sbsec = sb->s_security;
 358	struct dentry *root = sb->s_root;
 359	struct inode *root_inode = root->d_inode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 360	int rc = 0;
 361
 362	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 363		/* Make sure that the xattr handler exists and that no
 364		   error other than -ENODATA is returned by getxattr on
 365		   the root directory.  -ENODATA is ok, as this may be
 366		   the first boot of the SELinux kernel before we have
 367		   assigned xattr values to the filesystem. */
 368		if (!root_inode->i_op->getxattr) {
 369			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 370			       "xattr support\n", sb->s_id, sb->s_type->name);
 371			rc = -EOPNOTSUPP;
 372			goto out;
 373		}
 374		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
 375		if (rc < 0 && rc != -ENODATA) {
 376			if (rc == -EOPNOTSUPP)
 377				printk(KERN_WARNING "SELinux: (dev %s, type "
 378				       "%s) has no security xattr handler\n",
 379				       sb->s_id, sb->s_type->name);
 380			else
 381				printk(KERN_WARNING "SELinux: (dev %s, type "
 382				       "%s) getxattr errno %d\n", sb->s_id,
 383				       sb->s_type->name, -rc);
 384			goto out;
 385		}
 386	}
 387
 388	sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
 389
 390	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 391		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
 392		       sb->s_id, sb->s_type->name);
 
 
 
 
 393	else
 394		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
 395		       sb->s_id, sb->s_type->name,
 396		       labeling_behaviors[sbsec->behavior-1]);
 397
 398	if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
 399	    sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
 400	    sbsec->behavior == SECURITY_FS_USE_NONE ||
 401	    sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 402		sbsec->flags &= ~SE_SBLABELSUPP;
 403
 404	/* Special handling for sysfs. Is genfs but also has setxattr handler*/
 405	if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
 406		sbsec->flags |= SE_SBLABELSUPP;
 407
 408	/* Initialize the root inode. */
 409	rc = inode_doinit_with_dentry(root_inode, root);
 410
 411	/* Initialize any other inodes associated with the superblock, e.g.
 412	   inodes created prior to initial policy load or inodes created
 413	   during get_sb by a pseudo filesystem that directly
 414	   populates itself. */
 415	spin_lock(&sbsec->isec_lock);
 416next_inode:
 417	if (!list_empty(&sbsec->isec_head)) {
 418		struct inode_security_struct *isec =
 419				list_entry(sbsec->isec_head.next,
 420					   struct inode_security_struct, list);
 421		struct inode *inode = isec->inode;
 
 422		spin_unlock(&sbsec->isec_lock);
 423		inode = igrab(inode);
 424		if (inode) {
 425			if (!IS_PRIVATE(inode))
 426				inode_doinit(inode);
 427			iput(inode);
 428		}
 429		spin_lock(&sbsec->isec_lock);
 430		list_del_init(&isec->list);
 431		goto next_inode;
 432	}
 433	spin_unlock(&sbsec->isec_lock);
 434out:
 435	return rc;
 436}
 437
 438/*
 439 * This function should allow an FS to ask what it's mount security
 440 * options were so it can use those later for submounts, displaying
 441 * mount options, or whatever.
 442 */
 443static int selinux_get_mnt_opts(const struct super_block *sb,
 444				struct security_mnt_opts *opts)
 445{
 446	int rc = 0, i;
 447	struct superblock_security_struct *sbsec = sb->s_security;
 448	char *context = NULL;
 449	u32 len;
 450	char tmp;
 451
 452	security_init_mnt_opts(opts);
 453
 454	if (!(sbsec->flags & SE_SBINITIALIZED))
 455		return -EINVAL;
 456
 457	if (!ss_initialized)
 458		return -EINVAL;
 459
 460	tmp = sbsec->flags & SE_MNTMASK;
 461	/* count the number of mount options for this sb */
 462	for (i = 0; i < 8; i++) {
 463		if (tmp & 0x01)
 464			opts->num_mnt_opts++;
 465		tmp >>= 1;
 466	}
 467	/* Check if the Label support flag is set */
 468	if (sbsec->flags & SE_SBLABELSUPP)
 469		opts->num_mnt_opts++;
 470
 471	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 472	if (!opts->mnt_opts) {
 473		rc = -ENOMEM;
 474		goto out_free;
 475	}
 476
 477	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 478	if (!opts->mnt_opts_flags) {
 479		rc = -ENOMEM;
 480		goto out_free;
 481	}
 482
 483	i = 0;
 484	if (sbsec->flags & FSCONTEXT_MNT) {
 485		rc = security_sid_to_context(sbsec->sid, &context, &len);
 486		if (rc)
 487			goto out_free;
 488		opts->mnt_opts[i] = context;
 489		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 490	}
 491	if (sbsec->flags & CONTEXT_MNT) {
 492		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
 493		if (rc)
 494			goto out_free;
 495		opts->mnt_opts[i] = context;
 496		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 497	}
 498	if (sbsec->flags & DEFCONTEXT_MNT) {
 499		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
 500		if (rc)
 501			goto out_free;
 502		opts->mnt_opts[i] = context;
 503		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 504	}
 505	if (sbsec->flags & ROOTCONTEXT_MNT) {
 506		struct inode *root = sbsec->sb->s_root->d_inode;
 507		struct inode_security_struct *isec = root->i_security;
 508
 509		rc = security_sid_to_context(isec->sid, &context, &len);
 510		if (rc)
 511			goto out_free;
 512		opts->mnt_opts[i] = context;
 513		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 514	}
 515	if (sbsec->flags & SE_SBLABELSUPP) {
 516		opts->mnt_opts[i] = NULL;
 517		opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
 518	}
 519
 520	BUG_ON(i != opts->num_mnt_opts);
 521
 522	return 0;
 523
 524out_free:
 525	security_free_mnt_opts(opts);
 526	return rc;
 527}
 528
 529static int bad_option(struct superblock_security_struct *sbsec, char flag,
 530		      u32 old_sid, u32 new_sid)
 531{
 532	char mnt_flags = sbsec->flags & SE_MNTMASK;
 533
 534	/* check if the old mount command had the same options */
 535	if (sbsec->flags & SE_SBINITIALIZED)
 536		if (!(sbsec->flags & flag) ||
 537		    (old_sid != new_sid))
 538			return 1;
 539
 540	/* check if we were passed the same options twice,
 541	 * aka someone passed context=a,context=b
 542	 */
 543	if (!(sbsec->flags & SE_SBINITIALIZED))
 544		if (mnt_flags & flag)
 545			return 1;
 546	return 0;
 547}
 548
 
 
 
 
 
 
 
 
 
 
 
 549/*
 550 * Allow filesystems with binary mount data to explicitly set mount point
 551 * labeling information.
 552 */
 553static int selinux_set_mnt_opts(struct super_block *sb,
 554				struct security_mnt_opts *opts)
 
 
 555{
 556	const struct cred *cred = current_cred();
 557	int rc = 0, i;
 558	struct superblock_security_struct *sbsec = sb->s_security;
 559	const char *name = sb->s_type->name;
 560	struct inode *inode = sbsec->sb->s_root->d_inode;
 561	struct inode_security_struct *root_isec = inode->i_security;
 562	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 563	u32 defcontext_sid = 0;
 564	char **mount_options = opts->mnt_opts;
 565	int *flags = opts->mnt_opts_flags;
 566	int num_opts = opts->num_mnt_opts;
 567
 568	mutex_lock(&sbsec->lock);
 569
 570	if (!ss_initialized) {
 571		if (!num_opts) {
 572			/* Defer initialization until selinux_complete_init,
 573			   after the initial policy is loaded and the security
 574			   server is ready to handle calls. */
 575			goto out;
 576		}
 577		rc = -EINVAL;
 578		printk(KERN_WARNING "SELinux: Unable to set superblock options "
 579			"before the security server is initialized\n");
 580		goto out;
 581	}
 
 
 
 
 
 
 582
 583	/*
 584	 * Binary mount data FS will come through this function twice.  Once
 585	 * from an explicit call and once from the generic calls from the vfs.
 586	 * Since the generic VFS calls will not contain any security mount data
 587	 * we need to skip the double mount verification.
 588	 *
 589	 * This does open a hole in which we will not notice if the first
 590	 * mount using this sb set explict options and a second mount using
 591	 * this sb does not set any security options.  (The first options
 592	 * will be used for both mounts)
 593	 */
 594	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 595	    && (num_opts == 0))
 596		goto out;
 597
 
 
 598	/*
 599	 * parse the mount options, check if they are valid sids.
 600	 * also check if someone is trying to mount the same sb more
 601	 * than once with different security options.
 602	 */
 603	for (i = 0; i < num_opts; i++) {
 604		u32 sid;
 605
 606		if (flags[i] == SE_SBLABELSUPP)
 607			continue;
 608		rc = security_context_to_sid(mount_options[i],
 609					     strlen(mount_options[i]), &sid);
 610		if (rc) {
 611			printk(KERN_WARNING "SELinux: security_context_to_sid"
 612			       "(%s) failed for (dev %s, type %s) errno=%d\n",
 613			       mount_options[i], sb->s_id, name, rc);
 614			goto out;
 615		}
 616		switch (flags[i]) {
 617		case FSCONTEXT_MNT:
 618			fscontext_sid = sid;
 619
 620			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 621					fscontext_sid))
 622				goto out_double_mount;
 623
 624			sbsec->flags |= FSCONTEXT_MNT;
 625			break;
 626		case CONTEXT_MNT:
 627			context_sid = sid;
 628
 
 629			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 630					context_sid))
 631				goto out_double_mount;
 632
 633			sbsec->flags |= CONTEXT_MNT;
 634			break;
 635		case ROOTCONTEXT_MNT:
 636			rootcontext_sid = sid;
 637
 
 638			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 639					rootcontext_sid))
 640				goto out_double_mount;
 641
 642			sbsec->flags |= ROOTCONTEXT_MNT;
 643
 644			break;
 645		case DEFCONTEXT_MNT:
 646			defcontext_sid = sid;
 647
 648			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 649					defcontext_sid))
 650				goto out_double_mount;
 651
 652			sbsec->flags |= DEFCONTEXT_MNT;
 653
 654			break;
 655		default:
 656			rc = -EINVAL;
 657			goto out;
 658		}
 659	}
 660
 661	if (sbsec->flags & SE_SBINITIALIZED) {
 662		/* previously mounted with options, but not on this attempt? */
 663		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 664			goto out_double_mount;
 665		rc = 0;
 666		goto out;
 667	}
 668
 669	if (strcmp(sb->s_type->name, "proc") == 0)
 670		sbsec->flags |= SE_SBPROC;
 671
 672	/* Determine the labeling behavior to use for this filesystem type. */
 673	rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
 674	if (rc) {
 675		printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
 676		       __func__, sb->s_type->name, rc);
 677		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 678	}
 679
 680	/* sets the context of the superblock for the fs being mounted. */
 681	if (fscontext_sid) {
 682		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 683		if (rc)
 684			goto out;
 685
 686		sbsec->sid = fscontext_sid;
 687	}
 688
 689	/*
 690	 * Switch to using mount point labeling behavior.
 691	 * sets the label used on all file below the mountpoint, and will set
 692	 * the superblock context if not already set.
 693	 */
 
 
 
 
 
 694	if (context_sid) {
 695		if (!fscontext_sid) {
 696			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 697							  cred);
 698			if (rc)
 699				goto out;
 700			sbsec->sid = context_sid;
 701		} else {
 702			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 703							     cred);
 704			if (rc)
 705				goto out;
 706		}
 707		if (!rootcontext_sid)
 708			rootcontext_sid = context_sid;
 709
 710		sbsec->mntpoint_sid = context_sid;
 711		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 712	}
 713
 714	if (rootcontext_sid) {
 715		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 716						     cred);
 717		if (rc)
 718			goto out;
 719
 720		root_isec->sid = rootcontext_sid;
 721		root_isec->initialized = 1;
 722	}
 723
 724	if (defcontext_sid) {
 725		if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
 
 726			rc = -EINVAL;
 727			printk(KERN_WARNING "SELinux: defcontext option is "
 728			       "invalid for this filesystem type\n");
 729			goto out;
 730		}
 731
 732		if (defcontext_sid != sbsec->def_sid) {
 733			rc = may_context_mount_inode_relabel(defcontext_sid,
 734							     sbsec, cred);
 735			if (rc)
 736				goto out;
 737		}
 738
 739		sbsec->def_sid = defcontext_sid;
 740	}
 741
 
 742	rc = sb_finish_set_opts(sb);
 743out:
 744	mutex_unlock(&sbsec->lock);
 745	return rc;
 746out_double_mount:
 747	rc = -EINVAL;
 748	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 749	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
 
 750	goto out;
 751}
 752
 753static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 754					struct super_block *newsb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755{
 756	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 757	struct superblock_security_struct *newsbsec = newsb->s_security;
 
 
 758
 759	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 760	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 761	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 762
 763	/*
 764	 * if the parent was able to be mounted it clearly had no special lsm
 765	 * mount options.  thus we can safely deal with this superblock later
 766	 */
 767	if (!ss_initialized)
 768		return;
 
 
 
 
 
 
 
 769
 770	/* how can we clone if the old one wasn't set up?? */
 771	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 772
 773	/* if fs is reusing a sb, just let its options stand... */
 774	if (newsbsec->flags & SE_SBINITIALIZED)
 775		return;
 
 
 
 776
 777	mutex_lock(&newsbsec->lock);
 778
 779	newsbsec->flags = oldsbsec->flags;
 780
 781	newsbsec->sid = oldsbsec->sid;
 782	newsbsec->def_sid = oldsbsec->def_sid;
 783	newsbsec->behavior = oldsbsec->behavior;
 784
 
 
 
 
 
 
 
 
 
 
 
 
 785	if (set_context) {
 786		u32 sid = oldsbsec->mntpoint_sid;
 787
 788		if (!set_fscontext)
 789			newsbsec->sid = sid;
 790		if (!set_rootcontext) {
 791			struct inode *newinode = newsb->s_root->d_inode;
 792			struct inode_security_struct *newisec = newinode->i_security;
 793			newisec->sid = sid;
 794		}
 795		newsbsec->mntpoint_sid = sid;
 796	}
 797	if (set_rootcontext) {
 798		const struct inode *oldinode = oldsb->s_root->d_inode;
 799		const struct inode_security_struct *oldisec = oldinode->i_security;
 800		struct inode *newinode = newsb->s_root->d_inode;
 801		struct inode_security_struct *newisec = newinode->i_security;
 802
 803		newisec->sid = oldisec->sid;
 804	}
 805
 806	sb_finish_set_opts(newsb);
 
 807	mutex_unlock(&newsbsec->lock);
 
 808}
 809
 810static int selinux_parse_opts_str(char *options,
 811				  struct security_mnt_opts *opts)
 812{
 813	char *p;
 814	char *context = NULL, *defcontext = NULL;
 815	char *fscontext = NULL, *rootcontext = NULL;
 816	int rc, num_mnt_opts = 0;
 817
 818	opts->num_mnt_opts = 0;
 819
 820	/* Standard string-based options. */
 821	while ((p = strsep(&options, "|")) != NULL) {
 822		int token;
 823		substring_t args[MAX_OPT_ARGS];
 824
 825		if (!*p)
 826			continue;
 827
 828		token = match_token(p, tokens, args);
 829
 830		switch (token) {
 831		case Opt_context:
 832			if (context || defcontext) {
 833				rc = -EINVAL;
 834				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 835				goto out_err;
 836			}
 837			context = match_strdup(&args[0]);
 838			if (!context) {
 839				rc = -ENOMEM;
 840				goto out_err;
 841			}
 842			break;
 843
 844		case Opt_fscontext:
 845			if (fscontext) {
 846				rc = -EINVAL;
 847				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 848				goto out_err;
 849			}
 850			fscontext = match_strdup(&args[0]);
 851			if (!fscontext) {
 852				rc = -ENOMEM;
 853				goto out_err;
 854			}
 855			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856
 857		case Opt_rootcontext:
 858			if (rootcontext) {
 859				rc = -EINVAL;
 860				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 861				goto out_err;
 862			}
 863			rootcontext = match_strdup(&args[0]);
 864			if (!rootcontext) {
 865				rc = -ENOMEM;
 866				goto out_err;
 867			}
 868			break;
 869
 870		case Opt_defcontext:
 871			if (context || defcontext) {
 872				rc = -EINVAL;
 873				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 874				goto out_err;
 875			}
 876			defcontext = match_strdup(&args[0]);
 877			if (!defcontext) {
 878				rc = -ENOMEM;
 879				goto out_err;
 880			}
 881			break;
 882		case Opt_labelsupport:
 883			break;
 884		default:
 885			rc = -EINVAL;
 886			printk(KERN_WARNING "SELinux:  unknown mount option\n");
 887			goto out_err;
 888
 889		}
 890	}
 891
 892	rc = -ENOMEM;
 893	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
 894	if (!opts->mnt_opts)
 895		goto out_err;
 896
 897	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
 898	if (!opts->mnt_opts_flags) {
 899		kfree(opts->mnt_opts);
 900		goto out_err;
 901	}
 902
 903	if (fscontext) {
 904		opts->mnt_opts[num_mnt_opts] = fscontext;
 905		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
 906	}
 907	if (context) {
 908		opts->mnt_opts[num_mnt_opts] = context;
 909		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
 910	}
 911	if (rootcontext) {
 912		opts->mnt_opts[num_mnt_opts] = rootcontext;
 913		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
 914	}
 915	if (defcontext) {
 916		opts->mnt_opts[num_mnt_opts] = defcontext;
 917		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
 
 918	}
 919
 920	opts->num_mnt_opts = num_mnt_opts;
 921	return 0;
 922
 923out_err:
 924	kfree(context);
 925	kfree(defcontext);
 926	kfree(fscontext);
 927	kfree(rootcontext);
 928	return rc;
 929}
 930/*
 931 * string mount options parsing and call set the sbsec
 932 */
 933static int superblock_doinit(struct super_block *sb, void *data)
 934{
 935	int rc = 0;
 936	char *options = data;
 937	struct security_mnt_opts opts;
 938
 939	security_init_mnt_opts(&opts);
 940
 941	if (!data)
 942		goto out;
 943
 944	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
 945
 946	rc = selinux_parse_opts_str(options, &opts);
 947	if (rc)
 948		goto out_err;
 949
 950out:
 951	rc = selinux_set_mnt_opts(sb, &opts);
 952
 953out_err:
 954	security_free_mnt_opts(&opts);
 
 
 
 955	return rc;
 956}
 957
 958static void selinux_write_opts(struct seq_file *m,
 959			       struct security_mnt_opts *opts)
 960{
 961	int i;
 962	char *prefix;
 963
 964	for (i = 0; i < opts->num_mnt_opts; i++) {
 965		char *has_comma;
 966
 967		if (opts->mnt_opts[i])
 968			has_comma = strchr(opts->mnt_opts[i], ',');
 969		else
 970			has_comma = NULL;
 971
 972		switch (opts->mnt_opts_flags[i]) {
 973		case CONTEXT_MNT:
 974			prefix = CONTEXT_STR;
 975			break;
 976		case FSCONTEXT_MNT:
 977			prefix = FSCONTEXT_STR;
 978			break;
 979		case ROOTCONTEXT_MNT:
 980			prefix = ROOTCONTEXT_STR;
 981			break;
 982		case DEFCONTEXT_MNT:
 983			prefix = DEFCONTEXT_STR;
 984			break;
 985		case SE_SBLABELSUPP:
 986			seq_putc(m, ',');
 987			seq_puts(m, LABELSUPP_STR);
 988			continue;
 989		default:
 990			BUG();
 991			return;
 992		};
 993		/* we need a comma before each option */
 994		seq_putc(m, ',');
 995		seq_puts(m, prefix);
 996		if (has_comma)
 997			seq_putc(m, '\"');
 998		seq_puts(m, opts->mnt_opts[i]);
 999		if (has_comma)
1000			seq_putc(m, '\"');
1001	}
 
 
1002}
1003
1004static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1005{
1006	struct security_mnt_opts opts;
1007	int rc;
1008
1009	rc = selinux_get_mnt_opts(sb, &opts);
1010	if (rc) {
1011		/* before policy load we may get EINVAL, don't show anything */
1012		if (rc == -EINVAL)
1013			rc = 0;
1014		return rc;
1015	}
1016
1017	selinux_write_opts(m, &opts);
1018
1019	security_free_mnt_opts(&opts);
 
1020
1021	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1022}
1023
1024static inline u16 inode_mode_to_security_class(umode_t mode)
1025{
1026	switch (mode & S_IFMT) {
1027	case S_IFSOCK:
1028		return SECCLASS_SOCK_FILE;
1029	case S_IFLNK:
1030		return SECCLASS_LNK_FILE;
1031	case S_IFREG:
1032		return SECCLASS_FILE;
1033	case S_IFBLK:
1034		return SECCLASS_BLK_FILE;
1035	case S_IFDIR:
1036		return SECCLASS_DIR;
1037	case S_IFCHR:
1038		return SECCLASS_CHR_FILE;
1039	case S_IFIFO:
1040		return SECCLASS_FIFO_FILE;
1041
1042	}
1043
1044	return SECCLASS_FILE;
1045}
1046
1047static inline int default_protocol_stream(int protocol)
1048{
1049	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
 
1050}
1051
1052static inline int default_protocol_dgram(int protocol)
1053{
1054	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1055}
1056
1057static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1058{
 
 
1059	switch (family) {
1060	case PF_UNIX:
1061		switch (type) {
1062		case SOCK_STREAM:
1063		case SOCK_SEQPACKET:
1064			return SECCLASS_UNIX_STREAM_SOCKET;
1065		case SOCK_DGRAM:
 
1066			return SECCLASS_UNIX_DGRAM_SOCKET;
1067		}
1068		break;
1069	case PF_INET:
1070	case PF_INET6:
1071		switch (type) {
1072		case SOCK_STREAM:
 
1073			if (default_protocol_stream(protocol))
1074				return SECCLASS_TCP_SOCKET;
 
 
1075			else
1076				return SECCLASS_RAWIP_SOCKET;
1077		case SOCK_DGRAM:
1078			if (default_protocol_dgram(protocol))
1079				return SECCLASS_UDP_SOCKET;
 
 
 
1080			else
1081				return SECCLASS_RAWIP_SOCKET;
1082		case SOCK_DCCP:
1083			return SECCLASS_DCCP_SOCKET;
1084		default:
1085			return SECCLASS_RAWIP_SOCKET;
1086		}
1087		break;
1088	case PF_NETLINK:
1089		switch (protocol) {
1090		case NETLINK_ROUTE:
1091			return SECCLASS_NETLINK_ROUTE_SOCKET;
1092		case NETLINK_FIREWALL:
1093			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1094		case NETLINK_SOCK_DIAG:
1095			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1096		case NETLINK_NFLOG:
1097			return SECCLASS_NETLINK_NFLOG_SOCKET;
1098		case NETLINK_XFRM:
1099			return SECCLASS_NETLINK_XFRM_SOCKET;
1100		case NETLINK_SELINUX:
1101			return SECCLASS_NETLINK_SELINUX_SOCKET;
 
 
1102		case NETLINK_AUDIT:
1103			return SECCLASS_NETLINK_AUDIT_SOCKET;
1104		case NETLINK_IP6_FW:
1105			return SECCLASS_NETLINK_IP6FW_SOCKET;
 
 
 
 
1106		case NETLINK_DNRTMSG:
1107			return SECCLASS_NETLINK_DNRT_SOCKET;
1108		case NETLINK_KOBJECT_UEVENT:
1109			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
 
 
 
 
 
 
 
 
1110		default:
1111			return SECCLASS_NETLINK_SOCKET;
1112		}
1113	case PF_PACKET:
1114		return SECCLASS_PACKET_SOCKET;
1115	case PF_KEY:
1116		return SECCLASS_KEY_SOCKET;
1117	case PF_APPLETALK:
1118		return SECCLASS_APPLETALK_SOCKET;
1119	}
1120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1121	return SECCLASS_SOCKET;
1122}
1123
1124#ifdef CONFIG_PROC_FS
1125static int selinux_proc_get_sid(struct dentry *dentry,
1126				u16 tclass,
1127				u32 *sid)
1128{
1129	int rc;
 
1130	char *buffer, *path;
1131
1132	buffer = (char *)__get_free_page(GFP_KERNEL);
1133	if (!buffer)
1134		return -ENOMEM;
1135
1136	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1137	if (IS_ERR(path))
1138		rc = PTR_ERR(path);
1139	else {
1140		/* each process gets a /proc/PID/ entry. Strip off the
1141		 * PID part to get a valid selinux labeling.
1142		 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1143		while (path[1] >= '0' && path[1] <= '9') {
1144			path[1] = '/';
1145			path++;
 
 
 
 
 
 
 
 
 
1146		}
1147		rc = security_genfs_sid("proc", path, tclass, sid);
1148	}
1149	free_page((unsigned long)buffer);
1150	return rc;
1151}
1152#else
1153static int selinux_proc_get_sid(struct dentry *dentry,
1154				u16 tclass,
1155				u32 *sid)
1156{
1157	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1158}
1159#endif
1160
1161/* The inode's security attributes must be initialized before first use. */
1162static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1163{
1164	struct superblock_security_struct *sbsec = NULL;
1165	struct inode_security_struct *isec = inode->i_security;
1166	u32 sid;
 
1167	struct dentry *dentry;
1168#define INITCONTEXTLEN 255
1169	char *context = NULL;
1170	unsigned len = 0;
1171	int rc = 0;
1172
1173	if (isec->initialized)
1174		goto out;
1175
1176	mutex_lock(&isec->lock);
1177	if (isec->initialized)
1178		goto out_unlock;
1179
1180	sbsec = inode->i_sb->s_security;
 
 
 
1181	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1182		/* Defer initialization until selinux_complete_init,
1183		   after the initial policy is loaded and the security
1184		   server is ready to handle calls. */
1185		spin_lock(&sbsec->isec_lock);
1186		if (list_empty(&isec->list))
1187			list_add(&isec->list, &sbsec->isec_head);
1188		spin_unlock(&sbsec->isec_lock);
1189		goto out_unlock;
1190	}
1191
 
 
 
 
 
 
1192	switch (sbsec->behavior) {
 
 
1193	case SECURITY_FS_USE_XATTR:
1194		if (!inode->i_op->getxattr) {
1195			isec->sid = sbsec->def_sid;
1196			break;
1197		}
1198
1199		/* Need a dentry, since the xattr API requires one.
1200		   Life would be simpler if we could just pass the inode. */
1201		if (opt_dentry) {
1202			/* Called from d_instantiate or d_splice_alias. */
1203			dentry = dget(opt_dentry);
1204		} else {
1205			/* Called from selinux_complete_init, try to find a dentry. */
 
 
 
 
 
1206			dentry = d_find_alias(inode);
 
 
1207		}
1208		if (!dentry) {
1209			/*
1210			 * this is can be hit on boot when a file is accessed
1211			 * before the policy is loaded.  When we load policy we
1212			 * may find inodes that have no dentry on the
1213			 * sbsec->isec_head list.  No reason to complain as these
1214			 * will get fixed up the next time we go through
1215			 * inode_doinit with a dentry, before these inodes could
1216			 * be used again by userspace.
1217			 */
1218			goto out_unlock;
1219		}
1220
1221		len = INITCONTEXTLEN;
1222		context = kmalloc(len+1, GFP_NOFS);
1223		if (!context) {
1224			rc = -ENOMEM;
1225			dput(dentry);
1226			goto out_unlock;
1227		}
1228		context[len] = '\0';
1229		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1230					   context, len);
1231		if (rc == -ERANGE) {
1232			kfree(context);
1233
1234			/* Need a larger buffer.  Query for the right size. */
1235			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1236						   NULL, 0);
1237			if (rc < 0) {
1238				dput(dentry);
1239				goto out_unlock;
1240			}
1241			len = rc;
1242			context = kmalloc(len+1, GFP_NOFS);
1243			if (!context) {
1244				rc = -ENOMEM;
1245				dput(dentry);
1246				goto out_unlock;
1247			}
1248			context[len] = '\0';
1249			rc = inode->i_op->getxattr(dentry,
1250						   XATTR_NAME_SELINUX,
1251						   context, len);
1252		}
1253		dput(dentry);
1254		if (rc < 0) {
1255			if (rc != -ENODATA) {
1256				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1257				       "%d for dev=%s ino=%ld\n", __func__,
1258				       -rc, inode->i_sb->s_id, inode->i_ino);
1259				kfree(context);
1260				goto out_unlock;
1261			}
1262			/* Map ENODATA to the default file SID */
1263			sid = sbsec->def_sid;
1264			rc = 0;
1265		} else {
1266			rc = security_context_to_sid_default(context, rc, &sid,
1267							     sbsec->def_sid,
1268							     GFP_NOFS);
1269			if (rc) {
1270				char *dev = inode->i_sb->s_id;
1271				unsigned long ino = inode->i_ino;
1272
1273				if (rc == -EINVAL) {
1274					if (printk_ratelimit())
1275						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1276							"context=%s.  This indicates you may need to relabel the inode or the "
1277							"filesystem in question.\n", ino, dev, context);
1278				} else {
1279					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1280					       "returned %d for dev=%s ino=%ld\n",
1281					       __func__, context, -rc, dev, ino);
1282				}
1283				kfree(context);
1284				/* Leave with the unlabeled SID */
1285				rc = 0;
1286				break;
1287			}
1288		}
1289		kfree(context);
1290		isec->sid = sid;
1291		break;
1292	case SECURITY_FS_USE_TASK:
1293		isec->sid = isec->task_sid;
1294		break;
1295	case SECURITY_FS_USE_TRANS:
1296		/* Default to the fs SID. */
1297		isec->sid = sbsec->sid;
1298
1299		/* Try to obtain a transition SID. */
1300		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1301		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1302					     isec->sclass, NULL, &sid);
1303		if (rc)
1304			goto out_unlock;
1305		isec->sid = sid;
1306		break;
1307	case SECURITY_FS_USE_MNTPOINT:
1308		isec->sid = sbsec->mntpoint_sid;
1309		break;
1310	default:
1311		/* Default to the fs superblock SID. */
1312		isec->sid = sbsec->sid;
1313
1314		if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
 
 
 
 
1315			if (opt_dentry) {
1316				isec->sclass = inode_mode_to_security_class(inode->i_mode);
1317				rc = selinux_proc_get_sid(opt_dentry,
1318							  isec->sclass,
1319							  &sid);
1320				if (rc)
1321					goto out_unlock;
1322				isec->sid = sid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1323			}
 
1324		}
1325		break;
1326	}
1327
1328	isec->initialized = 1;
 
 
 
 
 
 
 
 
 
1329
1330out_unlock:
1331	mutex_unlock(&isec->lock);
1332out:
1333	if (isec->sclass == SECCLASS_FILE)
1334		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1335	return rc;
 
 
 
 
 
 
 
 
 
1336}
1337
1338/* Convert a Linux signal to an access vector. */
1339static inline u32 signal_to_av(int sig)
1340{
1341	u32 perm = 0;
1342
1343	switch (sig) {
1344	case SIGCHLD:
1345		/* Commonly granted from child to parent. */
1346		perm = PROCESS__SIGCHLD;
1347		break;
1348	case SIGKILL:
1349		/* Cannot be caught or ignored */
1350		perm = PROCESS__SIGKILL;
1351		break;
1352	case SIGSTOP:
1353		/* Cannot be caught or ignored */
1354		perm = PROCESS__SIGSTOP;
1355		break;
1356	default:
1357		/* All other signals. */
1358		perm = PROCESS__SIGNAL;
1359		break;
1360	}
1361
1362	return perm;
1363}
1364
1365/*
1366 * Check permission between a pair of credentials
1367 * fork check, ptrace check, etc.
1368 */
1369static int cred_has_perm(const struct cred *actor,
1370			 const struct cred *target,
1371			 u32 perms)
1372{
1373	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1374
1375	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1376}
1377
1378/*
1379 * Check permission between a pair of tasks, e.g. signal checks,
1380 * fork check, ptrace check, etc.
1381 * tsk1 is the actor and tsk2 is the target
1382 * - this uses the default subjective creds of tsk1
1383 */
1384static int task_has_perm(const struct task_struct *tsk1,
1385			 const struct task_struct *tsk2,
1386			 u32 perms)
1387{
1388	const struct task_security_struct *__tsec1, *__tsec2;
1389	u32 sid1, sid2;
1390
1391	rcu_read_lock();
1392	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1393	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1394	rcu_read_unlock();
1395	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1396}
1397
1398/*
1399 * Check permission between current and another task, e.g. signal checks,
1400 * fork check, ptrace check, etc.
1401 * current is the actor and tsk2 is the target
1402 * - this uses current's subjective creds
1403 */
1404static int current_has_perm(const struct task_struct *tsk,
1405			    u32 perms)
1406{
1407	u32 sid, tsid;
1408
1409	sid = current_sid();
1410	tsid = task_sid(tsk);
1411	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1412}
1413
1414#if CAP_LAST_CAP > 63
1415#error Fix SELinux to handle capabilities > 63.
1416#endif
1417
1418/* Check whether a task is allowed to use a capability. */
1419static int cred_has_capability(const struct cred *cred,
1420			       int cap, int audit)
1421{
1422	struct common_audit_data ad;
1423	struct av_decision avd;
1424	u16 sclass;
1425	u32 sid = cred_sid(cred);
1426	u32 av = CAP_TO_MASK(cap);
1427	int rc;
1428
1429	ad.type = LSM_AUDIT_DATA_CAP;
1430	ad.u.cap = cap;
1431
1432	switch (CAP_TO_INDEX(cap)) {
1433	case 0:
1434		sclass = SECCLASS_CAPABILITY;
1435		break;
1436	case 1:
1437		sclass = SECCLASS_CAPABILITY2;
1438		break;
1439	default:
1440		printk(KERN_ERR
1441		       "SELinux:  out of range capability %d\n", cap);
1442		BUG();
1443		return -EINVAL;
1444	}
1445
1446	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1447	if (audit == SECURITY_CAP_AUDIT) {
1448		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
 
 
1449		if (rc2)
1450			return rc2;
1451	}
1452	return rc;
1453}
1454
1455/* Check whether a task is allowed to use a system operation. */
1456static int task_has_system(struct task_struct *tsk,
1457			   u32 perms)
1458{
1459	u32 sid = task_sid(tsk);
1460
1461	return avc_has_perm(sid, SECINITSID_KERNEL,
1462			    SECCLASS_SYSTEM, perms, NULL);
1463}
1464
1465/* Check whether a task has a particular permission to an inode.
1466   The 'adp' parameter is optional and allows other audit
1467   data to be passed (e.g. the dentry). */
1468static int inode_has_perm(const struct cred *cred,
1469			  struct inode *inode,
1470			  u32 perms,
1471			  struct common_audit_data *adp,
1472			  unsigned flags)
1473{
1474	struct inode_security_struct *isec;
1475	u32 sid;
1476
1477	validate_creds(cred);
1478
1479	if (unlikely(IS_PRIVATE(inode)))
1480		return 0;
1481
1482	sid = cred_sid(cred);
1483	isec = inode->i_security;
1484
1485	return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
 
1486}
1487
1488/* Same as inode_has_perm, but pass explicit audit data containing
1489   the dentry to help the auditing code to more easily generate the
1490   pathname if needed. */
1491static inline int dentry_has_perm(const struct cred *cred,
1492				  struct dentry *dentry,
1493				  u32 av)
1494{
1495	struct inode *inode = dentry->d_inode;
1496	struct common_audit_data ad;
1497
1498	ad.type = LSM_AUDIT_DATA_DENTRY;
1499	ad.u.dentry = dentry;
1500	return inode_has_perm(cred, inode, av, &ad, 0);
 
1501}
1502
1503/* Same as inode_has_perm, but pass explicit audit data containing
1504   the path to help the auditing code to more easily generate the
1505   pathname if needed. */
1506static inline int path_has_perm(const struct cred *cred,
1507				struct path *path,
1508				u32 av)
1509{
1510	struct inode *inode = path->dentry->d_inode;
1511	struct common_audit_data ad;
1512
1513	ad.type = LSM_AUDIT_DATA_PATH;
1514	ad.u.path = *path;
1515	return inode_has_perm(cred, inode, av, &ad, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
1516}
1517
 
 
 
 
1518/* Check whether a task can use an open file descriptor to
1519   access an inode in a given way.  Check access to the
1520   descriptor itself, and then use dentry_has_perm to
1521   check a particular permission to the file.
1522   Access to the descriptor is implicitly granted if it
1523   has the same SID as the process.  If av is zero, then
1524   access to the file is not checked, e.g. for cases
1525   where only the descriptor is affected like seek. */
1526static int file_has_perm(const struct cred *cred,
1527			 struct file *file,
1528			 u32 av)
1529{
1530	struct file_security_struct *fsec = file->f_security;
1531	struct inode *inode = file->f_path.dentry->d_inode;
1532	struct common_audit_data ad;
1533	u32 sid = cred_sid(cred);
1534	int rc;
1535
1536	ad.type = LSM_AUDIT_DATA_PATH;
1537	ad.u.path = file->f_path;
1538
1539	if (sid != fsec->sid) {
1540		rc = avc_has_perm(sid, fsec->sid,
 
1541				  SECCLASS_FD,
1542				  FD__USE,
1543				  &ad);
1544		if (rc)
1545			goto out;
1546	}
1547
 
 
 
 
 
 
1548	/* av is zero if only checking access to the descriptor. */
1549	rc = 0;
1550	if (av)
1551		rc = inode_has_perm(cred, inode, av, &ad, 0);
1552
1553out:
1554	return rc;
1555}
1556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1557/* Check whether a task can create a file. */
1558static int may_create(struct inode *dir,
1559		      struct dentry *dentry,
1560		      u16 tclass)
1561{
1562	const struct task_security_struct *tsec = current_security();
1563	struct inode_security_struct *dsec;
1564	struct superblock_security_struct *sbsec;
1565	u32 sid, newsid;
1566	struct common_audit_data ad;
1567	int rc;
1568
1569	dsec = dir->i_security;
1570	sbsec = dir->i_sb->s_security;
1571
1572	sid = tsec->sid;
1573	newsid = tsec->create_sid;
1574
1575	ad.type = LSM_AUDIT_DATA_DENTRY;
1576	ad.u.dentry = dentry;
1577
1578	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
 
1579			  DIR__ADD_NAME | DIR__SEARCH,
1580			  &ad);
1581	if (rc)
1582		return rc;
1583
1584	if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1585		rc = security_transition_sid(sid, dsec->sid, tclass,
1586					     &dentry->d_name, &newsid);
1587		if (rc)
1588			return rc;
1589	}
1590
1591	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
 
1592	if (rc)
1593		return rc;
1594
1595	return avc_has_perm(newsid, sbsec->sid,
 
1596			    SECCLASS_FILESYSTEM,
1597			    FILESYSTEM__ASSOCIATE, &ad);
1598}
1599
1600/* Check whether a task can create a key. */
1601static int may_create_key(u32 ksid,
1602			  struct task_struct *ctx)
1603{
1604	u32 sid = task_sid(ctx);
1605
1606	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1607}
1608
1609#define MAY_LINK	0
1610#define MAY_UNLINK	1
1611#define MAY_RMDIR	2
1612
1613/* Check whether a task can link, unlink, or rmdir a file/directory. */
1614static int may_link(struct inode *dir,
1615		    struct dentry *dentry,
1616		    int kind)
1617
1618{
1619	struct inode_security_struct *dsec, *isec;
1620	struct common_audit_data ad;
1621	u32 sid = current_sid();
1622	u32 av;
1623	int rc;
1624
1625	dsec = dir->i_security;
1626	isec = dentry->d_inode->i_security;
1627
1628	ad.type = LSM_AUDIT_DATA_DENTRY;
1629	ad.u.dentry = dentry;
1630
1631	av = DIR__SEARCH;
1632	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1633	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
 
1634	if (rc)
1635		return rc;
1636
1637	switch (kind) {
1638	case MAY_LINK:
1639		av = FILE__LINK;
1640		break;
1641	case MAY_UNLINK:
1642		av = FILE__UNLINK;
1643		break;
1644	case MAY_RMDIR:
1645		av = DIR__RMDIR;
1646		break;
1647	default:
1648		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1649			__func__, kind);
1650		return 0;
1651	}
1652
1653	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
 
1654	return rc;
1655}
1656
1657static inline int may_rename(struct inode *old_dir,
1658			     struct dentry *old_dentry,
1659			     struct inode *new_dir,
1660			     struct dentry *new_dentry)
1661{
1662	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1663	struct common_audit_data ad;
1664	u32 sid = current_sid();
1665	u32 av;
1666	int old_is_dir, new_is_dir;
1667	int rc;
1668
1669	old_dsec = old_dir->i_security;
1670	old_isec = old_dentry->d_inode->i_security;
1671	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1672	new_dsec = new_dir->i_security;
1673
1674	ad.type = LSM_AUDIT_DATA_DENTRY;
1675
1676	ad.u.dentry = old_dentry;
1677	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
 
1678			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1679	if (rc)
1680		return rc;
1681	rc = avc_has_perm(sid, old_isec->sid,
 
1682			  old_isec->sclass, FILE__RENAME, &ad);
1683	if (rc)
1684		return rc;
1685	if (old_is_dir && new_dir != old_dir) {
1686		rc = avc_has_perm(sid, old_isec->sid,
 
1687				  old_isec->sclass, DIR__REPARENT, &ad);
1688		if (rc)
1689			return rc;
1690	}
1691
1692	ad.u.dentry = new_dentry;
1693	av = DIR__ADD_NAME | DIR__SEARCH;
1694	if (new_dentry->d_inode)
1695		av |= DIR__REMOVE_NAME;
1696	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
 
1697	if (rc)
1698		return rc;
1699	if (new_dentry->d_inode) {
1700		new_isec = new_dentry->d_inode->i_security;
1701		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1702		rc = avc_has_perm(sid, new_isec->sid,
 
1703				  new_isec->sclass,
1704				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1705		if (rc)
1706			return rc;
1707	}
1708
1709	return 0;
1710}
1711
1712/* Check whether a task can perform a filesystem operation. */
1713static int superblock_has_perm(const struct cred *cred,
1714			       struct super_block *sb,
1715			       u32 perms,
1716			       struct common_audit_data *ad)
1717{
1718	struct superblock_security_struct *sbsec;
1719	u32 sid = cred_sid(cred);
1720
1721	sbsec = sb->s_security;
1722	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
 
1723}
1724
1725/* Convert a Linux mode and permission mask to an access vector. */
1726static inline u32 file_mask_to_av(int mode, int mask)
1727{
1728	u32 av = 0;
1729
1730	if (!S_ISDIR(mode)) {
1731		if (mask & MAY_EXEC)
1732			av |= FILE__EXECUTE;
1733		if (mask & MAY_READ)
1734			av |= FILE__READ;
1735
1736		if (mask & MAY_APPEND)
1737			av |= FILE__APPEND;
1738		else if (mask & MAY_WRITE)
1739			av |= FILE__WRITE;
1740
1741	} else {
1742		if (mask & MAY_EXEC)
1743			av |= DIR__SEARCH;
1744		if (mask & MAY_WRITE)
1745			av |= DIR__WRITE;
1746		if (mask & MAY_READ)
1747			av |= DIR__READ;
1748	}
1749
1750	return av;
1751}
1752
1753/* Convert a Linux file to an access vector. */
1754static inline u32 file_to_av(struct file *file)
1755{
1756	u32 av = 0;
1757
1758	if (file->f_mode & FMODE_READ)
1759		av |= FILE__READ;
1760	if (file->f_mode & FMODE_WRITE) {
1761		if (file->f_flags & O_APPEND)
1762			av |= FILE__APPEND;
1763		else
1764			av |= FILE__WRITE;
1765	}
1766	if (!av) {
1767		/*
1768		 * Special file opened with flags 3 for ioctl-only use.
1769		 */
1770		av = FILE__IOCTL;
1771	}
1772
1773	return av;
1774}
1775
1776/*
1777 * Convert a file to an access vector and include the correct open
1778 * open permission.
1779 */
1780static inline u32 open_file_to_av(struct file *file)
1781{
1782	u32 av = file_to_av(file);
 
1783
1784	if (selinux_policycap_openperm)
 
1785		av |= FILE__OPEN;
1786
1787	return av;
1788}
1789
1790/* Hook functions begin here. */
1791
1792static int selinux_ptrace_access_check(struct task_struct *child,
1793				     unsigned int mode)
1794{
1795	int rc;
 
 
 
1796
1797	rc = cap_ptrace_access_check(child, mode);
1798	if (rc)
1799		return rc;
 
 
 
1800
1801	if (mode & PTRACE_MODE_READ) {
1802		u32 sid = current_sid();
1803		u32 csid = task_sid(child);
1804		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
 
 
1805	}
1806
1807	return current_has_perm(child, PROCESS__PTRACE);
 
1808}
1809
1810static int selinux_ptrace_traceme(struct task_struct *parent)
 
1811{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1812	int rc;
1813
1814	rc = cap_ptrace_traceme(parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815	if (rc)
1816		return rc;
 
1817
1818	return task_has_perm(parent, current, PROCESS__PTRACE);
 
 
 
 
 
 
1819}
1820
1821static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1822			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
1823{
1824	int error;
 
1825
1826	error = current_has_perm(target, PROCESS__GETCAP);
1827	if (error)
1828		return error;
1829
1830	return cap_capget(target, effective, inheritable, permitted);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1831}
1832
1833static int selinux_capset(struct cred *new, const struct cred *old,
1834			  const kernel_cap_t *effective,
1835			  const kernel_cap_t *inheritable,
1836			  const kernel_cap_t *permitted)
1837{
1838	int error;
1839
1840	error = cap_capset(new, old,
1841				      effective, inheritable, permitted);
1842	if (error)
1843		return error;
1844
1845	return cred_has_perm(old, new, PROCESS__SETCAP);
1846}
1847
1848/*
1849 * (This comment used to live with the selinux_task_setuid hook,
1850 * which was removed).
1851 *
1852 * Since setuid only affects the current process, and since the SELinux
1853 * controls are not based on the Linux identity attributes, SELinux does not
1854 * need to control this operation.  However, SELinux does control the use of
1855 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1856 */
1857
1858static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1859			   int cap, int audit)
1860{
1861	int rc;
1862
1863	rc = cap_capable(cred, ns, cap, audit);
1864	if (rc)
1865		return rc;
1866
1867	return cred_has_capability(cred, cap, audit);
1868}
1869
1870static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1871{
1872	const struct cred *cred = current_cred();
1873	int rc = 0;
1874
1875	if (!sb)
1876		return 0;
1877
1878	switch (cmds) {
1879	case Q_SYNC:
1880	case Q_QUOTAON:
1881	case Q_QUOTAOFF:
1882	case Q_SETINFO:
1883	case Q_SETQUOTA:
 
 
 
1884		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1885		break;
1886	case Q_GETFMT:
1887	case Q_GETINFO:
1888	case Q_GETQUOTA:
 
 
 
 
1889		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1890		break;
1891	default:
1892		rc = 0;  /* let the kernel handle invalid cmds */
1893		break;
1894	}
1895	return rc;
1896}
1897
1898static int selinux_quota_on(struct dentry *dentry)
1899{
1900	const struct cred *cred = current_cred();
1901
1902	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1903}
1904
1905static int selinux_syslog(int type)
1906{
1907	int rc;
1908
1909	switch (type) {
1910	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
1911	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
1912		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1913		break;
 
1914	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
1915	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
1916	/* Set level of messages printed to console */
1917	case SYSLOG_ACTION_CONSOLE_LEVEL:
1918		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1919		break;
1920	case SYSLOG_ACTION_CLOSE:	/* Close log */
1921	case SYSLOG_ACTION_OPEN:	/* Open log */
1922	case SYSLOG_ACTION_READ:	/* Read from log */
1923	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
1924	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
1925	default:
1926		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1927		break;
1928	}
1929	return rc;
1930}
1931
1932/*
1933 * Check that a process has enough memory to allocate a new virtual
1934 * mapping. 0 means there is enough memory for the allocation to
1935 * succeed and -ENOMEM implies there is not.
1936 *
1937 * Do not audit the selinux permission check, as this is applied to all
1938 * processes that allocate mappings.
1939 */
1940static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1941{
1942	int rc, cap_sys_admin = 0;
1943
1944	rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1945			     SECURITY_CAP_NOAUDIT);
1946	if (rc == 0)
1947		cap_sys_admin = 1;
1948
1949	return __vm_enough_memory(mm, pages, cap_sys_admin);
1950}
1951
1952/* binprm security operations */
1953
1954static int selinux_bprm_set_creds(struct linux_binprm *bprm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1955{
1956	const struct task_security_struct *old_tsec;
1957	struct task_security_struct *new_tsec;
1958	struct inode_security_struct *isec;
1959	struct common_audit_data ad;
1960	struct inode *inode = bprm->file->f_path.dentry->d_inode;
1961	int rc;
1962
1963	rc = cap_bprm_set_creds(bprm);
1964	if (rc)
1965		return rc;
1966
1967	/* SELinux context only depends on initial program or script and not
1968	 * the script interpreter */
1969	if (bprm->cred_prepared)
1970		return 0;
1971
1972	old_tsec = current_security();
1973	new_tsec = bprm->cred->security;
1974	isec = inode->i_security;
1975
1976	/* Default to the current task SID. */
1977	new_tsec->sid = old_tsec->sid;
1978	new_tsec->osid = old_tsec->sid;
1979
1980	/* Reset fs, key, and sock SIDs on execve. */
1981	new_tsec->create_sid = 0;
1982	new_tsec->keycreate_sid = 0;
1983	new_tsec->sockcreate_sid = 0;
1984
1985	if (old_tsec->exec_sid) {
1986		new_tsec->sid = old_tsec->exec_sid;
1987		/* Reset exec SID on execve. */
1988		new_tsec->exec_sid = 0;
1989
1990		/*
1991		 * Minimize confusion: if no_new_privs and a transition is
1992		 * explicitly requested, then fail the exec.
1993		 */
1994		if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
1995			return -EPERM;
1996	} else {
1997		/* Check for a default transition on this program. */
1998		rc = security_transition_sid(old_tsec->sid, isec->sid,
1999					     SECCLASS_PROCESS, NULL,
2000					     &new_tsec->sid);
2001		if (rc)
2002			return rc;
2003	}
2004
2005	ad.type = LSM_AUDIT_DATA_PATH;
2006	ad.u.path = bprm->file->f_path;
 
 
 
 
 
 
2007
2008	if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2009	    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2010		new_tsec->sid = old_tsec->sid;
2011
2012	if (new_tsec->sid == old_tsec->sid) {
2013		rc = avc_has_perm(old_tsec->sid, isec->sid,
 
2014				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2015		if (rc)
2016			return rc;
2017	} else {
2018		/* Check permissions for the transition. */
2019		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2020				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2021		if (rc)
2022			return rc;
2023
2024		rc = avc_has_perm(new_tsec->sid, isec->sid,
 
2025				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2026		if (rc)
2027			return rc;
2028
2029		/* Check for shared state */
2030		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2031			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2032					  SECCLASS_PROCESS, PROCESS__SHARE,
2033					  NULL);
2034			if (rc)
2035				return -EPERM;
2036		}
2037
2038		/* Make sure that anyone attempting to ptrace over a task that
2039		 * changes its SID has the appropriate permit */
2040		if (bprm->unsafe &
2041		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2042			struct task_struct *tracer;
2043			struct task_security_struct *sec;
2044			u32 ptsid = 0;
2045
2046			rcu_read_lock();
2047			tracer = ptrace_parent(current);
2048			if (likely(tracer != NULL)) {
2049				sec = __task_cred(tracer)->security;
2050				ptsid = sec->sid;
2051			}
2052			rcu_read_unlock();
2053
2054			if (ptsid != 0) {
2055				rc = avc_has_perm(ptsid, new_tsec->sid,
 
2056						  SECCLASS_PROCESS,
2057						  PROCESS__PTRACE, NULL);
2058				if (rc)
2059					return -EPERM;
2060			}
2061		}
2062
2063		/* Clear any possibly unsafe personality bits on exec: */
2064		bprm->per_clear |= PER_CLEAR_ON_SETID;
2065	}
2066
2067	return 0;
2068}
2069
2070static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2071{
2072	const struct task_security_struct *tsec = current_security();
2073	u32 sid, osid;
2074	int atsecure = 0;
2075
2076	sid = tsec->sid;
2077	osid = tsec->osid;
2078
2079	if (osid != sid) {
2080		/* Enable secure mode for SIDs transitions unless
2081		   the noatsecure permission is granted between
2082		   the two SIDs, i.e. ahp returns 0. */
2083		atsecure = avc_has_perm(osid, sid,
2084					SECCLASS_PROCESS,
2085					PROCESS__NOATSECURE, NULL);
 
 
2086	}
2087
2088	return (atsecure || cap_bprm_secureexec(bprm));
 
 
 
 
 
2089}
2090
2091/* Derived from fs/exec.c:flush_old_files. */
2092static inline void flush_unauthorized_files(const struct cred *cred,
2093					    struct files_struct *files)
2094{
2095	struct file *file, *devnull = NULL;
2096	struct tty_struct *tty;
2097	struct fdtable *fdt;
2098	long j = -1;
2099	int drop_tty = 0;
 
2100
2101	tty = get_current_tty();
2102	if (tty) {
2103		spin_lock(&tty_files_lock);
2104		if (!list_empty(&tty->tty_files)) {
2105			struct tty_file_private *file_priv;
2106
2107			/* Revalidate access to controlling tty.
2108			   Use path_has_perm on the tty path directly rather
2109			   than using file_has_perm, as this particular open
2110			   file may belong to another process and we are only
2111			   interested in the inode-based check here. */
2112			file_priv = list_first_entry(&tty->tty_files,
2113						struct tty_file_private, list);
2114			file = file_priv->file;
2115			if (path_has_perm(cred, &file->f_path, FILE__READ | FILE__WRITE))
2116				drop_tty = 1;
2117		}
2118		spin_unlock(&tty_files_lock);
2119		tty_kref_put(tty);
2120	}
2121	/* Reset controlling tty. */
2122	if (drop_tty)
2123		no_tty();
2124
2125	/* Revalidate access to inherited open files. */
2126	spin_lock(&files->file_lock);
2127	for (;;) {
2128		unsigned long set, i;
2129		int fd;
2130
2131		j++;
2132		i = j * BITS_PER_LONG;
2133		fdt = files_fdtable(files);
2134		if (i >= fdt->max_fds)
2135			break;
2136		set = fdt->open_fds[j];
2137		if (!set)
2138			continue;
2139		spin_unlock(&files->file_lock);
2140		for ( ; set ; i++, set >>= 1) {
2141			if (set & 1) {
2142				file = fget(i);
2143				if (!file)
2144					continue;
2145				if (file_has_perm(cred,
2146						  file,
2147						  file_to_av(file))) {
2148					sys_close(i);
2149					fd = get_unused_fd();
2150					if (fd != i) {
2151						if (fd >= 0)
2152							put_unused_fd(fd);
2153						fput(file);
2154						continue;
2155					}
2156					if (devnull) {
2157						get_file(devnull);
2158					} else {
2159						devnull = dentry_open(
2160							dget(selinux_null),
2161							mntget(selinuxfs_mount),
2162							O_RDWR, cred);
2163						if (IS_ERR(devnull)) {
2164							devnull = NULL;
2165							put_unused_fd(fd);
2166							fput(file);
2167							continue;
2168						}
2169					}
2170					fd_install(fd, devnull);
2171				}
2172				fput(file);
2173			}
2174		}
2175		spin_lock(&files->file_lock);
2176
2177	}
2178	spin_unlock(&files->file_lock);
 
 
 
 
 
 
 
2179}
2180
2181/*
2182 * Prepare a process for imminent new credential changes due to exec
2183 */
2184static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2185{
2186	struct task_security_struct *new_tsec;
2187	struct rlimit *rlim, *initrlim;
2188	int rc, i;
2189
2190	new_tsec = bprm->cred->security;
2191	if (new_tsec->sid == new_tsec->osid)
2192		return;
2193
2194	/* Close files for which the new task SID is not authorized. */
2195	flush_unauthorized_files(bprm->cred, current->files);
2196
2197	/* Always clear parent death signal on SID transitions. */
2198	current->pdeath_signal = 0;
2199
2200	/* Check whether the new SID can inherit resource limits from the old
2201	 * SID.  If not, reset all soft limits to the lower of the current
2202	 * task's hard limit and the init task's soft limit.
2203	 *
2204	 * Note that the setting of hard limits (even to lower them) can be
2205	 * controlled by the setrlimit check.  The inclusion of the init task's
2206	 * soft limit into the computation is to avoid resetting soft limits
2207	 * higher than the default soft limit for cases where the default is
2208	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2209	 */
2210	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
 
2211			  PROCESS__RLIMITINH, NULL);
2212	if (rc) {
2213		/* protect against do_prlimit() */
2214		task_lock(current);
2215		for (i = 0; i < RLIM_NLIMITS; i++) {
2216			rlim = current->signal->rlim + i;
2217			initrlim = init_task.signal->rlim + i;
2218			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2219		}
2220		task_unlock(current);
2221		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
 
2222	}
2223}
2224
2225/*
2226 * Clean up the process immediately after the installation of new credentials
2227 * due to exec
2228 */
2229static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2230{
2231	const struct task_security_struct *tsec = current_security();
2232	struct itimerval itimer;
2233	u32 osid, sid;
2234	int rc, i;
2235
2236	osid = tsec->osid;
2237	sid = tsec->sid;
2238
2239	if (sid == osid)
2240		return;
2241
2242	/* Check whether the new SID can inherit signal state from the old SID.
2243	 * If not, clear itimers to avoid subsequent signal generation and
2244	 * flush and unblock signals.
2245	 *
2246	 * This must occur _after_ the task SID has been updated so that any
2247	 * kill done after the flush will be checked against the new SID.
2248	 */
2249	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
 
2250	if (rc) {
2251		memset(&itimer, 0, sizeof itimer);
2252		for (i = 0; i < 3; i++)
2253			do_setitimer(i, &itimer, NULL);
2254		spin_lock_irq(&current->sighand->siglock);
2255		if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2256			__flush_signals(current);
 
2257			flush_signal_handlers(current, 1);
2258			sigemptyset(&current->blocked);
 
2259		}
2260		spin_unlock_irq(&current->sighand->siglock);
2261	}
2262
2263	/* Wake up the parent if it is waiting so that it can recheck
2264	 * wait permission to the new task SID. */
2265	read_lock(&tasklist_lock);
2266	__wake_up_parent(current, current->real_parent);
2267	read_unlock(&tasklist_lock);
2268}
2269
2270/* superblock security operations */
2271
2272static int selinux_sb_alloc_security(struct super_block *sb)
2273{
2274	return superblock_alloc_security(sb);
2275}
2276
2277static void selinux_sb_free_security(struct super_block *sb)
2278{
2279	superblock_free_security(sb);
2280}
2281
2282static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2283{
2284	if (plen > olen)
2285		return 0;
2286
2287	return !memcmp(prefix, option, plen);
2288}
2289
2290static inline int selinux_option(char *option, int len)
2291{
2292	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2293		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2294		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2295		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2296		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2297}
2298
2299static inline void take_option(char **to, char *from, int *first, int len)
2300{
2301	if (!*first) {
2302		**to = ',';
2303		*to += 1;
2304	} else
2305		*first = 0;
2306	memcpy(*to, from, len);
2307	*to += len;
2308}
2309
2310static inline void take_selinux_option(char **to, char *from, int *first,
2311				       int len)
2312{
2313	int current_size = 0;
 
 
2314
2315	if (!*first) {
2316		**to = '|';
2317		*to += 1;
2318	} else
2319		*first = 0;
2320
2321	while (current_size < len) {
2322		if (*from != '"') {
2323			**to = *from;
2324			*to += 1;
2325		}
2326		from += 1;
2327		current_size += 1;
2328	}
 
2329}
2330
2331static int selinux_sb_copy_data(char *orig, char *copy)
2332{
2333	int fnosec, fsec, rc = 0;
2334	char *in_save, *in_curr, *in_end;
2335	char *sec_curr, *nosec_save, *nosec;
2336	int open_quote = 0;
2337
2338	in_curr = orig;
2339	sec_curr = copy;
2340
2341	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2342	if (!nosec) {
2343		rc = -ENOMEM;
2344		goto out;
2345	}
2346
2347	nosec_save = nosec;
2348	fnosec = fsec = 1;
2349	in_save = in_end = orig;
 
2350
2351	do {
2352		if (*in_end == '"')
2353			open_quote = !open_quote;
2354		if ((*in_end == ',' && open_quote == 0) ||
2355				*in_end == '\0') {
2356			int len = in_end - in_curr;
2357
2358			if (selinux_option(in_curr, len))
2359				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2360			else
2361				take_option(&nosec, in_curr, &fnosec, len);
2362
2363			in_curr = in_end + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2364		}
2365	} while (*in_end++);
 
 
 
 
 
2366
2367	strcpy(in_save, nosec_save);
2368	free_page((unsigned long)nosec_save);
2369out:
 
 
2370	return rc;
2371}
2372
2373static int selinux_sb_remount(struct super_block *sb, void *data)
2374{
2375	int rc, i, *flags;
2376	struct security_mnt_opts opts;
2377	char *secdata, **mount_options;
2378	struct superblock_security_struct *sbsec = sb->s_security;
 
 
2379
 
 
 
 
2380	if (!(sbsec->flags & SE_SBINITIALIZED))
2381		return 0;
2382
2383	if (!data)
2384		return 0;
2385
2386	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2387		return 0;
 
2388
2389	security_init_mnt_opts(&opts);
2390	secdata = alloc_secdata();
2391	if (!secdata)
2392		return -ENOMEM;
2393	rc = selinux_sb_copy_data(data, secdata);
2394	if (rc)
2395		goto out_free_secdata;
 
 
 
 
 
 
 
 
 
2396
2397	rc = selinux_parse_opts_str(secdata, &opts);
2398	if (rc)
2399		goto out_free_secdata;
 
 
 
 
 
 
 
 
 
 
 
 
 
2400
2401	mount_options = opts.mnt_opts;
2402	flags = opts.mnt_opts_flags;
 
 
 
 
2403
2404	for (i = 0; i < opts.num_mnt_opts; i++) {
2405		u32 sid;
2406		size_t len;
2407
2408		if (flags[i] == SE_SBLABELSUPP)
2409			continue;
2410		len = strlen(mount_options[i]);
2411		rc = security_context_to_sid(mount_options[i], len, &sid);
2412		if (rc) {
2413			printk(KERN_WARNING "SELinux: security_context_to_sid"
2414			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2415			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2416			goto out_free_opts;
2417		}
2418		rc = -EINVAL;
2419		switch (flags[i]) {
2420		case FSCONTEXT_MNT:
2421			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2422				goto out_bad_option;
2423			break;
2424		case CONTEXT_MNT:
2425			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2426				goto out_bad_option;
2427			break;
2428		case ROOTCONTEXT_MNT: {
2429			struct inode_security_struct *root_isec;
2430			root_isec = sb->s_root->d_inode->i_security;
2431
2432			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2433				goto out_bad_option;
2434			break;
2435		}
2436		case DEFCONTEXT_MNT:
2437			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2438				goto out_bad_option;
2439			break;
2440		default:
2441			goto out_free_opts;
2442		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2443	}
 
2444
2445	rc = 0;
2446out_free_opts:
2447	security_free_mnt_opts(&opts);
2448out_free_secdata:
2449	free_secdata(secdata);
2450	return rc;
2451out_bad_option:
2452	printk(KERN_WARNING "SELinux: unable to change security options "
2453	       "during remount (dev %s, type=%s)\n", sb->s_id,
2454	       sb->s_type->name);
2455	goto out_free_opts;
2456}
2457
2458static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2459{
2460	const struct cred *cred = current_cred();
2461	struct common_audit_data ad;
2462	int rc;
2463
2464	rc = superblock_doinit(sb, data);
2465	if (rc)
2466		return rc;
2467
2468	/* Allow all mounts performed by the kernel */
2469	if (flags & MS_KERNMOUNT)
2470		return 0;
2471
2472	ad.type = LSM_AUDIT_DATA_DENTRY;
2473	ad.u.dentry = sb->s_root;
2474	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2475}
2476
2477static int selinux_sb_statfs(struct dentry *dentry)
2478{
2479	const struct cred *cred = current_cred();
2480	struct common_audit_data ad;
2481
2482	ad.type = LSM_AUDIT_DATA_DENTRY;
2483	ad.u.dentry = dentry->d_sb->s_root;
2484	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2485}
2486
2487static int selinux_mount(char *dev_name,
2488			 struct path *path,
2489			 char *type,
2490			 unsigned long flags,
2491			 void *data)
2492{
2493	const struct cred *cred = current_cred();
2494
2495	if (flags & MS_REMOUNT)
2496		return superblock_has_perm(cred, path->dentry->d_sb,
2497					   FILESYSTEM__REMOUNT, NULL);
2498	else
2499		return path_has_perm(cred, path, FILE__MOUNTON);
2500}
2501
 
 
 
 
 
 
 
 
2502static int selinux_umount(struct vfsmount *mnt, int flags)
2503{
2504	const struct cred *cred = current_cred();
2505
2506	return superblock_has_perm(cred, mnt->mnt_sb,
2507				   FILESYSTEM__UNMOUNT, NULL);
2508}
2509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2510/* inode security operations */
2511
2512static int selinux_inode_alloc_security(struct inode *inode)
2513{
2514	return inode_alloc_security(inode);
 
 
 
 
 
 
 
 
 
 
 
2515}
2516
2517static void selinux_inode_free_security(struct inode *inode)
2518{
2519	inode_free_security(inode);
2520}
2521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2522static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2523				       const struct qstr *qstr, char **name,
 
2524				       void **value, size_t *len)
2525{
2526	const struct task_security_struct *tsec = current_security();
2527	struct inode_security_struct *dsec;
2528	struct superblock_security_struct *sbsec;
2529	u32 sid, newsid, clen;
2530	int rc;
2531	char *namep = NULL, *context;
2532
2533	dsec = dir->i_security;
2534	sbsec = dir->i_sb->s_security;
2535
2536	sid = tsec->sid;
2537	newsid = tsec->create_sid;
2538
2539	if ((sbsec->flags & SE_SBINITIALIZED) &&
2540	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2541		newsid = sbsec->mntpoint_sid;
2542	else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2543		rc = security_transition_sid(sid, dsec->sid,
2544					     inode_mode_to_security_class(inode->i_mode),
2545					     qstr, &newsid);
2546		if (rc) {
2547			printk(KERN_WARNING "%s:  "
2548			       "security_transition_sid failed, rc=%d (dev=%s "
2549			       "ino=%ld)\n",
2550			       __func__,
2551			       -rc, inode->i_sb->s_id, inode->i_ino);
2552			return rc;
2553		}
2554	}
2555
2556	/* Possibly defer initialization to selinux_complete_init. */
2557	if (sbsec->flags & SE_SBINITIALIZED) {
2558		struct inode_security_struct *isec = inode->i_security;
2559		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2560		isec->sid = newsid;
2561		isec->initialized = 1;
2562	}
2563
2564	if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
 
2565		return -EOPNOTSUPP;
2566
2567	if (name) {
2568		namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2569		if (!namep)
2570			return -ENOMEM;
2571		*name = namep;
2572	}
2573
2574	if (value && len) {
2575		rc = security_sid_to_context_force(newsid, &context, &clen);
2576		if (rc) {
2577			kfree(namep);
2578			return rc;
2579		}
2580		*value = context;
2581		*len = clen;
2582	}
2583
2584	return 0;
2585}
2586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2587static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2588{
2589	return may_create(dir, dentry, SECCLASS_FILE);
2590}
2591
2592static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2593{
2594	return may_link(dir, old_dentry, MAY_LINK);
2595}
2596
2597static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2598{
2599	return may_link(dir, dentry, MAY_UNLINK);
2600}
2601
2602static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2603{
2604	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2605}
2606
2607static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2608{
2609	return may_create(dir, dentry, SECCLASS_DIR);
2610}
2611
2612static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2613{
2614	return may_link(dir, dentry, MAY_RMDIR);
2615}
2616
2617static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2618{
2619	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2620}
2621
2622static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2623				struct inode *new_inode, struct dentry *new_dentry)
2624{
2625	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2626}
2627
2628static int selinux_inode_readlink(struct dentry *dentry)
2629{
2630	const struct cred *cred = current_cred();
2631
2632	return dentry_has_perm(cred, dentry, FILE__READ);
2633}
2634
2635static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
 
2636{
2637	const struct cred *cred = current_cred();
 
 
 
2638
2639	return dentry_has_perm(cred, dentry, FILE__READ);
 
 
 
 
 
 
 
 
 
 
2640}
2641
2642static noinline int audit_inode_permission(struct inode *inode,
2643					   u32 perms, u32 audited, u32 denied,
2644					   unsigned flags)
2645{
2646	struct common_audit_data ad;
2647	struct inode_security_struct *isec = inode->i_security;
2648	int rc;
2649
2650	ad.type = LSM_AUDIT_DATA_INODE;
2651	ad.u.inode = inode;
2652
2653	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2654			    audited, denied, &ad, flags);
2655	if (rc)
2656		return rc;
2657	return 0;
2658}
2659
2660static int selinux_inode_permission(struct inode *inode, int mask)
2661{
2662	const struct cred *cred = current_cred();
2663	u32 perms;
2664	bool from_access;
2665	unsigned flags = mask & MAY_NOT_BLOCK;
2666	struct inode_security_struct *isec;
2667	u32 sid;
2668	struct av_decision avd;
2669	int rc, rc2;
2670	u32 audited, denied;
2671
2672	from_access = mask & MAY_ACCESS;
2673	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2674
2675	/* No permission to check.  Existence test. */
2676	if (!mask)
2677		return 0;
2678
2679	validate_creds(cred);
2680
2681	if (unlikely(IS_PRIVATE(inode)))
2682		return 0;
2683
2684	perms = file_mask_to_av(inode->i_mode, mask);
2685
2686	sid = cred_sid(cred);
2687	isec = inode->i_security;
2688
2689	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
 
 
 
 
2690	audited = avc_audit_required(perms, &avd, rc,
2691				     from_access ? FILE__AUDIT_ACCESS : 0,
2692				     &denied);
2693	if (likely(!audited))
2694		return rc;
2695
2696	rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2697	if (rc2)
2698		return rc2;
2699	return rc;
2700}
2701
2702static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2703{
2704	const struct cred *cred = current_cred();
 
2705	unsigned int ia_valid = iattr->ia_valid;
2706	__u32 av = FILE__WRITE;
2707
2708	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2709	if (ia_valid & ATTR_FORCE) {
2710		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2711			      ATTR_FORCE);
2712		if (!ia_valid)
2713			return 0;
2714	}
2715
2716	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2717			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2718		return dentry_has_perm(cred, dentry, FILE__SETATTR);
2719
2720	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
 
 
 
2721		av |= FILE__OPEN;
2722
2723	return dentry_has_perm(cred, dentry, av);
2724}
2725
2726static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2727{
2728	const struct cred *cred = current_cred();
2729	struct path path;
2730
2731	path.dentry = dentry;
2732	path.mnt = mnt;
2733
2734	return path_has_perm(cred, &path, FILE__GETATTR);
2735}
2736
2737static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2738{
2739	const struct cred *cred = current_cred();
 
2740
2741	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2742		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2743		if (!strcmp(name, XATTR_NAME_CAPS)) {
2744			if (!capable(CAP_SETFCAP))
2745				return -EPERM;
2746		} else if (!capable(CAP_SYS_ADMIN)) {
2747			/* A different attribute in the security namespace.
2748			   Restrict to administrator. */
2749			return -EPERM;
2750		}
2751	}
2752
2753	/* Not an attribute we recognize, so just check the
2754	   ordinary setattr permission. */
2755	return dentry_has_perm(cred, dentry, FILE__SETATTR);
2756}
2757
2758static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
 
2759				  const void *value, size_t size, int flags)
2760{
2761	struct inode *inode = dentry->d_inode;
2762	struct inode_security_struct *isec = inode->i_security;
2763	struct superblock_security_struct *sbsec;
2764	struct common_audit_data ad;
2765	u32 newsid, sid = current_sid();
2766	int rc = 0;
2767
2768	if (strcmp(name, XATTR_NAME_SELINUX))
2769		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
 
 
 
2770
2771	sbsec = inode->i_sb->s_security;
2772	if (!(sbsec->flags & SE_SBLABELSUPP))
2773		return -EOPNOTSUPP;
2774
2775	if (!inode_owner_or_capable(inode))
2776		return -EPERM;
2777
2778	ad.type = LSM_AUDIT_DATA_DENTRY;
2779	ad.u.dentry = dentry;
2780
2781	rc = avc_has_perm(sid, isec->sid, isec->sclass,
 
 
2782			  FILE__RELABELFROM, &ad);
2783	if (rc)
2784		return rc;
2785
2786	rc = security_context_to_sid(value, size, &newsid);
 
2787	if (rc == -EINVAL) {
2788		if (!capable(CAP_MAC_ADMIN)) {
2789			struct audit_buffer *ab;
2790			size_t audit_size;
2791			const char *str;
2792
2793			/* We strip a nul only if it is at the end, otherwise the
2794			 * context contains a nul and we should audit that */
2795			if (value) {
2796				str = value;
 
2797				if (str[size - 1] == '\0')
2798					audit_size = size - 1;
2799				else
2800					audit_size = size;
2801			} else {
2802				str = "";
2803				audit_size = 0;
2804			}
2805			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
2806			audit_log_format(ab, "op=setxattr invalid_context=");
2807			audit_log_n_untrustedstring(ab, value, audit_size);
2808			audit_log_end(ab);
2809
2810			return rc;
2811		}
2812		rc = security_context_to_sid_force(value, size, &newsid);
 
2813	}
2814	if (rc)
2815		return rc;
2816
2817	rc = avc_has_perm(sid, newsid, isec->sclass,
 
2818			  FILE__RELABELTO, &ad);
2819	if (rc)
2820		return rc;
2821
2822	rc = security_validate_transition(isec->sid, newsid, sid,
2823					  isec->sclass);
2824	if (rc)
2825		return rc;
2826
2827	return avc_has_perm(newsid,
 
2828			    sbsec->sid,
2829			    SECCLASS_FILESYSTEM,
2830			    FILESYSTEM__ASSOCIATE,
2831			    &ad);
2832}
2833
2834static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2835					const void *value, size_t size,
2836					int flags)
2837{
2838	struct inode *inode = dentry->d_inode;
2839	struct inode_security_struct *isec = inode->i_security;
2840	u32 newsid;
2841	int rc;
2842
2843	if (strcmp(name, XATTR_NAME_SELINUX)) {
2844		/* Not an attribute we recognize, so nothing to do. */
2845		return;
2846	}
2847
2848	rc = security_context_to_sid_force(value, size, &newsid);
 
 
 
 
 
 
 
 
 
 
2849	if (rc) {
2850		printk(KERN_ERR "SELinux:  unable to map context to SID"
2851		       "for (%s, %lu), rc=%d\n",
2852		       inode->i_sb->s_id, inode->i_ino, -rc);
2853		return;
2854	}
2855
 
 
 
2856	isec->sid = newsid;
 
 
 
2857	return;
2858}
2859
2860static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2861{
2862	const struct cred *cred = current_cred();
2863
2864	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2865}
2866
2867static int selinux_inode_listxattr(struct dentry *dentry)
2868{
2869	const struct cred *cred = current_cred();
2870
2871	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2872}
2873
2874static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
 
2875{
2876	if (strcmp(name, XATTR_NAME_SELINUX))
2877		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
 
 
 
2878
2879	/* No one is allowed to remove a SELinux security label.
2880	   You can change the label, but all data must be labeled. */
2881	return -EACCES;
2882}
2883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2884/*
2885 * Copy the inode security context value to the user.
2886 *
2887 * Permission check is handled by selinux_inode_getxattr hook.
2888 */
2889static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
 
 
2890{
2891	u32 size;
2892	int error;
2893	char *context = NULL;
2894	struct inode_security_struct *isec = inode->i_security;
2895
2896	if (strcmp(name, XATTR_SELINUX_SUFFIX))
 
 
 
 
 
2897		return -EOPNOTSUPP;
2898
2899	/*
2900	 * If the caller has CAP_MAC_ADMIN, then get the raw context
2901	 * value even if it is not defined by current policy; otherwise,
2902	 * use the in-core value under current policy.
2903	 * Use the non-auditing forms of the permission checks since
2904	 * getxattr may be called by unprivileged processes commonly
2905	 * and lack of permission just means that we fall back to the
2906	 * in-core context value, not a denial.
2907	 */
2908	error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2909				SECURITY_CAP_NOAUDIT);
2910	if (!error)
2911		error = security_sid_to_context_force(isec->sid, &context,
2912						      &size);
2913	else
2914		error = security_sid_to_context(isec->sid, &context, &size);
 
2915	if (error)
2916		return error;
2917	error = size;
2918	if (alloc) {
2919		*buffer = context;
2920		goto out_nofree;
2921	}
2922	kfree(context);
2923out_nofree:
2924	return error;
2925}
2926
2927static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2928				     const void *value, size_t size, int flags)
2929{
2930	struct inode_security_struct *isec = inode->i_security;
 
2931	u32 newsid;
2932	int rc;
2933
2934	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2935		return -EOPNOTSUPP;
2936
 
 
 
 
2937	if (!value || !size)
2938		return -EACCES;
2939
2940	rc = security_context_to_sid((void *)value, size, &newsid);
 
2941	if (rc)
2942		return rc;
2943
 
 
2944	isec->sid = newsid;
2945	isec->initialized = 1;
 
2946	return 0;
2947}
2948
2949static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2950{
2951	const int len = sizeof(XATTR_NAME_SELINUX);
 
 
 
 
2952	if (buffer && len <= buffer_size)
2953		memcpy(buffer, XATTR_NAME_SELINUX, len);
2954	return len;
2955}
2956
2957static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2958{
2959	struct inode_security_struct *isec = inode->i_security;
2960	*secid = isec->sid;
2961}
2962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2963/* file security operations */
2964
2965static int selinux_revalidate_file_permission(struct file *file, int mask)
2966{
2967	const struct cred *cred = current_cred();
2968	struct inode *inode = file->f_path.dentry->d_inode;
2969
2970	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2971	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2972		mask |= MAY_APPEND;
2973
2974	return file_has_perm(cred, file,
2975			     file_mask_to_av(inode->i_mode, mask));
2976}
2977
2978static int selinux_file_permission(struct file *file, int mask)
2979{
2980	struct inode *inode = file->f_path.dentry->d_inode;
2981	struct file_security_struct *fsec = file->f_security;
2982	struct inode_security_struct *isec = inode->i_security;
2983	u32 sid = current_sid();
2984
2985	if (!mask)
2986		/* No permission to check.  Existence test. */
2987		return 0;
2988
 
2989	if (sid == fsec->sid && fsec->isid == isec->sid &&
2990	    fsec->pseqno == avc_policy_seqno())
2991		/* No change since file_open check. */
2992		return 0;
2993
2994	return selinux_revalidate_file_permission(file, mask);
2995}
2996
2997static int selinux_file_alloc_security(struct file *file)
2998{
2999	return file_alloc_security(file);
 
 
 
 
 
 
3000}
3001
3002static void selinux_file_free_security(struct file *file)
 
 
 
 
 
3003{
3004	file_free_security(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3005}
3006
3007static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3008			      unsigned long arg)
3009{
3010	const struct cred *cred = current_cred();
3011	int error = 0;
3012
3013	switch (cmd) {
3014	case FIONREAD:
3015	/* fall through */
3016	case FIBMAP:
3017	/* fall through */
3018	case FIGETBSZ:
3019	/* fall through */
3020	case FS_IOC_GETFLAGS:
3021	/* fall through */
3022	case FS_IOC_GETVERSION:
3023		error = file_has_perm(cred, file, FILE__GETATTR);
3024		break;
3025
3026	case FS_IOC_SETFLAGS:
3027	/* fall through */
3028	case FS_IOC_SETVERSION:
3029		error = file_has_perm(cred, file, FILE__SETATTR);
3030		break;
3031
3032	/* sys_ioctl() checks */
3033	case FIONBIO:
3034	/* fall through */
3035	case FIOASYNC:
3036		error = file_has_perm(cred, file, 0);
3037		break;
3038
3039	case KDSKBENT:
3040	case KDSKBSENT:
3041		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3042					    SECURITY_CAP_AUDIT);
3043		break;
3044
3045	/* default case assumes that the command will go
3046	 * to the file's ioctl() function.
3047	 */
3048	default:
3049		error = file_has_perm(cred, file, FILE__IOCTL);
3050	}
3051	return error;
3052}
3053
3054static int default_noexec;
3055
3056static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3057{
3058	const struct cred *cred = current_cred();
 
3059	int rc = 0;
3060
3061	if (default_noexec &&
3062	    (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
 
3063		/*
3064		 * We are making executable an anonymous mapping or a
3065		 * private file mapping that will also be writable.
3066		 * This has an additional check.
3067		 */
3068		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
 
 
3069		if (rc)
3070			goto error;
3071	}
3072
3073	if (file) {
3074		/* read access is always possible with a mapping */
3075		u32 av = FILE__READ;
3076
3077		/* write access only matters if the mapping is shared */
3078		if (shared && (prot & PROT_WRITE))
3079			av |= FILE__WRITE;
3080
3081		if (prot & PROT_EXEC)
3082			av |= FILE__EXECUTE;
3083
3084		return file_has_perm(cred, file, av);
3085	}
3086
3087error:
3088	return rc;
3089}
3090
3091static int selinux_mmap_addr(unsigned long addr)
3092{
3093	int rc = 0;
3094	u32 sid = current_sid();
3095
3096	/*
3097	 * notice that we are intentionally putting the SELinux check before
3098	 * the secondary cap_file_mmap check.  This is such a likely attempt
3099	 * at bad behaviour/exploit that we always want to get the AVC, even
3100	 * if DAC would have also denied the operation.
3101	 */
3102	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3103		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
 
 
3104				  MEMPROTECT__MMAP_ZERO, NULL);
3105		if (rc)
3106			return rc;
3107	}
3108
3109	/* do DAC check on address space usage */
3110	return cap_mmap_addr(addr);
3111}
3112
3113static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3114			     unsigned long prot, unsigned long flags)
3115{
3116	if (selinux_checkreqprot)
 
 
 
 
 
 
 
 
 
 
 
 
3117		prot = reqprot;
3118
3119	return file_map_prot_check(file, prot,
3120				   (flags & MAP_TYPE) == MAP_SHARED);
3121}
3122
3123static int selinux_file_mprotect(struct vm_area_struct *vma,
3124				 unsigned long reqprot,
3125				 unsigned long prot)
3126{
3127	const struct cred *cred = current_cred();
 
3128
3129	if (selinux_checkreqprot)
3130		prot = reqprot;
3131
3132	if (default_noexec &&
3133	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3134		int rc = 0;
3135		if (vma->vm_start >= vma->vm_mm->start_brk &&
3136		    vma->vm_end <= vma->vm_mm->brk) {
3137			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
 
 
3138		} else if (!vma->vm_file &&
3139			   vma->vm_start <= vma->vm_mm->start_stack &&
3140			   vma->vm_end >= vma->vm_mm->start_stack) {
3141			rc = current_has_perm(current, PROCESS__EXECSTACK);
 
 
 
3142		} else if (vma->vm_file && vma->anon_vma) {
3143			/*
3144			 * We are making executable a file mapping that has
3145			 * had some COW done. Since pages might have been
3146			 * written, check ability to execute the possibly
3147			 * modified content.  This typically should only
3148			 * occur for text relocations.
3149			 */
3150			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3151		}
3152		if (rc)
3153			return rc;
3154	}
3155
3156	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3157}
3158
3159static int selinux_file_lock(struct file *file, unsigned int cmd)
3160{
3161	const struct cred *cred = current_cred();
3162
3163	return file_has_perm(cred, file, FILE__LOCK);
3164}
3165
3166static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3167			      unsigned long arg)
3168{
3169	const struct cred *cred = current_cred();
3170	int err = 0;
3171
3172	switch (cmd) {
3173	case F_SETFL:
3174		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3175			err = -EINVAL;
3176			break;
3177		}
3178
3179		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3180			err = file_has_perm(cred, file, FILE__WRITE);
3181			break;
3182		}
3183		/* fall through */
3184	case F_SETOWN:
3185	case F_SETSIG:
3186	case F_GETFL:
3187	case F_GETOWN:
3188	case F_GETSIG:
 
3189		/* Just check FD__USE permission */
3190		err = file_has_perm(cred, file, 0);
3191		break;
3192	case F_GETLK:
3193	case F_SETLK:
3194	case F_SETLKW:
 
 
 
3195#if BITS_PER_LONG == 32
3196	case F_GETLK64:
3197	case F_SETLK64:
3198	case F_SETLKW64:
3199#endif
3200		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3201			err = -EINVAL;
3202			break;
3203		}
3204		err = file_has_perm(cred, file, FILE__LOCK);
3205		break;
3206	}
3207
3208	return err;
3209}
3210
3211static int selinux_file_set_fowner(struct file *file)
3212{
3213	struct file_security_struct *fsec;
3214
3215	fsec = file->f_security;
3216	fsec->fown_sid = current_sid();
3217
3218	return 0;
3219}
3220
3221static int selinux_file_send_sigiotask(struct task_struct *tsk,
3222				       struct fown_struct *fown, int signum)
3223{
3224	struct file *file;
3225	u32 sid = task_sid(tsk);
3226	u32 perm;
3227	struct file_security_struct *fsec;
3228
3229	/* struct fown_struct is never outside the context of a struct file */
3230	file = container_of(fown, struct file, f_owner);
3231
3232	fsec = file->f_security;
3233
3234	if (!signum)
3235		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3236	else
3237		perm = signal_to_av(signum);
3238
3239	return avc_has_perm(fsec->fown_sid, sid,
 
3240			    SECCLASS_PROCESS, perm, NULL);
3241}
3242
3243static int selinux_file_receive(struct file *file)
3244{
3245	const struct cred *cred = current_cred();
3246
3247	return file_has_perm(cred, file, file_to_av(file));
3248}
3249
3250static int selinux_file_open(struct file *file, const struct cred *cred)
3251{
3252	struct file_security_struct *fsec;
3253	struct inode_security_struct *isec;
3254
3255	fsec = file->f_security;
3256	isec = file->f_path.dentry->d_inode->i_security;
3257	/*
3258	 * Save inode label and policy sequence number
3259	 * at open-time so that selinux_file_permission
3260	 * can determine whether revalidation is necessary.
3261	 * Task label is already saved in the file security
3262	 * struct as its SID.
3263	 */
3264	fsec->isid = isec->sid;
3265	fsec->pseqno = avc_policy_seqno();
3266	/*
3267	 * Since the inode label or policy seqno may have changed
3268	 * between the selinux_inode_permission check and the saving
3269	 * of state above, recheck that access is still permitted.
3270	 * Otherwise, access might never be revalidated against the
3271	 * new inode label or new policy.
3272	 * This check is not redundant - do not remove.
3273	 */
3274	return path_has_perm(cred, &file->f_path, open_file_to_av(file));
3275}
3276
3277/* task security operations */
3278
3279static int selinux_task_create(unsigned long clone_flags)
 
3280{
3281	return current_has_perm(current, PROCESS__FORK);
3282}
3283
3284/*
3285 * allocate the SELinux part of blank credentials
3286 */
3287static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3288{
3289	struct task_security_struct *tsec;
3290
3291	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3292	if (!tsec)
3293		return -ENOMEM;
3294
3295	cred->security = tsec;
3296	return 0;
3297}
3298
3299/*
3300 * detach and free the LSM part of a set of credentials
3301 */
3302static void selinux_cred_free(struct cred *cred)
3303{
3304	struct task_security_struct *tsec = cred->security;
3305
3306	/*
3307	 * cred->security == NULL if security_cred_alloc_blank() or
3308	 * security_prepare_creds() returned an error.
3309	 */
3310	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3311	cred->security = (void *) 0x7UL;
3312	kfree(tsec);
3313}
3314
3315/*
3316 * prepare a new set of credentials for modification
3317 */
3318static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3319				gfp_t gfp)
3320{
3321	const struct task_security_struct *old_tsec;
3322	struct task_security_struct *tsec;
3323
3324	old_tsec = old->security;
3325
3326	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3327	if (!tsec)
3328		return -ENOMEM;
3329
3330	new->security = tsec;
3331	return 0;
3332}
3333
3334/*
3335 * transfer the SELinux data to a blank set of creds
3336 */
3337static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3338{
3339	const struct task_security_struct *old_tsec = old->security;
3340	struct task_security_struct *tsec = new->security;
3341
3342	*tsec = *old_tsec;
3343}
3344
 
 
 
 
 
3345/*
3346 * set the security data for a kernel service
3347 * - all the creation contexts are set to unlabelled
3348 */
3349static int selinux_kernel_act_as(struct cred *new, u32 secid)
3350{
3351	struct task_security_struct *tsec = new->security;
3352	u32 sid = current_sid();
3353	int ret;
3354
3355	ret = avc_has_perm(sid, secid,
 
3356			   SECCLASS_KERNEL_SERVICE,
3357			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3358			   NULL);
3359	if (ret == 0) {
3360		tsec->sid = secid;
3361		tsec->create_sid = 0;
3362		tsec->keycreate_sid = 0;
3363		tsec->sockcreate_sid = 0;
3364	}
3365	return ret;
3366}
3367
3368/*
3369 * set the file creation context in a security record to the same as the
3370 * objective context of the specified inode
3371 */
3372static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3373{
3374	struct inode_security_struct *isec = inode->i_security;
3375	struct task_security_struct *tsec = new->security;
3376	u32 sid = current_sid();
3377	int ret;
3378
3379	ret = avc_has_perm(sid, isec->sid,
 
3380			   SECCLASS_KERNEL_SERVICE,
3381			   KERNEL_SERVICE__CREATE_FILES_AS,
3382			   NULL);
3383
3384	if (ret == 0)
3385		tsec->create_sid = isec->sid;
3386	return ret;
3387}
3388
3389static int selinux_kernel_module_request(char *kmod_name)
3390{
3391	u32 sid;
3392	struct common_audit_data ad;
3393
3394	sid = task_sid(current);
3395
3396	ad.type = LSM_AUDIT_DATA_KMOD;
3397	ad.u.kmod_name = kmod_name;
3398
3399	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
 
3400			    SYSTEM__MODULE_REQUEST, &ad);
3401}
3402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3403static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3404{
3405	return current_has_perm(p, PROCESS__SETPGID);
 
 
3406}
3407
3408static int selinux_task_getpgid(struct task_struct *p)
3409{
3410	return current_has_perm(p, PROCESS__GETPGID);
 
 
3411}
3412
3413static int selinux_task_getsid(struct task_struct *p)
3414{
3415	return current_has_perm(p, PROCESS__GETSESSION);
 
 
3416}
3417
3418static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3419{
3420	*secid = task_sid(p);
3421}
3422
3423static int selinux_task_setnice(struct task_struct *p, int nice)
3424{
3425	int rc;
3426
3427	rc = cap_task_setnice(p, nice);
3428	if (rc)
3429		return rc;
3430
3431	return current_has_perm(p, PROCESS__SETSCHED);
 
 
 
 
3432}
3433
3434static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3435{
3436	int rc;
3437
3438	rc = cap_task_setioprio(p, ioprio);
3439	if (rc)
3440		return rc;
3441
3442	return current_has_perm(p, PROCESS__SETSCHED);
3443}
3444
3445static int selinux_task_getioprio(struct task_struct *p)
3446{
3447	return current_has_perm(p, PROCESS__GETSCHED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3448}
3449
3450static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3451		struct rlimit *new_rlim)
3452{
3453	struct rlimit *old_rlim = p->signal->rlim + resource;
3454
3455	/* Control the ability to change the hard limit (whether
3456	   lowering or raising it), so that the hard limit can
3457	   later be used as a safe reset point for the soft limit
3458	   upon context transitions.  See selinux_bprm_committing_creds. */
3459	if (old_rlim->rlim_max != new_rlim->rlim_max)
3460		return current_has_perm(p, PROCESS__SETRLIMIT);
 
 
3461
3462	return 0;
3463}
3464
3465static int selinux_task_setscheduler(struct task_struct *p)
3466{
3467	int rc;
3468
3469	rc = cap_task_setscheduler(p);
3470	if (rc)
3471		return rc;
3472
3473	return current_has_perm(p, PROCESS__SETSCHED);
3474}
3475
3476static int selinux_task_getscheduler(struct task_struct *p)
3477{
3478	return current_has_perm(p, PROCESS__GETSCHED);
 
 
3479}
3480
3481static int selinux_task_movememory(struct task_struct *p)
3482{
3483	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3484}
3485
3486static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3487				int sig, u32 secid)
3488{
 
3489	u32 perm;
3490	int rc;
3491
3492	if (!sig)
3493		perm = PROCESS__SIGNULL; /* null signal; existence test */
3494	else
3495		perm = signal_to_av(sig);
3496	if (secid)
3497		rc = avc_has_perm(secid, task_sid(p),
3498				  SECCLASS_PROCESS, perm, NULL);
3499	else
3500		rc = current_has_perm(p, perm);
3501	return rc;
3502}
3503
3504static int selinux_task_wait(struct task_struct *p)
3505{
3506	return task_has_perm(p, current, PROCESS__SIGCHLD);
3507}
3508
3509static void selinux_task_to_inode(struct task_struct *p,
3510				  struct inode *inode)
3511{
3512	struct inode_security_struct *isec = inode->i_security;
3513	u32 sid = task_sid(p);
3514
 
 
3515	isec->sid = sid;
3516	isec->initialized = 1;
 
3517}
3518
3519/* Returns error only if unable to parse addresses */
3520static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3521			struct common_audit_data *ad, u8 *proto)
3522{
3523	int offset, ihlen, ret = -EINVAL;
3524	struct iphdr _iph, *ih;
3525
3526	offset = skb_network_offset(skb);
3527	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3528	if (ih == NULL)
3529		goto out;
3530
3531	ihlen = ih->ihl * 4;
3532	if (ihlen < sizeof(_iph))
3533		goto out;
3534
3535	ad->u.net->v4info.saddr = ih->saddr;
3536	ad->u.net->v4info.daddr = ih->daddr;
3537	ret = 0;
3538
3539	if (proto)
3540		*proto = ih->protocol;
3541
3542	switch (ih->protocol) {
3543	case IPPROTO_TCP: {
3544		struct tcphdr _tcph, *th;
3545
3546		if (ntohs(ih->frag_off) & IP_OFFSET)
3547			break;
3548
3549		offset += ihlen;
3550		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3551		if (th == NULL)
3552			break;
3553
3554		ad->u.net->sport = th->source;
3555		ad->u.net->dport = th->dest;
3556		break;
3557	}
3558
3559	case IPPROTO_UDP: {
3560		struct udphdr _udph, *uh;
3561
3562		if (ntohs(ih->frag_off) & IP_OFFSET)
3563			break;
3564
3565		offset += ihlen;
3566		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3567		if (uh == NULL)
3568			break;
3569
3570		ad->u.net->sport = uh->source;
3571		ad->u.net->dport = uh->dest;
3572		break;
3573	}
3574
3575	case IPPROTO_DCCP: {
3576		struct dccp_hdr _dccph, *dh;
3577
3578		if (ntohs(ih->frag_off) & IP_OFFSET)
3579			break;
3580
3581		offset += ihlen;
3582		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3583		if (dh == NULL)
3584			break;
3585
3586		ad->u.net->sport = dh->dccph_sport;
3587		ad->u.net->dport = dh->dccph_dport;
3588		break;
3589	}
3590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3591	default:
3592		break;
3593	}
3594out:
3595	return ret;
3596}
3597
3598#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3599
3600/* Returns error only if unable to parse addresses */
3601static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3602			struct common_audit_data *ad, u8 *proto)
3603{
3604	u8 nexthdr;
3605	int ret = -EINVAL, offset;
3606	struct ipv6hdr _ipv6h, *ip6;
3607	__be16 frag_off;
3608
3609	offset = skb_network_offset(skb);
3610	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3611	if (ip6 == NULL)
3612		goto out;
3613
3614	ad->u.net->v6info.saddr = ip6->saddr;
3615	ad->u.net->v6info.daddr = ip6->daddr;
3616	ret = 0;
3617
3618	nexthdr = ip6->nexthdr;
3619	offset += sizeof(_ipv6h);
3620	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3621	if (offset < 0)
3622		goto out;
3623
3624	if (proto)
3625		*proto = nexthdr;
3626
3627	switch (nexthdr) {
3628	case IPPROTO_TCP: {
3629		struct tcphdr _tcph, *th;
3630
3631		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3632		if (th == NULL)
3633			break;
3634
3635		ad->u.net->sport = th->source;
3636		ad->u.net->dport = th->dest;
3637		break;
3638	}
3639
3640	case IPPROTO_UDP: {
3641		struct udphdr _udph, *uh;
3642
3643		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3644		if (uh == NULL)
3645			break;
3646
3647		ad->u.net->sport = uh->source;
3648		ad->u.net->dport = uh->dest;
3649		break;
3650	}
3651
3652	case IPPROTO_DCCP: {
3653		struct dccp_hdr _dccph, *dh;
3654
3655		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3656		if (dh == NULL)
3657			break;
3658
3659		ad->u.net->sport = dh->dccph_sport;
3660		ad->u.net->dport = dh->dccph_dport;
3661		break;
3662	}
3663
 
 
 
 
 
 
 
 
 
 
 
 
 
3664	/* includes fragments */
3665	default:
3666		break;
3667	}
3668out:
3669	return ret;
3670}
3671
3672#endif /* IPV6 */
3673
3674static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3675			     char **_addrp, int src, u8 *proto)
3676{
3677	char *addrp;
3678	int ret;
3679
3680	switch (ad->u.net->family) {
3681	case PF_INET:
3682		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3683		if (ret)
3684			goto parse_error;
3685		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3686				       &ad->u.net->v4info.daddr);
3687		goto okay;
3688
3689#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3690	case PF_INET6:
3691		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3692		if (ret)
3693			goto parse_error;
3694		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3695				       &ad->u.net->v6info.daddr);
3696		goto okay;
3697#endif	/* IPV6 */
3698	default:
3699		addrp = NULL;
3700		goto okay;
3701	}
3702
3703parse_error:
3704	printk(KERN_WARNING
3705	       "SELinux: failure in selinux_parse_skb(),"
3706	       " unable to parse packet\n");
3707	return ret;
3708
3709okay:
3710	if (_addrp)
3711		*_addrp = addrp;
3712	return 0;
3713}
3714
3715/**
3716 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3717 * @skb: the packet
3718 * @family: protocol family
3719 * @sid: the packet's peer label SID
3720 *
3721 * Description:
3722 * Check the various different forms of network peer labeling and determine
3723 * the peer label/SID for the packet; most of the magic actually occurs in
3724 * the security server function security_net_peersid_cmp().  The function
3725 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3726 * or -EACCES if @sid is invalid due to inconsistencies with the different
3727 * peer labels.
3728 *
3729 */
3730static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3731{
3732	int err;
3733	u32 xfrm_sid;
3734	u32 nlbl_sid;
3735	u32 nlbl_type;
3736
3737	selinux_skb_xfrm_sid(skb, &xfrm_sid);
3738	selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
 
 
 
 
3739
3740	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
 
3741	if (unlikely(err)) {
3742		printk(KERN_WARNING
3743		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3744		       " unable to determine packet's peer label\n");
3745		return -EACCES;
3746	}
3747
3748	return 0;
3749}
3750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3751/* socket security operations */
3752
3753static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3754				 u16 secclass, u32 *socksid)
3755{
3756	if (tsec->sockcreate_sid > SECSID_NULL) {
3757		*socksid = tsec->sockcreate_sid;
3758		return 0;
3759	}
3760
3761	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3762				       socksid);
3763}
3764
3765static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3766{
3767	struct sk_security_struct *sksec = sk->sk_security;
3768	struct common_audit_data ad;
3769	struct lsm_network_audit net = {0,};
3770	u32 tsid = task_sid(task);
3771
3772	if (sksec->sid == SECINITSID_KERNEL)
3773		return 0;
3774
3775	ad.type = LSM_AUDIT_DATA_NET;
3776	ad.u.net = &net;
3777	ad.u.net->sk = sk;
3778
3779	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
 
 
3780}
3781
3782static int selinux_socket_create(int family, int type,
3783				 int protocol, int kern)
3784{
3785	const struct task_security_struct *tsec = current_security();
3786	u32 newsid;
3787	u16 secclass;
3788	int rc;
3789
3790	if (kern)
3791		return 0;
3792
3793	secclass = socket_type_to_security_class(family, type, protocol);
3794	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3795	if (rc)
3796		return rc;
3797
3798	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
 
3799}
3800
3801static int selinux_socket_post_create(struct socket *sock, int family,
3802				      int type, int protocol, int kern)
3803{
3804	const struct task_security_struct *tsec = current_security();
3805	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3806	struct sk_security_struct *sksec;
 
 
3807	int err = 0;
3808
3809	isec->sclass = socket_type_to_security_class(family, type, protocol);
3810
3811	if (kern)
3812		isec->sid = SECINITSID_KERNEL;
3813	else {
3814		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3815		if (err)
3816			return err;
3817	}
3818
3819	isec->initialized = 1;
 
 
3820
3821	if (sock->sk) {
3822		sksec = sock->sk->sk_security;
3823		sksec->sid = isec->sid;
3824		sksec->sclass = isec->sclass;
 
 
 
 
3825		err = selinux_netlbl_socket_post_create(sock->sk, family);
3826	}
3827
3828	return err;
3829}
3830
 
 
 
 
 
 
 
 
 
 
 
 
3831/* Range of port numbers used to automatically bind.
3832   Need to determine whether we should perform a name_bind
3833   permission check between the socket and the port number. */
3834
3835static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3836{
3837	struct sock *sk = sock->sk;
 
3838	u16 family;
3839	int err;
3840
3841	err = sock_has_perm(current, sk, SOCKET__BIND);
3842	if (err)
3843		goto out;
3844
3845	/*
3846	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3847	 * Multiple address binding for SCTP is not supported yet: we just
3848	 * check the first address now.
3849	 */
3850	family = sk->sk_family;
3851	if (family == PF_INET || family == PF_INET6) {
3852		char *addrp;
3853		struct sk_security_struct *sksec = sk->sk_security;
3854		struct common_audit_data ad;
3855		struct lsm_network_audit net = {0,};
3856		struct sockaddr_in *addr4 = NULL;
3857		struct sockaddr_in6 *addr6 = NULL;
 
3858		unsigned short snum;
3859		u32 sid, node_perm;
3860
3861		if (family == PF_INET) {
 
 
 
 
 
 
 
 
 
 
 
 
 
3862			addr4 = (struct sockaddr_in *)address;
 
 
 
 
 
 
 
 
3863			snum = ntohs(addr4->sin_port);
3864			addrp = (char *)&addr4->sin_addr.s_addr;
3865		} else {
 
 
 
3866			addr6 = (struct sockaddr_in6 *)address;
3867			snum = ntohs(addr6->sin6_port);
3868			addrp = (char *)&addr6->sin6_addr.s6_addr;
 
 
 
3869		}
3870
 
 
 
 
 
3871		if (snum) {
3872			int low, high;
3873
3874			inet_get_local_port_range(&low, &high);
3875
3876			if (snum < max(PROT_SOCK, low) || snum > high) {
 
3877				err = sel_netport_sid(sk->sk_protocol,
3878						      snum, &sid);
3879				if (err)
3880					goto out;
3881				ad.type = LSM_AUDIT_DATA_NET;
3882				ad.u.net = &net;
3883				ad.u.net->sport = htons(snum);
3884				ad.u.net->family = family;
3885				err = avc_has_perm(sksec->sid, sid,
3886						   sksec->sclass,
3887						   SOCKET__NAME_BIND, &ad);
3888				if (err)
3889					goto out;
3890			}
3891		}
3892
3893		switch (sksec->sclass) {
3894		case SECCLASS_TCP_SOCKET:
3895			node_perm = TCP_SOCKET__NODE_BIND;
3896			break;
3897
3898		case SECCLASS_UDP_SOCKET:
3899			node_perm = UDP_SOCKET__NODE_BIND;
3900			break;
3901
3902		case SECCLASS_DCCP_SOCKET:
3903			node_perm = DCCP_SOCKET__NODE_BIND;
3904			break;
3905
 
 
 
 
3906		default:
3907			node_perm = RAWIP_SOCKET__NODE_BIND;
3908			break;
3909		}
3910
3911		err = sel_netnode_sid(addrp, family, &sid);
3912		if (err)
3913			goto out;
3914
3915		ad.type = LSM_AUDIT_DATA_NET;
3916		ad.u.net = &net;
3917		ad.u.net->sport = htons(snum);
3918		ad.u.net->family = family;
3919
3920		if (family == PF_INET)
3921			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
3922		else
3923			ad.u.net->v6info.saddr = addr6->sin6_addr;
3924
3925		err = avc_has_perm(sksec->sid, sid,
 
3926				   sksec->sclass, node_perm, &ad);
3927		if (err)
3928			goto out;
3929	}
3930out:
3931	return err;
 
 
 
 
 
3932}
3933
3934static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
 
 
 
 
3935{
3936	struct sock *sk = sock->sk;
3937	struct sk_security_struct *sksec = sk->sk_security;
3938	int err;
3939
3940	err = sock_has_perm(current, sk, SOCKET__CONNECT);
3941	if (err)
3942		return err;
 
 
 
 
 
 
 
 
3943
3944	/*
3945	 * If a TCP or DCCP socket, check name_connect permission for the port.
 
3946	 */
3947	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3948	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
 
3949		struct common_audit_data ad;
3950		struct lsm_network_audit net = {0,};
3951		struct sockaddr_in *addr4 = NULL;
3952		struct sockaddr_in6 *addr6 = NULL;
3953		unsigned short snum;
3954		u32 sid, perm;
3955
3956		if (sk->sk_family == PF_INET) {
 
 
 
 
 
 
3957			addr4 = (struct sockaddr_in *)address;
3958			if (addrlen < sizeof(struct sockaddr_in))
3959				return -EINVAL;
3960			snum = ntohs(addr4->sin_port);
3961		} else {
 
3962			addr6 = (struct sockaddr_in6 *)address;
3963			if (addrlen < SIN6_LEN_RFC2133)
3964				return -EINVAL;
3965			snum = ntohs(addr6->sin6_port);
 
 
 
 
 
 
 
 
 
3966		}
3967
3968		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3969		if (err)
3970			goto out;
3971
3972		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3973		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
 
 
 
 
 
 
 
 
 
3974
3975		ad.type = LSM_AUDIT_DATA_NET;
3976		ad.u.net = &net;
3977		ad.u.net->dport = htons(snum);
3978		ad.u.net->family = sk->sk_family;
3979		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
 
3980		if (err)
3981			goto out;
3982	}
3983
3984	err = selinux_netlbl_socket_connect(sk, address);
 
3985
3986out:
3987	return err;
 
 
 
 
 
 
 
 
 
 
3988}
3989
3990static int selinux_socket_listen(struct socket *sock, int backlog)
3991{
3992	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3993}
3994
3995static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3996{
3997	int err;
3998	struct inode_security_struct *isec;
3999	struct inode_security_struct *newisec;
 
 
4000
4001	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4002	if (err)
4003		return err;
4004
4005	newisec = SOCK_INODE(newsock)->i_security;
4006
4007	isec = SOCK_INODE(sock)->i_security;
4008	newisec->sclass = isec->sclass;
4009	newisec->sid = isec->sid;
4010	newisec->initialized = 1;
 
 
 
 
4011
4012	return 0;
4013}
4014
4015static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4016				  int size)
4017{
4018	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4019}
4020
4021static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4022				  int size, int flags)
4023{
4024	return sock_has_perm(current, sock->sk, SOCKET__READ);
4025}
4026
4027static int selinux_socket_getsockname(struct socket *sock)
4028{
4029	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4030}
4031
4032static int selinux_socket_getpeername(struct socket *sock)
4033{
4034	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4035}
4036
4037static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4038{
4039	int err;
4040
4041	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4042	if (err)
4043		return err;
4044
4045	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4046}
4047
4048static int selinux_socket_getsockopt(struct socket *sock, int level,
4049				     int optname)
4050{
4051	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4052}
4053
4054static int selinux_socket_shutdown(struct socket *sock, int how)
4055{
4056	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4057}
4058
4059static int selinux_socket_unix_stream_connect(struct sock *sock,
4060					      struct sock *other,
4061					      struct sock *newsk)
4062{
4063	struct sk_security_struct *sksec_sock = sock->sk_security;
4064	struct sk_security_struct *sksec_other = other->sk_security;
4065	struct sk_security_struct *sksec_new = newsk->sk_security;
4066	struct common_audit_data ad;
4067	struct lsm_network_audit net = {0,};
4068	int err;
4069
4070	ad.type = LSM_AUDIT_DATA_NET;
4071	ad.u.net = &net;
4072	ad.u.net->sk = other;
4073
4074	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
 
4075			   sksec_other->sclass,
4076			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4077	if (err)
4078		return err;
4079
4080	/* server child socket */
4081	sksec_new->peer_sid = sksec_sock->sid;
4082	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4083				    &sksec_new->sid);
4084	if (err)
4085		return err;
4086
4087	/* connecting socket */
4088	sksec_sock->peer_sid = sksec_new->sid;
4089
4090	return 0;
4091}
4092
4093static int selinux_socket_unix_may_send(struct socket *sock,
4094					struct socket *other)
4095{
4096	struct sk_security_struct *ssec = sock->sk->sk_security;
4097	struct sk_security_struct *osec = other->sk->sk_security;
4098	struct common_audit_data ad;
4099	struct lsm_network_audit net = {0,};
4100
4101	ad.type = LSM_AUDIT_DATA_NET;
4102	ad.u.net = &net;
4103	ad.u.net->sk = other->sk;
4104
4105	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
 
4106			    &ad);
4107}
4108
4109static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4110				    u32 peer_sid,
4111				    struct common_audit_data *ad)
4112{
4113	int err;
4114	u32 if_sid;
4115	u32 node_sid;
4116
4117	err = sel_netif_sid(ifindex, &if_sid);
4118	if (err)
4119		return err;
4120	err = avc_has_perm(peer_sid, if_sid,
 
4121			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4122	if (err)
4123		return err;
4124
4125	err = sel_netnode_sid(addrp, family, &node_sid);
4126	if (err)
4127		return err;
4128	return avc_has_perm(peer_sid, node_sid,
 
4129			    SECCLASS_NODE, NODE__RECVFROM, ad);
4130}
4131
4132static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4133				       u16 family)
4134{
4135	int err = 0;
4136	struct sk_security_struct *sksec = sk->sk_security;
4137	u32 sk_sid = sksec->sid;
4138	struct common_audit_data ad;
4139	struct lsm_network_audit net = {0,};
4140	char *addrp;
4141
4142	ad.type = LSM_AUDIT_DATA_NET;
4143	ad.u.net = &net;
4144	ad.u.net->netif = skb->skb_iif;
4145	ad.u.net->family = family;
4146	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4147	if (err)
4148		return err;
4149
4150	if (selinux_secmark_enabled()) {
4151		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4152				   PACKET__RECV, &ad);
4153		if (err)
4154			return err;
4155	}
4156
4157	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4158	if (err)
4159		return err;
4160	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4161
4162	return err;
4163}
4164
4165static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4166{
4167	int err;
4168	struct sk_security_struct *sksec = sk->sk_security;
4169	u16 family = sk->sk_family;
4170	u32 sk_sid = sksec->sid;
4171	struct common_audit_data ad;
4172	struct lsm_network_audit net = {0,};
4173	char *addrp;
4174	u8 secmark_active;
4175	u8 peerlbl_active;
4176
4177	if (family != PF_INET && family != PF_INET6)
4178		return 0;
4179
4180	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4181	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4182		family = PF_INET;
4183
4184	/* If any sort of compatibility mode is enabled then handoff processing
4185	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4186	 * special handling.  We do this in an attempt to keep this function
4187	 * as fast and as clean as possible. */
4188	if (!selinux_policycap_netpeer)
4189		return selinux_sock_rcv_skb_compat(sk, skb, family);
4190
4191	secmark_active = selinux_secmark_enabled();
4192	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4193	if (!secmark_active && !peerlbl_active)
4194		return 0;
4195
4196	ad.type = LSM_AUDIT_DATA_NET;
4197	ad.u.net = &net;
4198	ad.u.net->netif = skb->skb_iif;
4199	ad.u.net->family = family;
4200	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4201	if (err)
4202		return err;
4203
4204	if (peerlbl_active) {
4205		u32 peer_sid;
4206
4207		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4208		if (err)
4209			return err;
4210		err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4211					       peer_sid, &ad);
4212		if (err) {
4213			selinux_netlbl_err(skb, err, 0);
4214			return err;
4215		}
4216		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
 
4217				   PEER__RECV, &ad);
4218		if (err)
4219			selinux_netlbl_err(skb, err, 0);
 
 
4220	}
4221
4222	if (secmark_active) {
4223		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4224				   PACKET__RECV, &ad);
4225		if (err)
4226			return err;
4227	}
4228
4229	return err;
4230}
4231
4232static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4233					    int __user *optlen, unsigned len)
4234{
4235	int err = 0;
4236	char *scontext;
4237	u32 scontext_len;
4238	struct sk_security_struct *sksec = sock->sk->sk_security;
4239	u32 peer_sid = SECSID_NULL;
4240
4241	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4242	    sksec->sclass == SECCLASS_TCP_SOCKET)
 
4243		peer_sid = sksec->peer_sid;
4244	if (peer_sid == SECSID_NULL)
4245		return -ENOPROTOOPT;
4246
4247	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
 
4248	if (err)
4249		return err;
4250
4251	if (scontext_len > len) {
4252		err = -ERANGE;
4253		goto out_len;
4254	}
4255
4256	if (copy_to_user(optval, scontext, scontext_len))
4257		err = -EFAULT;
4258
4259out_len:
4260	if (put_user(scontext_len, optlen))
4261		err = -EFAULT;
4262	kfree(scontext);
4263	return err;
4264}
4265
4266static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4267{
4268	u32 peer_secid = SECSID_NULL;
4269	u16 family;
 
4270
4271	if (skb && skb->protocol == htons(ETH_P_IP))
4272		family = PF_INET;
4273	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4274		family = PF_INET6;
4275	else if (sock)
4276		family = sock->sk->sk_family;
4277	else
4278		goto out;
4279
4280	if (sock && family == PF_UNIX)
4281		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4282	else if (skb)
 
4283		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4284
4285out:
4286	*secid = peer_secid;
4287	if (peer_secid == SECSID_NULL)
4288		return -EINVAL;
4289	return 0;
4290}
4291
4292static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4293{
4294	struct sk_security_struct *sksec;
4295
4296	sksec = kzalloc(sizeof(*sksec), priority);
4297	if (!sksec)
4298		return -ENOMEM;
4299
4300	sksec->peer_sid = SECINITSID_UNLABELED;
4301	sksec->sid = SECINITSID_UNLABELED;
 
4302	selinux_netlbl_sk_security_reset(sksec);
4303	sk->sk_security = sksec;
4304
4305	return 0;
4306}
4307
4308static void selinux_sk_free_security(struct sock *sk)
4309{
4310	struct sk_security_struct *sksec = sk->sk_security;
4311
4312	sk->sk_security = NULL;
4313	selinux_netlbl_sk_security_free(sksec);
4314	kfree(sksec);
4315}
4316
4317static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4318{
4319	struct sk_security_struct *sksec = sk->sk_security;
4320	struct sk_security_struct *newsksec = newsk->sk_security;
4321
4322	newsksec->sid = sksec->sid;
4323	newsksec->peer_sid = sksec->peer_sid;
4324	newsksec->sclass = sksec->sclass;
4325
4326	selinux_netlbl_sk_security_reset(newsksec);
4327}
4328
4329static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4330{
4331	if (!sk)
4332		*secid = SECINITSID_ANY_SOCKET;
4333	else {
4334		struct sk_security_struct *sksec = sk->sk_security;
4335
4336		*secid = sksec->sid;
4337	}
4338}
4339
4340static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4341{
4342	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
 
4343	struct sk_security_struct *sksec = sk->sk_security;
4344
4345	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4346	    sk->sk_family == PF_UNIX)
4347		isec->sid = sksec->sid;
4348	sksec->sclass = isec->sclass;
4349}
4350
4351static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4352				     struct request_sock *req)
4353{
4354	struct sk_security_struct *sksec = sk->sk_security;
4355	int err;
4356	u16 family = sk->sk_family;
4357	u32 newsid;
4358	u32 peersid;
4359
4360	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4361	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4362		family = PF_INET;
4363
4364	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4365	if (err)
4366		return err;
4367	if (peersid == SECSID_NULL) {
4368		req->secid = sksec->sid;
4369		req->peer_secid = SECSID_NULL;
4370	} else {
4371		err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4372		if (err)
4373			return err;
4374		req->secid = newsid;
4375		req->peer_secid = peersid;
4376	}
4377
4378	return selinux_netlbl_inet_conn_request(req, family);
4379}
4380
4381static void selinux_inet_csk_clone(struct sock *newsk,
4382				   const struct request_sock *req)
4383{
4384	struct sk_security_struct *newsksec = newsk->sk_security;
4385
4386	newsksec->sid = req->secid;
4387	newsksec->peer_sid = req->peer_secid;
4388	/* NOTE: Ideally, we should also get the isec->sid for the
4389	   new socket in sync, but we don't have the isec available yet.
4390	   So we will wait until sock_graft to do it, by which
4391	   time it will have been created and available. */
4392
4393	/* We don't need to take any sort of lock here as we are the only
4394	 * thread with access to newsksec */
4395	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4396}
4397
4398static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4399{
4400	u16 family = sk->sk_family;
4401	struct sk_security_struct *sksec = sk->sk_security;
4402
4403	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4404	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4405		family = PF_INET;
4406
4407	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4408}
4409
4410static int selinux_secmark_relabel_packet(u32 sid)
4411{
4412	const struct task_security_struct *__tsec;
4413	u32 tsid;
4414
4415	__tsec = current_security();
4416	tsid = __tsec->sid;
4417
4418	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
 
 
4419}
4420
4421static void selinux_secmark_refcount_inc(void)
4422{
4423	atomic_inc(&selinux_secmark_refcount);
4424}
4425
4426static void selinux_secmark_refcount_dec(void)
4427{
4428	atomic_dec(&selinux_secmark_refcount);
4429}
4430
4431static void selinux_req_classify_flow(const struct request_sock *req,
4432				      struct flowi *fl)
 
 
 
 
 
4433{
4434	fl->flowi_secid = req->secid;
 
 
 
 
 
 
 
 
 
 
 
 
 
4435}
4436
4437static int selinux_tun_dev_create(void)
4438{
4439	u32 sid = current_sid();
4440
4441	/* we aren't taking into account the "sockcreate" SID since the socket
4442	 * that is being created here is not a socket in the traditional sense,
4443	 * instead it is a private sock, accessible only to the kernel, and
4444	 * representing a wide range of network traffic spanning multiple
4445	 * connections unlike traditional sockets - check the TUN driver to
4446	 * get a better understanding of why this socket is special */
4447
4448	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
 
4449			    NULL);
4450}
4451
4452static void selinux_tun_dev_post_create(struct sock *sk)
4453{
 
 
 
 
 
 
 
 
 
 
4454	struct sk_security_struct *sksec = sk->sk_security;
4455
4456	/* we don't currently perform any NetLabel based labeling here and it
4457	 * isn't clear that we would want to do so anyway; while we could apply
4458	 * labeling without the support of the TUN user the resulting labeled
4459	 * traffic from the other end of the connection would almost certainly
4460	 * cause confusion to the TUN user that had no idea network labeling
4461	 * protocols were being used */
4462
4463	/* see the comments in selinux_tun_dev_create() about why we don't use
4464	 * the sockcreate SID here */
4465
4466	sksec->sid = current_sid();
4467	sksec->sclass = SECCLASS_TUN_SOCKET;
 
 
4468}
4469
4470static int selinux_tun_dev_attach(struct sock *sk)
4471{
4472	struct sk_security_struct *sksec = sk->sk_security;
4473	u32 sid = current_sid();
4474	int err;
4475
4476	err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
 
4477			   TUN_SOCKET__RELABELFROM, NULL);
4478	if (err)
4479		return err;
4480	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
 
4481			   TUN_SOCKET__RELABELTO, NULL);
4482	if (err)
4483		return err;
4484
4485	sksec->sid = sid;
4486
4487	return 0;
4488}
4489
4490static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4491{
4492	int err = 0;
4493	u32 perm;
4494	struct nlmsghdr *nlh;
4495	struct sk_security_struct *sksec = sk->sk_security;
4496
4497	if (skb->len < NLMSG_SPACE(0)) {
4498		err = -EINVAL;
4499		goto out;
4500	}
4501	nlh = nlmsg_hdr(skb);
4502
4503	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4504	if (err) {
4505		if (err == -EINVAL) {
4506			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4507				  "SELinux:  unrecognized netlink message"
4508				  " type=%hu for sclass=%hu\n",
4509				  nlh->nlmsg_type, sksec->sclass);
4510			if (!selinux_enforcing || security_get_allow_unknown())
4511				err = 0;
4512		}
4513
4514		/* Ignore */
4515		if (err == -ENOENT)
4516			err = 0;
4517		goto out;
4518	}
4519
4520	err = sock_has_perm(current, sk, perm);
4521out:
4522	return err;
4523}
4524
4525#ifdef CONFIG_NETFILTER
4526
4527static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
 
4528				       u16 family)
4529{
4530	int err;
4531	char *addrp;
4532	u32 peer_sid;
4533	struct common_audit_data ad;
4534	struct lsm_network_audit net = {0,};
4535	u8 secmark_active;
4536	u8 netlbl_active;
4537	u8 peerlbl_active;
4538
4539	if (!selinux_policycap_netpeer)
4540		return NF_ACCEPT;
4541
4542	secmark_active = selinux_secmark_enabled();
4543	netlbl_active = netlbl_enabled();
4544	peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4545	if (!secmark_active && !peerlbl_active)
4546		return NF_ACCEPT;
4547
4548	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4549		return NF_DROP;
4550
4551	ad.type = LSM_AUDIT_DATA_NET;
4552	ad.u.net = &net;
4553	ad.u.net->netif = ifindex;
4554	ad.u.net->family = family;
4555	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4556		return NF_DROP;
4557
4558	if (peerlbl_active) {
4559		err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4560					       peer_sid, &ad);
4561		if (err) {
4562			selinux_netlbl_err(skb, err, 1);
4563			return NF_DROP;
4564		}
4565	}
4566
4567	if (secmark_active)
4568		if (avc_has_perm(peer_sid, skb->secmark,
 
4569				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4570			return NF_DROP;
4571
4572	if (netlbl_active)
4573		/* we do this in the FORWARD path and not the POST_ROUTING
4574		 * path because we want to make sure we apply the necessary
4575		 * labeling before IPsec is applied so we can leverage AH
4576		 * protection */
4577		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4578			return NF_DROP;
4579
4580	return NF_ACCEPT;
4581}
4582
4583static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4584					 struct sk_buff *skb,
4585					 const struct net_device *in,
4586					 const struct net_device *out,
4587					 int (*okfn)(struct sk_buff *))
4588{
4589	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4590}
4591
4592#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4593static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4594					 struct sk_buff *skb,
4595					 const struct net_device *in,
4596					 const struct net_device *out,
4597					 int (*okfn)(struct sk_buff *))
4598{
4599	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4600}
4601#endif	/* IPV6 */
4602
4603static unsigned int selinux_ip_output(struct sk_buff *skb,
4604				      u16 family)
4605{
 
4606	u32 sid;
4607
4608	if (!netlbl_enabled())
4609		return NF_ACCEPT;
4610
4611	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4612	 * because we want to make sure we apply the necessary labeling
4613	 * before IPsec is applied so we can leverage AH protection */
4614	if (skb->sk) {
4615		struct sk_security_struct *sksec = skb->sk->sk_security;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4616		sid = sksec->sid;
4617	} else
4618		sid = SECINITSID_KERNEL;
4619	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4620		return NF_DROP;
4621
4622	return NF_ACCEPT;
4623}
4624
4625static unsigned int selinux_ipv4_output(unsigned int hooknum,
4626					struct sk_buff *skb,
4627					const struct net_device *in,
4628					const struct net_device *out,
4629					int (*okfn)(struct sk_buff *))
4630{
4631	return selinux_ip_output(skb, PF_INET);
4632}
4633
 
 
 
 
 
 
 
 
 
4634static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4635						int ifindex,
4636						u16 family)
4637{
4638	struct sock *sk = skb->sk;
4639	struct sk_security_struct *sksec;
4640	struct common_audit_data ad;
4641	struct lsm_network_audit net = {0,};
4642	char *addrp;
4643	u8 proto;
4644
4645	if (sk == NULL)
4646		return NF_ACCEPT;
4647	sksec = sk->sk_security;
4648
4649	ad.type = LSM_AUDIT_DATA_NET;
4650	ad.u.net = &net;
4651	ad.u.net->netif = ifindex;
4652	ad.u.net->family = family;
4653	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4654		return NF_DROP;
4655
4656	if (selinux_secmark_enabled())
4657		if (avc_has_perm(sksec->sid, skb->secmark,
 
4658				 SECCLASS_PACKET, PACKET__SEND, &ad))
4659			return NF_DROP_ERR(-ECONNREFUSED);
4660
4661	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4662		return NF_DROP_ERR(-ECONNREFUSED);
4663
4664	return NF_ACCEPT;
4665}
4666
4667static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
 
4668					 u16 family)
4669{
4670	u32 secmark_perm;
4671	u32 peer_sid;
 
4672	struct sock *sk;
4673	struct common_audit_data ad;
4674	struct lsm_network_audit net = {0,};
4675	char *addrp;
4676	u8 secmark_active;
4677	u8 peerlbl_active;
4678
4679	/* If any sort of compatibility mode is enabled then handoff processing
4680	 * to the selinux_ip_postroute_compat() function to deal with the
4681	 * special handling.  We do this in an attempt to keep this function
4682	 * as fast and as clean as possible. */
4683	if (!selinux_policycap_netpeer)
4684		return selinux_ip_postroute_compat(skb, ifindex, family);
 
 
 
 
 
 
 
 
4685#ifdef CONFIG_XFRM
4686	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4687	 * packet transformation so allow the packet to pass without any checks
4688	 * since we'll have another chance to perform access control checks
4689	 * when the packet is on it's final way out.
4690	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4691	 *       is NULL, in this case go ahead and apply access control. */
4692	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
 
 
 
 
 
 
4693		return NF_ACCEPT;
4694#endif
4695	secmark_active = selinux_secmark_enabled();
4696	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4697	if (!secmark_active && !peerlbl_active)
4698		return NF_ACCEPT;
4699
4700	/* if the packet is being forwarded then get the peer label from the
4701	 * packet itself; otherwise check to see if it is from a local
4702	 * application or the kernel, if from an application get the peer label
4703	 * from the sending socket, otherwise use the kernel's sid */
4704	sk = skb->sk;
4705	if (sk == NULL) {
 
 
 
 
4706		if (skb->skb_iif) {
4707			secmark_perm = PACKET__FORWARD_OUT;
4708			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4709				return NF_DROP;
4710		} else {
4711			secmark_perm = PACKET__SEND;
4712			peer_sid = SECINITSID_KERNEL;
4713		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4714	} else {
 
 
4715		struct sk_security_struct *sksec = sk->sk_security;
4716		peer_sid = sksec->sid;
4717		secmark_perm = PACKET__SEND;
4718	}
4719
4720	ad.type = LSM_AUDIT_DATA_NET;
4721	ad.u.net = &net;
4722	ad.u.net->netif = ifindex;
4723	ad.u.net->family = family;
4724	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4725		return NF_DROP;
4726
4727	if (secmark_active)
4728		if (avc_has_perm(peer_sid, skb->secmark,
 
4729				 SECCLASS_PACKET, secmark_perm, &ad))
4730			return NF_DROP_ERR(-ECONNREFUSED);
4731
4732	if (peerlbl_active) {
4733		u32 if_sid;
4734		u32 node_sid;
4735
4736		if (sel_netif_sid(ifindex, &if_sid))
4737			return NF_DROP;
4738		if (avc_has_perm(peer_sid, if_sid,
 
4739				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4740			return NF_DROP_ERR(-ECONNREFUSED);
4741
4742		if (sel_netnode_sid(addrp, family, &node_sid))
4743			return NF_DROP;
4744		if (avc_has_perm(peer_sid, node_sid,
 
4745				 SECCLASS_NODE, NODE__SENDTO, &ad))
4746			return NF_DROP_ERR(-ECONNREFUSED);
4747	}
4748
4749	return NF_ACCEPT;
4750}
4751
4752static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4753					   struct sk_buff *skb,
4754					   const struct net_device *in,
4755					   const struct net_device *out,
4756					   int (*okfn)(struct sk_buff *))
4757{
4758	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4759}
4760
4761#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4762static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4763					   struct sk_buff *skb,
4764					   const struct net_device *in,
4765					   const struct net_device *out,
4766					   int (*okfn)(struct sk_buff *))
4767{
4768	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4769}
4770#endif	/* IPV6 */
4771
4772#endif	/* CONFIG_NETFILTER */
4773
4774static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4775{
4776	int err;
4777
4778	err = cap_netlink_send(sk, skb);
4779	if (err)
4780		return err;
4781
4782	return selinux_nlmsg_perm(sk, skb);
4783}
4784
4785static int ipc_alloc_security(struct task_struct *task,
4786			      struct kern_ipc_perm *perm,
4787			      u16 sclass)
4788{
4789	struct ipc_security_struct *isec;
4790	u32 sid;
4791
4792	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4793	if (!isec)
4794		return -ENOMEM;
4795
4796	sid = task_sid(task);
4797	isec->sclass = sclass;
4798	isec->sid = sid;
4799	perm->security = isec;
4800
4801	return 0;
4802}
4803
4804static void ipc_free_security(struct kern_ipc_perm *perm)
4805{
4806	struct ipc_security_struct *isec = perm->security;
4807	perm->security = NULL;
4808	kfree(isec);
4809}
4810
4811static int msg_msg_alloc_security(struct msg_msg *msg)
4812{
4813	struct msg_security_struct *msec;
 
 
 
 
 
4814
4815	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4816	if (!msec)
4817		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4818
4819	msec->sid = SECINITSID_UNLABELED;
4820	msg->security = msec;
 
 
 
 
 
4821
4822	return 0;
4823}
4824
4825static void msg_msg_free_security(struct msg_msg *msg)
4826{
4827	struct msg_security_struct *msec = msg->security;
4828
4829	msg->security = NULL;
4830	kfree(msec);
4831}
4832
4833static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4834			u32 perms)
4835{
4836	struct ipc_security_struct *isec;
4837	struct common_audit_data ad;
4838	u32 sid = current_sid();
4839
4840	isec = ipc_perms->security;
4841
4842	ad.type = LSM_AUDIT_DATA_IPC;
4843	ad.u.ipc_id = ipc_perms->key;
4844
4845	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
 
4846}
4847
4848static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4849{
4850	return msg_msg_alloc_security(msg);
4851}
4852
4853static void selinux_msg_msg_free_security(struct msg_msg *msg)
4854{
4855	msg_msg_free_security(msg);
 
4856}
4857
4858/* message queue security operations */
4859static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4860{
4861	struct ipc_security_struct *isec;
4862	struct common_audit_data ad;
4863	u32 sid = current_sid();
4864	int rc;
4865
4866	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4867	if (rc)
4868		return rc;
4869
4870	isec = msq->q_perm.security;
4871
4872	ad.type = LSM_AUDIT_DATA_IPC;
4873	ad.u.ipc_id = msq->q_perm.key;
4874
4875	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
4876			  MSGQ__CREATE, &ad);
4877	if (rc) {
4878		ipc_free_security(&msq->q_perm);
4879		return rc;
4880	}
4881	return 0;
4882}
4883
4884static void selinux_msg_queue_free_security(struct msg_queue *msq)
4885{
4886	ipc_free_security(&msq->q_perm);
4887}
4888
4889static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4890{
4891	struct ipc_security_struct *isec;
4892	struct common_audit_data ad;
4893	u32 sid = current_sid();
4894
4895	isec = msq->q_perm.security;
4896
4897	ad.type = LSM_AUDIT_DATA_IPC;
4898	ad.u.ipc_id = msq->q_perm.key;
4899
4900	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
4901			    MSGQ__ASSOCIATE, &ad);
4902}
4903
4904static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4905{
4906	int err;
4907	int perms;
4908
4909	switch (cmd) {
4910	case IPC_INFO:
4911	case MSG_INFO:
4912		/* No specific object, just general system-wide information. */
4913		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
4914	case IPC_STAT:
4915	case MSG_STAT:
 
4916		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4917		break;
4918	case IPC_SET:
4919		perms = MSGQ__SETATTR;
4920		break;
4921	case IPC_RMID:
4922		perms = MSGQ__DESTROY;
4923		break;
4924	default:
4925		return 0;
4926	}
4927
4928	err = ipc_has_perm(&msq->q_perm, perms);
4929	return err;
4930}
4931
4932static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4933{
4934	struct ipc_security_struct *isec;
4935	struct msg_security_struct *msec;
4936	struct common_audit_data ad;
4937	u32 sid = current_sid();
4938	int rc;
4939
4940	isec = msq->q_perm.security;
4941	msec = msg->security;
4942
4943	/*
4944	 * First time through, need to assign label to the message
4945	 */
4946	if (msec->sid == SECINITSID_UNLABELED) {
4947		/*
4948		 * Compute new sid based on current process and
4949		 * message queue this message will be stored in
4950		 */
4951		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4952					     NULL, &msec->sid);
4953		if (rc)
4954			return rc;
4955	}
4956
4957	ad.type = LSM_AUDIT_DATA_IPC;
4958	ad.u.ipc_id = msq->q_perm.key;
4959
4960	/* Can this process write to the queue? */
4961	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
4962			  MSGQ__WRITE, &ad);
4963	if (!rc)
4964		/* Can this process send the message */
4965		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
 
4966				  MSG__SEND, &ad);
4967	if (!rc)
4968		/* Can the message be put in the queue? */
4969		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
 
4970				  MSGQ__ENQUEUE, &ad);
4971
4972	return rc;
4973}
4974
4975static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4976				    struct task_struct *target,
4977				    long type, int mode)
4978{
4979	struct ipc_security_struct *isec;
4980	struct msg_security_struct *msec;
4981	struct common_audit_data ad;
4982	u32 sid = task_sid(target);
4983	int rc;
4984
4985	isec = msq->q_perm.security;
4986	msec = msg->security;
4987
4988	ad.type = LSM_AUDIT_DATA_IPC;
4989	ad.u.ipc_id = msq->q_perm.key;
4990
4991	rc = avc_has_perm(sid, isec->sid,
 
4992			  SECCLASS_MSGQ, MSGQ__READ, &ad);
4993	if (!rc)
4994		rc = avc_has_perm(sid, msec->sid,
 
4995				  SECCLASS_MSG, MSG__RECEIVE, &ad);
4996	return rc;
4997}
4998
4999/* Shared Memory security operations */
5000static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5001{
5002	struct ipc_security_struct *isec;
5003	struct common_audit_data ad;
5004	u32 sid = current_sid();
5005	int rc;
5006
5007	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5008	if (rc)
5009		return rc;
5010
5011	isec = shp->shm_perm.security;
5012
5013	ad.type = LSM_AUDIT_DATA_IPC;
5014	ad.u.ipc_id = shp->shm_perm.key;
5015
5016	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
5017			  SHM__CREATE, &ad);
5018	if (rc) {
5019		ipc_free_security(&shp->shm_perm);
5020		return rc;
5021	}
5022	return 0;
5023}
5024
5025static void selinux_shm_free_security(struct shmid_kernel *shp)
5026{
5027	ipc_free_security(&shp->shm_perm);
5028}
5029
5030static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5031{
5032	struct ipc_security_struct *isec;
5033	struct common_audit_data ad;
5034	u32 sid = current_sid();
5035
5036	isec = shp->shm_perm.security;
5037
5038	ad.type = LSM_AUDIT_DATA_IPC;
5039	ad.u.ipc_id = shp->shm_perm.key;
5040
5041	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
5042			    SHM__ASSOCIATE, &ad);
5043}
5044
5045/* Note, at this point, shp is locked down */
5046static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5047{
5048	int perms;
5049	int err;
5050
5051	switch (cmd) {
5052	case IPC_INFO:
5053	case SHM_INFO:
5054		/* No specific object, just general system-wide information. */
5055		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5056	case IPC_STAT:
5057	case SHM_STAT:
 
5058		perms = SHM__GETATTR | SHM__ASSOCIATE;
5059		break;
5060	case IPC_SET:
5061		perms = SHM__SETATTR;
5062		break;
5063	case SHM_LOCK:
5064	case SHM_UNLOCK:
5065		perms = SHM__LOCK;
5066		break;
5067	case IPC_RMID:
5068		perms = SHM__DESTROY;
5069		break;
5070	default:
5071		return 0;
5072	}
5073
5074	err = ipc_has_perm(&shp->shm_perm, perms);
5075	return err;
5076}
5077
5078static int selinux_shm_shmat(struct shmid_kernel *shp,
5079			     char __user *shmaddr, int shmflg)
5080{
5081	u32 perms;
5082
5083	if (shmflg & SHM_RDONLY)
5084		perms = SHM__READ;
5085	else
5086		perms = SHM__READ | SHM__WRITE;
5087
5088	return ipc_has_perm(&shp->shm_perm, perms);
5089}
5090
5091/* Semaphore security operations */
5092static int selinux_sem_alloc_security(struct sem_array *sma)
5093{
5094	struct ipc_security_struct *isec;
5095	struct common_audit_data ad;
5096	u32 sid = current_sid();
5097	int rc;
5098
5099	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5100	if (rc)
5101		return rc;
5102
5103	isec = sma->sem_perm.security;
5104
5105	ad.type = LSM_AUDIT_DATA_IPC;
5106	ad.u.ipc_id = sma->sem_perm.key;
5107
5108	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
5109			  SEM__CREATE, &ad);
5110	if (rc) {
5111		ipc_free_security(&sma->sem_perm);
5112		return rc;
5113	}
5114	return 0;
5115}
5116
5117static void selinux_sem_free_security(struct sem_array *sma)
5118{
5119	ipc_free_security(&sma->sem_perm);
5120}
5121
5122static int selinux_sem_associate(struct sem_array *sma, int semflg)
5123{
5124	struct ipc_security_struct *isec;
5125	struct common_audit_data ad;
5126	u32 sid = current_sid();
5127
5128	isec = sma->sem_perm.security;
5129
5130	ad.type = LSM_AUDIT_DATA_IPC;
5131	ad.u.ipc_id = sma->sem_perm.key;
5132
5133	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
5134			    SEM__ASSOCIATE, &ad);
5135}
5136
5137/* Note, at this point, sma is locked down */
5138static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5139{
5140	int err;
5141	u32 perms;
5142
5143	switch (cmd) {
5144	case IPC_INFO:
5145	case SEM_INFO:
5146		/* No specific object, just general system-wide information. */
5147		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5148	case GETPID:
5149	case GETNCNT:
5150	case GETZCNT:
5151		perms = SEM__GETATTR;
5152		break;
5153	case GETVAL:
5154	case GETALL:
5155		perms = SEM__READ;
5156		break;
5157	case SETVAL:
5158	case SETALL:
5159		perms = SEM__WRITE;
5160		break;
5161	case IPC_RMID:
5162		perms = SEM__DESTROY;
5163		break;
5164	case IPC_SET:
5165		perms = SEM__SETATTR;
5166		break;
5167	case IPC_STAT:
5168	case SEM_STAT:
 
5169		perms = SEM__GETATTR | SEM__ASSOCIATE;
5170		break;
5171	default:
5172		return 0;
5173	}
5174
5175	err = ipc_has_perm(&sma->sem_perm, perms);
5176	return err;
5177}
5178
5179static int selinux_sem_semop(struct sem_array *sma,
5180			     struct sembuf *sops, unsigned nsops, int alter)
5181{
5182	u32 perms;
5183
5184	if (alter)
5185		perms = SEM__READ | SEM__WRITE;
5186	else
5187		perms = SEM__READ;
5188
5189	return ipc_has_perm(&sma->sem_perm, perms);
5190}
5191
5192static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5193{
5194	u32 av = 0;
5195
5196	av = 0;
5197	if (flag & S_IRUGO)
5198		av |= IPC__UNIX_READ;
5199	if (flag & S_IWUGO)
5200		av |= IPC__UNIX_WRITE;
5201
5202	if (av == 0)
5203		return 0;
5204
5205	return ipc_has_perm(ipcp, av);
5206}
5207
5208static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5209{
5210	struct ipc_security_struct *isec = ipcp->security;
5211	*secid = isec->sid;
5212}
5213
5214static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5215{
5216	if (inode)
5217		inode_doinit_with_dentry(inode, dentry);
5218}
5219
5220static int selinux_getprocattr(struct task_struct *p,
5221			       char *name, char **value)
5222{
5223	const struct task_security_struct *__tsec;
5224	u32 sid;
5225	int error;
5226	unsigned len;
5227
 
 
 
5228	if (current != p) {
5229		error = current_has_perm(p, PROCESS__GETATTR);
 
 
5230		if (error)
5231			return error;
5232	}
5233
5234	rcu_read_lock();
5235	__tsec = __task_cred(p)->security;
5236
5237	if (!strcmp(name, "current"))
5238		sid = __tsec->sid;
5239	else if (!strcmp(name, "prev"))
5240		sid = __tsec->osid;
5241	else if (!strcmp(name, "exec"))
5242		sid = __tsec->exec_sid;
5243	else if (!strcmp(name, "fscreate"))
5244		sid = __tsec->create_sid;
5245	else if (!strcmp(name, "keycreate"))
5246		sid = __tsec->keycreate_sid;
5247	else if (!strcmp(name, "sockcreate"))
5248		sid = __tsec->sockcreate_sid;
5249	else
5250		goto invalid;
 
 
5251	rcu_read_unlock();
5252
5253	if (!sid)
5254		return 0;
5255
5256	error = security_sid_to_context(sid, value, &len);
5257	if (error)
5258		return error;
5259	return len;
5260
5261invalid:
5262	rcu_read_unlock();
5263	return -EINVAL;
5264}
5265
5266static int selinux_setprocattr(struct task_struct *p,
5267			       char *name, void *value, size_t size)
5268{
5269	struct task_security_struct *tsec;
5270	struct task_struct *tracer;
5271	struct cred *new;
5272	u32 sid = 0, ptsid;
5273	int error;
5274	char *str = value;
5275
5276	if (current != p) {
5277		/* SELinux only allows a process to change its own
5278		   security attributes. */
5279		return -EACCES;
5280	}
5281
5282	/*
5283	 * Basic control over ability to set these attributes at all.
5284	 * current == p, but we'll pass them separately in case the
5285	 * above restriction is ever removed.
5286	 */
5287	if (!strcmp(name, "exec"))
5288		error = current_has_perm(p, PROCESS__SETEXEC);
 
 
5289	else if (!strcmp(name, "fscreate"))
5290		error = current_has_perm(p, PROCESS__SETFSCREATE);
 
 
5291	else if (!strcmp(name, "keycreate"))
5292		error = current_has_perm(p, PROCESS__SETKEYCREATE);
 
 
5293	else if (!strcmp(name, "sockcreate"))
5294		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
 
 
5295	else if (!strcmp(name, "current"))
5296		error = current_has_perm(p, PROCESS__SETCURRENT);
 
 
5297	else
5298		error = -EINVAL;
5299	if (error)
5300		return error;
5301
5302	/* Obtain a SID for the context, if one was specified. */
5303	if (size && str[1] && str[1] != '\n') {
5304		if (str[size-1] == '\n') {
5305			str[size-1] = 0;
5306			size--;
5307		}
5308		error = security_context_to_sid(value, size, &sid);
 
5309		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5310			if (!capable(CAP_MAC_ADMIN)) {
5311				struct audit_buffer *ab;
5312				size_t audit_size;
5313
5314				/* We strip a nul only if it is at the end, otherwise the
5315				 * context contains a nul and we should audit that */
5316				if (str[size - 1] == '\0')
5317					audit_size = size - 1;
5318				else
5319					audit_size = size;
5320				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
 
5321				audit_log_format(ab, "op=fscreate invalid_context=");
5322				audit_log_n_untrustedstring(ab, value, audit_size);
5323				audit_log_end(ab);
5324
5325				return error;
5326			}
5327			error = security_context_to_sid_force(value, size,
5328							      &sid);
 
5329		}
5330		if (error)
5331			return error;
5332	}
5333
5334	new = prepare_creds();
5335	if (!new)
5336		return -ENOMEM;
5337
5338	/* Permission checking based on the specified context is
5339	   performed during the actual operation (execve,
5340	   open/mkdir/...), when we know the full context of the
5341	   operation.  See selinux_bprm_set_creds for the execve
5342	   checks and may_create for the file creation checks. The
5343	   operation will then fail if the context is not permitted. */
5344	tsec = new->security;
5345	if (!strcmp(name, "exec")) {
5346		tsec->exec_sid = sid;
5347	} else if (!strcmp(name, "fscreate")) {
5348		tsec->create_sid = sid;
5349	} else if (!strcmp(name, "keycreate")) {
5350		error = may_create_key(sid, p);
5351		if (error)
5352			goto abort_change;
 
 
 
5353		tsec->keycreate_sid = sid;
5354	} else if (!strcmp(name, "sockcreate")) {
5355		tsec->sockcreate_sid = sid;
5356	} else if (!strcmp(name, "current")) {
5357		error = -EINVAL;
5358		if (sid == 0)
5359			goto abort_change;
5360
5361		/* Only allow single threaded processes to change context */
5362		error = -EPERM;
5363		if (!current_is_single_threaded()) {
5364			error = security_bounded_transition(tsec->sid, sid);
 
5365			if (error)
5366				goto abort_change;
5367		}
5368
5369		/* Check permissions for the transition. */
5370		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
 
5371				     PROCESS__DYNTRANSITION, NULL);
5372		if (error)
5373			goto abort_change;
5374
5375		/* Check for ptracing, and update the task SID if ok.
5376		   Otherwise, leave SID unchanged and fail. */
5377		ptsid = 0;
5378		task_lock(p);
5379		tracer = ptrace_parent(p);
5380		if (tracer)
5381			ptsid = task_sid(tracer);
5382		task_unlock(p);
5383
5384		if (tracer) {
5385			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5386					     PROCESS__PTRACE, NULL);
5387			if (error)
5388				goto abort_change;
5389		}
5390
5391		tsec->sid = sid;
5392	} else {
5393		error = -EINVAL;
5394		goto abort_change;
5395	}
5396
5397	commit_creds(new);
5398	return size;
5399
5400abort_change:
5401	abort_creds(new);
5402	return error;
5403}
5404
 
 
 
 
 
5405static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5406{
5407	return security_sid_to_context(secid, secdata, seclen);
 
5408}
5409
5410static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5411{
5412	return security_context_to_sid(secdata, seclen, secid);
 
5413}
5414
5415static void selinux_release_secctx(char *secdata, u32 seclen)
5416{
5417	kfree(secdata);
5418}
5419
 
 
 
 
 
 
 
 
 
5420/*
5421 *	called with inode->i_mutex locked
5422 */
5423static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5424{
5425	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
 
 
 
5426}
5427
5428/*
5429 *	called with inode->i_mutex locked
5430 */
5431static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5432{
5433	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
 
5434}
5435
5436static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5437{
5438	int len = 0;
5439	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5440						ctx, true);
5441	if (len < 0)
5442		return len;
5443	*ctxlen = len;
5444	return 0;
5445}
5446#ifdef CONFIG_KEYS
5447
5448static int selinux_key_alloc(struct key *k, const struct cred *cred,
5449			     unsigned long flags)
5450{
5451	const struct task_security_struct *tsec;
5452	struct key_security_struct *ksec;
5453
5454	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5455	if (!ksec)
5456		return -ENOMEM;
5457
5458	tsec = cred->security;
5459	if (tsec->keycreate_sid)
5460		ksec->sid = tsec->keycreate_sid;
5461	else
5462		ksec->sid = tsec->sid;
5463
5464	k->security = ksec;
5465	return 0;
5466}
5467
5468static void selinux_key_free(struct key *k)
5469{
5470	struct key_security_struct *ksec = k->security;
5471
5472	k->security = NULL;
5473	kfree(ksec);
5474}
5475
5476static int selinux_key_permission(key_ref_t key_ref,
5477				  const struct cred *cred,
5478				  key_perm_t perm)
5479{
5480	struct key *key;
5481	struct key_security_struct *ksec;
5482	u32 sid;
5483
5484	/* if no specific permissions are requested, we skip the
5485	   permission check. No serious, additional covert channels
5486	   appear to be created. */
5487	if (perm == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5488		return 0;
 
 
 
5489
5490	sid = cred_sid(cred);
5491
 
5492	key = key_ref_to_ptr(key_ref);
5493	ksec = key->security;
5494
5495	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
 
5496}
5497
5498static int selinux_key_getsecurity(struct key *key, char **_buffer)
5499{
5500	struct key_security_struct *ksec = key->security;
5501	char *context = NULL;
5502	unsigned len;
5503	int rc;
5504
5505	rc = security_sid_to_context(ksec->sid, &context, &len);
 
5506	if (!rc)
5507		rc = len;
5508	*_buffer = context;
5509	return rc;
5510}
5511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5512#endif
5513
5514static struct security_operations selinux_ops = {
5515	.name =				"selinux",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5516
5517	.ptrace_access_check =		selinux_ptrace_access_check,
5518	.ptrace_traceme =		selinux_ptrace_traceme,
5519	.capget =			selinux_capget,
5520	.capset =			selinux_capset,
5521	.capable =			selinux_capable,
5522	.quotactl =			selinux_quotactl,
5523	.quota_on =			selinux_quota_on,
5524	.syslog =			selinux_syslog,
5525	.vm_enough_memory =		selinux_vm_enough_memory,
5526
5527	.netlink_send =			selinux_netlink_send,
5528
5529	.bprm_set_creds =		selinux_bprm_set_creds,
5530	.bprm_committing_creds =	selinux_bprm_committing_creds,
5531	.bprm_committed_creds =		selinux_bprm_committed_creds,
5532	.bprm_secureexec =		selinux_bprm_secureexec,
5533
5534	.sb_alloc_security =		selinux_sb_alloc_security,
5535	.sb_free_security =		selinux_sb_free_security,
5536	.sb_copy_data =			selinux_sb_copy_data,
5537	.sb_remount =			selinux_sb_remount,
5538	.sb_kern_mount =		selinux_sb_kern_mount,
5539	.sb_show_options =		selinux_sb_show_options,
5540	.sb_statfs =			selinux_sb_statfs,
5541	.sb_mount =			selinux_mount,
5542	.sb_umount =			selinux_umount,
5543	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5544	.sb_clone_mnt_opts =		selinux_sb_clone_mnt_opts,
5545	.sb_parse_opts_str = 		selinux_parse_opts_str,
5546
5547
5548	.inode_alloc_security =		selinux_inode_alloc_security,
5549	.inode_free_security =		selinux_inode_free_security,
5550	.inode_init_security =		selinux_inode_init_security,
5551	.inode_create =			selinux_inode_create,
5552	.inode_link =			selinux_inode_link,
5553	.inode_unlink =			selinux_inode_unlink,
5554	.inode_symlink =		selinux_inode_symlink,
5555	.inode_mkdir =			selinux_inode_mkdir,
5556	.inode_rmdir =			selinux_inode_rmdir,
5557	.inode_mknod =			selinux_inode_mknod,
5558	.inode_rename =			selinux_inode_rename,
5559	.inode_readlink =		selinux_inode_readlink,
5560	.inode_follow_link =		selinux_inode_follow_link,
5561	.inode_permission =		selinux_inode_permission,
5562	.inode_setattr =		selinux_inode_setattr,
5563	.inode_getattr =		selinux_inode_getattr,
5564	.inode_setxattr =		selinux_inode_setxattr,
5565	.inode_post_setxattr =		selinux_inode_post_setxattr,
5566	.inode_getxattr =		selinux_inode_getxattr,
5567	.inode_listxattr =		selinux_inode_listxattr,
5568	.inode_removexattr =		selinux_inode_removexattr,
5569	.inode_getsecurity =		selinux_inode_getsecurity,
5570	.inode_setsecurity =		selinux_inode_setsecurity,
5571	.inode_listsecurity =		selinux_inode_listsecurity,
5572	.inode_getsecid =		selinux_inode_getsecid,
5573
5574	.file_permission =		selinux_file_permission,
5575	.file_alloc_security =		selinux_file_alloc_security,
5576	.file_free_security =		selinux_file_free_security,
5577	.file_ioctl =			selinux_file_ioctl,
5578	.mmap_file =			selinux_mmap_file,
5579	.mmap_addr =			selinux_mmap_addr,
5580	.file_mprotect =		selinux_file_mprotect,
5581	.file_lock =			selinux_file_lock,
5582	.file_fcntl =			selinux_file_fcntl,
5583	.file_set_fowner =		selinux_file_set_fowner,
5584	.file_send_sigiotask =		selinux_file_send_sigiotask,
5585	.file_receive =			selinux_file_receive,
5586
5587	.file_open =			selinux_file_open,
5588
5589	.task_create =			selinux_task_create,
5590	.cred_alloc_blank =		selinux_cred_alloc_blank,
5591	.cred_free =			selinux_cred_free,
5592	.cred_prepare =			selinux_cred_prepare,
5593	.cred_transfer =		selinux_cred_transfer,
5594	.kernel_act_as =		selinux_kernel_act_as,
5595	.kernel_create_files_as =	selinux_kernel_create_files_as,
5596	.kernel_module_request =	selinux_kernel_module_request,
5597	.task_setpgid =			selinux_task_setpgid,
5598	.task_getpgid =			selinux_task_getpgid,
5599	.task_getsid =			selinux_task_getsid,
5600	.task_getsecid =		selinux_task_getsecid,
5601	.task_setnice =			selinux_task_setnice,
5602	.task_setioprio =		selinux_task_setioprio,
5603	.task_getioprio =		selinux_task_getioprio,
5604	.task_setrlimit =		selinux_task_setrlimit,
5605	.task_setscheduler =		selinux_task_setscheduler,
5606	.task_getscheduler =		selinux_task_getscheduler,
5607	.task_movememory =		selinux_task_movememory,
5608	.task_kill =			selinux_task_kill,
5609	.task_wait =			selinux_task_wait,
5610	.task_to_inode =		selinux_task_to_inode,
5611
5612	.ipc_permission =		selinux_ipc_permission,
5613	.ipc_getsecid =			selinux_ipc_getsecid,
5614
5615	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5616	.msg_msg_free_security =	selinux_msg_msg_free_security,
5617
5618	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5619	.msg_queue_free_security =	selinux_msg_queue_free_security,
5620	.msg_queue_associate =		selinux_msg_queue_associate,
5621	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5622	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5623	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5624
5625	.shm_alloc_security =		selinux_shm_alloc_security,
5626	.shm_free_security =		selinux_shm_free_security,
5627	.shm_associate =		selinux_shm_associate,
5628	.shm_shmctl =			selinux_shm_shmctl,
5629	.shm_shmat =			selinux_shm_shmat,
5630
5631	.sem_alloc_security =		selinux_sem_alloc_security,
5632	.sem_free_security =		selinux_sem_free_security,
5633	.sem_associate =		selinux_sem_associate,
5634	.sem_semctl =			selinux_sem_semctl,
5635	.sem_semop =			selinux_sem_semop,
5636
5637	.d_instantiate =		selinux_d_instantiate,
5638
5639	.getprocattr =			selinux_getprocattr,
5640	.setprocattr =			selinux_setprocattr,
5641
5642	.secid_to_secctx =		selinux_secid_to_secctx,
5643	.secctx_to_secid =		selinux_secctx_to_secid,
5644	.release_secctx =		selinux_release_secctx,
5645	.inode_notifysecctx =		selinux_inode_notifysecctx,
5646	.inode_setsecctx =		selinux_inode_setsecctx,
5647	.inode_getsecctx =		selinux_inode_getsecctx,
5648
5649	.unix_stream_connect =		selinux_socket_unix_stream_connect,
5650	.unix_may_send =		selinux_socket_unix_may_send,
5651
5652	.socket_create =		selinux_socket_create,
5653	.socket_post_create =		selinux_socket_post_create,
5654	.socket_bind =			selinux_socket_bind,
5655	.socket_connect =		selinux_socket_connect,
5656	.socket_listen =		selinux_socket_listen,
5657	.socket_accept =		selinux_socket_accept,
5658	.socket_sendmsg =		selinux_socket_sendmsg,
5659	.socket_recvmsg =		selinux_socket_recvmsg,
5660	.socket_getsockname =		selinux_socket_getsockname,
5661	.socket_getpeername =		selinux_socket_getpeername,
5662	.socket_getsockopt =		selinux_socket_getsockopt,
5663	.socket_setsockopt =		selinux_socket_setsockopt,
5664	.socket_shutdown =		selinux_socket_shutdown,
5665	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5666	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5667	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5668	.sk_alloc_security =		selinux_sk_alloc_security,
5669	.sk_free_security =		selinux_sk_free_security,
5670	.sk_clone_security =		selinux_sk_clone_security,
5671	.sk_getsecid =			selinux_sk_getsecid,
5672	.sock_graft =			selinux_sock_graft,
5673	.inet_conn_request =		selinux_inet_conn_request,
5674	.inet_csk_clone =		selinux_inet_csk_clone,
5675	.inet_conn_established =	selinux_inet_conn_established,
5676	.secmark_relabel_packet =	selinux_secmark_relabel_packet,
5677	.secmark_refcount_inc =		selinux_secmark_refcount_inc,
5678	.secmark_refcount_dec =		selinux_secmark_refcount_dec,
5679	.req_classify_flow =		selinux_req_classify_flow,
5680	.tun_dev_create =		selinux_tun_dev_create,
5681	.tun_dev_post_create = 		selinux_tun_dev_post_create,
5682	.tun_dev_attach =		selinux_tun_dev_attach,
5683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5684#ifdef CONFIG_SECURITY_NETWORK_XFRM
5685	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5686	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5687	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5688	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5689	.xfrm_state_alloc_security =	selinux_xfrm_state_alloc,
5690	.xfrm_state_free_security =	selinux_xfrm_state_free,
5691	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5692	.xfrm_policy_lookup =		selinux_xfrm_policy_lookup,
5693	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5694	.xfrm_decode_session =		selinux_xfrm_decode_session,
5695#endif
5696
5697#ifdef CONFIG_KEYS
5698	.key_alloc =			selinux_key_alloc,
5699	.key_free =			selinux_key_free,
5700	.key_permission =		selinux_key_permission,
5701	.key_getsecurity =		selinux_key_getsecurity,
 
 
5702#endif
5703
5704#ifdef CONFIG_AUDIT
5705	.audit_rule_init =		selinux_audit_rule_init,
5706	.audit_rule_known =		selinux_audit_rule_known,
5707	.audit_rule_match =		selinux_audit_rule_match,
5708	.audit_rule_free =		selinux_audit_rule_free,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5709#endif
5710};
5711
5712static __init int selinux_init(void)
5713{
5714	if (!security_module_enable(&selinux_ops)) {
5715		selinux_enabled = 0;
5716		return 0;
5717	}
5718
5719	if (!selinux_enabled) {
5720		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5721		return 0;
5722	}
5723
5724	printk(KERN_INFO "SELinux:  Initializing.\n");
 
 
 
 
 
5725
5726	/* Set the security state for the initial task. */
5727	cred_init_security();
5728
5729	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5730
5731	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5732					    sizeof(struct inode_security_struct),
5733					    0, SLAB_PANIC, NULL);
5734	avc_init();
5735
5736	if (register_security(&selinux_ops))
5737		panic("SELinux: Unable to register with kernel.\n");
 
 
 
 
 
 
 
 
 
 
 
5738
5739	if (selinux_enforcing)
5740		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5741	else
5742		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
 
 
5743
5744	return 0;
5745}
5746
5747static void delayed_superblock_init(struct super_block *sb, void *unused)
5748{
5749	superblock_doinit(sb, NULL);
5750}
5751
5752void selinux_complete_init(void)
5753{
5754	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5755
5756	/* Set up any superblocks initialized prior to the policy load. */
5757	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5758	iterate_supers(delayed_superblock_init, NULL);
5759}
5760
5761/* SELinux requires early initialization in order to label
5762   all processes and objects when they are created. */
5763security_initcall(selinux_init);
 
 
 
 
 
 
5764
5765#if defined(CONFIG_NETFILTER)
5766
5767static struct nf_hook_ops selinux_ipv4_ops[] = {
5768	{
5769		.hook =		selinux_ipv4_postroute,
5770		.owner =	THIS_MODULE,
5771		.pf =		PF_INET,
5772		.hooknum =	NF_INET_POST_ROUTING,
5773		.priority =	NF_IP_PRI_SELINUX_LAST,
5774	},
5775	{
5776		.hook =		selinux_ipv4_forward,
5777		.owner =	THIS_MODULE,
5778		.pf =		PF_INET,
5779		.hooknum =	NF_INET_FORWARD,
5780		.priority =	NF_IP_PRI_SELINUX_FIRST,
5781	},
5782	{
5783		.hook =		selinux_ipv4_output,
5784		.owner =	THIS_MODULE,
5785		.pf =		PF_INET,
5786		.hooknum =	NF_INET_LOCAL_OUT,
5787		.priority =	NF_IP_PRI_SELINUX_FIRST,
5788	}
5789};
5790
5791#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5792
5793static struct nf_hook_ops selinux_ipv6_ops[] = {
5794	{
5795		.hook =		selinux_ipv6_postroute,
5796		.owner =	THIS_MODULE,
5797		.pf =		PF_INET6,
5798		.hooknum =	NF_INET_POST_ROUTING,
5799		.priority =	NF_IP6_PRI_SELINUX_LAST,
5800	},
5801	{
5802		.hook =		selinux_ipv6_forward,
5803		.owner =	THIS_MODULE,
5804		.pf =		PF_INET6,
5805		.hooknum =	NF_INET_FORWARD,
5806		.priority =	NF_IP6_PRI_SELINUX_FIRST,
5807	}
 
 
 
 
 
 
 
5808};
5809
5810#endif	/* IPV6 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5811
5812static int __init selinux_nf_ip_init(void)
5813{
5814	int err = 0;
5815
5816	if (!selinux_enabled)
5817		goto out;
5818
5819	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5820
5821	err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5822	if (err)
5823		panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5824
5825#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5826	err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5827	if (err)
5828		panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5829#endif	/* IPV6 */
5830
5831out:
5832	return err;
5833}
5834
5835__initcall(selinux_nf_ip_init);
5836
5837#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5838static void selinux_nf_ip_exit(void)
5839{
5840	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5841
5842	nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5843#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5844	nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5845#endif	/* IPV6 */
5846}
5847#endif
5848
5849#else /* CONFIG_NETFILTER */
5850
5851#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5852#define selinux_nf_ip_exit()
5853#endif
5854
5855#endif /* CONFIG_NETFILTER */
5856
5857#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5858static int selinux_disabled;
5859
5860int selinux_disable(void)
5861{
5862	if (ss_initialized) {
5863		/* Not permitted after initial policy load. */
5864		return -EINVAL;
5865	}
5866
5867	if (selinux_disabled) {
5868		/* Only do this once. */
5869		return -EINVAL;
5870	}
5871
5872	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5873
5874	selinux_disabled = 1;
5875	selinux_enabled = 0;
5876
5877	reset_security_ops();
 
 
 
 
 
 
 
5878
5879	/* Try to destroy the avc node cache */
5880	avc_disable();
5881
5882	/* Unregister netfilter hooks. */
5883	selinux_nf_ip_exit();
5884
5885	/* Unregister selinuxfs. */
5886	exit_sel_fs();
5887
5888	return 0;
5889}
5890#endif
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  NSA Security-Enhanced Linux (SELinux) security module
   4 *
   5 *  This file contains the SELinux hook function implementations.
   6 *
   7 *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   8 *	      Chris Vance, <cvance@nai.com>
   9 *	      Wayne Salamon, <wsalamon@nai.com>
  10 *	      James Morris <jmorris@redhat.com>
  11 *
  12 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  13 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  14 *					   Eric Paris <eparis@redhat.com>
  15 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  16 *			    <dgoeddel@trustedcs.com>
  17 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  18 *	Paul Moore <paul@paul-moore.com>
  19 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  20 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  21 *  Copyright (C) 2016 Mellanox Technologies
 
 
 
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/kd.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/tracehook.h>
  29#include <linux/errno.h>
  30#include <linux/sched/signal.h>
  31#include <linux/sched/task.h>
  32#include <linux/lsm_hooks.h>
  33#include <linux/xattr.h>
  34#include <linux/capability.h>
  35#include <linux/unistd.h>
  36#include <linux/mm.h>
  37#include <linux/mman.h>
  38#include <linux/slab.h>
  39#include <linux/pagemap.h>
  40#include <linux/proc_fs.h>
  41#include <linux/swap.h>
  42#include <linux/spinlock.h>
  43#include <linux/syscalls.h>
  44#include <linux/dcache.h>
  45#include <linux/file.h>
  46#include <linux/fdtable.h>
  47#include <linux/namei.h>
  48#include <linux/mount.h>
  49#include <linux/fs_context.h>
  50#include <linux/fs_parser.h>
  51#include <linux/netfilter_ipv4.h>
  52#include <linux/netfilter_ipv6.h>
  53#include <linux/tty.h>
  54#include <net/icmp.h>
  55#include <net/ip.h>		/* for local_port_range[] */
  56#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  57#include <net/inet_connection_sock.h>
  58#include <net/net_namespace.h>
  59#include <net/netlabel.h>
  60#include <linux/uaccess.h>
  61#include <asm/ioctls.h>
  62#include <linux/atomic.h>
  63#include <linux/bitops.h>
  64#include <linux/interrupt.h>
  65#include <linux/netdevice.h>	/* for network interface checks */
  66#include <net/netlink.h>
  67#include <linux/tcp.h>
  68#include <linux/udp.h>
  69#include <linux/dccp.h>
  70#include <linux/sctp.h>
  71#include <net/sctp/structs.h>
  72#include <linux/quota.h>
  73#include <linux/un.h>		/* for Unix socket types */
  74#include <net/af_unix.h>	/* for Unix socket types */
  75#include <linux/parser.h>
  76#include <linux/nfs_mount.h>
  77#include <net/ipv6.h>
  78#include <linux/hugetlb.h>
  79#include <linux/personality.h>
  80#include <linux/audit.h>
  81#include <linux/string.h>
 
  82#include <linux/mutex.h>
  83#include <linux/posix-timers.h>
  84#include <linux/syslog.h>
  85#include <linux/user_namespace.h>
  86#include <linux/export.h>
  87#include <linux/msg.h>
  88#include <linux/shm.h>
  89#include <linux/bpf.h>
  90#include <linux/kernfs.h>
  91#include <linux/stringhash.h>	/* for hashlen_string() */
  92#include <uapi/linux/mount.h>
  93#include <linux/fsnotify.h>
  94#include <linux/fanotify.h>
  95
  96#include "avc.h"
  97#include "objsec.h"
  98#include "netif.h"
  99#include "netnode.h"
 100#include "netport.h"
 101#include "ibpkey.h"
 102#include "xfrm.h"
 103#include "netlabel.h"
 104#include "audit.h"
 105#include "avc_ss.h"
 106
 107struct selinux_state selinux_state;
 
 
 108
 109/* SECMARK reference count */
 110static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 111
 112#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 113static int selinux_enforcing_boot __initdata;
 114
 115static int __init enforcing_setup(char *str)
 116{
 117	unsigned long enforcing;
 118	if (!kstrtoul(str, 0, &enforcing))
 119		selinux_enforcing_boot = enforcing ? 1 : 0;
 120	return 1;
 121}
 122__setup("enforcing=", enforcing_setup);
 123#else
 124#define selinux_enforcing_boot 1
 125#endif
 126
 127int selinux_enabled_boot __initdata = 1;
 128#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 
 
 129static int __init selinux_enabled_setup(char *str)
 130{
 131	unsigned long enabled;
 132	if (!kstrtoul(str, 0, &enabled))
 133		selinux_enabled_boot = enabled ? 1 : 0;
 134	return 1;
 135}
 136__setup("selinux=", selinux_enabled_setup);
 
 
 137#endif
 138
 139static unsigned int selinux_checkreqprot_boot =
 140	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
 141
 142static int __init checkreqprot_setup(char *str)
 143{
 144	unsigned long checkreqprot;
 145
 146	if (!kstrtoul(str, 0, &checkreqprot)) {
 147		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
 148		if (checkreqprot)
 149			pr_warn("SELinux: checkreqprot set to 1 via kernel parameter.  This is deprecated and will be rejected in a future kernel release.\n");
 150	}
 151	return 1;
 152}
 153__setup("checkreqprot=", checkreqprot_setup);
 154
 155/**
 156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 157 *
 158 * Description:
 159 * This function checks the SECMARK reference counter to see if any SECMARK
 160 * targets are currently configured, if the reference counter is greater than
 161 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 162 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 163 * policy capability is enabled, SECMARK is always considered enabled.
 164 *
 165 */
 166static int selinux_secmark_enabled(void)
 167{
 168	return (selinux_policycap_alwaysnetwork() ||
 169		atomic_read(&selinux_secmark_refcount));
 170}
 171
 172/**
 173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 174 *
 175 * Description:
 176 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 177 * (1) if any are enabled or false (0) if neither are enabled.  If the
 178 * always_check_network policy capability is enabled, peer labeling
 179 * is always considered enabled.
 180 *
 181 */
 182static int selinux_peerlbl_enabled(void)
 183{
 184	return (selinux_policycap_alwaysnetwork() ||
 185		netlbl_enabled() || selinux_xfrm_enabled());
 186}
 187
 188static int selinux_netcache_avc_callback(u32 event)
 189{
 190	if (event == AVC_CALLBACK_RESET) {
 191		sel_netif_flush();
 192		sel_netnode_flush();
 193		sel_netport_flush();
 194		synchronize_net();
 195	}
 196	return 0;
 197}
 198
 199static int selinux_lsm_notifier_avc_callback(u32 event)
 200{
 201	if (event == AVC_CALLBACK_RESET) {
 202		sel_ib_pkey_flush();
 203		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 204	}
 205
 206	return 0;
 207}
 208
 209/*
 210 * initialise the security for the init task
 211 */
 212static void cred_init_security(void)
 213{
 214	struct cred *cred = (struct cred *) current->real_cred;
 215	struct task_security_struct *tsec;
 216
 217	tsec = selinux_cred(cred);
 
 
 
 218	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 
 219}
 220
 221/*
 222 * get the security ID of a set of credentials
 223 */
 224static inline u32 cred_sid(const struct cred *cred)
 225{
 226	const struct task_security_struct *tsec;
 227
 228	tsec = selinux_cred(cred);
 229	return tsec->sid;
 230}
 231
 232/*
 233 * get the subjective security ID of a task
 234 */
 235static inline u32 task_sid_subj(const struct task_struct *task)
 236{
 237	u32 sid;
 238
 239	rcu_read_lock();
 240	sid = cred_sid(rcu_dereference(task->cred));
 241	rcu_read_unlock();
 242	return sid;
 243}
 244
 245/*
 246 * get the objective security ID of a task
 247 */
 248static inline u32 task_sid_obj(const struct task_struct *task)
 249{
 250	u32 sid;
 251
 252	rcu_read_lock();
 253	sid = cred_sid(__task_cred(task));
 254	rcu_read_unlock();
 255	return sid;
 256}
 257
 258/*
 259 * get the security ID of a task for use with binder
 260 */
 261static inline u32 task_sid_binder(const struct task_struct *task)
 262{
 263	/*
 264	 * In many case where this function is used we should be using the
 265	 * task's subjective SID, but we can't reliably access the subjective
 266	 * creds of a task other than our own so we must use the objective
 267	 * creds/SID, which are safe to access.  The downside is that if a task
 268	 * is temporarily overriding it's creds it will not be reflected here;
 269	 * however, it isn't clear that binder would handle that case well
 270	 * anyway.
 271	 *
 272	 * If this ever changes and we can safely reference the subjective
 273	 * creds/SID of another task, this function will make it easier to
 274	 * identify the various places where we make use of the task SIDs in
 275	 * the binder code.  It is also likely that we will need to adjust
 276	 * the main drivers/android binder code as well.
 277	 */
 278	return task_sid_obj(task);
 279}
 280
 281static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 
 
 282
 283/*
 284 * Try reloading inode security labels that have been marked as invalid.  The
 285 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 286 * allowed; when set to false, returns -ECHILD when the label is
 287 * invalid.  The @dentry parameter should be set to a dentry of the inode.
 288 */
 289static int __inode_security_revalidate(struct inode *inode,
 290				       struct dentry *dentry,
 291				       bool may_sleep)
 292{
 293	struct inode_security_struct *isec = selinux_inode(inode);
 294
 295	might_sleep_if(may_sleep);
 296
 297	if (selinux_initialized(&selinux_state) &&
 298	    isec->initialized != LABEL_INITIALIZED) {
 299		if (!may_sleep)
 300			return -ECHILD;
 301
 302		/*
 303		 * Try reloading the inode security label.  This will fail if
 304		 * @opt_dentry is NULL and no dentry for this inode can be
 305		 * found; in that case, continue using the old label.
 306		 */
 307		inode_doinit_with_dentry(inode, dentry);
 308	}
 309	return 0;
 310}
 311
 312static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 313{
 314	return selinux_inode(inode);
 
 
 
 
 
 
 
 
 
 315}
 316
 317static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 318{
 319	int error;
 
 
 
 
 
 
 
 
 
 320
 321	error = __inode_security_revalidate(inode, NULL, !rcu);
 322	if (error)
 323		return ERR_PTR(error);
 324	return selinux_inode(inode);
 325}
 326
 327/*
 328 * Get the security label of an inode.
 329 */
 330static struct inode_security_struct *inode_security(struct inode *inode)
 331{
 332	__inode_security_revalidate(inode, NULL, true);
 333	return selinux_inode(inode);
 
 334}
 335
 336static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 337{
 338	struct inode *inode = d_backing_inode(dentry);
 339
 340	return selinux_inode(inode);
 341}
 
 342
 343/*
 344 * Get the security label of a dentry's backing inode.
 345 */
 346static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 347{
 348	struct inode *inode = d_backing_inode(dentry);
 
 
 349
 350	__inode_security_revalidate(inode, dentry, true);
 351	return selinux_inode(inode);
 352}
 353
 354static void inode_free_security(struct inode *inode)
 355{
 356	struct inode_security_struct *isec = selinux_inode(inode);
 357	struct superblock_security_struct *sbsec;
 
 
 358
 359	if (!isec)
 360		return;
 361	sbsec = selinux_superblock(inode->i_sb);
 362	/*
 363	 * As not all inode security structures are in a list, we check for
 364	 * empty list outside of the lock to make sure that we won't waste
 365	 * time taking a lock doing nothing.
 366	 *
 367	 * The list_del_init() function can be safely called more than once.
 368	 * It should not be possible for this function to be called with
 369	 * concurrent list_add(), but for better safety against future changes
 370	 * in the code, we use list_empty_careful() here.
 371	 */
 372	if (!list_empty_careful(&isec->list)) {
 373		spin_lock(&sbsec->isec_lock);
 374		list_del_init(&isec->list);
 375		spin_unlock(&sbsec->isec_lock);
 376	}
 377}
 378
 379struct selinux_mnt_opts {
 380	const char *fscontext, *context, *rootcontext, *defcontext;
 
 
 
 
 
 381};
 382
 383static void selinux_free_mnt_opts(void *mnt_opts)
 
 
 384{
 385	struct selinux_mnt_opts *opts = mnt_opts;
 386	kfree(opts->fscontext);
 387	kfree(opts->context);
 388	kfree(opts->rootcontext);
 389	kfree(opts->defcontext);
 390	kfree(opts);
 391}
 392
 393enum {
 394	Opt_error = -1,
 395	Opt_context = 0,
 396	Opt_defcontext = 1,
 397	Opt_fscontext = 2,
 398	Opt_rootcontext = 3,
 399	Opt_seclabel = 4,
 
 400};
 401
 402#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
 403static struct {
 404	const char *name;
 405	int len;
 406	int opt;
 407	bool has_arg;
 408} tokens[] = {
 409	A(context, true),
 410	A(fscontext, true),
 411	A(defcontext, true),
 412	A(rootcontext, true),
 413	A(seclabel, false),
 414};
 415#undef A
 416
 417static int match_opt_prefix(char *s, int l, char **arg)
 418{
 419	int i;
 420
 421	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
 422		size_t len = tokens[i].len;
 423		if (len > l || memcmp(s, tokens[i].name, len))
 424			continue;
 425		if (tokens[i].has_arg) {
 426			if (len == l || s[len] != '=')
 427				continue;
 428			*arg = s + len + 1;
 429		} else if (len != l)
 430			continue;
 431		return tokens[i].opt;
 432	}
 433	return Opt_error;
 434}
 435
 436#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 437
 438static int may_context_mount_sb_relabel(u32 sid,
 439			struct superblock_security_struct *sbsec,
 440			const struct cred *cred)
 441{
 442	const struct task_security_struct *tsec = selinux_cred(cred);
 443	int rc;
 444
 445	rc = avc_has_perm(&selinux_state,
 446			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 447			  FILESYSTEM__RELABELFROM, NULL);
 448	if (rc)
 449		return rc;
 450
 451	rc = avc_has_perm(&selinux_state,
 452			  tsec->sid, sid, SECCLASS_FILESYSTEM,
 453			  FILESYSTEM__RELABELTO, NULL);
 454	return rc;
 455}
 456
 457static int may_context_mount_inode_relabel(u32 sid,
 458			struct superblock_security_struct *sbsec,
 459			const struct cred *cred)
 460{
 461	const struct task_security_struct *tsec = selinux_cred(cred);
 462	int rc;
 463	rc = avc_has_perm(&selinux_state,
 464			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 465			  FILESYSTEM__RELABELFROM, NULL);
 466	if (rc)
 467		return rc;
 468
 469	rc = avc_has_perm(&selinux_state,
 470			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
 471			  FILESYSTEM__ASSOCIATE, NULL);
 472	return rc;
 473}
 474
 475static int selinux_is_genfs_special_handling(struct super_block *sb)
 476{
 477	/* Special handling. Genfs but also in-core setxattr handler */
 478	return	!strcmp(sb->s_type->name, "sysfs") ||
 479		!strcmp(sb->s_type->name, "pstore") ||
 480		!strcmp(sb->s_type->name, "debugfs") ||
 481		!strcmp(sb->s_type->name, "tracefs") ||
 482		!strcmp(sb->s_type->name, "rootfs") ||
 483		(selinux_policycap_cgroupseclabel() &&
 484		 (!strcmp(sb->s_type->name, "cgroup") ||
 485		  !strcmp(sb->s_type->name, "cgroup2")));
 486}
 487
 488static int selinux_is_sblabel_mnt(struct super_block *sb)
 489{
 490	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 491
 492	/*
 493	 * IMPORTANT: Double-check logic in this function when adding a new
 494	 * SECURITY_FS_USE_* definition!
 495	 */
 496	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
 497
 498	switch (sbsec->behavior) {
 499	case SECURITY_FS_USE_XATTR:
 500	case SECURITY_FS_USE_TRANS:
 501	case SECURITY_FS_USE_TASK:
 502	case SECURITY_FS_USE_NATIVE:
 503		return 1;
 504
 505	case SECURITY_FS_USE_GENFS:
 506		return selinux_is_genfs_special_handling(sb);
 507
 508	/* Never allow relabeling on context mounts */
 509	case SECURITY_FS_USE_MNTPOINT:
 510	case SECURITY_FS_USE_NONE:
 511	default:
 512		return 0;
 513	}
 514}
 515
 516static int sb_check_xattr_support(struct super_block *sb)
 517{
 518	struct superblock_security_struct *sbsec = sb->s_security;
 519	struct dentry *root = sb->s_root;
 520	struct inode *root_inode = d_backing_inode(root);
 521	u32 sid;
 522	int rc;
 523
 524	/*
 525	 * Make sure that the xattr handler exists and that no
 526	 * error other than -ENODATA is returned by getxattr on
 527	 * the root directory.  -ENODATA is ok, as this may be
 528	 * the first boot of the SELinux kernel before we have
 529	 * assigned xattr values to the filesystem.
 530	 */
 531	if (!(root_inode->i_opflags & IOP_XATTR)) {
 532		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
 533			sb->s_id, sb->s_type->name);
 534		goto fallback;
 535	}
 536
 537	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 538	if (rc < 0 && rc != -ENODATA) {
 539		if (rc == -EOPNOTSUPP) {
 540			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
 541				sb->s_id, sb->s_type->name);
 542			goto fallback;
 543		} else {
 544			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
 545				sb->s_id, sb->s_type->name, -rc);
 546			return rc;
 547		}
 548	}
 549	return 0;
 550
 551fallback:
 552	/* No xattr support - try to fallback to genfs if possible. */
 553	rc = security_genfs_sid(&selinux_state, sb->s_type->name, "/",
 554				SECCLASS_DIR, &sid);
 555	if (rc)
 556		return -EOPNOTSUPP;
 557
 558	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
 559		sb->s_id, sb->s_type->name);
 560	sbsec->behavior = SECURITY_FS_USE_GENFS;
 561	sbsec->sid = sid;
 562	return 0;
 563}
 564
 565static int sb_finish_set_opts(struct super_block *sb)
 566{
 567	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 568	struct dentry *root = sb->s_root;
 569	struct inode *root_inode = d_backing_inode(root);
 570	int rc = 0;
 571
 572	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 573		rc = sb_check_xattr_support(sb);
 574		if (rc)
 575			return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576	}
 577
 578	sbsec->flags |= SE_SBINITIALIZED;
 579
 580	/*
 581	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 582	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 583	 * us a superblock that needs the flag to be cleared.
 584	 */
 585	if (selinux_is_sblabel_mnt(sb))
 586		sbsec->flags |= SBLABEL_MNT;
 587	else
 588		sbsec->flags &= ~SBLABEL_MNT;
 
 
 
 
 
 
 
 
 
 
 
 
 589
 590	/* Initialize the root inode. */
 591	rc = inode_doinit_with_dentry(root_inode, root);
 592
 593	/* Initialize any other inodes associated with the superblock, e.g.
 594	   inodes created prior to initial policy load or inodes created
 595	   during get_sb by a pseudo filesystem that directly
 596	   populates itself. */
 597	spin_lock(&sbsec->isec_lock);
 598	while (!list_empty(&sbsec->isec_head)) {
 
 599		struct inode_security_struct *isec =
 600				list_first_entry(&sbsec->isec_head,
 601					   struct inode_security_struct, list);
 602		struct inode *inode = isec->inode;
 603		list_del_init(&isec->list);
 604		spin_unlock(&sbsec->isec_lock);
 605		inode = igrab(inode);
 606		if (inode) {
 607			if (!IS_PRIVATE(inode))
 608				inode_doinit_with_dentry(inode, NULL);
 609			iput(inode);
 610		}
 611		spin_lock(&sbsec->isec_lock);
 
 
 612	}
 613	spin_unlock(&sbsec->isec_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 614	return rc;
 615}
 616
 617static int bad_option(struct superblock_security_struct *sbsec, char flag,
 618		      u32 old_sid, u32 new_sid)
 619{
 620	char mnt_flags = sbsec->flags & SE_MNTMASK;
 621
 622	/* check if the old mount command had the same options */
 623	if (sbsec->flags & SE_SBINITIALIZED)
 624		if (!(sbsec->flags & flag) ||
 625		    (old_sid != new_sid))
 626			return 1;
 627
 628	/* check if we were passed the same options twice,
 629	 * aka someone passed context=a,context=b
 630	 */
 631	if (!(sbsec->flags & SE_SBINITIALIZED))
 632		if (mnt_flags & flag)
 633			return 1;
 634	return 0;
 635}
 636
 637static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
 638{
 639	int rc = security_context_str_to_sid(&selinux_state, s,
 640					     sid, GFP_KERNEL);
 641	if (rc)
 642		pr_warn("SELinux: security_context_str_to_sid"
 643		       "(%s) failed for (dev %s, type %s) errno=%d\n",
 644		       s, sb->s_id, sb->s_type->name, rc);
 645	return rc;
 646}
 647
 648/*
 649 * Allow filesystems with binary mount data to explicitly set mount point
 650 * labeling information.
 651 */
 652static int selinux_set_mnt_opts(struct super_block *sb,
 653				void *mnt_opts,
 654				unsigned long kern_flags,
 655				unsigned long *set_kern_flags)
 656{
 657	const struct cred *cred = current_cred();
 658	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 659	struct dentry *root = sb->s_root;
 660	struct selinux_mnt_opts *opts = mnt_opts;
 661	struct inode_security_struct *root_isec;
 
 662	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 663	u32 defcontext_sid = 0;
 664	int rc = 0;
 
 
 665
 666	mutex_lock(&sbsec->lock);
 667
 668	if (!selinux_initialized(&selinux_state)) {
 669		if (!opts) {
 670			/* Defer initialization until selinux_complete_init,
 671			   after the initial policy is loaded and the security
 672			   server is ready to handle calls. */
 673			goto out;
 674		}
 675		rc = -EINVAL;
 676		pr_warn("SELinux: Unable to set superblock options "
 677			"before the security server is initialized\n");
 678		goto out;
 679	}
 680	if (kern_flags && !set_kern_flags) {
 681		/* Specifying internal flags without providing a place to
 682		 * place the results is not allowed */
 683		rc = -EINVAL;
 684		goto out;
 685	}
 686
 687	/*
 688	 * Binary mount data FS will come through this function twice.  Once
 689	 * from an explicit call and once from the generic calls from the vfs.
 690	 * Since the generic VFS calls will not contain any security mount data
 691	 * we need to skip the double mount verification.
 692	 *
 693	 * This does open a hole in which we will not notice if the first
 694	 * mount using this sb set explict options and a second mount using
 695	 * this sb does not set any security options.  (The first options
 696	 * will be used for both mounts)
 697	 */
 698	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 699	    && !opts)
 700		goto out;
 701
 702	root_isec = backing_inode_security_novalidate(root);
 703
 704	/*
 705	 * parse the mount options, check if they are valid sids.
 706	 * also check if someone is trying to mount the same sb more
 707	 * than once with different security options.
 708	 */
 709	if (opts) {
 710		if (opts->fscontext) {
 711			rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
 712			if (rc)
 713				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 714			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 715					fscontext_sid))
 716				goto out_double_mount;
 
 717			sbsec->flags |= FSCONTEXT_MNT;
 718		}
 719		if (opts->context) {
 720			rc = parse_sid(sb, opts->context, &context_sid);
 721			if (rc)
 722				goto out;
 723			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 724					context_sid))
 725				goto out_double_mount;
 
 726			sbsec->flags |= CONTEXT_MNT;
 727		}
 728		if (opts->rootcontext) {
 729			rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
 730			if (rc)
 731				goto out;
 732			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 733					rootcontext_sid))
 734				goto out_double_mount;
 
 735			sbsec->flags |= ROOTCONTEXT_MNT;
 736		}
 737		if (opts->defcontext) {
 738			rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
 739			if (rc)
 740				goto out;
 741			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 742					defcontext_sid))
 743				goto out_double_mount;
 
 744			sbsec->flags |= DEFCONTEXT_MNT;
 
 
 
 
 
 745		}
 746	}
 747
 748	if (sbsec->flags & SE_SBINITIALIZED) {
 749		/* previously mounted with options, but not on this attempt? */
 750		if ((sbsec->flags & SE_MNTMASK) && !opts)
 751			goto out_double_mount;
 752		rc = 0;
 753		goto out;
 754	}
 755
 756	if (strcmp(sb->s_type->name, "proc") == 0)
 757		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 758
 759	if (!strcmp(sb->s_type->name, "debugfs") ||
 760	    !strcmp(sb->s_type->name, "tracefs") ||
 761	    !strcmp(sb->s_type->name, "binder") ||
 762	    !strcmp(sb->s_type->name, "bpf") ||
 763	    !strcmp(sb->s_type->name, "pstore"))
 764		sbsec->flags |= SE_SBGENFS;
 765
 766	if (!strcmp(sb->s_type->name, "sysfs") ||
 767	    !strcmp(sb->s_type->name, "cgroup") ||
 768	    !strcmp(sb->s_type->name, "cgroup2"))
 769		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
 770
 771	if (!sbsec->behavior) {
 772		/*
 773		 * Determine the labeling behavior to use for this
 774		 * filesystem type.
 775		 */
 776		rc = security_fs_use(&selinux_state, sb);
 777		if (rc) {
 778			pr_warn("%s: security_fs_use(%s) returned %d\n",
 779					__func__, sb->s_type->name, rc);
 780			goto out;
 781		}
 782	}
 783
 784	/*
 785	 * If this is a user namespace mount and the filesystem type is not
 786	 * explicitly whitelisted, then no contexts are allowed on the command
 787	 * line and security labels must be ignored.
 788	 */
 789	if (sb->s_user_ns != &init_user_ns &&
 790	    strcmp(sb->s_type->name, "tmpfs") &&
 791	    strcmp(sb->s_type->name, "ramfs") &&
 792	    strcmp(sb->s_type->name, "devpts") &&
 793	    strcmp(sb->s_type->name, "overlay")) {
 794		if (context_sid || fscontext_sid || rootcontext_sid ||
 795		    defcontext_sid) {
 796			rc = -EACCES;
 797			goto out;
 798		}
 799		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 800			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 801			rc = security_transition_sid(&selinux_state,
 802						     current_sid(),
 803						     current_sid(),
 804						     SECCLASS_FILE, NULL,
 805						     &sbsec->mntpoint_sid);
 806			if (rc)
 807				goto out;
 808		}
 809		goto out_set_opts;
 810	}
 811
 812	/* sets the context of the superblock for the fs being mounted. */
 813	if (fscontext_sid) {
 814		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 815		if (rc)
 816			goto out;
 817
 818		sbsec->sid = fscontext_sid;
 819	}
 820
 821	/*
 822	 * Switch to using mount point labeling behavior.
 823	 * sets the label used on all file below the mountpoint, and will set
 824	 * the superblock context if not already set.
 825	 */
 826	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 827		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 828		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 829	}
 830
 831	if (context_sid) {
 832		if (!fscontext_sid) {
 833			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 834							  cred);
 835			if (rc)
 836				goto out;
 837			sbsec->sid = context_sid;
 838		} else {
 839			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 840							     cred);
 841			if (rc)
 842				goto out;
 843		}
 844		if (!rootcontext_sid)
 845			rootcontext_sid = context_sid;
 846
 847		sbsec->mntpoint_sid = context_sid;
 848		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 849	}
 850
 851	if (rootcontext_sid) {
 852		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 853						     cred);
 854		if (rc)
 855			goto out;
 856
 857		root_isec->sid = rootcontext_sid;
 858		root_isec->initialized = LABEL_INITIALIZED;
 859	}
 860
 861	if (defcontext_sid) {
 862		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 863			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 864			rc = -EINVAL;
 865			pr_warn("SELinux: defcontext option is "
 866			       "invalid for this filesystem type\n");
 867			goto out;
 868		}
 869
 870		if (defcontext_sid != sbsec->def_sid) {
 871			rc = may_context_mount_inode_relabel(defcontext_sid,
 872							     sbsec, cred);
 873			if (rc)
 874				goto out;
 875		}
 876
 877		sbsec->def_sid = defcontext_sid;
 878	}
 879
 880out_set_opts:
 881	rc = sb_finish_set_opts(sb);
 882out:
 883	mutex_unlock(&sbsec->lock);
 884	return rc;
 885out_double_mount:
 886	rc = -EINVAL;
 887	pr_warn("SELinux: mount invalid.  Same superblock, different "
 888	       "security settings for (dev %s, type %s)\n", sb->s_id,
 889	       sb->s_type->name);
 890	goto out;
 891}
 892
 893static int selinux_cmp_sb_context(const struct super_block *oldsb,
 894				    const struct super_block *newsb)
 895{
 896	struct superblock_security_struct *old = selinux_superblock(oldsb);
 897	struct superblock_security_struct *new = selinux_superblock(newsb);
 898	char oldflags = old->flags & SE_MNTMASK;
 899	char newflags = new->flags & SE_MNTMASK;
 900
 901	if (oldflags != newflags)
 902		goto mismatch;
 903	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 904		goto mismatch;
 905	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 906		goto mismatch;
 907	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 908		goto mismatch;
 909	if (oldflags & ROOTCONTEXT_MNT) {
 910		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 911		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 912		if (oldroot->sid != newroot->sid)
 913			goto mismatch;
 914	}
 915	return 0;
 916mismatch:
 917	pr_warn("SELinux: mount invalid.  Same superblock, "
 918			    "different security settings for (dev %s, "
 919			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 920	return -EBUSY;
 921}
 922
 923static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 924					struct super_block *newsb,
 925					unsigned long kern_flags,
 926					unsigned long *set_kern_flags)
 927{
 928	int rc = 0;
 929	const struct superblock_security_struct *oldsbsec =
 930						selinux_superblock(oldsb);
 931	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
 932
 933	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 934	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 935	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 936
 937	/*
 938	 * if the parent was able to be mounted it clearly had no special lsm
 939	 * mount options.  thus we can safely deal with this superblock later
 940	 */
 941	if (!selinux_initialized(&selinux_state))
 942		return 0;
 943
 944	/*
 945	 * Specifying internal flags without providing a place to
 946	 * place the results is not allowed.
 947	 */
 948	if (kern_flags && !set_kern_flags)
 949		return -EINVAL;
 950
 951	/* how can we clone if the old one wasn't set up?? */
 952	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 953
 954	/* if fs is reusing a sb, make sure that the contexts match */
 955	if (newsbsec->flags & SE_SBINITIALIZED) {
 956		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
 957			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 958		return selinux_cmp_sb_context(oldsb, newsb);
 959	}
 960
 961	mutex_lock(&newsbsec->lock);
 962
 963	newsbsec->flags = oldsbsec->flags;
 964
 965	newsbsec->sid = oldsbsec->sid;
 966	newsbsec->def_sid = oldsbsec->def_sid;
 967	newsbsec->behavior = oldsbsec->behavior;
 968
 969	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
 970		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
 971		rc = security_fs_use(&selinux_state, newsb);
 972		if (rc)
 973			goto out;
 974	}
 975
 976	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
 977		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
 978		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 979	}
 980
 981	if (set_context) {
 982		u32 sid = oldsbsec->mntpoint_sid;
 983
 984		if (!set_fscontext)
 985			newsbsec->sid = sid;
 986		if (!set_rootcontext) {
 987			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 
 988			newisec->sid = sid;
 989		}
 990		newsbsec->mntpoint_sid = sid;
 991	}
 992	if (set_rootcontext) {
 993		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 994		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 
 
 995
 996		newisec->sid = oldisec->sid;
 997	}
 998
 999	sb_finish_set_opts(newsb);
1000out:
1001	mutex_unlock(&newsbsec->lock);
1002	return rc;
1003}
1004
1005static int selinux_add_opt(int token, const char *s, void **mnt_opts)
 
1006{
1007	struct selinux_mnt_opts *opts = *mnt_opts;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008
1009	if (token == Opt_seclabel)	/* eaten and completely ignored */
1010		return 0;
 
 
 
 
 
 
 
 
 
 
 
1011
1012	if (!opts) {
1013		opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
1014		if (!opts)
1015			return -ENOMEM;
1016		*mnt_opts = opts;
1017	}
1018	if (!s)
1019		return -ENOMEM;
1020	switch (token) {
1021	case Opt_context:
1022		if (opts->context || opts->defcontext)
1023			goto Einval;
1024		opts->context = s;
1025		break;
1026	case Opt_fscontext:
1027		if (opts->fscontext)
1028			goto Einval;
1029		opts->fscontext = s;
1030		break;
1031	case Opt_rootcontext:
1032		if (opts->rootcontext)
1033			goto Einval;
1034		opts->rootcontext = s;
1035		break;
1036	case Opt_defcontext:
1037		if (opts->context || opts->defcontext)
1038			goto Einval;
1039		opts->defcontext = s;
1040		break;
1041	}
1042	return 0;
1043Einval:
1044	pr_warn(SEL_MOUNT_FAIL_MSG);
1045	return -EINVAL;
1046}
1047
1048static int selinux_add_mnt_opt(const char *option, const char *val, int len,
1049			       void **mnt_opts)
1050{
1051	int token = Opt_error;
1052	int rc, i;
 
 
 
 
 
 
 
1053
1054	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
1055		if (strcmp(option, tokens[i].name) == 0) {
1056			token = tokens[i].opt;
 
 
 
 
 
 
 
 
 
 
1057			break;
 
 
 
 
 
1058		}
1059	}
1060
1061	if (token == Opt_error)
1062		return -EINVAL;
 
 
 
 
 
 
 
 
1063
1064	if (token != Opt_seclabel) {
1065		val = kmemdup_nul(val, len, GFP_KERNEL);
1066		if (!val) {
1067			rc = -ENOMEM;
1068			goto free_opt;
1069		}
 
 
 
 
 
1070	}
1071	rc = selinux_add_opt(token, val, mnt_opts);
1072	if (unlikely(rc)) {
1073		kfree(val);
1074		goto free_opt;
1075	}
 
 
 
 
 
 
 
 
 
1076	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077
1078free_opt:
1079	if (*mnt_opts) {
1080		selinux_free_mnt_opts(*mnt_opts);
1081		*mnt_opts = NULL;
1082	}
1083	return rc;
1084}
1085
1086static int show_sid(struct seq_file *m, u32 sid)
 
1087{
1088	char *context = NULL;
1089	u32 len;
1090	int rc;
 
 
1091
1092	rc = security_sid_to_context(&selinux_state, sid,
1093					     &context, &len);
1094	if (!rc) {
1095		bool has_comma = context && strchr(context, ',');
1096
1097		seq_putc(m, '=');
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1098		if (has_comma)
1099			seq_putc(m, '\"');
1100		seq_escape(m, context, "\"\n\\");
1101		if (has_comma)
1102			seq_putc(m, '\"');
1103	}
1104	kfree(context);
1105	return rc;
1106}
1107
1108static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1109{
1110	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1111	int rc;
1112
1113	if (!(sbsec->flags & SE_SBINITIALIZED))
1114		return 0;
 
 
 
 
 
 
 
1115
1116	if (!selinux_initialized(&selinux_state))
1117		return 0;
1118
1119	if (sbsec->flags & FSCONTEXT_MNT) {
1120		seq_putc(m, ',');
1121		seq_puts(m, FSCONTEXT_STR);
1122		rc = show_sid(m, sbsec->sid);
1123		if (rc)
1124			return rc;
1125	}
1126	if (sbsec->flags & CONTEXT_MNT) {
1127		seq_putc(m, ',');
1128		seq_puts(m, CONTEXT_STR);
1129		rc = show_sid(m, sbsec->mntpoint_sid);
1130		if (rc)
1131			return rc;
1132	}
1133	if (sbsec->flags & DEFCONTEXT_MNT) {
1134		seq_putc(m, ',');
1135		seq_puts(m, DEFCONTEXT_STR);
1136		rc = show_sid(m, sbsec->def_sid);
1137		if (rc)
1138			return rc;
1139	}
1140	if (sbsec->flags & ROOTCONTEXT_MNT) {
1141		struct dentry *root = sb->s_root;
1142		struct inode_security_struct *isec = backing_inode_security(root);
1143		seq_putc(m, ',');
1144		seq_puts(m, ROOTCONTEXT_STR);
1145		rc = show_sid(m, isec->sid);
1146		if (rc)
1147			return rc;
1148	}
1149	if (sbsec->flags & SBLABEL_MNT) {
1150		seq_putc(m, ',');
1151		seq_puts(m, SECLABEL_STR);
1152	}
1153	return 0;
1154}
1155
1156static inline u16 inode_mode_to_security_class(umode_t mode)
1157{
1158	switch (mode & S_IFMT) {
1159	case S_IFSOCK:
1160		return SECCLASS_SOCK_FILE;
1161	case S_IFLNK:
1162		return SECCLASS_LNK_FILE;
1163	case S_IFREG:
1164		return SECCLASS_FILE;
1165	case S_IFBLK:
1166		return SECCLASS_BLK_FILE;
1167	case S_IFDIR:
1168		return SECCLASS_DIR;
1169	case S_IFCHR:
1170		return SECCLASS_CHR_FILE;
1171	case S_IFIFO:
1172		return SECCLASS_FIFO_FILE;
1173
1174	}
1175
1176	return SECCLASS_FILE;
1177}
1178
1179static inline int default_protocol_stream(int protocol)
1180{
1181	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1182		protocol == IPPROTO_MPTCP);
1183}
1184
1185static inline int default_protocol_dgram(int protocol)
1186{
1187	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1188}
1189
1190static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1191{
1192	int extsockclass = selinux_policycap_extsockclass();
1193
1194	switch (family) {
1195	case PF_UNIX:
1196		switch (type) {
1197		case SOCK_STREAM:
1198		case SOCK_SEQPACKET:
1199			return SECCLASS_UNIX_STREAM_SOCKET;
1200		case SOCK_DGRAM:
1201		case SOCK_RAW:
1202			return SECCLASS_UNIX_DGRAM_SOCKET;
1203		}
1204		break;
1205	case PF_INET:
1206	case PF_INET6:
1207		switch (type) {
1208		case SOCK_STREAM:
1209		case SOCK_SEQPACKET:
1210			if (default_protocol_stream(protocol))
1211				return SECCLASS_TCP_SOCKET;
1212			else if (extsockclass && protocol == IPPROTO_SCTP)
1213				return SECCLASS_SCTP_SOCKET;
1214			else
1215				return SECCLASS_RAWIP_SOCKET;
1216		case SOCK_DGRAM:
1217			if (default_protocol_dgram(protocol))
1218				return SECCLASS_UDP_SOCKET;
1219			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1220						  protocol == IPPROTO_ICMPV6))
1221				return SECCLASS_ICMP_SOCKET;
1222			else
1223				return SECCLASS_RAWIP_SOCKET;
1224		case SOCK_DCCP:
1225			return SECCLASS_DCCP_SOCKET;
1226		default:
1227			return SECCLASS_RAWIP_SOCKET;
1228		}
1229		break;
1230	case PF_NETLINK:
1231		switch (protocol) {
1232		case NETLINK_ROUTE:
1233			return SECCLASS_NETLINK_ROUTE_SOCKET;
 
 
1234		case NETLINK_SOCK_DIAG:
1235			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1236		case NETLINK_NFLOG:
1237			return SECCLASS_NETLINK_NFLOG_SOCKET;
1238		case NETLINK_XFRM:
1239			return SECCLASS_NETLINK_XFRM_SOCKET;
1240		case NETLINK_SELINUX:
1241			return SECCLASS_NETLINK_SELINUX_SOCKET;
1242		case NETLINK_ISCSI:
1243			return SECCLASS_NETLINK_ISCSI_SOCKET;
1244		case NETLINK_AUDIT:
1245			return SECCLASS_NETLINK_AUDIT_SOCKET;
1246		case NETLINK_FIB_LOOKUP:
1247			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1248		case NETLINK_CONNECTOR:
1249			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1250		case NETLINK_NETFILTER:
1251			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1252		case NETLINK_DNRTMSG:
1253			return SECCLASS_NETLINK_DNRT_SOCKET;
1254		case NETLINK_KOBJECT_UEVENT:
1255			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1256		case NETLINK_GENERIC:
1257			return SECCLASS_NETLINK_GENERIC_SOCKET;
1258		case NETLINK_SCSITRANSPORT:
1259			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1260		case NETLINK_RDMA:
1261			return SECCLASS_NETLINK_RDMA_SOCKET;
1262		case NETLINK_CRYPTO:
1263			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1264		default:
1265			return SECCLASS_NETLINK_SOCKET;
1266		}
1267	case PF_PACKET:
1268		return SECCLASS_PACKET_SOCKET;
1269	case PF_KEY:
1270		return SECCLASS_KEY_SOCKET;
1271	case PF_APPLETALK:
1272		return SECCLASS_APPLETALK_SOCKET;
1273	}
1274
1275	if (extsockclass) {
1276		switch (family) {
1277		case PF_AX25:
1278			return SECCLASS_AX25_SOCKET;
1279		case PF_IPX:
1280			return SECCLASS_IPX_SOCKET;
1281		case PF_NETROM:
1282			return SECCLASS_NETROM_SOCKET;
1283		case PF_ATMPVC:
1284			return SECCLASS_ATMPVC_SOCKET;
1285		case PF_X25:
1286			return SECCLASS_X25_SOCKET;
1287		case PF_ROSE:
1288			return SECCLASS_ROSE_SOCKET;
1289		case PF_DECnet:
1290			return SECCLASS_DECNET_SOCKET;
1291		case PF_ATMSVC:
1292			return SECCLASS_ATMSVC_SOCKET;
1293		case PF_RDS:
1294			return SECCLASS_RDS_SOCKET;
1295		case PF_IRDA:
1296			return SECCLASS_IRDA_SOCKET;
1297		case PF_PPPOX:
1298			return SECCLASS_PPPOX_SOCKET;
1299		case PF_LLC:
1300			return SECCLASS_LLC_SOCKET;
1301		case PF_CAN:
1302			return SECCLASS_CAN_SOCKET;
1303		case PF_TIPC:
1304			return SECCLASS_TIPC_SOCKET;
1305		case PF_BLUETOOTH:
1306			return SECCLASS_BLUETOOTH_SOCKET;
1307		case PF_IUCV:
1308			return SECCLASS_IUCV_SOCKET;
1309		case PF_RXRPC:
1310			return SECCLASS_RXRPC_SOCKET;
1311		case PF_ISDN:
1312			return SECCLASS_ISDN_SOCKET;
1313		case PF_PHONET:
1314			return SECCLASS_PHONET_SOCKET;
1315		case PF_IEEE802154:
1316			return SECCLASS_IEEE802154_SOCKET;
1317		case PF_CAIF:
1318			return SECCLASS_CAIF_SOCKET;
1319		case PF_ALG:
1320			return SECCLASS_ALG_SOCKET;
1321		case PF_NFC:
1322			return SECCLASS_NFC_SOCKET;
1323		case PF_VSOCK:
1324			return SECCLASS_VSOCK_SOCKET;
1325		case PF_KCM:
1326			return SECCLASS_KCM_SOCKET;
1327		case PF_QIPCRTR:
1328			return SECCLASS_QIPCRTR_SOCKET;
1329		case PF_SMC:
1330			return SECCLASS_SMC_SOCKET;
1331		case PF_XDP:
1332			return SECCLASS_XDP_SOCKET;
1333#if PF_MAX > 45
1334#error New address family defined, please update this function.
1335#endif
1336		}
1337	}
1338
1339	return SECCLASS_SOCKET;
1340}
1341
1342static int selinux_genfs_get_sid(struct dentry *dentry,
1343				 u16 tclass,
1344				 u16 flags,
1345				 u32 *sid)
1346{
1347	int rc;
1348	struct super_block *sb = dentry->d_sb;
1349	char *buffer, *path;
1350
1351	buffer = (char *)__get_free_page(GFP_KERNEL);
1352	if (!buffer)
1353		return -ENOMEM;
1354
1355	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1356	if (IS_ERR(path))
1357		rc = PTR_ERR(path);
1358	else {
1359		if (flags & SE_SBPROC) {
1360			/* each process gets a /proc/PID/ entry. Strip off the
1361			 * PID part to get a valid selinux labeling.
1362			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1363			while (path[1] >= '0' && path[1] <= '9') {
1364				path[1] = '/';
1365				path++;
1366			}
1367		}
1368		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1369					path, tclass, sid);
1370		if (rc == -ENOENT) {
1371			/* No match in policy, mark as unlabeled. */
1372			*sid = SECINITSID_UNLABELED;
1373			rc = 0;
1374		}
 
1375	}
1376	free_page((unsigned long)buffer);
1377	return rc;
1378}
1379
1380static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1381				  u32 def_sid, u32 *sid)
 
1382{
1383#define INITCONTEXTLEN 255
1384	char *context;
1385	unsigned int len;
1386	int rc;
1387
1388	len = INITCONTEXTLEN;
1389	context = kmalloc(len + 1, GFP_NOFS);
1390	if (!context)
1391		return -ENOMEM;
1392
1393	context[len] = '\0';
1394	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1395	if (rc == -ERANGE) {
1396		kfree(context);
1397
1398		/* Need a larger buffer.  Query for the right size. */
1399		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1400		if (rc < 0)
1401			return rc;
1402
1403		len = rc;
1404		context = kmalloc(len + 1, GFP_NOFS);
1405		if (!context)
1406			return -ENOMEM;
1407
1408		context[len] = '\0';
1409		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1410				    context, len);
1411	}
1412	if (rc < 0) {
1413		kfree(context);
1414		if (rc != -ENODATA) {
1415			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1416				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1417			return rc;
1418		}
1419		*sid = def_sid;
1420		return 0;
1421	}
1422
1423	rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1424					     def_sid, GFP_NOFS);
1425	if (rc) {
1426		char *dev = inode->i_sb->s_id;
1427		unsigned long ino = inode->i_ino;
1428
1429		if (rc == -EINVAL) {
1430			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1431					      ino, dev, context);
1432		} else {
1433			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1434				__func__, context, -rc, dev, ino);
1435		}
1436	}
1437	kfree(context);
1438	return 0;
1439}
 
1440
1441/* The inode's security attributes must be initialized before first use. */
1442static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1443{
1444	struct superblock_security_struct *sbsec = NULL;
1445	struct inode_security_struct *isec = selinux_inode(inode);
1446	u32 task_sid, sid = 0;
1447	u16 sclass;
1448	struct dentry *dentry;
 
 
 
1449	int rc = 0;
1450
1451	if (isec->initialized == LABEL_INITIALIZED)
1452		return 0;
1453
1454	spin_lock(&isec->lock);
1455	if (isec->initialized == LABEL_INITIALIZED)
1456		goto out_unlock;
1457
1458	if (isec->sclass == SECCLASS_FILE)
1459		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1460
1461	sbsec = selinux_superblock(inode->i_sb);
1462	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1463		/* Defer initialization until selinux_complete_init,
1464		   after the initial policy is loaded and the security
1465		   server is ready to handle calls. */
1466		spin_lock(&sbsec->isec_lock);
1467		if (list_empty(&isec->list))
1468			list_add(&isec->list, &sbsec->isec_head);
1469		spin_unlock(&sbsec->isec_lock);
1470		goto out_unlock;
1471	}
1472
1473	sclass = isec->sclass;
1474	task_sid = isec->task_sid;
1475	sid = isec->sid;
1476	isec->initialized = LABEL_PENDING;
1477	spin_unlock(&isec->lock);
1478
1479	switch (sbsec->behavior) {
1480	case SECURITY_FS_USE_NATIVE:
1481		break;
1482	case SECURITY_FS_USE_XATTR:
1483		if (!(inode->i_opflags & IOP_XATTR)) {
1484			sid = sbsec->def_sid;
1485			break;
1486		}
 
1487		/* Need a dentry, since the xattr API requires one.
1488		   Life would be simpler if we could just pass the inode. */
1489		if (opt_dentry) {
1490			/* Called from d_instantiate or d_splice_alias. */
1491			dentry = dget(opt_dentry);
1492		} else {
1493			/*
1494			 * Called from selinux_complete_init, try to find a dentry.
1495			 * Some filesystems really want a connected one, so try
1496			 * that first.  We could split SECURITY_FS_USE_XATTR in
1497			 * two, depending upon that...
1498			 */
1499			dentry = d_find_alias(inode);
1500			if (!dentry)
1501				dentry = d_find_any_alias(inode);
1502		}
1503		if (!dentry) {
1504			/*
1505			 * this is can be hit on boot when a file is accessed
1506			 * before the policy is loaded.  When we load policy we
1507			 * may find inodes that have no dentry on the
1508			 * sbsec->isec_head list.  No reason to complain as these
1509			 * will get fixed up the next time we go through
1510			 * inode_doinit with a dentry, before these inodes could
1511			 * be used again by userspace.
1512			 */
1513			goto out_invalid;
1514		}
1515
1516		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1517					    &sid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1518		dput(dentry);
1519		if (rc)
1520			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1521		break;
1522	case SECURITY_FS_USE_TASK:
1523		sid = task_sid;
1524		break;
1525	case SECURITY_FS_USE_TRANS:
1526		/* Default to the fs SID. */
1527		sid = sbsec->sid;
1528
1529		/* Try to obtain a transition SID. */
1530		rc = security_transition_sid(&selinux_state, task_sid, sid,
1531					     sclass, NULL, &sid);
 
1532		if (rc)
1533			goto out;
 
1534		break;
1535	case SECURITY_FS_USE_MNTPOINT:
1536		sid = sbsec->mntpoint_sid;
1537		break;
1538	default:
1539		/* Default to the fs superblock SID. */
1540		sid = sbsec->sid;
1541
1542		if ((sbsec->flags & SE_SBGENFS) &&
1543		     (!S_ISLNK(inode->i_mode) ||
1544		      selinux_policycap_genfs_seclabel_symlinks())) {
1545			/* We must have a dentry to determine the label on
1546			 * procfs inodes */
1547			if (opt_dentry) {
1548				/* Called from d_instantiate or
1549				 * d_splice_alias. */
1550				dentry = dget(opt_dentry);
1551			} else {
1552				/* Called from selinux_complete_init, try to
1553				 * find a dentry.  Some filesystems really want
1554				 * a connected one, so try that first.
1555				 */
1556				dentry = d_find_alias(inode);
1557				if (!dentry)
1558					dentry = d_find_any_alias(inode);
1559			}
1560			/*
1561			 * This can be hit on boot when a file is accessed
1562			 * before the policy is loaded.  When we load policy we
1563			 * may find inodes that have no dentry on the
1564			 * sbsec->isec_head list.  No reason to complain as
1565			 * these will get fixed up the next time we go through
1566			 * inode_doinit() with a dentry, before these inodes
1567			 * could be used again by userspace.
1568			 */
1569			if (!dentry)
1570				goto out_invalid;
1571			rc = selinux_genfs_get_sid(dentry, sclass,
1572						   sbsec->flags, &sid);
1573			if (rc) {
1574				dput(dentry);
1575				goto out;
1576			}
1577
1578			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1579			    (inode->i_opflags & IOP_XATTR)) {
1580				rc = inode_doinit_use_xattr(inode, dentry,
1581							    sid, &sid);
1582				if (rc) {
1583					dput(dentry);
1584					goto out;
1585				}
1586			}
1587			dput(dentry);
1588		}
1589		break;
1590	}
1591
1592out:
1593	spin_lock(&isec->lock);
1594	if (isec->initialized == LABEL_PENDING) {
1595		if (rc) {
1596			isec->initialized = LABEL_INVALID;
1597			goto out_unlock;
1598		}
1599		isec->initialized = LABEL_INITIALIZED;
1600		isec->sid = sid;
1601	}
1602
1603out_unlock:
1604	spin_unlock(&isec->lock);
 
 
 
1605	return rc;
1606
1607out_invalid:
1608	spin_lock(&isec->lock);
1609	if (isec->initialized == LABEL_PENDING) {
1610		isec->initialized = LABEL_INVALID;
1611		isec->sid = sid;
1612	}
1613	spin_unlock(&isec->lock);
1614	return 0;
1615}
1616
1617/* Convert a Linux signal to an access vector. */
1618static inline u32 signal_to_av(int sig)
1619{
1620	u32 perm = 0;
1621
1622	switch (sig) {
1623	case SIGCHLD:
1624		/* Commonly granted from child to parent. */
1625		perm = PROCESS__SIGCHLD;
1626		break;
1627	case SIGKILL:
1628		/* Cannot be caught or ignored */
1629		perm = PROCESS__SIGKILL;
1630		break;
1631	case SIGSTOP:
1632		/* Cannot be caught or ignored */
1633		perm = PROCESS__SIGSTOP;
1634		break;
1635	default:
1636		/* All other signals. */
1637		perm = PROCESS__SIGNAL;
1638		break;
1639	}
1640
1641	return perm;
1642}
1643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1644#if CAP_LAST_CAP > 63
1645#error Fix SELinux to handle capabilities > 63.
1646#endif
1647
1648/* Check whether a task is allowed to use a capability. */
1649static int cred_has_capability(const struct cred *cred,
1650			       int cap, unsigned int opts, bool initns)
1651{
1652	struct common_audit_data ad;
1653	struct av_decision avd;
1654	u16 sclass;
1655	u32 sid = cred_sid(cred);
1656	u32 av = CAP_TO_MASK(cap);
1657	int rc;
1658
1659	ad.type = LSM_AUDIT_DATA_CAP;
1660	ad.u.cap = cap;
1661
1662	switch (CAP_TO_INDEX(cap)) {
1663	case 0:
1664		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1665		break;
1666	case 1:
1667		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1668		break;
1669	default:
1670		pr_err("SELinux:  out of range capability %d\n", cap);
 
1671		BUG();
1672		return -EINVAL;
1673	}
1674
1675	rc = avc_has_perm_noaudit(&selinux_state,
1676				  sid, sid, sclass, av, 0, &avd);
1677	if (!(opts & CAP_OPT_NOAUDIT)) {
1678		int rc2 = avc_audit(&selinux_state,
1679				    sid, sid, sclass, av, &avd, rc, &ad);
1680		if (rc2)
1681			return rc2;
1682	}
1683	return rc;
1684}
1685
 
 
 
 
 
 
 
 
 
 
1686/* Check whether a task has a particular permission to an inode.
1687   The 'adp' parameter is optional and allows other audit
1688   data to be passed (e.g. the dentry). */
1689static int inode_has_perm(const struct cred *cred,
1690			  struct inode *inode,
1691			  u32 perms,
1692			  struct common_audit_data *adp)
 
1693{
1694	struct inode_security_struct *isec;
1695	u32 sid;
1696
1697	validate_creds(cred);
1698
1699	if (unlikely(IS_PRIVATE(inode)))
1700		return 0;
1701
1702	sid = cred_sid(cred);
1703	isec = selinux_inode(inode);
1704
1705	return avc_has_perm(&selinux_state,
1706			    sid, isec->sid, isec->sclass, perms, adp);
1707}
1708
1709/* Same as inode_has_perm, but pass explicit audit data containing
1710   the dentry to help the auditing code to more easily generate the
1711   pathname if needed. */
1712static inline int dentry_has_perm(const struct cred *cred,
1713				  struct dentry *dentry,
1714				  u32 av)
1715{
1716	struct inode *inode = d_backing_inode(dentry);
1717	struct common_audit_data ad;
1718
1719	ad.type = LSM_AUDIT_DATA_DENTRY;
1720	ad.u.dentry = dentry;
1721	__inode_security_revalidate(inode, dentry, true);
1722	return inode_has_perm(cred, inode, av, &ad);
1723}
1724
1725/* Same as inode_has_perm, but pass explicit audit data containing
1726   the path to help the auditing code to more easily generate the
1727   pathname if needed. */
1728static inline int path_has_perm(const struct cred *cred,
1729				const struct path *path,
1730				u32 av)
1731{
1732	struct inode *inode = d_backing_inode(path->dentry);
1733	struct common_audit_data ad;
1734
1735	ad.type = LSM_AUDIT_DATA_PATH;
1736	ad.u.path = *path;
1737	__inode_security_revalidate(inode, path->dentry, true);
1738	return inode_has_perm(cred, inode, av, &ad);
1739}
1740
1741/* Same as path_has_perm, but uses the inode from the file struct. */
1742static inline int file_path_has_perm(const struct cred *cred,
1743				     struct file *file,
1744				     u32 av)
1745{
1746	struct common_audit_data ad;
1747
1748	ad.type = LSM_AUDIT_DATA_FILE;
1749	ad.u.file = file;
1750	return inode_has_perm(cred, file_inode(file), av, &ad);
1751}
1752
1753#ifdef CONFIG_BPF_SYSCALL
1754static int bpf_fd_pass(struct file *file, u32 sid);
1755#endif
1756
1757/* Check whether a task can use an open file descriptor to
1758   access an inode in a given way.  Check access to the
1759   descriptor itself, and then use dentry_has_perm to
1760   check a particular permission to the file.
1761   Access to the descriptor is implicitly granted if it
1762   has the same SID as the process.  If av is zero, then
1763   access to the file is not checked, e.g. for cases
1764   where only the descriptor is affected like seek. */
1765static int file_has_perm(const struct cred *cred,
1766			 struct file *file,
1767			 u32 av)
1768{
1769	struct file_security_struct *fsec = selinux_file(file);
1770	struct inode *inode = file_inode(file);
1771	struct common_audit_data ad;
1772	u32 sid = cred_sid(cred);
1773	int rc;
1774
1775	ad.type = LSM_AUDIT_DATA_FILE;
1776	ad.u.file = file;
1777
1778	if (sid != fsec->sid) {
1779		rc = avc_has_perm(&selinux_state,
1780				  sid, fsec->sid,
1781				  SECCLASS_FD,
1782				  FD__USE,
1783				  &ad);
1784		if (rc)
1785			goto out;
1786	}
1787
1788#ifdef CONFIG_BPF_SYSCALL
1789	rc = bpf_fd_pass(file, cred_sid(cred));
1790	if (rc)
1791		return rc;
1792#endif
1793
1794	/* av is zero if only checking access to the descriptor. */
1795	rc = 0;
1796	if (av)
1797		rc = inode_has_perm(cred, inode, av, &ad);
1798
1799out:
1800	return rc;
1801}
1802
1803/*
1804 * Determine the label for an inode that might be unioned.
1805 */
1806static int
1807selinux_determine_inode_label(const struct task_security_struct *tsec,
1808				 struct inode *dir,
1809				 const struct qstr *name, u16 tclass,
1810				 u32 *_new_isid)
1811{
1812	const struct superblock_security_struct *sbsec =
1813						selinux_superblock(dir->i_sb);
1814
1815	if ((sbsec->flags & SE_SBINITIALIZED) &&
1816	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1817		*_new_isid = sbsec->mntpoint_sid;
1818	} else if ((sbsec->flags & SBLABEL_MNT) &&
1819		   tsec->create_sid) {
1820		*_new_isid = tsec->create_sid;
1821	} else {
1822		const struct inode_security_struct *dsec = inode_security(dir);
1823		return security_transition_sid(&selinux_state, tsec->sid,
1824					       dsec->sid, tclass,
1825					       name, _new_isid);
1826	}
1827
1828	return 0;
1829}
1830
1831/* Check whether a task can create a file. */
1832static int may_create(struct inode *dir,
1833		      struct dentry *dentry,
1834		      u16 tclass)
1835{
1836	const struct task_security_struct *tsec = selinux_cred(current_cred());
1837	struct inode_security_struct *dsec;
1838	struct superblock_security_struct *sbsec;
1839	u32 sid, newsid;
1840	struct common_audit_data ad;
1841	int rc;
1842
1843	dsec = inode_security(dir);
1844	sbsec = selinux_superblock(dir->i_sb);
1845
1846	sid = tsec->sid;
 
1847
1848	ad.type = LSM_AUDIT_DATA_DENTRY;
1849	ad.u.dentry = dentry;
1850
1851	rc = avc_has_perm(&selinux_state,
1852			  sid, dsec->sid, SECCLASS_DIR,
1853			  DIR__ADD_NAME | DIR__SEARCH,
1854			  &ad);
1855	if (rc)
1856		return rc;
1857
1858	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1859					   &newsid);
1860	if (rc)
1861		return rc;
 
 
1862
1863	rc = avc_has_perm(&selinux_state,
1864			  sid, newsid, tclass, FILE__CREATE, &ad);
1865	if (rc)
1866		return rc;
1867
1868	return avc_has_perm(&selinux_state,
1869			    newsid, sbsec->sid,
1870			    SECCLASS_FILESYSTEM,
1871			    FILESYSTEM__ASSOCIATE, &ad);
1872}
1873
 
 
 
 
 
 
 
 
 
1874#define MAY_LINK	0
1875#define MAY_UNLINK	1
1876#define MAY_RMDIR	2
1877
1878/* Check whether a task can link, unlink, or rmdir a file/directory. */
1879static int may_link(struct inode *dir,
1880		    struct dentry *dentry,
1881		    int kind)
1882
1883{
1884	struct inode_security_struct *dsec, *isec;
1885	struct common_audit_data ad;
1886	u32 sid = current_sid();
1887	u32 av;
1888	int rc;
1889
1890	dsec = inode_security(dir);
1891	isec = backing_inode_security(dentry);
1892
1893	ad.type = LSM_AUDIT_DATA_DENTRY;
1894	ad.u.dentry = dentry;
1895
1896	av = DIR__SEARCH;
1897	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1898	rc = avc_has_perm(&selinux_state,
1899			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
1900	if (rc)
1901		return rc;
1902
1903	switch (kind) {
1904	case MAY_LINK:
1905		av = FILE__LINK;
1906		break;
1907	case MAY_UNLINK:
1908		av = FILE__UNLINK;
1909		break;
1910	case MAY_RMDIR:
1911		av = DIR__RMDIR;
1912		break;
1913	default:
1914		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1915			__func__, kind);
1916		return 0;
1917	}
1918
1919	rc = avc_has_perm(&selinux_state,
1920			  sid, isec->sid, isec->sclass, av, &ad);
1921	return rc;
1922}
1923
1924static inline int may_rename(struct inode *old_dir,
1925			     struct dentry *old_dentry,
1926			     struct inode *new_dir,
1927			     struct dentry *new_dentry)
1928{
1929	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1930	struct common_audit_data ad;
1931	u32 sid = current_sid();
1932	u32 av;
1933	int old_is_dir, new_is_dir;
1934	int rc;
1935
1936	old_dsec = inode_security(old_dir);
1937	old_isec = backing_inode_security(old_dentry);
1938	old_is_dir = d_is_dir(old_dentry);
1939	new_dsec = inode_security(new_dir);
1940
1941	ad.type = LSM_AUDIT_DATA_DENTRY;
1942
1943	ad.u.dentry = old_dentry;
1944	rc = avc_has_perm(&selinux_state,
1945			  sid, old_dsec->sid, SECCLASS_DIR,
1946			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1947	if (rc)
1948		return rc;
1949	rc = avc_has_perm(&selinux_state,
1950			  sid, old_isec->sid,
1951			  old_isec->sclass, FILE__RENAME, &ad);
1952	if (rc)
1953		return rc;
1954	if (old_is_dir && new_dir != old_dir) {
1955		rc = avc_has_perm(&selinux_state,
1956				  sid, old_isec->sid,
1957				  old_isec->sclass, DIR__REPARENT, &ad);
1958		if (rc)
1959			return rc;
1960	}
1961
1962	ad.u.dentry = new_dentry;
1963	av = DIR__ADD_NAME | DIR__SEARCH;
1964	if (d_is_positive(new_dentry))
1965		av |= DIR__REMOVE_NAME;
1966	rc = avc_has_perm(&selinux_state,
1967			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1968	if (rc)
1969		return rc;
1970	if (d_is_positive(new_dentry)) {
1971		new_isec = backing_inode_security(new_dentry);
1972		new_is_dir = d_is_dir(new_dentry);
1973		rc = avc_has_perm(&selinux_state,
1974				  sid, new_isec->sid,
1975				  new_isec->sclass,
1976				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1977		if (rc)
1978			return rc;
1979	}
1980
1981	return 0;
1982}
1983
1984/* Check whether a task can perform a filesystem operation. */
1985static int superblock_has_perm(const struct cred *cred,
1986			       struct super_block *sb,
1987			       u32 perms,
1988			       struct common_audit_data *ad)
1989{
1990	struct superblock_security_struct *sbsec;
1991	u32 sid = cred_sid(cred);
1992
1993	sbsec = selinux_superblock(sb);
1994	return avc_has_perm(&selinux_state,
1995			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1996}
1997
1998/* Convert a Linux mode and permission mask to an access vector. */
1999static inline u32 file_mask_to_av(int mode, int mask)
2000{
2001	u32 av = 0;
2002
2003	if (!S_ISDIR(mode)) {
2004		if (mask & MAY_EXEC)
2005			av |= FILE__EXECUTE;
2006		if (mask & MAY_READ)
2007			av |= FILE__READ;
2008
2009		if (mask & MAY_APPEND)
2010			av |= FILE__APPEND;
2011		else if (mask & MAY_WRITE)
2012			av |= FILE__WRITE;
2013
2014	} else {
2015		if (mask & MAY_EXEC)
2016			av |= DIR__SEARCH;
2017		if (mask & MAY_WRITE)
2018			av |= DIR__WRITE;
2019		if (mask & MAY_READ)
2020			av |= DIR__READ;
2021	}
2022
2023	return av;
2024}
2025
2026/* Convert a Linux file to an access vector. */
2027static inline u32 file_to_av(struct file *file)
2028{
2029	u32 av = 0;
2030
2031	if (file->f_mode & FMODE_READ)
2032		av |= FILE__READ;
2033	if (file->f_mode & FMODE_WRITE) {
2034		if (file->f_flags & O_APPEND)
2035			av |= FILE__APPEND;
2036		else
2037			av |= FILE__WRITE;
2038	}
2039	if (!av) {
2040		/*
2041		 * Special file opened with flags 3 for ioctl-only use.
2042		 */
2043		av = FILE__IOCTL;
2044	}
2045
2046	return av;
2047}
2048
2049/*
2050 * Convert a file to an access vector and include the correct
2051 * open permission.
2052 */
2053static inline u32 open_file_to_av(struct file *file)
2054{
2055	u32 av = file_to_av(file);
2056	struct inode *inode = file_inode(file);
2057
2058	if (selinux_policycap_openperm() &&
2059	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2060		av |= FILE__OPEN;
2061
2062	return av;
2063}
2064
2065/* Hook functions begin here. */
2066
2067static int selinux_binder_set_context_mgr(struct task_struct *mgr)
 
2068{
2069	return avc_has_perm(&selinux_state,
2070			    current_sid(), task_sid_binder(mgr), SECCLASS_BINDER,
2071			    BINDER__SET_CONTEXT_MGR, NULL);
2072}
2073
2074static int selinux_binder_transaction(struct task_struct *from,
2075				      struct task_struct *to)
2076{
2077	u32 mysid = current_sid();
2078	u32 fromsid = task_sid_binder(from);
2079	int rc;
2080
2081	if (mysid != fromsid) {
2082		rc = avc_has_perm(&selinux_state,
2083				  mysid, fromsid, SECCLASS_BINDER,
2084				  BINDER__IMPERSONATE, NULL);
2085		if (rc)
2086			return rc;
2087	}
2088
2089	return avc_has_perm(&selinux_state, fromsid, task_sid_binder(to),
2090			    SECCLASS_BINDER, BINDER__CALL, NULL);
2091}
2092
2093static int selinux_binder_transfer_binder(struct task_struct *from,
2094					  struct task_struct *to)
2095{
2096	return avc_has_perm(&selinux_state,
2097			    task_sid_binder(from), task_sid_binder(to),
2098			    SECCLASS_BINDER, BINDER__TRANSFER,
2099			    NULL);
2100}
2101
2102static int selinux_binder_transfer_file(struct task_struct *from,
2103					struct task_struct *to,
2104					struct file *file)
2105{
2106	u32 sid = task_sid_binder(to);
2107	struct file_security_struct *fsec = selinux_file(file);
2108	struct dentry *dentry = file->f_path.dentry;
2109	struct inode_security_struct *isec;
2110	struct common_audit_data ad;
2111	int rc;
2112
2113	ad.type = LSM_AUDIT_DATA_PATH;
2114	ad.u.path = file->f_path;
2115
2116	if (sid != fsec->sid) {
2117		rc = avc_has_perm(&selinux_state,
2118				  sid, fsec->sid,
2119				  SECCLASS_FD,
2120				  FD__USE,
2121				  &ad);
2122		if (rc)
2123			return rc;
2124	}
2125
2126#ifdef CONFIG_BPF_SYSCALL
2127	rc = bpf_fd_pass(file, sid);
2128	if (rc)
2129		return rc;
2130#endif
2131
2132	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2133		return 0;
2134
2135	isec = backing_inode_security(dentry);
2136	return avc_has_perm(&selinux_state,
2137			    sid, isec->sid, isec->sclass, file_to_av(file),
2138			    &ad);
2139}
2140
2141static int selinux_ptrace_access_check(struct task_struct *child,
2142				       unsigned int mode)
2143{
2144	u32 sid = current_sid();
2145	u32 csid = task_sid_obj(child);
2146
2147	if (mode & PTRACE_MODE_READ)
2148		return avc_has_perm(&selinux_state,
2149				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2150
2151	return avc_has_perm(&selinux_state,
2152			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2153}
2154
2155static int selinux_ptrace_traceme(struct task_struct *parent)
2156{
2157	return avc_has_perm(&selinux_state,
2158			    task_sid_obj(parent), task_sid_obj(current),
2159			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2160}
2161
2162static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2163			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2164{
2165	return avc_has_perm(&selinux_state,
2166			    current_sid(), task_sid_obj(target), SECCLASS_PROCESS,
2167			    PROCESS__GETCAP, NULL);
2168}
2169
2170static int selinux_capset(struct cred *new, const struct cred *old,
2171			  const kernel_cap_t *effective,
2172			  const kernel_cap_t *inheritable,
2173			  const kernel_cap_t *permitted)
2174{
2175	return avc_has_perm(&selinux_state,
2176			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2177			    PROCESS__SETCAP, NULL);
 
 
 
 
 
2178}
2179
2180/*
2181 * (This comment used to live with the selinux_task_setuid hook,
2182 * which was removed).
2183 *
2184 * Since setuid only affects the current process, and since the SELinux
2185 * controls are not based on the Linux identity attributes, SELinux does not
2186 * need to control this operation.  However, SELinux does control the use of
2187 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2188 */
2189
2190static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2191			   int cap, unsigned int opts)
2192{
2193	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
 
 
 
 
 
 
2194}
2195
2196static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2197{
2198	const struct cred *cred = current_cred();
2199	int rc = 0;
2200
2201	if (!sb)
2202		return 0;
2203
2204	switch (cmds) {
2205	case Q_SYNC:
2206	case Q_QUOTAON:
2207	case Q_QUOTAOFF:
2208	case Q_SETINFO:
2209	case Q_SETQUOTA:
2210	case Q_XQUOTAOFF:
2211	case Q_XQUOTAON:
2212	case Q_XSETQLIM:
2213		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2214		break;
2215	case Q_GETFMT:
2216	case Q_GETINFO:
2217	case Q_GETQUOTA:
2218	case Q_XGETQUOTA:
2219	case Q_XGETQSTAT:
2220	case Q_XGETQSTATV:
2221	case Q_XGETNEXTQUOTA:
2222		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2223		break;
2224	default:
2225		rc = 0;  /* let the kernel handle invalid cmds */
2226		break;
2227	}
2228	return rc;
2229}
2230
2231static int selinux_quota_on(struct dentry *dentry)
2232{
2233	const struct cred *cred = current_cred();
2234
2235	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2236}
2237
2238static int selinux_syslog(int type)
2239{
 
 
2240	switch (type) {
2241	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2242	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2243		return avc_has_perm(&selinux_state,
2244				    current_sid(), SECINITSID_KERNEL,
2245				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2246	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2247	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2248	/* Set level of messages printed to console */
2249	case SYSLOG_ACTION_CONSOLE_LEVEL:
2250		return avc_has_perm(&selinux_state,
2251				    current_sid(), SECINITSID_KERNEL,
2252				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2253				    NULL);
2254	}
2255	/* All other syslog types */
2256	return avc_has_perm(&selinux_state,
2257			    current_sid(), SECINITSID_KERNEL,
2258			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
 
 
 
2259}
2260
2261/*
2262 * Check that a process has enough memory to allocate a new virtual
2263 * mapping. 0 means there is enough memory for the allocation to
2264 * succeed and -ENOMEM implies there is not.
2265 *
2266 * Do not audit the selinux permission check, as this is applied to all
2267 * processes that allocate mappings.
2268 */
2269static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2270{
2271	int rc, cap_sys_admin = 0;
2272
2273	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2274				 CAP_OPT_NOAUDIT, true);
2275	if (rc == 0)
2276		cap_sys_admin = 1;
2277
2278	return cap_sys_admin;
2279}
2280
2281/* binprm security operations */
2282
2283static u32 ptrace_parent_sid(void)
2284{
2285	u32 sid = 0;
2286	struct task_struct *tracer;
2287
2288	rcu_read_lock();
2289	tracer = ptrace_parent(current);
2290	if (tracer)
2291		sid = task_sid_obj(tracer);
2292	rcu_read_unlock();
2293
2294	return sid;
2295}
2296
2297static int check_nnp_nosuid(const struct linux_binprm *bprm,
2298			    const struct task_security_struct *old_tsec,
2299			    const struct task_security_struct *new_tsec)
2300{
2301	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2302	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2303	int rc;
2304	u32 av;
2305
2306	if (!nnp && !nosuid)
2307		return 0; /* neither NNP nor nosuid */
2308
2309	if (new_tsec->sid == old_tsec->sid)
2310		return 0; /* No change in credentials */
2311
2312	/*
2313	 * If the policy enables the nnp_nosuid_transition policy capability,
2314	 * then we permit transitions under NNP or nosuid if the
2315	 * policy allows the corresponding permission between
2316	 * the old and new contexts.
2317	 */
2318	if (selinux_policycap_nnp_nosuid_transition()) {
2319		av = 0;
2320		if (nnp)
2321			av |= PROCESS2__NNP_TRANSITION;
2322		if (nosuid)
2323			av |= PROCESS2__NOSUID_TRANSITION;
2324		rc = avc_has_perm(&selinux_state,
2325				  old_tsec->sid, new_tsec->sid,
2326				  SECCLASS_PROCESS2, av, NULL);
2327		if (!rc)
2328			return 0;
2329	}
2330
2331	/*
2332	 * We also permit NNP or nosuid transitions to bounded SIDs,
2333	 * i.e. SIDs that are guaranteed to only be allowed a subset
2334	 * of the permissions of the current SID.
2335	 */
2336	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2337					 new_tsec->sid);
2338	if (!rc)
2339		return 0;
2340
2341	/*
2342	 * On failure, preserve the errno values for NNP vs nosuid.
2343	 * NNP:  Operation not permitted for caller.
2344	 * nosuid:  Permission denied to file.
2345	 */
2346	if (nnp)
2347		return -EPERM;
2348	return -EACCES;
2349}
2350
2351static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2352{
2353	const struct task_security_struct *old_tsec;
2354	struct task_security_struct *new_tsec;
2355	struct inode_security_struct *isec;
2356	struct common_audit_data ad;
2357	struct inode *inode = file_inode(bprm->file);
2358	int rc;
2359
 
 
 
 
2360	/* SELinux context only depends on initial program or script and not
2361	 * the script interpreter */
 
 
2362
2363	old_tsec = selinux_cred(current_cred());
2364	new_tsec = selinux_cred(bprm->cred);
2365	isec = inode_security(inode);
2366
2367	/* Default to the current task SID. */
2368	new_tsec->sid = old_tsec->sid;
2369	new_tsec->osid = old_tsec->sid;
2370
2371	/* Reset fs, key, and sock SIDs on execve. */
2372	new_tsec->create_sid = 0;
2373	new_tsec->keycreate_sid = 0;
2374	new_tsec->sockcreate_sid = 0;
2375
2376	if (old_tsec->exec_sid) {
2377		new_tsec->sid = old_tsec->exec_sid;
2378		/* Reset exec SID on execve. */
2379		new_tsec->exec_sid = 0;
2380
2381		/* Fail on NNP or nosuid if not an allowed transition. */
2382		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2383		if (rc)
2384			return rc;
 
 
2385	} else {
2386		/* Check for a default transition on this program. */
2387		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2388					     isec->sid, SECCLASS_PROCESS, NULL,
2389					     &new_tsec->sid);
2390		if (rc)
2391			return rc;
 
2392
2393		/*
2394		 * Fallback to old SID on NNP or nosuid if not an allowed
2395		 * transition.
2396		 */
2397		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2398		if (rc)
2399			new_tsec->sid = old_tsec->sid;
2400	}
2401
2402	ad.type = LSM_AUDIT_DATA_FILE;
2403	ad.u.file = bprm->file;
 
2404
2405	if (new_tsec->sid == old_tsec->sid) {
2406		rc = avc_has_perm(&selinux_state,
2407				  old_tsec->sid, isec->sid,
2408				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2409		if (rc)
2410			return rc;
2411	} else {
2412		/* Check permissions for the transition. */
2413		rc = avc_has_perm(&selinux_state,
2414				  old_tsec->sid, new_tsec->sid,
2415				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2416		if (rc)
2417			return rc;
2418
2419		rc = avc_has_perm(&selinux_state,
2420				  new_tsec->sid, isec->sid,
2421				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2422		if (rc)
2423			return rc;
2424
2425		/* Check for shared state */
2426		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2427			rc = avc_has_perm(&selinux_state,
2428					  old_tsec->sid, new_tsec->sid,
2429					  SECCLASS_PROCESS, PROCESS__SHARE,
2430					  NULL);
2431			if (rc)
2432				return -EPERM;
2433		}
2434
2435		/* Make sure that anyone attempting to ptrace over a task that
2436		 * changes its SID has the appropriate permit */
2437		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2438			u32 ptsid = ptrace_parent_sid();
 
 
 
 
 
 
 
 
 
 
 
 
2439			if (ptsid != 0) {
2440				rc = avc_has_perm(&selinux_state,
2441						  ptsid, new_tsec->sid,
2442						  SECCLASS_PROCESS,
2443						  PROCESS__PTRACE, NULL);
2444				if (rc)
2445					return -EPERM;
2446			}
2447		}
2448
2449		/* Clear any possibly unsafe personality bits on exec: */
2450		bprm->per_clear |= PER_CLEAR_ON_SETID;
 
 
 
 
 
 
 
 
 
 
 
 
 
2451
 
2452		/* Enable secure mode for SIDs transitions unless
2453		   the noatsecure permission is granted between
2454		   the two SIDs, i.e. ahp returns 0. */
2455		rc = avc_has_perm(&selinux_state,
2456				  old_tsec->sid, new_tsec->sid,
2457				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2458				  NULL);
2459		bprm->secureexec |= !!rc;
2460	}
2461
2462	return 0;
2463}
2464
2465static int match_file(const void *p, struct file *file, unsigned fd)
2466{
2467	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2468}
2469
2470/* Derived from fs/exec.c:flush_old_files. */
2471static inline void flush_unauthorized_files(const struct cred *cred,
2472					    struct files_struct *files)
2473{
2474	struct file *file, *devnull = NULL;
2475	struct tty_struct *tty;
 
 
2476	int drop_tty = 0;
2477	unsigned n;
2478
2479	tty = get_current_tty();
2480	if (tty) {
2481		spin_lock(&tty->files_lock);
2482		if (!list_empty(&tty->tty_files)) {
2483			struct tty_file_private *file_priv;
2484
2485			/* Revalidate access to controlling tty.
2486			   Use file_path_has_perm on the tty path directly
2487			   rather than using file_has_perm, as this particular
2488			   open file may belong to another process and we are
2489			   only interested in the inode-based check here. */
2490			file_priv = list_first_entry(&tty->tty_files,
2491						struct tty_file_private, list);
2492			file = file_priv->file;
2493			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2494				drop_tty = 1;
2495		}
2496		spin_unlock(&tty->files_lock);
2497		tty_kref_put(tty);
2498	}
2499	/* Reset controlling tty. */
2500	if (drop_tty)
2501		no_tty();
2502
2503	/* Revalidate access to inherited open files. */
2504	n = iterate_fd(files, 0, match_file, cred);
2505	if (!n) /* none found? */
2506		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2507
2508	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2509	if (IS_ERR(devnull))
2510		devnull = NULL;
2511	/* replace all the matching ones with this */
2512	do {
2513		replace_fd(n - 1, devnull, 0);
2514	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2515	if (devnull)
2516		fput(devnull);
2517}
2518
2519/*
2520 * Prepare a process for imminent new credential changes due to exec
2521 */
2522static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2523{
2524	struct task_security_struct *new_tsec;
2525	struct rlimit *rlim, *initrlim;
2526	int rc, i;
2527
2528	new_tsec = selinux_cred(bprm->cred);
2529	if (new_tsec->sid == new_tsec->osid)
2530		return;
2531
2532	/* Close files for which the new task SID is not authorized. */
2533	flush_unauthorized_files(bprm->cred, current->files);
2534
2535	/* Always clear parent death signal on SID transitions. */
2536	current->pdeath_signal = 0;
2537
2538	/* Check whether the new SID can inherit resource limits from the old
2539	 * SID.  If not, reset all soft limits to the lower of the current
2540	 * task's hard limit and the init task's soft limit.
2541	 *
2542	 * Note that the setting of hard limits (even to lower them) can be
2543	 * controlled by the setrlimit check.  The inclusion of the init task's
2544	 * soft limit into the computation is to avoid resetting soft limits
2545	 * higher than the default soft limit for cases where the default is
2546	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2547	 */
2548	rc = avc_has_perm(&selinux_state,
2549			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2550			  PROCESS__RLIMITINH, NULL);
2551	if (rc) {
2552		/* protect against do_prlimit() */
2553		task_lock(current);
2554		for (i = 0; i < RLIM_NLIMITS; i++) {
2555			rlim = current->signal->rlim + i;
2556			initrlim = init_task.signal->rlim + i;
2557			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2558		}
2559		task_unlock(current);
2560		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2561			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2562	}
2563}
2564
2565/*
2566 * Clean up the process immediately after the installation of new credentials
2567 * due to exec
2568 */
2569static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2570{
2571	const struct task_security_struct *tsec = selinux_cred(current_cred());
 
2572	u32 osid, sid;
2573	int rc;
2574
2575	osid = tsec->osid;
2576	sid = tsec->sid;
2577
2578	if (sid == osid)
2579		return;
2580
2581	/* Check whether the new SID can inherit signal state from the old SID.
2582	 * If not, clear itimers to avoid subsequent signal generation and
2583	 * flush and unblock signals.
2584	 *
2585	 * This must occur _after_ the task SID has been updated so that any
2586	 * kill done after the flush will be checked against the new SID.
2587	 */
2588	rc = avc_has_perm(&selinux_state,
2589			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2590	if (rc) {
2591		clear_itimer();
2592
 
2593		spin_lock_irq(&current->sighand->siglock);
2594		if (!fatal_signal_pending(current)) {
2595			flush_sigqueue(&current->pending);
2596			flush_sigqueue(&current->signal->shared_pending);
2597			flush_signal_handlers(current, 1);
2598			sigemptyset(&current->blocked);
2599			recalc_sigpending();
2600		}
2601		spin_unlock_irq(&current->sighand->siglock);
2602	}
2603
2604	/* Wake up the parent if it is waiting so that it can recheck
2605	 * wait permission to the new task SID. */
2606	read_lock(&tasklist_lock);
2607	__wake_up_parent(current, current->real_parent);
2608	read_unlock(&tasklist_lock);
2609}
2610
2611/* superblock security operations */
2612
2613static int selinux_sb_alloc_security(struct super_block *sb)
2614{
2615	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2616
2617	mutex_init(&sbsec->lock);
2618	INIT_LIST_HEAD(&sbsec->isec_head);
2619	spin_lock_init(&sbsec->isec_lock);
2620	sbsec->sid = SECINITSID_UNLABELED;
2621	sbsec->def_sid = SECINITSID_FILE;
2622	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 
 
2623
2624	return 0;
 
 
 
 
 
 
 
 
2625}
2626
2627static inline int opt_len(const char *s)
 
2628{
2629	bool open_quote = false;
2630	int len;
2631	char c;
2632
2633	for (len = 0; (c = s[len]) != '\0'; len++) {
2634		if (c == '"')
2635			open_quote = !open_quote;
2636		if (c == ',' && !open_quote)
2637			break;
 
 
 
 
 
 
 
 
2638	}
2639	return len;
2640}
2641
2642static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2643{
2644	char *from = options;
2645	char *to = options;
2646	bool first = true;
2647	int rc;
 
 
 
 
 
 
 
 
 
2648
2649	while (1) {
2650		int len = opt_len(from);
2651		int token;
2652		char *arg = NULL;
2653
2654		token = match_opt_prefix(from, len, &arg);
 
 
 
 
 
2655
2656		if (token != Opt_error) {
2657			char *p, *q;
 
 
2658
2659			/* strip quotes */
2660			if (arg) {
2661				for (p = q = arg; p < from + len; p++) {
2662					char c = *p;
2663					if (c != '"')
2664						*q++ = c;
2665				}
2666				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2667				if (!arg) {
2668					rc = -ENOMEM;
2669					goto free_opt;
2670				}
2671			}
2672			rc = selinux_add_opt(token, arg, mnt_opts);
2673			if (unlikely(rc)) {
2674				kfree(arg);
2675				goto free_opt;
2676			}
2677		} else {
2678			if (!first) {	// copy with preceding comma
2679				from--;
2680				len++;
2681			}
2682			if (to != from)
2683				memmove(to, from, len);
2684			to += len;
2685			first = false;
2686		}
2687		if (!from[len])
2688			break;
2689		from += len + 1;
2690	}
2691	*to = '\0';
2692	return 0;
2693
2694free_opt:
2695	if (*mnt_opts) {
2696		selinux_free_mnt_opts(*mnt_opts);
2697		*mnt_opts = NULL;
2698	}
2699	return rc;
2700}
2701
2702static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2703{
2704	struct selinux_mnt_opts *opts = mnt_opts;
 
 
2705	struct superblock_security_struct *sbsec = sb->s_security;
2706	u32 sid;
2707	int rc;
2708
2709	/*
2710	 * Superblock not initialized (i.e. no options) - reject if any
2711	 * options specified, otherwise accept.
2712	 */
2713	if (!(sbsec->flags & SE_SBINITIALIZED))
2714		return opts ? 1 : 0;
2715
2716	/*
2717	 * Superblock initialized and no options specified - reject if
2718	 * superblock has any options set, otherwise accept.
2719	 */
2720	if (!opts)
2721		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2722
2723	if (opts->fscontext) {
2724		rc = parse_sid(sb, opts->fscontext, &sid);
2725		if (rc)
2726			return 1;
2727		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2728			return 1;
2729	}
2730	if (opts->context) {
2731		rc = parse_sid(sb, opts->context, &sid);
2732		if (rc)
2733			return 1;
2734		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2735			return 1;
2736	}
2737	if (opts->rootcontext) {
2738		struct inode_security_struct *root_isec;
2739
2740		root_isec = backing_inode_security(sb->s_root);
2741		rc = parse_sid(sb, opts->rootcontext, &sid);
2742		if (rc)
2743			return 1;
2744		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2745			return 1;
2746	}
2747	if (opts->defcontext) {
2748		rc = parse_sid(sb, opts->defcontext, &sid);
2749		if (rc)
2750			return 1;
2751		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2752			return 1;
2753	}
2754	return 0;
2755}
2756
2757static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2758{
2759	struct selinux_mnt_opts *opts = mnt_opts;
2760	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2761	u32 sid;
2762	int rc;
2763
2764	if (!(sbsec->flags & SE_SBINITIALIZED))
2765		return 0;
 
2766
2767	if (!opts)
2768		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2769
2770	if (opts->fscontext) {
2771		rc = parse_sid(sb, opts->fscontext, &sid);
2772		if (rc)
2773			return rc;
2774		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2775			goto out_bad_option;
2776	}
2777	if (opts->context) {
2778		rc = parse_sid(sb, opts->context, &sid);
2779		if (rc)
2780			return rc;
2781		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2782			goto out_bad_option;
2783	}
2784	if (opts->rootcontext) {
2785		struct inode_security_struct *root_isec;
2786		root_isec = backing_inode_security(sb->s_root);
2787		rc = parse_sid(sb, opts->rootcontext, &sid);
2788		if (rc)
2789			return rc;
2790		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2791			goto out_bad_option;
2792	}
2793	if (opts->defcontext) {
2794		rc = parse_sid(sb, opts->defcontext, &sid);
2795		if (rc)
2796			return rc;
2797		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2798			goto out_bad_option;
2799	}
2800	return 0;
2801
 
 
 
 
 
 
2802out_bad_option:
2803	pr_warn("SELinux: unable to change security options "
2804	       "during remount (dev %s, type=%s)\n", sb->s_id,
2805	       sb->s_type->name);
2806	return -EINVAL;
2807}
2808
2809static int selinux_sb_kern_mount(struct super_block *sb)
2810{
2811	const struct cred *cred = current_cred();
2812	struct common_audit_data ad;
 
 
 
 
 
 
 
 
 
2813
2814	ad.type = LSM_AUDIT_DATA_DENTRY;
2815	ad.u.dentry = sb->s_root;
2816	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2817}
2818
2819static int selinux_sb_statfs(struct dentry *dentry)
2820{
2821	const struct cred *cred = current_cred();
2822	struct common_audit_data ad;
2823
2824	ad.type = LSM_AUDIT_DATA_DENTRY;
2825	ad.u.dentry = dentry->d_sb->s_root;
2826	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2827}
2828
2829static int selinux_mount(const char *dev_name,
2830			 const struct path *path,
2831			 const char *type,
2832			 unsigned long flags,
2833			 void *data)
2834{
2835	const struct cred *cred = current_cred();
2836
2837	if (flags & MS_REMOUNT)
2838		return superblock_has_perm(cred, path->dentry->d_sb,
2839					   FILESYSTEM__REMOUNT, NULL);
2840	else
2841		return path_has_perm(cred, path, FILE__MOUNTON);
2842}
2843
2844static int selinux_move_mount(const struct path *from_path,
2845			      const struct path *to_path)
2846{
2847	const struct cred *cred = current_cred();
2848
2849	return path_has_perm(cred, to_path, FILE__MOUNTON);
2850}
2851
2852static int selinux_umount(struct vfsmount *mnt, int flags)
2853{
2854	const struct cred *cred = current_cred();
2855
2856	return superblock_has_perm(cred, mnt->mnt_sb,
2857				   FILESYSTEM__UNMOUNT, NULL);
2858}
2859
2860static int selinux_fs_context_dup(struct fs_context *fc,
2861				  struct fs_context *src_fc)
2862{
2863	const struct selinux_mnt_opts *src = src_fc->security;
2864	struct selinux_mnt_opts *opts;
2865
2866	if (!src)
2867		return 0;
2868
2869	fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2870	if (!fc->security)
2871		return -ENOMEM;
2872
2873	opts = fc->security;
2874
2875	if (src->fscontext) {
2876		opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2877		if (!opts->fscontext)
2878			return -ENOMEM;
2879	}
2880	if (src->context) {
2881		opts->context = kstrdup(src->context, GFP_KERNEL);
2882		if (!opts->context)
2883			return -ENOMEM;
2884	}
2885	if (src->rootcontext) {
2886		opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2887		if (!opts->rootcontext)
2888			return -ENOMEM;
2889	}
2890	if (src->defcontext) {
2891		opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2892		if (!opts->defcontext)
2893			return -ENOMEM;
2894	}
2895	return 0;
2896}
2897
2898static const struct fs_parameter_spec selinux_fs_parameters[] = {
2899	fsparam_string(CONTEXT_STR,	Opt_context),
2900	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2901	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2902	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2903	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2904	{}
2905};
2906
2907static int selinux_fs_context_parse_param(struct fs_context *fc,
2908					  struct fs_parameter *param)
2909{
2910	struct fs_parse_result result;
2911	int opt, rc;
2912
2913	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2914	if (opt < 0)
2915		return opt;
2916
2917	rc = selinux_add_opt(opt, param->string, &fc->security);
2918	if (!rc) {
2919		param->string = NULL;
2920		rc = 1;
2921	}
2922	return rc;
2923}
2924
2925/* inode security operations */
2926
2927static int selinux_inode_alloc_security(struct inode *inode)
2928{
2929	struct inode_security_struct *isec = selinux_inode(inode);
2930	u32 sid = current_sid();
2931
2932	spin_lock_init(&isec->lock);
2933	INIT_LIST_HEAD(&isec->list);
2934	isec->inode = inode;
2935	isec->sid = SECINITSID_UNLABELED;
2936	isec->sclass = SECCLASS_FILE;
2937	isec->task_sid = sid;
2938	isec->initialized = LABEL_INVALID;
2939
2940	return 0;
2941}
2942
2943static void selinux_inode_free_security(struct inode *inode)
2944{
2945	inode_free_security(inode);
2946}
2947
2948static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2949					const struct qstr *name, void **ctx,
2950					u32 *ctxlen)
2951{
2952	u32 newsid;
2953	int rc;
2954
2955	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2956					   d_inode(dentry->d_parent), name,
2957					   inode_mode_to_security_class(mode),
2958					   &newsid);
2959	if (rc)
2960		return rc;
2961
2962	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2963				       ctxlen);
2964}
2965
2966static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2967					  struct qstr *name,
2968					  const struct cred *old,
2969					  struct cred *new)
2970{
2971	u32 newsid;
2972	int rc;
2973	struct task_security_struct *tsec;
2974
2975	rc = selinux_determine_inode_label(selinux_cred(old),
2976					   d_inode(dentry->d_parent), name,
2977					   inode_mode_to_security_class(mode),
2978					   &newsid);
2979	if (rc)
2980		return rc;
2981
2982	tsec = selinux_cred(new);
2983	tsec->create_sid = newsid;
2984	return 0;
2985}
2986
2987static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2988				       const struct qstr *qstr,
2989				       const char **name,
2990				       void **value, size_t *len)
2991{
2992	const struct task_security_struct *tsec = selinux_cred(current_cred());
 
2993	struct superblock_security_struct *sbsec;
2994	u32 newsid, clen;
2995	int rc;
2996	char *context;
2997
2998	sbsec = selinux_superblock(dir->i_sb);
 
2999
 
3000	newsid = tsec->create_sid;
3001
3002	rc = selinux_determine_inode_label(tsec, dir, qstr,
3003		inode_mode_to_security_class(inode->i_mode),
3004		&newsid);
3005	if (rc)
3006		return rc;
 
 
 
 
 
 
 
 
 
 
 
3007
3008	/* Possibly defer initialization to selinux_complete_init. */
3009	if (sbsec->flags & SE_SBINITIALIZED) {
3010		struct inode_security_struct *isec = selinux_inode(inode);
3011		isec->sclass = inode_mode_to_security_class(inode->i_mode);
3012		isec->sid = newsid;
3013		isec->initialized = LABEL_INITIALIZED;
3014	}
3015
3016	if (!selinux_initialized(&selinux_state) ||
3017	    !(sbsec->flags & SBLABEL_MNT))
3018		return -EOPNOTSUPP;
3019
3020	if (name)
3021		*name = XATTR_SELINUX_SUFFIX;
 
 
 
 
3022
3023	if (value && len) {
3024		rc = security_sid_to_context_force(&selinux_state, newsid,
3025						   &context, &clen);
3026		if (rc)
3027			return rc;
 
3028		*value = context;
3029		*len = clen;
3030	}
3031
3032	return 0;
3033}
3034
3035static int selinux_inode_init_security_anon(struct inode *inode,
3036					    const struct qstr *name,
3037					    const struct inode *context_inode)
3038{
3039	const struct task_security_struct *tsec = selinux_cred(current_cred());
3040	struct common_audit_data ad;
3041	struct inode_security_struct *isec;
3042	int rc;
3043
3044	if (unlikely(!selinux_initialized(&selinux_state)))
3045		return 0;
3046
3047	isec = selinux_inode(inode);
3048
3049	/*
3050	 * We only get here once per ephemeral inode.  The inode has
3051	 * been initialized via inode_alloc_security but is otherwise
3052	 * untouched.
3053	 */
3054
3055	if (context_inode) {
3056		struct inode_security_struct *context_isec =
3057			selinux_inode(context_inode);
3058		if (context_isec->initialized != LABEL_INITIALIZED) {
3059			pr_err("SELinux:  context_inode is not initialized");
3060			return -EACCES;
3061		}
3062
3063		isec->sclass = context_isec->sclass;
3064		isec->sid = context_isec->sid;
3065	} else {
3066		isec->sclass = SECCLASS_ANON_INODE;
3067		rc = security_transition_sid(
3068			&selinux_state, tsec->sid, tsec->sid,
3069			isec->sclass, name, &isec->sid);
3070		if (rc)
3071			return rc;
3072	}
3073
3074	isec->initialized = LABEL_INITIALIZED;
3075	/*
3076	 * Now that we've initialized security, check whether we're
3077	 * allowed to actually create this type of anonymous inode.
3078	 */
3079
3080	ad.type = LSM_AUDIT_DATA_INODE;
3081	ad.u.inode = inode;
3082
3083	return avc_has_perm(&selinux_state,
3084			    tsec->sid,
3085			    isec->sid,
3086			    isec->sclass,
3087			    FILE__CREATE,
3088			    &ad);
3089}
3090
3091static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3092{
3093	return may_create(dir, dentry, SECCLASS_FILE);
3094}
3095
3096static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3097{
3098	return may_link(dir, old_dentry, MAY_LINK);
3099}
3100
3101static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3102{
3103	return may_link(dir, dentry, MAY_UNLINK);
3104}
3105
3106static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3107{
3108	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3109}
3110
3111static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3112{
3113	return may_create(dir, dentry, SECCLASS_DIR);
3114}
3115
3116static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3117{
3118	return may_link(dir, dentry, MAY_RMDIR);
3119}
3120
3121static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3122{
3123	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3124}
3125
3126static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3127				struct inode *new_inode, struct dentry *new_dentry)
3128{
3129	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3130}
3131
3132static int selinux_inode_readlink(struct dentry *dentry)
3133{
3134	const struct cred *cred = current_cred();
3135
3136	return dentry_has_perm(cred, dentry, FILE__READ);
3137}
3138
3139static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3140				     bool rcu)
3141{
3142	const struct cred *cred = current_cred();
3143	struct common_audit_data ad;
3144	struct inode_security_struct *isec;
3145	u32 sid;
3146
3147	validate_creds(cred);
3148
3149	ad.type = LSM_AUDIT_DATA_DENTRY;
3150	ad.u.dentry = dentry;
3151	sid = cred_sid(cred);
3152	isec = inode_security_rcu(inode, rcu);
3153	if (IS_ERR(isec))
3154		return PTR_ERR(isec);
3155
3156	return avc_has_perm(&selinux_state,
3157				  sid, isec->sid, isec->sclass, FILE__READ, &ad);
3158}
3159
3160static noinline int audit_inode_permission(struct inode *inode,
3161					   u32 perms, u32 audited, u32 denied,
3162					   int result)
3163{
3164	struct common_audit_data ad;
3165	struct inode_security_struct *isec = selinux_inode(inode);
 
3166
3167	ad.type = LSM_AUDIT_DATA_INODE;
3168	ad.u.inode = inode;
3169
3170	return slow_avc_audit(&selinux_state,
3171			    current_sid(), isec->sid, isec->sclass, perms,
3172			    audited, denied, result, &ad);
 
 
3173}
3174
3175static int selinux_inode_permission(struct inode *inode, int mask)
3176{
3177	const struct cred *cred = current_cred();
3178	u32 perms;
3179	bool from_access;
3180	bool no_block = mask & MAY_NOT_BLOCK;
3181	struct inode_security_struct *isec;
3182	u32 sid;
3183	struct av_decision avd;
3184	int rc, rc2;
3185	u32 audited, denied;
3186
3187	from_access = mask & MAY_ACCESS;
3188	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3189
3190	/* No permission to check.  Existence test. */
3191	if (!mask)
3192		return 0;
3193
3194	validate_creds(cred);
3195
3196	if (unlikely(IS_PRIVATE(inode)))
3197		return 0;
3198
3199	perms = file_mask_to_av(inode->i_mode, mask);
3200
3201	sid = cred_sid(cred);
3202	isec = inode_security_rcu(inode, no_block);
3203	if (IS_ERR(isec))
3204		return PTR_ERR(isec);
3205
3206	rc = avc_has_perm_noaudit(&selinux_state,
3207				  sid, isec->sid, isec->sclass, perms, 0,
3208				  &avd);
3209	audited = avc_audit_required(perms, &avd, rc,
3210				     from_access ? FILE__AUDIT_ACCESS : 0,
3211				     &denied);
3212	if (likely(!audited))
3213		return rc;
3214
3215	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3216	if (rc2)
3217		return rc2;
3218	return rc;
3219}
3220
3221static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3222{
3223	const struct cred *cred = current_cred();
3224	struct inode *inode = d_backing_inode(dentry);
3225	unsigned int ia_valid = iattr->ia_valid;
3226	__u32 av = FILE__WRITE;
3227
3228	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3229	if (ia_valid & ATTR_FORCE) {
3230		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3231			      ATTR_FORCE);
3232		if (!ia_valid)
3233			return 0;
3234	}
3235
3236	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3237			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3238		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3239
3240	if (selinux_policycap_openperm() &&
3241	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3242	    (ia_valid & ATTR_SIZE) &&
3243	    !(ia_valid & ATTR_FILE))
3244		av |= FILE__OPEN;
3245
3246	return dentry_has_perm(cred, dentry, av);
3247}
3248
3249static int selinux_inode_getattr(const struct path *path)
3250{
3251	return path_has_perm(current_cred(), path, FILE__GETATTR);
 
 
 
 
 
 
3252}
3253
3254static bool has_cap_mac_admin(bool audit)
3255{
3256	const struct cred *cred = current_cred();
3257	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3258
3259	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3260		return false;
3261	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3262		return false;
3263	return true;
 
 
 
 
 
 
 
 
 
 
3264}
3265
3266static int selinux_inode_setxattr(struct user_namespace *mnt_userns,
3267				  struct dentry *dentry, const char *name,
3268				  const void *value, size_t size, int flags)
3269{
3270	struct inode *inode = d_backing_inode(dentry);
3271	struct inode_security_struct *isec;
3272	struct superblock_security_struct *sbsec;
3273	struct common_audit_data ad;
3274	u32 newsid, sid = current_sid();
3275	int rc = 0;
3276
3277	if (strcmp(name, XATTR_NAME_SELINUX)) {
3278		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3279		if (rc)
3280			return rc;
3281
3282		/* Not an attribute we recognize, so just check the
3283		   ordinary setattr permission. */
3284		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3285	}
3286
3287	if (!selinux_initialized(&selinux_state))
3288		return (inode_owner_or_capable(mnt_userns, inode) ? 0 : -EPERM);
3289
3290	sbsec = selinux_superblock(inode->i_sb);
3291	if (!(sbsec->flags & SBLABEL_MNT))
3292		return -EOPNOTSUPP;
3293
3294	if (!inode_owner_or_capable(mnt_userns, inode))
3295		return -EPERM;
3296
3297	ad.type = LSM_AUDIT_DATA_DENTRY;
3298	ad.u.dentry = dentry;
3299
3300	isec = backing_inode_security(dentry);
3301	rc = avc_has_perm(&selinux_state,
3302			  sid, isec->sid, isec->sclass,
3303			  FILE__RELABELFROM, &ad);
3304	if (rc)
3305		return rc;
3306
3307	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3308				     GFP_KERNEL);
3309	if (rc == -EINVAL) {
3310		if (!has_cap_mac_admin(true)) {
3311			struct audit_buffer *ab;
3312			size_t audit_size;
 
3313
3314			/* We strip a nul only if it is at the end, otherwise the
3315			 * context contains a nul and we should audit that */
3316			if (value) {
3317				const char *str = value;
3318
3319				if (str[size - 1] == '\0')
3320					audit_size = size - 1;
3321				else
3322					audit_size = size;
3323			} else {
 
3324				audit_size = 0;
3325			}
3326			ab = audit_log_start(audit_context(),
3327					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3328			audit_log_format(ab, "op=setxattr invalid_context=");
3329			audit_log_n_untrustedstring(ab, value, audit_size);
3330			audit_log_end(ab);
3331
3332			return rc;
3333		}
3334		rc = security_context_to_sid_force(&selinux_state, value,
3335						   size, &newsid);
3336	}
3337	if (rc)
3338		return rc;
3339
3340	rc = avc_has_perm(&selinux_state,
3341			  sid, newsid, isec->sclass,
3342			  FILE__RELABELTO, &ad);
3343	if (rc)
3344		return rc;
3345
3346	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3347					  sid, isec->sclass);
3348	if (rc)
3349		return rc;
3350
3351	return avc_has_perm(&selinux_state,
3352			    newsid,
3353			    sbsec->sid,
3354			    SECCLASS_FILESYSTEM,
3355			    FILESYSTEM__ASSOCIATE,
3356			    &ad);
3357}
3358
3359static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3360					const void *value, size_t size,
3361					int flags)
3362{
3363	struct inode *inode = d_backing_inode(dentry);
3364	struct inode_security_struct *isec;
3365	u32 newsid;
3366	int rc;
3367
3368	if (strcmp(name, XATTR_NAME_SELINUX)) {
3369		/* Not an attribute we recognize, so nothing to do. */
3370		return;
3371	}
3372
3373	if (!selinux_initialized(&selinux_state)) {
3374		/* If we haven't even been initialized, then we can't validate
3375		 * against a policy, so leave the label as invalid. It may
3376		 * resolve to a valid label on the next revalidation try if
3377		 * we've since initialized.
3378		 */
3379		return;
3380	}
3381
3382	rc = security_context_to_sid_force(&selinux_state, value, size,
3383					   &newsid);
3384	if (rc) {
3385		pr_err("SELinux:  unable to map context to SID"
3386		       "for (%s, %lu), rc=%d\n",
3387		       inode->i_sb->s_id, inode->i_ino, -rc);
3388		return;
3389	}
3390
3391	isec = backing_inode_security(dentry);
3392	spin_lock(&isec->lock);
3393	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3394	isec->sid = newsid;
3395	isec->initialized = LABEL_INITIALIZED;
3396	spin_unlock(&isec->lock);
3397
3398	return;
3399}
3400
3401static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3402{
3403	const struct cred *cred = current_cred();
3404
3405	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3406}
3407
3408static int selinux_inode_listxattr(struct dentry *dentry)
3409{
3410	const struct cred *cred = current_cred();
3411
3412	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3413}
3414
3415static int selinux_inode_removexattr(struct user_namespace *mnt_userns,
3416				     struct dentry *dentry, const char *name)
3417{
3418	if (strcmp(name, XATTR_NAME_SELINUX)) {
3419		int rc = cap_inode_removexattr(mnt_userns, dentry, name);
3420		if (rc)
3421			return rc;
3422
3423		/* Not an attribute we recognize, so just check the
3424		   ordinary setattr permission. */
3425		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3426	}
3427
3428	if (!selinux_initialized(&selinux_state))
3429		return 0;
3430
3431	/* No one is allowed to remove a SELinux security label.
3432	   You can change the label, but all data must be labeled. */
3433	return -EACCES;
3434}
3435
3436static int selinux_path_notify(const struct path *path, u64 mask,
3437						unsigned int obj_type)
3438{
3439	int ret;
3440	u32 perm;
3441
3442	struct common_audit_data ad;
3443
3444	ad.type = LSM_AUDIT_DATA_PATH;
3445	ad.u.path = *path;
3446
3447	/*
3448	 * Set permission needed based on the type of mark being set.
3449	 * Performs an additional check for sb watches.
3450	 */
3451	switch (obj_type) {
3452	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3453		perm = FILE__WATCH_MOUNT;
3454		break;
3455	case FSNOTIFY_OBJ_TYPE_SB:
3456		perm = FILE__WATCH_SB;
3457		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3458						FILESYSTEM__WATCH, &ad);
3459		if (ret)
3460			return ret;
3461		break;
3462	case FSNOTIFY_OBJ_TYPE_INODE:
3463		perm = FILE__WATCH;
3464		break;
3465	default:
3466		return -EINVAL;
3467	}
3468
3469	/* blocking watches require the file:watch_with_perm permission */
3470	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3471		perm |= FILE__WATCH_WITH_PERM;
3472
3473	/* watches on read-like events need the file:watch_reads permission */
3474	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3475		perm |= FILE__WATCH_READS;
3476
3477	return path_has_perm(current_cred(), path, perm);
3478}
3479
3480/*
3481 * Copy the inode security context value to the user.
3482 *
3483 * Permission check is handled by selinux_inode_getxattr hook.
3484 */
3485static int selinux_inode_getsecurity(struct user_namespace *mnt_userns,
3486				     struct inode *inode, const char *name,
3487				     void **buffer, bool alloc)
3488{
3489	u32 size;
3490	int error;
3491	char *context = NULL;
3492	struct inode_security_struct *isec;
3493
3494	/*
3495	 * If we're not initialized yet, then we can't validate contexts, so
3496	 * just let vfs_getxattr fall back to using the on-disk xattr.
3497	 */
3498	if (!selinux_initialized(&selinux_state) ||
3499	    strcmp(name, XATTR_SELINUX_SUFFIX))
3500		return -EOPNOTSUPP;
3501
3502	/*
3503	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3504	 * value even if it is not defined by current policy; otherwise,
3505	 * use the in-core value under current policy.
3506	 * Use the non-auditing forms of the permission checks since
3507	 * getxattr may be called by unprivileged processes commonly
3508	 * and lack of permission just means that we fall back to the
3509	 * in-core context value, not a denial.
3510	 */
3511	isec = inode_security(inode);
3512	if (has_cap_mac_admin(false))
3513		error = security_sid_to_context_force(&selinux_state,
3514						      isec->sid, &context,
3515						      &size);
3516	else
3517		error = security_sid_to_context(&selinux_state, isec->sid,
3518						&context, &size);
3519	if (error)
3520		return error;
3521	error = size;
3522	if (alloc) {
3523		*buffer = context;
3524		goto out_nofree;
3525	}
3526	kfree(context);
3527out_nofree:
3528	return error;
3529}
3530
3531static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3532				     const void *value, size_t size, int flags)
3533{
3534	struct inode_security_struct *isec = inode_security_novalidate(inode);
3535	struct superblock_security_struct *sbsec;
3536	u32 newsid;
3537	int rc;
3538
3539	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3540		return -EOPNOTSUPP;
3541
3542	sbsec = selinux_superblock(inode->i_sb);
3543	if (!(sbsec->flags & SBLABEL_MNT))
3544		return -EOPNOTSUPP;
3545
3546	if (!value || !size)
3547		return -EACCES;
3548
3549	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3550				     GFP_KERNEL);
3551	if (rc)
3552		return rc;
3553
3554	spin_lock(&isec->lock);
3555	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3556	isec->sid = newsid;
3557	isec->initialized = LABEL_INITIALIZED;
3558	spin_unlock(&isec->lock);
3559	return 0;
3560}
3561
3562static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3563{
3564	const int len = sizeof(XATTR_NAME_SELINUX);
3565
3566	if (!selinux_initialized(&selinux_state))
3567		return 0;
3568
3569	if (buffer && len <= buffer_size)
3570		memcpy(buffer, XATTR_NAME_SELINUX, len);
3571	return len;
3572}
3573
3574static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3575{
3576	struct inode_security_struct *isec = inode_security_novalidate(inode);
3577	*secid = isec->sid;
3578}
3579
3580static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3581{
3582	u32 sid;
3583	struct task_security_struct *tsec;
3584	struct cred *new_creds = *new;
3585
3586	if (new_creds == NULL) {
3587		new_creds = prepare_creds();
3588		if (!new_creds)
3589			return -ENOMEM;
3590	}
3591
3592	tsec = selinux_cred(new_creds);
3593	/* Get label from overlay inode and set it in create_sid */
3594	selinux_inode_getsecid(d_inode(src), &sid);
3595	tsec->create_sid = sid;
3596	*new = new_creds;
3597	return 0;
3598}
3599
3600static int selinux_inode_copy_up_xattr(const char *name)
3601{
3602	/* The copy_up hook above sets the initial context on an inode, but we
3603	 * don't then want to overwrite it by blindly copying all the lower
3604	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3605	 */
3606	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3607		return 1; /* Discard */
3608	/*
3609	 * Any other attribute apart from SELINUX is not claimed, supported
3610	 * by selinux.
3611	 */
3612	return -EOPNOTSUPP;
3613}
3614
3615/* kernfs node operations */
3616
3617static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3618					struct kernfs_node *kn)
3619{
3620	const struct task_security_struct *tsec = selinux_cred(current_cred());
3621	u32 parent_sid, newsid, clen;
3622	int rc;
3623	char *context;
3624
3625	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3626	if (rc == -ENODATA)
3627		return 0;
3628	else if (rc < 0)
3629		return rc;
3630
3631	clen = (u32)rc;
3632	context = kmalloc(clen, GFP_KERNEL);
3633	if (!context)
3634		return -ENOMEM;
3635
3636	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3637	if (rc < 0) {
3638		kfree(context);
3639		return rc;
3640	}
3641
3642	rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3643				     GFP_KERNEL);
3644	kfree(context);
3645	if (rc)
3646		return rc;
3647
3648	if (tsec->create_sid) {
3649		newsid = tsec->create_sid;
3650	} else {
3651		u16 secclass = inode_mode_to_security_class(kn->mode);
3652		struct qstr q;
3653
3654		q.name = kn->name;
3655		q.hash_len = hashlen_string(kn_dir, kn->name);
3656
3657		rc = security_transition_sid(&selinux_state, tsec->sid,
3658					     parent_sid, secclass, &q,
3659					     &newsid);
3660		if (rc)
3661			return rc;
3662	}
3663
3664	rc = security_sid_to_context_force(&selinux_state, newsid,
3665					   &context, &clen);
3666	if (rc)
3667		return rc;
3668
3669	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3670			      XATTR_CREATE);
3671	kfree(context);
3672	return rc;
3673}
3674
3675
3676/* file security operations */
3677
3678static int selinux_revalidate_file_permission(struct file *file, int mask)
3679{
3680	const struct cred *cred = current_cred();
3681	struct inode *inode = file_inode(file);
3682
3683	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3684	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3685		mask |= MAY_APPEND;
3686
3687	return file_has_perm(cred, file,
3688			     file_mask_to_av(inode->i_mode, mask));
3689}
3690
3691static int selinux_file_permission(struct file *file, int mask)
3692{
3693	struct inode *inode = file_inode(file);
3694	struct file_security_struct *fsec = selinux_file(file);
3695	struct inode_security_struct *isec;
3696	u32 sid = current_sid();
3697
3698	if (!mask)
3699		/* No permission to check.  Existence test. */
3700		return 0;
3701
3702	isec = inode_security(inode);
3703	if (sid == fsec->sid && fsec->isid == isec->sid &&
3704	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3705		/* No change since file_open check. */
3706		return 0;
3707
3708	return selinux_revalidate_file_permission(file, mask);
3709}
3710
3711static int selinux_file_alloc_security(struct file *file)
3712{
3713	struct file_security_struct *fsec = selinux_file(file);
3714	u32 sid = current_sid();
3715
3716	fsec->sid = sid;
3717	fsec->fown_sid = sid;
3718
3719	return 0;
3720}
3721
3722/*
3723 * Check whether a task has the ioctl permission and cmd
3724 * operation to an inode.
3725 */
3726static int ioctl_has_perm(const struct cred *cred, struct file *file,
3727		u32 requested, u16 cmd)
3728{
3729	struct common_audit_data ad;
3730	struct file_security_struct *fsec = selinux_file(file);
3731	struct inode *inode = file_inode(file);
3732	struct inode_security_struct *isec;
3733	struct lsm_ioctlop_audit ioctl;
3734	u32 ssid = cred_sid(cred);
3735	int rc;
3736	u8 driver = cmd >> 8;
3737	u8 xperm = cmd & 0xff;
3738
3739	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3740	ad.u.op = &ioctl;
3741	ad.u.op->cmd = cmd;
3742	ad.u.op->path = file->f_path;
3743
3744	if (ssid != fsec->sid) {
3745		rc = avc_has_perm(&selinux_state,
3746				  ssid, fsec->sid,
3747				SECCLASS_FD,
3748				FD__USE,
3749				&ad);
3750		if (rc)
3751			goto out;
3752	}
3753
3754	if (unlikely(IS_PRIVATE(inode)))
3755		return 0;
3756
3757	isec = inode_security(inode);
3758	rc = avc_has_extended_perms(&selinux_state,
3759				    ssid, isec->sid, isec->sclass,
3760				    requested, driver, xperm, &ad);
3761out:
3762	return rc;
3763}
3764
3765static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3766			      unsigned long arg)
3767{
3768	const struct cred *cred = current_cred();
3769	int error = 0;
3770
3771	switch (cmd) {
3772	case FIONREAD:
 
3773	case FIBMAP:
 
3774	case FIGETBSZ:
 
3775	case FS_IOC_GETFLAGS:
 
3776	case FS_IOC_GETVERSION:
3777		error = file_has_perm(cred, file, FILE__GETATTR);
3778		break;
3779
3780	case FS_IOC_SETFLAGS:
 
3781	case FS_IOC_SETVERSION:
3782		error = file_has_perm(cred, file, FILE__SETATTR);
3783		break;
3784
3785	/* sys_ioctl() checks */
3786	case FIONBIO:
 
3787	case FIOASYNC:
3788		error = file_has_perm(cred, file, 0);
3789		break;
3790
3791	case KDSKBENT:
3792	case KDSKBSENT:
3793		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3794					    CAP_OPT_NONE, true);
3795		break;
3796
3797	/* default case assumes that the command will go
3798	 * to the file's ioctl() function.
3799	 */
3800	default:
3801		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3802	}
3803	return error;
3804}
3805
3806static int default_noexec __ro_after_init;
3807
3808static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3809{
3810	const struct cred *cred = current_cred();
3811	u32 sid = cred_sid(cred);
3812	int rc = 0;
3813
3814	if (default_noexec &&
3815	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3816				   (!shared && (prot & PROT_WRITE)))) {
3817		/*
3818		 * We are making executable an anonymous mapping or a
3819		 * private file mapping that will also be writable.
3820		 * This has an additional check.
3821		 */
3822		rc = avc_has_perm(&selinux_state,
3823				  sid, sid, SECCLASS_PROCESS,
3824				  PROCESS__EXECMEM, NULL);
3825		if (rc)
3826			goto error;
3827	}
3828
3829	if (file) {
3830		/* read access is always possible with a mapping */
3831		u32 av = FILE__READ;
3832
3833		/* write access only matters if the mapping is shared */
3834		if (shared && (prot & PROT_WRITE))
3835			av |= FILE__WRITE;
3836
3837		if (prot & PROT_EXEC)
3838			av |= FILE__EXECUTE;
3839
3840		return file_has_perm(cred, file, av);
3841	}
3842
3843error:
3844	return rc;
3845}
3846
3847static int selinux_mmap_addr(unsigned long addr)
3848{
3849	int rc = 0;
 
3850
 
 
 
 
 
 
3851	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3852		u32 sid = current_sid();
3853		rc = avc_has_perm(&selinux_state,
3854				  sid, sid, SECCLASS_MEMPROTECT,
3855				  MEMPROTECT__MMAP_ZERO, NULL);
 
 
3856	}
3857
3858	return rc;
 
3859}
3860
3861static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3862			     unsigned long prot, unsigned long flags)
3863{
3864	struct common_audit_data ad;
3865	int rc;
3866
3867	if (file) {
3868		ad.type = LSM_AUDIT_DATA_FILE;
3869		ad.u.file = file;
3870		rc = inode_has_perm(current_cred(), file_inode(file),
3871				    FILE__MAP, &ad);
3872		if (rc)
3873			return rc;
3874	}
3875
3876	if (checkreqprot_get(&selinux_state))
3877		prot = reqprot;
3878
3879	return file_map_prot_check(file, prot,
3880				   (flags & MAP_TYPE) == MAP_SHARED);
3881}
3882
3883static int selinux_file_mprotect(struct vm_area_struct *vma,
3884				 unsigned long reqprot,
3885				 unsigned long prot)
3886{
3887	const struct cred *cred = current_cred();
3888	u32 sid = cred_sid(cred);
3889
3890	if (checkreqprot_get(&selinux_state))
3891		prot = reqprot;
3892
3893	if (default_noexec &&
3894	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3895		int rc = 0;
3896		if (vma->vm_start >= vma->vm_mm->start_brk &&
3897		    vma->vm_end <= vma->vm_mm->brk) {
3898			rc = avc_has_perm(&selinux_state,
3899					  sid, sid, SECCLASS_PROCESS,
3900					  PROCESS__EXECHEAP, NULL);
3901		} else if (!vma->vm_file &&
3902			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3903			     vma->vm_end >= vma->vm_mm->start_stack) ||
3904			    vma_is_stack_for_current(vma))) {
3905			rc = avc_has_perm(&selinux_state,
3906					  sid, sid, SECCLASS_PROCESS,
3907					  PROCESS__EXECSTACK, NULL);
3908		} else if (vma->vm_file && vma->anon_vma) {
3909			/*
3910			 * We are making executable a file mapping that has
3911			 * had some COW done. Since pages might have been
3912			 * written, check ability to execute the possibly
3913			 * modified content.  This typically should only
3914			 * occur for text relocations.
3915			 */
3916			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3917		}
3918		if (rc)
3919			return rc;
3920	}
3921
3922	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3923}
3924
3925static int selinux_file_lock(struct file *file, unsigned int cmd)
3926{
3927	const struct cred *cred = current_cred();
3928
3929	return file_has_perm(cred, file, FILE__LOCK);
3930}
3931
3932static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3933			      unsigned long arg)
3934{
3935	const struct cred *cred = current_cred();
3936	int err = 0;
3937
3938	switch (cmd) {
3939	case F_SETFL:
 
 
 
 
 
3940		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3941			err = file_has_perm(cred, file, FILE__WRITE);
3942			break;
3943		}
3944		fallthrough;
3945	case F_SETOWN:
3946	case F_SETSIG:
3947	case F_GETFL:
3948	case F_GETOWN:
3949	case F_GETSIG:
3950	case F_GETOWNER_UIDS:
3951		/* Just check FD__USE permission */
3952		err = file_has_perm(cred, file, 0);
3953		break;
3954	case F_GETLK:
3955	case F_SETLK:
3956	case F_SETLKW:
3957	case F_OFD_GETLK:
3958	case F_OFD_SETLK:
3959	case F_OFD_SETLKW:
3960#if BITS_PER_LONG == 32
3961	case F_GETLK64:
3962	case F_SETLK64:
3963	case F_SETLKW64:
3964#endif
 
 
 
 
3965		err = file_has_perm(cred, file, FILE__LOCK);
3966		break;
3967	}
3968
3969	return err;
3970}
3971
3972static void selinux_file_set_fowner(struct file *file)
3973{
3974	struct file_security_struct *fsec;
3975
3976	fsec = selinux_file(file);
3977	fsec->fown_sid = current_sid();
 
 
3978}
3979
3980static int selinux_file_send_sigiotask(struct task_struct *tsk,
3981				       struct fown_struct *fown, int signum)
3982{
3983	struct file *file;
3984	u32 sid = task_sid_obj(tsk);
3985	u32 perm;
3986	struct file_security_struct *fsec;
3987
3988	/* struct fown_struct is never outside the context of a struct file */
3989	file = container_of(fown, struct file, f_owner);
3990
3991	fsec = selinux_file(file);
3992
3993	if (!signum)
3994		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3995	else
3996		perm = signal_to_av(signum);
3997
3998	return avc_has_perm(&selinux_state,
3999			    fsec->fown_sid, sid,
4000			    SECCLASS_PROCESS, perm, NULL);
4001}
4002
4003static int selinux_file_receive(struct file *file)
4004{
4005	const struct cred *cred = current_cred();
4006
4007	return file_has_perm(cred, file, file_to_av(file));
4008}
4009
4010static int selinux_file_open(struct file *file)
4011{
4012	struct file_security_struct *fsec;
4013	struct inode_security_struct *isec;
4014
4015	fsec = selinux_file(file);
4016	isec = inode_security(file_inode(file));
4017	/*
4018	 * Save inode label and policy sequence number
4019	 * at open-time so that selinux_file_permission
4020	 * can determine whether revalidation is necessary.
4021	 * Task label is already saved in the file security
4022	 * struct as its SID.
4023	 */
4024	fsec->isid = isec->sid;
4025	fsec->pseqno = avc_policy_seqno(&selinux_state);
4026	/*
4027	 * Since the inode label or policy seqno may have changed
4028	 * between the selinux_inode_permission check and the saving
4029	 * of state above, recheck that access is still permitted.
4030	 * Otherwise, access might never be revalidated against the
4031	 * new inode label or new policy.
4032	 * This check is not redundant - do not remove.
4033	 */
4034	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
4035}
4036
4037/* task security operations */
4038
4039static int selinux_task_alloc(struct task_struct *task,
4040			      unsigned long clone_flags)
4041{
4042	u32 sid = current_sid();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4043
4044	return avc_has_perm(&selinux_state,
4045			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
 
 
 
 
 
4046}
4047
4048/*
4049 * prepare a new set of credentials for modification
4050 */
4051static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4052				gfp_t gfp)
4053{
4054	const struct task_security_struct *old_tsec = selinux_cred(old);
4055	struct task_security_struct *tsec = selinux_cred(new);
4056
4057	*tsec = *old_tsec;
 
 
 
 
 
 
4058	return 0;
4059}
4060
4061/*
4062 * transfer the SELinux data to a blank set of creds
4063 */
4064static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4065{
4066	const struct task_security_struct *old_tsec = selinux_cred(old);
4067	struct task_security_struct *tsec = selinux_cred(new);
4068
4069	*tsec = *old_tsec;
4070}
4071
4072static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4073{
4074	*secid = cred_sid(c);
4075}
4076
4077/*
4078 * set the security data for a kernel service
4079 * - all the creation contexts are set to unlabelled
4080 */
4081static int selinux_kernel_act_as(struct cred *new, u32 secid)
4082{
4083	struct task_security_struct *tsec = selinux_cred(new);
4084	u32 sid = current_sid();
4085	int ret;
4086
4087	ret = avc_has_perm(&selinux_state,
4088			   sid, secid,
4089			   SECCLASS_KERNEL_SERVICE,
4090			   KERNEL_SERVICE__USE_AS_OVERRIDE,
4091			   NULL);
4092	if (ret == 0) {
4093		tsec->sid = secid;
4094		tsec->create_sid = 0;
4095		tsec->keycreate_sid = 0;
4096		tsec->sockcreate_sid = 0;
4097	}
4098	return ret;
4099}
4100
4101/*
4102 * set the file creation context in a security record to the same as the
4103 * objective context of the specified inode
4104 */
4105static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4106{
4107	struct inode_security_struct *isec = inode_security(inode);
4108	struct task_security_struct *tsec = selinux_cred(new);
4109	u32 sid = current_sid();
4110	int ret;
4111
4112	ret = avc_has_perm(&selinux_state,
4113			   sid, isec->sid,
4114			   SECCLASS_KERNEL_SERVICE,
4115			   KERNEL_SERVICE__CREATE_FILES_AS,
4116			   NULL);
4117
4118	if (ret == 0)
4119		tsec->create_sid = isec->sid;
4120	return ret;
4121}
4122
4123static int selinux_kernel_module_request(char *kmod_name)
4124{
 
4125	struct common_audit_data ad;
4126
 
 
4127	ad.type = LSM_AUDIT_DATA_KMOD;
4128	ad.u.kmod_name = kmod_name;
4129
4130	return avc_has_perm(&selinux_state,
4131			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4132			    SYSTEM__MODULE_REQUEST, &ad);
4133}
4134
4135static int selinux_kernel_module_from_file(struct file *file)
4136{
4137	struct common_audit_data ad;
4138	struct inode_security_struct *isec;
4139	struct file_security_struct *fsec;
4140	u32 sid = current_sid();
4141	int rc;
4142
4143	/* init_module */
4144	if (file == NULL)
4145		return avc_has_perm(&selinux_state,
4146				    sid, sid, SECCLASS_SYSTEM,
4147					SYSTEM__MODULE_LOAD, NULL);
4148
4149	/* finit_module */
4150
4151	ad.type = LSM_AUDIT_DATA_FILE;
4152	ad.u.file = file;
4153
4154	fsec = selinux_file(file);
4155	if (sid != fsec->sid) {
4156		rc = avc_has_perm(&selinux_state,
4157				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4158		if (rc)
4159			return rc;
4160	}
4161
4162	isec = inode_security(file_inode(file));
4163	return avc_has_perm(&selinux_state,
4164			    sid, isec->sid, SECCLASS_SYSTEM,
4165				SYSTEM__MODULE_LOAD, &ad);
4166}
4167
4168static int selinux_kernel_read_file(struct file *file,
4169				    enum kernel_read_file_id id,
4170				    bool contents)
4171{
4172	int rc = 0;
4173
4174	switch (id) {
4175	case READING_MODULE:
4176		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4177		break;
4178	default:
4179		break;
4180	}
4181
4182	return rc;
4183}
4184
4185static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4186{
4187	int rc = 0;
4188
4189	switch (id) {
4190	case LOADING_MODULE:
4191		rc = selinux_kernel_module_from_file(NULL);
4192		break;
4193	default:
4194		break;
4195	}
4196
4197	return rc;
4198}
4199
4200static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4201{
4202	return avc_has_perm(&selinux_state,
4203			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4204			    PROCESS__SETPGID, NULL);
4205}
4206
4207static int selinux_task_getpgid(struct task_struct *p)
4208{
4209	return avc_has_perm(&selinux_state,
4210			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4211			    PROCESS__GETPGID, NULL);
4212}
4213
4214static int selinux_task_getsid(struct task_struct *p)
4215{
4216	return avc_has_perm(&selinux_state,
4217			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4218			    PROCESS__GETSESSION, NULL);
4219}
4220
4221static void selinux_task_getsecid_subj(struct task_struct *p, u32 *secid)
4222{
4223	*secid = task_sid_subj(p);
4224}
4225
4226static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4227{
4228	*secid = task_sid_obj(p);
4229}
 
 
 
4230
4231static int selinux_task_setnice(struct task_struct *p, int nice)
4232{
4233	return avc_has_perm(&selinux_state,
4234			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4235			    PROCESS__SETSCHED, NULL);
4236}
4237
4238static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4239{
4240	return avc_has_perm(&selinux_state,
4241			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4242			    PROCESS__SETSCHED, NULL);
 
 
 
 
4243}
4244
4245static int selinux_task_getioprio(struct task_struct *p)
4246{
4247	return avc_has_perm(&selinux_state,
4248			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4249			    PROCESS__GETSCHED, NULL);
4250}
4251
4252static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4253				unsigned int flags)
4254{
4255	u32 av = 0;
4256
4257	if (!flags)
4258		return 0;
4259	if (flags & LSM_PRLIMIT_WRITE)
4260		av |= PROCESS__SETRLIMIT;
4261	if (flags & LSM_PRLIMIT_READ)
4262		av |= PROCESS__GETRLIMIT;
4263	return avc_has_perm(&selinux_state,
4264			    cred_sid(cred), cred_sid(tcred),
4265			    SECCLASS_PROCESS, av, NULL);
4266}
4267
4268static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4269		struct rlimit *new_rlim)
4270{
4271	struct rlimit *old_rlim = p->signal->rlim + resource;
4272
4273	/* Control the ability to change the hard limit (whether
4274	   lowering or raising it), so that the hard limit can
4275	   later be used as a safe reset point for the soft limit
4276	   upon context transitions.  See selinux_bprm_committing_creds. */
4277	if (old_rlim->rlim_max != new_rlim->rlim_max)
4278		return avc_has_perm(&selinux_state,
4279				    current_sid(), task_sid_obj(p),
4280				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4281
4282	return 0;
4283}
4284
4285static int selinux_task_setscheduler(struct task_struct *p)
4286{
4287	return avc_has_perm(&selinux_state,
4288			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4289			    PROCESS__SETSCHED, NULL);
 
 
 
 
4290}
4291
4292static int selinux_task_getscheduler(struct task_struct *p)
4293{
4294	return avc_has_perm(&selinux_state,
4295			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4296			    PROCESS__GETSCHED, NULL);
4297}
4298
4299static int selinux_task_movememory(struct task_struct *p)
4300{
4301	return avc_has_perm(&selinux_state,
4302			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4303			    PROCESS__SETSCHED, NULL);
4304}
4305
4306static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4307				int sig, const struct cred *cred)
4308{
4309	u32 secid;
4310	u32 perm;
 
4311
4312	if (!sig)
4313		perm = PROCESS__SIGNULL; /* null signal; existence test */
4314	else
4315		perm = signal_to_av(sig);
4316	if (!cred)
4317		secid = current_sid();
 
4318	else
4319		secid = cred_sid(cred);
4320	return avc_has_perm(&selinux_state,
4321			    secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
 
 
 
 
4322}
4323
4324static void selinux_task_to_inode(struct task_struct *p,
4325				  struct inode *inode)
4326{
4327	struct inode_security_struct *isec = selinux_inode(inode);
4328	u32 sid = task_sid_obj(p);
4329
4330	spin_lock(&isec->lock);
4331	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4332	isec->sid = sid;
4333	isec->initialized = LABEL_INITIALIZED;
4334	spin_unlock(&isec->lock);
4335}
4336
4337/* Returns error only if unable to parse addresses */
4338static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4339			struct common_audit_data *ad, u8 *proto)
4340{
4341	int offset, ihlen, ret = -EINVAL;
4342	struct iphdr _iph, *ih;
4343
4344	offset = skb_network_offset(skb);
4345	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4346	if (ih == NULL)
4347		goto out;
4348
4349	ihlen = ih->ihl * 4;
4350	if (ihlen < sizeof(_iph))
4351		goto out;
4352
4353	ad->u.net->v4info.saddr = ih->saddr;
4354	ad->u.net->v4info.daddr = ih->daddr;
4355	ret = 0;
4356
4357	if (proto)
4358		*proto = ih->protocol;
4359
4360	switch (ih->protocol) {
4361	case IPPROTO_TCP: {
4362		struct tcphdr _tcph, *th;
4363
4364		if (ntohs(ih->frag_off) & IP_OFFSET)
4365			break;
4366
4367		offset += ihlen;
4368		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4369		if (th == NULL)
4370			break;
4371
4372		ad->u.net->sport = th->source;
4373		ad->u.net->dport = th->dest;
4374		break;
4375	}
4376
4377	case IPPROTO_UDP: {
4378		struct udphdr _udph, *uh;
4379
4380		if (ntohs(ih->frag_off) & IP_OFFSET)
4381			break;
4382
4383		offset += ihlen;
4384		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4385		if (uh == NULL)
4386			break;
4387
4388		ad->u.net->sport = uh->source;
4389		ad->u.net->dport = uh->dest;
4390		break;
4391	}
4392
4393	case IPPROTO_DCCP: {
4394		struct dccp_hdr _dccph, *dh;
4395
4396		if (ntohs(ih->frag_off) & IP_OFFSET)
4397			break;
4398
4399		offset += ihlen;
4400		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4401		if (dh == NULL)
4402			break;
4403
4404		ad->u.net->sport = dh->dccph_sport;
4405		ad->u.net->dport = dh->dccph_dport;
4406		break;
4407	}
4408
4409#if IS_ENABLED(CONFIG_IP_SCTP)
4410	case IPPROTO_SCTP: {
4411		struct sctphdr _sctph, *sh;
4412
4413		if (ntohs(ih->frag_off) & IP_OFFSET)
4414			break;
4415
4416		offset += ihlen;
4417		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4418		if (sh == NULL)
4419			break;
4420
4421		ad->u.net->sport = sh->source;
4422		ad->u.net->dport = sh->dest;
4423		break;
4424	}
4425#endif
4426	default:
4427		break;
4428	}
4429out:
4430	return ret;
4431}
4432
4433#if IS_ENABLED(CONFIG_IPV6)
4434
4435/* Returns error only if unable to parse addresses */
4436static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4437			struct common_audit_data *ad, u8 *proto)
4438{
4439	u8 nexthdr;
4440	int ret = -EINVAL, offset;
4441	struct ipv6hdr _ipv6h, *ip6;
4442	__be16 frag_off;
4443
4444	offset = skb_network_offset(skb);
4445	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4446	if (ip6 == NULL)
4447		goto out;
4448
4449	ad->u.net->v6info.saddr = ip6->saddr;
4450	ad->u.net->v6info.daddr = ip6->daddr;
4451	ret = 0;
4452
4453	nexthdr = ip6->nexthdr;
4454	offset += sizeof(_ipv6h);
4455	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4456	if (offset < 0)
4457		goto out;
4458
4459	if (proto)
4460		*proto = nexthdr;
4461
4462	switch (nexthdr) {
4463	case IPPROTO_TCP: {
4464		struct tcphdr _tcph, *th;
4465
4466		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4467		if (th == NULL)
4468			break;
4469
4470		ad->u.net->sport = th->source;
4471		ad->u.net->dport = th->dest;
4472		break;
4473	}
4474
4475	case IPPROTO_UDP: {
4476		struct udphdr _udph, *uh;
4477
4478		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4479		if (uh == NULL)
4480			break;
4481
4482		ad->u.net->sport = uh->source;
4483		ad->u.net->dport = uh->dest;
4484		break;
4485	}
4486
4487	case IPPROTO_DCCP: {
4488		struct dccp_hdr _dccph, *dh;
4489
4490		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4491		if (dh == NULL)
4492			break;
4493
4494		ad->u.net->sport = dh->dccph_sport;
4495		ad->u.net->dport = dh->dccph_dport;
4496		break;
4497	}
4498
4499#if IS_ENABLED(CONFIG_IP_SCTP)
4500	case IPPROTO_SCTP: {
4501		struct sctphdr _sctph, *sh;
4502
4503		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4504		if (sh == NULL)
4505			break;
4506
4507		ad->u.net->sport = sh->source;
4508		ad->u.net->dport = sh->dest;
4509		break;
4510	}
4511#endif
4512	/* includes fragments */
4513	default:
4514		break;
4515	}
4516out:
4517	return ret;
4518}
4519
4520#endif /* IPV6 */
4521
4522static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4523			     char **_addrp, int src, u8 *proto)
4524{
4525	char *addrp;
4526	int ret;
4527
4528	switch (ad->u.net->family) {
4529	case PF_INET:
4530		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4531		if (ret)
4532			goto parse_error;
4533		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4534				       &ad->u.net->v4info.daddr);
4535		goto okay;
4536
4537#if IS_ENABLED(CONFIG_IPV6)
4538	case PF_INET6:
4539		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4540		if (ret)
4541			goto parse_error;
4542		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4543				       &ad->u.net->v6info.daddr);
4544		goto okay;
4545#endif	/* IPV6 */
4546	default:
4547		addrp = NULL;
4548		goto okay;
4549	}
4550
4551parse_error:
4552	pr_warn(
4553	       "SELinux: failure in selinux_parse_skb(),"
4554	       " unable to parse packet\n");
4555	return ret;
4556
4557okay:
4558	if (_addrp)
4559		*_addrp = addrp;
4560	return 0;
4561}
4562
4563/**
4564 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4565 * @skb: the packet
4566 * @family: protocol family
4567 * @sid: the packet's peer label SID
4568 *
4569 * Description:
4570 * Check the various different forms of network peer labeling and determine
4571 * the peer label/SID for the packet; most of the magic actually occurs in
4572 * the security server function security_net_peersid_cmp().  The function
4573 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4574 * or -EACCES if @sid is invalid due to inconsistencies with the different
4575 * peer labels.
4576 *
4577 */
4578static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4579{
4580	int err;
4581	u32 xfrm_sid;
4582	u32 nlbl_sid;
4583	u32 nlbl_type;
4584
4585	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4586	if (unlikely(err))
4587		return -EACCES;
4588	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4589	if (unlikely(err))
4590		return -EACCES;
4591
4592	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4593					   nlbl_type, xfrm_sid, sid);
4594	if (unlikely(err)) {
4595		pr_warn(
4596		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4597		       " unable to determine packet's peer label\n");
4598		return -EACCES;
4599	}
4600
4601	return 0;
4602}
4603
4604/**
4605 * selinux_conn_sid - Determine the child socket label for a connection
4606 * @sk_sid: the parent socket's SID
4607 * @skb_sid: the packet's SID
4608 * @conn_sid: the resulting connection SID
4609 *
4610 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4611 * combined with the MLS information from @skb_sid in order to create
4612 * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4613 * of @sk_sid.  Returns zero on success, negative values on failure.
4614 *
4615 */
4616static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4617{
4618	int err = 0;
4619
4620	if (skb_sid != SECSID_NULL)
4621		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4622					    conn_sid);
4623	else
4624		*conn_sid = sk_sid;
4625
4626	return err;
4627}
4628
4629/* socket security operations */
4630
4631static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4632				 u16 secclass, u32 *socksid)
4633{
4634	if (tsec->sockcreate_sid > SECSID_NULL) {
4635		*socksid = tsec->sockcreate_sid;
4636		return 0;
4637	}
4638
4639	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4640				       secclass, NULL, socksid);
4641}
4642
4643static int sock_has_perm(struct sock *sk, u32 perms)
4644{
4645	struct sk_security_struct *sksec = sk->sk_security;
4646	struct common_audit_data ad;
4647	struct lsm_network_audit net = {0,};
 
4648
4649	if (sksec->sid == SECINITSID_KERNEL)
4650		return 0;
4651
4652	ad.type = LSM_AUDIT_DATA_NET;
4653	ad.u.net = &net;
4654	ad.u.net->sk = sk;
4655
4656	return avc_has_perm(&selinux_state,
4657			    current_sid(), sksec->sid, sksec->sclass, perms,
4658			    &ad);
4659}
4660
4661static int selinux_socket_create(int family, int type,
4662				 int protocol, int kern)
4663{
4664	const struct task_security_struct *tsec = selinux_cred(current_cred());
4665	u32 newsid;
4666	u16 secclass;
4667	int rc;
4668
4669	if (kern)
4670		return 0;
4671
4672	secclass = socket_type_to_security_class(family, type, protocol);
4673	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4674	if (rc)
4675		return rc;
4676
4677	return avc_has_perm(&selinux_state,
4678			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4679}
4680
4681static int selinux_socket_post_create(struct socket *sock, int family,
4682				      int type, int protocol, int kern)
4683{
4684	const struct task_security_struct *tsec = selinux_cred(current_cred());
4685	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4686	struct sk_security_struct *sksec;
4687	u16 sclass = socket_type_to_security_class(family, type, protocol);
4688	u32 sid = SECINITSID_KERNEL;
4689	int err = 0;
4690
4691	if (!kern) {
4692		err = socket_sockcreate_sid(tsec, sclass, &sid);
 
 
 
 
4693		if (err)
4694			return err;
4695	}
4696
4697	isec->sclass = sclass;
4698	isec->sid = sid;
4699	isec->initialized = LABEL_INITIALIZED;
4700
4701	if (sock->sk) {
4702		sksec = sock->sk->sk_security;
4703		sksec->sclass = sclass;
4704		sksec->sid = sid;
4705		/* Allows detection of the first association on this socket */
4706		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4707			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4708
4709		err = selinux_netlbl_socket_post_create(sock->sk, family);
4710	}
4711
4712	return err;
4713}
4714
4715static int selinux_socket_socketpair(struct socket *socka,
4716				     struct socket *sockb)
4717{
4718	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4719	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4720
4721	sksec_a->peer_sid = sksec_b->sid;
4722	sksec_b->peer_sid = sksec_a->sid;
4723
4724	return 0;
4725}
4726
4727/* Range of port numbers used to automatically bind.
4728   Need to determine whether we should perform a name_bind
4729   permission check between the socket and the port number. */
4730
4731static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4732{
4733	struct sock *sk = sock->sk;
4734	struct sk_security_struct *sksec = sk->sk_security;
4735	u16 family;
4736	int err;
4737
4738	err = sock_has_perm(sk, SOCKET__BIND);
4739	if (err)
4740		goto out;
4741
4742	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
 
 
 
 
4743	family = sk->sk_family;
4744	if (family == PF_INET || family == PF_INET6) {
4745		char *addrp;
 
4746		struct common_audit_data ad;
4747		struct lsm_network_audit net = {0,};
4748		struct sockaddr_in *addr4 = NULL;
4749		struct sockaddr_in6 *addr6 = NULL;
4750		u16 family_sa;
4751		unsigned short snum;
4752		u32 sid, node_perm;
4753
4754		/*
4755		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4756		 * that validates multiple binding addresses. Because of this
4757		 * need to check address->sa_family as it is possible to have
4758		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4759		 */
4760		if (addrlen < offsetofend(struct sockaddr, sa_family))
4761			return -EINVAL;
4762		family_sa = address->sa_family;
4763		switch (family_sa) {
4764		case AF_UNSPEC:
4765		case AF_INET:
4766			if (addrlen < sizeof(struct sockaddr_in))
4767				return -EINVAL;
4768			addr4 = (struct sockaddr_in *)address;
4769			if (family_sa == AF_UNSPEC) {
4770				/* see __inet_bind(), we only want to allow
4771				 * AF_UNSPEC if the address is INADDR_ANY
4772				 */
4773				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4774					goto err_af;
4775				family_sa = AF_INET;
4776			}
4777			snum = ntohs(addr4->sin_port);
4778			addrp = (char *)&addr4->sin_addr.s_addr;
4779			break;
4780		case AF_INET6:
4781			if (addrlen < SIN6_LEN_RFC2133)
4782				return -EINVAL;
4783			addr6 = (struct sockaddr_in6 *)address;
4784			snum = ntohs(addr6->sin6_port);
4785			addrp = (char *)&addr6->sin6_addr.s6_addr;
4786			break;
4787		default:
4788			goto err_af;
4789		}
4790
4791		ad.type = LSM_AUDIT_DATA_NET;
4792		ad.u.net = &net;
4793		ad.u.net->sport = htons(snum);
4794		ad.u.net->family = family_sa;
4795
4796		if (snum) {
4797			int low, high;
4798
4799			inet_get_local_port_range(sock_net(sk), &low, &high);
4800
4801			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4802			    snum < low || snum > high) {
4803				err = sel_netport_sid(sk->sk_protocol,
4804						      snum, &sid);
4805				if (err)
4806					goto out;
4807				err = avc_has_perm(&selinux_state,
4808						   sksec->sid, sid,
 
 
 
4809						   sksec->sclass,
4810						   SOCKET__NAME_BIND, &ad);
4811				if (err)
4812					goto out;
4813			}
4814		}
4815
4816		switch (sksec->sclass) {
4817		case SECCLASS_TCP_SOCKET:
4818			node_perm = TCP_SOCKET__NODE_BIND;
4819			break;
4820
4821		case SECCLASS_UDP_SOCKET:
4822			node_perm = UDP_SOCKET__NODE_BIND;
4823			break;
4824
4825		case SECCLASS_DCCP_SOCKET:
4826			node_perm = DCCP_SOCKET__NODE_BIND;
4827			break;
4828
4829		case SECCLASS_SCTP_SOCKET:
4830			node_perm = SCTP_SOCKET__NODE_BIND;
4831			break;
4832
4833		default:
4834			node_perm = RAWIP_SOCKET__NODE_BIND;
4835			break;
4836		}
4837
4838		err = sel_netnode_sid(addrp, family_sa, &sid);
4839		if (err)
4840			goto out;
4841
4842		if (family_sa == AF_INET)
 
 
 
 
 
4843			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4844		else
4845			ad.u.net->v6info.saddr = addr6->sin6_addr;
4846
4847		err = avc_has_perm(&selinux_state,
4848				   sksec->sid, sid,
4849				   sksec->sclass, node_perm, &ad);
4850		if (err)
4851			goto out;
4852	}
4853out:
4854	return err;
4855err_af:
4856	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4857	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4858		return -EINVAL;
4859	return -EAFNOSUPPORT;
4860}
4861
4862/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4863 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4864 */
4865static int selinux_socket_connect_helper(struct socket *sock,
4866					 struct sockaddr *address, int addrlen)
4867{
4868	struct sock *sk = sock->sk;
4869	struct sk_security_struct *sksec = sk->sk_security;
4870	int err;
4871
4872	err = sock_has_perm(sk, SOCKET__CONNECT);
4873	if (err)
4874		return err;
4875	if (addrlen < offsetofend(struct sockaddr, sa_family))
4876		return -EINVAL;
4877
4878	/* connect(AF_UNSPEC) has special handling, as it is a documented
4879	 * way to disconnect the socket
4880	 */
4881	if (address->sa_family == AF_UNSPEC)
4882		return 0;
4883
4884	/*
4885	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4886	 * for the port.
4887	 */
4888	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4889	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4890	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4891		struct common_audit_data ad;
4892		struct lsm_network_audit net = {0,};
4893		struct sockaddr_in *addr4 = NULL;
4894		struct sockaddr_in6 *addr6 = NULL;
4895		unsigned short snum;
4896		u32 sid, perm;
4897
4898		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4899		 * that validates multiple connect addresses. Because of this
4900		 * need to check address->sa_family as it is possible to have
4901		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4902		 */
4903		switch (address->sa_family) {
4904		case AF_INET:
4905			addr4 = (struct sockaddr_in *)address;
4906			if (addrlen < sizeof(struct sockaddr_in))
4907				return -EINVAL;
4908			snum = ntohs(addr4->sin_port);
4909			break;
4910		case AF_INET6:
4911			addr6 = (struct sockaddr_in6 *)address;
4912			if (addrlen < SIN6_LEN_RFC2133)
4913				return -EINVAL;
4914			snum = ntohs(addr6->sin6_port);
4915			break;
4916		default:
4917			/* Note that SCTP services expect -EINVAL, whereas
4918			 * others expect -EAFNOSUPPORT.
4919			 */
4920			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4921				return -EINVAL;
4922			else
4923				return -EAFNOSUPPORT;
4924		}
4925
4926		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4927		if (err)
4928			return err;
4929
4930		switch (sksec->sclass) {
4931		case SECCLASS_TCP_SOCKET:
4932			perm = TCP_SOCKET__NAME_CONNECT;
4933			break;
4934		case SECCLASS_DCCP_SOCKET:
4935			perm = DCCP_SOCKET__NAME_CONNECT;
4936			break;
4937		case SECCLASS_SCTP_SOCKET:
4938			perm = SCTP_SOCKET__NAME_CONNECT;
4939			break;
4940		}
4941
4942		ad.type = LSM_AUDIT_DATA_NET;
4943		ad.u.net = &net;
4944		ad.u.net->dport = htons(snum);
4945		ad.u.net->family = address->sa_family;
4946		err = avc_has_perm(&selinux_state,
4947				   sksec->sid, sid, sksec->sclass, perm, &ad);
4948		if (err)
4949			return err;
4950	}
4951
4952	return 0;
4953}
4954
4955/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4956static int selinux_socket_connect(struct socket *sock,
4957				  struct sockaddr *address, int addrlen)
4958{
4959	int err;
4960	struct sock *sk = sock->sk;
4961
4962	err = selinux_socket_connect_helper(sock, address, addrlen);
4963	if (err)
4964		return err;
4965
4966	return selinux_netlbl_socket_connect(sk, address);
4967}
4968
4969static int selinux_socket_listen(struct socket *sock, int backlog)
4970{
4971	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4972}
4973
4974static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4975{
4976	int err;
4977	struct inode_security_struct *isec;
4978	struct inode_security_struct *newisec;
4979	u16 sclass;
4980	u32 sid;
4981
4982	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4983	if (err)
4984		return err;
4985
4986	isec = inode_security_novalidate(SOCK_INODE(sock));
4987	spin_lock(&isec->lock);
4988	sclass = isec->sclass;
4989	sid = isec->sid;
4990	spin_unlock(&isec->lock);
4991
4992	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4993	newisec->sclass = sclass;
4994	newisec->sid = sid;
4995	newisec->initialized = LABEL_INITIALIZED;
4996
4997	return 0;
4998}
4999
5000static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
5001				  int size)
5002{
5003	return sock_has_perm(sock->sk, SOCKET__WRITE);
5004}
5005
5006static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
5007				  int size, int flags)
5008{
5009	return sock_has_perm(sock->sk, SOCKET__READ);
5010}
5011
5012static int selinux_socket_getsockname(struct socket *sock)
5013{
5014	return sock_has_perm(sock->sk, SOCKET__GETATTR);
5015}
5016
5017static int selinux_socket_getpeername(struct socket *sock)
5018{
5019	return sock_has_perm(sock->sk, SOCKET__GETATTR);
5020}
5021
5022static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
5023{
5024	int err;
5025
5026	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
5027	if (err)
5028		return err;
5029
5030	return selinux_netlbl_socket_setsockopt(sock, level, optname);
5031}
5032
5033static int selinux_socket_getsockopt(struct socket *sock, int level,
5034				     int optname)
5035{
5036	return sock_has_perm(sock->sk, SOCKET__GETOPT);
5037}
5038
5039static int selinux_socket_shutdown(struct socket *sock, int how)
5040{
5041	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
5042}
5043
5044static int selinux_socket_unix_stream_connect(struct sock *sock,
5045					      struct sock *other,
5046					      struct sock *newsk)
5047{
5048	struct sk_security_struct *sksec_sock = sock->sk_security;
5049	struct sk_security_struct *sksec_other = other->sk_security;
5050	struct sk_security_struct *sksec_new = newsk->sk_security;
5051	struct common_audit_data ad;
5052	struct lsm_network_audit net = {0,};
5053	int err;
5054
5055	ad.type = LSM_AUDIT_DATA_NET;
5056	ad.u.net = &net;
5057	ad.u.net->sk = other;
5058
5059	err = avc_has_perm(&selinux_state,
5060			   sksec_sock->sid, sksec_other->sid,
5061			   sksec_other->sclass,
5062			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5063	if (err)
5064		return err;
5065
5066	/* server child socket */
5067	sksec_new->peer_sid = sksec_sock->sid;
5068	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
5069				    sksec_sock->sid, &sksec_new->sid);
5070	if (err)
5071		return err;
5072
5073	/* connecting socket */
5074	sksec_sock->peer_sid = sksec_new->sid;
5075
5076	return 0;
5077}
5078
5079static int selinux_socket_unix_may_send(struct socket *sock,
5080					struct socket *other)
5081{
5082	struct sk_security_struct *ssec = sock->sk->sk_security;
5083	struct sk_security_struct *osec = other->sk->sk_security;
5084	struct common_audit_data ad;
5085	struct lsm_network_audit net = {0,};
5086
5087	ad.type = LSM_AUDIT_DATA_NET;
5088	ad.u.net = &net;
5089	ad.u.net->sk = other->sk;
5090
5091	return avc_has_perm(&selinux_state,
5092			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5093			    &ad);
5094}
5095
5096static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5097				    char *addrp, u16 family, u32 peer_sid,
5098				    struct common_audit_data *ad)
5099{
5100	int err;
5101	u32 if_sid;
5102	u32 node_sid;
5103
5104	err = sel_netif_sid(ns, ifindex, &if_sid);
5105	if (err)
5106		return err;
5107	err = avc_has_perm(&selinux_state,
5108			   peer_sid, if_sid,
5109			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5110	if (err)
5111		return err;
5112
5113	err = sel_netnode_sid(addrp, family, &node_sid);
5114	if (err)
5115		return err;
5116	return avc_has_perm(&selinux_state,
5117			    peer_sid, node_sid,
5118			    SECCLASS_NODE, NODE__RECVFROM, ad);
5119}
5120
5121static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5122				       u16 family)
5123{
5124	int err = 0;
5125	struct sk_security_struct *sksec = sk->sk_security;
5126	u32 sk_sid = sksec->sid;
5127	struct common_audit_data ad;
5128	struct lsm_network_audit net = {0,};
5129	char *addrp;
5130
5131	ad.type = LSM_AUDIT_DATA_NET;
5132	ad.u.net = &net;
5133	ad.u.net->netif = skb->skb_iif;
5134	ad.u.net->family = family;
5135	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5136	if (err)
5137		return err;
5138
5139	if (selinux_secmark_enabled()) {
5140		err = avc_has_perm(&selinux_state,
5141				   sk_sid, skb->secmark, SECCLASS_PACKET,
5142				   PACKET__RECV, &ad);
5143		if (err)
5144			return err;
5145	}
5146
5147	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5148	if (err)
5149		return err;
5150	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5151
5152	return err;
5153}
5154
5155static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5156{
5157	int err;
5158	struct sk_security_struct *sksec = sk->sk_security;
5159	u16 family = sk->sk_family;
5160	u32 sk_sid = sksec->sid;
5161	struct common_audit_data ad;
5162	struct lsm_network_audit net = {0,};
5163	char *addrp;
5164	u8 secmark_active;
5165	u8 peerlbl_active;
5166
5167	if (family != PF_INET && family != PF_INET6)
5168		return 0;
5169
5170	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5171	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5172		family = PF_INET;
5173
5174	/* If any sort of compatibility mode is enabled then handoff processing
5175	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5176	 * special handling.  We do this in an attempt to keep this function
5177	 * as fast and as clean as possible. */
5178	if (!selinux_policycap_netpeer())
5179		return selinux_sock_rcv_skb_compat(sk, skb, family);
5180
5181	secmark_active = selinux_secmark_enabled();
5182	peerlbl_active = selinux_peerlbl_enabled();
5183	if (!secmark_active && !peerlbl_active)
5184		return 0;
5185
5186	ad.type = LSM_AUDIT_DATA_NET;
5187	ad.u.net = &net;
5188	ad.u.net->netif = skb->skb_iif;
5189	ad.u.net->family = family;
5190	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5191	if (err)
5192		return err;
5193
5194	if (peerlbl_active) {
5195		u32 peer_sid;
5196
5197		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5198		if (err)
5199			return err;
5200		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5201					       addrp, family, peer_sid, &ad);
5202		if (err) {
5203			selinux_netlbl_err(skb, family, err, 0);
5204			return err;
5205		}
5206		err = avc_has_perm(&selinux_state,
5207				   sk_sid, peer_sid, SECCLASS_PEER,
5208				   PEER__RECV, &ad);
5209		if (err) {
5210			selinux_netlbl_err(skb, family, err, 0);
5211			return err;
5212		}
5213	}
5214
5215	if (secmark_active) {
5216		err = avc_has_perm(&selinux_state,
5217				   sk_sid, skb->secmark, SECCLASS_PACKET,
5218				   PACKET__RECV, &ad);
5219		if (err)
5220			return err;
5221	}
5222
5223	return err;
5224}
5225
5226static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5227					    int __user *optlen, unsigned len)
5228{
5229	int err = 0;
5230	char *scontext;
5231	u32 scontext_len;
5232	struct sk_security_struct *sksec = sock->sk->sk_security;
5233	u32 peer_sid = SECSID_NULL;
5234
5235	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5236	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5237	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5238		peer_sid = sksec->peer_sid;
5239	if (peer_sid == SECSID_NULL)
5240		return -ENOPROTOOPT;
5241
5242	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5243				      &scontext_len);
5244	if (err)
5245		return err;
5246
5247	if (scontext_len > len) {
5248		err = -ERANGE;
5249		goto out_len;
5250	}
5251
5252	if (copy_to_user(optval, scontext, scontext_len))
5253		err = -EFAULT;
5254
5255out_len:
5256	if (put_user(scontext_len, optlen))
5257		err = -EFAULT;
5258	kfree(scontext);
5259	return err;
5260}
5261
5262static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5263{
5264	u32 peer_secid = SECSID_NULL;
5265	u16 family;
5266	struct inode_security_struct *isec;
5267
5268	if (skb && skb->protocol == htons(ETH_P_IP))
5269		family = PF_INET;
5270	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5271		family = PF_INET6;
5272	else if (sock)
5273		family = sock->sk->sk_family;
5274	else
5275		goto out;
5276
5277	if (sock && family == PF_UNIX) {
5278		isec = inode_security_novalidate(SOCK_INODE(sock));
5279		peer_secid = isec->sid;
5280	} else if (skb)
5281		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5282
5283out:
5284	*secid = peer_secid;
5285	if (peer_secid == SECSID_NULL)
5286		return -EINVAL;
5287	return 0;
5288}
5289
5290static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5291{
5292	struct sk_security_struct *sksec;
5293
5294	sksec = kzalloc(sizeof(*sksec), priority);
5295	if (!sksec)
5296		return -ENOMEM;
5297
5298	sksec->peer_sid = SECINITSID_UNLABELED;
5299	sksec->sid = SECINITSID_UNLABELED;
5300	sksec->sclass = SECCLASS_SOCKET;
5301	selinux_netlbl_sk_security_reset(sksec);
5302	sk->sk_security = sksec;
5303
5304	return 0;
5305}
5306
5307static void selinux_sk_free_security(struct sock *sk)
5308{
5309	struct sk_security_struct *sksec = sk->sk_security;
5310
5311	sk->sk_security = NULL;
5312	selinux_netlbl_sk_security_free(sksec);
5313	kfree(sksec);
5314}
5315
5316static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5317{
5318	struct sk_security_struct *sksec = sk->sk_security;
5319	struct sk_security_struct *newsksec = newsk->sk_security;
5320
5321	newsksec->sid = sksec->sid;
5322	newsksec->peer_sid = sksec->peer_sid;
5323	newsksec->sclass = sksec->sclass;
5324
5325	selinux_netlbl_sk_security_reset(newsksec);
5326}
5327
5328static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5329{
5330	if (!sk)
5331		*secid = SECINITSID_ANY_SOCKET;
5332	else {
5333		struct sk_security_struct *sksec = sk->sk_security;
5334
5335		*secid = sksec->sid;
5336	}
5337}
5338
5339static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5340{
5341	struct inode_security_struct *isec =
5342		inode_security_novalidate(SOCK_INODE(parent));
5343	struct sk_security_struct *sksec = sk->sk_security;
5344
5345	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5346	    sk->sk_family == PF_UNIX)
5347		isec->sid = sksec->sid;
5348	sksec->sclass = isec->sclass;
5349}
5350
5351/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5352 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5353 * already present).
5354 */
5355static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5356				      struct sk_buff *skb)
5357{
5358	struct sk_security_struct *sksec = ep->base.sk->sk_security;
5359	struct common_audit_data ad;
5360	struct lsm_network_audit net = {0,};
5361	u8 peerlbl_active;
5362	u32 peer_sid = SECINITSID_UNLABELED;
5363	u32 conn_sid;
5364	int err = 0;
5365
5366	if (!selinux_policycap_extsockclass())
5367		return 0;
5368
5369	peerlbl_active = selinux_peerlbl_enabled();
5370
5371	if (peerlbl_active) {
5372		/* This will return peer_sid = SECSID_NULL if there are
5373		 * no peer labels, see security_net_peersid_resolve().
5374		 */
5375		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5376					      &peer_sid);
5377		if (err)
5378			return err;
5379
5380		if (peer_sid == SECSID_NULL)
5381			peer_sid = SECINITSID_UNLABELED;
5382	}
5383
5384	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5385		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5386
5387		/* Here as first association on socket. As the peer SID
5388		 * was allowed by peer recv (and the netif/node checks),
5389		 * then it is approved by policy and used as the primary
5390		 * peer SID for getpeercon(3).
5391		 */
5392		sksec->peer_sid = peer_sid;
5393	} else if  (sksec->peer_sid != peer_sid) {
5394		/* Other association peer SIDs are checked to enforce
5395		 * consistency among the peer SIDs.
5396		 */
5397		ad.type = LSM_AUDIT_DATA_NET;
5398		ad.u.net = &net;
5399		ad.u.net->sk = ep->base.sk;
5400		err = avc_has_perm(&selinux_state,
5401				   sksec->peer_sid, peer_sid, sksec->sclass,
5402				   SCTP_SOCKET__ASSOCIATION, &ad);
5403		if (err)
5404			return err;
5405	}
5406
5407	/* Compute the MLS component for the connection and store
5408	 * the information in ep. This will be used by SCTP TCP type
5409	 * sockets and peeled off connections as they cause a new
5410	 * socket to be generated. selinux_sctp_sk_clone() will then
5411	 * plug this into the new socket.
5412	 */
5413	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5414	if (err)
5415		return err;
5416
5417	ep->secid = conn_sid;
5418	ep->peer_secid = peer_sid;
5419
5420	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5421	return selinux_netlbl_sctp_assoc_request(ep, skb);
5422}
5423
5424/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5425 * based on their @optname.
5426 */
5427static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5428				     struct sockaddr *address,
5429				     int addrlen)
5430{
5431	int len, err = 0, walk_size = 0;
5432	void *addr_buf;
5433	struct sockaddr *addr;
5434	struct socket *sock;
5435
5436	if (!selinux_policycap_extsockclass())
5437		return 0;
5438
5439	/* Process one or more addresses that may be IPv4 or IPv6 */
5440	sock = sk->sk_socket;
5441	addr_buf = address;
5442
5443	while (walk_size < addrlen) {
5444		if (walk_size + sizeof(sa_family_t) > addrlen)
5445			return -EINVAL;
5446
5447		addr = addr_buf;
5448		switch (addr->sa_family) {
5449		case AF_UNSPEC:
5450		case AF_INET:
5451			len = sizeof(struct sockaddr_in);
5452			break;
5453		case AF_INET6:
5454			len = sizeof(struct sockaddr_in6);
5455			break;
5456		default:
5457			return -EINVAL;
5458		}
5459
5460		if (walk_size + len > addrlen)
5461			return -EINVAL;
5462
5463		err = -EINVAL;
5464		switch (optname) {
5465		/* Bind checks */
5466		case SCTP_PRIMARY_ADDR:
5467		case SCTP_SET_PEER_PRIMARY_ADDR:
5468		case SCTP_SOCKOPT_BINDX_ADD:
5469			err = selinux_socket_bind(sock, addr, len);
5470			break;
5471		/* Connect checks */
5472		case SCTP_SOCKOPT_CONNECTX:
5473		case SCTP_PARAM_SET_PRIMARY:
5474		case SCTP_PARAM_ADD_IP:
5475		case SCTP_SENDMSG_CONNECT:
5476			err = selinux_socket_connect_helper(sock, addr, len);
5477			if (err)
5478				return err;
5479
5480			/* As selinux_sctp_bind_connect() is called by the
5481			 * SCTP protocol layer, the socket is already locked,
5482			 * therefore selinux_netlbl_socket_connect_locked()
5483			 * is called here. The situations handled are:
5484			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5485			 * whenever a new IP address is added or when a new
5486			 * primary address is selected.
5487			 * Note that an SCTP connect(2) call happens before
5488			 * the SCTP protocol layer and is handled via
5489			 * selinux_socket_connect().
5490			 */
5491			err = selinux_netlbl_socket_connect_locked(sk, addr);
5492			break;
5493		}
5494
5495		if (err)
5496			return err;
5497
5498		addr_buf += len;
5499		walk_size += len;
5500	}
5501
5502	return 0;
5503}
5504
5505/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5506static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5507				  struct sock *newsk)
5508{
5509	struct sk_security_struct *sksec = sk->sk_security;
5510	struct sk_security_struct *newsksec = newsk->sk_security;
5511
5512	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5513	 * the non-sctp clone version.
5514	 */
5515	if (!selinux_policycap_extsockclass())
5516		return selinux_sk_clone_security(sk, newsk);
5517
5518	newsksec->sid = ep->secid;
5519	newsksec->peer_sid = ep->peer_secid;
5520	newsksec->sclass = sksec->sclass;
5521	selinux_netlbl_sctp_sk_clone(sk, newsk);
5522}
5523
5524static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5525				     struct request_sock *req)
5526{
5527	struct sk_security_struct *sksec = sk->sk_security;
5528	int err;
5529	u16 family = req->rsk_ops->family;
5530	u32 connsid;
5531	u32 peersid;
5532
 
 
 
 
5533	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5534	if (err)
5535		return err;
5536	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5537	if (err)
5538		return err;
5539	req->secid = connsid;
5540	req->peer_secid = peersid;
 
 
 
 
 
5541
5542	return selinux_netlbl_inet_conn_request(req, family);
5543}
5544
5545static void selinux_inet_csk_clone(struct sock *newsk,
5546				   const struct request_sock *req)
5547{
5548	struct sk_security_struct *newsksec = newsk->sk_security;
5549
5550	newsksec->sid = req->secid;
5551	newsksec->peer_sid = req->peer_secid;
5552	/* NOTE: Ideally, we should also get the isec->sid for the
5553	   new socket in sync, but we don't have the isec available yet.
5554	   So we will wait until sock_graft to do it, by which
5555	   time it will have been created and available. */
5556
5557	/* We don't need to take any sort of lock here as we are the only
5558	 * thread with access to newsksec */
5559	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5560}
5561
5562static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5563{
5564	u16 family = sk->sk_family;
5565	struct sk_security_struct *sksec = sk->sk_security;
5566
5567	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5568	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5569		family = PF_INET;
5570
5571	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5572}
5573
5574static int selinux_secmark_relabel_packet(u32 sid)
5575{
5576	const struct task_security_struct *__tsec;
5577	u32 tsid;
5578
5579	__tsec = selinux_cred(current_cred());
5580	tsid = __tsec->sid;
5581
5582	return avc_has_perm(&selinux_state,
5583			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5584			    NULL);
5585}
5586
5587static void selinux_secmark_refcount_inc(void)
5588{
5589	atomic_inc(&selinux_secmark_refcount);
5590}
5591
5592static void selinux_secmark_refcount_dec(void)
5593{
5594	atomic_dec(&selinux_secmark_refcount);
5595}
5596
5597static void selinux_req_classify_flow(const struct request_sock *req,
5598				      struct flowi_common *flic)
5599{
5600	flic->flowic_secid = req->secid;
5601}
5602
5603static int selinux_tun_dev_alloc_security(void **security)
5604{
5605	struct tun_security_struct *tunsec;
5606
5607	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5608	if (!tunsec)
5609		return -ENOMEM;
5610	tunsec->sid = current_sid();
5611
5612	*security = tunsec;
5613	return 0;
5614}
5615
5616static void selinux_tun_dev_free_security(void *security)
5617{
5618	kfree(security);
5619}
5620
5621static int selinux_tun_dev_create(void)
5622{
5623	u32 sid = current_sid();
5624
5625	/* we aren't taking into account the "sockcreate" SID since the socket
5626	 * that is being created here is not a socket in the traditional sense,
5627	 * instead it is a private sock, accessible only to the kernel, and
5628	 * representing a wide range of network traffic spanning multiple
5629	 * connections unlike traditional sockets - check the TUN driver to
5630	 * get a better understanding of why this socket is special */
5631
5632	return avc_has_perm(&selinux_state,
5633			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5634			    NULL);
5635}
5636
5637static int selinux_tun_dev_attach_queue(void *security)
5638{
5639	struct tun_security_struct *tunsec = security;
5640
5641	return avc_has_perm(&selinux_state,
5642			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5643			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5644}
5645
5646static int selinux_tun_dev_attach(struct sock *sk, void *security)
5647{
5648	struct tun_security_struct *tunsec = security;
5649	struct sk_security_struct *sksec = sk->sk_security;
5650
5651	/* we don't currently perform any NetLabel based labeling here and it
5652	 * isn't clear that we would want to do so anyway; while we could apply
5653	 * labeling without the support of the TUN user the resulting labeled
5654	 * traffic from the other end of the connection would almost certainly
5655	 * cause confusion to the TUN user that had no idea network labeling
5656	 * protocols were being used */
5657
5658	sksec->sid = tunsec->sid;
 
 
 
5659	sksec->sclass = SECCLASS_TUN_SOCKET;
5660
5661	return 0;
5662}
5663
5664static int selinux_tun_dev_open(void *security)
5665{
5666	struct tun_security_struct *tunsec = security;
5667	u32 sid = current_sid();
5668	int err;
5669
5670	err = avc_has_perm(&selinux_state,
5671			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5672			   TUN_SOCKET__RELABELFROM, NULL);
5673	if (err)
5674		return err;
5675	err = avc_has_perm(&selinux_state,
5676			   sid, sid, SECCLASS_TUN_SOCKET,
5677			   TUN_SOCKET__RELABELTO, NULL);
5678	if (err)
5679		return err;
5680	tunsec->sid = sid;
 
5681
5682	return 0;
5683}
5684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5685#ifdef CONFIG_NETFILTER
5686
5687static unsigned int selinux_ip_forward(struct sk_buff *skb,
5688				       const struct net_device *indev,
5689				       u16 family)
5690{
5691	int err;
5692	char *addrp;
5693	u32 peer_sid;
5694	struct common_audit_data ad;
5695	struct lsm_network_audit net = {0,};
5696	u8 secmark_active;
5697	u8 netlbl_active;
5698	u8 peerlbl_active;
5699
5700	if (!selinux_policycap_netpeer())
5701		return NF_ACCEPT;
5702
5703	secmark_active = selinux_secmark_enabled();
5704	netlbl_active = netlbl_enabled();
5705	peerlbl_active = selinux_peerlbl_enabled();
5706	if (!secmark_active && !peerlbl_active)
5707		return NF_ACCEPT;
5708
5709	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5710		return NF_DROP;
5711
5712	ad.type = LSM_AUDIT_DATA_NET;
5713	ad.u.net = &net;
5714	ad.u.net->netif = indev->ifindex;
5715	ad.u.net->family = family;
5716	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5717		return NF_DROP;
5718
5719	if (peerlbl_active) {
5720		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5721					       addrp, family, peer_sid, &ad);
5722		if (err) {
5723			selinux_netlbl_err(skb, family, err, 1);
5724			return NF_DROP;
5725		}
5726	}
5727
5728	if (secmark_active)
5729		if (avc_has_perm(&selinux_state,
5730				 peer_sid, skb->secmark,
5731				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5732			return NF_DROP;
5733
5734	if (netlbl_active)
5735		/* we do this in the FORWARD path and not the POST_ROUTING
5736		 * path because we want to make sure we apply the necessary
5737		 * labeling before IPsec is applied so we can leverage AH
5738		 * protection */
5739		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5740			return NF_DROP;
5741
5742	return NF_ACCEPT;
5743}
5744
5745static unsigned int selinux_ipv4_forward(void *priv,
5746					 struct sk_buff *skb,
5747					 const struct nf_hook_state *state)
 
 
5748{
5749	return selinux_ip_forward(skb, state->in, PF_INET);
5750}
5751
5752#if IS_ENABLED(CONFIG_IPV6)
5753static unsigned int selinux_ipv6_forward(void *priv,
5754					 struct sk_buff *skb,
5755					 const struct nf_hook_state *state)
 
 
5756{
5757	return selinux_ip_forward(skb, state->in, PF_INET6);
5758}
5759#endif	/* IPV6 */
5760
5761static unsigned int selinux_ip_output(struct sk_buff *skb,
5762				      u16 family)
5763{
5764	struct sock *sk;
5765	u32 sid;
5766
5767	if (!netlbl_enabled())
5768		return NF_ACCEPT;
5769
5770	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5771	 * because we want to make sure we apply the necessary labeling
5772	 * before IPsec is applied so we can leverage AH protection */
5773	sk = skb->sk;
5774	if (sk) {
5775		struct sk_security_struct *sksec;
5776
5777		if (sk_listener(sk))
5778			/* if the socket is the listening state then this
5779			 * packet is a SYN-ACK packet which means it needs to
5780			 * be labeled based on the connection/request_sock and
5781			 * not the parent socket.  unfortunately, we can't
5782			 * lookup the request_sock yet as it isn't queued on
5783			 * the parent socket until after the SYN-ACK is sent.
5784			 * the "solution" is to simply pass the packet as-is
5785			 * as any IP option based labeling should be copied
5786			 * from the initial connection request (in the IP
5787			 * layer).  it is far from ideal, but until we get a
5788			 * security label in the packet itself this is the
5789			 * best we can do. */
5790			return NF_ACCEPT;
5791
5792		/* standard practice, label using the parent socket */
5793		sksec = sk->sk_security;
5794		sid = sksec->sid;
5795	} else
5796		sid = SECINITSID_KERNEL;
5797	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5798		return NF_DROP;
5799
5800	return NF_ACCEPT;
5801}
5802
5803static unsigned int selinux_ipv4_output(void *priv,
5804					struct sk_buff *skb,
5805					const struct nf_hook_state *state)
 
 
5806{
5807	return selinux_ip_output(skb, PF_INET);
5808}
5809
5810#if IS_ENABLED(CONFIG_IPV6)
5811static unsigned int selinux_ipv6_output(void *priv,
5812					struct sk_buff *skb,
5813					const struct nf_hook_state *state)
5814{
5815	return selinux_ip_output(skb, PF_INET6);
5816}
5817#endif	/* IPV6 */
5818
5819static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5820						int ifindex,
5821						u16 family)
5822{
5823	struct sock *sk = skb_to_full_sk(skb);
5824	struct sk_security_struct *sksec;
5825	struct common_audit_data ad;
5826	struct lsm_network_audit net = {0,};
5827	char *addrp;
5828	u8 proto;
5829
5830	if (sk == NULL)
5831		return NF_ACCEPT;
5832	sksec = sk->sk_security;
5833
5834	ad.type = LSM_AUDIT_DATA_NET;
5835	ad.u.net = &net;
5836	ad.u.net->netif = ifindex;
5837	ad.u.net->family = family;
5838	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5839		return NF_DROP;
5840
5841	if (selinux_secmark_enabled())
5842		if (avc_has_perm(&selinux_state,
5843				 sksec->sid, skb->secmark,
5844				 SECCLASS_PACKET, PACKET__SEND, &ad))
5845			return NF_DROP_ERR(-ECONNREFUSED);
5846
5847	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5848		return NF_DROP_ERR(-ECONNREFUSED);
5849
5850	return NF_ACCEPT;
5851}
5852
5853static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5854					 const struct net_device *outdev,
5855					 u16 family)
5856{
5857	u32 secmark_perm;
5858	u32 peer_sid;
5859	int ifindex = outdev->ifindex;
5860	struct sock *sk;
5861	struct common_audit_data ad;
5862	struct lsm_network_audit net = {0,};
5863	char *addrp;
5864	u8 secmark_active;
5865	u8 peerlbl_active;
5866
5867	/* If any sort of compatibility mode is enabled then handoff processing
5868	 * to the selinux_ip_postroute_compat() function to deal with the
5869	 * special handling.  We do this in an attempt to keep this function
5870	 * as fast and as clean as possible. */
5871	if (!selinux_policycap_netpeer())
5872		return selinux_ip_postroute_compat(skb, ifindex, family);
5873
5874	secmark_active = selinux_secmark_enabled();
5875	peerlbl_active = selinux_peerlbl_enabled();
5876	if (!secmark_active && !peerlbl_active)
5877		return NF_ACCEPT;
5878
5879	sk = skb_to_full_sk(skb);
5880
5881#ifdef CONFIG_XFRM
5882	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5883	 * packet transformation so allow the packet to pass without any checks
5884	 * since we'll have another chance to perform access control checks
5885	 * when the packet is on it's final way out.
5886	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5887	 *       is NULL, in this case go ahead and apply access control.
5888	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5889	 *       TCP listening state we cannot wait until the XFRM processing
5890	 *       is done as we will miss out on the SA label if we do;
5891	 *       unfortunately, this means more work, but it is only once per
5892	 *       connection. */
5893	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5894	    !(sk && sk_listener(sk)))
5895		return NF_ACCEPT;
5896#endif
 
 
 
 
5897
 
 
 
 
 
5898	if (sk == NULL) {
5899		/* Without an associated socket the packet is either coming
5900		 * from the kernel or it is being forwarded; check the packet
5901		 * to determine which and if the packet is being forwarded
5902		 * query the packet directly to determine the security label. */
5903		if (skb->skb_iif) {
5904			secmark_perm = PACKET__FORWARD_OUT;
5905			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5906				return NF_DROP;
5907		} else {
5908			secmark_perm = PACKET__SEND;
5909			peer_sid = SECINITSID_KERNEL;
5910		}
5911	} else if (sk_listener(sk)) {
5912		/* Locally generated packet but the associated socket is in the
5913		 * listening state which means this is a SYN-ACK packet.  In
5914		 * this particular case the correct security label is assigned
5915		 * to the connection/request_sock but unfortunately we can't
5916		 * query the request_sock as it isn't queued on the parent
5917		 * socket until after the SYN-ACK packet is sent; the only
5918		 * viable choice is to regenerate the label like we do in
5919		 * selinux_inet_conn_request().  See also selinux_ip_output()
5920		 * for similar problems. */
5921		u32 skb_sid;
5922		struct sk_security_struct *sksec;
5923
5924		sksec = sk->sk_security;
5925		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5926			return NF_DROP;
5927		/* At this point, if the returned skb peerlbl is SECSID_NULL
5928		 * and the packet has been through at least one XFRM
5929		 * transformation then we must be dealing with the "final"
5930		 * form of labeled IPsec packet; since we've already applied
5931		 * all of our access controls on this packet we can safely
5932		 * pass the packet. */
5933		if (skb_sid == SECSID_NULL) {
5934			switch (family) {
5935			case PF_INET:
5936				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5937					return NF_ACCEPT;
5938				break;
5939			case PF_INET6:
5940				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5941					return NF_ACCEPT;
5942				break;
5943			default:
5944				return NF_DROP_ERR(-ECONNREFUSED);
5945			}
5946		}
5947		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5948			return NF_DROP;
5949		secmark_perm = PACKET__SEND;
5950	} else {
5951		/* Locally generated packet, fetch the security label from the
5952		 * associated socket. */
5953		struct sk_security_struct *sksec = sk->sk_security;
5954		peer_sid = sksec->sid;
5955		secmark_perm = PACKET__SEND;
5956	}
5957
5958	ad.type = LSM_AUDIT_DATA_NET;
5959	ad.u.net = &net;
5960	ad.u.net->netif = ifindex;
5961	ad.u.net->family = family;
5962	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5963		return NF_DROP;
5964
5965	if (secmark_active)
5966		if (avc_has_perm(&selinux_state,
5967				 peer_sid, skb->secmark,
5968				 SECCLASS_PACKET, secmark_perm, &ad))
5969			return NF_DROP_ERR(-ECONNREFUSED);
5970
5971	if (peerlbl_active) {
5972		u32 if_sid;
5973		u32 node_sid;
5974
5975		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5976			return NF_DROP;
5977		if (avc_has_perm(&selinux_state,
5978				 peer_sid, if_sid,
5979				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5980			return NF_DROP_ERR(-ECONNREFUSED);
5981
5982		if (sel_netnode_sid(addrp, family, &node_sid))
5983			return NF_DROP;
5984		if (avc_has_perm(&selinux_state,
5985				 peer_sid, node_sid,
5986				 SECCLASS_NODE, NODE__SENDTO, &ad))
5987			return NF_DROP_ERR(-ECONNREFUSED);
5988	}
5989
5990	return NF_ACCEPT;
5991}
5992
5993static unsigned int selinux_ipv4_postroute(void *priv,
5994					   struct sk_buff *skb,
5995					   const struct nf_hook_state *state)
 
 
5996{
5997	return selinux_ip_postroute(skb, state->out, PF_INET);
5998}
5999
6000#if IS_ENABLED(CONFIG_IPV6)
6001static unsigned int selinux_ipv6_postroute(void *priv,
6002					   struct sk_buff *skb,
6003					   const struct nf_hook_state *state)
 
 
6004{
6005	return selinux_ip_postroute(skb, state->out, PF_INET6);
6006}
6007#endif	/* IPV6 */
6008
6009#endif	/* CONFIG_NETFILTER */
6010
6011static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
6012{
6013	int rc = 0;
6014	unsigned int msg_len;
6015	unsigned int data_len = skb->len;
6016	unsigned char *data = skb->data;
6017	struct nlmsghdr *nlh;
6018	struct sk_security_struct *sksec = sk->sk_security;
6019	u16 sclass = sksec->sclass;
6020	u32 perm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6021
6022	while (data_len >= nlmsg_total_size(0)) {
6023		nlh = (struct nlmsghdr *)data;
 
 
 
 
6024
6025		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
6026		 *       users which means we can't reject skb's with bogus
6027		 *       length fields; our solution is to follow what
6028		 *       netlink_rcv_skb() does and simply skip processing at
6029		 *       messages with length fields that are clearly junk
6030		 */
6031		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
6032			return 0;
6033
6034		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
6035		if (rc == 0) {
6036			rc = sock_has_perm(sk, perm);
6037			if (rc)
6038				return rc;
6039		} else if (rc == -EINVAL) {
6040			/* -EINVAL is a missing msg/perm mapping */
6041			pr_warn_ratelimited("SELinux: unrecognized netlink"
6042				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
6043				" pid=%d comm=%s\n",
6044				sk->sk_protocol, nlh->nlmsg_type,
6045				secclass_map[sclass - 1].name,
6046				task_pid_nr(current), current->comm);
6047			if (enforcing_enabled(&selinux_state) &&
6048			    !security_get_allow_unknown(&selinux_state))
6049				return rc;
6050			rc = 0;
6051		} else if (rc == -ENOENT) {
6052			/* -ENOENT is a missing socket/class mapping, ignore */
6053			rc = 0;
6054		} else {
6055			return rc;
6056		}
6057
6058		/* move to the next message after applying netlink padding */
6059		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
6060		if (msg_len >= data_len)
6061			return 0;
6062		data_len -= msg_len;
6063		data += msg_len;
6064	}
6065
6066	return rc;
6067}
6068
6069static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
6070{
6071	isec->sclass = sclass;
6072	isec->sid = current_sid();
 
 
6073}
6074
6075static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6076			u32 perms)
6077{
6078	struct ipc_security_struct *isec;
6079	struct common_audit_data ad;
6080	u32 sid = current_sid();
6081
6082	isec = selinux_ipc(ipc_perms);
6083
6084	ad.type = LSM_AUDIT_DATA_IPC;
6085	ad.u.ipc_id = ipc_perms->key;
6086
6087	return avc_has_perm(&selinux_state,
6088			    sid, isec->sid, isec->sclass, perms, &ad);
6089}
6090
6091static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6092{
6093	struct msg_security_struct *msec;
 
6094
6095	msec = selinux_msg_msg(msg);
6096	msec->sid = SECINITSID_UNLABELED;
6097
6098	return 0;
6099}
6100
6101/* message queue security operations */
6102static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6103{
6104	struct ipc_security_struct *isec;
6105	struct common_audit_data ad;
6106	u32 sid = current_sid();
6107	int rc;
6108
6109	isec = selinux_ipc(msq);
6110	ipc_init_security(isec, SECCLASS_MSGQ);
 
 
 
6111
6112	ad.type = LSM_AUDIT_DATA_IPC;
6113	ad.u.ipc_id = msq->key;
6114
6115	rc = avc_has_perm(&selinux_state,
6116			  sid, isec->sid, SECCLASS_MSGQ,
6117			  MSGQ__CREATE, &ad);
6118	return rc;
 
 
 
 
 
 
 
 
 
6119}
6120
6121static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6122{
6123	struct ipc_security_struct *isec;
6124	struct common_audit_data ad;
6125	u32 sid = current_sid();
6126
6127	isec = selinux_ipc(msq);
6128
6129	ad.type = LSM_AUDIT_DATA_IPC;
6130	ad.u.ipc_id = msq->key;
6131
6132	return avc_has_perm(&selinux_state,
6133			    sid, isec->sid, SECCLASS_MSGQ,
6134			    MSGQ__ASSOCIATE, &ad);
6135}
6136
6137static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6138{
6139	int err;
6140	int perms;
6141
6142	switch (cmd) {
6143	case IPC_INFO:
6144	case MSG_INFO:
6145		/* No specific object, just general system-wide information. */
6146		return avc_has_perm(&selinux_state,
6147				    current_sid(), SECINITSID_KERNEL,
6148				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6149	case IPC_STAT:
6150	case MSG_STAT:
6151	case MSG_STAT_ANY:
6152		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6153		break;
6154	case IPC_SET:
6155		perms = MSGQ__SETATTR;
6156		break;
6157	case IPC_RMID:
6158		perms = MSGQ__DESTROY;
6159		break;
6160	default:
6161		return 0;
6162	}
6163
6164	err = ipc_has_perm(msq, perms);
6165	return err;
6166}
6167
6168static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6169{
6170	struct ipc_security_struct *isec;
6171	struct msg_security_struct *msec;
6172	struct common_audit_data ad;
6173	u32 sid = current_sid();
6174	int rc;
6175
6176	isec = selinux_ipc(msq);
6177	msec = selinux_msg_msg(msg);
6178
6179	/*
6180	 * First time through, need to assign label to the message
6181	 */
6182	if (msec->sid == SECINITSID_UNLABELED) {
6183		/*
6184		 * Compute new sid based on current process and
6185		 * message queue this message will be stored in
6186		 */
6187		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6188					     SECCLASS_MSG, NULL, &msec->sid);
6189		if (rc)
6190			return rc;
6191	}
6192
6193	ad.type = LSM_AUDIT_DATA_IPC;
6194	ad.u.ipc_id = msq->key;
6195
6196	/* Can this process write to the queue? */
6197	rc = avc_has_perm(&selinux_state,
6198			  sid, isec->sid, SECCLASS_MSGQ,
6199			  MSGQ__WRITE, &ad);
6200	if (!rc)
6201		/* Can this process send the message */
6202		rc = avc_has_perm(&selinux_state,
6203				  sid, msec->sid, SECCLASS_MSG,
6204				  MSG__SEND, &ad);
6205	if (!rc)
6206		/* Can the message be put in the queue? */
6207		rc = avc_has_perm(&selinux_state,
6208				  msec->sid, isec->sid, SECCLASS_MSGQ,
6209				  MSGQ__ENQUEUE, &ad);
6210
6211	return rc;
6212}
6213
6214static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6215				    struct task_struct *target,
6216				    long type, int mode)
6217{
6218	struct ipc_security_struct *isec;
6219	struct msg_security_struct *msec;
6220	struct common_audit_data ad;
6221	u32 sid = task_sid_obj(target);
6222	int rc;
6223
6224	isec = selinux_ipc(msq);
6225	msec = selinux_msg_msg(msg);
6226
6227	ad.type = LSM_AUDIT_DATA_IPC;
6228	ad.u.ipc_id = msq->key;
6229
6230	rc = avc_has_perm(&selinux_state,
6231			  sid, isec->sid,
6232			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6233	if (!rc)
6234		rc = avc_has_perm(&selinux_state,
6235				  sid, msec->sid,
6236				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6237	return rc;
6238}
6239
6240/* Shared Memory security operations */
6241static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6242{
6243	struct ipc_security_struct *isec;
6244	struct common_audit_data ad;
6245	u32 sid = current_sid();
6246	int rc;
6247
6248	isec = selinux_ipc(shp);
6249	ipc_init_security(isec, SECCLASS_SHM);
 
 
 
6250
6251	ad.type = LSM_AUDIT_DATA_IPC;
6252	ad.u.ipc_id = shp->key;
6253
6254	rc = avc_has_perm(&selinux_state,
6255			  sid, isec->sid, SECCLASS_SHM,
6256			  SHM__CREATE, &ad);
6257	return rc;
 
 
 
 
 
 
 
 
 
6258}
6259
6260static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6261{
6262	struct ipc_security_struct *isec;
6263	struct common_audit_data ad;
6264	u32 sid = current_sid();
6265
6266	isec = selinux_ipc(shp);
6267
6268	ad.type = LSM_AUDIT_DATA_IPC;
6269	ad.u.ipc_id = shp->key;
6270
6271	return avc_has_perm(&selinux_state,
6272			    sid, isec->sid, SECCLASS_SHM,
6273			    SHM__ASSOCIATE, &ad);
6274}
6275
6276/* Note, at this point, shp is locked down */
6277static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6278{
6279	int perms;
6280	int err;
6281
6282	switch (cmd) {
6283	case IPC_INFO:
6284	case SHM_INFO:
6285		/* No specific object, just general system-wide information. */
6286		return avc_has_perm(&selinux_state,
6287				    current_sid(), SECINITSID_KERNEL,
6288				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6289	case IPC_STAT:
6290	case SHM_STAT:
6291	case SHM_STAT_ANY:
6292		perms = SHM__GETATTR | SHM__ASSOCIATE;
6293		break;
6294	case IPC_SET:
6295		perms = SHM__SETATTR;
6296		break;
6297	case SHM_LOCK:
6298	case SHM_UNLOCK:
6299		perms = SHM__LOCK;
6300		break;
6301	case IPC_RMID:
6302		perms = SHM__DESTROY;
6303		break;
6304	default:
6305		return 0;
6306	}
6307
6308	err = ipc_has_perm(shp, perms);
6309	return err;
6310}
6311
6312static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6313			     char __user *shmaddr, int shmflg)
6314{
6315	u32 perms;
6316
6317	if (shmflg & SHM_RDONLY)
6318		perms = SHM__READ;
6319	else
6320		perms = SHM__READ | SHM__WRITE;
6321
6322	return ipc_has_perm(shp, perms);
6323}
6324
6325/* Semaphore security operations */
6326static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6327{
6328	struct ipc_security_struct *isec;
6329	struct common_audit_data ad;
6330	u32 sid = current_sid();
6331	int rc;
6332
6333	isec = selinux_ipc(sma);
6334	ipc_init_security(isec, SECCLASS_SEM);
 
 
 
6335
6336	ad.type = LSM_AUDIT_DATA_IPC;
6337	ad.u.ipc_id = sma->key;
6338
6339	rc = avc_has_perm(&selinux_state,
6340			  sid, isec->sid, SECCLASS_SEM,
6341			  SEM__CREATE, &ad);
6342	return rc;
 
 
 
 
 
 
 
 
 
6343}
6344
6345static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6346{
6347	struct ipc_security_struct *isec;
6348	struct common_audit_data ad;
6349	u32 sid = current_sid();
6350
6351	isec = selinux_ipc(sma);
6352
6353	ad.type = LSM_AUDIT_DATA_IPC;
6354	ad.u.ipc_id = sma->key;
6355
6356	return avc_has_perm(&selinux_state,
6357			    sid, isec->sid, SECCLASS_SEM,
6358			    SEM__ASSOCIATE, &ad);
6359}
6360
6361/* Note, at this point, sma is locked down */
6362static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6363{
6364	int err;
6365	u32 perms;
6366
6367	switch (cmd) {
6368	case IPC_INFO:
6369	case SEM_INFO:
6370		/* No specific object, just general system-wide information. */
6371		return avc_has_perm(&selinux_state,
6372				    current_sid(), SECINITSID_KERNEL,
6373				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6374	case GETPID:
6375	case GETNCNT:
6376	case GETZCNT:
6377		perms = SEM__GETATTR;
6378		break;
6379	case GETVAL:
6380	case GETALL:
6381		perms = SEM__READ;
6382		break;
6383	case SETVAL:
6384	case SETALL:
6385		perms = SEM__WRITE;
6386		break;
6387	case IPC_RMID:
6388		perms = SEM__DESTROY;
6389		break;
6390	case IPC_SET:
6391		perms = SEM__SETATTR;
6392		break;
6393	case IPC_STAT:
6394	case SEM_STAT:
6395	case SEM_STAT_ANY:
6396		perms = SEM__GETATTR | SEM__ASSOCIATE;
6397		break;
6398	default:
6399		return 0;
6400	}
6401
6402	err = ipc_has_perm(sma, perms);
6403	return err;
6404}
6405
6406static int selinux_sem_semop(struct kern_ipc_perm *sma,
6407			     struct sembuf *sops, unsigned nsops, int alter)
6408{
6409	u32 perms;
6410
6411	if (alter)
6412		perms = SEM__READ | SEM__WRITE;
6413	else
6414		perms = SEM__READ;
6415
6416	return ipc_has_perm(sma, perms);
6417}
6418
6419static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6420{
6421	u32 av = 0;
6422
6423	av = 0;
6424	if (flag & S_IRUGO)
6425		av |= IPC__UNIX_READ;
6426	if (flag & S_IWUGO)
6427		av |= IPC__UNIX_WRITE;
6428
6429	if (av == 0)
6430		return 0;
6431
6432	return ipc_has_perm(ipcp, av);
6433}
6434
6435static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6436{
6437	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6438	*secid = isec->sid;
6439}
6440
6441static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6442{
6443	if (inode)
6444		inode_doinit_with_dentry(inode, dentry);
6445}
6446
6447static int selinux_getprocattr(struct task_struct *p,
6448			       char *name, char **value)
6449{
6450	const struct task_security_struct *__tsec;
6451	u32 sid;
6452	int error;
6453	unsigned len;
6454
6455	rcu_read_lock();
6456	__tsec = selinux_cred(__task_cred(p));
6457
6458	if (current != p) {
6459		error = avc_has_perm(&selinux_state,
6460				     current_sid(), __tsec->sid,
6461				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6462		if (error)
6463			goto bad;
6464	}
6465
 
 
 
6466	if (!strcmp(name, "current"))
6467		sid = __tsec->sid;
6468	else if (!strcmp(name, "prev"))
6469		sid = __tsec->osid;
6470	else if (!strcmp(name, "exec"))
6471		sid = __tsec->exec_sid;
6472	else if (!strcmp(name, "fscreate"))
6473		sid = __tsec->create_sid;
6474	else if (!strcmp(name, "keycreate"))
6475		sid = __tsec->keycreate_sid;
6476	else if (!strcmp(name, "sockcreate"))
6477		sid = __tsec->sockcreate_sid;
6478	else {
6479		error = -EINVAL;
6480		goto bad;
6481	}
6482	rcu_read_unlock();
6483
6484	if (!sid)
6485		return 0;
6486
6487	error = security_sid_to_context(&selinux_state, sid, value, &len);
6488	if (error)
6489		return error;
6490	return len;
6491
6492bad:
6493	rcu_read_unlock();
6494	return error;
6495}
6496
6497static int selinux_setprocattr(const char *name, void *value, size_t size)
 
6498{
6499	struct task_security_struct *tsec;
 
6500	struct cred *new;
6501	u32 mysid = current_sid(), sid = 0, ptsid;
6502	int error;
6503	char *str = value;
6504
 
 
 
 
 
 
6505	/*
6506	 * Basic control over ability to set these attributes at all.
 
 
6507	 */
6508	if (!strcmp(name, "exec"))
6509		error = avc_has_perm(&selinux_state,
6510				     mysid, mysid, SECCLASS_PROCESS,
6511				     PROCESS__SETEXEC, NULL);
6512	else if (!strcmp(name, "fscreate"))
6513		error = avc_has_perm(&selinux_state,
6514				     mysid, mysid, SECCLASS_PROCESS,
6515				     PROCESS__SETFSCREATE, NULL);
6516	else if (!strcmp(name, "keycreate"))
6517		error = avc_has_perm(&selinux_state,
6518				     mysid, mysid, SECCLASS_PROCESS,
6519				     PROCESS__SETKEYCREATE, NULL);
6520	else if (!strcmp(name, "sockcreate"))
6521		error = avc_has_perm(&selinux_state,
6522				     mysid, mysid, SECCLASS_PROCESS,
6523				     PROCESS__SETSOCKCREATE, NULL);
6524	else if (!strcmp(name, "current"))
6525		error = avc_has_perm(&selinux_state,
6526				     mysid, mysid, SECCLASS_PROCESS,
6527				     PROCESS__SETCURRENT, NULL);
6528	else
6529		error = -EINVAL;
6530	if (error)
6531		return error;
6532
6533	/* Obtain a SID for the context, if one was specified. */
6534	if (size && str[0] && str[0] != '\n') {
6535		if (str[size-1] == '\n') {
6536			str[size-1] = 0;
6537			size--;
6538		}
6539		error = security_context_to_sid(&selinux_state, value, size,
6540						&sid, GFP_KERNEL);
6541		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6542			if (!has_cap_mac_admin(true)) {
6543				struct audit_buffer *ab;
6544				size_t audit_size;
6545
6546				/* We strip a nul only if it is at the end, otherwise the
6547				 * context contains a nul and we should audit that */
6548				if (str[size - 1] == '\0')
6549					audit_size = size - 1;
6550				else
6551					audit_size = size;
6552				ab = audit_log_start(audit_context(),
6553						     GFP_ATOMIC,
6554						     AUDIT_SELINUX_ERR);
6555				audit_log_format(ab, "op=fscreate invalid_context=");
6556				audit_log_n_untrustedstring(ab, value, audit_size);
6557				audit_log_end(ab);
6558
6559				return error;
6560			}
6561			error = security_context_to_sid_force(
6562						      &selinux_state,
6563						      value, size, &sid);
6564		}
6565		if (error)
6566			return error;
6567	}
6568
6569	new = prepare_creds();
6570	if (!new)
6571		return -ENOMEM;
6572
6573	/* Permission checking based on the specified context is
6574	   performed during the actual operation (execve,
6575	   open/mkdir/...), when we know the full context of the
6576	   operation.  See selinux_bprm_creds_for_exec for the execve
6577	   checks and may_create for the file creation checks. The
6578	   operation will then fail if the context is not permitted. */
6579	tsec = selinux_cred(new);
6580	if (!strcmp(name, "exec")) {
6581		tsec->exec_sid = sid;
6582	} else if (!strcmp(name, "fscreate")) {
6583		tsec->create_sid = sid;
6584	} else if (!strcmp(name, "keycreate")) {
6585		if (sid) {
6586			error = avc_has_perm(&selinux_state, mysid, sid,
6587					     SECCLASS_KEY, KEY__CREATE, NULL);
6588			if (error)
6589				goto abort_change;
6590		}
6591		tsec->keycreate_sid = sid;
6592	} else if (!strcmp(name, "sockcreate")) {
6593		tsec->sockcreate_sid = sid;
6594	} else if (!strcmp(name, "current")) {
6595		error = -EINVAL;
6596		if (sid == 0)
6597			goto abort_change;
6598
6599		/* Only allow single threaded processes to change context */
6600		error = -EPERM;
6601		if (!current_is_single_threaded()) {
6602			error = security_bounded_transition(&selinux_state,
6603							    tsec->sid, sid);
6604			if (error)
6605				goto abort_change;
6606		}
6607
6608		/* Check permissions for the transition. */
6609		error = avc_has_perm(&selinux_state,
6610				     tsec->sid, sid, SECCLASS_PROCESS,
6611				     PROCESS__DYNTRANSITION, NULL);
6612		if (error)
6613			goto abort_change;
6614
6615		/* Check for ptracing, and update the task SID if ok.
6616		   Otherwise, leave SID unchanged and fail. */
6617		ptsid = ptrace_parent_sid();
6618		if (ptsid != 0) {
6619			error = avc_has_perm(&selinux_state,
6620					     ptsid, sid, SECCLASS_PROCESS,
 
 
 
 
 
6621					     PROCESS__PTRACE, NULL);
6622			if (error)
6623				goto abort_change;
6624		}
6625
6626		tsec->sid = sid;
6627	} else {
6628		error = -EINVAL;
6629		goto abort_change;
6630	}
6631
6632	commit_creds(new);
6633	return size;
6634
6635abort_change:
6636	abort_creds(new);
6637	return error;
6638}
6639
6640static int selinux_ismaclabel(const char *name)
6641{
6642	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6643}
6644
6645static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6646{
6647	return security_sid_to_context(&selinux_state, secid,
6648				       secdata, seclen);
6649}
6650
6651static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6652{
6653	return security_context_to_sid(&selinux_state, secdata, seclen,
6654				       secid, GFP_KERNEL);
6655}
6656
6657static void selinux_release_secctx(char *secdata, u32 seclen)
6658{
6659	kfree(secdata);
6660}
6661
6662static void selinux_inode_invalidate_secctx(struct inode *inode)
6663{
6664	struct inode_security_struct *isec = selinux_inode(inode);
6665
6666	spin_lock(&isec->lock);
6667	isec->initialized = LABEL_INVALID;
6668	spin_unlock(&isec->lock);
6669}
6670
6671/*
6672 *	called with inode->i_mutex locked
6673 */
6674static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6675{
6676	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6677					   ctx, ctxlen, 0);
6678	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6679	return rc == -EOPNOTSUPP ? 0 : rc;
6680}
6681
6682/*
6683 *	called with inode->i_mutex locked
6684 */
6685static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6686{
6687	return __vfs_setxattr_noperm(&init_user_ns, dentry, XATTR_NAME_SELINUX,
6688				     ctx, ctxlen, 0);
6689}
6690
6691static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6692{
6693	int len = 0;
6694	len = selinux_inode_getsecurity(&init_user_ns, inode,
6695					XATTR_SELINUX_SUFFIX, ctx, true);
6696	if (len < 0)
6697		return len;
6698	*ctxlen = len;
6699	return 0;
6700}
6701#ifdef CONFIG_KEYS
6702
6703static int selinux_key_alloc(struct key *k, const struct cred *cred,
6704			     unsigned long flags)
6705{
6706	const struct task_security_struct *tsec;
6707	struct key_security_struct *ksec;
6708
6709	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6710	if (!ksec)
6711		return -ENOMEM;
6712
6713	tsec = selinux_cred(cred);
6714	if (tsec->keycreate_sid)
6715		ksec->sid = tsec->keycreate_sid;
6716	else
6717		ksec->sid = tsec->sid;
6718
6719	k->security = ksec;
6720	return 0;
6721}
6722
6723static void selinux_key_free(struct key *k)
6724{
6725	struct key_security_struct *ksec = k->security;
6726
6727	k->security = NULL;
6728	kfree(ksec);
6729}
6730
6731static int selinux_key_permission(key_ref_t key_ref,
6732				  const struct cred *cred,
6733				  enum key_need_perm need_perm)
6734{
6735	struct key *key;
6736	struct key_security_struct *ksec;
6737	u32 perm, sid;
6738
6739	switch (need_perm) {
6740	case KEY_NEED_VIEW:
6741		perm = KEY__VIEW;
6742		break;
6743	case KEY_NEED_READ:
6744		perm = KEY__READ;
6745		break;
6746	case KEY_NEED_WRITE:
6747		perm = KEY__WRITE;
6748		break;
6749	case KEY_NEED_SEARCH:
6750		perm = KEY__SEARCH;
6751		break;
6752	case KEY_NEED_LINK:
6753		perm = KEY__LINK;
6754		break;
6755	case KEY_NEED_SETATTR:
6756		perm = KEY__SETATTR;
6757		break;
6758	case KEY_NEED_UNLINK:
6759	case KEY_SYSADMIN_OVERRIDE:
6760	case KEY_AUTHTOKEN_OVERRIDE:
6761	case KEY_DEFER_PERM_CHECK:
6762		return 0;
6763	default:
6764		WARN_ON(1);
6765		return -EPERM;
6766
6767	}
6768
6769	sid = cred_sid(cred);
6770	key = key_ref_to_ptr(key_ref);
6771	ksec = key->security;
6772
6773	return avc_has_perm(&selinux_state,
6774			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6775}
6776
6777static int selinux_key_getsecurity(struct key *key, char **_buffer)
6778{
6779	struct key_security_struct *ksec = key->security;
6780	char *context = NULL;
6781	unsigned len;
6782	int rc;
6783
6784	rc = security_sid_to_context(&selinux_state, ksec->sid,
6785				     &context, &len);
6786	if (!rc)
6787		rc = len;
6788	*_buffer = context;
6789	return rc;
6790}
6791
6792#ifdef CONFIG_KEY_NOTIFICATIONS
6793static int selinux_watch_key(struct key *key)
6794{
6795	struct key_security_struct *ksec = key->security;
6796	u32 sid = current_sid();
6797
6798	return avc_has_perm(&selinux_state,
6799			    sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6800}
6801#endif
6802#endif
6803
6804#ifdef CONFIG_SECURITY_INFINIBAND
6805static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6806{
6807	struct common_audit_data ad;
6808	int err;
6809	u32 sid = 0;
6810	struct ib_security_struct *sec = ib_sec;
6811	struct lsm_ibpkey_audit ibpkey;
6812
6813	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6814	if (err)
6815		return err;
6816
6817	ad.type = LSM_AUDIT_DATA_IBPKEY;
6818	ibpkey.subnet_prefix = subnet_prefix;
6819	ibpkey.pkey = pkey_val;
6820	ad.u.ibpkey = &ibpkey;
6821	return avc_has_perm(&selinux_state,
6822			    sec->sid, sid,
6823			    SECCLASS_INFINIBAND_PKEY,
6824			    INFINIBAND_PKEY__ACCESS, &ad);
6825}
6826
6827static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6828					    u8 port_num)
6829{
6830	struct common_audit_data ad;
6831	int err;
6832	u32 sid = 0;
6833	struct ib_security_struct *sec = ib_sec;
6834	struct lsm_ibendport_audit ibendport;
6835
6836	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6837				      &sid);
6838
6839	if (err)
6840		return err;
6841
6842	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6843	ibendport.dev_name = dev_name;
6844	ibendport.port = port_num;
6845	ad.u.ibendport = &ibendport;
6846	return avc_has_perm(&selinux_state,
6847			    sec->sid, sid,
6848			    SECCLASS_INFINIBAND_ENDPORT,
6849			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6850}
6851
6852static int selinux_ib_alloc_security(void **ib_sec)
6853{
6854	struct ib_security_struct *sec;
6855
6856	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6857	if (!sec)
6858		return -ENOMEM;
6859	sec->sid = current_sid();
6860
6861	*ib_sec = sec;
6862	return 0;
6863}
6864
6865static void selinux_ib_free_security(void *ib_sec)
6866{
6867	kfree(ib_sec);
6868}
6869#endif
6870
6871#ifdef CONFIG_BPF_SYSCALL
6872static int selinux_bpf(int cmd, union bpf_attr *attr,
6873				     unsigned int size)
6874{
6875	u32 sid = current_sid();
6876	int ret;
6877
6878	switch (cmd) {
6879	case BPF_MAP_CREATE:
6880		ret = avc_has_perm(&selinux_state,
6881				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6882				   NULL);
6883		break;
6884	case BPF_PROG_LOAD:
6885		ret = avc_has_perm(&selinux_state,
6886				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6887				   NULL);
6888		break;
6889	default:
6890		ret = 0;
6891		break;
6892	}
6893
6894	return ret;
6895}
6896
6897static u32 bpf_map_fmode_to_av(fmode_t fmode)
6898{
6899	u32 av = 0;
6900
6901	if (fmode & FMODE_READ)
6902		av |= BPF__MAP_READ;
6903	if (fmode & FMODE_WRITE)
6904		av |= BPF__MAP_WRITE;
6905	return av;
6906}
6907
6908/* This function will check the file pass through unix socket or binder to see
6909 * if it is a bpf related object. And apply correspinding checks on the bpf
6910 * object based on the type. The bpf maps and programs, not like other files and
6911 * socket, are using a shared anonymous inode inside the kernel as their inode.
6912 * So checking that inode cannot identify if the process have privilege to
6913 * access the bpf object and that's why we have to add this additional check in
6914 * selinux_file_receive and selinux_binder_transfer_files.
6915 */
6916static int bpf_fd_pass(struct file *file, u32 sid)
6917{
6918	struct bpf_security_struct *bpfsec;
6919	struct bpf_prog *prog;
6920	struct bpf_map *map;
6921	int ret;
6922
6923	if (file->f_op == &bpf_map_fops) {
6924		map = file->private_data;
6925		bpfsec = map->security;
6926		ret = avc_has_perm(&selinux_state,
6927				   sid, bpfsec->sid, SECCLASS_BPF,
6928				   bpf_map_fmode_to_av(file->f_mode), NULL);
6929		if (ret)
6930			return ret;
6931	} else if (file->f_op == &bpf_prog_fops) {
6932		prog = file->private_data;
6933		bpfsec = prog->aux->security;
6934		ret = avc_has_perm(&selinux_state,
6935				   sid, bpfsec->sid, SECCLASS_BPF,
6936				   BPF__PROG_RUN, NULL);
6937		if (ret)
6938			return ret;
6939	}
6940	return 0;
6941}
6942
6943static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6944{
6945	u32 sid = current_sid();
6946	struct bpf_security_struct *bpfsec;
6947
6948	bpfsec = map->security;
6949	return avc_has_perm(&selinux_state,
6950			    sid, bpfsec->sid, SECCLASS_BPF,
6951			    bpf_map_fmode_to_av(fmode), NULL);
6952}
6953
6954static int selinux_bpf_prog(struct bpf_prog *prog)
6955{
6956	u32 sid = current_sid();
6957	struct bpf_security_struct *bpfsec;
6958
6959	bpfsec = prog->aux->security;
6960	return avc_has_perm(&selinux_state,
6961			    sid, bpfsec->sid, SECCLASS_BPF,
6962			    BPF__PROG_RUN, NULL);
6963}
6964
6965static int selinux_bpf_map_alloc(struct bpf_map *map)
6966{
6967	struct bpf_security_struct *bpfsec;
6968
6969	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6970	if (!bpfsec)
6971		return -ENOMEM;
6972
6973	bpfsec->sid = current_sid();
6974	map->security = bpfsec;
6975
6976	return 0;
6977}
6978
6979static void selinux_bpf_map_free(struct bpf_map *map)
6980{
6981	struct bpf_security_struct *bpfsec = map->security;
6982
6983	map->security = NULL;
6984	kfree(bpfsec);
6985}
6986
6987static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6988{
6989	struct bpf_security_struct *bpfsec;
6990
6991	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6992	if (!bpfsec)
6993		return -ENOMEM;
6994
6995	bpfsec->sid = current_sid();
6996	aux->security = bpfsec;
6997
6998	return 0;
6999}
7000
7001static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
7002{
7003	struct bpf_security_struct *bpfsec = aux->security;
7004
7005	aux->security = NULL;
7006	kfree(bpfsec);
7007}
7008#endif
7009
7010static int selinux_lockdown(enum lockdown_reason what)
7011{
7012	struct common_audit_data ad;
7013	u32 sid = current_sid();
7014	int invalid_reason = (what <= LOCKDOWN_NONE) ||
7015			     (what == LOCKDOWN_INTEGRITY_MAX) ||
7016			     (what >= LOCKDOWN_CONFIDENTIALITY_MAX);
7017
7018	if (WARN(invalid_reason, "Invalid lockdown reason")) {
7019		audit_log(audit_context(),
7020			  GFP_ATOMIC, AUDIT_SELINUX_ERR,
7021			  "lockdown_reason=invalid");
7022		return -EINVAL;
7023	}
7024
7025	ad.type = LSM_AUDIT_DATA_LOCKDOWN;
7026	ad.u.reason = what;
7027
7028	if (what <= LOCKDOWN_INTEGRITY_MAX)
7029		return avc_has_perm(&selinux_state,
7030				    sid, sid, SECCLASS_LOCKDOWN,
7031				    LOCKDOWN__INTEGRITY, &ad);
7032	else
7033		return avc_has_perm(&selinux_state,
7034				    sid, sid, SECCLASS_LOCKDOWN,
7035				    LOCKDOWN__CONFIDENTIALITY, &ad);
7036}
7037
7038struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
7039	.lbs_cred = sizeof(struct task_security_struct),
7040	.lbs_file = sizeof(struct file_security_struct),
7041	.lbs_inode = sizeof(struct inode_security_struct),
7042	.lbs_ipc = sizeof(struct ipc_security_struct),
7043	.lbs_msg_msg = sizeof(struct msg_security_struct),
7044	.lbs_superblock = sizeof(struct superblock_security_struct),
7045};
7046
7047#ifdef CONFIG_PERF_EVENTS
7048static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7049{
7050	u32 requested, sid = current_sid();
7051
7052	if (type == PERF_SECURITY_OPEN)
7053		requested = PERF_EVENT__OPEN;
7054	else if (type == PERF_SECURITY_CPU)
7055		requested = PERF_EVENT__CPU;
7056	else if (type == PERF_SECURITY_KERNEL)
7057		requested = PERF_EVENT__KERNEL;
7058	else if (type == PERF_SECURITY_TRACEPOINT)
7059		requested = PERF_EVENT__TRACEPOINT;
7060	else
7061		return -EINVAL;
7062
7063	return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
7064			    requested, NULL);
7065}
7066
7067static int selinux_perf_event_alloc(struct perf_event *event)
7068{
7069	struct perf_event_security_struct *perfsec;
7070
7071	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
7072	if (!perfsec)
7073		return -ENOMEM;
7074
7075	perfsec->sid = current_sid();
7076	event->security = perfsec;
7077
7078	return 0;
7079}
7080
7081static void selinux_perf_event_free(struct perf_event *event)
7082{
7083	struct perf_event_security_struct *perfsec = event->security;
7084
7085	event->security = NULL;
7086	kfree(perfsec);
7087}
7088
7089static int selinux_perf_event_read(struct perf_event *event)
7090{
7091	struct perf_event_security_struct *perfsec = event->security;
7092	u32 sid = current_sid();
7093
7094	return avc_has_perm(&selinux_state, sid, perfsec->sid,
7095			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7096}
7097
7098static int selinux_perf_event_write(struct perf_event *event)
7099{
7100	struct perf_event_security_struct *perfsec = event->security;
7101	u32 sid = current_sid();
7102
7103	return avc_has_perm(&selinux_state, sid, perfsec->sid,
7104			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7105}
7106#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7107
7108/*
7109 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7110 * 1. any hooks that don't belong to (2.) or (3.) below,
7111 * 2. hooks that both access structures allocated by other hooks, and allocate
7112 *    structures that can be later accessed by other hooks (mostly "cloning"
7113 *    hooks),
7114 * 3. hooks that only allocate structures that can be later accessed by other
7115 *    hooks ("allocating" hooks).
7116 *
7117 * Please follow block comment delimiters in the list to keep this order.
7118 *
7119 * This ordering is needed for SELinux runtime disable to work at least somewhat
7120 * safely. Breaking the ordering rules above might lead to NULL pointer derefs
7121 * when disabling SELinux at runtime.
7122 */
7123static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
7124	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7125	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7126	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7127	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7128
7129	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7130	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7131	LSM_HOOK_INIT(capget, selinux_capget),
7132	LSM_HOOK_INIT(capset, selinux_capset),
7133	LSM_HOOK_INIT(capable, selinux_capable),
7134	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7135	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7136	LSM_HOOK_INIT(syslog, selinux_syslog),
7137	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7138
7139	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7140
7141	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7142	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7143	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7144
7145	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7146	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7147	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7148	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7149	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7150	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7151	LSM_HOOK_INIT(sb_mount, selinux_mount),
7152	LSM_HOOK_INIT(sb_umount, selinux_umount),
7153	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7154	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7155
7156	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7157
7158	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7159	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7160
7161	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7162	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7163	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7164	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7165	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7166	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7167	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7168	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7169	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7170	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7171	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7172	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7173	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7174	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7175	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7176	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7177	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7178	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7179	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7180	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7181	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7182	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7183	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7184	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7185	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7186	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7187	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7188	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7189
7190	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7191
7192	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7193	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7194	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7195	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7196	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7197	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7198	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7199	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7200	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7201	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7202	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7203
7204	LSM_HOOK_INIT(file_open, selinux_file_open),
7205
7206	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7207	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7208	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7209	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7210	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7211	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7212	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7213	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7214	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7215	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7216	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7217	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7218	LSM_HOOK_INIT(task_getsecid_subj, selinux_task_getsecid_subj),
7219	LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7220	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7221	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7222	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7223	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7224	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7225	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7226	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7227	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7228	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7229	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7230
7231	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7232	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7233
7234	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7235	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7236	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7237	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7238
7239	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7240	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7241	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7242
7243	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7244	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7245	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7246
7247	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7248
7249	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7250	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7251
7252	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7253	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7254	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7255	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7256	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7257	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7258
7259	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7260	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7261
7262	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7263	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7264	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7265	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7266	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7267	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7268	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7269	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7270	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7271	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7272	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7273	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7274	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7275	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7276	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7277	LSM_HOOK_INIT(socket_getpeersec_stream,
7278			selinux_socket_getpeersec_stream),
7279	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7280	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7281	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7282	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7283	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7284	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7285	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7286	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7287	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7288	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7289	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7290	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7291	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7292	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7293	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7294	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7295	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7296	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7297	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7298	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7299#ifdef CONFIG_SECURITY_INFINIBAND
7300	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7301	LSM_HOOK_INIT(ib_endport_manage_subnet,
7302		      selinux_ib_endport_manage_subnet),
7303	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7304#endif
7305#ifdef CONFIG_SECURITY_NETWORK_XFRM
7306	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7307	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7308	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7309	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7310	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7311	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7312			selinux_xfrm_state_pol_flow_match),
7313	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
 
 
7314#endif
7315
7316#ifdef CONFIG_KEYS
7317	LSM_HOOK_INIT(key_free, selinux_key_free),
7318	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7319	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7320#ifdef CONFIG_KEY_NOTIFICATIONS
7321	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7322#endif
7323#endif
7324
7325#ifdef CONFIG_AUDIT
7326	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7327	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7328	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7329#endif
7330
7331#ifdef CONFIG_BPF_SYSCALL
7332	LSM_HOOK_INIT(bpf, selinux_bpf),
7333	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7334	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7335	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7336	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7337#endif
7338
7339#ifdef CONFIG_PERF_EVENTS
7340	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7341	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7342	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7343	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7344#endif
7345
7346	LSM_HOOK_INIT(locked_down, selinux_lockdown),
7347
7348	/*
7349	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7350	 */
7351	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7352	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7353	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7354	LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
7355#ifdef CONFIG_SECURITY_NETWORK_XFRM
7356	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7357#endif
7358
7359	/*
7360	 * PUT "ALLOCATING" HOOKS HERE
7361	 */
7362	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7363	LSM_HOOK_INIT(msg_queue_alloc_security,
7364		      selinux_msg_queue_alloc_security),
7365	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7366	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7367	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7368	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7369	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7370	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7371	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7372	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7373#ifdef CONFIG_SECURITY_INFINIBAND
7374	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7375#endif
7376#ifdef CONFIG_SECURITY_NETWORK_XFRM
7377	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7378	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7379	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7380		      selinux_xfrm_state_alloc_acquire),
7381#endif
7382#ifdef CONFIG_KEYS
7383	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7384#endif
7385#ifdef CONFIG_AUDIT
7386	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7387#endif
7388#ifdef CONFIG_BPF_SYSCALL
7389	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7390	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7391#endif
7392#ifdef CONFIG_PERF_EVENTS
7393	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7394#endif
7395};
7396
7397static __init int selinux_init(void)
7398{
7399	pr_info("SELinux:  Initializing.\n");
 
 
 
 
 
 
 
 
7400
7401	memset(&selinux_state, 0, sizeof(selinux_state));
7402	enforcing_set(&selinux_state, selinux_enforcing_boot);
7403	checkreqprot_set(&selinux_state, selinux_checkreqprot_boot);
7404	selinux_avc_init(&selinux_state.avc);
7405	mutex_init(&selinux_state.status_lock);
7406	mutex_init(&selinux_state.policy_mutex);
7407
7408	/* Set the security state for the initial task. */
7409	cred_init_security();
7410
7411	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7412
 
 
 
7413	avc_init();
7414
7415	avtab_cache_init();
7416
7417	ebitmap_cache_init();
7418
7419	hashtab_cache_init();
7420
7421	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7422
7423	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7424		panic("SELinux: Unable to register AVC netcache callback\n");
7425
7426	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7427		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7428
7429	if (selinux_enforcing_boot)
7430		pr_debug("SELinux:  Starting in enforcing mode\n");
7431	else
7432		pr_debug("SELinux:  Starting in permissive mode\n");
7433
7434	fs_validate_description("selinux", selinux_fs_parameters);
7435
7436	return 0;
7437}
7438
7439static void delayed_superblock_init(struct super_block *sb, void *unused)
7440{
7441	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7442}
7443
7444void selinux_complete_init(void)
7445{
7446	pr_debug("SELinux:  Completing initialization.\n");
7447
7448	/* Set up any superblocks initialized prior to the policy load. */
7449	pr_debug("SELinux:  Setting up existing superblocks.\n");
7450	iterate_supers(delayed_superblock_init, NULL);
7451}
7452
7453/* SELinux requires early initialization in order to label
7454   all processes and objects when they are created. */
7455DEFINE_LSM(selinux) = {
7456	.name = "selinux",
7457	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7458	.enabled = &selinux_enabled_boot,
7459	.blobs = &selinux_blob_sizes,
7460	.init = selinux_init,
7461};
7462
7463#if defined(CONFIG_NETFILTER)
7464
7465static const struct nf_hook_ops selinux_nf_ops[] = {
7466	{
7467		.hook =		selinux_ipv4_postroute,
7468		.pf =		NFPROTO_IPV4,
 
7469		.hooknum =	NF_INET_POST_ROUTING,
7470		.priority =	NF_IP_PRI_SELINUX_LAST,
7471	},
7472	{
7473		.hook =		selinux_ipv4_forward,
7474		.pf =		NFPROTO_IPV4,
 
7475		.hooknum =	NF_INET_FORWARD,
7476		.priority =	NF_IP_PRI_SELINUX_FIRST,
7477	},
7478	{
7479		.hook =		selinux_ipv4_output,
7480		.pf =		NFPROTO_IPV4,
 
7481		.hooknum =	NF_INET_LOCAL_OUT,
7482		.priority =	NF_IP_PRI_SELINUX_FIRST,
7483	},
7484#if IS_ENABLED(CONFIG_IPV6)
 
 
 
 
7485	{
7486		.hook =		selinux_ipv6_postroute,
7487		.pf =		NFPROTO_IPV6,
 
7488		.hooknum =	NF_INET_POST_ROUTING,
7489		.priority =	NF_IP6_PRI_SELINUX_LAST,
7490	},
7491	{
7492		.hook =		selinux_ipv6_forward,
7493		.pf =		NFPROTO_IPV6,
 
7494		.hooknum =	NF_INET_FORWARD,
7495		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7496	},
7497	{
7498		.hook =		selinux_ipv6_output,
7499		.pf =		NFPROTO_IPV6,
7500		.hooknum =	NF_INET_LOCAL_OUT,
7501		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7502	},
7503#endif	/* IPV6 */
7504};
7505
7506static int __net_init selinux_nf_register(struct net *net)
7507{
7508	return nf_register_net_hooks(net, selinux_nf_ops,
7509				     ARRAY_SIZE(selinux_nf_ops));
7510}
7511
7512static void __net_exit selinux_nf_unregister(struct net *net)
7513{
7514	nf_unregister_net_hooks(net, selinux_nf_ops,
7515				ARRAY_SIZE(selinux_nf_ops));
7516}
7517
7518static struct pernet_operations selinux_net_ops = {
7519	.init = selinux_nf_register,
7520	.exit = selinux_nf_unregister,
7521};
7522
7523static int __init selinux_nf_ip_init(void)
7524{
7525	int err;
7526
7527	if (!selinux_enabled_boot)
7528		return 0;
7529
7530	pr_debug("SELinux:  Registering netfilter hooks\n");
7531
7532	err = register_pernet_subsys(&selinux_net_ops);
7533	if (err)
7534		panic("SELinux: register_pernet_subsys: error %d\n", err);
7535
7536	return 0;
 
 
 
 
 
 
 
7537}
 
7538__initcall(selinux_nf_ip_init);
7539
7540#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7541static void selinux_nf_ip_exit(void)
7542{
7543	pr_debug("SELinux:  Unregistering netfilter hooks\n");
7544
7545	unregister_pernet_subsys(&selinux_net_ops);
 
 
 
7546}
7547#endif
7548
7549#else /* CONFIG_NETFILTER */
7550
7551#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7552#define selinux_nf_ip_exit()
7553#endif
7554
7555#endif /* CONFIG_NETFILTER */
7556
7557#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7558int selinux_disable(struct selinux_state *state)
 
 
7559{
7560	if (selinux_initialized(state)) {
7561		/* Not permitted after initial policy load. */
7562		return -EINVAL;
7563	}
7564
7565	if (selinux_disabled(state)) {
7566		/* Only do this once. */
7567		return -EINVAL;
7568	}
7569
7570	selinux_mark_disabled(state);
7571
7572	pr_info("SELinux:  Disabled at runtime.\n");
 
7573
7574	/*
7575	 * Unregister netfilter hooks.
7576	 * Must be done before security_delete_hooks() to avoid breaking
7577	 * runtime disable.
7578	 */
7579	selinux_nf_ip_exit();
7580
7581	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7582
7583	/* Try to destroy the avc node cache */
7584	avc_disable();
 
 
 
7585
7586	/* Unregister selinuxfs. */
7587	exit_sel_fs();
7588
7589	return 0;
7590}
7591#endif