Linux Audio

Check our new training course

Loading...
v3.5.6
  1/* CPU control.
  2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
  3 *
  4 * This code is licenced under the GPL.
  5 */
 
  6#include <linux/proc_fs.h>
  7#include <linux/smp.h>
  8#include <linux/init.h>
  9#include <linux/notifier.h>
 10#include <linux/sched.h>
 
 
 
 
 11#include <linux/unistd.h>
 12#include <linux/cpu.h>
 13#include <linux/oom.h>
 14#include <linux/rcupdate.h>
 15#include <linux/export.h>
 16#include <linux/bug.h>
 17#include <linux/kthread.h>
 18#include <linux/stop_machine.h>
 19#include <linux/mutex.h>
 20#include <linux/gfp.h>
 21#include <linux/suspend.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 22
 23#include "smpboot.h"
 24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 26/* Serializes the updates to cpu_online_mask, cpu_present_mask */
 27static DEFINE_MUTEX(cpu_add_remove_lock);
 
 
 28
 29/*
 30 * The following two API's must be used when attempting
 31 * to serialize the updates to cpu_online_mask, cpu_present_mask.
 32 */
 33void cpu_maps_update_begin(void)
 34{
 35	mutex_lock(&cpu_add_remove_lock);
 36}
 37
 38void cpu_maps_update_done(void)
 39{
 40	mutex_unlock(&cpu_add_remove_lock);
 41}
 42
 43static RAW_NOTIFIER_HEAD(cpu_chain);
 44
 45/* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
 46 * Should always be manipulated under cpu_add_remove_lock
 47 */
 48static int cpu_hotplug_disabled;
 49
 50#ifdef CONFIG_HOTPLUG_CPU
 51
 52static struct {
 53	struct task_struct *active_writer;
 54	struct mutex lock; /* Synchronizes accesses to refcount, */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 55	/*
 56	 * Also blocks the new readers during
 57	 * an ongoing cpu hotplug operation.
 
 
 58	 */
 59	int refcount;
 60} cpu_hotplug = {
 61	.active_writer = NULL,
 62	.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
 63	.refcount = 0,
 64};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 65
 66void get_online_cpus(void)
 67{
 68	might_sleep();
 69	if (cpu_hotplug.active_writer == current)
 70		return;
 71	mutex_lock(&cpu_hotplug.lock);
 72	cpu_hotplug.refcount++;
 73	mutex_unlock(&cpu_hotplug.lock);
 74
 
 
 
 
 
 75}
 76EXPORT_SYMBOL_GPL(get_online_cpus);
 77
 78void put_online_cpus(void)
 
 
 79{
 80	if (cpu_hotplug.active_writer == current)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 81		return;
 82	mutex_lock(&cpu_hotplug.lock);
 83	if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
 84		wake_up_process(cpu_hotplug.active_writer);
 85	mutex_unlock(&cpu_hotplug.lock);
 86
 
 
 
 
 
 
 
 87}
 88EXPORT_SYMBOL_GPL(put_online_cpus);
 89
 90/*
 91 * This ensures that the hotplug operation can begin only when the
 92 * refcount goes to zero.
 93 *
 94 * Note that during a cpu-hotplug operation, the new readers, if any,
 95 * will be blocked by the cpu_hotplug.lock
 96 *
 97 * Since cpu_hotplug_begin() is always called after invoking
 98 * cpu_maps_update_begin(), we can be sure that only one writer is active.
 99 *
100 * Note that theoretically, there is a possibility of a livelock:
101 * - Refcount goes to zero, last reader wakes up the sleeping
102 *   writer.
103 * - Last reader unlocks the cpu_hotplug.lock.
104 * - A new reader arrives at this moment, bumps up the refcount.
105 * - The writer acquires the cpu_hotplug.lock finds the refcount
106 *   non zero and goes to sleep again.
107 *
108 * However, this is very difficult to achieve in practice since
109 * get_online_cpus() not an api which is called all that often.
110 *
111 */
112static void cpu_hotplug_begin(void)
113{
114	cpu_hotplug.active_writer = current;
 
 
115
116	for (;;) {
117		mutex_lock(&cpu_hotplug.lock);
118		if (likely(!cpu_hotplug.refcount))
119			break;
120		__set_current_state(TASK_UNINTERRUPTIBLE);
121		mutex_unlock(&cpu_hotplug.lock);
122		schedule();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123	}
 
 
 
 
124}
125
126static void cpu_hotplug_done(void)
 
127{
128	cpu_hotplug.active_writer = NULL;
129	mutex_unlock(&cpu_hotplug.lock);
 
 
 
 
 
 
 
 
 
 
130}
131
132#else /* #if CONFIG_HOTPLUG_CPU */
133static void cpu_hotplug_begin(void) {}
134static void cpu_hotplug_done(void) {}
135#endif	/* #else #if CONFIG_HOTPLUG_CPU */
136
137/* Need to know about CPUs going up/down? */
138int __ref register_cpu_notifier(struct notifier_block *nb)
 
 
 
 
 
 
 
 
 
139{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140	int ret;
141	cpu_maps_update_begin();
142	ret = raw_notifier_chain_register(&cpu_chain, nb);
143	cpu_maps_update_done();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144	return ret;
145}
146
147static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
148			int *nr_calls)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149{
 
150	int ret;
151
152	ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
153					nr_calls);
 
 
 
154
155	return notifier_to_errno(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
156}
157
158static int cpu_notify(unsigned long val, void *v)
159{
160	return __cpu_notify(val, v, -1, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161}
162
163#ifdef CONFIG_HOTPLUG_CPU
 
 
 
 
 
 
 
164
165static void cpu_notify_nofail(unsigned long val, void *v)
166{
167	BUG_ON(cpu_notify(val, v));
 
168}
169EXPORT_SYMBOL(register_cpu_notifier);
170
171void __ref unregister_cpu_notifier(struct notifier_block *nb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172{
173	cpu_maps_update_begin();
174	raw_notifier_chain_unregister(&cpu_chain, nb);
175	cpu_maps_update_done();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176}
177EXPORT_SYMBOL(unregister_cpu_notifier);
 
 
 
 
178
179/**
180 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
181 * @cpu: a CPU id
182 *
183 * This function walks all processes, finds a valid mm struct for each one and
184 * then clears a corresponding bit in mm's cpumask.  While this all sounds
185 * trivial, there are various non-obvious corner cases, which this function
186 * tries to solve in a safe manner.
187 *
188 * Also note that the function uses a somewhat relaxed locking scheme, so it may
189 * be called only for an already offlined CPU.
190 */
191void clear_tasks_mm_cpumask(int cpu)
192{
193	struct task_struct *p;
194
195	/*
196	 * This function is called after the cpu is taken down and marked
197	 * offline, so its not like new tasks will ever get this cpu set in
198	 * their mm mask. -- Peter Zijlstra
199	 * Thus, we may use rcu_read_lock() here, instead of grabbing
200	 * full-fledged tasklist_lock.
201	 */
202	WARN_ON(cpu_online(cpu));
203	rcu_read_lock();
204	for_each_process(p) {
205		struct task_struct *t;
206
207		/*
208		 * Main thread might exit, but other threads may still have
209		 * a valid mm. Find one.
210		 */
211		t = find_lock_task_mm(p);
212		if (!t)
213			continue;
214		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
215		task_unlock(t);
216	}
217	rcu_read_unlock();
218}
219
220static inline void check_for_tasks(int cpu)
221{
222	struct task_struct *p;
223
224	write_lock_irq(&tasklist_lock);
225	for_each_process(p) {
226		if (task_cpu(p) == cpu && p->state == TASK_RUNNING &&
227		    (p->utime || p->stime))
228			printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d "
229				"(state = %ld, flags = %x)\n",
230				p->comm, task_pid_nr(p), cpu,
231				p->state, p->flags);
232	}
233	write_unlock_irq(&tasklist_lock);
234}
235
236struct take_cpu_down_param {
237	unsigned long mod;
238	void *hcpu;
239};
240
241/* Take this CPU down. */
242static int __ref take_cpu_down(void *_param)
243{
244	struct take_cpu_down_param *param = _param;
245	int err;
 
 
246
247	/* Ensure this CPU doesn't handle any more interrupts. */
248	err = __cpu_disable();
249	if (err < 0)
250		return err;
251
252	cpu_notify(CPU_DYING | param->mod, param->hcpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
253	return 0;
254}
255
256/* Requires cpu_add_remove_lock to be held */
257static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
258{
259	int err, nr_calls = 0;
260	void *hcpu = (void *)(long)cpu;
261	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
262	struct take_cpu_down_param tcd_param = {
263		.mod = mod,
264		.hcpu = hcpu,
265	};
266
267	if (num_online_cpus() == 1)
268		return -EBUSY;
269
270	if (!cpu_online(cpu))
271		return -EINVAL;
272
273	cpu_hotplug_begin();
 
274
275	err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
276	if (err) {
277		nr_calls--;
278		__cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
279		printk("%s: attempt to take down CPU %u failed\n",
280				__func__, cpu);
281		goto out_release;
282	}
283
284	err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
 
 
 
285	if (err) {
286		/* CPU didn't die: tell everyone.  Can't complain. */
287		cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
288
289		goto out_release;
 
290	}
291	BUG_ON(cpu_online(cpu));
292
293	/*
294	 * The migration_call() CPU_DYING callback will have removed all
295	 * runnable tasks from the cpu, there's only the idle task left now
296	 * that the migration thread is done doing the stop_machine thing.
297	 *
298	 * Wait for the stop thread to go away.
299	 */
300	while (!idle_cpu(cpu))
301		cpu_relax();
 
 
 
302
 
303	/* This actually kills the CPU. */
304	__cpu_die(cpu);
305
306	/* CPU is completely dead: tell everyone.  Too late to complain. */
307	cpu_notify_nofail(CPU_DEAD | mod, hcpu);
 
 
308
309	check_for_tasks(cpu);
 
 
310
311out_release:
312	cpu_hotplug_done();
313	if (!err)
314		cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
315	return err;
316}
317
318int __ref cpu_down(unsigned int cpu)
319{
320	int err;
321
322	cpu_maps_update_begin();
 
 
 
 
 
 
 
 
 
323
324	if (cpu_hotplug_disabled) {
325		err = -EBUSY;
326		goto out;
 
 
 
 
 
 
 
 
 
 
 
327	}
328
329	err = _cpu_down(cpu, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
330
331out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
332	cpu_maps_update_done();
333	return err;
334}
335EXPORT_SYMBOL(cpu_down);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
336#endif /*CONFIG_HOTPLUG_CPU*/
337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
338/* Requires cpu_add_remove_lock to be held */
339static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen)
340{
341	int ret, nr_calls = 0;
342	void *hcpu = (void *)(long)cpu;
343	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
344	struct task_struct *idle;
 
345
346	if (cpu_online(cpu) || !cpu_present(cpu))
347		return -EINVAL;
348
349	cpu_hotplug_begin();
 
 
 
350
351	idle = idle_thread_get(cpu);
352	if (IS_ERR(idle)) {
353		ret = PTR_ERR(idle);
 
 
354		goto out;
 
 
 
 
 
 
 
 
355	}
356
357	ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
358	if (ret) {
359		nr_calls--;
360		printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
361				__func__, cpu);
362		goto out_notify;
 
 
 
 
 
 
 
 
 
363	}
364
365	/* Arch-specific enabling code. */
366	ret = __cpu_up(cpu, idle);
367	if (ret != 0)
368		goto out_notify;
369	BUG_ON(!cpu_online(cpu));
370
371	/* Now call notifier in preparation. */
372	cpu_notify(CPU_ONLINE | mod, hcpu);
373
374out_notify:
375	if (ret != 0)
376		__cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
377out:
378	cpu_hotplug_done();
379
 
380	return ret;
381}
382
383int __cpuinit cpu_up(unsigned int cpu)
384{
385	int err = 0;
386
387#ifdef	CONFIG_MEMORY_HOTPLUG
388	int nid;
389	pg_data_t	*pgdat;
390#endif
391
392	if (!cpu_possible(cpu)) {
393		printk(KERN_ERR "can't online cpu %d because it is not "
394			"configured as may-hotadd at boot time\n", cpu);
395#if defined(CONFIG_IA64)
396		printk(KERN_ERR "please check additional_cpus= boot "
397				"parameter\n");
398#endif
399		return -EINVAL;
400	}
401
402#ifdef	CONFIG_MEMORY_HOTPLUG
403	nid = cpu_to_node(cpu);
404	if (!node_online(nid)) {
405		err = mem_online_node(nid);
406		if (err)
407			return err;
408	}
409
410	pgdat = NODE_DATA(nid);
411	if (!pgdat) {
412		printk(KERN_ERR
413			"Can't online cpu %d due to NULL pgdat\n", cpu);
414		return -ENOMEM;
415	}
416
417	if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
418		mutex_lock(&zonelists_mutex);
419		build_all_zonelists(NULL);
420		mutex_unlock(&zonelists_mutex);
421	}
422#endif
423
424	cpu_maps_update_begin();
425
426	if (cpu_hotplug_disabled) {
427		err = -EBUSY;
428		goto out;
429	}
 
 
 
 
430
431	err = _cpu_up(cpu, 0);
432
433out:
434	cpu_maps_update_done();
435	return err;
436}
437EXPORT_SYMBOL_GPL(cpu_up);
438
439#ifdef CONFIG_PM_SLEEP_SMP
440static cpumask_var_t frozen_cpus;
 
 
 
 
 
 
 
 
 
 
441
442void __weak arch_disable_nonboot_cpus_begin(void)
443{
 
 
 
 
 
 
 
444}
 
445
446void __weak arch_disable_nonboot_cpus_end(void)
 
 
 
 
 
 
 
 
447{
 
 
 
 
 
 
 
 
 
 
 
448}
449
450int disable_nonboot_cpus(void)
451{
452	int cpu, first_cpu, error = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
453
454	cpu_maps_update_begin();
455	first_cpu = cpumask_first(cpu_online_mask);
 
 
 
 
 
 
 
 
456	/*
457	 * We take down all of the non-boot CPUs in one shot to avoid races
458	 * with the userspace trying to use the CPU hotplug at the same time
459	 */
460	cpumask_clear(frozen_cpus);
461	arch_disable_nonboot_cpus_begin();
462
463	printk("Disabling non-boot CPUs ...\n");
464	for_each_online_cpu(cpu) {
465		if (cpu == first_cpu)
466			continue;
467		error = _cpu_down(cpu, 1);
 
 
 
 
 
 
 
 
 
468		if (!error)
469			cpumask_set_cpu(cpu, frozen_cpus);
470		else {
471			printk(KERN_ERR "Error taking CPU%d down: %d\n",
472				cpu, error);
473			break;
474		}
475	}
476
477	arch_disable_nonboot_cpus_end();
478
479	if (!error) {
480		BUG_ON(num_online_cpus() > 1);
481		/* Make sure the CPUs won't be enabled by someone else */
482		cpu_hotplug_disabled = 1;
483	} else {
484		printk(KERN_ERR "Non-boot CPUs are not disabled\n");
485	}
 
 
 
 
 
486	cpu_maps_update_done();
487	return error;
488}
489
490void __weak arch_enable_nonboot_cpus_begin(void)
491{
492}
493
494void __weak arch_enable_nonboot_cpus_end(void)
495{
496}
497
498void __ref enable_nonboot_cpus(void)
499{
500	int cpu, error;
501
502	/* Allow everyone to use the CPU hotplug again */
503	cpu_maps_update_begin();
504	cpu_hotplug_disabled = 0;
505	if (cpumask_empty(frozen_cpus))
506		goto out;
507
508	printk(KERN_INFO "Enabling non-boot CPUs ...\n");
509
510	arch_enable_nonboot_cpus_begin();
511
512	for_each_cpu(cpu, frozen_cpus) {
513		error = _cpu_up(cpu, 1);
 
 
514		if (!error) {
515			printk(KERN_INFO "CPU%d is up\n", cpu);
516			continue;
517		}
518		printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
519	}
520
521	arch_enable_nonboot_cpus_end();
522
523	cpumask_clear(frozen_cpus);
524out:
525	cpu_maps_update_done();
526}
527
528static int __init alloc_frozen_cpus(void)
529{
530	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
531		return -ENOMEM;
532	return 0;
533}
534core_initcall(alloc_frozen_cpus);
535
536/*
537 * Prevent regular CPU hotplug from racing with the freezer, by disabling CPU
538 * hotplug when tasks are about to be frozen. Also, don't allow the freezer
539 * to continue until any currently running CPU hotplug operation gets
540 * completed.
541 * To modify the 'cpu_hotplug_disabled' flag, we need to acquire the
542 * 'cpu_add_remove_lock'. And this same lock is also taken by the regular
543 * CPU hotplug path and released only after it is complete. Thus, we
544 * (and hence the freezer) will block here until any currently running CPU
545 * hotplug operation gets completed.
546 */
547void cpu_hotplug_disable_before_freeze(void)
548{
549	cpu_maps_update_begin();
550	cpu_hotplug_disabled = 1;
551	cpu_maps_update_done();
552}
553
554
555/*
556 * When tasks have been thawed, re-enable regular CPU hotplug (which had been
557 * disabled while beginning to freeze tasks).
558 */
559void cpu_hotplug_enable_after_thaw(void)
560{
561	cpu_maps_update_begin();
562	cpu_hotplug_disabled = 0;
563	cpu_maps_update_done();
564}
565
566/*
567 * When callbacks for CPU hotplug notifications are being executed, we must
568 * ensure that the state of the system with respect to the tasks being frozen
569 * or not, as reported by the notification, remains unchanged *throughout the
570 * duration* of the execution of the callbacks.
571 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
572 *
573 * This synchronization is implemented by mutually excluding regular CPU
574 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
575 * Hibernate notifications.
576 */
577static int
578cpu_hotplug_pm_callback(struct notifier_block *nb,
579			unsigned long action, void *ptr)
580{
581	switch (action) {
582
583	case PM_SUSPEND_PREPARE:
584	case PM_HIBERNATION_PREPARE:
585		cpu_hotplug_disable_before_freeze();
586		break;
587
588	case PM_POST_SUSPEND:
589	case PM_POST_HIBERNATION:
590		cpu_hotplug_enable_after_thaw();
591		break;
592
593	default:
594		return NOTIFY_DONE;
595	}
596
597	return NOTIFY_OK;
598}
599
600
601static int __init cpu_hotplug_pm_sync_init(void)
602{
 
 
 
 
 
603	pm_notifier(cpu_hotplug_pm_callback, 0);
604	return 0;
605}
606core_initcall(cpu_hotplug_pm_sync_init);
607
608#endif /* CONFIG_PM_SLEEP_SMP */
609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610/**
611 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
612 * @cpu: cpu that just started
 
 
 
 
 
 
613 *
614 * This function calls the cpu_chain notifiers with CPU_STARTING.
615 * It must be called by the arch code on the new cpu, before the new cpu
616 * enables interrupts and before the "boot" cpu returns from __cpu_up().
 
 
 
617 */
618void __cpuinit notify_cpu_starting(unsigned int cpu)
 
 
 
 
619{
620	unsigned long val = CPU_STARTING;
 
621
622#ifdef CONFIG_PM_SLEEP_SMP
623	if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
624		val = CPU_STARTING_FROZEN;
625#endif /* CONFIG_PM_SLEEP_SMP */
626	cpu_notify(val, (void *)(long)cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
627}
 
628
629#endif /* CONFIG_SMP */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
630
631/*
632 * cpu_bit_bitmap[] is a special, "compressed" data structure that
633 * represents all NR_CPUS bits binary values of 1<<nr.
634 *
635 * It is used by cpumask_of() to get a constant address to a CPU
636 * mask value that has a single bit set only.
637 */
638
639/* cpu_bit_bitmap[0] is empty - so we can back into it */
640#define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
641#define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
642#define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
643#define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
644
645const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
646
647	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
648	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
649#if BITS_PER_LONG > 32
650	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
651	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
652#endif
653};
654EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
655
656const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
657EXPORT_SYMBOL(cpu_all_bits);
658
659#ifdef CONFIG_INIT_ALL_POSSIBLE
660static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
661	= CPU_BITS_ALL;
662#else
663static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
664#endif
665const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
666EXPORT_SYMBOL(cpu_possible_mask);
 
 
667
668static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
669const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
670EXPORT_SYMBOL(cpu_online_mask);
671
672static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
673const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
674EXPORT_SYMBOL(cpu_present_mask);
675
676static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
677const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
678EXPORT_SYMBOL(cpu_active_mask);
679
680void set_cpu_possible(unsigned int cpu, bool possible)
 
 
 
681{
682	if (possible)
683		cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
684	else
685		cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
686}
687
688void set_cpu_present(unsigned int cpu, bool present)
689{
690	if (present)
691		cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
692	else
693		cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
 
 
694}
695
696void set_cpu_online(unsigned int cpu, bool online)
697{
698	if (online)
699		cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
700	else
701		cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
 
 
 
 
 
 
 
 
 
 
 
 
 
702}
703
704void set_cpu_active(unsigned int cpu, bool active)
 
 
 
705{
706	if (active)
707		cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
708	else
709		cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
 
 
 
 
 
 
 
710}
711
712void init_cpu_present(const struct cpumask *src)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
713{
714	cpumask_copy(to_cpumask(cpu_present_bits), src);
 
 
 
 
 
 
 
 
 
 
715}
 
716
717void init_cpu_possible(const struct cpumask *src)
 
718{
719	cpumask_copy(to_cpumask(cpu_possible_bits), src);
720}
 
721
722void init_cpu_online(const struct cpumask *src)
 
723{
724	cpumask_copy(to_cpumask(cpu_online_bits), src);
725}
v5.14.15
   1/* CPU control.
   2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
   3 *
   4 * This code is licenced under the GPL.
   5 */
   6#include <linux/sched/mm.h>
   7#include <linux/proc_fs.h>
   8#include <linux/smp.h>
   9#include <linux/init.h>
  10#include <linux/notifier.h>
  11#include <linux/sched/signal.h>
  12#include <linux/sched/hotplug.h>
  13#include <linux/sched/isolation.h>
  14#include <linux/sched/task.h>
  15#include <linux/sched/smt.h>
  16#include <linux/unistd.h>
  17#include <linux/cpu.h>
  18#include <linux/oom.h>
  19#include <linux/rcupdate.h>
  20#include <linux/export.h>
  21#include <linux/bug.h>
  22#include <linux/kthread.h>
  23#include <linux/stop_machine.h>
  24#include <linux/mutex.h>
  25#include <linux/gfp.h>
  26#include <linux/suspend.h>
  27#include <linux/lockdep.h>
  28#include <linux/tick.h>
  29#include <linux/irq.h>
  30#include <linux/nmi.h>
  31#include <linux/smpboot.h>
  32#include <linux/relay.h>
  33#include <linux/slab.h>
  34#include <linux/percpu-rwsem.h>
  35#include <linux/cpuset.h>
  36
  37#include <trace/events/power.h>
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/cpuhp.h>
  40
  41#include "smpboot.h"
  42
  43/**
  44 * cpuhp_cpu_state - Per cpu hotplug state storage
  45 * @state:	The current cpu state
  46 * @target:	The target state
  47 * @thread:	Pointer to the hotplug thread
  48 * @should_run:	Thread should execute
  49 * @rollback:	Perform a rollback
  50 * @single:	Single callback invocation
  51 * @bringup:	Single callback bringup or teardown selector
  52 * @cb_state:	The state for a single callback (install/uninstall)
  53 * @result:	Result of the operation
  54 * @done_up:	Signal completion to the issuer of the task for cpu-up
  55 * @done_down:	Signal completion to the issuer of the task for cpu-down
  56 */
  57struct cpuhp_cpu_state {
  58	enum cpuhp_state	state;
  59	enum cpuhp_state	target;
  60	enum cpuhp_state	fail;
  61#ifdef CONFIG_SMP
  62	struct task_struct	*thread;
  63	bool			should_run;
  64	bool			rollback;
  65	bool			single;
  66	bool			bringup;
  67	int			cpu;
  68	struct hlist_node	*node;
  69	struct hlist_node	*last;
  70	enum cpuhp_state	cb_state;
  71	int			result;
  72	struct completion	done_up;
  73	struct completion	done_down;
  74#endif
  75};
  76
  77static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
  78	.fail = CPUHP_INVALID,
  79};
  80
  81#ifdef CONFIG_SMP
  82cpumask_t cpus_booted_once_mask;
  83#endif
  84
  85#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
  86static struct lockdep_map cpuhp_state_up_map =
  87	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
  88static struct lockdep_map cpuhp_state_down_map =
  89	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
  90
  91
  92static inline void cpuhp_lock_acquire(bool bringup)
  93{
  94	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
  95}
  96
  97static inline void cpuhp_lock_release(bool bringup)
  98{
  99	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
 100}
 101#else
 102
 103static inline void cpuhp_lock_acquire(bool bringup) { }
 104static inline void cpuhp_lock_release(bool bringup) { }
 105
 106#endif
 107
 108/**
 109 * cpuhp_step - Hotplug state machine step
 110 * @name:	Name of the step
 111 * @startup:	Startup function of the step
 112 * @teardown:	Teardown function of the step
 113 * @cant_stop:	Bringup/teardown can't be stopped at this step
 114 */
 115struct cpuhp_step {
 116	const char		*name;
 117	union {
 118		int		(*single)(unsigned int cpu);
 119		int		(*multi)(unsigned int cpu,
 120					 struct hlist_node *node);
 121	} startup;
 122	union {
 123		int		(*single)(unsigned int cpu);
 124		int		(*multi)(unsigned int cpu,
 125					 struct hlist_node *node);
 126	} teardown;
 127	struct hlist_head	list;
 128	bool			cant_stop;
 129	bool			multi_instance;
 130};
 131
 132static DEFINE_MUTEX(cpuhp_state_mutex);
 133static struct cpuhp_step cpuhp_hp_states[];
 134
 135static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
 136{
 137	return cpuhp_hp_states + state;
 138}
 139
 140static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
 141{
 142	return bringup ? !step->startup.single : !step->teardown.single;
 143}
 144
 145/**
 146 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
 147 * @cpu:	The cpu for which the callback should be invoked
 148 * @state:	The state to do callbacks for
 149 * @bringup:	True if the bringup callback should be invoked
 150 * @node:	For multi-instance, do a single entry callback for install/remove
 151 * @lastp:	For multi-instance rollback, remember how far we got
 152 *
 153 * Called from cpu hotplug and from the state register machinery.
 154 */
 155static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
 156				 bool bringup, struct hlist_node *node,
 157				 struct hlist_node **lastp)
 158{
 159	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 160	struct cpuhp_step *step = cpuhp_get_step(state);
 161	int (*cbm)(unsigned int cpu, struct hlist_node *node);
 162	int (*cb)(unsigned int cpu);
 163	int ret, cnt;
 164
 165	if (st->fail == state) {
 166		st->fail = CPUHP_INVALID;
 167		return -EAGAIN;
 168	}
 169
 170	if (cpuhp_step_empty(bringup, step)) {
 171		WARN_ON_ONCE(1);
 172		return 0;
 173	}
 174
 175	if (!step->multi_instance) {
 176		WARN_ON_ONCE(lastp && *lastp);
 177		cb = bringup ? step->startup.single : step->teardown.single;
 178
 179		trace_cpuhp_enter(cpu, st->target, state, cb);
 180		ret = cb(cpu);
 181		trace_cpuhp_exit(cpu, st->state, state, ret);
 182		return ret;
 183	}
 184	cbm = bringup ? step->startup.multi : step->teardown.multi;
 185
 186	/* Single invocation for instance add/remove */
 187	if (node) {
 188		WARN_ON_ONCE(lastp && *lastp);
 189		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 190		ret = cbm(cpu, node);
 191		trace_cpuhp_exit(cpu, st->state, state, ret);
 192		return ret;
 193	}
 194
 195	/* State transition. Invoke on all instances */
 196	cnt = 0;
 197	hlist_for_each(node, &step->list) {
 198		if (lastp && node == *lastp)
 199			break;
 200
 201		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 202		ret = cbm(cpu, node);
 203		trace_cpuhp_exit(cpu, st->state, state, ret);
 204		if (ret) {
 205			if (!lastp)
 206				goto err;
 207
 208			*lastp = node;
 209			return ret;
 210		}
 211		cnt++;
 212	}
 213	if (lastp)
 214		*lastp = NULL;
 215	return 0;
 216err:
 217	/* Rollback the instances if one failed */
 218	cbm = !bringup ? step->startup.multi : step->teardown.multi;
 219	if (!cbm)
 220		return ret;
 221
 222	hlist_for_each(node, &step->list) {
 223		if (!cnt--)
 224			break;
 225
 226		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 227		ret = cbm(cpu, node);
 228		trace_cpuhp_exit(cpu, st->state, state, ret);
 229		/*
 230		 * Rollback must not fail,
 231		 */
 232		WARN_ON_ONCE(ret);
 233	}
 234	return ret;
 235}
 236
 237#ifdef CONFIG_SMP
 238static bool cpuhp_is_ap_state(enum cpuhp_state state)
 239{
 240	/*
 241	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
 242	 * purposes as that state is handled explicitly in cpu_down.
 243	 */
 244	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
 245}
 246
 247static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 248{
 249	struct completion *done = bringup ? &st->done_up : &st->done_down;
 250	wait_for_completion(done);
 251}
 252
 253static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 254{
 255	struct completion *done = bringup ? &st->done_up : &st->done_down;
 256	complete(done);
 257}
 258
 259/*
 260 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
 261 */
 262static bool cpuhp_is_atomic_state(enum cpuhp_state state)
 263{
 264	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
 265}
 266
 267/* Serializes the updates to cpu_online_mask, cpu_present_mask */
 268static DEFINE_MUTEX(cpu_add_remove_lock);
 269bool cpuhp_tasks_frozen;
 270EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
 271
 272/*
 273 * The following two APIs (cpu_maps_update_begin/done) must be used when
 274 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
 275 */
 276void cpu_maps_update_begin(void)
 277{
 278	mutex_lock(&cpu_add_remove_lock);
 279}
 280
 281void cpu_maps_update_done(void)
 282{
 283	mutex_unlock(&cpu_add_remove_lock);
 284}
 285
 286/*
 287 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
 
 288 * Should always be manipulated under cpu_add_remove_lock
 289 */
 290static int cpu_hotplug_disabled;
 291
 292#ifdef CONFIG_HOTPLUG_CPU
 293
 294DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
 295
 296void cpus_read_lock(void)
 297{
 298	percpu_down_read(&cpu_hotplug_lock);
 299}
 300EXPORT_SYMBOL_GPL(cpus_read_lock);
 301
 302int cpus_read_trylock(void)
 303{
 304	return percpu_down_read_trylock(&cpu_hotplug_lock);
 305}
 306EXPORT_SYMBOL_GPL(cpus_read_trylock);
 307
 308void cpus_read_unlock(void)
 309{
 310	percpu_up_read(&cpu_hotplug_lock);
 311}
 312EXPORT_SYMBOL_GPL(cpus_read_unlock);
 313
 314void cpus_write_lock(void)
 315{
 316	percpu_down_write(&cpu_hotplug_lock);
 317}
 318
 319void cpus_write_unlock(void)
 320{
 321	percpu_up_write(&cpu_hotplug_lock);
 322}
 323
 324void lockdep_assert_cpus_held(void)
 325{
 326	/*
 327	 * We can't have hotplug operations before userspace starts running,
 328	 * and some init codepaths will knowingly not take the hotplug lock.
 329	 * This is all valid, so mute lockdep until it makes sense to report
 330	 * unheld locks.
 331	 */
 332	if (system_state < SYSTEM_RUNNING)
 333		return;
 334
 335	percpu_rwsem_assert_held(&cpu_hotplug_lock);
 336}
 337
 338#ifdef CONFIG_LOCKDEP
 339int lockdep_is_cpus_held(void)
 340{
 341	return percpu_rwsem_is_held(&cpu_hotplug_lock);
 342}
 343#endif
 344
 345static void lockdep_acquire_cpus_lock(void)
 346{
 347	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
 348}
 349
 350static void lockdep_release_cpus_lock(void)
 351{
 352	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
 353}
 354
 355/*
 356 * Wait for currently running CPU hotplug operations to complete (if any) and
 357 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
 358 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
 359 * hotplug path before performing hotplug operations. So acquiring that lock
 360 * guarantees mutual exclusion from any currently running hotplug operations.
 361 */
 362void cpu_hotplug_disable(void)
 363{
 364	cpu_maps_update_begin();
 365	cpu_hotplug_disabled++;
 366	cpu_maps_update_done();
 367}
 368EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
 369
 370static void __cpu_hotplug_enable(void)
 371{
 372	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
 
 373		return;
 374	cpu_hotplug_disabled--;
 375}
 
 376
 377void cpu_hotplug_enable(void)
 378{
 379	cpu_maps_update_begin();
 380	__cpu_hotplug_enable();
 381	cpu_maps_update_done();
 382}
 383EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
 384
 385#else
 386
 387static void lockdep_acquire_cpus_lock(void)
 388{
 389}
 390
 391static void lockdep_release_cpus_lock(void)
 392{
 393}
 394
 395#endif	/* CONFIG_HOTPLUG_CPU */
 396
 397/*
 398 * Architectures that need SMT-specific errata handling during SMT hotplug
 399 * should override this.
 400 */
 401void __weak arch_smt_update(void) { }
 402
 403#ifdef CONFIG_HOTPLUG_SMT
 404enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
 405
 406void __init cpu_smt_disable(bool force)
 407{
 408	if (!cpu_smt_possible())
 409		return;
 
 
 
 
 410
 411	if (force) {
 412		pr_info("SMT: Force disabled\n");
 413		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
 414	} else {
 415		pr_info("SMT: disabled\n");
 416		cpu_smt_control = CPU_SMT_DISABLED;
 417	}
 418}
 
 419
 420/*
 421 * The decision whether SMT is supported can only be done after the full
 422 * CPU identification. Called from architecture code.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 423 */
 424void __init cpu_smt_check_topology(void)
 425{
 426	if (!topology_smt_supported())
 427		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
 428}
 429
 430static int __init smt_cmdline_disable(char *str)
 431{
 432	cpu_smt_disable(str && !strcmp(str, "force"));
 433	return 0;
 434}
 435early_param("nosmt", smt_cmdline_disable);
 436
 437static inline bool cpu_smt_allowed(unsigned int cpu)
 438{
 439	if (cpu_smt_control == CPU_SMT_ENABLED)
 440		return true;
 441
 442	if (topology_is_primary_thread(cpu))
 443		return true;
 444
 445	/*
 446	 * On x86 it's required to boot all logical CPUs at least once so
 447	 * that the init code can get a chance to set CR4.MCE on each
 448	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
 449	 * core will shutdown the machine.
 450	 */
 451	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
 452}
 453
 454/* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
 455bool cpu_smt_possible(void)
 456{
 457	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
 458		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
 459}
 460EXPORT_SYMBOL_GPL(cpu_smt_possible);
 461#else
 462static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
 463#endif
 464
 465static inline enum cpuhp_state
 466cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 467{
 468	enum cpuhp_state prev_state = st->state;
 469	bool bringup = st->state < target;
 470
 471	st->rollback = false;
 472	st->last = NULL;
 473
 474	st->target = target;
 475	st->single = false;
 476	st->bringup = bringup;
 477	if (cpu_dying(st->cpu) != !bringup)
 478		set_cpu_dying(st->cpu, !bringup);
 479
 480	return prev_state;
 481}
 482
 483static inline void
 484cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
 485{
 486	bool bringup = !st->bringup;
 487
 488	st->target = prev_state;
 489
 490	/*
 491	 * Already rolling back. No need invert the bringup value or to change
 492	 * the current state.
 493	 */
 494	if (st->rollback)
 495		return;
 496
 497	st->rollback = true;
 498
 499	/*
 500	 * If we have st->last we need to undo partial multi_instance of this
 501	 * state first. Otherwise start undo at the previous state.
 502	 */
 503	if (!st->last) {
 504		if (st->bringup)
 505			st->state--;
 506		else
 507			st->state++;
 508	}
 509
 510	st->bringup = bringup;
 511	if (cpu_dying(st->cpu) != !bringup)
 512		set_cpu_dying(st->cpu, !bringup);
 513}
 514
 515/* Regular hotplug invocation of the AP hotplug thread */
 516static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
 517{
 518	if (!st->single && st->state == st->target)
 519		return;
 520
 521	st->result = 0;
 522	/*
 523	 * Make sure the above stores are visible before should_run becomes
 524	 * true. Paired with the mb() above in cpuhp_thread_fun()
 525	 */
 526	smp_mb();
 527	st->should_run = true;
 528	wake_up_process(st->thread);
 529	wait_for_ap_thread(st, st->bringup);
 530}
 531
 532static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 533{
 534	enum cpuhp_state prev_state;
 535	int ret;
 536
 537	prev_state = cpuhp_set_state(st, target);
 538	__cpuhp_kick_ap(st);
 539	if ((ret = st->result)) {
 540		cpuhp_reset_state(st, prev_state);
 541		__cpuhp_kick_ap(st);
 542	}
 543
 544	return ret;
 545}
 546
 547static int bringup_wait_for_ap(unsigned int cpu)
 548{
 549	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 550
 551	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
 552	wait_for_ap_thread(st, true);
 553	if (WARN_ON_ONCE((!cpu_online(cpu))))
 554		return -ECANCELED;
 555
 556	/* Unpark the hotplug thread of the target cpu */
 557	kthread_unpark(st->thread);
 558
 559	/*
 560	 * SMT soft disabling on X86 requires to bring the CPU out of the
 561	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
 562	 * CPU marked itself as booted_once in notify_cpu_starting() so the
 563	 * cpu_smt_allowed() check will now return false if this is not the
 564	 * primary sibling.
 565	 */
 566	if (!cpu_smt_allowed(cpu))
 567		return -ECANCELED;
 568
 569	if (st->target <= CPUHP_AP_ONLINE_IDLE)
 570		return 0;
 571
 572	return cpuhp_kick_ap(st, st->target);
 573}
 574
 575static int bringup_cpu(unsigned int cpu)
 576{
 577	struct task_struct *idle = idle_thread_get(cpu);
 578	int ret;
 579
 580	/*
 581	 * Some architectures have to walk the irq descriptors to
 582	 * setup the vector space for the cpu which comes online.
 583	 * Prevent irq alloc/free across the bringup.
 584	 */
 585	irq_lock_sparse();
 586
 587	/* Arch-specific enabling code. */
 588	ret = __cpu_up(cpu, idle);
 589	irq_unlock_sparse();
 590	if (ret)
 591		return ret;
 592	return bringup_wait_for_ap(cpu);
 593}
 594
 595static int finish_cpu(unsigned int cpu)
 596{
 597	struct task_struct *idle = idle_thread_get(cpu);
 598	struct mm_struct *mm = idle->active_mm;
 599
 600	/*
 601	 * idle_task_exit() will have switched to &init_mm, now
 602	 * clean up any remaining active_mm state.
 603	 */
 604	if (mm != &init_mm)
 605		idle->active_mm = &init_mm;
 606	mmdrop(mm);
 607	return 0;
 608}
 609
 610/*
 611 * Hotplug state machine related functions
 612 */
 613
 614/*
 615 * Get the next state to run. Empty ones will be skipped. Returns true if a
 616 * state must be run.
 617 *
 618 * st->state will be modified ahead of time, to match state_to_run, as if it
 619 * has already ran.
 620 */
 621static bool cpuhp_next_state(bool bringup,
 622			     enum cpuhp_state *state_to_run,
 623			     struct cpuhp_cpu_state *st,
 624			     enum cpuhp_state target)
 625{
 626	do {
 627		if (bringup) {
 628			if (st->state >= target)
 629				return false;
 630
 631			*state_to_run = ++st->state;
 632		} else {
 633			if (st->state <= target)
 634				return false;
 635
 636			*state_to_run = st->state--;
 637		}
 638
 639		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
 640			break;
 641	} while (true);
 642
 643	return true;
 644}
 645
 646static int cpuhp_invoke_callback_range(bool bringup,
 647				       unsigned int cpu,
 648				       struct cpuhp_cpu_state *st,
 649				       enum cpuhp_state target)
 650{
 651	enum cpuhp_state state;
 652	int err = 0;
 653
 654	while (cpuhp_next_state(bringup, &state, st, target)) {
 655		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
 656		if (err)
 657			break;
 658	}
 659
 660	return err;
 661}
 662
 663static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
 664{
 665	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
 666		return true;
 667	/*
 668	 * When CPU hotplug is disabled, then taking the CPU down is not
 669	 * possible because takedown_cpu() and the architecture and
 670	 * subsystem specific mechanisms are not available. So the CPU
 671	 * which would be completely unplugged again needs to stay around
 672	 * in the current state.
 673	 */
 674	return st->state <= CPUHP_BRINGUP_CPU;
 675}
 676
 677static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 678			      enum cpuhp_state target)
 679{
 680	enum cpuhp_state prev_state = st->state;
 681	int ret = 0;
 682
 683	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
 684	if (ret) {
 685		cpuhp_reset_state(st, prev_state);
 686		if (can_rollback_cpu(st))
 687			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
 688							    prev_state));
 689	}
 690	return ret;
 691}
 692
 693/*
 694 * The cpu hotplug threads manage the bringup and teardown of the cpus
 695 */
 696static void cpuhp_create(unsigned int cpu)
 697{
 698	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 699
 700	init_completion(&st->done_up);
 701	init_completion(&st->done_down);
 702	st->cpu = cpu;
 703}
 704
 705static int cpuhp_should_run(unsigned int cpu)
 706{
 707	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 708
 709	return st->should_run;
 710}
 711
 712/*
 713 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
 714 * callbacks when a state gets [un]installed at runtime.
 715 *
 716 * Each invocation of this function by the smpboot thread does a single AP
 717 * state callback.
 718 *
 719 * It has 3 modes of operation:
 720 *  - single: runs st->cb_state
 721 *  - up:     runs ++st->state, while st->state < st->target
 722 *  - down:   runs st->state--, while st->state > st->target
 723 *
 724 * When complete or on error, should_run is cleared and the completion is fired.
 725 */
 726static void cpuhp_thread_fun(unsigned int cpu)
 727{
 728	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 729	bool bringup = st->bringup;
 730	enum cpuhp_state state;
 731
 732	if (WARN_ON_ONCE(!st->should_run))
 733		return;
 734
 735	/*
 736	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
 737	 * that if we see ->should_run we also see the rest of the state.
 738	 */
 739	smp_mb();
 740
 741	/*
 742	 * The BP holds the hotplug lock, but we're now running on the AP,
 743	 * ensure that anybody asserting the lock is held, will actually find
 744	 * it so.
 745	 */
 746	lockdep_acquire_cpus_lock();
 747	cpuhp_lock_acquire(bringup);
 748
 749	if (st->single) {
 750		state = st->cb_state;
 751		st->should_run = false;
 752	} else {
 753		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
 754		if (!st->should_run)
 755			goto end;
 756	}
 757
 758	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
 759
 760	if (cpuhp_is_atomic_state(state)) {
 761		local_irq_disable();
 762		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 763		local_irq_enable();
 764
 765		/*
 766		 * STARTING/DYING must not fail!
 767		 */
 768		WARN_ON_ONCE(st->result);
 769	} else {
 770		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 771	}
 772
 773	if (st->result) {
 774		/*
 775		 * If we fail on a rollback, we're up a creek without no
 776		 * paddle, no way forward, no way back. We loose, thanks for
 777		 * playing.
 778		 */
 779		WARN_ON_ONCE(st->rollback);
 780		st->should_run = false;
 781	}
 782
 783end:
 784	cpuhp_lock_release(bringup);
 785	lockdep_release_cpus_lock();
 786
 787	if (!st->should_run)
 788		complete_ap_thread(st, bringup);
 789}
 790
 791/* Invoke a single callback on a remote cpu */
 792static int
 793cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
 794			 struct hlist_node *node)
 795{
 796	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 797	int ret;
 798
 799	if (!cpu_online(cpu))
 800		return 0;
 801
 802	cpuhp_lock_acquire(false);
 803	cpuhp_lock_release(false);
 804
 805	cpuhp_lock_acquire(true);
 806	cpuhp_lock_release(true);
 807
 808	/*
 809	 * If we are up and running, use the hotplug thread. For early calls
 810	 * we invoke the thread function directly.
 811	 */
 812	if (!st->thread)
 813		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
 814
 815	st->rollback = false;
 816	st->last = NULL;
 817
 818	st->node = node;
 819	st->bringup = bringup;
 820	st->cb_state = state;
 821	st->single = true;
 822
 823	__cpuhp_kick_ap(st);
 824
 825	/*
 826	 * If we failed and did a partial, do a rollback.
 827	 */
 828	if ((ret = st->result) && st->last) {
 829		st->rollback = true;
 830		st->bringup = !bringup;
 831
 832		__cpuhp_kick_ap(st);
 833	}
 834
 835	/*
 836	 * Clean up the leftovers so the next hotplug operation wont use stale
 837	 * data.
 838	 */
 839	st->node = st->last = NULL;
 840	return ret;
 841}
 842
 843static int cpuhp_kick_ap_work(unsigned int cpu)
 844{
 845	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 846	enum cpuhp_state prev_state = st->state;
 847	int ret;
 848
 849	cpuhp_lock_acquire(false);
 850	cpuhp_lock_release(false);
 851
 852	cpuhp_lock_acquire(true);
 853	cpuhp_lock_release(true);
 854
 855	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
 856	ret = cpuhp_kick_ap(st, st->target);
 857	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
 858
 859	return ret;
 860}
 861
 862static struct smp_hotplug_thread cpuhp_threads = {
 863	.store			= &cpuhp_state.thread,
 864	.create			= &cpuhp_create,
 865	.thread_should_run	= cpuhp_should_run,
 866	.thread_fn		= cpuhp_thread_fun,
 867	.thread_comm		= "cpuhp/%u",
 868	.selfparking		= true,
 869};
 870
 871void __init cpuhp_threads_init(void)
 872{
 873	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
 874	kthread_unpark(this_cpu_read(cpuhp_state.thread));
 875}
 
 876
 877/*
 878 *
 879 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
 880 * protected region.
 881 *
 882 * The operation is still serialized against concurrent CPU hotplug via
 883 * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
 884 * serialized against other hotplug related activity like adding or
 885 * removing of state callbacks and state instances, which invoke either the
 886 * startup or the teardown callback of the affected state.
 887 *
 888 * This is required for subsystems which are unfixable vs. CPU hotplug and
 889 * evade lock inversion problems by scheduling work which has to be
 890 * completed _before_ cpu_up()/_cpu_down() returns.
 891 *
 892 * Don't even think about adding anything to this for any new code or even
 893 * drivers. It's only purpose is to keep existing lock order trainwrecks
 894 * working.
 895 *
 896 * For cpu_down() there might be valid reasons to finish cleanups which are
 897 * not required to be done under cpu_hotplug_lock, but that's a different
 898 * story and would be not invoked via this.
 899 */
 900static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
 901{
 902	/*
 903	 * cpusets delegate hotplug operations to a worker to "solve" the
 904	 * lock order problems. Wait for the worker, but only if tasks are
 905	 * _not_ frozen (suspend, hibernate) as that would wait forever.
 906	 *
 907	 * The wait is required because otherwise the hotplug operation
 908	 * returns with inconsistent state, which could even be observed in
 909	 * user space when a new CPU is brought up. The CPU plug uevent
 910	 * would be delivered and user space reacting on it would fail to
 911	 * move tasks to the newly plugged CPU up to the point where the
 912	 * work has finished because up to that point the newly plugged CPU
 913	 * is not assignable in cpusets/cgroups. On unplug that's not
 914	 * necessarily a visible issue, but it is still inconsistent state,
 915	 * which is the real problem which needs to be "fixed". This can't
 916	 * prevent the transient state between scheduling the work and
 917	 * returning from waiting for it.
 918	 */
 919	if (!tasks_frozen)
 920		cpuset_wait_for_hotplug();
 921}
 922
 923#ifdef CONFIG_HOTPLUG_CPU
 924#ifndef arch_clear_mm_cpumask_cpu
 925#define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
 926#endif
 927
 928/**
 929 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
 930 * @cpu: a CPU id
 931 *
 932 * This function walks all processes, finds a valid mm struct for each one and
 933 * then clears a corresponding bit in mm's cpumask.  While this all sounds
 934 * trivial, there are various non-obvious corner cases, which this function
 935 * tries to solve in a safe manner.
 936 *
 937 * Also note that the function uses a somewhat relaxed locking scheme, so it may
 938 * be called only for an already offlined CPU.
 939 */
 940void clear_tasks_mm_cpumask(int cpu)
 941{
 942	struct task_struct *p;
 943
 944	/*
 945	 * This function is called after the cpu is taken down and marked
 946	 * offline, so its not like new tasks will ever get this cpu set in
 947	 * their mm mask. -- Peter Zijlstra
 948	 * Thus, we may use rcu_read_lock() here, instead of grabbing
 949	 * full-fledged tasklist_lock.
 950	 */
 951	WARN_ON(cpu_online(cpu));
 952	rcu_read_lock();
 953	for_each_process(p) {
 954		struct task_struct *t;
 955
 956		/*
 957		 * Main thread might exit, but other threads may still have
 958		 * a valid mm. Find one.
 959		 */
 960		t = find_lock_task_mm(p);
 961		if (!t)
 962			continue;
 963		arch_clear_mm_cpumask_cpu(cpu, t->mm);
 964		task_unlock(t);
 965	}
 966	rcu_read_unlock();
 967}
 968
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969/* Take this CPU down. */
 970static int take_cpu_down(void *_param)
 971{
 972	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 973	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
 974	int err, cpu = smp_processor_id();
 975	int ret;
 976
 977	/* Ensure this CPU doesn't handle any more interrupts. */
 978	err = __cpu_disable();
 979	if (err < 0)
 980		return err;
 981
 982	/*
 983	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
 984	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
 985	 */
 986	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
 987
 988	/* Invoke the former CPU_DYING callbacks */
 989	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
 990
 991	/*
 992	 * DYING must not fail!
 993	 */
 994	WARN_ON_ONCE(ret);
 995
 996	/* Give up timekeeping duties */
 997	tick_handover_do_timer();
 998	/* Remove CPU from timer broadcasting */
 999	tick_offline_cpu(cpu);
1000	/* Park the stopper thread */
1001	stop_machine_park(cpu);
1002	return 0;
1003}
1004
1005static int takedown_cpu(unsigned int cpu)
 
1006{
1007	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1008	int err;
 
 
 
 
 
 
 
 
 
 
 
1009
1010	/* Park the smpboot threads */
1011	kthread_park(st->thread);
1012
1013	/*
1014	 * Prevent irq alloc/free while the dying cpu reorganizes the
1015	 * interrupt affinities.
1016	 */
1017	irq_lock_sparse();
 
 
 
1018
1019	/*
1020	 * So now all preempt/rcu users must observe !cpu_active().
1021	 */
1022	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1023	if (err) {
1024		/* CPU refused to die */
1025		irq_unlock_sparse();
1026		/* Unpark the hotplug thread so we can rollback there */
1027		kthread_unpark(st->thread);
1028		return err;
1029	}
1030	BUG_ON(cpu_online(cpu));
1031
1032	/*
1033	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1034	 * all runnable tasks from the CPU, there's only the idle task left now
1035	 * that the migration thread is done doing the stop_machine thing.
1036	 *
1037	 * Wait for the stop thread to go away.
1038	 */
1039	wait_for_ap_thread(st, false);
1040	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1041
1042	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1043	irq_unlock_sparse();
1044
1045	hotplug_cpu__broadcast_tick_pull(cpu);
1046	/* This actually kills the CPU. */
1047	__cpu_die(cpu);
1048
1049	tick_cleanup_dead_cpu(cpu);
1050	rcutree_migrate_callbacks(cpu);
1051	return 0;
1052}
1053
1054static void cpuhp_complete_idle_dead(void *arg)
1055{
1056	struct cpuhp_cpu_state *st = arg;
1057
1058	complete_ap_thread(st, false);
 
 
 
 
1059}
1060
1061void cpuhp_report_idle_dead(void)
1062{
1063	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1064
1065	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1066	rcu_report_dead(smp_processor_id());
1067	st->state = CPUHP_AP_IDLE_DEAD;
1068	/*
1069	 * We cannot call complete after rcu_report_dead() so we delegate it
1070	 * to an online cpu.
1071	 */
1072	smp_call_function_single(cpumask_first(cpu_online_mask),
1073				 cpuhp_complete_idle_dead, st, 0);
1074}
1075
1076static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1077				enum cpuhp_state target)
1078{
1079	enum cpuhp_state prev_state = st->state;
1080	int ret = 0;
1081
1082	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1083	if (ret) {
1084
1085		cpuhp_reset_state(st, prev_state);
1086
1087		if (st->state < prev_state)
1088			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1089							    prev_state));
1090	}
1091
1092	return ret;
1093}
1094
1095/* Requires cpu_add_remove_lock to be held */
1096static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1097			   enum cpuhp_state target)
1098{
1099	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1100	int prev_state, ret = 0;
1101
1102	if (num_online_cpus() == 1)
1103		return -EBUSY;
1104
1105	if (!cpu_present(cpu))
1106		return -EINVAL;
1107
1108	cpus_write_lock();
1109
1110	cpuhp_tasks_frozen = tasks_frozen;
1111
1112	prev_state = cpuhp_set_state(st, target);
1113	/*
1114	 * If the current CPU state is in the range of the AP hotplug thread,
1115	 * then we need to kick the thread.
1116	 */
1117	if (st->state > CPUHP_TEARDOWN_CPU) {
1118		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1119		ret = cpuhp_kick_ap_work(cpu);
1120		/*
1121		 * The AP side has done the error rollback already. Just
1122		 * return the error code..
1123		 */
1124		if (ret)
1125			goto out;
1126
1127		/*
1128		 * We might have stopped still in the range of the AP hotplug
1129		 * thread. Nothing to do anymore.
1130		 */
1131		if (st->state > CPUHP_TEARDOWN_CPU)
1132			goto out;
1133
1134		st->target = target;
1135	}
1136	/*
1137	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1138	 * to do the further cleanups.
1139	 */
1140	ret = cpuhp_down_callbacks(cpu, st, target);
1141	if (ret && st->state < prev_state) {
1142		if (st->state == CPUHP_TEARDOWN_CPU) {
1143			cpuhp_reset_state(st, prev_state);
1144			__cpuhp_kick_ap(st);
1145		} else {
1146			WARN(1, "DEAD callback error for CPU%d", cpu);
1147		}
1148	}
1149
1150out:
1151	cpus_write_unlock();
1152	/*
1153	 * Do post unplug cleanup. This is still protected against
1154	 * concurrent CPU hotplug via cpu_add_remove_lock.
1155	 */
1156	lockup_detector_cleanup();
1157	arch_smt_update();
1158	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1159	return ret;
1160}
1161
1162static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1163{
1164	if (cpu_hotplug_disabled)
1165		return -EBUSY;
1166	return _cpu_down(cpu, 0, target);
1167}
1168
1169static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1170{
1171	int err;
1172
1173	cpu_maps_update_begin();
1174	err = cpu_down_maps_locked(cpu, target);
1175	cpu_maps_update_done();
1176	return err;
1177}
1178
1179/**
1180 * cpu_device_down - Bring down a cpu device
1181 * @dev: Pointer to the cpu device to offline
1182 *
1183 * This function is meant to be used by device core cpu subsystem only.
1184 *
1185 * Other subsystems should use remove_cpu() instead.
1186 */
1187int cpu_device_down(struct device *dev)
1188{
1189	return cpu_down(dev->id, CPUHP_OFFLINE);
1190}
1191
1192int remove_cpu(unsigned int cpu)
1193{
1194	int ret;
1195
1196	lock_device_hotplug();
1197	ret = device_offline(get_cpu_device(cpu));
1198	unlock_device_hotplug();
1199
1200	return ret;
1201}
1202EXPORT_SYMBOL_GPL(remove_cpu);
1203
1204void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1205{
1206	unsigned int cpu;
1207	int error;
1208
1209	cpu_maps_update_begin();
1210
1211	/*
1212	 * Make certain the cpu I'm about to reboot on is online.
1213	 *
1214	 * This is inline to what migrate_to_reboot_cpu() already do.
1215	 */
1216	if (!cpu_online(primary_cpu))
1217		primary_cpu = cpumask_first(cpu_online_mask);
1218
1219	for_each_online_cpu(cpu) {
1220		if (cpu == primary_cpu)
1221			continue;
1222
1223		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1224		if (error) {
1225			pr_err("Failed to offline CPU%d - error=%d",
1226				cpu, error);
1227			break;
1228		}
1229	}
1230
1231	/*
1232	 * Ensure all but the reboot CPU are offline.
1233	 */
1234	BUG_ON(num_online_cpus() > 1);
1235
1236	/*
1237	 * Make sure the CPUs won't be enabled by someone else after this
1238	 * point. Kexec will reboot to a new kernel shortly resetting
1239	 * everything along the way.
1240	 */
1241	cpu_hotplug_disabled++;
1242
1243	cpu_maps_update_done();
1244}
1245
1246#else
1247#define takedown_cpu		NULL
1248#endif /*CONFIG_HOTPLUG_CPU*/
1249
1250/**
1251 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1252 * @cpu: cpu that just started
1253 *
1254 * It must be called by the arch code on the new cpu, before the new cpu
1255 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1256 */
1257void notify_cpu_starting(unsigned int cpu)
1258{
1259	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1260	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1261	int ret;
1262
1263	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1264	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1265	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1266
1267	/*
1268	 * STARTING must not fail!
1269	 */
1270	WARN_ON_ONCE(ret);
1271}
1272
1273/*
1274 * Called from the idle task. Wake up the controlling task which brings the
1275 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1276 * online bringup to the hotplug thread.
1277 */
1278void cpuhp_online_idle(enum cpuhp_state state)
1279{
1280	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1281
1282	/* Happens for the boot cpu */
1283	if (state != CPUHP_AP_ONLINE_IDLE)
1284		return;
1285
1286	/*
1287	 * Unpart the stopper thread before we start the idle loop (and start
1288	 * scheduling); this ensures the stopper task is always available.
1289	 */
1290	stop_machine_unpark(smp_processor_id());
1291
1292	st->state = CPUHP_AP_ONLINE_IDLE;
1293	complete_ap_thread(st, true);
1294}
1295
1296/* Requires cpu_add_remove_lock to be held */
1297static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1298{
1299	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 
 
1300	struct task_struct *idle;
1301	int ret = 0;
1302
1303	cpus_write_lock();
 
1304
1305	if (!cpu_present(cpu)) {
1306		ret = -EINVAL;
1307		goto out;
1308	}
1309
1310	/*
1311	 * The caller of cpu_up() might have raced with another
1312	 * caller. Nothing to do.
1313	 */
1314	if (st->state >= target)
1315		goto out;
1316
1317	if (st->state == CPUHP_OFFLINE) {
1318		/* Let it fail before we try to bring the cpu up */
1319		idle = idle_thread_get(cpu);
1320		if (IS_ERR(idle)) {
1321			ret = PTR_ERR(idle);
1322			goto out;
1323		}
1324	}
1325
1326	cpuhp_tasks_frozen = tasks_frozen;
1327
1328	cpuhp_set_state(st, target);
1329	/*
1330	 * If the current CPU state is in the range of the AP hotplug thread,
1331	 * then we need to kick the thread once more.
1332	 */
1333	if (st->state > CPUHP_BRINGUP_CPU) {
1334		ret = cpuhp_kick_ap_work(cpu);
1335		/*
1336		 * The AP side has done the error rollback already. Just
1337		 * return the error code..
1338		 */
1339		if (ret)
1340			goto out;
1341	}
1342
1343	/*
1344	 * Try to reach the target state. We max out on the BP at
1345	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1346	 * responsible for bringing it up to the target state.
1347	 */
1348	target = min((int)target, CPUHP_BRINGUP_CPU);
1349	ret = cpuhp_up_callbacks(cpu, st, target);
 
 
 
 
 
1350out:
1351	cpus_write_unlock();
1352	arch_smt_update();
1353	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1354	return ret;
1355}
1356
1357static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1358{
1359	int err = 0;
1360
 
 
 
 
 
1361	if (!cpu_possible(cpu)) {
1362		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1363		       cpu);
1364#if defined(CONFIG_IA64)
1365		pr_err("please check additional_cpus= boot parameter\n");
 
1366#endif
1367		return -EINVAL;
1368	}
1369
1370	err = try_online_node(cpu_to_node(cpu));
1371	if (err)
1372		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1373
1374	cpu_maps_update_begin();
1375
1376	if (cpu_hotplug_disabled) {
1377		err = -EBUSY;
1378		goto out;
1379	}
1380	if (!cpu_smt_allowed(cpu)) {
1381		err = -EPERM;
1382		goto out;
1383	}
1384
1385	err = _cpu_up(cpu, 0, target);
 
1386out:
1387	cpu_maps_update_done();
1388	return err;
1389}
 
1390
1391/**
1392 * cpu_device_up - Bring up a cpu device
1393 * @dev: Pointer to the cpu device to online
1394 *
1395 * This function is meant to be used by device core cpu subsystem only.
1396 *
1397 * Other subsystems should use add_cpu() instead.
1398 */
1399int cpu_device_up(struct device *dev)
1400{
1401	return cpu_up(dev->id, CPUHP_ONLINE);
1402}
1403
1404int add_cpu(unsigned int cpu)
1405{
1406	int ret;
1407
1408	lock_device_hotplug();
1409	ret = device_online(get_cpu_device(cpu));
1410	unlock_device_hotplug();
1411
1412	return ret;
1413}
1414EXPORT_SYMBOL_GPL(add_cpu);
1415
1416/**
1417 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1418 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1419 *
1420 * On some architectures like arm64, we can hibernate on any CPU, but on
1421 * wake up the CPU we hibernated on might be offline as a side effect of
1422 * using maxcpus= for example.
1423 */
1424int bringup_hibernate_cpu(unsigned int sleep_cpu)
1425{
1426	int ret;
1427
1428	if (!cpu_online(sleep_cpu)) {
1429		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1430		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1431		if (ret) {
1432			pr_err("Failed to bring hibernate-CPU up!\n");
1433			return ret;
1434		}
1435	}
1436	return 0;
1437}
1438
1439void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1440{
1441	unsigned int cpu;
1442
1443	for_each_present_cpu(cpu) {
1444		if (num_online_cpus() >= setup_max_cpus)
1445			break;
1446		if (!cpu_online(cpu))
1447			cpu_up(cpu, CPUHP_ONLINE);
1448	}
1449}
1450
1451#ifdef CONFIG_PM_SLEEP_SMP
1452static cpumask_var_t frozen_cpus;
1453
1454int freeze_secondary_cpus(int primary)
1455{
1456	int cpu, error = 0;
1457
1458	cpu_maps_update_begin();
1459	if (primary == -1) {
1460		primary = cpumask_first(cpu_online_mask);
1461		if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1462			primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1463	} else {
1464		if (!cpu_online(primary))
1465			primary = cpumask_first(cpu_online_mask);
1466	}
1467
1468	/*
1469	 * We take down all of the non-boot CPUs in one shot to avoid races
1470	 * with the userspace trying to use the CPU hotplug at the same time
1471	 */
1472	cpumask_clear(frozen_cpus);
 
1473
1474	pr_info("Disabling non-boot CPUs ...\n");
1475	for_each_online_cpu(cpu) {
1476		if (cpu == primary)
1477			continue;
1478
1479		if (pm_wakeup_pending()) {
1480			pr_info("Wakeup pending. Abort CPU freeze\n");
1481			error = -EBUSY;
1482			break;
1483		}
1484
1485		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1486		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1487		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1488		if (!error)
1489			cpumask_set_cpu(cpu, frozen_cpus);
1490		else {
1491			pr_err("Error taking CPU%d down: %d\n", cpu, error);
 
1492			break;
1493		}
1494	}
1495
1496	if (!error)
 
 
1497		BUG_ON(num_online_cpus() > 1);
1498	else
1499		pr_err("Non-boot CPUs are not disabled\n");
1500
1501	/*
1502	 * Make sure the CPUs won't be enabled by someone else. We need to do
1503	 * this even in case of failure as all freeze_secondary_cpus() users are
1504	 * supposed to do thaw_secondary_cpus() on the failure path.
1505	 */
1506	cpu_hotplug_disabled++;
1507
1508	cpu_maps_update_done();
1509	return error;
1510}
1511
1512void __weak arch_thaw_secondary_cpus_begin(void)
1513{
1514}
1515
1516void __weak arch_thaw_secondary_cpus_end(void)
1517{
1518}
1519
1520void thaw_secondary_cpus(void)
1521{
1522	int cpu, error;
1523
1524	/* Allow everyone to use the CPU hotplug again */
1525	cpu_maps_update_begin();
1526	__cpu_hotplug_enable();
1527	if (cpumask_empty(frozen_cpus))
1528		goto out;
1529
1530	pr_info("Enabling non-boot CPUs ...\n");
1531
1532	arch_thaw_secondary_cpus_begin();
1533
1534	for_each_cpu(cpu, frozen_cpus) {
1535		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1536		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1537		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1538		if (!error) {
1539			pr_info("CPU%d is up\n", cpu);
1540			continue;
1541		}
1542		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1543	}
1544
1545	arch_thaw_secondary_cpus_end();
1546
1547	cpumask_clear(frozen_cpus);
1548out:
1549	cpu_maps_update_done();
1550}
1551
1552static int __init alloc_frozen_cpus(void)
1553{
1554	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1555		return -ENOMEM;
1556	return 0;
1557}
1558core_initcall(alloc_frozen_cpus);
1559
1560/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1561 * When callbacks for CPU hotplug notifications are being executed, we must
1562 * ensure that the state of the system with respect to the tasks being frozen
1563 * or not, as reported by the notification, remains unchanged *throughout the
1564 * duration* of the execution of the callbacks.
1565 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1566 *
1567 * This synchronization is implemented by mutually excluding regular CPU
1568 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1569 * Hibernate notifications.
1570 */
1571static int
1572cpu_hotplug_pm_callback(struct notifier_block *nb,
1573			unsigned long action, void *ptr)
1574{
1575	switch (action) {
1576
1577	case PM_SUSPEND_PREPARE:
1578	case PM_HIBERNATION_PREPARE:
1579		cpu_hotplug_disable();
1580		break;
1581
1582	case PM_POST_SUSPEND:
1583	case PM_POST_HIBERNATION:
1584		cpu_hotplug_enable();
1585		break;
1586
1587	default:
1588		return NOTIFY_DONE;
1589	}
1590
1591	return NOTIFY_OK;
1592}
1593
1594
1595static int __init cpu_hotplug_pm_sync_init(void)
1596{
1597	/*
1598	 * cpu_hotplug_pm_callback has higher priority than x86
1599	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1600	 * to disable cpu hotplug to avoid cpu hotplug race.
1601	 */
1602	pm_notifier(cpu_hotplug_pm_callback, 0);
1603	return 0;
1604}
1605core_initcall(cpu_hotplug_pm_sync_init);
1606
1607#endif /* CONFIG_PM_SLEEP_SMP */
1608
1609int __boot_cpu_id;
1610
1611#endif /* CONFIG_SMP */
1612
1613/* Boot processor state steps */
1614static struct cpuhp_step cpuhp_hp_states[] = {
1615	[CPUHP_OFFLINE] = {
1616		.name			= "offline",
1617		.startup.single		= NULL,
1618		.teardown.single	= NULL,
1619	},
1620#ifdef CONFIG_SMP
1621	[CPUHP_CREATE_THREADS]= {
1622		.name			= "threads:prepare",
1623		.startup.single		= smpboot_create_threads,
1624		.teardown.single	= NULL,
1625		.cant_stop		= true,
1626	},
1627	[CPUHP_PERF_PREPARE] = {
1628		.name			= "perf:prepare",
1629		.startup.single		= perf_event_init_cpu,
1630		.teardown.single	= perf_event_exit_cpu,
1631	},
1632	[CPUHP_WORKQUEUE_PREP] = {
1633		.name			= "workqueue:prepare",
1634		.startup.single		= workqueue_prepare_cpu,
1635		.teardown.single	= NULL,
1636	},
1637	[CPUHP_HRTIMERS_PREPARE] = {
1638		.name			= "hrtimers:prepare",
1639		.startup.single		= hrtimers_prepare_cpu,
1640		.teardown.single	= hrtimers_dead_cpu,
1641	},
1642	[CPUHP_SMPCFD_PREPARE] = {
1643		.name			= "smpcfd:prepare",
1644		.startup.single		= smpcfd_prepare_cpu,
1645		.teardown.single	= smpcfd_dead_cpu,
1646	},
1647	[CPUHP_RELAY_PREPARE] = {
1648		.name			= "relay:prepare",
1649		.startup.single		= relay_prepare_cpu,
1650		.teardown.single	= NULL,
1651	},
1652	[CPUHP_SLAB_PREPARE] = {
1653		.name			= "slab:prepare",
1654		.startup.single		= slab_prepare_cpu,
1655		.teardown.single	= slab_dead_cpu,
1656	},
1657	[CPUHP_RCUTREE_PREP] = {
1658		.name			= "RCU/tree:prepare",
1659		.startup.single		= rcutree_prepare_cpu,
1660		.teardown.single	= rcutree_dead_cpu,
1661	},
1662	/*
1663	 * On the tear-down path, timers_dead_cpu() must be invoked
1664	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1665	 * otherwise a RCU stall occurs.
1666	 */
1667	[CPUHP_TIMERS_PREPARE] = {
1668		.name			= "timers:prepare",
1669		.startup.single		= timers_prepare_cpu,
1670		.teardown.single	= timers_dead_cpu,
1671	},
1672	/* Kicks the plugged cpu into life */
1673	[CPUHP_BRINGUP_CPU] = {
1674		.name			= "cpu:bringup",
1675		.startup.single		= bringup_cpu,
1676		.teardown.single	= finish_cpu,
1677		.cant_stop		= true,
1678	},
1679	/* Final state before CPU kills itself */
1680	[CPUHP_AP_IDLE_DEAD] = {
1681		.name			= "idle:dead",
1682	},
1683	/*
1684	 * Last state before CPU enters the idle loop to die. Transient state
1685	 * for synchronization.
1686	 */
1687	[CPUHP_AP_OFFLINE] = {
1688		.name			= "ap:offline",
1689		.cant_stop		= true,
1690	},
1691	/* First state is scheduler control. Interrupts are disabled */
1692	[CPUHP_AP_SCHED_STARTING] = {
1693		.name			= "sched:starting",
1694		.startup.single		= sched_cpu_starting,
1695		.teardown.single	= sched_cpu_dying,
1696	},
1697	[CPUHP_AP_RCUTREE_DYING] = {
1698		.name			= "RCU/tree:dying",
1699		.startup.single		= NULL,
1700		.teardown.single	= rcutree_dying_cpu,
1701	},
1702	[CPUHP_AP_SMPCFD_DYING] = {
1703		.name			= "smpcfd:dying",
1704		.startup.single		= NULL,
1705		.teardown.single	= smpcfd_dying_cpu,
1706	},
1707	/* Entry state on starting. Interrupts enabled from here on. Transient
1708	 * state for synchronsization */
1709	[CPUHP_AP_ONLINE] = {
1710		.name			= "ap:online",
1711	},
1712	/*
1713	 * Handled on control processor until the plugged processor manages
1714	 * this itself.
1715	 */
1716	[CPUHP_TEARDOWN_CPU] = {
1717		.name			= "cpu:teardown",
1718		.startup.single		= NULL,
1719		.teardown.single	= takedown_cpu,
1720		.cant_stop		= true,
1721	},
1722
1723	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
1724		.name			= "sched:waitempty",
1725		.startup.single		= NULL,
1726		.teardown.single	= sched_cpu_wait_empty,
1727	},
1728
1729	/* Handle smpboot threads park/unpark */
1730	[CPUHP_AP_SMPBOOT_THREADS] = {
1731		.name			= "smpboot/threads:online",
1732		.startup.single		= smpboot_unpark_threads,
1733		.teardown.single	= smpboot_park_threads,
1734	},
1735	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1736		.name			= "irq/affinity:online",
1737		.startup.single		= irq_affinity_online_cpu,
1738		.teardown.single	= NULL,
1739	},
1740	[CPUHP_AP_PERF_ONLINE] = {
1741		.name			= "perf:online",
1742		.startup.single		= perf_event_init_cpu,
1743		.teardown.single	= perf_event_exit_cpu,
1744	},
1745	[CPUHP_AP_WATCHDOG_ONLINE] = {
1746		.name			= "lockup_detector:online",
1747		.startup.single		= lockup_detector_online_cpu,
1748		.teardown.single	= lockup_detector_offline_cpu,
1749	},
1750	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1751		.name			= "workqueue:online",
1752		.startup.single		= workqueue_online_cpu,
1753		.teardown.single	= workqueue_offline_cpu,
1754	},
1755	[CPUHP_AP_RCUTREE_ONLINE] = {
1756		.name			= "RCU/tree:online",
1757		.startup.single		= rcutree_online_cpu,
1758		.teardown.single	= rcutree_offline_cpu,
1759	},
1760#endif
1761	/*
1762	 * The dynamically registered state space is here
1763	 */
1764
1765#ifdef CONFIG_SMP
1766	/* Last state is scheduler control setting the cpu active */
1767	[CPUHP_AP_ACTIVE] = {
1768		.name			= "sched:active",
1769		.startup.single		= sched_cpu_activate,
1770		.teardown.single	= sched_cpu_deactivate,
1771	},
1772#endif
1773
1774	/* CPU is fully up and running. */
1775	[CPUHP_ONLINE] = {
1776		.name			= "online",
1777		.startup.single		= NULL,
1778		.teardown.single	= NULL,
1779	},
1780};
1781
1782/* Sanity check for callbacks */
1783static int cpuhp_cb_check(enum cpuhp_state state)
1784{
1785	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1786		return -EINVAL;
1787	return 0;
1788}
1789
1790/*
1791 * Returns a free for dynamic slot assignment of the Online state. The states
1792 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1793 * by having no name assigned.
1794 */
1795static int cpuhp_reserve_state(enum cpuhp_state state)
1796{
1797	enum cpuhp_state i, end;
1798	struct cpuhp_step *step;
1799
1800	switch (state) {
1801	case CPUHP_AP_ONLINE_DYN:
1802		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1803		end = CPUHP_AP_ONLINE_DYN_END;
1804		break;
1805	case CPUHP_BP_PREPARE_DYN:
1806		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1807		end = CPUHP_BP_PREPARE_DYN_END;
1808		break;
1809	default:
1810		return -EINVAL;
1811	}
1812
1813	for (i = state; i <= end; i++, step++) {
1814		if (!step->name)
1815			return i;
1816	}
1817	WARN(1, "No more dynamic states available for CPU hotplug\n");
1818	return -ENOSPC;
1819}
1820
1821static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1822				 int (*startup)(unsigned int cpu),
1823				 int (*teardown)(unsigned int cpu),
1824				 bool multi_instance)
1825{
1826	/* (Un)Install the callbacks for further cpu hotplug operations */
1827	struct cpuhp_step *sp;
1828	int ret = 0;
1829
1830	/*
1831	 * If name is NULL, then the state gets removed.
1832	 *
1833	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1834	 * the first allocation from these dynamic ranges, so the removal
1835	 * would trigger a new allocation and clear the wrong (already
1836	 * empty) state, leaving the callbacks of the to be cleared state
1837	 * dangling, which causes wreckage on the next hotplug operation.
1838	 */
1839	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1840		     state == CPUHP_BP_PREPARE_DYN)) {
1841		ret = cpuhp_reserve_state(state);
1842		if (ret < 0)
1843			return ret;
1844		state = ret;
1845	}
1846	sp = cpuhp_get_step(state);
1847	if (name && sp->name)
1848		return -EBUSY;
1849
1850	sp->startup.single = startup;
1851	sp->teardown.single = teardown;
1852	sp->name = name;
1853	sp->multi_instance = multi_instance;
1854	INIT_HLIST_HEAD(&sp->list);
1855	return ret;
1856}
1857
1858static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1859{
1860	return cpuhp_get_step(state)->teardown.single;
1861}
1862
1863/*
1864 * Call the startup/teardown function for a step either on the AP or
1865 * on the current CPU.
1866 */
1867static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1868			    struct hlist_node *node)
1869{
1870	struct cpuhp_step *sp = cpuhp_get_step(state);
1871	int ret;
1872
1873	/*
1874	 * If there's nothing to do, we done.
1875	 * Relies on the union for multi_instance.
1876	 */
1877	if (cpuhp_step_empty(bringup, sp))
1878		return 0;
1879	/*
1880	 * The non AP bound callbacks can fail on bringup. On teardown
1881	 * e.g. module removal we crash for now.
1882	 */
1883#ifdef CONFIG_SMP
1884	if (cpuhp_is_ap_state(state))
1885		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1886	else
1887		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1888#else
1889	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1890#endif
1891	BUG_ON(ret && !bringup);
1892	return ret;
1893}
1894
1895/*
1896 * Called from __cpuhp_setup_state on a recoverable failure.
1897 *
1898 * Note: The teardown callbacks for rollback are not allowed to fail!
1899 */
1900static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1901				   struct hlist_node *node)
1902{
1903	int cpu;
1904
1905	/* Roll back the already executed steps on the other cpus */
1906	for_each_present_cpu(cpu) {
1907		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1908		int cpustate = st->state;
1909
1910		if (cpu >= failedcpu)
1911			break;
1912
1913		/* Did we invoke the startup call on that cpu ? */
1914		if (cpustate >= state)
1915			cpuhp_issue_call(cpu, state, false, node);
1916	}
1917}
1918
1919int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1920					  struct hlist_node *node,
1921					  bool invoke)
1922{
1923	struct cpuhp_step *sp;
1924	int cpu;
1925	int ret;
1926
1927	lockdep_assert_cpus_held();
1928
1929	sp = cpuhp_get_step(state);
1930	if (sp->multi_instance == false)
1931		return -EINVAL;
1932
1933	mutex_lock(&cpuhp_state_mutex);
1934
1935	if (!invoke || !sp->startup.multi)
1936		goto add_node;
1937
1938	/*
1939	 * Try to call the startup callback for each present cpu
1940	 * depending on the hotplug state of the cpu.
1941	 */
1942	for_each_present_cpu(cpu) {
1943		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1944		int cpustate = st->state;
1945
1946		if (cpustate < state)
1947			continue;
1948
1949		ret = cpuhp_issue_call(cpu, state, true, node);
1950		if (ret) {
1951			if (sp->teardown.multi)
1952				cpuhp_rollback_install(cpu, state, node);
1953			goto unlock;
1954		}
1955	}
1956add_node:
1957	ret = 0;
1958	hlist_add_head(node, &sp->list);
1959unlock:
1960	mutex_unlock(&cpuhp_state_mutex);
1961	return ret;
1962}
1963
1964int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1965			       bool invoke)
1966{
1967	int ret;
1968
1969	cpus_read_lock();
1970	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1971	cpus_read_unlock();
1972	return ret;
1973}
1974EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1975
1976/**
1977 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1978 * @state:		The state to setup
1979 * @invoke:		If true, the startup function is invoked for cpus where
1980 *			cpu state >= @state
1981 * @startup:		startup callback function
1982 * @teardown:		teardown callback function
1983 * @multi_instance:	State is set up for multiple instances which get
1984 *			added afterwards.
1985 *
1986 * The caller needs to hold cpus read locked while calling this function.
1987 * Returns:
1988 *   On success:
1989 *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1990 *      0 for all other states
1991 *   On failure: proper (negative) error code
1992 */
1993int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1994				   const char *name, bool invoke,
1995				   int (*startup)(unsigned int cpu),
1996				   int (*teardown)(unsigned int cpu),
1997				   bool multi_instance)
1998{
1999	int cpu, ret = 0;
2000	bool dynstate;
2001
2002	lockdep_assert_cpus_held();
2003
2004	if (cpuhp_cb_check(state) || !name)
2005		return -EINVAL;
2006
2007	mutex_lock(&cpuhp_state_mutex);
2008
2009	ret = cpuhp_store_callbacks(state, name, startup, teardown,
2010				    multi_instance);
2011
2012	dynstate = state == CPUHP_AP_ONLINE_DYN;
2013	if (ret > 0 && dynstate) {
2014		state = ret;
2015		ret = 0;
2016	}
2017
2018	if (ret || !invoke || !startup)
2019		goto out;
2020
2021	/*
2022	 * Try to call the startup callback for each present cpu
2023	 * depending on the hotplug state of the cpu.
2024	 */
2025	for_each_present_cpu(cpu) {
2026		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2027		int cpustate = st->state;
2028
2029		if (cpustate < state)
2030			continue;
2031
2032		ret = cpuhp_issue_call(cpu, state, true, NULL);
2033		if (ret) {
2034			if (teardown)
2035				cpuhp_rollback_install(cpu, state, NULL);
2036			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2037			goto out;
2038		}
2039	}
2040out:
2041	mutex_unlock(&cpuhp_state_mutex);
2042	/*
2043	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2044	 * dynamically allocated state in case of success.
2045	 */
2046	if (!ret && dynstate)
2047		return state;
2048	return ret;
2049}
2050EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2051
2052int __cpuhp_setup_state(enum cpuhp_state state,
2053			const char *name, bool invoke,
2054			int (*startup)(unsigned int cpu),
2055			int (*teardown)(unsigned int cpu),
2056			bool multi_instance)
2057{
2058	int ret;
2059
2060	cpus_read_lock();
2061	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2062					     teardown, multi_instance);
2063	cpus_read_unlock();
2064	return ret;
2065}
2066EXPORT_SYMBOL(__cpuhp_setup_state);
2067
2068int __cpuhp_state_remove_instance(enum cpuhp_state state,
2069				  struct hlist_node *node, bool invoke)
2070{
2071	struct cpuhp_step *sp = cpuhp_get_step(state);
2072	int cpu;
2073
2074	BUG_ON(cpuhp_cb_check(state));
2075
2076	if (!sp->multi_instance)
2077		return -EINVAL;
2078
2079	cpus_read_lock();
2080	mutex_lock(&cpuhp_state_mutex);
2081
2082	if (!invoke || !cpuhp_get_teardown_cb(state))
2083		goto remove;
2084	/*
2085	 * Call the teardown callback for each present cpu depending
2086	 * on the hotplug state of the cpu. This function is not
2087	 * allowed to fail currently!
2088	 */
2089	for_each_present_cpu(cpu) {
2090		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2091		int cpustate = st->state;
2092
2093		if (cpustate >= state)
2094			cpuhp_issue_call(cpu, state, false, node);
2095	}
2096
2097remove:
2098	hlist_del(node);
2099	mutex_unlock(&cpuhp_state_mutex);
2100	cpus_read_unlock();
2101
2102	return 0;
2103}
2104EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2105
2106/**
2107 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2108 * @state:	The state to remove
2109 * @invoke:	If true, the teardown function is invoked for cpus where
2110 *		cpu state >= @state
2111 *
2112 * The caller needs to hold cpus read locked while calling this function.
2113 * The teardown callback is currently not allowed to fail. Think
2114 * about module removal!
2115 */
2116void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2117{
2118	struct cpuhp_step *sp = cpuhp_get_step(state);
2119	int cpu;
2120
2121	BUG_ON(cpuhp_cb_check(state));
2122
2123	lockdep_assert_cpus_held();
2124
2125	mutex_lock(&cpuhp_state_mutex);
2126	if (sp->multi_instance) {
2127		WARN(!hlist_empty(&sp->list),
2128		     "Error: Removing state %d which has instances left.\n",
2129		     state);
2130		goto remove;
2131	}
2132
2133	if (!invoke || !cpuhp_get_teardown_cb(state))
2134		goto remove;
2135
2136	/*
2137	 * Call the teardown callback for each present cpu depending
2138	 * on the hotplug state of the cpu. This function is not
2139	 * allowed to fail currently!
2140	 */
2141	for_each_present_cpu(cpu) {
2142		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2143		int cpustate = st->state;
2144
2145		if (cpustate >= state)
2146			cpuhp_issue_call(cpu, state, false, NULL);
2147	}
2148remove:
2149	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2150	mutex_unlock(&cpuhp_state_mutex);
2151}
2152EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2153
2154void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2155{
2156	cpus_read_lock();
2157	__cpuhp_remove_state_cpuslocked(state, invoke);
2158	cpus_read_unlock();
2159}
2160EXPORT_SYMBOL(__cpuhp_remove_state);
2161
2162#ifdef CONFIG_HOTPLUG_SMT
2163static void cpuhp_offline_cpu_device(unsigned int cpu)
2164{
2165	struct device *dev = get_cpu_device(cpu);
2166
2167	dev->offline = true;
2168	/* Tell user space about the state change */
2169	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2170}
2171
2172static void cpuhp_online_cpu_device(unsigned int cpu)
2173{
2174	struct device *dev = get_cpu_device(cpu);
2175
2176	dev->offline = false;
2177	/* Tell user space about the state change */
2178	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2179}
2180
2181int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2182{
2183	int cpu, ret = 0;
2184
2185	cpu_maps_update_begin();
2186	for_each_online_cpu(cpu) {
2187		if (topology_is_primary_thread(cpu))
2188			continue;
2189		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2190		if (ret)
2191			break;
2192		/*
2193		 * As this needs to hold the cpu maps lock it's impossible
2194		 * to call device_offline() because that ends up calling
2195		 * cpu_down() which takes cpu maps lock. cpu maps lock
2196		 * needs to be held as this might race against in kernel
2197		 * abusers of the hotplug machinery (thermal management).
2198		 *
2199		 * So nothing would update device:offline state. That would
2200		 * leave the sysfs entry stale and prevent onlining after
2201		 * smt control has been changed to 'off' again. This is
2202		 * called under the sysfs hotplug lock, so it is properly
2203		 * serialized against the regular offline usage.
2204		 */
2205		cpuhp_offline_cpu_device(cpu);
2206	}
2207	if (!ret)
2208		cpu_smt_control = ctrlval;
2209	cpu_maps_update_done();
2210	return ret;
2211}
2212
2213int cpuhp_smt_enable(void)
2214{
2215	int cpu, ret = 0;
2216
2217	cpu_maps_update_begin();
2218	cpu_smt_control = CPU_SMT_ENABLED;
2219	for_each_present_cpu(cpu) {
2220		/* Skip online CPUs and CPUs on offline nodes */
2221		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2222			continue;
2223		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2224		if (ret)
2225			break;
2226		/* See comment in cpuhp_smt_disable() */
2227		cpuhp_online_cpu_device(cpu);
2228	}
2229	cpu_maps_update_done();
2230	return ret;
2231}
2232#endif
2233
2234#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2235static ssize_t show_cpuhp_state(struct device *dev,
2236				struct device_attribute *attr, char *buf)
2237{
2238	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2239
2240	return sprintf(buf, "%d\n", st->state);
2241}
2242static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2243
2244static ssize_t write_cpuhp_target(struct device *dev,
2245				  struct device_attribute *attr,
2246				  const char *buf, size_t count)
2247{
2248	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2249	struct cpuhp_step *sp;
2250	int target, ret;
2251
2252	ret = kstrtoint(buf, 10, &target);
2253	if (ret)
2254		return ret;
2255
2256#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2257	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2258		return -EINVAL;
2259#else
2260	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2261		return -EINVAL;
2262#endif
2263
2264	ret = lock_device_hotplug_sysfs();
2265	if (ret)
2266		return ret;
2267
2268	mutex_lock(&cpuhp_state_mutex);
2269	sp = cpuhp_get_step(target);
2270	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2271	mutex_unlock(&cpuhp_state_mutex);
2272	if (ret)
2273		goto out;
2274
2275	if (st->state < target)
2276		ret = cpu_up(dev->id, target);
2277	else
2278		ret = cpu_down(dev->id, target);
2279out:
2280	unlock_device_hotplug();
2281	return ret ? ret : count;
2282}
2283
2284static ssize_t show_cpuhp_target(struct device *dev,
2285				 struct device_attribute *attr, char *buf)
2286{
2287	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2288
2289	return sprintf(buf, "%d\n", st->target);
2290}
2291static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2292
2293
2294static ssize_t write_cpuhp_fail(struct device *dev,
2295				struct device_attribute *attr,
2296				const char *buf, size_t count)
2297{
2298	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2299	struct cpuhp_step *sp;
2300	int fail, ret;
2301
2302	ret = kstrtoint(buf, 10, &fail);
2303	if (ret)
2304		return ret;
2305
2306	if (fail == CPUHP_INVALID) {
2307		st->fail = fail;
2308		return count;
2309	}
2310
2311	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2312		return -EINVAL;
2313
2314	/*
2315	 * Cannot fail STARTING/DYING callbacks.
2316	 */
2317	if (cpuhp_is_atomic_state(fail))
2318		return -EINVAL;
2319
2320	/*
2321	 * DEAD callbacks cannot fail...
2322	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2323	 * triggering STARTING callbacks, a failure in this state would
2324	 * hinder rollback.
2325	 */
2326	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2327		return -EINVAL;
2328
2329	/*
2330	 * Cannot fail anything that doesn't have callbacks.
2331	 */
2332	mutex_lock(&cpuhp_state_mutex);
2333	sp = cpuhp_get_step(fail);
2334	if (!sp->startup.single && !sp->teardown.single)
2335		ret = -EINVAL;
2336	mutex_unlock(&cpuhp_state_mutex);
2337	if (ret)
2338		return ret;
2339
2340	st->fail = fail;
2341
2342	return count;
2343}
2344
2345static ssize_t show_cpuhp_fail(struct device *dev,
2346			       struct device_attribute *attr, char *buf)
2347{
2348	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2349
2350	return sprintf(buf, "%d\n", st->fail);
2351}
2352
2353static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2354
2355static struct attribute *cpuhp_cpu_attrs[] = {
2356	&dev_attr_state.attr,
2357	&dev_attr_target.attr,
2358	&dev_attr_fail.attr,
2359	NULL
2360};
2361
2362static const struct attribute_group cpuhp_cpu_attr_group = {
2363	.attrs = cpuhp_cpu_attrs,
2364	.name = "hotplug",
2365	NULL
2366};
2367
2368static ssize_t show_cpuhp_states(struct device *dev,
2369				 struct device_attribute *attr, char *buf)
2370{
2371	ssize_t cur, res = 0;
2372	int i;
2373
2374	mutex_lock(&cpuhp_state_mutex);
2375	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2376		struct cpuhp_step *sp = cpuhp_get_step(i);
2377
2378		if (sp->name) {
2379			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2380			buf += cur;
2381			res += cur;
2382		}
2383	}
2384	mutex_unlock(&cpuhp_state_mutex);
2385	return res;
2386}
2387static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2388
2389static struct attribute *cpuhp_cpu_root_attrs[] = {
2390	&dev_attr_states.attr,
2391	NULL
2392};
2393
2394static const struct attribute_group cpuhp_cpu_root_attr_group = {
2395	.attrs = cpuhp_cpu_root_attrs,
2396	.name = "hotplug",
2397	NULL
2398};
2399
2400#ifdef CONFIG_HOTPLUG_SMT
2401
2402static ssize_t
2403__store_smt_control(struct device *dev, struct device_attribute *attr,
2404		    const char *buf, size_t count)
2405{
2406	int ctrlval, ret;
2407
2408	if (sysfs_streq(buf, "on"))
2409		ctrlval = CPU_SMT_ENABLED;
2410	else if (sysfs_streq(buf, "off"))
2411		ctrlval = CPU_SMT_DISABLED;
2412	else if (sysfs_streq(buf, "forceoff"))
2413		ctrlval = CPU_SMT_FORCE_DISABLED;
2414	else
2415		return -EINVAL;
2416
2417	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2418		return -EPERM;
2419
2420	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2421		return -ENODEV;
2422
2423	ret = lock_device_hotplug_sysfs();
2424	if (ret)
2425		return ret;
2426
2427	if (ctrlval != cpu_smt_control) {
2428		switch (ctrlval) {
2429		case CPU_SMT_ENABLED:
2430			ret = cpuhp_smt_enable();
2431			break;
2432		case CPU_SMT_DISABLED:
2433		case CPU_SMT_FORCE_DISABLED:
2434			ret = cpuhp_smt_disable(ctrlval);
2435			break;
2436		}
2437	}
2438
2439	unlock_device_hotplug();
2440	return ret ? ret : count;
2441}
2442
2443#else /* !CONFIG_HOTPLUG_SMT */
2444static ssize_t
2445__store_smt_control(struct device *dev, struct device_attribute *attr,
2446		    const char *buf, size_t count)
2447{
2448	return -ENODEV;
2449}
2450#endif /* CONFIG_HOTPLUG_SMT */
2451
2452static const char *smt_states[] = {
2453	[CPU_SMT_ENABLED]		= "on",
2454	[CPU_SMT_DISABLED]		= "off",
2455	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2456	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2457	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2458};
2459
2460static ssize_t
2461show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2462{
2463	const char *state = smt_states[cpu_smt_control];
2464
2465	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2466}
2467
2468static ssize_t
2469store_smt_control(struct device *dev, struct device_attribute *attr,
2470		  const char *buf, size_t count)
2471{
2472	return __store_smt_control(dev, attr, buf, count);
2473}
2474static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2475
2476static ssize_t
2477show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2478{
2479	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2480}
2481static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2482
2483static struct attribute *cpuhp_smt_attrs[] = {
2484	&dev_attr_control.attr,
2485	&dev_attr_active.attr,
2486	NULL
2487};
2488
2489static const struct attribute_group cpuhp_smt_attr_group = {
2490	.attrs = cpuhp_smt_attrs,
2491	.name = "smt",
2492	NULL
2493};
2494
2495static int __init cpu_smt_sysfs_init(void)
2496{
2497	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2498				  &cpuhp_smt_attr_group);
2499}
2500
2501static int __init cpuhp_sysfs_init(void)
2502{
2503	int cpu, ret;
2504
2505	ret = cpu_smt_sysfs_init();
2506	if (ret)
2507		return ret;
2508
2509	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2510				 &cpuhp_cpu_root_attr_group);
2511	if (ret)
2512		return ret;
2513
2514	for_each_possible_cpu(cpu) {
2515		struct device *dev = get_cpu_device(cpu);
2516
2517		if (!dev)
2518			continue;
2519		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2520		if (ret)
2521			return ret;
2522	}
2523	return 0;
2524}
2525device_initcall(cpuhp_sysfs_init);
2526#endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2527
2528/*
2529 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2530 * represents all NR_CPUS bits binary values of 1<<nr.
2531 *
2532 * It is used by cpumask_of() to get a constant address to a CPU
2533 * mask value that has a single bit set only.
2534 */
2535
2536/* cpu_bit_bitmap[0] is empty - so we can back into it */
2537#define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2538#define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2539#define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2540#define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2541
2542const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2543
2544	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2545	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2546#if BITS_PER_LONG > 32
2547	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2548	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2549#endif
2550};
2551EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2552
2553const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2554EXPORT_SYMBOL(cpu_all_bits);
2555
2556#ifdef CONFIG_INIT_ALL_POSSIBLE
2557struct cpumask __cpu_possible_mask __read_mostly
2558	= {CPU_BITS_ALL};
2559#else
2560struct cpumask __cpu_possible_mask __read_mostly;
2561#endif
2562EXPORT_SYMBOL(__cpu_possible_mask);
2563
2564struct cpumask __cpu_online_mask __read_mostly;
2565EXPORT_SYMBOL(__cpu_online_mask);
2566
2567struct cpumask __cpu_present_mask __read_mostly;
2568EXPORT_SYMBOL(__cpu_present_mask);
 
2569
2570struct cpumask __cpu_active_mask __read_mostly;
2571EXPORT_SYMBOL(__cpu_active_mask);
 
2572
2573struct cpumask __cpu_dying_mask __read_mostly;
2574EXPORT_SYMBOL(__cpu_dying_mask);
 
2575
2576atomic_t __num_online_cpus __read_mostly;
2577EXPORT_SYMBOL(__num_online_cpus);
2578
2579void init_cpu_present(const struct cpumask *src)
2580{
2581	cpumask_copy(&__cpu_present_mask, src);
 
 
 
2582}
2583
2584void init_cpu_possible(const struct cpumask *src)
2585{
2586	cpumask_copy(&__cpu_possible_mask, src);
2587}
2588
2589void init_cpu_online(const struct cpumask *src)
2590{
2591	cpumask_copy(&__cpu_online_mask, src);
2592}
2593
2594void set_cpu_online(unsigned int cpu, bool online)
2595{
2596	/*
2597	 * atomic_inc/dec() is required to handle the horrid abuse of this
2598	 * function by the reboot and kexec code which invoke it from
2599	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2600	 * regular CPU hotplug is properly serialized.
2601	 *
2602	 * Note, that the fact that __num_online_cpus is of type atomic_t
2603	 * does not protect readers which are not serialized against
2604	 * concurrent hotplug operations.
2605	 */
2606	if (online) {
2607		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2608			atomic_inc(&__num_online_cpus);
2609	} else {
2610		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2611			atomic_dec(&__num_online_cpus);
2612	}
2613}
2614
2615/*
2616 * Activate the first processor.
2617 */
2618void __init boot_cpu_init(void)
2619{
2620	int cpu = smp_processor_id();
2621
2622	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2623	set_cpu_online(cpu, true);
2624	set_cpu_active(cpu, true);
2625	set_cpu_present(cpu, true);
2626	set_cpu_possible(cpu, true);
2627
2628#ifdef CONFIG_SMP
2629	__boot_cpu_id = cpu;
2630#endif
2631}
2632
2633/*
2634 * Must be called _AFTER_ setting up the per_cpu areas
2635 */
2636void __init boot_cpu_hotplug_init(void)
2637{
2638#ifdef CONFIG_SMP
2639	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2640#endif
2641	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2642}
2643
2644/*
2645 * These are used for a global "mitigations=" cmdline option for toggling
2646 * optional CPU mitigations.
2647 */
2648enum cpu_mitigations {
2649	CPU_MITIGATIONS_OFF,
2650	CPU_MITIGATIONS_AUTO,
2651	CPU_MITIGATIONS_AUTO_NOSMT,
2652};
2653
2654static enum cpu_mitigations cpu_mitigations __ro_after_init =
2655	CPU_MITIGATIONS_AUTO;
2656
2657static int __init mitigations_parse_cmdline(char *arg)
2658{
2659	if (!strcmp(arg, "off"))
2660		cpu_mitigations = CPU_MITIGATIONS_OFF;
2661	else if (!strcmp(arg, "auto"))
2662		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2663	else if (!strcmp(arg, "auto,nosmt"))
2664		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2665	else
2666		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2667			arg);
2668
2669	return 0;
2670}
2671early_param("mitigations", mitigations_parse_cmdline);
2672
2673/* mitigations=off */
2674bool cpu_mitigations_off(void)
2675{
2676	return cpu_mitigations == CPU_MITIGATIONS_OFF;
2677}
2678EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2679
2680/* mitigations=auto,nosmt */
2681bool cpu_mitigations_auto_nosmt(void)
2682{
2683	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2684}
2685EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);