Linux Audio

Check our new training course

Loading...
v3.5.6
  1/* CPU control.
  2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
  3 *
  4 * This code is licenced under the GPL.
  5 */
  6#include <linux/proc_fs.h>
  7#include <linux/smp.h>
  8#include <linux/init.h>
  9#include <linux/notifier.h>
 10#include <linux/sched.h>
 11#include <linux/unistd.h>
 12#include <linux/cpu.h>
 13#include <linux/oom.h>
 14#include <linux/rcupdate.h>
 15#include <linux/export.h>
 16#include <linux/bug.h>
 17#include <linux/kthread.h>
 18#include <linux/stop_machine.h>
 19#include <linux/mutex.h>
 20#include <linux/gfp.h>
 21#include <linux/suspend.h>
 22
 23#include "smpboot.h"
 24
 25#ifdef CONFIG_SMP
 26/* Serializes the updates to cpu_online_mask, cpu_present_mask */
 27static DEFINE_MUTEX(cpu_add_remove_lock);
 28
 29/*
 30 * The following two API's must be used when attempting
 31 * to serialize the updates to cpu_online_mask, cpu_present_mask.
 32 */
 33void cpu_maps_update_begin(void)
 34{
 35	mutex_lock(&cpu_add_remove_lock);
 36}
 37
 38void cpu_maps_update_done(void)
 39{
 40	mutex_unlock(&cpu_add_remove_lock);
 41}
 42
 43static RAW_NOTIFIER_HEAD(cpu_chain);
 44
 45/* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
 46 * Should always be manipulated under cpu_add_remove_lock
 47 */
 48static int cpu_hotplug_disabled;
 49
 50#ifdef CONFIG_HOTPLUG_CPU
 51
 52static struct {
 53	struct task_struct *active_writer;
 54	struct mutex lock; /* Synchronizes accesses to refcount, */
 55	/*
 56	 * Also blocks the new readers during
 57	 * an ongoing cpu hotplug operation.
 58	 */
 59	int refcount;
 60} cpu_hotplug = {
 61	.active_writer = NULL,
 62	.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
 63	.refcount = 0,
 64};
 65
 66void get_online_cpus(void)
 67{
 68	might_sleep();
 69	if (cpu_hotplug.active_writer == current)
 70		return;
 71	mutex_lock(&cpu_hotplug.lock);
 72	cpu_hotplug.refcount++;
 73	mutex_unlock(&cpu_hotplug.lock);
 74
 75}
 76EXPORT_SYMBOL_GPL(get_online_cpus);
 77
 78void put_online_cpus(void)
 79{
 80	if (cpu_hotplug.active_writer == current)
 81		return;
 82	mutex_lock(&cpu_hotplug.lock);
 83	if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
 84		wake_up_process(cpu_hotplug.active_writer);
 85	mutex_unlock(&cpu_hotplug.lock);
 86
 87}
 88EXPORT_SYMBOL_GPL(put_online_cpus);
 89
 90/*
 91 * This ensures that the hotplug operation can begin only when the
 92 * refcount goes to zero.
 93 *
 94 * Note that during a cpu-hotplug operation, the new readers, if any,
 95 * will be blocked by the cpu_hotplug.lock
 96 *
 97 * Since cpu_hotplug_begin() is always called after invoking
 98 * cpu_maps_update_begin(), we can be sure that only one writer is active.
 99 *
100 * Note that theoretically, there is a possibility of a livelock:
101 * - Refcount goes to zero, last reader wakes up the sleeping
102 *   writer.
103 * - Last reader unlocks the cpu_hotplug.lock.
104 * - A new reader arrives at this moment, bumps up the refcount.
105 * - The writer acquires the cpu_hotplug.lock finds the refcount
106 *   non zero and goes to sleep again.
107 *
108 * However, this is very difficult to achieve in practice since
109 * get_online_cpus() not an api which is called all that often.
110 *
111 */
112static void cpu_hotplug_begin(void)
113{
114	cpu_hotplug.active_writer = current;
115
116	for (;;) {
117		mutex_lock(&cpu_hotplug.lock);
118		if (likely(!cpu_hotplug.refcount))
119			break;
120		__set_current_state(TASK_UNINTERRUPTIBLE);
121		mutex_unlock(&cpu_hotplug.lock);
122		schedule();
123	}
124}
125
126static void cpu_hotplug_done(void)
127{
128	cpu_hotplug.active_writer = NULL;
129	mutex_unlock(&cpu_hotplug.lock);
130}
131
132#else /* #if CONFIG_HOTPLUG_CPU */
133static void cpu_hotplug_begin(void) {}
134static void cpu_hotplug_done(void) {}
135#endif	/* #else #if CONFIG_HOTPLUG_CPU */
136
137/* Need to know about CPUs going up/down? */
138int __ref register_cpu_notifier(struct notifier_block *nb)
139{
140	int ret;
141	cpu_maps_update_begin();
142	ret = raw_notifier_chain_register(&cpu_chain, nb);
143	cpu_maps_update_done();
144	return ret;
145}
146
147static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
148			int *nr_calls)
149{
150	int ret;
151
152	ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
153					nr_calls);
154
155	return notifier_to_errno(ret);
156}
157
158static int cpu_notify(unsigned long val, void *v)
159{
160	return __cpu_notify(val, v, -1, NULL);
161}
162
163#ifdef CONFIG_HOTPLUG_CPU
164
165static void cpu_notify_nofail(unsigned long val, void *v)
166{
167	BUG_ON(cpu_notify(val, v));
168}
169EXPORT_SYMBOL(register_cpu_notifier);
170
171void __ref unregister_cpu_notifier(struct notifier_block *nb)
172{
173	cpu_maps_update_begin();
174	raw_notifier_chain_unregister(&cpu_chain, nb);
175	cpu_maps_update_done();
176}
177EXPORT_SYMBOL(unregister_cpu_notifier);
178
179/**
180 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
181 * @cpu: a CPU id
182 *
183 * This function walks all processes, finds a valid mm struct for each one and
184 * then clears a corresponding bit in mm's cpumask.  While this all sounds
185 * trivial, there are various non-obvious corner cases, which this function
186 * tries to solve in a safe manner.
187 *
188 * Also note that the function uses a somewhat relaxed locking scheme, so it may
189 * be called only for an already offlined CPU.
190 */
191void clear_tasks_mm_cpumask(int cpu)
192{
193	struct task_struct *p;
194
195	/*
196	 * This function is called after the cpu is taken down and marked
197	 * offline, so its not like new tasks will ever get this cpu set in
198	 * their mm mask. -- Peter Zijlstra
199	 * Thus, we may use rcu_read_lock() here, instead of grabbing
200	 * full-fledged tasklist_lock.
201	 */
202	WARN_ON(cpu_online(cpu));
203	rcu_read_lock();
204	for_each_process(p) {
205		struct task_struct *t;
206
207		/*
208		 * Main thread might exit, but other threads may still have
209		 * a valid mm. Find one.
210		 */
211		t = find_lock_task_mm(p);
212		if (!t)
213			continue;
214		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
215		task_unlock(t);
216	}
217	rcu_read_unlock();
218}
219
220static inline void check_for_tasks(int cpu)
221{
222	struct task_struct *p;
223
224	write_lock_irq(&tasklist_lock);
225	for_each_process(p) {
226		if (task_cpu(p) == cpu && p->state == TASK_RUNNING &&
227		    (p->utime || p->stime))
 
228			printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d "
229				"(state = %ld, flags = %x)\n",
230				p->comm, task_pid_nr(p), cpu,
231				p->state, p->flags);
232	}
233	write_unlock_irq(&tasklist_lock);
234}
235
236struct take_cpu_down_param {
237	unsigned long mod;
238	void *hcpu;
239};
240
241/* Take this CPU down. */
242static int __ref take_cpu_down(void *_param)
243{
244	struct take_cpu_down_param *param = _param;
245	int err;
246
247	/* Ensure this CPU doesn't handle any more interrupts. */
248	err = __cpu_disable();
249	if (err < 0)
250		return err;
251
252	cpu_notify(CPU_DYING | param->mod, param->hcpu);
253	return 0;
254}
255
256/* Requires cpu_add_remove_lock to be held */
257static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
258{
259	int err, nr_calls = 0;
260	void *hcpu = (void *)(long)cpu;
261	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
262	struct take_cpu_down_param tcd_param = {
263		.mod = mod,
264		.hcpu = hcpu,
265	};
266
267	if (num_online_cpus() == 1)
268		return -EBUSY;
269
270	if (!cpu_online(cpu))
271		return -EINVAL;
272
273	cpu_hotplug_begin();
274
275	err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
276	if (err) {
277		nr_calls--;
278		__cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
279		printk("%s: attempt to take down CPU %u failed\n",
280				__func__, cpu);
281		goto out_release;
282	}
283
284	err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
285	if (err) {
286		/* CPU didn't die: tell everyone.  Can't complain. */
287		cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
288
289		goto out_release;
290	}
291	BUG_ON(cpu_online(cpu));
292
293	/*
294	 * The migration_call() CPU_DYING callback will have removed all
295	 * runnable tasks from the cpu, there's only the idle task left now
296	 * that the migration thread is done doing the stop_machine thing.
297	 *
298	 * Wait for the stop thread to go away.
299	 */
300	while (!idle_cpu(cpu))
301		cpu_relax();
302
303	/* This actually kills the CPU. */
304	__cpu_die(cpu);
305
306	/* CPU is completely dead: tell everyone.  Too late to complain. */
307	cpu_notify_nofail(CPU_DEAD | mod, hcpu);
308
309	check_for_tasks(cpu);
310
311out_release:
312	cpu_hotplug_done();
313	if (!err)
314		cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
315	return err;
316}
317
318int __ref cpu_down(unsigned int cpu)
319{
320	int err;
321
322	cpu_maps_update_begin();
323
324	if (cpu_hotplug_disabled) {
325		err = -EBUSY;
326		goto out;
327	}
328
329	err = _cpu_down(cpu, 0);
330
331out:
332	cpu_maps_update_done();
333	return err;
334}
335EXPORT_SYMBOL(cpu_down);
336#endif /*CONFIG_HOTPLUG_CPU*/
337
338/* Requires cpu_add_remove_lock to be held */
339static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen)
340{
341	int ret, nr_calls = 0;
342	void *hcpu = (void *)(long)cpu;
343	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
344	struct task_struct *idle;
345
346	if (cpu_online(cpu) || !cpu_present(cpu))
347		return -EINVAL;
348
349	cpu_hotplug_begin();
350
351	idle = idle_thread_get(cpu);
352	if (IS_ERR(idle)) {
353		ret = PTR_ERR(idle);
354		goto out;
355	}
356
357	ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
358	if (ret) {
359		nr_calls--;
360		printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
361				__func__, cpu);
362		goto out_notify;
363	}
364
365	/* Arch-specific enabling code. */
366	ret = __cpu_up(cpu, idle);
367	if (ret != 0)
368		goto out_notify;
369	BUG_ON(!cpu_online(cpu));
370
371	/* Now call notifier in preparation. */
372	cpu_notify(CPU_ONLINE | mod, hcpu);
373
374out_notify:
375	if (ret != 0)
376		__cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
377out:
378	cpu_hotplug_done();
379
380	return ret;
381}
382
383int __cpuinit cpu_up(unsigned int cpu)
384{
385	int err = 0;
386
387#ifdef	CONFIG_MEMORY_HOTPLUG
388	int nid;
389	pg_data_t	*pgdat;
390#endif
391
392	if (!cpu_possible(cpu)) {
393		printk(KERN_ERR "can't online cpu %d because it is not "
394			"configured as may-hotadd at boot time\n", cpu);
395#if defined(CONFIG_IA64)
396		printk(KERN_ERR "please check additional_cpus= boot "
397				"parameter\n");
398#endif
399		return -EINVAL;
400	}
401
402#ifdef	CONFIG_MEMORY_HOTPLUG
403	nid = cpu_to_node(cpu);
404	if (!node_online(nid)) {
405		err = mem_online_node(nid);
406		if (err)
407			return err;
408	}
409
410	pgdat = NODE_DATA(nid);
411	if (!pgdat) {
412		printk(KERN_ERR
413			"Can't online cpu %d due to NULL pgdat\n", cpu);
414		return -ENOMEM;
415	}
416
417	if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
418		mutex_lock(&zonelists_mutex);
419		build_all_zonelists(NULL);
420		mutex_unlock(&zonelists_mutex);
421	}
422#endif
423
424	cpu_maps_update_begin();
425
426	if (cpu_hotplug_disabled) {
427		err = -EBUSY;
428		goto out;
429	}
430
431	err = _cpu_up(cpu, 0);
432
433out:
434	cpu_maps_update_done();
435	return err;
436}
437EXPORT_SYMBOL_GPL(cpu_up);
438
439#ifdef CONFIG_PM_SLEEP_SMP
440static cpumask_var_t frozen_cpus;
441
442void __weak arch_disable_nonboot_cpus_begin(void)
443{
444}
445
446void __weak arch_disable_nonboot_cpus_end(void)
447{
448}
449
450int disable_nonboot_cpus(void)
451{
452	int cpu, first_cpu, error = 0;
453
454	cpu_maps_update_begin();
455	first_cpu = cpumask_first(cpu_online_mask);
456	/*
457	 * We take down all of the non-boot CPUs in one shot to avoid races
458	 * with the userspace trying to use the CPU hotplug at the same time
459	 */
460	cpumask_clear(frozen_cpus);
461	arch_disable_nonboot_cpus_begin();
462
463	printk("Disabling non-boot CPUs ...\n");
464	for_each_online_cpu(cpu) {
465		if (cpu == first_cpu)
466			continue;
467		error = _cpu_down(cpu, 1);
468		if (!error)
469			cpumask_set_cpu(cpu, frozen_cpus);
470		else {
471			printk(KERN_ERR "Error taking CPU%d down: %d\n",
472				cpu, error);
473			break;
474		}
475	}
476
477	arch_disable_nonboot_cpus_end();
478
479	if (!error) {
480		BUG_ON(num_online_cpus() > 1);
481		/* Make sure the CPUs won't be enabled by someone else */
482		cpu_hotplug_disabled = 1;
483	} else {
484		printk(KERN_ERR "Non-boot CPUs are not disabled\n");
485	}
486	cpu_maps_update_done();
487	return error;
488}
489
490void __weak arch_enable_nonboot_cpus_begin(void)
491{
492}
493
494void __weak arch_enable_nonboot_cpus_end(void)
495{
496}
497
498void __ref enable_nonboot_cpus(void)
499{
500	int cpu, error;
501
502	/* Allow everyone to use the CPU hotplug again */
503	cpu_maps_update_begin();
504	cpu_hotplug_disabled = 0;
505	if (cpumask_empty(frozen_cpus))
506		goto out;
507
508	printk(KERN_INFO "Enabling non-boot CPUs ...\n");
509
510	arch_enable_nonboot_cpus_begin();
511
512	for_each_cpu(cpu, frozen_cpus) {
513		error = _cpu_up(cpu, 1);
514		if (!error) {
515			printk(KERN_INFO "CPU%d is up\n", cpu);
516			continue;
517		}
518		printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
519	}
520
521	arch_enable_nonboot_cpus_end();
522
523	cpumask_clear(frozen_cpus);
524out:
525	cpu_maps_update_done();
526}
527
528static int __init alloc_frozen_cpus(void)
529{
530	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
531		return -ENOMEM;
532	return 0;
533}
534core_initcall(alloc_frozen_cpus);
535
536/*
537 * Prevent regular CPU hotplug from racing with the freezer, by disabling CPU
538 * hotplug when tasks are about to be frozen. Also, don't allow the freezer
539 * to continue until any currently running CPU hotplug operation gets
540 * completed.
541 * To modify the 'cpu_hotplug_disabled' flag, we need to acquire the
542 * 'cpu_add_remove_lock'. And this same lock is also taken by the regular
543 * CPU hotplug path and released only after it is complete. Thus, we
544 * (and hence the freezer) will block here until any currently running CPU
545 * hotplug operation gets completed.
546 */
547void cpu_hotplug_disable_before_freeze(void)
548{
549	cpu_maps_update_begin();
550	cpu_hotplug_disabled = 1;
551	cpu_maps_update_done();
552}
553
554
555/*
556 * When tasks have been thawed, re-enable regular CPU hotplug (which had been
557 * disabled while beginning to freeze tasks).
558 */
559void cpu_hotplug_enable_after_thaw(void)
560{
561	cpu_maps_update_begin();
562	cpu_hotplug_disabled = 0;
563	cpu_maps_update_done();
564}
565
566/*
567 * When callbacks for CPU hotplug notifications are being executed, we must
568 * ensure that the state of the system with respect to the tasks being frozen
569 * or not, as reported by the notification, remains unchanged *throughout the
570 * duration* of the execution of the callbacks.
571 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
572 *
573 * This synchronization is implemented by mutually excluding regular CPU
574 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
575 * Hibernate notifications.
576 */
577static int
578cpu_hotplug_pm_callback(struct notifier_block *nb,
579			unsigned long action, void *ptr)
580{
581	switch (action) {
582
583	case PM_SUSPEND_PREPARE:
584	case PM_HIBERNATION_PREPARE:
585		cpu_hotplug_disable_before_freeze();
586		break;
587
588	case PM_POST_SUSPEND:
589	case PM_POST_HIBERNATION:
590		cpu_hotplug_enable_after_thaw();
591		break;
592
593	default:
594		return NOTIFY_DONE;
595	}
596
597	return NOTIFY_OK;
598}
599
600
601static int __init cpu_hotplug_pm_sync_init(void)
602{
603	pm_notifier(cpu_hotplug_pm_callback, 0);
604	return 0;
605}
606core_initcall(cpu_hotplug_pm_sync_init);
607
608#endif /* CONFIG_PM_SLEEP_SMP */
609
610/**
611 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
612 * @cpu: cpu that just started
613 *
614 * This function calls the cpu_chain notifiers with CPU_STARTING.
615 * It must be called by the arch code on the new cpu, before the new cpu
616 * enables interrupts and before the "boot" cpu returns from __cpu_up().
617 */
618void __cpuinit notify_cpu_starting(unsigned int cpu)
619{
620	unsigned long val = CPU_STARTING;
621
622#ifdef CONFIG_PM_SLEEP_SMP
623	if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
624		val = CPU_STARTING_FROZEN;
625#endif /* CONFIG_PM_SLEEP_SMP */
626	cpu_notify(val, (void *)(long)cpu);
627}
628
629#endif /* CONFIG_SMP */
630
631/*
632 * cpu_bit_bitmap[] is a special, "compressed" data structure that
633 * represents all NR_CPUS bits binary values of 1<<nr.
634 *
635 * It is used by cpumask_of() to get a constant address to a CPU
636 * mask value that has a single bit set only.
637 */
638
639/* cpu_bit_bitmap[0] is empty - so we can back into it */
640#define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
641#define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
642#define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
643#define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
644
645const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
646
647	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
648	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
649#if BITS_PER_LONG > 32
650	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
651	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
652#endif
653};
654EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
655
656const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
657EXPORT_SYMBOL(cpu_all_bits);
658
659#ifdef CONFIG_INIT_ALL_POSSIBLE
660static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
661	= CPU_BITS_ALL;
662#else
663static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
664#endif
665const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
666EXPORT_SYMBOL(cpu_possible_mask);
667
668static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
669const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
670EXPORT_SYMBOL(cpu_online_mask);
671
672static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
673const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
674EXPORT_SYMBOL(cpu_present_mask);
675
676static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
677const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
678EXPORT_SYMBOL(cpu_active_mask);
679
680void set_cpu_possible(unsigned int cpu, bool possible)
681{
682	if (possible)
683		cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
684	else
685		cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
686}
687
688void set_cpu_present(unsigned int cpu, bool present)
689{
690	if (present)
691		cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
692	else
693		cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
694}
695
696void set_cpu_online(unsigned int cpu, bool online)
697{
698	if (online)
699		cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
700	else
701		cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
702}
703
704void set_cpu_active(unsigned int cpu, bool active)
705{
706	if (active)
707		cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
708	else
709		cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
710}
711
712void init_cpu_present(const struct cpumask *src)
713{
714	cpumask_copy(to_cpumask(cpu_present_bits), src);
715}
716
717void init_cpu_possible(const struct cpumask *src)
718{
719	cpumask_copy(to_cpumask(cpu_possible_bits), src);
720}
721
722void init_cpu_online(const struct cpumask *src)
723{
724	cpumask_copy(to_cpumask(cpu_online_bits), src);
725}
v3.1
  1/* CPU control.
  2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
  3 *
  4 * This code is licenced under the GPL.
  5 */
  6#include <linux/proc_fs.h>
  7#include <linux/smp.h>
  8#include <linux/init.h>
  9#include <linux/notifier.h>
 10#include <linux/sched.h>
 11#include <linux/unistd.h>
 12#include <linux/cpu.h>
 13#include <linux/module.h>
 
 
 
 14#include <linux/kthread.h>
 15#include <linux/stop_machine.h>
 16#include <linux/mutex.h>
 17#include <linux/gfp.h>
 
 
 
 18
 19#ifdef CONFIG_SMP
 20/* Serializes the updates to cpu_online_mask, cpu_present_mask */
 21static DEFINE_MUTEX(cpu_add_remove_lock);
 22
 23/*
 24 * The following two API's must be used when attempting
 25 * to serialize the updates to cpu_online_mask, cpu_present_mask.
 26 */
 27void cpu_maps_update_begin(void)
 28{
 29	mutex_lock(&cpu_add_remove_lock);
 30}
 31
 32void cpu_maps_update_done(void)
 33{
 34	mutex_unlock(&cpu_add_remove_lock);
 35}
 36
 37static RAW_NOTIFIER_HEAD(cpu_chain);
 38
 39/* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
 40 * Should always be manipulated under cpu_add_remove_lock
 41 */
 42static int cpu_hotplug_disabled;
 43
 44#ifdef CONFIG_HOTPLUG_CPU
 45
 46static struct {
 47	struct task_struct *active_writer;
 48	struct mutex lock; /* Synchronizes accesses to refcount, */
 49	/*
 50	 * Also blocks the new readers during
 51	 * an ongoing cpu hotplug operation.
 52	 */
 53	int refcount;
 54} cpu_hotplug = {
 55	.active_writer = NULL,
 56	.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
 57	.refcount = 0,
 58};
 59
 60void get_online_cpus(void)
 61{
 62	might_sleep();
 63	if (cpu_hotplug.active_writer == current)
 64		return;
 65	mutex_lock(&cpu_hotplug.lock);
 66	cpu_hotplug.refcount++;
 67	mutex_unlock(&cpu_hotplug.lock);
 68
 69}
 70EXPORT_SYMBOL_GPL(get_online_cpus);
 71
 72void put_online_cpus(void)
 73{
 74	if (cpu_hotplug.active_writer == current)
 75		return;
 76	mutex_lock(&cpu_hotplug.lock);
 77	if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
 78		wake_up_process(cpu_hotplug.active_writer);
 79	mutex_unlock(&cpu_hotplug.lock);
 80
 81}
 82EXPORT_SYMBOL_GPL(put_online_cpus);
 83
 84/*
 85 * This ensures that the hotplug operation can begin only when the
 86 * refcount goes to zero.
 87 *
 88 * Note that during a cpu-hotplug operation, the new readers, if any,
 89 * will be blocked by the cpu_hotplug.lock
 90 *
 91 * Since cpu_hotplug_begin() is always called after invoking
 92 * cpu_maps_update_begin(), we can be sure that only one writer is active.
 93 *
 94 * Note that theoretically, there is a possibility of a livelock:
 95 * - Refcount goes to zero, last reader wakes up the sleeping
 96 *   writer.
 97 * - Last reader unlocks the cpu_hotplug.lock.
 98 * - A new reader arrives at this moment, bumps up the refcount.
 99 * - The writer acquires the cpu_hotplug.lock finds the refcount
100 *   non zero and goes to sleep again.
101 *
102 * However, this is very difficult to achieve in practice since
103 * get_online_cpus() not an api which is called all that often.
104 *
105 */
106static void cpu_hotplug_begin(void)
107{
108	cpu_hotplug.active_writer = current;
109
110	for (;;) {
111		mutex_lock(&cpu_hotplug.lock);
112		if (likely(!cpu_hotplug.refcount))
113			break;
114		__set_current_state(TASK_UNINTERRUPTIBLE);
115		mutex_unlock(&cpu_hotplug.lock);
116		schedule();
117	}
118}
119
120static void cpu_hotplug_done(void)
121{
122	cpu_hotplug.active_writer = NULL;
123	mutex_unlock(&cpu_hotplug.lock);
124}
125
126#else /* #if CONFIG_HOTPLUG_CPU */
127static void cpu_hotplug_begin(void) {}
128static void cpu_hotplug_done(void) {}
129#endif	/* #else #if CONFIG_HOTPLUG_CPU */
130
131/* Need to know about CPUs going up/down? */
132int __ref register_cpu_notifier(struct notifier_block *nb)
133{
134	int ret;
135	cpu_maps_update_begin();
136	ret = raw_notifier_chain_register(&cpu_chain, nb);
137	cpu_maps_update_done();
138	return ret;
139}
140
141static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
142			int *nr_calls)
143{
144	int ret;
145
146	ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
147					nr_calls);
148
149	return notifier_to_errno(ret);
150}
151
152static int cpu_notify(unsigned long val, void *v)
153{
154	return __cpu_notify(val, v, -1, NULL);
155}
156
157#ifdef CONFIG_HOTPLUG_CPU
158
159static void cpu_notify_nofail(unsigned long val, void *v)
160{
161	BUG_ON(cpu_notify(val, v));
162}
163EXPORT_SYMBOL(register_cpu_notifier);
164
165void __ref unregister_cpu_notifier(struct notifier_block *nb)
166{
167	cpu_maps_update_begin();
168	raw_notifier_chain_unregister(&cpu_chain, nb);
169	cpu_maps_update_done();
170}
171EXPORT_SYMBOL(unregister_cpu_notifier);
172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173static inline void check_for_tasks(int cpu)
174{
175	struct task_struct *p;
176
177	write_lock_irq(&tasklist_lock);
178	for_each_process(p) {
179		if (task_cpu(p) == cpu && p->state == TASK_RUNNING &&
180		    (!cputime_eq(p->utime, cputime_zero) ||
181		     !cputime_eq(p->stime, cputime_zero)))
182			printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d "
183				"(state = %ld, flags = %x)\n",
184				p->comm, task_pid_nr(p), cpu,
185				p->state, p->flags);
186	}
187	write_unlock_irq(&tasklist_lock);
188}
189
190struct take_cpu_down_param {
191	unsigned long mod;
192	void *hcpu;
193};
194
195/* Take this CPU down. */
196static int __ref take_cpu_down(void *_param)
197{
198	struct take_cpu_down_param *param = _param;
199	int err;
200
201	/* Ensure this CPU doesn't handle any more interrupts. */
202	err = __cpu_disable();
203	if (err < 0)
204		return err;
205
206	cpu_notify(CPU_DYING | param->mod, param->hcpu);
207	return 0;
208}
209
210/* Requires cpu_add_remove_lock to be held */
211static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
212{
213	int err, nr_calls = 0;
214	void *hcpu = (void *)(long)cpu;
215	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
216	struct take_cpu_down_param tcd_param = {
217		.mod = mod,
218		.hcpu = hcpu,
219	};
220
221	if (num_online_cpus() == 1)
222		return -EBUSY;
223
224	if (!cpu_online(cpu))
225		return -EINVAL;
226
227	cpu_hotplug_begin();
228
229	err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
230	if (err) {
231		nr_calls--;
232		__cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
233		printk("%s: attempt to take down CPU %u failed\n",
234				__func__, cpu);
235		goto out_release;
236	}
237
238	err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
239	if (err) {
240		/* CPU didn't die: tell everyone.  Can't complain. */
241		cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
242
243		goto out_release;
244	}
245	BUG_ON(cpu_online(cpu));
246
247	/*
248	 * The migration_call() CPU_DYING callback will have removed all
249	 * runnable tasks from the cpu, there's only the idle task left now
250	 * that the migration thread is done doing the stop_machine thing.
251	 *
252	 * Wait for the stop thread to go away.
253	 */
254	while (!idle_cpu(cpu))
255		cpu_relax();
256
257	/* This actually kills the CPU. */
258	__cpu_die(cpu);
259
260	/* CPU is completely dead: tell everyone.  Too late to complain. */
261	cpu_notify_nofail(CPU_DEAD | mod, hcpu);
262
263	check_for_tasks(cpu);
264
265out_release:
266	cpu_hotplug_done();
267	if (!err)
268		cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
269	return err;
270}
271
272int __ref cpu_down(unsigned int cpu)
273{
274	int err;
275
276	cpu_maps_update_begin();
277
278	if (cpu_hotplug_disabled) {
279		err = -EBUSY;
280		goto out;
281	}
282
283	err = _cpu_down(cpu, 0);
284
285out:
286	cpu_maps_update_done();
287	return err;
288}
289EXPORT_SYMBOL(cpu_down);
290#endif /*CONFIG_HOTPLUG_CPU*/
291
292/* Requires cpu_add_remove_lock to be held */
293static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen)
294{
295	int ret, nr_calls = 0;
296	void *hcpu = (void *)(long)cpu;
297	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
 
298
299	if (cpu_online(cpu) || !cpu_present(cpu))
300		return -EINVAL;
301
302	cpu_hotplug_begin();
 
 
 
 
 
 
 
303	ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
304	if (ret) {
305		nr_calls--;
306		printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
307				__func__, cpu);
308		goto out_notify;
309	}
310
311	/* Arch-specific enabling code. */
312	ret = __cpu_up(cpu);
313	if (ret != 0)
314		goto out_notify;
315	BUG_ON(!cpu_online(cpu));
316
317	/* Now call notifier in preparation. */
318	cpu_notify(CPU_ONLINE | mod, hcpu);
319
320out_notify:
321	if (ret != 0)
322		__cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
 
323	cpu_hotplug_done();
324
325	return ret;
326}
327
328int __cpuinit cpu_up(unsigned int cpu)
329{
330	int err = 0;
331
332#ifdef	CONFIG_MEMORY_HOTPLUG
333	int nid;
334	pg_data_t	*pgdat;
335#endif
336
337	if (!cpu_possible(cpu)) {
338		printk(KERN_ERR "can't online cpu %d because it is not "
339			"configured as may-hotadd at boot time\n", cpu);
340#if defined(CONFIG_IA64)
341		printk(KERN_ERR "please check additional_cpus= boot "
342				"parameter\n");
343#endif
344		return -EINVAL;
345	}
346
347#ifdef	CONFIG_MEMORY_HOTPLUG
348	nid = cpu_to_node(cpu);
349	if (!node_online(nid)) {
350		err = mem_online_node(nid);
351		if (err)
352			return err;
353	}
354
355	pgdat = NODE_DATA(nid);
356	if (!pgdat) {
357		printk(KERN_ERR
358			"Can't online cpu %d due to NULL pgdat\n", cpu);
359		return -ENOMEM;
360	}
361
362	if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
363		mutex_lock(&zonelists_mutex);
364		build_all_zonelists(NULL);
365		mutex_unlock(&zonelists_mutex);
366	}
367#endif
368
369	cpu_maps_update_begin();
370
371	if (cpu_hotplug_disabled) {
372		err = -EBUSY;
373		goto out;
374	}
375
376	err = _cpu_up(cpu, 0);
377
378out:
379	cpu_maps_update_done();
380	return err;
381}
 
382
383#ifdef CONFIG_PM_SLEEP_SMP
384static cpumask_var_t frozen_cpus;
385
386void __weak arch_disable_nonboot_cpus_begin(void)
387{
388}
389
390void __weak arch_disable_nonboot_cpus_end(void)
391{
392}
393
394int disable_nonboot_cpus(void)
395{
396	int cpu, first_cpu, error = 0;
397
398	cpu_maps_update_begin();
399	first_cpu = cpumask_first(cpu_online_mask);
400	/*
401	 * We take down all of the non-boot CPUs in one shot to avoid races
402	 * with the userspace trying to use the CPU hotplug at the same time
403	 */
404	cpumask_clear(frozen_cpus);
405	arch_disable_nonboot_cpus_begin();
406
407	printk("Disabling non-boot CPUs ...\n");
408	for_each_online_cpu(cpu) {
409		if (cpu == first_cpu)
410			continue;
411		error = _cpu_down(cpu, 1);
412		if (!error)
413			cpumask_set_cpu(cpu, frozen_cpus);
414		else {
415			printk(KERN_ERR "Error taking CPU%d down: %d\n",
416				cpu, error);
417			break;
418		}
419	}
420
421	arch_disable_nonboot_cpus_end();
422
423	if (!error) {
424		BUG_ON(num_online_cpus() > 1);
425		/* Make sure the CPUs won't be enabled by someone else */
426		cpu_hotplug_disabled = 1;
427	} else {
428		printk(KERN_ERR "Non-boot CPUs are not disabled\n");
429	}
430	cpu_maps_update_done();
431	return error;
432}
433
434void __weak arch_enable_nonboot_cpus_begin(void)
435{
436}
437
438void __weak arch_enable_nonboot_cpus_end(void)
439{
440}
441
442void __ref enable_nonboot_cpus(void)
443{
444	int cpu, error;
445
446	/* Allow everyone to use the CPU hotplug again */
447	cpu_maps_update_begin();
448	cpu_hotplug_disabled = 0;
449	if (cpumask_empty(frozen_cpus))
450		goto out;
451
452	printk(KERN_INFO "Enabling non-boot CPUs ...\n");
453
454	arch_enable_nonboot_cpus_begin();
455
456	for_each_cpu(cpu, frozen_cpus) {
457		error = _cpu_up(cpu, 1);
458		if (!error) {
459			printk(KERN_INFO "CPU%d is up\n", cpu);
460			continue;
461		}
462		printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
463	}
464
465	arch_enable_nonboot_cpus_end();
466
467	cpumask_clear(frozen_cpus);
468out:
469	cpu_maps_update_done();
470}
471
472static int alloc_frozen_cpus(void)
473{
474	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
475		return -ENOMEM;
476	return 0;
477}
478core_initcall(alloc_frozen_cpus);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479#endif /* CONFIG_PM_SLEEP_SMP */
480
481/**
482 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
483 * @cpu: cpu that just started
484 *
485 * This function calls the cpu_chain notifiers with CPU_STARTING.
486 * It must be called by the arch code on the new cpu, before the new cpu
487 * enables interrupts and before the "boot" cpu returns from __cpu_up().
488 */
489void __cpuinit notify_cpu_starting(unsigned int cpu)
490{
491	unsigned long val = CPU_STARTING;
492
493#ifdef CONFIG_PM_SLEEP_SMP
494	if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
495		val = CPU_STARTING_FROZEN;
496#endif /* CONFIG_PM_SLEEP_SMP */
497	cpu_notify(val, (void *)(long)cpu);
498}
499
500#endif /* CONFIG_SMP */
501
502/*
503 * cpu_bit_bitmap[] is a special, "compressed" data structure that
504 * represents all NR_CPUS bits binary values of 1<<nr.
505 *
506 * It is used by cpumask_of() to get a constant address to a CPU
507 * mask value that has a single bit set only.
508 */
509
510/* cpu_bit_bitmap[0] is empty - so we can back into it */
511#define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
512#define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
513#define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
514#define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
515
516const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
517
518	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
519	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
520#if BITS_PER_LONG > 32
521	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
522	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
523#endif
524};
525EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
526
527const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
528EXPORT_SYMBOL(cpu_all_bits);
529
530#ifdef CONFIG_INIT_ALL_POSSIBLE
531static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
532	= CPU_BITS_ALL;
533#else
534static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
535#endif
536const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
537EXPORT_SYMBOL(cpu_possible_mask);
538
539static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
540const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
541EXPORT_SYMBOL(cpu_online_mask);
542
543static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
544const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
545EXPORT_SYMBOL(cpu_present_mask);
546
547static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
548const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
549EXPORT_SYMBOL(cpu_active_mask);
550
551void set_cpu_possible(unsigned int cpu, bool possible)
552{
553	if (possible)
554		cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
555	else
556		cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
557}
558
559void set_cpu_present(unsigned int cpu, bool present)
560{
561	if (present)
562		cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
563	else
564		cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
565}
566
567void set_cpu_online(unsigned int cpu, bool online)
568{
569	if (online)
570		cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
571	else
572		cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
573}
574
575void set_cpu_active(unsigned int cpu, bool active)
576{
577	if (active)
578		cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
579	else
580		cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
581}
582
583void init_cpu_present(const struct cpumask *src)
584{
585	cpumask_copy(to_cpumask(cpu_present_bits), src);
586}
587
588void init_cpu_possible(const struct cpumask *src)
589{
590	cpumask_copy(to_cpumask(cpu_possible_bits), src);
591}
592
593void init_cpu_online(const struct cpumask *src)
594{
595	cpumask_copy(to_cpumask(cpu_online_bits), src);
596}