Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*******************************************************************************
   2
   3  Intel(R) Gigabit Ethernet Linux driver
   4  Copyright(c) 2007-2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28/* ethtool support for igb */
  29
  30#include <linux/vmalloc.h>
  31#include <linux/netdevice.h>
  32#include <linux/pci.h>
  33#include <linux/delay.h>
  34#include <linux/interrupt.h>
  35#include <linux/if_ether.h>
  36#include <linux/ethtool.h>
  37#include <linux/sched.h>
  38#include <linux/slab.h>
  39#include <linux/pm_runtime.h>
 
 
  40
  41#include "igb.h"
  42
  43struct igb_stats {
  44	char stat_string[ETH_GSTRING_LEN];
  45	int sizeof_stat;
  46	int stat_offset;
  47};
  48
  49#define IGB_STAT(_name, _stat) { \
  50	.stat_string = _name, \
  51	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
  52	.stat_offset = offsetof(struct igb_adapter, _stat) \
  53}
  54static const struct igb_stats igb_gstrings_stats[] = {
  55	IGB_STAT("rx_packets", stats.gprc),
  56	IGB_STAT("tx_packets", stats.gptc),
  57	IGB_STAT("rx_bytes", stats.gorc),
  58	IGB_STAT("tx_bytes", stats.gotc),
  59	IGB_STAT("rx_broadcast", stats.bprc),
  60	IGB_STAT("tx_broadcast", stats.bptc),
  61	IGB_STAT("rx_multicast", stats.mprc),
  62	IGB_STAT("tx_multicast", stats.mptc),
  63	IGB_STAT("multicast", stats.mprc),
  64	IGB_STAT("collisions", stats.colc),
  65	IGB_STAT("rx_crc_errors", stats.crcerrs),
  66	IGB_STAT("rx_no_buffer_count", stats.rnbc),
  67	IGB_STAT("rx_missed_errors", stats.mpc),
  68	IGB_STAT("tx_aborted_errors", stats.ecol),
  69	IGB_STAT("tx_carrier_errors", stats.tncrs),
  70	IGB_STAT("tx_window_errors", stats.latecol),
  71	IGB_STAT("tx_abort_late_coll", stats.latecol),
  72	IGB_STAT("tx_deferred_ok", stats.dc),
  73	IGB_STAT("tx_single_coll_ok", stats.scc),
  74	IGB_STAT("tx_multi_coll_ok", stats.mcc),
  75	IGB_STAT("tx_timeout_count", tx_timeout_count),
  76	IGB_STAT("rx_long_length_errors", stats.roc),
  77	IGB_STAT("rx_short_length_errors", stats.ruc),
  78	IGB_STAT("rx_align_errors", stats.algnerrc),
  79	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
  80	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
  81	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
  82	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
  83	IGB_STAT("tx_flow_control_xon", stats.xontxc),
  84	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
  85	IGB_STAT("rx_long_byte_count", stats.gorc),
  86	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
  87	IGB_STAT("tx_smbus", stats.mgptc),
  88	IGB_STAT("rx_smbus", stats.mgprc),
  89	IGB_STAT("dropped_smbus", stats.mgpdc),
  90	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
  91	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
  92	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
  93	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
 
 
 
  94};
  95
  96#define IGB_NETDEV_STAT(_net_stat) { \
  97	.stat_string = __stringify(_net_stat), \
  98	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
  99	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
 100}
 101static const struct igb_stats igb_gstrings_net_stats[] = {
 102	IGB_NETDEV_STAT(rx_errors),
 103	IGB_NETDEV_STAT(tx_errors),
 104	IGB_NETDEV_STAT(tx_dropped),
 105	IGB_NETDEV_STAT(rx_length_errors),
 106	IGB_NETDEV_STAT(rx_over_errors),
 107	IGB_NETDEV_STAT(rx_frame_errors),
 108	IGB_NETDEV_STAT(rx_fifo_errors),
 109	IGB_NETDEV_STAT(tx_fifo_errors),
 110	IGB_NETDEV_STAT(tx_heartbeat_errors)
 111};
 112
 113#define IGB_GLOBAL_STATS_LEN	\
 114	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
 115#define IGB_NETDEV_STATS_LEN	\
 116	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
 117#define IGB_RX_QUEUE_STATS_LEN \
 118	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
 119
 120#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
 121
 122#define IGB_QUEUE_STATS_LEN \
 123	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
 124	  IGB_RX_QUEUE_STATS_LEN) + \
 125	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
 126	  IGB_TX_QUEUE_STATS_LEN))
 127#define IGB_STATS_LEN \
 128	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
 129
 
 
 
 
 
 
 
 
 130static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
 131	"Register test  (offline)", "Eeprom test    (offline)",
 132	"Interrupt test (offline)", "Loopback test  (offline)",
 133	"Link test   (on/offline)"
 
 
 134};
 135#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
 136
 137static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
 
 
 
 
 
 
 
 
 138{
 139	struct igb_adapter *adapter = netdev_priv(netdev);
 140	struct e1000_hw *hw = &adapter->hw;
 
 
 141	u32 status;
 
 
 142
 
 
 143	if (hw->phy.media_type == e1000_media_type_copper) {
 144
 145		ecmd->supported = (SUPPORTED_10baseT_Half |
 146				   SUPPORTED_10baseT_Full |
 147				   SUPPORTED_100baseT_Half |
 148				   SUPPORTED_100baseT_Full |
 149				   SUPPORTED_1000baseT_Full|
 150				   SUPPORTED_Autoneg |
 151				   SUPPORTED_TP);
 152		ecmd->advertising = (ADVERTISED_TP |
 153				     ADVERTISED_Pause);
 154
 155		if (hw->mac.autoneg == 1) {
 156			ecmd->advertising |= ADVERTISED_Autoneg;
 157			/* the e1000 autoneg seems to match ethtool nicely */
 158			ecmd->advertising |= hw->phy.autoneg_advertised;
 159		}
 160
 161		ecmd->port = PORT_TP;
 162		ecmd->phy_address = hw->phy.addr;
 163	} else {
 164		ecmd->supported   = (SUPPORTED_1000baseT_Full |
 165				     SUPPORTED_FIBRE |
 166				     SUPPORTED_Autoneg);
 167
 168		ecmd->advertising = (ADVERTISED_1000baseT_Full |
 169				     ADVERTISED_FIBRE |
 170				     ADVERTISED_Autoneg |
 171				     ADVERTISED_Pause);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172
 173		ecmd->port = PORT_FIBRE;
 174	}
 
 
 
 175
 176	ecmd->transceiver = XCVR_INTERNAL;
 177
 178	status = rd32(E1000_STATUS);
 179
 
 
 
 
 
 
 
 
 
 
 
 180	if (status & E1000_STATUS_LU) {
 181
 182		if ((status & E1000_STATUS_SPEED_1000) ||
 183		    hw->phy.media_type != e1000_media_type_copper)
 184			ethtool_cmd_speed_set(ecmd, SPEED_1000);
 185		else if (status & E1000_STATUS_SPEED_100)
 186			ethtool_cmd_speed_set(ecmd, SPEED_100);
 187		else
 188			ethtool_cmd_speed_set(ecmd, SPEED_10);
 189
 
 190		if ((status & E1000_STATUS_FD) ||
 191		    hw->phy.media_type != e1000_media_type_copper)
 192			ecmd->duplex = DUPLEX_FULL;
 193		else
 194			ecmd->duplex = DUPLEX_HALF;
 195	} else {
 196		ethtool_cmd_speed_set(ecmd, -1);
 197		ecmd->duplex = -1;
 198	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199
 200	ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
 201	return 0;
 202}
 203
 204static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
 
 205{
 206	struct igb_adapter *adapter = netdev_priv(netdev);
 207	struct e1000_hw *hw = &adapter->hw;
 
 208
 209	/* When SoL/IDER sessions are active, autoneg/speed/duplex
 210	 * cannot be changed */
 
 211	if (igb_check_reset_block(hw)) {
 212		dev_err(&adapter->pdev->dev, "Cannot change link "
 213			"characteristics when SoL/IDER is active.\n");
 214		return -EINVAL;
 215	}
 216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 217	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 218		msleep(1);
 
 
 
 219
 220	if (ecmd->autoneg == AUTONEG_ENABLE) {
 221		hw->mac.autoneg = 1;
 222		hw->phy.autoneg_advertised = ecmd->advertising |
 223					     ADVERTISED_TP |
 224					     ADVERTISED_Autoneg;
 225		ecmd->advertising = hw->phy.autoneg_advertised;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226		if (adapter->fc_autoneg)
 227			hw->fc.requested_mode = e1000_fc_default;
 228	} else {
 229		u32 speed = ethtool_cmd_speed(ecmd);
 230		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
 
 231			clear_bit(__IGB_RESETTING, &adapter->state);
 232			return -EINVAL;
 233		}
 234	}
 235
 
 
 
 
 
 
 
 
 
 
 
 236	/* reset the link */
 237	if (netif_running(adapter->netdev)) {
 238		igb_down(adapter);
 239		igb_up(adapter);
 240	} else
 241		igb_reset(adapter);
 242
 243	clear_bit(__IGB_RESETTING, &adapter->state);
 244	return 0;
 245}
 246
 247static u32 igb_get_link(struct net_device *netdev)
 248{
 249	struct igb_adapter *adapter = netdev_priv(netdev);
 250	struct e1000_mac_info *mac = &adapter->hw.mac;
 251
 252	/*
 253	 * If the link is not reported up to netdev, interrupts are disabled,
 254	 * and so the physical link state may have changed since we last
 255	 * looked. Set get_link_status to make sure that the true link
 256	 * state is interrogated, rather than pulling a cached and possibly
 257	 * stale link state from the driver.
 258	 */
 259	if (!netif_carrier_ok(netdev))
 260		mac->get_link_status = 1;
 261
 262	return igb_has_link(adapter);
 263}
 264
 265static void igb_get_pauseparam(struct net_device *netdev,
 266			       struct ethtool_pauseparam *pause)
 267{
 268	struct igb_adapter *adapter = netdev_priv(netdev);
 269	struct e1000_hw *hw = &adapter->hw;
 270
 271	pause->autoneg =
 272		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 273
 274	if (hw->fc.current_mode == e1000_fc_rx_pause)
 275		pause->rx_pause = 1;
 276	else if (hw->fc.current_mode == e1000_fc_tx_pause)
 277		pause->tx_pause = 1;
 278	else if (hw->fc.current_mode == e1000_fc_full) {
 279		pause->rx_pause = 1;
 280		pause->tx_pause = 1;
 281	}
 282}
 283
 284static int igb_set_pauseparam(struct net_device *netdev,
 285			      struct ethtool_pauseparam *pause)
 286{
 287	struct igb_adapter *adapter = netdev_priv(netdev);
 288	struct e1000_hw *hw = &adapter->hw;
 289	int retval = 0;
 
 
 
 
 
 290
 291	adapter->fc_autoneg = pause->autoneg;
 292
 293	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 294		msleep(1);
 295
 296	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 297		hw->fc.requested_mode = e1000_fc_default;
 298		if (netif_running(adapter->netdev)) {
 299			igb_down(adapter);
 300			igb_up(adapter);
 301		} else {
 302			igb_reset(adapter);
 303		}
 304	} else {
 305		if (pause->rx_pause && pause->tx_pause)
 306			hw->fc.requested_mode = e1000_fc_full;
 307		else if (pause->rx_pause && !pause->tx_pause)
 308			hw->fc.requested_mode = e1000_fc_rx_pause;
 309		else if (!pause->rx_pause && pause->tx_pause)
 310			hw->fc.requested_mode = e1000_fc_tx_pause;
 311		else if (!pause->rx_pause && !pause->tx_pause)
 312			hw->fc.requested_mode = e1000_fc_none;
 313
 314		hw->fc.current_mode = hw->fc.requested_mode;
 315
 316		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
 317			  igb_force_mac_fc(hw) : igb_setup_link(hw));
 
 
 
 
 
 
 
 318	}
 319
 320	clear_bit(__IGB_RESETTING, &adapter->state);
 321	return retval;
 322}
 323
 324static u32 igb_get_msglevel(struct net_device *netdev)
 325{
 326	struct igb_adapter *adapter = netdev_priv(netdev);
 327	return adapter->msg_enable;
 328}
 329
 330static void igb_set_msglevel(struct net_device *netdev, u32 data)
 331{
 332	struct igb_adapter *adapter = netdev_priv(netdev);
 333	adapter->msg_enable = data;
 334}
 335
 336static int igb_get_regs_len(struct net_device *netdev)
 337{
 338#define IGB_REGS_LEN 739
 339	return IGB_REGS_LEN * sizeof(u32);
 340}
 341
 342static void igb_get_regs(struct net_device *netdev,
 343			 struct ethtool_regs *regs, void *p)
 344{
 345	struct igb_adapter *adapter = netdev_priv(netdev);
 346	struct e1000_hw *hw = &adapter->hw;
 347	u32 *regs_buff = p;
 348	u8 i;
 349
 350	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
 351
 352	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
 353
 354	/* General Registers */
 355	regs_buff[0] = rd32(E1000_CTRL);
 356	regs_buff[1] = rd32(E1000_STATUS);
 357	regs_buff[2] = rd32(E1000_CTRL_EXT);
 358	regs_buff[3] = rd32(E1000_MDIC);
 359	regs_buff[4] = rd32(E1000_SCTL);
 360	regs_buff[5] = rd32(E1000_CONNSW);
 361	regs_buff[6] = rd32(E1000_VET);
 362	regs_buff[7] = rd32(E1000_LEDCTL);
 363	regs_buff[8] = rd32(E1000_PBA);
 364	regs_buff[9] = rd32(E1000_PBS);
 365	regs_buff[10] = rd32(E1000_FRTIMER);
 366	regs_buff[11] = rd32(E1000_TCPTIMER);
 367
 368	/* NVM Register */
 369	regs_buff[12] = rd32(E1000_EECD);
 370
 371	/* Interrupt */
 372	/* Reading EICS for EICR because they read the
 373	 * same but EICS does not clear on read */
 
 374	regs_buff[13] = rd32(E1000_EICS);
 375	regs_buff[14] = rd32(E1000_EICS);
 376	regs_buff[15] = rd32(E1000_EIMS);
 377	regs_buff[16] = rd32(E1000_EIMC);
 378	regs_buff[17] = rd32(E1000_EIAC);
 379	regs_buff[18] = rd32(E1000_EIAM);
 380	/* Reading ICS for ICR because they read the
 381	 * same but ICS does not clear on read */
 
 382	regs_buff[19] = rd32(E1000_ICS);
 383	regs_buff[20] = rd32(E1000_ICS);
 384	regs_buff[21] = rd32(E1000_IMS);
 385	regs_buff[22] = rd32(E1000_IMC);
 386	regs_buff[23] = rd32(E1000_IAC);
 387	regs_buff[24] = rd32(E1000_IAM);
 388	regs_buff[25] = rd32(E1000_IMIRVP);
 389
 390	/* Flow Control */
 391	regs_buff[26] = rd32(E1000_FCAL);
 392	regs_buff[27] = rd32(E1000_FCAH);
 393	regs_buff[28] = rd32(E1000_FCTTV);
 394	regs_buff[29] = rd32(E1000_FCRTL);
 395	regs_buff[30] = rd32(E1000_FCRTH);
 396	regs_buff[31] = rd32(E1000_FCRTV);
 397
 398	/* Receive */
 399	regs_buff[32] = rd32(E1000_RCTL);
 400	regs_buff[33] = rd32(E1000_RXCSUM);
 401	regs_buff[34] = rd32(E1000_RLPML);
 402	regs_buff[35] = rd32(E1000_RFCTL);
 403	regs_buff[36] = rd32(E1000_MRQC);
 404	regs_buff[37] = rd32(E1000_VT_CTL);
 405
 406	/* Transmit */
 407	regs_buff[38] = rd32(E1000_TCTL);
 408	regs_buff[39] = rd32(E1000_TCTL_EXT);
 409	regs_buff[40] = rd32(E1000_TIPG);
 410	regs_buff[41] = rd32(E1000_DTXCTL);
 411
 412	/* Wake Up */
 413	regs_buff[42] = rd32(E1000_WUC);
 414	regs_buff[43] = rd32(E1000_WUFC);
 415	regs_buff[44] = rd32(E1000_WUS);
 416	regs_buff[45] = rd32(E1000_IPAV);
 417	regs_buff[46] = rd32(E1000_WUPL);
 418
 419	/* MAC */
 420	regs_buff[47] = rd32(E1000_PCS_CFG0);
 421	regs_buff[48] = rd32(E1000_PCS_LCTL);
 422	regs_buff[49] = rd32(E1000_PCS_LSTAT);
 423	regs_buff[50] = rd32(E1000_PCS_ANADV);
 424	regs_buff[51] = rd32(E1000_PCS_LPAB);
 425	regs_buff[52] = rd32(E1000_PCS_NPTX);
 426	regs_buff[53] = rd32(E1000_PCS_LPABNP);
 427
 428	/* Statistics */
 429	regs_buff[54] = adapter->stats.crcerrs;
 430	regs_buff[55] = adapter->stats.algnerrc;
 431	regs_buff[56] = adapter->stats.symerrs;
 432	regs_buff[57] = adapter->stats.rxerrc;
 433	regs_buff[58] = adapter->stats.mpc;
 434	regs_buff[59] = adapter->stats.scc;
 435	regs_buff[60] = adapter->stats.ecol;
 436	regs_buff[61] = adapter->stats.mcc;
 437	regs_buff[62] = adapter->stats.latecol;
 438	regs_buff[63] = adapter->stats.colc;
 439	regs_buff[64] = adapter->stats.dc;
 440	regs_buff[65] = adapter->stats.tncrs;
 441	regs_buff[66] = adapter->stats.sec;
 442	regs_buff[67] = adapter->stats.htdpmc;
 443	regs_buff[68] = adapter->stats.rlec;
 444	regs_buff[69] = adapter->stats.xonrxc;
 445	regs_buff[70] = adapter->stats.xontxc;
 446	regs_buff[71] = adapter->stats.xoffrxc;
 447	regs_buff[72] = adapter->stats.xofftxc;
 448	regs_buff[73] = adapter->stats.fcruc;
 449	regs_buff[74] = adapter->stats.prc64;
 450	regs_buff[75] = adapter->stats.prc127;
 451	regs_buff[76] = adapter->stats.prc255;
 452	regs_buff[77] = adapter->stats.prc511;
 453	regs_buff[78] = adapter->stats.prc1023;
 454	regs_buff[79] = adapter->stats.prc1522;
 455	regs_buff[80] = adapter->stats.gprc;
 456	regs_buff[81] = adapter->stats.bprc;
 457	regs_buff[82] = adapter->stats.mprc;
 458	regs_buff[83] = adapter->stats.gptc;
 459	regs_buff[84] = adapter->stats.gorc;
 460	regs_buff[86] = adapter->stats.gotc;
 461	regs_buff[88] = adapter->stats.rnbc;
 462	regs_buff[89] = adapter->stats.ruc;
 463	regs_buff[90] = adapter->stats.rfc;
 464	regs_buff[91] = adapter->stats.roc;
 465	regs_buff[92] = adapter->stats.rjc;
 466	regs_buff[93] = adapter->stats.mgprc;
 467	regs_buff[94] = adapter->stats.mgpdc;
 468	regs_buff[95] = adapter->stats.mgptc;
 469	regs_buff[96] = adapter->stats.tor;
 470	regs_buff[98] = adapter->stats.tot;
 471	regs_buff[100] = adapter->stats.tpr;
 472	regs_buff[101] = adapter->stats.tpt;
 473	regs_buff[102] = adapter->stats.ptc64;
 474	regs_buff[103] = adapter->stats.ptc127;
 475	regs_buff[104] = adapter->stats.ptc255;
 476	regs_buff[105] = adapter->stats.ptc511;
 477	regs_buff[106] = adapter->stats.ptc1023;
 478	regs_buff[107] = adapter->stats.ptc1522;
 479	regs_buff[108] = adapter->stats.mptc;
 480	regs_buff[109] = adapter->stats.bptc;
 481	regs_buff[110] = adapter->stats.tsctc;
 482	regs_buff[111] = adapter->stats.iac;
 483	regs_buff[112] = adapter->stats.rpthc;
 484	regs_buff[113] = adapter->stats.hgptc;
 485	regs_buff[114] = adapter->stats.hgorc;
 486	regs_buff[116] = adapter->stats.hgotc;
 487	regs_buff[118] = adapter->stats.lenerrs;
 488	regs_buff[119] = adapter->stats.scvpc;
 489	regs_buff[120] = adapter->stats.hrmpc;
 490
 491	for (i = 0; i < 4; i++)
 492		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
 493	for (i = 0; i < 4; i++)
 494		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
 495	for (i = 0; i < 4; i++)
 496		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
 497	for (i = 0; i < 4; i++)
 498		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
 499	for (i = 0; i < 4; i++)
 500		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
 501	for (i = 0; i < 4; i++)
 502		regs_buff[141 + i] = rd32(E1000_RDH(i));
 503	for (i = 0; i < 4; i++)
 504		regs_buff[145 + i] = rd32(E1000_RDT(i));
 505	for (i = 0; i < 4; i++)
 506		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
 507
 508	for (i = 0; i < 10; i++)
 509		regs_buff[153 + i] = rd32(E1000_EITR(i));
 510	for (i = 0; i < 8; i++)
 511		regs_buff[163 + i] = rd32(E1000_IMIR(i));
 512	for (i = 0; i < 8; i++)
 513		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
 514	for (i = 0; i < 16; i++)
 515		regs_buff[179 + i] = rd32(E1000_RAL(i));
 516	for (i = 0; i < 16; i++)
 517		regs_buff[195 + i] = rd32(E1000_RAH(i));
 518
 519	for (i = 0; i < 4; i++)
 520		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
 521	for (i = 0; i < 4; i++)
 522		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
 523	for (i = 0; i < 4; i++)
 524		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
 525	for (i = 0; i < 4; i++)
 526		regs_buff[223 + i] = rd32(E1000_TDH(i));
 527	for (i = 0; i < 4; i++)
 528		regs_buff[227 + i] = rd32(E1000_TDT(i));
 529	for (i = 0; i < 4; i++)
 530		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
 531	for (i = 0; i < 4; i++)
 532		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
 533	for (i = 0; i < 4; i++)
 534		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
 535	for (i = 0; i < 4; i++)
 536		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
 537
 538	for (i = 0; i < 4; i++)
 539		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
 540	for (i = 0; i < 4; i++)
 541		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
 542	for (i = 0; i < 32; i++)
 543		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
 544	for (i = 0; i < 128; i++)
 545		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
 546	for (i = 0; i < 128; i++)
 547		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
 548	for (i = 0; i < 4; i++)
 549		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
 550
 551	regs_buff[547] = rd32(E1000_TDFH);
 552	regs_buff[548] = rd32(E1000_TDFT);
 553	regs_buff[549] = rd32(E1000_TDFHS);
 554	regs_buff[550] = rd32(E1000_TDFPC);
 555
 556	if (hw->mac.type > e1000_82580) {
 557		regs_buff[551] = adapter->stats.o2bgptc;
 558		regs_buff[552] = adapter->stats.b2ospc;
 559		regs_buff[553] = adapter->stats.o2bspc;
 560		regs_buff[554] = adapter->stats.b2ogprc;
 561	}
 562
 563	if (hw->mac.type != e1000_82576)
 564		return;
 565	for (i = 0; i < 12; i++)
 566		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
 567	for (i = 0; i < 4; i++)
 568		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
 569	for (i = 0; i < 12; i++)
 570		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
 571	for (i = 0; i < 12; i++)
 572		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
 573	for (i = 0; i < 12; i++)
 574		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
 575	for (i = 0; i < 12; i++)
 576		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
 577	for (i = 0; i < 12; i++)
 578		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
 579	for (i = 0; i < 12; i++)
 580		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
 581
 582	for (i = 0; i < 12; i++)
 583		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
 584	for (i = 0; i < 12; i++)
 585		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
 586	for (i = 0; i < 12; i++)
 587		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
 588	for (i = 0; i < 12; i++)
 589		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
 590	for (i = 0; i < 12; i++)
 591		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
 592	for (i = 0; i < 12; i++)
 593		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
 594	for (i = 0; i < 12; i++)
 595		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
 596	for (i = 0; i < 12; i++)
 597		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
 
 
 
 598}
 599
 600static int igb_get_eeprom_len(struct net_device *netdev)
 601{
 602	struct igb_adapter *adapter = netdev_priv(netdev);
 603	return adapter->hw.nvm.word_size * 2;
 604}
 605
 606static int igb_get_eeprom(struct net_device *netdev,
 607			  struct ethtool_eeprom *eeprom, u8 *bytes)
 608{
 609	struct igb_adapter *adapter = netdev_priv(netdev);
 610	struct e1000_hw *hw = &adapter->hw;
 611	u16 *eeprom_buff;
 612	int first_word, last_word;
 613	int ret_val = 0;
 614	u16 i;
 615
 616	if (eeprom->len == 0)
 617		return -EINVAL;
 618
 619	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
 620
 621	first_word = eeprom->offset >> 1;
 622	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 623
 624	eeprom_buff = kmalloc(sizeof(u16) *
 625			(last_word - first_word + 1), GFP_KERNEL);
 626	if (!eeprom_buff)
 627		return -ENOMEM;
 628
 629	if (hw->nvm.type == e1000_nvm_eeprom_spi)
 630		ret_val = hw->nvm.ops.read(hw, first_word,
 631					    last_word - first_word + 1,
 632					    eeprom_buff);
 633	else {
 634		for (i = 0; i < last_word - first_word + 1; i++) {
 635			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
 636						    &eeprom_buff[i]);
 637			if (ret_val)
 638				break;
 639		}
 640	}
 641
 642	/* Device's eeprom is always little-endian, word addressable */
 643	for (i = 0; i < last_word - first_word + 1; i++)
 644		le16_to_cpus(&eeprom_buff[i]);
 645
 646	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
 647			eeprom->len);
 648	kfree(eeprom_buff);
 649
 650	return ret_val;
 651}
 652
 653static int igb_set_eeprom(struct net_device *netdev,
 654			  struct ethtool_eeprom *eeprom, u8 *bytes)
 655{
 656	struct igb_adapter *adapter = netdev_priv(netdev);
 657	struct e1000_hw *hw = &adapter->hw;
 658	u16 *eeprom_buff;
 659	void *ptr;
 660	int max_len, first_word, last_word, ret_val = 0;
 661	u16 i;
 662
 663	if (eeprom->len == 0)
 664		return -EOPNOTSUPP;
 665
 666	if (hw->mac.type == e1000_i211)
 
 667		return -EOPNOTSUPP;
 
 668
 669	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
 670		return -EFAULT;
 671
 672	max_len = hw->nvm.word_size * 2;
 673
 674	first_word = eeprom->offset >> 1;
 675	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 676	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 677	if (!eeprom_buff)
 678		return -ENOMEM;
 679
 680	ptr = (void *)eeprom_buff;
 681
 682	if (eeprom->offset & 1) {
 683		/* need read/modify/write of first changed EEPROM word */
 684		/* only the second byte of the word is being modified */
 
 685		ret_val = hw->nvm.ops.read(hw, first_word, 1,
 686					    &eeprom_buff[0]);
 687		ptr++;
 688	}
 689	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
 690		/* need read/modify/write of last changed EEPROM word */
 691		/* only the first byte of the word is being modified */
 
 692		ret_val = hw->nvm.ops.read(hw, last_word, 1,
 693				   &eeprom_buff[last_word - first_word]);
 694	}
 695
 696	/* Device's eeprom is always little-endian, word addressable */
 697	for (i = 0; i < last_word - first_word + 1; i++)
 698		le16_to_cpus(&eeprom_buff[i]);
 699
 700	memcpy(ptr, bytes, eeprom->len);
 701
 702	for (i = 0; i < last_word - first_word + 1; i++)
 703		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
 704
 705	ret_val = hw->nvm.ops.write(hw, first_word,
 706				     last_word - first_word + 1, eeprom_buff);
 707
 708	/* Update the checksum over the first part of the EEPROM if needed
 709	 * and flush shadow RAM for 82573 controllers */
 710	if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
 711		hw->nvm.ops.update(hw);
 712
 
 713	kfree(eeprom_buff);
 714	return ret_val;
 715}
 716
 717static void igb_get_drvinfo(struct net_device *netdev,
 718			    struct ethtool_drvinfo *drvinfo)
 719{
 720	struct igb_adapter *adapter = netdev_priv(netdev);
 721	u16 eeprom_data;
 722
 723	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
 724	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
 725
 726	/* EEPROM image version # is reported as firmware version # for
 727	 * 82575 controllers */
 728	adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
 729	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
 730		"%d.%d-%d",
 731		(eeprom_data & 0xF000) >> 12,
 732		(eeprom_data & 0x0FF0) >> 4,
 733		eeprom_data & 0x000F);
 734
 735	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
 736		sizeof(drvinfo->bus_info));
 737	drvinfo->n_stats = IGB_STATS_LEN;
 738	drvinfo->testinfo_len = IGB_TEST_LEN;
 739	drvinfo->regdump_len = igb_get_regs_len(netdev);
 740	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
 741}
 742
 743static void igb_get_ringparam(struct net_device *netdev,
 744			      struct ethtool_ringparam *ring)
 745{
 746	struct igb_adapter *adapter = netdev_priv(netdev);
 747
 748	ring->rx_max_pending = IGB_MAX_RXD;
 749	ring->tx_max_pending = IGB_MAX_TXD;
 750	ring->rx_pending = adapter->rx_ring_count;
 751	ring->tx_pending = adapter->tx_ring_count;
 752}
 753
 754static int igb_set_ringparam(struct net_device *netdev,
 755			     struct ethtool_ringparam *ring)
 756{
 757	struct igb_adapter *adapter = netdev_priv(netdev);
 758	struct igb_ring *temp_ring;
 759	int i, err = 0;
 760	u16 new_rx_count, new_tx_count;
 761
 762	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 763		return -EINVAL;
 764
 765	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
 766	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
 767	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
 768
 769	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
 770	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
 771	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
 772
 773	if ((new_tx_count == adapter->tx_ring_count) &&
 774	    (new_rx_count == adapter->rx_ring_count)) {
 775		/* nothing to do */
 776		return 0;
 777	}
 778
 779	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 780		msleep(1);
 781
 782	if (!netif_running(adapter->netdev)) {
 783		for (i = 0; i < adapter->num_tx_queues; i++)
 784			adapter->tx_ring[i]->count = new_tx_count;
 785		for (i = 0; i < adapter->num_rx_queues; i++)
 786			adapter->rx_ring[i]->count = new_rx_count;
 787		adapter->tx_ring_count = new_tx_count;
 788		adapter->rx_ring_count = new_rx_count;
 789		goto clear_reset;
 790	}
 791
 792	if (adapter->num_tx_queues > adapter->num_rx_queues)
 793		temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
 
 794	else
 795		temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
 
 796
 797	if (!temp_ring) {
 798		err = -ENOMEM;
 799		goto clear_reset;
 800	}
 801
 802	igb_down(adapter);
 803
 804	/*
 805	 * We can't just free everything and then setup again,
 806	 * because the ISRs in MSI-X mode get passed pointers
 807	 * to the tx and rx ring structs.
 808	 */
 809	if (new_tx_count != adapter->tx_ring_count) {
 810		for (i = 0; i < adapter->num_tx_queues; i++) {
 811			memcpy(&temp_ring[i], adapter->tx_ring[i],
 812			       sizeof(struct igb_ring));
 813
 814			temp_ring[i].count = new_tx_count;
 815			err = igb_setup_tx_resources(&temp_ring[i]);
 816			if (err) {
 817				while (i) {
 818					i--;
 819					igb_free_tx_resources(&temp_ring[i]);
 820				}
 821				goto err_setup;
 822			}
 823		}
 824
 825		for (i = 0; i < adapter->num_tx_queues; i++) {
 826			igb_free_tx_resources(adapter->tx_ring[i]);
 827
 828			memcpy(adapter->tx_ring[i], &temp_ring[i],
 829			       sizeof(struct igb_ring));
 830		}
 831
 832		adapter->tx_ring_count = new_tx_count;
 833	}
 834
 835	if (new_rx_count != adapter->rx_ring_count) {
 836		for (i = 0; i < adapter->num_rx_queues; i++) {
 837			memcpy(&temp_ring[i], adapter->rx_ring[i],
 838			       sizeof(struct igb_ring));
 839
 
 
 
 
 840			temp_ring[i].count = new_rx_count;
 841			err = igb_setup_rx_resources(&temp_ring[i]);
 842			if (err) {
 843				while (i) {
 844					i--;
 845					igb_free_rx_resources(&temp_ring[i]);
 846				}
 847				goto err_setup;
 848			}
 849
 850		}
 851
 852		for (i = 0; i < adapter->num_rx_queues; i++) {
 853			igb_free_rx_resources(adapter->rx_ring[i]);
 854
 855			memcpy(adapter->rx_ring[i], &temp_ring[i],
 856			       sizeof(struct igb_ring));
 857		}
 858
 859		adapter->rx_ring_count = new_rx_count;
 860	}
 861err_setup:
 862	igb_up(adapter);
 863	vfree(temp_ring);
 864clear_reset:
 865	clear_bit(__IGB_RESETTING, &adapter->state);
 866	return err;
 867}
 868
 869/* ethtool register test data */
 870struct igb_reg_test {
 871	u16 reg;
 872	u16 reg_offset;
 873	u16 array_len;
 874	u16 test_type;
 875	u32 mask;
 876	u32 write;
 877};
 878
 879/* In the hardware, registers are laid out either singly, in arrays
 880 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
 881 * most tests take place on arrays or single registers (handled
 882 * as a single-element array) and special-case the tables.
 883 * Table tests are always pattern tests.
 884 *
 885 * We also make provision for some required setup steps by specifying
 886 * registers to be written without any read-back testing.
 887 */
 888
 889#define PATTERN_TEST	1
 890#define SET_READ_TEST	2
 891#define WRITE_NO_TEST	3
 892#define TABLE32_TEST	4
 893#define TABLE64_TEST_LO	5
 894#define TABLE64_TEST_HI	6
 895
 896/* i210 reg test */
 897static struct igb_reg_test reg_test_i210[] = {
 898	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 899	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
 900	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
 901	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 902	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 903	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
 904	/* RDH is read-only for i210, only test RDT. */
 905	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 906	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
 907	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 908	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
 909	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 910	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 911	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
 912	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 913	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
 914	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
 915	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
 916	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
 917	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
 918						0xFFFFFFFF, 0xFFFFFFFF },
 919	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
 920						0x900FFFFF, 0xFFFFFFFF },
 921	{ E1000_MTA,	   0, 128, TABLE32_TEST,
 922						0xFFFFFFFF, 0xFFFFFFFF },
 923	{ 0, 0, 0, 0, 0 }
 924};
 925
 926/* i350 reg test */
 927static struct igb_reg_test reg_test_i350[] = {
 928	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 929	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
 930	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
 931	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
 932	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 933	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 934	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
 935	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 936	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 937	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
 938	/* RDH is read-only for i350, only test RDT. */
 939	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 940	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 941	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
 942	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 943	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
 944	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 945	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 946	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
 947	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 948	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 949	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
 950	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 951	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 952	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
 953	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
 954	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
 955	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
 956	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
 957						0xFFFFFFFF, 0xFFFFFFFF },
 958	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
 959						0xC3FFFFFF, 0xFFFFFFFF },
 960	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
 961						0xFFFFFFFF, 0xFFFFFFFF },
 962	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
 963						0xC3FFFFFF, 0xFFFFFFFF },
 964	{ E1000_MTA,	   0, 128, TABLE32_TEST,
 965						0xFFFFFFFF, 0xFFFFFFFF },
 966	{ 0, 0, 0, 0 }
 967};
 968
 969/* 82580 reg test */
 970static struct igb_reg_test reg_test_82580[] = {
 971	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 972	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
 973	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
 974	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 975	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 976	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 977	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
 978	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 979	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 980	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
 981	/* RDH is read-only for 82580, only test RDT. */
 982	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 983	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 984	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
 985	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 986	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
 987	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 988	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 989	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
 990	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 991	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 992	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
 993	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 994	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 995	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
 996	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
 997	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
 998	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
 999	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1000						0xFFFFFFFF, 0xFFFFFFFF },
1001	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1002						0x83FFFFFF, 0xFFFFFFFF },
1003	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1004						0xFFFFFFFF, 0xFFFFFFFF },
1005	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1006						0x83FFFFFF, 0xFFFFFFFF },
1007	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1008						0xFFFFFFFF, 0xFFFFFFFF },
1009	{ 0, 0, 0, 0 }
1010};
1011
1012/* 82576 reg test */
1013static struct igb_reg_test reg_test_82576[] = {
1014	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1015	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1016	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1017	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1018	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1019	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1020	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1021	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1022	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1023	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1024	/* Enable all RX queues before testing. */
1025	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1026	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
 
 
1027	/* RDH is read-only for 82576, only test RDT. */
1028	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1029	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1030	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1031	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1032	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1033	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1034	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1035	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1036	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1037	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1038	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1039	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1040	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1041	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1042	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1043	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1044	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1045	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1046	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1047	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1048	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1049	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1050	{ 0, 0, 0, 0 }
1051};
1052
1053/* 82575 register test */
1054static struct igb_reg_test reg_test_82575[] = {
1055	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1056	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1057	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1058	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1059	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1060	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1061	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1062	/* Enable all four RX queues before testing. */
1063	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
 
1064	/* RDH is read-only for 82575, only test RDT. */
1065	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1066	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1067	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1068	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1069	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1070	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1071	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1072	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1073	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1074	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1075	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1076	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1077	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1078	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1079	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1080	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1081	{ 0, 0, 0, 0 }
1082};
1083
1084static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1085			     int reg, u32 mask, u32 write)
1086{
1087	struct e1000_hw *hw = &adapter->hw;
1088	u32 pat, val;
1089	static const u32 _test[] =
1090		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1091	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1092		wr32(reg, (_test[pat] & write));
1093		val = rd32(reg) & mask;
1094		if (val != (_test[pat] & write & mask)) {
1095			dev_err(&adapter->pdev->dev, "pattern test reg %04X "
1096				"failed: got 0x%08X expected 0x%08X\n",
1097				reg, val, (_test[pat] & write & mask));
1098			*data = reg;
1099			return 1;
1100		}
1101	}
1102
1103	return 0;
1104}
1105
1106static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1107			      int reg, u32 mask, u32 write)
1108{
1109	struct e1000_hw *hw = &adapter->hw;
1110	u32 val;
 
1111	wr32(reg, write & mask);
1112	val = rd32(reg);
1113	if ((write & mask) != (val & mask)) {
1114		dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
1115			" got 0x%08X expected 0x%08X\n", reg,
1116			(val & mask), (write & mask));
1117		*data = reg;
1118		return 1;
1119	}
1120
1121	return 0;
1122}
1123
1124#define REG_PATTERN_TEST(reg, mask, write) \
1125	do { \
1126		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1127			return 1; \
1128	} while (0)
1129
1130#define REG_SET_AND_CHECK(reg, mask, write) \
1131	do { \
1132		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1133			return 1; \
1134	} while (0)
1135
1136static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1137{
1138	struct e1000_hw *hw = &adapter->hw;
1139	struct igb_reg_test *test;
1140	u32 value, before, after;
1141	u32 i, toggle;
1142
1143	switch (adapter->hw.mac.type) {
1144	case e1000_i350:
 
1145		test = reg_test_i350;
1146		toggle = 0x7FEFF3FF;
1147		break;
1148	case e1000_i210:
1149	case e1000_i211:
1150		test = reg_test_i210;
1151		toggle = 0x7FEFF3FF;
1152		break;
1153	case e1000_82580:
1154		test = reg_test_82580;
1155		toggle = 0x7FEFF3FF;
1156		break;
1157	case e1000_82576:
1158		test = reg_test_82576;
1159		toggle = 0x7FFFF3FF;
1160		break;
1161	default:
1162		test = reg_test_82575;
1163		toggle = 0x7FFFF3FF;
1164		break;
1165	}
1166
1167	/* Because the status register is such a special case,
1168	 * we handle it separately from the rest of the register
1169	 * tests.  Some bits are read-only, some toggle, and some
1170	 * are writable on newer MACs.
1171	 */
1172	before = rd32(E1000_STATUS);
1173	value = (rd32(E1000_STATUS) & toggle);
1174	wr32(E1000_STATUS, toggle);
1175	after = rd32(E1000_STATUS) & toggle;
1176	if (value != after) {
1177		dev_err(&adapter->pdev->dev, "failed STATUS register test "
1178			"got: 0x%08X expected: 0x%08X\n", after, value);
 
1179		*data = 1;
1180		return 1;
1181	}
1182	/* restore previous status */
1183	wr32(E1000_STATUS, before);
1184
1185	/* Perform the remainder of the register test, looping through
1186	 * the test table until we either fail or reach the null entry.
1187	 */
1188	while (test->reg) {
1189		for (i = 0; i < test->array_len; i++) {
1190			switch (test->test_type) {
1191			case PATTERN_TEST:
1192				REG_PATTERN_TEST(test->reg +
1193						(i * test->reg_offset),
1194						test->mask,
1195						test->write);
1196				break;
1197			case SET_READ_TEST:
1198				REG_SET_AND_CHECK(test->reg +
1199						(i * test->reg_offset),
1200						test->mask,
1201						test->write);
1202				break;
1203			case WRITE_NO_TEST:
1204				writel(test->write,
1205				    (adapter->hw.hw_addr + test->reg)
1206					+ (i * test->reg_offset));
1207				break;
1208			case TABLE32_TEST:
1209				REG_PATTERN_TEST(test->reg + (i * 4),
1210						test->mask,
1211						test->write);
1212				break;
1213			case TABLE64_TEST_LO:
1214				REG_PATTERN_TEST(test->reg + (i * 8),
1215						test->mask,
1216						test->write);
1217				break;
1218			case TABLE64_TEST_HI:
1219				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1220						test->mask,
1221						test->write);
1222				break;
1223			}
1224		}
1225		test++;
1226	}
1227
1228	*data = 0;
1229	return 0;
1230}
1231
1232static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1233{
 
 
1234	*data = 0;
1235
1236	/* Validate eeprom on all parts but i211 */
1237	if (adapter->hw.mac.type != e1000_i211) {
 
 
 
 
 
 
 
 
1238		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1239			*data = 2;
 
1240	}
1241
1242	return *data;
1243}
1244
1245static irqreturn_t igb_test_intr(int irq, void *data)
1246{
1247	struct igb_adapter *adapter = (struct igb_adapter *) data;
1248	struct e1000_hw *hw = &adapter->hw;
1249
1250	adapter->test_icr |= rd32(E1000_ICR);
1251
1252	return IRQ_HANDLED;
1253}
1254
1255static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1256{
1257	struct e1000_hw *hw = &adapter->hw;
1258	struct net_device *netdev = adapter->netdev;
1259	u32 mask, ics_mask, i = 0, shared_int = true;
1260	u32 irq = adapter->pdev->irq;
1261
1262	*data = 0;
1263
1264	/* Hook up test interrupt handler just for this test */
1265	if (adapter->msix_entries) {
1266		if (request_irq(adapter->msix_entries[0].vector,
1267		                igb_test_intr, 0, netdev->name, adapter)) {
1268			*data = 1;
1269			return -1;
1270		}
1271	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1272		shared_int = false;
1273		if (request_irq(irq,
1274		                igb_test_intr, 0, netdev->name, adapter)) {
1275			*data = 1;
1276			return -1;
1277		}
1278	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1279				netdev->name, adapter)) {
1280		shared_int = false;
1281	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1282		 netdev->name, adapter)) {
1283		*data = 1;
1284		return -1;
1285	}
1286	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1287		(shared_int ? "shared" : "unshared"));
1288
1289	/* Disable all the interrupts */
1290	wr32(E1000_IMC, ~0);
1291	wrfl();
1292	msleep(10);
1293
1294	/* Define all writable bits for ICS */
1295	switch (hw->mac.type) {
1296	case e1000_82575:
1297		ics_mask = 0x37F47EDD;
1298		break;
1299	case e1000_82576:
1300		ics_mask = 0x77D4FBFD;
1301		break;
1302	case e1000_82580:
1303		ics_mask = 0x77DCFED5;
1304		break;
1305	case e1000_i350:
 
1306	case e1000_i210:
1307	case e1000_i211:
1308		ics_mask = 0x77DCFED5;
1309		break;
1310	default:
1311		ics_mask = 0x7FFFFFFF;
1312		break;
1313	}
1314
1315	/* Test each interrupt */
1316	for (; i < 31; i++) {
1317		/* Interrupt to test */
1318		mask = 1 << i;
1319
1320		if (!(mask & ics_mask))
1321			continue;
1322
1323		if (!shared_int) {
1324			/* Disable the interrupt to be reported in
1325			 * the cause register and then force the same
1326			 * interrupt and see if one gets posted.  If
1327			 * an interrupt was posted to the bus, the
1328			 * test failed.
1329			 */
1330			adapter->test_icr = 0;
1331
1332			/* Flush any pending interrupts */
1333			wr32(E1000_ICR, ~0);
1334
1335			wr32(E1000_IMC, mask);
1336			wr32(E1000_ICS, mask);
1337			wrfl();
1338			msleep(10);
1339
1340			if (adapter->test_icr & mask) {
1341				*data = 3;
1342				break;
1343			}
1344		}
1345
1346		/* Enable the interrupt to be reported in
1347		 * the cause register and then force the same
1348		 * interrupt and see if one gets posted.  If
1349		 * an interrupt was not posted to the bus, the
1350		 * test failed.
1351		 */
1352		adapter->test_icr = 0;
1353
1354		/* Flush any pending interrupts */
1355		wr32(E1000_ICR, ~0);
1356
1357		wr32(E1000_IMS, mask);
1358		wr32(E1000_ICS, mask);
1359		wrfl();
1360		msleep(10);
1361
1362		if (!(adapter->test_icr & mask)) {
1363			*data = 4;
1364			break;
1365		}
1366
1367		if (!shared_int) {
1368			/* Disable the other interrupts to be reported in
1369			 * the cause register and then force the other
1370			 * interrupts and see if any get posted.  If
1371			 * an interrupt was posted to the bus, the
1372			 * test failed.
1373			 */
1374			adapter->test_icr = 0;
1375
1376			/* Flush any pending interrupts */
1377			wr32(E1000_ICR, ~0);
1378
1379			wr32(E1000_IMC, ~mask);
1380			wr32(E1000_ICS, ~mask);
1381			wrfl();
1382			msleep(10);
1383
1384			if (adapter->test_icr & mask) {
1385				*data = 5;
1386				break;
1387			}
1388		}
1389	}
1390
1391	/* Disable all the interrupts */
1392	wr32(E1000_IMC, ~0);
1393	wrfl();
1394	msleep(10);
1395
1396	/* Unhook test interrupt handler */
1397	if (adapter->msix_entries)
1398		free_irq(adapter->msix_entries[0].vector, adapter);
1399	else
1400		free_irq(irq, adapter);
1401
1402	return *data;
1403}
1404
1405static void igb_free_desc_rings(struct igb_adapter *adapter)
1406{
1407	igb_free_tx_resources(&adapter->test_tx_ring);
1408	igb_free_rx_resources(&adapter->test_rx_ring);
1409}
1410
1411static int igb_setup_desc_rings(struct igb_adapter *adapter)
1412{
1413	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1414	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1415	struct e1000_hw *hw = &adapter->hw;
1416	int ret_val;
1417
1418	/* Setup Tx descriptor ring and Tx buffers */
1419	tx_ring->count = IGB_DEFAULT_TXD;
1420	tx_ring->dev = &adapter->pdev->dev;
1421	tx_ring->netdev = adapter->netdev;
1422	tx_ring->reg_idx = adapter->vfs_allocated_count;
1423
1424	if (igb_setup_tx_resources(tx_ring)) {
1425		ret_val = 1;
1426		goto err_nomem;
1427	}
1428
1429	igb_setup_tctl(adapter);
1430	igb_configure_tx_ring(adapter, tx_ring);
1431
1432	/* Setup Rx descriptor ring and Rx buffers */
1433	rx_ring->count = IGB_DEFAULT_RXD;
1434	rx_ring->dev = &adapter->pdev->dev;
1435	rx_ring->netdev = adapter->netdev;
1436	rx_ring->reg_idx = adapter->vfs_allocated_count;
1437
1438	if (igb_setup_rx_resources(rx_ring)) {
1439		ret_val = 3;
1440		goto err_nomem;
1441	}
1442
1443	/* set the default queue to queue 0 of PF */
1444	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1445
1446	/* enable receive ring */
1447	igb_setup_rctl(adapter);
1448	igb_configure_rx_ring(adapter, rx_ring);
1449
1450	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1451
1452	return 0;
1453
1454err_nomem:
1455	igb_free_desc_rings(adapter);
1456	return ret_val;
1457}
1458
1459static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1460{
1461	struct e1000_hw *hw = &adapter->hw;
1462
1463	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1464	igb_write_phy_reg(hw, 29, 0x001F);
1465	igb_write_phy_reg(hw, 30, 0x8FFC);
1466	igb_write_phy_reg(hw, 29, 0x001A);
1467	igb_write_phy_reg(hw, 30, 0x8FF0);
1468}
1469
1470static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1471{
1472	struct e1000_hw *hw = &adapter->hw;
1473	u32 ctrl_reg = 0;
1474	u16 phy_reg = 0;
1475
1476	hw->mac.autoneg = false;
1477
1478	switch (hw->phy.type) {
1479	case e1000_phy_m88:
1480		/* Auto-MDI/MDIX Off */
1481		igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1482		/* reset to update Auto-MDI/MDIX */
1483		igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1484		/* autoneg off */
1485		igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1486		break;
1487	case e1000_phy_82580:
 
 
 
 
1488		/* enable MII loopback */
1489		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1490		break;
1491	case e1000_phy_i210:
1492		/* set loopback speed in PHY */
1493		igb_read_phy_reg(hw, (GS40G_PAGE_SELECT & GS40G_PAGE_2),
1494					&phy_reg);
1495		phy_reg |= GS40G_MAC_SPEED_1G;
1496		igb_write_phy_reg(hw, (GS40G_PAGE_SELECT & GS40G_PAGE_2),
1497					phy_reg);
1498		ctrl_reg = rd32(E1000_CTRL_EXT);
1499	default:
1500		break;
1501	}
1502
 
 
 
1503	/* force 1000, set loopback */
1504	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1505
1506	/* Now set up the MAC to the same speed/duplex as the PHY. */
1507	ctrl_reg = rd32(E1000_CTRL);
1508	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1509	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1510		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1511		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1512		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1513		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1514
1515	if ((hw->phy.type == e1000_phy_m88) || (hw->phy.type == e1000_phy_i210))
1516		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1517
1518	wr32(E1000_CTRL, ctrl_reg);
1519
1520	/* Disable the receiver on the PHY so when a cable is plugged in, the
1521	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1522	 */
1523	if ((hw->phy.type == e1000_phy_m88) || (hw->phy.type == e1000_phy_i210))
1524		igb_phy_disable_receiver(adapter);
1525
1526	udelay(500);
1527
1528	return 0;
1529}
1530
1531static int igb_set_phy_loopback(struct igb_adapter *adapter)
1532{
1533	return igb_integrated_phy_loopback(adapter);
1534}
1535
1536static int igb_setup_loopback_test(struct igb_adapter *adapter)
1537{
1538	struct e1000_hw *hw = &adapter->hw;
1539	u32 reg;
1540
1541	reg = rd32(E1000_CTRL_EXT);
1542
1543	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1544	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1545		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1546		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1547		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1548		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1549
 
1550			/* Enable DH89xxCC MPHY for near end loopback */
1551			reg = rd32(E1000_MPHY_ADDR_CTL);
1552			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1553			E1000_MPHY_PCS_CLK_REG_OFFSET;
1554			wr32(E1000_MPHY_ADDR_CTL, reg);
1555
1556			reg = rd32(E1000_MPHY_DATA);
1557			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1558			wr32(E1000_MPHY_DATA, reg);
1559		}
1560
1561		reg = rd32(E1000_RCTL);
1562		reg |= E1000_RCTL_LBM_TCVR;
1563		wr32(E1000_RCTL, reg);
1564
1565		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1566
1567		reg = rd32(E1000_CTRL);
1568		reg &= ~(E1000_CTRL_RFCE |
1569			 E1000_CTRL_TFCE |
1570			 E1000_CTRL_LRST);
1571		reg |= E1000_CTRL_SLU |
1572		       E1000_CTRL_FD;
1573		wr32(E1000_CTRL, reg);
1574
1575		/* Unset switch control to serdes energy detect */
1576		reg = rd32(E1000_CONNSW);
1577		reg &= ~E1000_CONNSW_ENRGSRC;
1578		wr32(E1000_CONNSW, reg);
1579
 
 
 
 
 
 
 
 
 
1580		/* Set PCS register for forced speed */
1581		reg = rd32(E1000_PCS_LCTL);
1582		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1583		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1584		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1585		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1586		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1587		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1588		wr32(E1000_PCS_LCTL, reg);
1589
1590		return 0;
1591	}
1592
1593	return igb_set_phy_loopback(adapter);
1594}
1595
1596static void igb_loopback_cleanup(struct igb_adapter *adapter)
1597{
1598	struct e1000_hw *hw = &adapter->hw;
1599	u32 rctl;
1600	u16 phy_reg;
1601
1602	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1603	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1604	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1605	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
 
1606		u32 reg;
1607
1608		/* Disable near end loopback on DH89xxCC */
1609		reg = rd32(E1000_MPHY_ADDR_CTL);
1610		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1611		E1000_MPHY_PCS_CLK_REG_OFFSET;
1612		wr32(E1000_MPHY_ADDR_CTL, reg);
1613
1614		reg = rd32(E1000_MPHY_DATA);
1615		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1616		wr32(E1000_MPHY_DATA, reg);
1617	}
1618
1619	rctl = rd32(E1000_RCTL);
1620	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1621	wr32(E1000_RCTL, rctl);
1622
1623	hw->mac.autoneg = true;
1624	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1625	if (phy_reg & MII_CR_LOOPBACK) {
1626		phy_reg &= ~MII_CR_LOOPBACK;
1627		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1628		igb_phy_sw_reset(hw);
1629	}
1630}
1631
1632static void igb_create_lbtest_frame(struct sk_buff *skb,
1633				    unsigned int frame_size)
1634{
1635	memset(skb->data, 0xFF, frame_size);
1636	frame_size /= 2;
1637	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1638	memset(&skb->data[frame_size + 10], 0xBE, 1);
1639	memset(&skb->data[frame_size + 12], 0xAF, 1);
1640}
1641
1642static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
 
1643{
1644	frame_size /= 2;
1645	if (*(skb->data + 3) == 0xFF) {
1646		if ((*(skb->data + frame_size + 10) == 0xBE) &&
1647		   (*(skb->data + frame_size + 12) == 0xAF)) {
1648			return 0;
1649		}
1650	}
1651	return 13;
 
 
 
 
 
 
 
1652}
1653
1654static int igb_clean_test_rings(struct igb_ring *rx_ring,
1655                                struct igb_ring *tx_ring,
1656                                unsigned int size)
1657{
1658	union e1000_adv_rx_desc *rx_desc;
1659	struct igb_rx_buffer *rx_buffer_info;
1660	struct igb_tx_buffer *tx_buffer_info;
1661	struct netdev_queue *txq;
1662	u16 rx_ntc, tx_ntc, count = 0;
1663	unsigned int total_bytes = 0, total_packets = 0;
1664
1665	/* initialize next to clean and descriptor values */
1666	rx_ntc = rx_ring->next_to_clean;
1667	tx_ntc = tx_ring->next_to_clean;
1668	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1669
1670	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1671		/* check rx buffer */
1672		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1673
1674		/* unmap rx buffer, will be remapped by alloc_rx_buffers */
1675		dma_unmap_single(rx_ring->dev,
1676				 rx_buffer_info->dma,
1677				 IGB_RX_HDR_LEN,
1678				 DMA_FROM_DEVICE);
1679		rx_buffer_info->dma = 0;
1680
1681		/* verify contents of skb */
1682		if (!igb_check_lbtest_frame(rx_buffer_info->skb, size))
1683			count++;
1684
1685		/* unmap buffer on tx side */
 
 
 
 
 
 
1686		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1687		total_bytes += tx_buffer_info->bytecount;
1688		total_packets += tx_buffer_info->gso_segs;
1689		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1690
1691		/* increment rx/tx next to clean counters */
 
 
 
 
 
 
 
 
 
 
1692		rx_ntc++;
1693		if (rx_ntc == rx_ring->count)
1694			rx_ntc = 0;
1695		tx_ntc++;
1696		if (tx_ntc == tx_ring->count)
1697			tx_ntc = 0;
1698
1699		/* fetch next descriptor */
1700		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1701	}
1702
1703	txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->queue_index);
1704	netdev_tx_completed_queue(txq, total_packets, total_bytes);
1705
1706	/* re-map buffers to ring, store next to clean values */
1707	igb_alloc_rx_buffers(rx_ring, count);
1708	rx_ring->next_to_clean = rx_ntc;
1709	tx_ring->next_to_clean = tx_ntc;
1710
1711	return count;
1712}
1713
1714static int igb_run_loopback_test(struct igb_adapter *adapter)
1715{
1716	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1717	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1718	u16 i, j, lc, good_cnt;
1719	int ret_val = 0;
1720	unsigned int size = IGB_RX_HDR_LEN;
1721	netdev_tx_t tx_ret_val;
1722	struct sk_buff *skb;
1723
1724	/* allocate test skb */
1725	skb = alloc_skb(size, GFP_KERNEL);
1726	if (!skb)
1727		return 11;
1728
1729	/* place data into test skb */
1730	igb_create_lbtest_frame(skb, size);
1731	skb_put(skb, size);
1732
1733	/*
1734	 * Calculate the loop count based on the largest descriptor ring
1735	 * The idea is to wrap the largest ring a number of times using 64
1736	 * send/receive pairs during each loop
1737	 */
1738
1739	if (rx_ring->count <= tx_ring->count)
1740		lc = ((tx_ring->count / 64) * 2) + 1;
1741	else
1742		lc = ((rx_ring->count / 64) * 2) + 1;
1743
1744	for (j = 0; j <= lc; j++) { /* loop count loop */
1745		/* reset count of good packets */
1746		good_cnt = 0;
1747
1748		/* place 64 packets on the transmit queue*/
1749		for (i = 0; i < 64; i++) {
1750			skb_get(skb);
1751			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1752			if (tx_ret_val == NETDEV_TX_OK)
1753				good_cnt++;
1754		}
1755
1756		if (good_cnt != 64) {
1757			ret_val = 12;
1758			break;
1759		}
1760
1761		/* allow 200 milliseconds for packets to go from tx to rx */
1762		msleep(200);
1763
1764		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1765		if (good_cnt != 64) {
1766			ret_val = 13;
1767			break;
1768		}
1769	} /* end loop count loop */
1770
1771	/* free the original skb */
1772	kfree_skb(skb);
1773
1774	return ret_val;
1775}
1776
1777static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1778{
1779	/* PHY loopback cannot be performed if SoL/IDER
1780	 * sessions are active */
 
1781	if (igb_check_reset_block(&adapter->hw)) {
1782		dev_err(&adapter->pdev->dev,
1783			"Cannot do PHY loopback test "
1784			"when SoL/IDER is active.\n");
1785		*data = 0;
1786		goto out;
1787	}
1788	if ((adapter->hw.mac.type == e1000_i210)
1789		|| (adapter->hw.mac.type == e1000_i210)) {
1790		dev_err(&adapter->pdev->dev,
1791			"Loopback test not supported "
1792			"on this part at this time.\n");
1793		*data = 0;
1794		goto out;
1795	}
1796	*data = igb_setup_desc_rings(adapter);
1797	if (*data)
1798		goto out;
1799	*data = igb_setup_loopback_test(adapter);
1800	if (*data)
1801		goto err_loopback;
1802	*data = igb_run_loopback_test(adapter);
1803	igb_loopback_cleanup(adapter);
1804
1805err_loopback:
1806	igb_free_desc_rings(adapter);
1807out:
1808	return *data;
1809}
1810
1811static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1812{
1813	struct e1000_hw *hw = &adapter->hw;
1814	*data = 0;
1815	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1816		int i = 0;
 
1817		hw->mac.serdes_has_link = false;
1818
1819		/* On some blade server designs, link establishment
1820		 * could take as long as 2-3 minutes */
 
1821		do {
1822			hw->mac.ops.check_for_link(&adapter->hw);
1823			if (hw->mac.serdes_has_link)
1824				return *data;
1825			msleep(20);
1826		} while (i++ < 3750);
1827
1828		*data = 1;
1829	} else {
1830		hw->mac.ops.check_for_link(&adapter->hw);
1831		if (hw->mac.autoneg)
1832			msleep(4000);
1833
1834		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1835			*data = 1;
1836	}
1837	return *data;
1838}
1839
1840static void igb_diag_test(struct net_device *netdev,
1841			  struct ethtool_test *eth_test, u64 *data)
1842{
1843	struct igb_adapter *adapter = netdev_priv(netdev);
1844	u16 autoneg_advertised;
1845	u8 forced_speed_duplex, autoneg;
1846	bool if_running = netif_running(netdev);
1847
1848	set_bit(__IGB_TESTING, &adapter->state);
 
 
 
 
1849	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1850		/* Offline tests */
1851
1852		/* save speed, duplex, autoneg settings */
1853		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1854		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1855		autoneg = adapter->hw.mac.autoneg;
1856
1857		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1858
1859		/* power up link for link test */
1860		igb_power_up_link(adapter);
1861
1862		/* Link test performed before hardware reset so autoneg doesn't
1863		 * interfere with test result */
1864		if (igb_link_test(adapter, &data[4]))
 
1865			eth_test->flags |= ETH_TEST_FL_FAILED;
1866
1867		if (if_running)
1868			/* indicate we're in test mode */
1869			dev_close(netdev);
1870		else
1871			igb_reset(adapter);
1872
1873		if (igb_reg_test(adapter, &data[0]))
1874			eth_test->flags |= ETH_TEST_FL_FAILED;
1875
1876		igb_reset(adapter);
1877		if (igb_eeprom_test(adapter, &data[1]))
1878			eth_test->flags |= ETH_TEST_FL_FAILED;
1879
1880		igb_reset(adapter);
1881		if (igb_intr_test(adapter, &data[2]))
1882			eth_test->flags |= ETH_TEST_FL_FAILED;
1883
1884		igb_reset(adapter);
1885		/* power up link for loopback test */
1886		igb_power_up_link(adapter);
1887		if (igb_loopback_test(adapter, &data[3]))
1888			eth_test->flags |= ETH_TEST_FL_FAILED;
1889
1890		/* restore speed, duplex, autoneg settings */
1891		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1892		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1893		adapter->hw.mac.autoneg = autoneg;
1894
1895		/* force this routine to wait until autoneg complete/timeout */
1896		adapter->hw.phy.autoneg_wait_to_complete = true;
1897		igb_reset(adapter);
1898		adapter->hw.phy.autoneg_wait_to_complete = false;
1899
1900		clear_bit(__IGB_TESTING, &adapter->state);
1901		if (if_running)
1902			dev_open(netdev);
1903	} else {
1904		dev_info(&adapter->pdev->dev, "online testing starting\n");
1905
1906		/* PHY is powered down when interface is down */
1907		if (if_running && igb_link_test(adapter, &data[4]))
1908			eth_test->flags |= ETH_TEST_FL_FAILED;
1909		else
1910			data[4] = 0;
1911
1912		/* Online tests aren't run; pass by default */
1913		data[0] = 0;
1914		data[1] = 0;
1915		data[2] = 0;
1916		data[3] = 0;
1917
1918		clear_bit(__IGB_TESTING, &adapter->state);
1919	}
1920	msleep_interruptible(4 * 1000);
1921}
1922
1923static int igb_wol_exclusion(struct igb_adapter *adapter,
1924			     struct ethtool_wolinfo *wol)
1925{
1926	struct e1000_hw *hw = &adapter->hw;
1927	int retval = 1; /* fail by default */
1928
1929	switch (hw->device_id) {
1930	case E1000_DEV_ID_82575GB_QUAD_COPPER:
1931		/* WoL not supported */
1932		wol->supported = 0;
1933		break;
1934	case E1000_DEV_ID_82575EB_FIBER_SERDES:
1935	case E1000_DEV_ID_82576_FIBER:
1936	case E1000_DEV_ID_82576_SERDES:
1937		/* Wake events not supported on port B */
1938		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1939			wol->supported = 0;
1940			break;
1941		}
1942		/* return success for non excluded adapter ports */
1943		retval = 0;
1944		break;
1945	case E1000_DEV_ID_82576_QUAD_COPPER:
1946	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1947		/* quad port adapters only support WoL on port A */
1948		if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1949			wol->supported = 0;
1950			break;
1951		}
1952		/* return success for non excluded adapter ports */
1953		retval = 0;
1954		break;
1955	default:
1956		/* dual port cards only support WoL on port A from now on
1957		 * unless it was enabled in the eeprom for port B
1958		 * so exclude FUNC_1 ports from having WoL enabled */
1959		if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1960		    !adapter->eeprom_wol) {
1961			wol->supported = 0;
1962			break;
1963		}
1964
1965		retval = 0;
1966	}
1967
1968	return retval;
1969}
1970
1971static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1972{
1973	struct igb_adapter *adapter = netdev_priv(netdev);
1974
1975	wol->supported = WAKE_UCAST | WAKE_MCAST |
1976	                 WAKE_BCAST | WAKE_MAGIC |
1977	                 WAKE_PHY;
1978	wol->wolopts = 0;
1979
1980	/* this function will set ->supported = 0 and return 1 if wol is not
1981	 * supported by this hardware */
1982	if (igb_wol_exclusion(adapter, wol) ||
1983	    !device_can_wakeup(&adapter->pdev->dev))
1984		return;
1985
 
 
 
 
1986	/* apply any specific unsupported masks here */
1987	switch (adapter->hw.device_id) {
1988	default:
1989		break;
1990	}
1991
1992	if (adapter->wol & E1000_WUFC_EX)
1993		wol->wolopts |= WAKE_UCAST;
1994	if (adapter->wol & E1000_WUFC_MC)
1995		wol->wolopts |= WAKE_MCAST;
1996	if (adapter->wol & E1000_WUFC_BC)
1997		wol->wolopts |= WAKE_BCAST;
1998	if (adapter->wol & E1000_WUFC_MAG)
1999		wol->wolopts |= WAKE_MAGIC;
2000	if (adapter->wol & E1000_WUFC_LNKC)
2001		wol->wolopts |= WAKE_PHY;
2002}
2003
2004static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2005{
2006	struct igb_adapter *adapter = netdev_priv(netdev);
2007
2008	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2009		return -EOPNOTSUPP;
2010
2011	if (igb_wol_exclusion(adapter, wol) ||
2012	    !device_can_wakeup(&adapter->pdev->dev))
2013		return wol->wolopts ? -EOPNOTSUPP : 0;
2014
2015	/* these settings will always override what we currently have */
2016	adapter->wol = 0;
2017
2018	if (wol->wolopts & WAKE_UCAST)
2019		adapter->wol |= E1000_WUFC_EX;
2020	if (wol->wolopts & WAKE_MCAST)
2021		adapter->wol |= E1000_WUFC_MC;
2022	if (wol->wolopts & WAKE_BCAST)
2023		adapter->wol |= E1000_WUFC_BC;
2024	if (wol->wolopts & WAKE_MAGIC)
2025		adapter->wol |= E1000_WUFC_MAG;
2026	if (wol->wolopts & WAKE_PHY)
2027		adapter->wol |= E1000_WUFC_LNKC;
2028	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2029
2030	return 0;
2031}
2032
2033/* bit defines for adapter->led_status */
2034#define IGB_LED_ON		0
2035
2036static int igb_set_phys_id(struct net_device *netdev,
2037			   enum ethtool_phys_id_state state)
2038{
2039	struct igb_adapter *adapter = netdev_priv(netdev);
2040	struct e1000_hw *hw = &adapter->hw;
2041
2042	switch (state) {
2043	case ETHTOOL_ID_ACTIVE:
2044		igb_blink_led(hw);
2045		return 2;
2046	case ETHTOOL_ID_ON:
2047		igb_blink_led(hw);
2048		break;
2049	case ETHTOOL_ID_OFF:
2050		igb_led_off(hw);
2051		break;
2052	case ETHTOOL_ID_INACTIVE:
2053		igb_led_off(hw);
2054		clear_bit(IGB_LED_ON, &adapter->led_status);
2055		igb_cleanup_led(hw);
2056		break;
2057	}
2058
2059	return 0;
2060}
2061
2062static int igb_set_coalesce(struct net_device *netdev,
2063			    struct ethtool_coalesce *ec)
2064{
2065	struct igb_adapter *adapter = netdev_priv(netdev);
2066	int i;
2067
2068	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2069	    ((ec->rx_coalesce_usecs > 3) &&
2070	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2071	    (ec->rx_coalesce_usecs == 2))
2072		return -EINVAL;
2073
2074	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2075	    ((ec->tx_coalesce_usecs > 3) &&
2076	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2077	    (ec->tx_coalesce_usecs == 2))
2078		return -EINVAL;
2079
2080	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2081		return -EINVAL;
2082
2083	/* If ITR is disabled, disable DMAC */
2084	if (ec->rx_coalesce_usecs == 0) {
2085		if (adapter->flags & IGB_FLAG_DMAC)
2086			adapter->flags &= ~IGB_FLAG_DMAC;
2087	}
2088
2089	/* convert to rate of irq's per second */
2090	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2091		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2092	else
2093		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2094
2095	/* convert to rate of irq's per second */
2096	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2097		adapter->tx_itr_setting = adapter->rx_itr_setting;
2098	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2099		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2100	else
2101		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2102
2103	for (i = 0; i < adapter->num_q_vectors; i++) {
2104		struct igb_q_vector *q_vector = adapter->q_vector[i];
2105		q_vector->tx.work_limit = adapter->tx_work_limit;
2106		if (q_vector->rx.ring)
2107			q_vector->itr_val = adapter->rx_itr_setting;
2108		else
2109			q_vector->itr_val = adapter->tx_itr_setting;
2110		if (q_vector->itr_val && q_vector->itr_val <= 3)
2111			q_vector->itr_val = IGB_START_ITR;
2112		q_vector->set_itr = 1;
2113	}
2114
2115	return 0;
2116}
2117
2118static int igb_get_coalesce(struct net_device *netdev,
2119			    struct ethtool_coalesce *ec)
2120{
2121	struct igb_adapter *adapter = netdev_priv(netdev);
2122
2123	if (adapter->rx_itr_setting <= 3)
2124		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2125	else
2126		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2127
2128	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2129		if (adapter->tx_itr_setting <= 3)
2130			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2131		else
2132			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2133	}
2134
2135	return 0;
2136}
2137
2138static int igb_nway_reset(struct net_device *netdev)
2139{
2140	struct igb_adapter *adapter = netdev_priv(netdev);
2141	if (netif_running(netdev))
2142		igb_reinit_locked(adapter);
2143	return 0;
2144}
2145
2146static int igb_get_sset_count(struct net_device *netdev, int sset)
2147{
2148	switch (sset) {
2149	case ETH_SS_STATS:
2150		return IGB_STATS_LEN;
2151	case ETH_SS_TEST:
2152		return IGB_TEST_LEN;
 
 
2153	default:
2154		return -ENOTSUPP;
2155	}
2156}
2157
2158static void igb_get_ethtool_stats(struct net_device *netdev,
2159				  struct ethtool_stats *stats, u64 *data)
2160{
2161	struct igb_adapter *adapter = netdev_priv(netdev);
2162	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2163	unsigned int start;
2164	struct igb_ring *ring;
2165	int i, j;
2166	char *p;
2167
2168	spin_lock(&adapter->stats64_lock);
2169	igb_update_stats(adapter, net_stats);
2170
2171	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2172		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2173		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2174			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2175	}
2176	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2177		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2178		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2179			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2180	}
2181	for (j = 0; j < adapter->num_tx_queues; j++) {
2182		u64	restart2;
2183
2184		ring = adapter->tx_ring[j];
2185		do {
2186			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2187			data[i]   = ring->tx_stats.packets;
2188			data[i+1] = ring->tx_stats.bytes;
2189			data[i+2] = ring->tx_stats.restart_queue;
2190		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2191		do {
2192			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2193			restart2  = ring->tx_stats.restart_queue2;
2194		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2195		data[i+2] += restart2;
2196
2197		i += IGB_TX_QUEUE_STATS_LEN;
2198	}
2199	for (j = 0; j < adapter->num_rx_queues; j++) {
2200		ring = adapter->rx_ring[j];
2201		do {
2202			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2203			data[i]   = ring->rx_stats.packets;
2204			data[i+1] = ring->rx_stats.bytes;
2205			data[i+2] = ring->rx_stats.drops;
2206			data[i+3] = ring->rx_stats.csum_err;
2207			data[i+4] = ring->rx_stats.alloc_failed;
2208		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2209		i += IGB_RX_QUEUE_STATS_LEN;
2210	}
2211	spin_unlock(&adapter->stats64_lock);
2212}
2213
2214static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2215{
2216	struct igb_adapter *adapter = netdev_priv(netdev);
2217	u8 *p = data;
2218	int i;
2219
2220	switch (stringset) {
2221	case ETH_SS_TEST:
2222		memcpy(data, *igb_gstrings_test,
2223			IGB_TEST_LEN*ETH_GSTRING_LEN);
2224		break;
2225	case ETH_SS_STATS:
2226		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2227			memcpy(p, igb_gstrings_stats[i].stat_string,
2228			       ETH_GSTRING_LEN);
2229			p += ETH_GSTRING_LEN;
2230		}
2231		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2232			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2233			       ETH_GSTRING_LEN);
2234			p += ETH_GSTRING_LEN;
2235		}
2236		for (i = 0; i < adapter->num_tx_queues; i++) {
2237			sprintf(p, "tx_queue_%u_packets", i);
2238			p += ETH_GSTRING_LEN;
2239			sprintf(p, "tx_queue_%u_bytes", i);
2240			p += ETH_GSTRING_LEN;
2241			sprintf(p, "tx_queue_%u_restart", i);
2242			p += ETH_GSTRING_LEN;
2243		}
2244		for (i = 0; i < adapter->num_rx_queues; i++) {
2245			sprintf(p, "rx_queue_%u_packets", i);
2246			p += ETH_GSTRING_LEN;
2247			sprintf(p, "rx_queue_%u_bytes", i);
2248			p += ETH_GSTRING_LEN;
2249			sprintf(p, "rx_queue_%u_drops", i);
2250			p += ETH_GSTRING_LEN;
2251			sprintf(p, "rx_queue_%u_csum_err", i);
2252			p += ETH_GSTRING_LEN;
2253			sprintf(p, "rx_queue_%u_alloc_failed", i);
2254			p += ETH_GSTRING_LEN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2255		}
2256/*		BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2257		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2258	}
 
 
 
 
 
2259}
2260
2261static int igb_ethtool_begin(struct net_device *netdev)
2262{
2263	struct igb_adapter *adapter = netdev_priv(netdev);
2264	pm_runtime_get_sync(&adapter->pdev->dev);
2265	return 0;
2266}
2267
2268static void igb_ethtool_complete(struct net_device *netdev)
2269{
2270	struct igb_adapter *adapter = netdev_priv(netdev);
2271	pm_runtime_put(&adapter->pdev->dev);
2272}
2273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2274static const struct ethtool_ops igb_ethtool_ops = {
2275	.get_settings           = igb_get_settings,
2276	.set_settings           = igb_set_settings,
2277	.get_drvinfo            = igb_get_drvinfo,
2278	.get_regs_len           = igb_get_regs_len,
2279	.get_regs               = igb_get_regs,
2280	.get_wol                = igb_get_wol,
2281	.set_wol                = igb_set_wol,
2282	.get_msglevel           = igb_get_msglevel,
2283	.set_msglevel           = igb_set_msglevel,
2284	.nway_reset             = igb_nway_reset,
2285	.get_link               = igb_get_link,
2286	.get_eeprom_len         = igb_get_eeprom_len,
2287	.get_eeprom             = igb_get_eeprom,
2288	.set_eeprom             = igb_set_eeprom,
2289	.get_ringparam          = igb_get_ringparam,
2290	.set_ringparam          = igb_set_ringparam,
2291	.get_pauseparam         = igb_get_pauseparam,
2292	.set_pauseparam         = igb_set_pauseparam,
2293	.self_test              = igb_diag_test,
2294	.get_strings            = igb_get_strings,
2295	.set_phys_id            = igb_set_phys_id,
2296	.get_sset_count         = igb_get_sset_count,
2297	.get_ethtool_stats      = igb_get_ethtool_stats,
2298	.get_coalesce           = igb_get_coalesce,
2299	.set_coalesce           = igb_set_coalesce,
 
 
 
 
 
 
 
 
 
 
 
 
 
2300	.begin			= igb_ethtool_begin,
2301	.complete		= igb_ethtool_complete,
 
 
2302};
2303
2304void igb_set_ethtool_ops(struct net_device *netdev)
2305{
2306	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2307}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2007 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4/* ethtool support for igb */
   5
   6#include <linux/vmalloc.h>
   7#include <linux/netdevice.h>
   8#include <linux/pci.h>
   9#include <linux/delay.h>
  10#include <linux/interrupt.h>
  11#include <linux/if_ether.h>
  12#include <linux/ethtool.h>
  13#include <linux/sched.h>
  14#include <linux/slab.h>
  15#include <linux/pm_runtime.h>
  16#include <linux/highmem.h>
  17#include <linux/mdio.h>
  18
  19#include "igb.h"
  20
  21struct igb_stats {
  22	char stat_string[ETH_GSTRING_LEN];
  23	int sizeof_stat;
  24	int stat_offset;
  25};
  26
  27#define IGB_STAT(_name, _stat) { \
  28	.stat_string = _name, \
  29	.sizeof_stat = sizeof_field(struct igb_adapter, _stat), \
  30	.stat_offset = offsetof(struct igb_adapter, _stat) \
  31}
  32static const struct igb_stats igb_gstrings_stats[] = {
  33	IGB_STAT("rx_packets", stats.gprc),
  34	IGB_STAT("tx_packets", stats.gptc),
  35	IGB_STAT("rx_bytes", stats.gorc),
  36	IGB_STAT("tx_bytes", stats.gotc),
  37	IGB_STAT("rx_broadcast", stats.bprc),
  38	IGB_STAT("tx_broadcast", stats.bptc),
  39	IGB_STAT("rx_multicast", stats.mprc),
  40	IGB_STAT("tx_multicast", stats.mptc),
  41	IGB_STAT("multicast", stats.mprc),
  42	IGB_STAT("collisions", stats.colc),
  43	IGB_STAT("rx_crc_errors", stats.crcerrs),
  44	IGB_STAT("rx_no_buffer_count", stats.rnbc),
  45	IGB_STAT("rx_missed_errors", stats.mpc),
  46	IGB_STAT("tx_aborted_errors", stats.ecol),
  47	IGB_STAT("tx_carrier_errors", stats.tncrs),
  48	IGB_STAT("tx_window_errors", stats.latecol),
  49	IGB_STAT("tx_abort_late_coll", stats.latecol),
  50	IGB_STAT("tx_deferred_ok", stats.dc),
  51	IGB_STAT("tx_single_coll_ok", stats.scc),
  52	IGB_STAT("tx_multi_coll_ok", stats.mcc),
  53	IGB_STAT("tx_timeout_count", tx_timeout_count),
  54	IGB_STAT("rx_long_length_errors", stats.roc),
  55	IGB_STAT("rx_short_length_errors", stats.ruc),
  56	IGB_STAT("rx_align_errors", stats.algnerrc),
  57	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
  58	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
  59	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
  60	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
  61	IGB_STAT("tx_flow_control_xon", stats.xontxc),
  62	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
  63	IGB_STAT("rx_long_byte_count", stats.gorc),
  64	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
  65	IGB_STAT("tx_smbus", stats.mgptc),
  66	IGB_STAT("rx_smbus", stats.mgprc),
  67	IGB_STAT("dropped_smbus", stats.mgpdc),
  68	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
  69	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
  70	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
  71	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
  72	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
  73	IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
  74	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
  75};
  76
  77#define IGB_NETDEV_STAT(_net_stat) { \
  78	.stat_string = __stringify(_net_stat), \
  79	.sizeof_stat = sizeof_field(struct rtnl_link_stats64, _net_stat), \
  80	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
  81}
  82static const struct igb_stats igb_gstrings_net_stats[] = {
  83	IGB_NETDEV_STAT(rx_errors),
  84	IGB_NETDEV_STAT(tx_errors),
  85	IGB_NETDEV_STAT(tx_dropped),
  86	IGB_NETDEV_STAT(rx_length_errors),
  87	IGB_NETDEV_STAT(rx_over_errors),
  88	IGB_NETDEV_STAT(rx_frame_errors),
  89	IGB_NETDEV_STAT(rx_fifo_errors),
  90	IGB_NETDEV_STAT(tx_fifo_errors),
  91	IGB_NETDEV_STAT(tx_heartbeat_errors)
  92};
  93
  94#define IGB_GLOBAL_STATS_LEN	\
  95	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
  96#define IGB_NETDEV_STATS_LEN	\
  97	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
  98#define IGB_RX_QUEUE_STATS_LEN \
  99	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
 100
 101#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
 102
 103#define IGB_QUEUE_STATS_LEN \
 104	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
 105	  IGB_RX_QUEUE_STATS_LEN) + \
 106	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
 107	  IGB_TX_QUEUE_STATS_LEN))
 108#define IGB_STATS_LEN \
 109	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
 110
 111enum igb_diagnostics_results {
 112	TEST_REG = 0,
 113	TEST_EEP,
 114	TEST_IRQ,
 115	TEST_LOOP,
 116	TEST_LINK
 117};
 118
 119static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
 120	[TEST_REG]  = "Register test  (offline)",
 121	[TEST_EEP]  = "Eeprom test    (offline)",
 122	[TEST_IRQ]  = "Interrupt test (offline)",
 123	[TEST_LOOP] = "Loopback test  (offline)",
 124	[TEST_LINK] = "Link test   (on/offline)"
 125};
 126#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
 127
 128static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
 129#define IGB_PRIV_FLAGS_LEGACY_RX	BIT(0)
 130	"legacy-rx",
 131};
 132
 133#define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
 134
 135static int igb_get_link_ksettings(struct net_device *netdev,
 136				  struct ethtool_link_ksettings *cmd)
 137{
 138	struct igb_adapter *adapter = netdev_priv(netdev);
 139	struct e1000_hw *hw = &adapter->hw;
 140	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 141	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 142	u32 status;
 143	u32 speed;
 144	u32 supported, advertising;
 145
 146	status = pm_runtime_suspended(&adapter->pdev->dev) ?
 147		 0 : rd32(E1000_STATUS);
 148	if (hw->phy.media_type == e1000_media_type_copper) {
 149
 150		supported = (SUPPORTED_10baseT_Half |
 151			     SUPPORTED_10baseT_Full |
 152			     SUPPORTED_100baseT_Half |
 153			     SUPPORTED_100baseT_Full |
 154			     SUPPORTED_1000baseT_Full|
 155			     SUPPORTED_Autoneg |
 156			     SUPPORTED_TP |
 157			     SUPPORTED_Pause);
 158		advertising = ADVERTISED_TP;
 159
 160		if (hw->mac.autoneg == 1) {
 161			advertising |= ADVERTISED_Autoneg;
 162			/* the e1000 autoneg seems to match ethtool nicely */
 163			advertising |= hw->phy.autoneg_advertised;
 164		}
 165
 166		cmd->base.port = PORT_TP;
 167		cmd->base.phy_address = hw->phy.addr;
 168	} else {
 169		supported = (SUPPORTED_FIBRE |
 170			     SUPPORTED_1000baseKX_Full |
 171			     SUPPORTED_Autoneg |
 172			     SUPPORTED_Pause);
 173		advertising = (ADVERTISED_FIBRE |
 174			       ADVERTISED_1000baseKX_Full);
 175		if (hw->mac.type == e1000_i354) {
 176			if ((hw->device_id ==
 177			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
 178			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
 179				supported |= SUPPORTED_2500baseX_Full;
 180				supported &= ~SUPPORTED_1000baseKX_Full;
 181				advertising |= ADVERTISED_2500baseX_Full;
 182				advertising &= ~ADVERTISED_1000baseKX_Full;
 183			}
 184		}
 185		if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
 186			supported |= SUPPORTED_100baseT_Full;
 187			advertising |= ADVERTISED_100baseT_Full;
 188		}
 189		if (hw->mac.autoneg == 1)
 190			advertising |= ADVERTISED_Autoneg;
 191
 192		cmd->base.port = PORT_FIBRE;
 193	}
 194	if (hw->mac.autoneg != 1)
 195		advertising &= ~(ADVERTISED_Pause |
 196				 ADVERTISED_Asym_Pause);
 197
 198	switch (hw->fc.requested_mode) {
 199	case e1000_fc_full:
 200		advertising |= ADVERTISED_Pause;
 201		break;
 202	case e1000_fc_rx_pause:
 203		advertising |= (ADVERTISED_Pause |
 204				ADVERTISED_Asym_Pause);
 205		break;
 206	case e1000_fc_tx_pause:
 207		advertising |=  ADVERTISED_Asym_Pause;
 208		break;
 209	default:
 210		advertising &= ~(ADVERTISED_Pause |
 211				 ADVERTISED_Asym_Pause);
 212	}
 213	if (status & E1000_STATUS_LU) {
 214		if ((status & E1000_STATUS_2P5_SKU) &&
 215		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
 216			speed = SPEED_2500;
 217		} else if (status & E1000_STATUS_SPEED_1000) {
 218			speed = SPEED_1000;
 219		} else if (status & E1000_STATUS_SPEED_100) {
 220			speed = SPEED_100;
 221		} else {
 222			speed = SPEED_10;
 223		}
 224		if ((status & E1000_STATUS_FD) ||
 225		    hw->phy.media_type != e1000_media_type_copper)
 226			cmd->base.duplex = DUPLEX_FULL;
 227		else
 228			cmd->base.duplex = DUPLEX_HALF;
 229	} else {
 230		speed = SPEED_UNKNOWN;
 231		cmd->base.duplex = DUPLEX_UNKNOWN;
 232	}
 233	cmd->base.speed = speed;
 234	if ((hw->phy.media_type == e1000_media_type_fiber) ||
 235	    hw->mac.autoneg)
 236		cmd->base.autoneg = AUTONEG_ENABLE;
 237	else
 238		cmd->base.autoneg = AUTONEG_DISABLE;
 239
 240	/* MDI-X => 2; MDI =>1; Invalid =>0 */
 241	if (hw->phy.media_type == e1000_media_type_copper)
 242		cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
 243						      ETH_TP_MDI;
 244	else
 245		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
 246
 247	if (hw->phy.mdix == AUTO_ALL_MODES)
 248		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 249	else
 250		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
 251
 252	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 253						supported);
 254	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 255						advertising);
 256
 
 257	return 0;
 258}
 259
 260static int igb_set_link_ksettings(struct net_device *netdev,
 261				  const struct ethtool_link_ksettings *cmd)
 262{
 263	struct igb_adapter *adapter = netdev_priv(netdev);
 264	struct e1000_hw *hw = &adapter->hw;
 265	u32 advertising;
 266
 267	/* When SoL/IDER sessions are active, autoneg/speed/duplex
 268	 * cannot be changed
 269	 */
 270	if (igb_check_reset_block(hw)) {
 271		dev_err(&adapter->pdev->dev,
 272			"Cannot change link characteristics when SoL/IDER is active.\n");
 273		return -EINVAL;
 274	}
 275
 276	/* MDI setting is only allowed when autoneg enabled because
 277	 * some hardware doesn't allow MDI setting when speed or
 278	 * duplex is forced.
 279	 */
 280	if (cmd->base.eth_tp_mdix_ctrl) {
 281		if (hw->phy.media_type != e1000_media_type_copper)
 282			return -EOPNOTSUPP;
 283
 284		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 285		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
 286			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 287			return -EINVAL;
 288		}
 289	}
 290
 291	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 292		usleep_range(1000, 2000);
 293
 294	ethtool_convert_link_mode_to_legacy_u32(&advertising,
 295						cmd->link_modes.advertising);
 296
 297	if (cmd->base.autoneg == AUTONEG_ENABLE) {
 298		hw->mac.autoneg = 1;
 299		if (hw->phy.media_type == e1000_media_type_fiber) {
 300			hw->phy.autoneg_advertised = advertising |
 301						     ADVERTISED_FIBRE |
 302						     ADVERTISED_Autoneg;
 303			switch (adapter->link_speed) {
 304			case SPEED_2500:
 305				hw->phy.autoneg_advertised =
 306					ADVERTISED_2500baseX_Full;
 307				break;
 308			case SPEED_1000:
 309				hw->phy.autoneg_advertised =
 310					ADVERTISED_1000baseT_Full;
 311				break;
 312			case SPEED_100:
 313				hw->phy.autoneg_advertised =
 314					ADVERTISED_100baseT_Full;
 315				break;
 316			default:
 317				break;
 318			}
 319		} else {
 320			hw->phy.autoneg_advertised = advertising |
 321						     ADVERTISED_TP |
 322						     ADVERTISED_Autoneg;
 323		}
 324		advertising = hw->phy.autoneg_advertised;
 325		if (adapter->fc_autoneg)
 326			hw->fc.requested_mode = e1000_fc_default;
 327	} else {
 328		u32 speed = cmd->base.speed;
 329		/* calling this overrides forced MDI setting */
 330		if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
 331			clear_bit(__IGB_RESETTING, &adapter->state);
 332			return -EINVAL;
 333		}
 334	}
 335
 336	/* MDI-X => 2; MDI => 1; Auto => 3 */
 337	if (cmd->base.eth_tp_mdix_ctrl) {
 338		/* fix up the value for auto (3 => 0) as zero is mapped
 339		 * internally to auto
 340		 */
 341		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 342			hw->phy.mdix = AUTO_ALL_MODES;
 343		else
 344			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
 345	}
 346
 347	/* reset the link */
 348	if (netif_running(adapter->netdev)) {
 349		igb_down(adapter);
 350		igb_up(adapter);
 351	} else
 352		igb_reset(adapter);
 353
 354	clear_bit(__IGB_RESETTING, &adapter->state);
 355	return 0;
 356}
 357
 358static u32 igb_get_link(struct net_device *netdev)
 359{
 360	struct igb_adapter *adapter = netdev_priv(netdev);
 361	struct e1000_mac_info *mac = &adapter->hw.mac;
 362
 363	/* If the link is not reported up to netdev, interrupts are disabled,
 
 364	 * and so the physical link state may have changed since we last
 365	 * looked. Set get_link_status to make sure that the true link
 366	 * state is interrogated, rather than pulling a cached and possibly
 367	 * stale link state from the driver.
 368	 */
 369	if (!netif_carrier_ok(netdev))
 370		mac->get_link_status = 1;
 371
 372	return igb_has_link(adapter);
 373}
 374
 375static void igb_get_pauseparam(struct net_device *netdev,
 376			       struct ethtool_pauseparam *pause)
 377{
 378	struct igb_adapter *adapter = netdev_priv(netdev);
 379	struct e1000_hw *hw = &adapter->hw;
 380
 381	pause->autoneg =
 382		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 383
 384	if (hw->fc.current_mode == e1000_fc_rx_pause)
 385		pause->rx_pause = 1;
 386	else if (hw->fc.current_mode == e1000_fc_tx_pause)
 387		pause->tx_pause = 1;
 388	else if (hw->fc.current_mode == e1000_fc_full) {
 389		pause->rx_pause = 1;
 390		pause->tx_pause = 1;
 391	}
 392}
 393
 394static int igb_set_pauseparam(struct net_device *netdev,
 395			      struct ethtool_pauseparam *pause)
 396{
 397	struct igb_adapter *adapter = netdev_priv(netdev);
 398	struct e1000_hw *hw = &adapter->hw;
 399	int retval = 0;
 400	int i;
 401
 402	/* 100basefx does not support setting link flow control */
 403	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
 404		return -EINVAL;
 405
 406	adapter->fc_autoneg = pause->autoneg;
 407
 408	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 409		usleep_range(1000, 2000);
 410
 411	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 412		hw->fc.requested_mode = e1000_fc_default;
 413		if (netif_running(adapter->netdev)) {
 414			igb_down(adapter);
 415			igb_up(adapter);
 416		} else {
 417			igb_reset(adapter);
 418		}
 419	} else {
 420		if (pause->rx_pause && pause->tx_pause)
 421			hw->fc.requested_mode = e1000_fc_full;
 422		else if (pause->rx_pause && !pause->tx_pause)
 423			hw->fc.requested_mode = e1000_fc_rx_pause;
 424		else if (!pause->rx_pause && pause->tx_pause)
 425			hw->fc.requested_mode = e1000_fc_tx_pause;
 426		else if (!pause->rx_pause && !pause->tx_pause)
 427			hw->fc.requested_mode = e1000_fc_none;
 428
 429		hw->fc.current_mode = hw->fc.requested_mode;
 430
 431		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
 432			  igb_force_mac_fc(hw) : igb_setup_link(hw));
 433
 434		/* Make sure SRRCTL considers new fc settings for each ring */
 435		for (i = 0; i < adapter->num_rx_queues; i++) {
 436			struct igb_ring *ring = adapter->rx_ring[i];
 437
 438			igb_setup_srrctl(adapter, ring);
 439		}
 440	}
 441
 442	clear_bit(__IGB_RESETTING, &adapter->state);
 443	return retval;
 444}
 445
 446static u32 igb_get_msglevel(struct net_device *netdev)
 447{
 448	struct igb_adapter *adapter = netdev_priv(netdev);
 449	return adapter->msg_enable;
 450}
 451
 452static void igb_set_msglevel(struct net_device *netdev, u32 data)
 453{
 454	struct igb_adapter *adapter = netdev_priv(netdev);
 455	adapter->msg_enable = data;
 456}
 457
 458static int igb_get_regs_len(struct net_device *netdev)
 459{
 460#define IGB_REGS_LEN 740
 461	return IGB_REGS_LEN * sizeof(u32);
 462}
 463
 464static void igb_get_regs(struct net_device *netdev,
 465			 struct ethtool_regs *regs, void *p)
 466{
 467	struct igb_adapter *adapter = netdev_priv(netdev);
 468	struct e1000_hw *hw = &adapter->hw;
 469	u32 *regs_buff = p;
 470	u8 i;
 471
 472	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
 473
 474	regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
 475
 476	/* General Registers */
 477	regs_buff[0] = rd32(E1000_CTRL);
 478	regs_buff[1] = rd32(E1000_STATUS);
 479	regs_buff[2] = rd32(E1000_CTRL_EXT);
 480	regs_buff[3] = rd32(E1000_MDIC);
 481	regs_buff[4] = rd32(E1000_SCTL);
 482	regs_buff[5] = rd32(E1000_CONNSW);
 483	regs_buff[6] = rd32(E1000_VET);
 484	regs_buff[7] = rd32(E1000_LEDCTL);
 485	regs_buff[8] = rd32(E1000_PBA);
 486	regs_buff[9] = rd32(E1000_PBS);
 487	regs_buff[10] = rd32(E1000_FRTIMER);
 488	regs_buff[11] = rd32(E1000_TCPTIMER);
 489
 490	/* NVM Register */
 491	regs_buff[12] = rd32(E1000_EECD);
 492
 493	/* Interrupt */
 494	/* Reading EICS for EICR because they read the
 495	 * same but EICS does not clear on read
 496	 */
 497	regs_buff[13] = rd32(E1000_EICS);
 498	regs_buff[14] = rd32(E1000_EICS);
 499	regs_buff[15] = rd32(E1000_EIMS);
 500	regs_buff[16] = rd32(E1000_EIMC);
 501	regs_buff[17] = rd32(E1000_EIAC);
 502	regs_buff[18] = rd32(E1000_EIAM);
 503	/* Reading ICS for ICR because they read the
 504	 * same but ICS does not clear on read
 505	 */
 506	regs_buff[19] = rd32(E1000_ICS);
 507	regs_buff[20] = rd32(E1000_ICS);
 508	regs_buff[21] = rd32(E1000_IMS);
 509	regs_buff[22] = rd32(E1000_IMC);
 510	regs_buff[23] = rd32(E1000_IAC);
 511	regs_buff[24] = rd32(E1000_IAM);
 512	regs_buff[25] = rd32(E1000_IMIRVP);
 513
 514	/* Flow Control */
 515	regs_buff[26] = rd32(E1000_FCAL);
 516	regs_buff[27] = rd32(E1000_FCAH);
 517	regs_buff[28] = rd32(E1000_FCTTV);
 518	regs_buff[29] = rd32(E1000_FCRTL);
 519	regs_buff[30] = rd32(E1000_FCRTH);
 520	regs_buff[31] = rd32(E1000_FCRTV);
 521
 522	/* Receive */
 523	regs_buff[32] = rd32(E1000_RCTL);
 524	regs_buff[33] = rd32(E1000_RXCSUM);
 525	regs_buff[34] = rd32(E1000_RLPML);
 526	regs_buff[35] = rd32(E1000_RFCTL);
 527	regs_buff[36] = rd32(E1000_MRQC);
 528	regs_buff[37] = rd32(E1000_VT_CTL);
 529
 530	/* Transmit */
 531	regs_buff[38] = rd32(E1000_TCTL);
 532	regs_buff[39] = rd32(E1000_TCTL_EXT);
 533	regs_buff[40] = rd32(E1000_TIPG);
 534	regs_buff[41] = rd32(E1000_DTXCTL);
 535
 536	/* Wake Up */
 537	regs_buff[42] = rd32(E1000_WUC);
 538	regs_buff[43] = rd32(E1000_WUFC);
 539	regs_buff[44] = rd32(E1000_WUS);
 540	regs_buff[45] = rd32(E1000_IPAV);
 541	regs_buff[46] = rd32(E1000_WUPL);
 542
 543	/* MAC */
 544	regs_buff[47] = rd32(E1000_PCS_CFG0);
 545	regs_buff[48] = rd32(E1000_PCS_LCTL);
 546	regs_buff[49] = rd32(E1000_PCS_LSTAT);
 547	regs_buff[50] = rd32(E1000_PCS_ANADV);
 548	regs_buff[51] = rd32(E1000_PCS_LPAB);
 549	regs_buff[52] = rd32(E1000_PCS_NPTX);
 550	regs_buff[53] = rd32(E1000_PCS_LPABNP);
 551
 552	/* Statistics */
 553	regs_buff[54] = adapter->stats.crcerrs;
 554	regs_buff[55] = adapter->stats.algnerrc;
 555	regs_buff[56] = adapter->stats.symerrs;
 556	regs_buff[57] = adapter->stats.rxerrc;
 557	regs_buff[58] = adapter->stats.mpc;
 558	regs_buff[59] = adapter->stats.scc;
 559	regs_buff[60] = adapter->stats.ecol;
 560	regs_buff[61] = adapter->stats.mcc;
 561	regs_buff[62] = adapter->stats.latecol;
 562	regs_buff[63] = adapter->stats.colc;
 563	regs_buff[64] = adapter->stats.dc;
 564	regs_buff[65] = adapter->stats.tncrs;
 565	regs_buff[66] = adapter->stats.sec;
 566	regs_buff[67] = adapter->stats.htdpmc;
 567	regs_buff[68] = adapter->stats.rlec;
 568	regs_buff[69] = adapter->stats.xonrxc;
 569	regs_buff[70] = adapter->stats.xontxc;
 570	regs_buff[71] = adapter->stats.xoffrxc;
 571	regs_buff[72] = adapter->stats.xofftxc;
 572	regs_buff[73] = adapter->stats.fcruc;
 573	regs_buff[74] = adapter->stats.prc64;
 574	regs_buff[75] = adapter->stats.prc127;
 575	regs_buff[76] = adapter->stats.prc255;
 576	regs_buff[77] = adapter->stats.prc511;
 577	regs_buff[78] = adapter->stats.prc1023;
 578	regs_buff[79] = adapter->stats.prc1522;
 579	regs_buff[80] = adapter->stats.gprc;
 580	regs_buff[81] = adapter->stats.bprc;
 581	regs_buff[82] = adapter->stats.mprc;
 582	regs_buff[83] = adapter->stats.gptc;
 583	regs_buff[84] = adapter->stats.gorc;
 584	regs_buff[86] = adapter->stats.gotc;
 585	regs_buff[88] = adapter->stats.rnbc;
 586	regs_buff[89] = adapter->stats.ruc;
 587	regs_buff[90] = adapter->stats.rfc;
 588	regs_buff[91] = adapter->stats.roc;
 589	regs_buff[92] = adapter->stats.rjc;
 590	regs_buff[93] = adapter->stats.mgprc;
 591	regs_buff[94] = adapter->stats.mgpdc;
 592	regs_buff[95] = adapter->stats.mgptc;
 593	regs_buff[96] = adapter->stats.tor;
 594	regs_buff[98] = adapter->stats.tot;
 595	regs_buff[100] = adapter->stats.tpr;
 596	regs_buff[101] = adapter->stats.tpt;
 597	regs_buff[102] = adapter->stats.ptc64;
 598	regs_buff[103] = adapter->stats.ptc127;
 599	regs_buff[104] = adapter->stats.ptc255;
 600	regs_buff[105] = adapter->stats.ptc511;
 601	regs_buff[106] = adapter->stats.ptc1023;
 602	regs_buff[107] = adapter->stats.ptc1522;
 603	regs_buff[108] = adapter->stats.mptc;
 604	regs_buff[109] = adapter->stats.bptc;
 605	regs_buff[110] = adapter->stats.tsctc;
 606	regs_buff[111] = adapter->stats.iac;
 607	regs_buff[112] = adapter->stats.rpthc;
 608	regs_buff[113] = adapter->stats.hgptc;
 609	regs_buff[114] = adapter->stats.hgorc;
 610	regs_buff[116] = adapter->stats.hgotc;
 611	regs_buff[118] = adapter->stats.lenerrs;
 612	regs_buff[119] = adapter->stats.scvpc;
 613	regs_buff[120] = adapter->stats.hrmpc;
 614
 615	for (i = 0; i < 4; i++)
 616		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
 617	for (i = 0; i < 4; i++)
 618		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
 619	for (i = 0; i < 4; i++)
 620		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
 621	for (i = 0; i < 4; i++)
 622		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
 623	for (i = 0; i < 4; i++)
 624		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
 625	for (i = 0; i < 4; i++)
 626		regs_buff[141 + i] = rd32(E1000_RDH(i));
 627	for (i = 0; i < 4; i++)
 628		regs_buff[145 + i] = rd32(E1000_RDT(i));
 629	for (i = 0; i < 4; i++)
 630		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
 631
 632	for (i = 0; i < 10; i++)
 633		regs_buff[153 + i] = rd32(E1000_EITR(i));
 634	for (i = 0; i < 8; i++)
 635		regs_buff[163 + i] = rd32(E1000_IMIR(i));
 636	for (i = 0; i < 8; i++)
 637		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
 638	for (i = 0; i < 16; i++)
 639		regs_buff[179 + i] = rd32(E1000_RAL(i));
 640	for (i = 0; i < 16; i++)
 641		regs_buff[195 + i] = rd32(E1000_RAH(i));
 642
 643	for (i = 0; i < 4; i++)
 644		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
 645	for (i = 0; i < 4; i++)
 646		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
 647	for (i = 0; i < 4; i++)
 648		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
 649	for (i = 0; i < 4; i++)
 650		regs_buff[223 + i] = rd32(E1000_TDH(i));
 651	for (i = 0; i < 4; i++)
 652		regs_buff[227 + i] = rd32(E1000_TDT(i));
 653	for (i = 0; i < 4; i++)
 654		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
 655	for (i = 0; i < 4; i++)
 656		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
 657	for (i = 0; i < 4; i++)
 658		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
 659	for (i = 0; i < 4; i++)
 660		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
 661
 662	for (i = 0; i < 4; i++)
 663		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
 664	for (i = 0; i < 4; i++)
 665		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
 666	for (i = 0; i < 32; i++)
 667		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
 668	for (i = 0; i < 128; i++)
 669		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
 670	for (i = 0; i < 128; i++)
 671		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
 672	for (i = 0; i < 4; i++)
 673		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
 674
 675	regs_buff[547] = rd32(E1000_TDFH);
 676	regs_buff[548] = rd32(E1000_TDFT);
 677	regs_buff[549] = rd32(E1000_TDFHS);
 678	regs_buff[550] = rd32(E1000_TDFPC);
 679
 680	if (hw->mac.type > e1000_82580) {
 681		regs_buff[551] = adapter->stats.o2bgptc;
 682		regs_buff[552] = adapter->stats.b2ospc;
 683		regs_buff[553] = adapter->stats.o2bspc;
 684		regs_buff[554] = adapter->stats.b2ogprc;
 685	}
 686
 687	if (hw->mac.type == e1000_82576) {
 688		for (i = 0; i < 12; i++)
 689			regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
 690		for (i = 0; i < 4; i++)
 691			regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
 692		for (i = 0; i < 12; i++)
 693			regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
 694		for (i = 0; i < 12; i++)
 695			regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
 696		for (i = 0; i < 12; i++)
 697			regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
 698		for (i = 0; i < 12; i++)
 699			regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
 700		for (i = 0; i < 12; i++)
 701			regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
 702		for (i = 0; i < 12; i++)
 703			regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
 704
 705		for (i = 0; i < 12; i++)
 706			regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
 707		for (i = 0; i < 12; i++)
 708			regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
 709		for (i = 0; i < 12; i++)
 710			regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
 711		for (i = 0; i < 12; i++)
 712			regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
 713		for (i = 0; i < 12; i++)
 714			regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
 715		for (i = 0; i < 12; i++)
 716			regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
 717		for (i = 0; i < 12; i++)
 718			regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
 719		for (i = 0; i < 12; i++)
 720			regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
 721	}
 722
 723	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211)
 724		regs_buff[739] = rd32(E1000_I210_RR2DCDELAY);
 725}
 726
 727static int igb_get_eeprom_len(struct net_device *netdev)
 728{
 729	struct igb_adapter *adapter = netdev_priv(netdev);
 730	return adapter->hw.nvm.word_size * 2;
 731}
 732
 733static int igb_get_eeprom(struct net_device *netdev,
 734			  struct ethtool_eeprom *eeprom, u8 *bytes)
 735{
 736	struct igb_adapter *adapter = netdev_priv(netdev);
 737	struct e1000_hw *hw = &adapter->hw;
 738	u16 *eeprom_buff;
 739	int first_word, last_word;
 740	int ret_val = 0;
 741	u16 i;
 742
 743	if (eeprom->len == 0)
 744		return -EINVAL;
 745
 746	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
 747
 748	first_word = eeprom->offset >> 1;
 749	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 750
 751	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
 752				    GFP_KERNEL);
 753	if (!eeprom_buff)
 754		return -ENOMEM;
 755
 756	if (hw->nvm.type == e1000_nvm_eeprom_spi)
 757		ret_val = hw->nvm.ops.read(hw, first_word,
 758					   last_word - first_word + 1,
 759					   eeprom_buff);
 760	else {
 761		for (i = 0; i < last_word - first_word + 1; i++) {
 762			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
 763						   &eeprom_buff[i]);
 764			if (ret_val)
 765				break;
 766		}
 767	}
 768
 769	/* Device's eeprom is always little-endian, word addressable */
 770	for (i = 0; i < last_word - first_word + 1; i++)
 771		le16_to_cpus(&eeprom_buff[i]);
 772
 773	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
 774			eeprom->len);
 775	kfree(eeprom_buff);
 776
 777	return ret_val;
 778}
 779
 780static int igb_set_eeprom(struct net_device *netdev,
 781			  struct ethtool_eeprom *eeprom, u8 *bytes)
 782{
 783	struct igb_adapter *adapter = netdev_priv(netdev);
 784	struct e1000_hw *hw = &adapter->hw;
 785	u16 *eeprom_buff;
 786	void *ptr;
 787	int max_len, first_word, last_word, ret_val = 0;
 788	u16 i;
 789
 790	if (eeprom->len == 0)
 791		return -EOPNOTSUPP;
 792
 793	if ((hw->mac.type >= e1000_i210) &&
 794	    !igb_get_flash_presence_i210(hw)) {
 795		return -EOPNOTSUPP;
 796	}
 797
 798	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
 799		return -EFAULT;
 800
 801	max_len = hw->nvm.word_size * 2;
 802
 803	first_word = eeprom->offset >> 1;
 804	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 805	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 806	if (!eeprom_buff)
 807		return -ENOMEM;
 808
 809	ptr = (void *)eeprom_buff;
 810
 811	if (eeprom->offset & 1) {
 812		/* need read/modify/write of first changed EEPROM word
 813		 * only the second byte of the word is being modified
 814		 */
 815		ret_val = hw->nvm.ops.read(hw, first_word, 1,
 816					    &eeprom_buff[0]);
 817		ptr++;
 818	}
 819	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
 820		/* need read/modify/write of last changed EEPROM word
 821		 * only the first byte of the word is being modified
 822		 */
 823		ret_val = hw->nvm.ops.read(hw, last_word, 1,
 824				   &eeprom_buff[last_word - first_word]);
 825	}
 826
 827	/* Device's eeprom is always little-endian, word addressable */
 828	for (i = 0; i < last_word - first_word + 1; i++)
 829		le16_to_cpus(&eeprom_buff[i]);
 830
 831	memcpy(ptr, bytes, eeprom->len);
 832
 833	for (i = 0; i < last_word - first_word + 1; i++)
 834		cpu_to_le16s(&eeprom_buff[i]);
 835
 836	ret_val = hw->nvm.ops.write(hw, first_word,
 837				    last_word - first_word + 1, eeprom_buff);
 838
 839	/* Update the checksum if nvm write succeeded */
 840	if (ret_val == 0)
 
 841		hw->nvm.ops.update(hw);
 842
 843	igb_set_fw_version(adapter);
 844	kfree(eeprom_buff);
 845	return ret_val;
 846}
 847
 848static void igb_get_drvinfo(struct net_device *netdev,
 849			    struct ethtool_drvinfo *drvinfo)
 850{
 851	struct igb_adapter *adapter = netdev_priv(netdev);
 
 852
 853	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
 
 854
 855	/* EEPROM image version # is reported as firmware version # for
 856	 * 82575 controllers
 857	 */
 858	strlcpy(drvinfo->fw_version, adapter->fw_version,
 859		sizeof(drvinfo->fw_version));
 
 
 
 
 860	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
 861		sizeof(drvinfo->bus_info));
 862
 863	drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
 
 
 864}
 865
 866static void igb_get_ringparam(struct net_device *netdev,
 867			      struct ethtool_ringparam *ring)
 868{
 869	struct igb_adapter *adapter = netdev_priv(netdev);
 870
 871	ring->rx_max_pending = IGB_MAX_RXD;
 872	ring->tx_max_pending = IGB_MAX_TXD;
 873	ring->rx_pending = adapter->rx_ring_count;
 874	ring->tx_pending = adapter->tx_ring_count;
 875}
 876
 877static int igb_set_ringparam(struct net_device *netdev,
 878			     struct ethtool_ringparam *ring)
 879{
 880	struct igb_adapter *adapter = netdev_priv(netdev);
 881	struct igb_ring *temp_ring;
 882	int i, err = 0;
 883	u16 new_rx_count, new_tx_count;
 884
 885	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 886		return -EINVAL;
 887
 888	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
 889	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
 890	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
 891
 892	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
 893	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
 894	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
 895
 896	if ((new_tx_count == adapter->tx_ring_count) &&
 897	    (new_rx_count == adapter->rx_ring_count)) {
 898		/* nothing to do */
 899		return 0;
 900	}
 901
 902	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 903		usleep_range(1000, 2000);
 904
 905	if (!netif_running(adapter->netdev)) {
 906		for (i = 0; i < adapter->num_tx_queues; i++)
 907			adapter->tx_ring[i]->count = new_tx_count;
 908		for (i = 0; i < adapter->num_rx_queues; i++)
 909			adapter->rx_ring[i]->count = new_rx_count;
 910		adapter->tx_ring_count = new_tx_count;
 911		adapter->rx_ring_count = new_rx_count;
 912		goto clear_reset;
 913	}
 914
 915	if (adapter->num_tx_queues > adapter->num_rx_queues)
 916		temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
 917					       adapter->num_tx_queues));
 918	else
 919		temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
 920					       adapter->num_rx_queues));
 921
 922	if (!temp_ring) {
 923		err = -ENOMEM;
 924		goto clear_reset;
 925	}
 926
 927	igb_down(adapter);
 928
 929	/* We can't just free everything and then setup again,
 
 930	 * because the ISRs in MSI-X mode get passed pointers
 931	 * to the Tx and Rx ring structs.
 932	 */
 933	if (new_tx_count != adapter->tx_ring_count) {
 934		for (i = 0; i < adapter->num_tx_queues; i++) {
 935			memcpy(&temp_ring[i], adapter->tx_ring[i],
 936			       sizeof(struct igb_ring));
 937
 938			temp_ring[i].count = new_tx_count;
 939			err = igb_setup_tx_resources(&temp_ring[i]);
 940			if (err) {
 941				while (i) {
 942					i--;
 943					igb_free_tx_resources(&temp_ring[i]);
 944				}
 945				goto err_setup;
 946			}
 947		}
 948
 949		for (i = 0; i < adapter->num_tx_queues; i++) {
 950			igb_free_tx_resources(adapter->tx_ring[i]);
 951
 952			memcpy(adapter->tx_ring[i], &temp_ring[i],
 953			       sizeof(struct igb_ring));
 954		}
 955
 956		adapter->tx_ring_count = new_tx_count;
 957	}
 958
 959	if (new_rx_count != adapter->rx_ring_count) {
 960		for (i = 0; i < adapter->num_rx_queues; i++) {
 961			memcpy(&temp_ring[i], adapter->rx_ring[i],
 962			       sizeof(struct igb_ring));
 963
 964			/* Clear copied XDP RX-queue info */
 965			memset(&temp_ring[i].xdp_rxq, 0,
 966			       sizeof(temp_ring[i].xdp_rxq));
 967
 968			temp_ring[i].count = new_rx_count;
 969			err = igb_setup_rx_resources(&temp_ring[i]);
 970			if (err) {
 971				while (i) {
 972					i--;
 973					igb_free_rx_resources(&temp_ring[i]);
 974				}
 975				goto err_setup;
 976			}
 977
 978		}
 979
 980		for (i = 0; i < adapter->num_rx_queues; i++) {
 981			igb_free_rx_resources(adapter->rx_ring[i]);
 982
 983			memcpy(adapter->rx_ring[i], &temp_ring[i],
 984			       sizeof(struct igb_ring));
 985		}
 986
 987		adapter->rx_ring_count = new_rx_count;
 988	}
 989err_setup:
 990	igb_up(adapter);
 991	vfree(temp_ring);
 992clear_reset:
 993	clear_bit(__IGB_RESETTING, &adapter->state);
 994	return err;
 995}
 996
 997/* ethtool register test data */
 998struct igb_reg_test {
 999	u16 reg;
1000	u16 reg_offset;
1001	u16 array_len;
1002	u16 test_type;
1003	u32 mask;
1004	u32 write;
1005};
1006
1007/* In the hardware, registers are laid out either singly, in arrays
1008 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
1009 * most tests take place on arrays or single registers (handled
1010 * as a single-element array) and special-case the tables.
1011 * Table tests are always pattern tests.
1012 *
1013 * We also make provision for some required setup steps by specifying
1014 * registers to be written without any read-back testing.
1015 */
1016
1017#define PATTERN_TEST	1
1018#define SET_READ_TEST	2
1019#define WRITE_NO_TEST	3
1020#define TABLE32_TEST	4
1021#define TABLE64_TEST_LO	5
1022#define TABLE64_TEST_HI	6
1023
1024/* i210 reg test */
1025static struct igb_reg_test reg_test_i210[] = {
1026	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1027	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1028	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1029	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1030	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1031	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1032	/* RDH is read-only for i210, only test RDT. */
1033	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1034	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1035	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1036	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1037	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1038	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1039	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1040	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1041	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1042	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1043	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1044	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1045	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1046						0xFFFFFFFF, 0xFFFFFFFF },
1047	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1048						0x900FFFFF, 0xFFFFFFFF },
1049	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1050						0xFFFFFFFF, 0xFFFFFFFF },
1051	{ 0, 0, 0, 0, 0 }
1052};
1053
1054/* i350 reg test */
1055static struct igb_reg_test reg_test_i350[] = {
1056	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1057	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1058	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1059	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1060	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1061	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1062	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1063	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1064	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1065	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1066	/* RDH is read-only for i350, only test RDT. */
1067	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1068	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1069	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1070	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1071	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1072	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1073	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1074	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1075	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1076	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1077	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1078	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1079	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1080	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1081	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1082	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1083	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1084	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1085						0xFFFFFFFF, 0xFFFFFFFF },
1086	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1087						0xC3FFFFFF, 0xFFFFFFFF },
1088	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1089						0xFFFFFFFF, 0xFFFFFFFF },
1090	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1091						0xC3FFFFFF, 0xFFFFFFFF },
1092	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1093						0xFFFFFFFF, 0xFFFFFFFF },
1094	{ 0, 0, 0, 0 }
1095};
1096
1097/* 82580 reg test */
1098static struct igb_reg_test reg_test_82580[] = {
1099	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1100	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1101	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1102	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1103	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1104	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1105	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1106	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1107	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1108	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1109	/* RDH is read-only for 82580, only test RDT. */
1110	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1111	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1112	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1113	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1114	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1115	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1116	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1117	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1118	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1119	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1120	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1121	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1122	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1123	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1124	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1125	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1126	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1127	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1128						0xFFFFFFFF, 0xFFFFFFFF },
1129	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1130						0x83FFFFFF, 0xFFFFFFFF },
1131	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1132						0xFFFFFFFF, 0xFFFFFFFF },
1133	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1134						0x83FFFFFF, 0xFFFFFFFF },
1135	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1136						0xFFFFFFFF, 0xFFFFFFFF },
1137	{ 0, 0, 0, 0 }
1138};
1139
1140/* 82576 reg test */
1141static struct igb_reg_test reg_test_82576[] = {
1142	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1143	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1144	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1145	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1146	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1147	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1148	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1149	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1150	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1151	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1152	/* Enable all RX queues before testing. */
1153	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1154	  E1000_RXDCTL_QUEUE_ENABLE },
1155	{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1156	  E1000_RXDCTL_QUEUE_ENABLE },
1157	/* RDH is read-only for 82576, only test RDT. */
1158	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1159	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1160	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1161	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1162	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1163	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1164	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1165	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1166	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1167	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1168	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1169	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1170	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1171	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1172	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1173	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1174	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1175	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1176	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1177	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1178	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1179	{ E1000_MTA,	   0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1180	{ 0, 0, 0, 0 }
1181};
1182
1183/* 82575 register test */
1184static struct igb_reg_test reg_test_82575[] = {
1185	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1186	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1187	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1188	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1189	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1190	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1191	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1192	/* Enable all four RX queues before testing. */
1193	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1194	  E1000_RXDCTL_QUEUE_ENABLE },
1195	/* RDH is read-only for 82575, only test RDT. */
1196	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1197	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1198	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1199	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1200	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1201	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1202	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1203	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1204	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1205	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1206	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1207	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1208	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1209	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1210	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1211	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1212	{ 0, 0, 0, 0 }
1213};
1214
1215static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1216			     int reg, u32 mask, u32 write)
1217{
1218	struct e1000_hw *hw = &adapter->hw;
1219	u32 pat, val;
1220	static const u32 _test[] = {
1221		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1222	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1223		wr32(reg, (_test[pat] & write));
1224		val = rd32(reg) & mask;
1225		if (val != (_test[pat] & write & mask)) {
1226			dev_err(&adapter->pdev->dev,
1227				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1228				reg, val, (_test[pat] & write & mask));
1229			*data = reg;
1230			return true;
1231		}
1232	}
1233
1234	return false;
1235}
1236
1237static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1238			      int reg, u32 mask, u32 write)
1239{
1240	struct e1000_hw *hw = &adapter->hw;
1241	u32 val;
1242
1243	wr32(reg, write & mask);
1244	val = rd32(reg);
1245	if ((write & mask) != (val & mask)) {
1246		dev_err(&adapter->pdev->dev,
1247			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1248			reg, (val & mask), (write & mask));
1249		*data = reg;
1250		return true;
1251	}
1252
1253	return false;
1254}
1255
1256#define REG_PATTERN_TEST(reg, mask, write) \
1257	do { \
1258		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1259			return 1; \
1260	} while (0)
1261
1262#define REG_SET_AND_CHECK(reg, mask, write) \
1263	do { \
1264		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1265			return 1; \
1266	} while (0)
1267
1268static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1269{
1270	struct e1000_hw *hw = &adapter->hw;
1271	struct igb_reg_test *test;
1272	u32 value, before, after;
1273	u32 i, toggle;
1274
1275	switch (adapter->hw.mac.type) {
1276	case e1000_i350:
1277	case e1000_i354:
1278		test = reg_test_i350;
1279		toggle = 0x7FEFF3FF;
1280		break;
1281	case e1000_i210:
1282	case e1000_i211:
1283		test = reg_test_i210;
1284		toggle = 0x7FEFF3FF;
1285		break;
1286	case e1000_82580:
1287		test = reg_test_82580;
1288		toggle = 0x7FEFF3FF;
1289		break;
1290	case e1000_82576:
1291		test = reg_test_82576;
1292		toggle = 0x7FFFF3FF;
1293		break;
1294	default:
1295		test = reg_test_82575;
1296		toggle = 0x7FFFF3FF;
1297		break;
1298	}
1299
1300	/* Because the status register is such a special case,
1301	 * we handle it separately from the rest of the register
1302	 * tests.  Some bits are read-only, some toggle, and some
1303	 * are writable on newer MACs.
1304	 */
1305	before = rd32(E1000_STATUS);
1306	value = (rd32(E1000_STATUS) & toggle);
1307	wr32(E1000_STATUS, toggle);
1308	after = rd32(E1000_STATUS) & toggle;
1309	if (value != after) {
1310		dev_err(&adapter->pdev->dev,
1311			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1312			after, value);
1313		*data = 1;
1314		return 1;
1315	}
1316	/* restore previous status */
1317	wr32(E1000_STATUS, before);
1318
1319	/* Perform the remainder of the register test, looping through
1320	 * the test table until we either fail or reach the null entry.
1321	 */
1322	while (test->reg) {
1323		for (i = 0; i < test->array_len; i++) {
1324			switch (test->test_type) {
1325			case PATTERN_TEST:
1326				REG_PATTERN_TEST(test->reg +
1327						(i * test->reg_offset),
1328						test->mask,
1329						test->write);
1330				break;
1331			case SET_READ_TEST:
1332				REG_SET_AND_CHECK(test->reg +
1333						(i * test->reg_offset),
1334						test->mask,
1335						test->write);
1336				break;
1337			case WRITE_NO_TEST:
1338				writel(test->write,
1339				    (adapter->hw.hw_addr + test->reg)
1340					+ (i * test->reg_offset));
1341				break;
1342			case TABLE32_TEST:
1343				REG_PATTERN_TEST(test->reg + (i * 4),
1344						test->mask,
1345						test->write);
1346				break;
1347			case TABLE64_TEST_LO:
1348				REG_PATTERN_TEST(test->reg + (i * 8),
1349						test->mask,
1350						test->write);
1351				break;
1352			case TABLE64_TEST_HI:
1353				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1354						test->mask,
1355						test->write);
1356				break;
1357			}
1358		}
1359		test++;
1360	}
1361
1362	*data = 0;
1363	return 0;
1364}
1365
1366static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1367{
1368	struct e1000_hw *hw = &adapter->hw;
1369
1370	*data = 0;
1371
1372	/* Validate eeprom on all parts but flashless */
1373	switch (hw->mac.type) {
1374	case e1000_i210:
1375	case e1000_i211:
1376		if (igb_get_flash_presence_i210(hw)) {
1377			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1378				*data = 2;
1379		}
1380		break;
1381	default:
1382		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1383			*data = 2;
1384		break;
1385	}
1386
1387	return *data;
1388}
1389
1390static irqreturn_t igb_test_intr(int irq, void *data)
1391{
1392	struct igb_adapter *adapter = (struct igb_adapter *) data;
1393	struct e1000_hw *hw = &adapter->hw;
1394
1395	adapter->test_icr |= rd32(E1000_ICR);
1396
1397	return IRQ_HANDLED;
1398}
1399
1400static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1401{
1402	struct e1000_hw *hw = &adapter->hw;
1403	struct net_device *netdev = adapter->netdev;
1404	u32 mask, ics_mask, i = 0, shared_int = true;
1405	u32 irq = adapter->pdev->irq;
1406
1407	*data = 0;
1408
1409	/* Hook up test interrupt handler just for this test */
1410	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1411		if (request_irq(adapter->msix_entries[0].vector,
1412				igb_test_intr, 0, netdev->name, adapter)) {
1413			*data = 1;
1414			return -1;
1415		}
1416	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1417		shared_int = false;
1418		if (request_irq(irq,
1419				igb_test_intr, 0, netdev->name, adapter)) {
1420			*data = 1;
1421			return -1;
1422		}
1423	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1424				netdev->name, adapter)) {
1425		shared_int = false;
1426	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1427		 netdev->name, adapter)) {
1428		*data = 1;
1429		return -1;
1430	}
1431	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1432		(shared_int ? "shared" : "unshared"));
1433
1434	/* Disable all the interrupts */
1435	wr32(E1000_IMC, ~0);
1436	wrfl();
1437	usleep_range(10000, 11000);
1438
1439	/* Define all writable bits for ICS */
1440	switch (hw->mac.type) {
1441	case e1000_82575:
1442		ics_mask = 0x37F47EDD;
1443		break;
1444	case e1000_82576:
1445		ics_mask = 0x77D4FBFD;
1446		break;
1447	case e1000_82580:
1448		ics_mask = 0x77DCFED5;
1449		break;
1450	case e1000_i350:
1451	case e1000_i354:
1452	case e1000_i210:
1453	case e1000_i211:
1454		ics_mask = 0x77DCFED5;
1455		break;
1456	default:
1457		ics_mask = 0x7FFFFFFF;
1458		break;
1459	}
1460
1461	/* Test each interrupt */
1462	for (; i < 31; i++) {
1463		/* Interrupt to test */
1464		mask = BIT(i);
1465
1466		if (!(mask & ics_mask))
1467			continue;
1468
1469		if (!shared_int) {
1470			/* Disable the interrupt to be reported in
1471			 * the cause register and then force the same
1472			 * interrupt and see if one gets posted.  If
1473			 * an interrupt was posted to the bus, the
1474			 * test failed.
1475			 */
1476			adapter->test_icr = 0;
1477
1478			/* Flush any pending interrupts */
1479			wr32(E1000_ICR, ~0);
1480
1481			wr32(E1000_IMC, mask);
1482			wr32(E1000_ICS, mask);
1483			wrfl();
1484			usleep_range(10000, 11000);
1485
1486			if (adapter->test_icr & mask) {
1487				*data = 3;
1488				break;
1489			}
1490		}
1491
1492		/* Enable the interrupt to be reported in
1493		 * the cause register and then force the same
1494		 * interrupt and see if one gets posted.  If
1495		 * an interrupt was not posted to the bus, the
1496		 * test failed.
1497		 */
1498		adapter->test_icr = 0;
1499
1500		/* Flush any pending interrupts */
1501		wr32(E1000_ICR, ~0);
1502
1503		wr32(E1000_IMS, mask);
1504		wr32(E1000_ICS, mask);
1505		wrfl();
1506		usleep_range(10000, 11000);
1507
1508		if (!(adapter->test_icr & mask)) {
1509			*data = 4;
1510			break;
1511		}
1512
1513		if (!shared_int) {
1514			/* Disable the other interrupts to be reported in
1515			 * the cause register and then force the other
1516			 * interrupts and see if any get posted.  If
1517			 * an interrupt was posted to the bus, the
1518			 * test failed.
1519			 */
1520			adapter->test_icr = 0;
1521
1522			/* Flush any pending interrupts */
1523			wr32(E1000_ICR, ~0);
1524
1525			wr32(E1000_IMC, ~mask);
1526			wr32(E1000_ICS, ~mask);
1527			wrfl();
1528			usleep_range(10000, 11000);
1529
1530			if (adapter->test_icr & mask) {
1531				*data = 5;
1532				break;
1533			}
1534		}
1535	}
1536
1537	/* Disable all the interrupts */
1538	wr32(E1000_IMC, ~0);
1539	wrfl();
1540	usleep_range(10000, 11000);
1541
1542	/* Unhook test interrupt handler */
1543	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1544		free_irq(adapter->msix_entries[0].vector, adapter);
1545	else
1546		free_irq(irq, adapter);
1547
1548	return *data;
1549}
1550
1551static void igb_free_desc_rings(struct igb_adapter *adapter)
1552{
1553	igb_free_tx_resources(&adapter->test_tx_ring);
1554	igb_free_rx_resources(&adapter->test_rx_ring);
1555}
1556
1557static int igb_setup_desc_rings(struct igb_adapter *adapter)
1558{
1559	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1560	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1561	struct e1000_hw *hw = &adapter->hw;
1562	int ret_val;
1563
1564	/* Setup Tx descriptor ring and Tx buffers */
1565	tx_ring->count = IGB_DEFAULT_TXD;
1566	tx_ring->dev = &adapter->pdev->dev;
1567	tx_ring->netdev = adapter->netdev;
1568	tx_ring->reg_idx = adapter->vfs_allocated_count;
1569
1570	if (igb_setup_tx_resources(tx_ring)) {
1571		ret_val = 1;
1572		goto err_nomem;
1573	}
1574
1575	igb_setup_tctl(adapter);
1576	igb_configure_tx_ring(adapter, tx_ring);
1577
1578	/* Setup Rx descriptor ring and Rx buffers */
1579	rx_ring->count = IGB_DEFAULT_RXD;
1580	rx_ring->dev = &adapter->pdev->dev;
1581	rx_ring->netdev = adapter->netdev;
1582	rx_ring->reg_idx = adapter->vfs_allocated_count;
1583
1584	if (igb_setup_rx_resources(rx_ring)) {
1585		ret_val = 3;
1586		goto err_nomem;
1587	}
1588
1589	/* set the default queue to queue 0 of PF */
1590	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1591
1592	/* enable receive ring */
1593	igb_setup_rctl(adapter);
1594	igb_configure_rx_ring(adapter, rx_ring);
1595
1596	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1597
1598	return 0;
1599
1600err_nomem:
1601	igb_free_desc_rings(adapter);
1602	return ret_val;
1603}
1604
1605static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1606{
1607	struct e1000_hw *hw = &adapter->hw;
1608
1609	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1610	igb_write_phy_reg(hw, 29, 0x001F);
1611	igb_write_phy_reg(hw, 30, 0x8FFC);
1612	igb_write_phy_reg(hw, 29, 0x001A);
1613	igb_write_phy_reg(hw, 30, 0x8FF0);
1614}
1615
1616static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1617{
1618	struct e1000_hw *hw = &adapter->hw;
1619	u32 ctrl_reg = 0;
 
1620
1621	hw->mac.autoneg = false;
1622
1623	if (hw->phy.type == e1000_phy_m88) {
1624		if (hw->phy.id != I210_I_PHY_ID) {
1625			/* Auto-MDI/MDIX Off */
1626			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1627			/* reset to update Auto-MDI/MDIX */
1628			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1629			/* autoneg off */
1630			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1631		} else {
1632			/* force 1000, set loopback  */
1633			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1634			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1635		}
1636	} else if (hw->phy.type == e1000_phy_82580) {
1637		/* enable MII loopback */
1638		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
 
 
 
 
 
 
 
 
 
 
 
1639	}
1640
1641	/* add small delay to avoid loopback test failure */
1642	msleep(50);
1643
1644	/* force 1000, set loopback */
1645	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1646
1647	/* Now set up the MAC to the same speed/duplex as the PHY. */
1648	ctrl_reg = rd32(E1000_CTRL);
1649	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1650	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1651		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1652		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1653		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1654		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1655
1656	if (hw->phy.type == e1000_phy_m88)
1657		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1658
1659	wr32(E1000_CTRL, ctrl_reg);
1660
1661	/* Disable the receiver on the PHY so when a cable is plugged in, the
1662	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1663	 */
1664	if (hw->phy.type == e1000_phy_m88)
1665		igb_phy_disable_receiver(adapter);
1666
1667	msleep(500);
 
1668	return 0;
1669}
1670
1671static int igb_set_phy_loopback(struct igb_adapter *adapter)
1672{
1673	return igb_integrated_phy_loopback(adapter);
1674}
1675
1676static int igb_setup_loopback_test(struct igb_adapter *adapter)
1677{
1678	struct e1000_hw *hw = &adapter->hw;
1679	u32 reg;
1680
1681	reg = rd32(E1000_CTRL_EXT);
1682
1683	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1684	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1685		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1686		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1687		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1688		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1689		(hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1690		(hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1691			/* Enable DH89xxCC MPHY for near end loopback */
1692			reg = rd32(E1000_MPHY_ADDR_CTL);
1693			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1694			E1000_MPHY_PCS_CLK_REG_OFFSET;
1695			wr32(E1000_MPHY_ADDR_CTL, reg);
1696
1697			reg = rd32(E1000_MPHY_DATA);
1698			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1699			wr32(E1000_MPHY_DATA, reg);
1700		}
1701
1702		reg = rd32(E1000_RCTL);
1703		reg |= E1000_RCTL_LBM_TCVR;
1704		wr32(E1000_RCTL, reg);
1705
1706		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1707
1708		reg = rd32(E1000_CTRL);
1709		reg &= ~(E1000_CTRL_RFCE |
1710			 E1000_CTRL_TFCE |
1711			 E1000_CTRL_LRST);
1712		reg |= E1000_CTRL_SLU |
1713		       E1000_CTRL_FD;
1714		wr32(E1000_CTRL, reg);
1715
1716		/* Unset switch control to serdes energy detect */
1717		reg = rd32(E1000_CONNSW);
1718		reg &= ~E1000_CONNSW_ENRGSRC;
1719		wr32(E1000_CONNSW, reg);
1720
1721		/* Unset sigdetect for SERDES loopback on
1722		 * 82580 and newer devices.
1723		 */
1724		if (hw->mac.type >= e1000_82580) {
1725			reg = rd32(E1000_PCS_CFG0);
1726			reg |= E1000_PCS_CFG_IGN_SD;
1727			wr32(E1000_PCS_CFG0, reg);
1728		}
1729
1730		/* Set PCS register for forced speed */
1731		reg = rd32(E1000_PCS_LCTL);
1732		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1733		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1734		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1735		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1736		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1737		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1738		wr32(E1000_PCS_LCTL, reg);
1739
1740		return 0;
1741	}
1742
1743	return igb_set_phy_loopback(adapter);
1744}
1745
1746static void igb_loopback_cleanup(struct igb_adapter *adapter)
1747{
1748	struct e1000_hw *hw = &adapter->hw;
1749	u32 rctl;
1750	u16 phy_reg;
1751
1752	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1753	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1754	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1755	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1756	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1757		u32 reg;
1758
1759		/* Disable near end loopback on DH89xxCC */
1760		reg = rd32(E1000_MPHY_ADDR_CTL);
1761		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1762		E1000_MPHY_PCS_CLK_REG_OFFSET;
1763		wr32(E1000_MPHY_ADDR_CTL, reg);
1764
1765		reg = rd32(E1000_MPHY_DATA);
1766		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1767		wr32(E1000_MPHY_DATA, reg);
1768	}
1769
1770	rctl = rd32(E1000_RCTL);
1771	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1772	wr32(E1000_RCTL, rctl);
1773
1774	hw->mac.autoneg = true;
1775	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1776	if (phy_reg & MII_CR_LOOPBACK) {
1777		phy_reg &= ~MII_CR_LOOPBACK;
1778		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1779		igb_phy_sw_reset(hw);
1780	}
1781}
1782
1783static void igb_create_lbtest_frame(struct sk_buff *skb,
1784				    unsigned int frame_size)
1785{
1786	memset(skb->data, 0xFF, frame_size);
1787	frame_size /= 2;
1788	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1789	skb->data[frame_size + 10] = 0xBE;
1790	skb->data[frame_size + 12] = 0xAF;
1791}
1792
1793static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1794				  unsigned int frame_size)
1795{
1796	unsigned char *data;
1797	bool match = true;
1798
1799	frame_size >>= 1;
1800
1801	data = kmap(rx_buffer->page);
1802
1803	if (data[3] != 0xFF ||
1804	    data[frame_size + 10] != 0xBE ||
1805	    data[frame_size + 12] != 0xAF)
1806		match = false;
1807
1808	kunmap(rx_buffer->page);
1809
1810	return match;
1811}
1812
1813static int igb_clean_test_rings(struct igb_ring *rx_ring,
1814				struct igb_ring *tx_ring,
1815				unsigned int size)
1816{
1817	union e1000_adv_rx_desc *rx_desc;
1818	struct igb_rx_buffer *rx_buffer_info;
1819	struct igb_tx_buffer *tx_buffer_info;
 
1820	u16 rx_ntc, tx_ntc, count = 0;
 
1821
1822	/* initialize next to clean and descriptor values */
1823	rx_ntc = rx_ring->next_to_clean;
1824	tx_ntc = tx_ring->next_to_clean;
1825	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1826
1827	while (rx_desc->wb.upper.length) {
1828		/* check Rx buffer */
1829		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1830
1831		/* sync Rx buffer for CPU read */
1832		dma_sync_single_for_cpu(rx_ring->dev,
1833					rx_buffer_info->dma,
1834					size,
1835					DMA_FROM_DEVICE);
 
1836
1837		/* verify contents of skb */
1838		if (igb_check_lbtest_frame(rx_buffer_info, size))
1839			count++;
1840
1841		/* sync Rx buffer for device write */
1842		dma_sync_single_for_device(rx_ring->dev,
1843					   rx_buffer_info->dma,
1844					   size,
1845					   DMA_FROM_DEVICE);
1846
1847		/* unmap buffer on Tx side */
1848		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
 
 
 
1849
1850		/* Free all the Tx ring sk_buffs */
1851		dev_kfree_skb_any(tx_buffer_info->skb);
1852
1853		/* unmap skb header data */
1854		dma_unmap_single(tx_ring->dev,
1855				 dma_unmap_addr(tx_buffer_info, dma),
1856				 dma_unmap_len(tx_buffer_info, len),
1857				 DMA_TO_DEVICE);
1858		dma_unmap_len_set(tx_buffer_info, len, 0);
1859
1860		/* increment Rx/Tx next to clean counters */
1861		rx_ntc++;
1862		if (rx_ntc == rx_ring->count)
1863			rx_ntc = 0;
1864		tx_ntc++;
1865		if (tx_ntc == tx_ring->count)
1866			tx_ntc = 0;
1867
1868		/* fetch next descriptor */
1869		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1870	}
1871
1872	netdev_tx_reset_queue(txring_txq(tx_ring));
 
1873
1874	/* re-map buffers to ring, store next to clean values */
1875	igb_alloc_rx_buffers(rx_ring, count);
1876	rx_ring->next_to_clean = rx_ntc;
1877	tx_ring->next_to_clean = tx_ntc;
1878
1879	return count;
1880}
1881
1882static int igb_run_loopback_test(struct igb_adapter *adapter)
1883{
1884	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1885	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1886	u16 i, j, lc, good_cnt;
1887	int ret_val = 0;
1888	unsigned int size = IGB_RX_HDR_LEN;
1889	netdev_tx_t tx_ret_val;
1890	struct sk_buff *skb;
1891
1892	/* allocate test skb */
1893	skb = alloc_skb(size, GFP_KERNEL);
1894	if (!skb)
1895		return 11;
1896
1897	/* place data into test skb */
1898	igb_create_lbtest_frame(skb, size);
1899	skb_put(skb, size);
1900
1901	/* Calculate the loop count based on the largest descriptor ring
 
1902	 * The idea is to wrap the largest ring a number of times using 64
1903	 * send/receive pairs during each loop
1904	 */
1905
1906	if (rx_ring->count <= tx_ring->count)
1907		lc = ((tx_ring->count / 64) * 2) + 1;
1908	else
1909		lc = ((rx_ring->count / 64) * 2) + 1;
1910
1911	for (j = 0; j <= lc; j++) { /* loop count loop */
1912		/* reset count of good packets */
1913		good_cnt = 0;
1914
1915		/* place 64 packets on the transmit queue*/
1916		for (i = 0; i < 64; i++) {
1917			skb_get(skb);
1918			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1919			if (tx_ret_val == NETDEV_TX_OK)
1920				good_cnt++;
1921		}
1922
1923		if (good_cnt != 64) {
1924			ret_val = 12;
1925			break;
1926		}
1927
1928		/* allow 200 milliseconds for packets to go from Tx to Rx */
1929		msleep(200);
1930
1931		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1932		if (good_cnt != 64) {
1933			ret_val = 13;
1934			break;
1935		}
1936	} /* end loop count loop */
1937
1938	/* free the original skb */
1939	kfree_skb(skb);
1940
1941	return ret_val;
1942}
1943
1944static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1945{
1946	/* PHY loopback cannot be performed if SoL/IDER
1947	 * sessions are active
1948	 */
1949	if (igb_check_reset_block(&adapter->hw)) {
1950		dev_err(&adapter->pdev->dev,
1951			"Cannot do PHY loopback test when SoL/IDER is active.\n");
 
1952		*data = 0;
1953		goto out;
1954	}
1955
1956	if (adapter->hw.mac.type == e1000_i354) {
1957		dev_info(&adapter->pdev->dev,
1958			"Loopback test not supported on i354.\n");
 
1959		*data = 0;
1960		goto out;
1961	}
1962	*data = igb_setup_desc_rings(adapter);
1963	if (*data)
1964		goto out;
1965	*data = igb_setup_loopback_test(adapter);
1966	if (*data)
1967		goto err_loopback;
1968	*data = igb_run_loopback_test(adapter);
1969	igb_loopback_cleanup(adapter);
1970
1971err_loopback:
1972	igb_free_desc_rings(adapter);
1973out:
1974	return *data;
1975}
1976
1977static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1978{
1979	struct e1000_hw *hw = &adapter->hw;
1980	*data = 0;
1981	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1982		int i = 0;
1983
1984		hw->mac.serdes_has_link = false;
1985
1986		/* On some blade server designs, link establishment
1987		 * could take as long as 2-3 minutes
1988		 */
1989		do {
1990			hw->mac.ops.check_for_link(&adapter->hw);
1991			if (hw->mac.serdes_has_link)
1992				return *data;
1993			msleep(20);
1994		} while (i++ < 3750);
1995
1996		*data = 1;
1997	} else {
1998		hw->mac.ops.check_for_link(&adapter->hw);
1999		if (hw->mac.autoneg)
2000			msleep(5000);
2001
2002		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
2003			*data = 1;
2004	}
2005	return *data;
2006}
2007
2008static void igb_diag_test(struct net_device *netdev,
2009			  struct ethtool_test *eth_test, u64 *data)
2010{
2011	struct igb_adapter *adapter = netdev_priv(netdev);
2012	u16 autoneg_advertised;
2013	u8 forced_speed_duplex, autoneg;
2014	bool if_running = netif_running(netdev);
2015
2016	set_bit(__IGB_TESTING, &adapter->state);
2017
2018	/* can't do offline tests on media switching devices */
2019	if (adapter->hw.dev_spec._82575.mas_capable)
2020		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
2021	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2022		/* Offline tests */
2023
2024		/* save speed, duplex, autoneg settings */
2025		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2026		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2027		autoneg = adapter->hw.mac.autoneg;
2028
2029		dev_info(&adapter->pdev->dev, "offline testing starting\n");
2030
2031		/* power up link for link test */
2032		igb_power_up_link(adapter);
2033
2034		/* Link test performed before hardware reset so autoneg doesn't
2035		 * interfere with test result
2036		 */
2037		if (igb_link_test(adapter, &data[TEST_LINK]))
2038			eth_test->flags |= ETH_TEST_FL_FAILED;
2039
2040		if (if_running)
2041			/* indicate we're in test mode */
2042			igb_close(netdev);
2043		else
2044			igb_reset(adapter);
2045
2046		if (igb_reg_test(adapter, &data[TEST_REG]))
2047			eth_test->flags |= ETH_TEST_FL_FAILED;
2048
2049		igb_reset(adapter);
2050		if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2051			eth_test->flags |= ETH_TEST_FL_FAILED;
2052
2053		igb_reset(adapter);
2054		if (igb_intr_test(adapter, &data[TEST_IRQ]))
2055			eth_test->flags |= ETH_TEST_FL_FAILED;
2056
2057		igb_reset(adapter);
2058		/* power up link for loopback test */
2059		igb_power_up_link(adapter);
2060		if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2061			eth_test->flags |= ETH_TEST_FL_FAILED;
2062
2063		/* restore speed, duplex, autoneg settings */
2064		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2065		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2066		adapter->hw.mac.autoneg = autoneg;
2067
2068		/* force this routine to wait until autoneg complete/timeout */
2069		adapter->hw.phy.autoneg_wait_to_complete = true;
2070		igb_reset(adapter);
2071		adapter->hw.phy.autoneg_wait_to_complete = false;
2072
2073		clear_bit(__IGB_TESTING, &adapter->state);
2074		if (if_running)
2075			igb_open(netdev);
2076	} else {
2077		dev_info(&adapter->pdev->dev, "online testing starting\n");
2078
2079		/* PHY is powered down when interface is down */
2080		if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2081			eth_test->flags |= ETH_TEST_FL_FAILED;
2082		else
2083			data[TEST_LINK] = 0;
2084
2085		/* Online tests aren't run; pass by default */
2086		data[TEST_REG] = 0;
2087		data[TEST_EEP] = 0;
2088		data[TEST_IRQ] = 0;
2089		data[TEST_LOOP] = 0;
2090
2091		clear_bit(__IGB_TESTING, &adapter->state);
2092	}
2093	msleep_interruptible(4 * 1000);
2094}
2095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2096static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2097{
2098	struct igb_adapter *adapter = netdev_priv(netdev);
2099
 
 
 
2100	wol->wolopts = 0;
2101
2102	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
 
 
 
2103		return;
2104
2105	wol->supported = WAKE_UCAST | WAKE_MCAST |
2106			 WAKE_BCAST | WAKE_MAGIC |
2107			 WAKE_PHY;
2108
2109	/* apply any specific unsupported masks here */
2110	switch (adapter->hw.device_id) {
2111	default:
2112		break;
2113	}
2114
2115	if (adapter->wol & E1000_WUFC_EX)
2116		wol->wolopts |= WAKE_UCAST;
2117	if (adapter->wol & E1000_WUFC_MC)
2118		wol->wolopts |= WAKE_MCAST;
2119	if (adapter->wol & E1000_WUFC_BC)
2120		wol->wolopts |= WAKE_BCAST;
2121	if (adapter->wol & E1000_WUFC_MAG)
2122		wol->wolopts |= WAKE_MAGIC;
2123	if (adapter->wol & E1000_WUFC_LNKC)
2124		wol->wolopts |= WAKE_PHY;
2125}
2126
2127static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2128{
2129	struct igb_adapter *adapter = netdev_priv(netdev);
2130
2131	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_FILTER))
2132		return -EOPNOTSUPP;
2133
2134	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
 
2135		return wol->wolopts ? -EOPNOTSUPP : 0;
2136
2137	/* these settings will always override what we currently have */
2138	adapter->wol = 0;
2139
2140	if (wol->wolopts & WAKE_UCAST)
2141		adapter->wol |= E1000_WUFC_EX;
2142	if (wol->wolopts & WAKE_MCAST)
2143		adapter->wol |= E1000_WUFC_MC;
2144	if (wol->wolopts & WAKE_BCAST)
2145		adapter->wol |= E1000_WUFC_BC;
2146	if (wol->wolopts & WAKE_MAGIC)
2147		adapter->wol |= E1000_WUFC_MAG;
2148	if (wol->wolopts & WAKE_PHY)
2149		adapter->wol |= E1000_WUFC_LNKC;
2150	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2151
2152	return 0;
2153}
2154
2155/* bit defines for adapter->led_status */
2156#define IGB_LED_ON		0
2157
2158static int igb_set_phys_id(struct net_device *netdev,
2159			   enum ethtool_phys_id_state state)
2160{
2161	struct igb_adapter *adapter = netdev_priv(netdev);
2162	struct e1000_hw *hw = &adapter->hw;
2163
2164	switch (state) {
2165	case ETHTOOL_ID_ACTIVE:
2166		igb_blink_led(hw);
2167		return 2;
2168	case ETHTOOL_ID_ON:
2169		igb_blink_led(hw);
2170		break;
2171	case ETHTOOL_ID_OFF:
2172		igb_led_off(hw);
2173		break;
2174	case ETHTOOL_ID_INACTIVE:
2175		igb_led_off(hw);
2176		clear_bit(IGB_LED_ON, &adapter->led_status);
2177		igb_cleanup_led(hw);
2178		break;
2179	}
2180
2181	return 0;
2182}
2183
2184static int igb_set_coalesce(struct net_device *netdev,
2185			    struct ethtool_coalesce *ec)
2186{
2187	struct igb_adapter *adapter = netdev_priv(netdev);
2188	int i;
2189
2190	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2191	    ((ec->rx_coalesce_usecs > 3) &&
2192	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2193	    (ec->rx_coalesce_usecs == 2))
2194		return -EINVAL;
2195
2196	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2197	    ((ec->tx_coalesce_usecs > 3) &&
2198	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2199	    (ec->tx_coalesce_usecs == 2))
2200		return -EINVAL;
2201
2202	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2203		return -EINVAL;
2204
2205	/* If ITR is disabled, disable DMAC */
2206	if (ec->rx_coalesce_usecs == 0) {
2207		if (adapter->flags & IGB_FLAG_DMAC)
2208			adapter->flags &= ~IGB_FLAG_DMAC;
2209	}
2210
2211	/* convert to rate of irq's per second */
2212	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2213		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2214	else
2215		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2216
2217	/* convert to rate of irq's per second */
2218	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2219		adapter->tx_itr_setting = adapter->rx_itr_setting;
2220	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2221		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2222	else
2223		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2224
2225	for (i = 0; i < adapter->num_q_vectors; i++) {
2226		struct igb_q_vector *q_vector = adapter->q_vector[i];
2227		q_vector->tx.work_limit = adapter->tx_work_limit;
2228		if (q_vector->rx.ring)
2229			q_vector->itr_val = adapter->rx_itr_setting;
2230		else
2231			q_vector->itr_val = adapter->tx_itr_setting;
2232		if (q_vector->itr_val && q_vector->itr_val <= 3)
2233			q_vector->itr_val = IGB_START_ITR;
2234		q_vector->set_itr = 1;
2235	}
2236
2237	return 0;
2238}
2239
2240static int igb_get_coalesce(struct net_device *netdev,
2241			    struct ethtool_coalesce *ec)
2242{
2243	struct igb_adapter *adapter = netdev_priv(netdev);
2244
2245	if (adapter->rx_itr_setting <= 3)
2246		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2247	else
2248		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2249
2250	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2251		if (adapter->tx_itr_setting <= 3)
2252			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2253		else
2254			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2255	}
2256
2257	return 0;
2258}
2259
2260static int igb_nway_reset(struct net_device *netdev)
2261{
2262	struct igb_adapter *adapter = netdev_priv(netdev);
2263	if (netif_running(netdev))
2264		igb_reinit_locked(adapter);
2265	return 0;
2266}
2267
2268static int igb_get_sset_count(struct net_device *netdev, int sset)
2269{
2270	switch (sset) {
2271	case ETH_SS_STATS:
2272		return IGB_STATS_LEN;
2273	case ETH_SS_TEST:
2274		return IGB_TEST_LEN;
2275	case ETH_SS_PRIV_FLAGS:
2276		return IGB_PRIV_FLAGS_STR_LEN;
2277	default:
2278		return -ENOTSUPP;
2279	}
2280}
2281
2282static void igb_get_ethtool_stats(struct net_device *netdev,
2283				  struct ethtool_stats *stats, u64 *data)
2284{
2285	struct igb_adapter *adapter = netdev_priv(netdev);
2286	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2287	unsigned int start;
2288	struct igb_ring *ring;
2289	int i, j;
2290	char *p;
2291
2292	spin_lock(&adapter->stats64_lock);
2293	igb_update_stats(adapter);
2294
2295	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2296		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2297		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2298			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2299	}
2300	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2301		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2302		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2303			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2304	}
2305	for (j = 0; j < adapter->num_tx_queues; j++) {
2306		u64	restart2;
2307
2308		ring = adapter->tx_ring[j];
2309		do {
2310			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2311			data[i]   = ring->tx_stats.packets;
2312			data[i+1] = ring->tx_stats.bytes;
2313			data[i+2] = ring->tx_stats.restart_queue;
2314		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2315		do {
2316			start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2317			restart2  = ring->tx_stats.restart_queue2;
2318		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2319		data[i+2] += restart2;
2320
2321		i += IGB_TX_QUEUE_STATS_LEN;
2322	}
2323	for (j = 0; j < adapter->num_rx_queues; j++) {
2324		ring = adapter->rx_ring[j];
2325		do {
2326			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2327			data[i]   = ring->rx_stats.packets;
2328			data[i+1] = ring->rx_stats.bytes;
2329			data[i+2] = ring->rx_stats.drops;
2330			data[i+3] = ring->rx_stats.csum_err;
2331			data[i+4] = ring->rx_stats.alloc_failed;
2332		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2333		i += IGB_RX_QUEUE_STATS_LEN;
2334	}
2335	spin_unlock(&adapter->stats64_lock);
2336}
2337
2338static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2339{
2340	struct igb_adapter *adapter = netdev_priv(netdev);
2341	u8 *p = data;
2342	int i;
2343
2344	switch (stringset) {
2345	case ETH_SS_TEST:
2346		memcpy(data, *igb_gstrings_test,
2347			IGB_TEST_LEN*ETH_GSTRING_LEN);
2348		break;
2349	case ETH_SS_STATS:
2350		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++)
2351			ethtool_sprintf(&p,
2352					igb_gstrings_stats[i].stat_string);
2353		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++)
2354			ethtool_sprintf(&p,
2355					igb_gstrings_net_stats[i].stat_string);
 
 
 
 
2356		for (i = 0; i < adapter->num_tx_queues; i++) {
2357			ethtool_sprintf(&p, "tx_queue_%u_packets", i);
2358			ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
2359			ethtool_sprintf(&p, "tx_queue_%u_restart", i);
 
 
 
2360		}
2361		for (i = 0; i < adapter->num_rx_queues; i++) {
2362			ethtool_sprintf(&p, "rx_queue_%u_packets", i);
2363			ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
2364			ethtool_sprintf(&p, "rx_queue_%u_drops", i);
2365			ethtool_sprintf(&p, "rx_queue_%u_csum_err", i);
2366			ethtool_sprintf(&p, "rx_queue_%u_alloc_failed", i);
2367		}
2368		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2369		break;
2370	case ETH_SS_PRIV_FLAGS:
2371		memcpy(data, igb_priv_flags_strings,
2372		       IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2373		break;
2374	}
2375}
2376
2377static int igb_get_ts_info(struct net_device *dev,
2378			   struct ethtool_ts_info *info)
2379{
2380	struct igb_adapter *adapter = netdev_priv(dev);
2381
2382	if (adapter->ptp_clock)
2383		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2384	else
2385		info->phc_index = -1;
2386
2387	switch (adapter->hw.mac.type) {
2388	case e1000_82575:
2389		info->so_timestamping =
2390			SOF_TIMESTAMPING_TX_SOFTWARE |
2391			SOF_TIMESTAMPING_RX_SOFTWARE |
2392			SOF_TIMESTAMPING_SOFTWARE;
2393		return 0;
2394	case e1000_82576:
2395	case e1000_82580:
2396	case e1000_i350:
2397	case e1000_i354:
2398	case e1000_i210:
2399	case e1000_i211:
2400		info->so_timestamping =
2401			SOF_TIMESTAMPING_TX_SOFTWARE |
2402			SOF_TIMESTAMPING_RX_SOFTWARE |
2403			SOF_TIMESTAMPING_SOFTWARE |
2404			SOF_TIMESTAMPING_TX_HARDWARE |
2405			SOF_TIMESTAMPING_RX_HARDWARE |
2406			SOF_TIMESTAMPING_RAW_HARDWARE;
2407
2408		info->tx_types =
2409			BIT(HWTSTAMP_TX_OFF) |
2410			BIT(HWTSTAMP_TX_ON);
2411
2412		info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2413
2414		/* 82576 does not support timestamping all packets. */
2415		if (adapter->hw.mac.type >= e1000_82580)
2416			info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2417		else
2418			info->rx_filters |=
2419				BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2420				BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2421				BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2422
2423		return 0;
2424	default:
2425		return -EOPNOTSUPP;
2426	}
2427}
2428
2429#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2430static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2431				     struct ethtool_rxnfc *cmd)
2432{
2433	struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2434	struct igb_nfc_filter *rule = NULL;
2435
2436	/* report total rule count */
2437	cmd->data = IGB_MAX_RXNFC_FILTERS;
2438
2439	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2440		if (fsp->location <= rule->sw_idx)
2441			break;
2442	}
2443
2444	if (!rule || fsp->location != rule->sw_idx)
2445		return -EINVAL;
2446
2447	if (rule->filter.match_flags) {
2448		fsp->flow_type = ETHER_FLOW;
2449		fsp->ring_cookie = rule->action;
2450		if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2451			fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2452			fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2453		}
2454		if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2455			fsp->flow_type |= FLOW_EXT;
2456			fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2457			fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2458		}
2459		if (rule->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2460			ether_addr_copy(fsp->h_u.ether_spec.h_dest,
2461					rule->filter.dst_addr);
2462			/* As we only support matching by the full
2463			 * mask, return the mask to userspace
2464			 */
2465			eth_broadcast_addr(fsp->m_u.ether_spec.h_dest);
2466		}
2467		if (rule->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2468			ether_addr_copy(fsp->h_u.ether_spec.h_source,
2469					rule->filter.src_addr);
2470			/* As we only support matching by the full
2471			 * mask, return the mask to userspace
2472			 */
2473			eth_broadcast_addr(fsp->m_u.ether_spec.h_source);
2474		}
2475
2476		return 0;
2477	}
2478	return -EINVAL;
2479}
2480
2481static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2482				   struct ethtool_rxnfc *cmd,
2483				   u32 *rule_locs)
2484{
2485	struct igb_nfc_filter *rule;
2486	int cnt = 0;
2487
2488	/* report total rule count */
2489	cmd->data = IGB_MAX_RXNFC_FILTERS;
2490
2491	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2492		if (cnt == cmd->rule_cnt)
2493			return -EMSGSIZE;
2494		rule_locs[cnt] = rule->sw_idx;
2495		cnt++;
2496	}
2497
2498	cmd->rule_cnt = cnt;
2499
2500	return 0;
2501}
2502
2503static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2504				 struct ethtool_rxnfc *cmd)
2505{
2506	cmd->data = 0;
2507
2508	/* Report default options for RSS on igb */
2509	switch (cmd->flow_type) {
2510	case TCP_V4_FLOW:
2511		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2512		fallthrough;
2513	case UDP_V4_FLOW:
2514		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2515			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2516		fallthrough;
2517	case SCTP_V4_FLOW:
2518	case AH_ESP_V4_FLOW:
2519	case AH_V4_FLOW:
2520	case ESP_V4_FLOW:
2521	case IPV4_FLOW:
2522		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2523		break;
2524	case TCP_V6_FLOW:
2525		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2526		fallthrough;
2527	case UDP_V6_FLOW:
2528		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2529			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2530		fallthrough;
2531	case SCTP_V6_FLOW:
2532	case AH_ESP_V6_FLOW:
2533	case AH_V6_FLOW:
2534	case ESP_V6_FLOW:
2535	case IPV6_FLOW:
2536		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2537		break;
2538	default:
2539		return -EINVAL;
2540	}
2541
2542	return 0;
2543}
2544
2545static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2546			 u32 *rule_locs)
2547{
2548	struct igb_adapter *adapter = netdev_priv(dev);
2549	int ret = -EOPNOTSUPP;
2550
2551	switch (cmd->cmd) {
2552	case ETHTOOL_GRXRINGS:
2553		cmd->data = adapter->num_rx_queues;
2554		ret = 0;
2555		break;
2556	case ETHTOOL_GRXCLSRLCNT:
2557		cmd->rule_cnt = adapter->nfc_filter_count;
2558		ret = 0;
2559		break;
2560	case ETHTOOL_GRXCLSRULE:
2561		ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2562		break;
2563	case ETHTOOL_GRXCLSRLALL:
2564		ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2565		break;
2566	case ETHTOOL_GRXFH:
2567		ret = igb_get_rss_hash_opts(adapter, cmd);
2568		break;
2569	default:
2570		break;
2571	}
2572
2573	return ret;
2574}
2575
2576#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2577		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2578static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2579				struct ethtool_rxnfc *nfc)
2580{
2581	u32 flags = adapter->flags;
2582
2583	/* RSS does not support anything other than hashing
2584	 * to queues on src and dst IPs and ports
2585	 */
2586	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2587			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2588		return -EINVAL;
2589
2590	switch (nfc->flow_type) {
2591	case TCP_V4_FLOW:
2592	case TCP_V6_FLOW:
2593		if (!(nfc->data & RXH_IP_SRC) ||
2594		    !(nfc->data & RXH_IP_DST) ||
2595		    !(nfc->data & RXH_L4_B_0_1) ||
2596		    !(nfc->data & RXH_L4_B_2_3))
2597			return -EINVAL;
2598		break;
2599	case UDP_V4_FLOW:
2600		if (!(nfc->data & RXH_IP_SRC) ||
2601		    !(nfc->data & RXH_IP_DST))
2602			return -EINVAL;
2603		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2604		case 0:
2605			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2606			break;
2607		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2608			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2609			break;
2610		default:
2611			return -EINVAL;
2612		}
2613		break;
2614	case UDP_V6_FLOW:
2615		if (!(nfc->data & RXH_IP_SRC) ||
2616		    !(nfc->data & RXH_IP_DST))
2617			return -EINVAL;
2618		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2619		case 0:
2620			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2621			break;
2622		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2623			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2624			break;
2625		default:
2626			return -EINVAL;
2627		}
2628		break;
2629	case AH_ESP_V4_FLOW:
2630	case AH_V4_FLOW:
2631	case ESP_V4_FLOW:
2632	case SCTP_V4_FLOW:
2633	case AH_ESP_V6_FLOW:
2634	case AH_V6_FLOW:
2635	case ESP_V6_FLOW:
2636	case SCTP_V6_FLOW:
2637		if (!(nfc->data & RXH_IP_SRC) ||
2638		    !(nfc->data & RXH_IP_DST) ||
2639		    (nfc->data & RXH_L4_B_0_1) ||
2640		    (nfc->data & RXH_L4_B_2_3))
2641			return -EINVAL;
2642		break;
2643	default:
2644		return -EINVAL;
2645	}
2646
2647	/* if we changed something we need to update flags */
2648	if (flags != adapter->flags) {
2649		struct e1000_hw *hw = &adapter->hw;
2650		u32 mrqc = rd32(E1000_MRQC);
2651
2652		if ((flags & UDP_RSS_FLAGS) &&
2653		    !(adapter->flags & UDP_RSS_FLAGS))
2654			dev_err(&adapter->pdev->dev,
2655				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2656
2657		adapter->flags = flags;
2658
2659		/* Perform hash on these packet types */
2660		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2661			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2662			E1000_MRQC_RSS_FIELD_IPV6 |
2663			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2664
2665		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2666			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2667
2668		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2669			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2670
2671		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2672			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2673
2674		wr32(E1000_MRQC, mrqc);
2675	}
2676
2677	return 0;
2678}
2679
2680static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2681					struct igb_nfc_filter *input)
2682{
2683	struct e1000_hw *hw = &adapter->hw;
2684	u8 i;
2685	u32 etqf;
2686	u16 etype;
2687
2688	/* find an empty etype filter register */
2689	for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2690		if (!adapter->etype_bitmap[i])
2691			break;
2692	}
2693	if (i == MAX_ETYPE_FILTER) {
2694		dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2695		return -EINVAL;
2696	}
2697
2698	adapter->etype_bitmap[i] = true;
2699
2700	etqf = rd32(E1000_ETQF(i));
2701	etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2702
2703	etqf |= E1000_ETQF_FILTER_ENABLE;
2704	etqf &= ~E1000_ETQF_ETYPE_MASK;
2705	etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2706
2707	etqf &= ~E1000_ETQF_QUEUE_MASK;
2708	etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
2709		& E1000_ETQF_QUEUE_MASK);
2710	etqf |= E1000_ETQF_QUEUE_ENABLE;
2711
2712	wr32(E1000_ETQF(i), etqf);
2713
2714	input->etype_reg_index = i;
2715
2716	return 0;
2717}
2718
2719static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2720					    struct igb_nfc_filter *input)
2721{
2722	struct e1000_hw *hw = &adapter->hw;
2723	u8 vlan_priority;
2724	u16 queue_index;
2725	u32 vlapqf;
2726
2727	vlapqf = rd32(E1000_VLAPQF);
2728	vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
2729				>> VLAN_PRIO_SHIFT;
2730	queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2731
2732	/* check whether this vlan prio is already set */
2733	if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2734	    (queue_index != input->action)) {
2735		dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2736		return -EEXIST;
2737	}
2738
2739	vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2740	vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2741
2742	wr32(E1000_VLAPQF, vlapqf);
2743
2744	return 0;
2745}
2746
2747int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2748{
2749	struct e1000_hw *hw = &adapter->hw;
2750	int err = -EINVAL;
2751
2752	if (hw->mac.type == e1000_i210 &&
2753	    !(input->filter.match_flags & ~IGB_FILTER_FLAG_SRC_MAC_ADDR)) {
2754		dev_err(&adapter->pdev->dev,
2755			"i210 doesn't support flow classification rules specifying only source addresses.\n");
2756		return -EOPNOTSUPP;
2757	}
2758
2759	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2760		err = igb_rxnfc_write_etype_filter(adapter, input);
2761		if (err)
2762			return err;
2763	}
2764
2765	if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2766		err = igb_add_mac_steering_filter(adapter,
2767						  input->filter.dst_addr,
2768						  input->action, 0);
2769		err = min_t(int, err, 0);
2770		if (err)
2771			return err;
2772	}
2773
2774	if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2775		err = igb_add_mac_steering_filter(adapter,
2776						  input->filter.src_addr,
2777						  input->action,
2778						  IGB_MAC_STATE_SRC_ADDR);
2779		err = min_t(int, err, 0);
2780		if (err)
2781			return err;
2782	}
2783
2784	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2785		err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2786
2787	return err;
2788}
2789
2790static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2791					u16 reg_index)
2792{
2793	struct e1000_hw *hw = &adapter->hw;
2794	u32 etqf = rd32(E1000_ETQF(reg_index));
2795
2796	etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2797	etqf &= ~E1000_ETQF_QUEUE_MASK;
2798	etqf &= ~E1000_ETQF_FILTER_ENABLE;
2799
2800	wr32(E1000_ETQF(reg_index), etqf);
2801
2802	adapter->etype_bitmap[reg_index] = false;
2803}
2804
2805static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2806				       u16 vlan_tci)
2807{
2808	struct e1000_hw *hw = &adapter->hw;
2809	u8 vlan_priority;
2810	u32 vlapqf;
2811
2812	vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2813
2814	vlapqf = rd32(E1000_VLAPQF);
2815	vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2816	vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2817						E1000_VLAPQF_QUEUE_MASK);
2818
2819	wr32(E1000_VLAPQF, vlapqf);
2820}
2821
2822int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2823{
2824	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2825		igb_clear_etype_filter_regs(adapter,
2826					    input->etype_reg_index);
2827
2828	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2829		igb_clear_vlan_prio_filter(adapter,
2830					   ntohs(input->filter.vlan_tci));
2831
2832	if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR)
2833		igb_del_mac_steering_filter(adapter, input->filter.src_addr,
2834					    input->action,
2835					    IGB_MAC_STATE_SRC_ADDR);
2836
2837	if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR)
2838		igb_del_mac_steering_filter(adapter, input->filter.dst_addr,
2839					    input->action, 0);
2840
2841	return 0;
2842}
2843
2844static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2845					struct igb_nfc_filter *input,
2846					u16 sw_idx)
2847{
2848	struct igb_nfc_filter *rule, *parent;
2849	int err = -EINVAL;
2850
2851	parent = NULL;
2852	rule = NULL;
2853
2854	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2855		/* hash found, or no matching entry */
2856		if (rule->sw_idx >= sw_idx)
2857			break;
2858		parent = rule;
2859	}
2860
2861	/* if there is an old rule occupying our place remove it */
2862	if (rule && (rule->sw_idx == sw_idx)) {
2863		if (!input)
2864			err = igb_erase_filter(adapter, rule);
2865
2866		hlist_del(&rule->nfc_node);
2867		kfree(rule);
2868		adapter->nfc_filter_count--;
2869	}
2870
2871	/* If no input this was a delete, err should be 0 if a rule was
2872	 * successfully found and removed from the list else -EINVAL
2873	 */
2874	if (!input)
2875		return err;
2876
2877	/* initialize node */
2878	INIT_HLIST_NODE(&input->nfc_node);
2879
2880	/* add filter to the list */
2881	if (parent)
2882		hlist_add_behind(&input->nfc_node, &parent->nfc_node);
2883	else
2884		hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2885
2886	/* update counts */
2887	adapter->nfc_filter_count++;
2888
2889	return 0;
2890}
2891
2892static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2893				     struct ethtool_rxnfc *cmd)
2894{
2895	struct net_device *netdev = adapter->netdev;
2896	struct ethtool_rx_flow_spec *fsp =
2897		(struct ethtool_rx_flow_spec *)&cmd->fs;
2898	struct igb_nfc_filter *input, *rule;
2899	int err = 0;
2900
2901	if (!(netdev->hw_features & NETIF_F_NTUPLE))
2902		return -EOPNOTSUPP;
2903
2904	/* Don't allow programming if the action is a queue greater than
2905	 * the number of online Rx queues.
2906	 */
2907	if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2908	    (fsp->ring_cookie >= adapter->num_rx_queues)) {
2909		dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2910		return -EINVAL;
2911	}
2912
2913	/* Don't allow indexes to exist outside of available space */
2914	if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2915		dev_err(&adapter->pdev->dev, "Location out of range\n");
2916		return -EINVAL;
2917	}
2918
2919	if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2920		return -EINVAL;
2921
2922	input = kzalloc(sizeof(*input), GFP_KERNEL);
2923	if (!input)
2924		return -ENOMEM;
2925
2926	if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2927		input->filter.etype = fsp->h_u.ether_spec.h_proto;
2928		input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2929	}
2930
2931	/* Only support matching addresses by the full mask */
2932	if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_source)) {
2933		input->filter.match_flags |= IGB_FILTER_FLAG_SRC_MAC_ADDR;
2934		ether_addr_copy(input->filter.src_addr,
2935				fsp->h_u.ether_spec.h_source);
2936	}
2937
2938	/* Only support matching addresses by the full mask */
2939	if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_dest)) {
2940		input->filter.match_flags |= IGB_FILTER_FLAG_DST_MAC_ADDR;
2941		ether_addr_copy(input->filter.dst_addr,
2942				fsp->h_u.ether_spec.h_dest);
2943	}
2944
2945	if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2946		if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2947			err = -EINVAL;
2948			goto err_out;
2949		}
2950		input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2951		input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2952	}
2953
2954	input->action = fsp->ring_cookie;
2955	input->sw_idx = fsp->location;
2956
2957	spin_lock(&adapter->nfc_lock);
2958
2959	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2960		if (!memcmp(&input->filter, &rule->filter,
2961			    sizeof(input->filter))) {
2962			err = -EEXIST;
2963			dev_err(&adapter->pdev->dev,
2964				"ethtool: this filter is already set\n");
2965			goto err_out_w_lock;
2966		}
2967	}
2968
2969	err = igb_add_filter(adapter, input);
2970	if (err)
2971		goto err_out_w_lock;
2972
2973	igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
2974
2975	spin_unlock(&adapter->nfc_lock);
2976	return 0;
2977
2978err_out_w_lock:
2979	spin_unlock(&adapter->nfc_lock);
2980err_out:
2981	kfree(input);
2982	return err;
2983}
2984
2985static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
2986				     struct ethtool_rxnfc *cmd)
2987{
2988	struct ethtool_rx_flow_spec *fsp =
2989		(struct ethtool_rx_flow_spec *)&cmd->fs;
2990	int err;
2991
2992	spin_lock(&adapter->nfc_lock);
2993	err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
2994	spin_unlock(&adapter->nfc_lock);
2995
2996	return err;
2997}
2998
2999static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
3000{
3001	struct igb_adapter *adapter = netdev_priv(dev);
3002	int ret = -EOPNOTSUPP;
3003
3004	switch (cmd->cmd) {
3005	case ETHTOOL_SRXFH:
3006		ret = igb_set_rss_hash_opt(adapter, cmd);
3007		break;
3008	case ETHTOOL_SRXCLSRLINS:
3009		ret = igb_add_ethtool_nfc_entry(adapter, cmd);
3010		break;
3011	case ETHTOOL_SRXCLSRLDEL:
3012		ret = igb_del_ethtool_nfc_entry(adapter, cmd);
3013		break;
3014	default:
3015		break;
3016	}
3017
3018	return ret;
3019}
3020
3021static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
3022{
3023	struct igb_adapter *adapter = netdev_priv(netdev);
3024	struct e1000_hw *hw = &adapter->hw;
3025	u32 ret_val;
3026	u16 phy_data;
3027
3028	if ((hw->mac.type < e1000_i350) ||
3029	    (hw->phy.media_type != e1000_media_type_copper))
3030		return -EOPNOTSUPP;
3031
3032	edata->supported = (SUPPORTED_1000baseT_Full |
3033			    SUPPORTED_100baseT_Full);
3034	if (!hw->dev_spec._82575.eee_disable)
3035		edata->advertised =
3036			mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
3037
3038	/* The IPCNFG and EEER registers are not supported on I354. */
3039	if (hw->mac.type == e1000_i354) {
3040		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
3041	} else {
3042		u32 eeer;
3043
3044		eeer = rd32(E1000_EEER);
3045
3046		/* EEE status on negotiated link */
3047		if (eeer & E1000_EEER_EEE_NEG)
3048			edata->eee_active = true;
3049
3050		if (eeer & E1000_EEER_TX_LPI_EN)
3051			edata->tx_lpi_enabled = true;
3052	}
3053
3054	/* EEE Link Partner Advertised */
3055	switch (hw->mac.type) {
3056	case e1000_i350:
3057		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
3058					   &phy_data);
3059		if (ret_val)
3060			return -ENODATA;
3061
3062		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3063		break;
3064	case e1000_i354:
3065	case e1000_i210:
3066	case e1000_i211:
3067		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3068					     E1000_EEE_LP_ADV_DEV_I210,
3069					     &phy_data);
3070		if (ret_val)
3071			return -ENODATA;
3072
3073		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3074
3075		break;
3076	default:
3077		break;
3078	}
3079
3080	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3081
3082	if ((hw->mac.type == e1000_i354) &&
3083	    (edata->eee_enabled))
3084		edata->tx_lpi_enabled = true;
3085
3086	/* Report correct negotiated EEE status for devices that
3087	 * wrongly report EEE at half-duplex
3088	 */
3089	if (adapter->link_duplex == HALF_DUPLEX) {
3090		edata->eee_enabled = false;
3091		edata->eee_active = false;
3092		edata->tx_lpi_enabled = false;
3093		edata->advertised &= ~edata->advertised;
3094	}
3095
3096	return 0;
3097}
3098
3099static int igb_set_eee(struct net_device *netdev,
3100		       struct ethtool_eee *edata)
3101{
3102	struct igb_adapter *adapter = netdev_priv(netdev);
3103	struct e1000_hw *hw = &adapter->hw;
3104	struct ethtool_eee eee_curr;
3105	bool adv1g_eee = true, adv100m_eee = true;
3106	s32 ret_val;
3107
3108	if ((hw->mac.type < e1000_i350) ||
3109	    (hw->phy.media_type != e1000_media_type_copper))
3110		return -EOPNOTSUPP;
3111
3112	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
3113
3114	ret_val = igb_get_eee(netdev, &eee_curr);
3115	if (ret_val)
3116		return ret_val;
3117
3118	if (eee_curr.eee_enabled) {
3119		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3120			dev_err(&adapter->pdev->dev,
3121				"Setting EEE tx-lpi is not supported\n");
3122			return -EINVAL;
3123		}
3124
3125		/* Tx LPI timer is not implemented currently */
3126		if (edata->tx_lpi_timer) {
3127			dev_err(&adapter->pdev->dev,
3128				"Setting EEE Tx LPI timer is not supported\n");
3129			return -EINVAL;
3130		}
3131
3132		if (!edata->advertised || (edata->advertised &
3133		    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
3134			dev_err(&adapter->pdev->dev,
3135				"EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3136			return -EINVAL;
3137		}
3138		adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
3139		adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
3140
3141	} else if (!edata->eee_enabled) {
3142		dev_err(&adapter->pdev->dev,
3143			"Setting EEE options are not supported with EEE disabled\n");
3144		return -EINVAL;
3145	}
3146
3147	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
3148	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3149		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3150		adapter->flags |= IGB_FLAG_EEE;
3151
3152		/* reset link */
3153		if (netif_running(netdev))
3154			igb_reinit_locked(adapter);
3155		else
3156			igb_reset(adapter);
3157	}
3158
3159	if (hw->mac.type == e1000_i354)
3160		ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3161	else
3162		ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3163
3164	if (ret_val) {
3165		dev_err(&adapter->pdev->dev,
3166			"Problem setting EEE advertisement options\n");
3167		return -EINVAL;
3168	}
3169
3170	return 0;
3171}
3172
3173static int igb_get_module_info(struct net_device *netdev,
3174			       struct ethtool_modinfo *modinfo)
3175{
3176	struct igb_adapter *adapter = netdev_priv(netdev);
3177	struct e1000_hw *hw = &adapter->hw;
3178	u32 status = 0;
3179	u16 sff8472_rev, addr_mode;
3180	bool page_swap = false;
3181
3182	if ((hw->phy.media_type == e1000_media_type_copper) ||
3183	    (hw->phy.media_type == e1000_media_type_unknown))
3184		return -EOPNOTSUPP;
3185
3186	/* Check whether we support SFF-8472 or not */
3187	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3188	if (status)
3189		return -EIO;
3190
3191	/* addressing mode is not supported */
3192	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3193	if (status)
3194		return -EIO;
3195
3196	/* addressing mode is not supported */
3197	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3198		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3199		page_swap = true;
3200	}
3201
3202	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3203		/* We have an SFP, but it does not support SFF-8472 */
3204		modinfo->type = ETH_MODULE_SFF_8079;
3205		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3206	} else {
3207		/* We have an SFP which supports a revision of SFF-8472 */
3208		modinfo->type = ETH_MODULE_SFF_8472;
3209		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3210	}
3211
3212	return 0;
3213}
3214
3215static int igb_get_module_eeprom(struct net_device *netdev,
3216				 struct ethtool_eeprom *ee, u8 *data)
3217{
3218	struct igb_adapter *adapter = netdev_priv(netdev);
3219	struct e1000_hw *hw = &adapter->hw;
3220	u32 status = 0;
3221	u16 *dataword;
3222	u16 first_word, last_word;
3223	int i = 0;
3224
3225	if (ee->len == 0)
3226		return -EINVAL;
3227
3228	first_word = ee->offset >> 1;
3229	last_word = (ee->offset + ee->len - 1) >> 1;
3230
3231	dataword = kmalloc_array(last_word - first_word + 1, sizeof(u16),
3232				 GFP_KERNEL);
3233	if (!dataword)
3234		return -ENOMEM;
3235
3236	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3237	for (i = 0; i < last_word - first_word + 1; i++) {
3238		status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3239					      &dataword[i]);
3240		if (status) {
3241			/* Error occurred while reading module */
3242			kfree(dataword);
3243			return -EIO;
3244		}
3245
3246		be16_to_cpus(&dataword[i]);
3247	}
3248
3249	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3250	kfree(dataword);
3251
3252	return 0;
3253}
3254
3255static int igb_ethtool_begin(struct net_device *netdev)
3256{
3257	struct igb_adapter *adapter = netdev_priv(netdev);
3258	pm_runtime_get_sync(&adapter->pdev->dev);
3259	return 0;
3260}
3261
3262static void igb_ethtool_complete(struct net_device *netdev)
3263{
3264	struct igb_adapter *adapter = netdev_priv(netdev);
3265	pm_runtime_put(&adapter->pdev->dev);
3266}
3267
3268static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3269{
3270	return IGB_RETA_SIZE;
3271}
3272
3273static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
3274			u8 *hfunc)
3275{
3276	struct igb_adapter *adapter = netdev_priv(netdev);
3277	int i;
3278
3279	if (hfunc)
3280		*hfunc = ETH_RSS_HASH_TOP;
3281	if (!indir)
3282		return 0;
3283	for (i = 0; i < IGB_RETA_SIZE; i++)
3284		indir[i] = adapter->rss_indir_tbl[i];
3285
3286	return 0;
3287}
3288
3289void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3290{
3291	struct e1000_hw *hw = &adapter->hw;
3292	u32 reg = E1000_RETA(0);
3293	u32 shift = 0;
3294	int i = 0;
3295
3296	switch (hw->mac.type) {
3297	case e1000_82575:
3298		shift = 6;
3299		break;
3300	case e1000_82576:
3301		/* 82576 supports 2 RSS queues for SR-IOV */
3302		if (adapter->vfs_allocated_count)
3303			shift = 3;
3304		break;
3305	default:
3306		break;
3307	}
3308
3309	while (i < IGB_RETA_SIZE) {
3310		u32 val = 0;
3311		int j;
3312
3313		for (j = 3; j >= 0; j--) {
3314			val <<= 8;
3315			val |= adapter->rss_indir_tbl[i + j];
3316		}
3317
3318		wr32(reg, val << shift);
3319		reg += 4;
3320		i += 4;
3321	}
3322}
3323
3324static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
3325			const u8 *key, const u8 hfunc)
3326{
3327	struct igb_adapter *adapter = netdev_priv(netdev);
3328	struct e1000_hw *hw = &adapter->hw;
3329	int i;
3330	u32 num_queues;
3331
3332	/* We do not allow change in unsupported parameters */
3333	if (key ||
3334	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3335		return -EOPNOTSUPP;
3336	if (!indir)
3337		return 0;
3338
3339	num_queues = adapter->rss_queues;
3340
3341	switch (hw->mac.type) {
3342	case e1000_82576:
3343		/* 82576 supports 2 RSS queues for SR-IOV */
3344		if (adapter->vfs_allocated_count)
3345			num_queues = 2;
3346		break;
3347	default:
3348		break;
3349	}
3350
3351	/* Verify user input. */
3352	for (i = 0; i < IGB_RETA_SIZE; i++)
3353		if (indir[i] >= num_queues)
3354			return -EINVAL;
3355
3356
3357	for (i = 0; i < IGB_RETA_SIZE; i++)
3358		adapter->rss_indir_tbl[i] = indir[i];
3359
3360	igb_write_rss_indir_tbl(adapter);
3361
3362	return 0;
3363}
3364
3365static unsigned int igb_max_channels(struct igb_adapter *adapter)
3366{
3367	return igb_get_max_rss_queues(adapter);
3368}
3369
3370static void igb_get_channels(struct net_device *netdev,
3371			     struct ethtool_channels *ch)
3372{
3373	struct igb_adapter *adapter = netdev_priv(netdev);
3374
3375	/* Report maximum channels */
3376	ch->max_combined = igb_max_channels(adapter);
3377
3378	/* Report info for other vector */
3379	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3380		ch->max_other = NON_Q_VECTORS;
3381		ch->other_count = NON_Q_VECTORS;
3382	}
3383
3384	ch->combined_count = adapter->rss_queues;
3385}
3386
3387static int igb_set_channels(struct net_device *netdev,
3388			    struct ethtool_channels *ch)
3389{
3390	struct igb_adapter *adapter = netdev_priv(netdev);
3391	unsigned int count = ch->combined_count;
3392	unsigned int max_combined = 0;
3393
3394	/* Verify they are not requesting separate vectors */
3395	if (!count || ch->rx_count || ch->tx_count)
3396		return -EINVAL;
3397
3398	/* Verify other_count is valid and has not been changed */
3399	if (ch->other_count != NON_Q_VECTORS)
3400		return -EINVAL;
3401
3402	/* Verify the number of channels doesn't exceed hw limits */
3403	max_combined = igb_max_channels(adapter);
3404	if (count > max_combined)
3405		return -EINVAL;
3406
3407	if (count != adapter->rss_queues) {
3408		adapter->rss_queues = count;
3409		igb_set_flag_queue_pairs(adapter, max_combined);
3410
3411		/* Hardware has to reinitialize queues and interrupts to
3412		 * match the new configuration.
3413		 */
3414		return igb_reinit_queues(adapter);
3415	}
3416
3417	return 0;
3418}
3419
3420static u32 igb_get_priv_flags(struct net_device *netdev)
3421{
3422	struct igb_adapter *adapter = netdev_priv(netdev);
3423	u32 priv_flags = 0;
3424
3425	if (adapter->flags & IGB_FLAG_RX_LEGACY)
3426		priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
3427
3428	return priv_flags;
3429}
3430
3431static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
3432{
3433	struct igb_adapter *adapter = netdev_priv(netdev);
3434	unsigned int flags = adapter->flags;
3435
3436	flags &= ~IGB_FLAG_RX_LEGACY;
3437	if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
3438		flags |= IGB_FLAG_RX_LEGACY;
3439
3440	if (flags != adapter->flags) {
3441		adapter->flags = flags;
3442
3443		/* reset interface to repopulate queues */
3444		if (netif_running(netdev))
3445			igb_reinit_locked(adapter);
3446	}
3447
3448	return 0;
3449}
3450
3451static const struct ethtool_ops igb_ethtool_ops = {
3452	.supported_coalesce_params = ETHTOOL_COALESCE_USECS,
3453	.get_drvinfo		= igb_get_drvinfo,
3454	.get_regs_len		= igb_get_regs_len,
3455	.get_regs		= igb_get_regs,
3456	.get_wol		= igb_get_wol,
3457	.set_wol		= igb_set_wol,
3458	.get_msglevel		= igb_get_msglevel,
3459	.set_msglevel		= igb_set_msglevel,
3460	.nway_reset		= igb_nway_reset,
3461	.get_link		= igb_get_link,
3462	.get_eeprom_len		= igb_get_eeprom_len,
3463	.get_eeprom		= igb_get_eeprom,
3464	.set_eeprom		= igb_set_eeprom,
3465	.get_ringparam		= igb_get_ringparam,
3466	.set_ringparam		= igb_set_ringparam,
3467	.get_pauseparam		= igb_get_pauseparam,
3468	.set_pauseparam		= igb_set_pauseparam,
3469	.self_test		= igb_diag_test,
3470	.get_strings		= igb_get_strings,
3471	.set_phys_id		= igb_set_phys_id,
3472	.get_sset_count		= igb_get_sset_count,
3473	.get_ethtool_stats	= igb_get_ethtool_stats,
3474	.get_coalesce		= igb_get_coalesce,
3475	.set_coalesce		= igb_set_coalesce,
3476	.get_ts_info		= igb_get_ts_info,
3477	.get_rxnfc		= igb_get_rxnfc,
3478	.set_rxnfc		= igb_set_rxnfc,
3479	.get_eee		= igb_get_eee,
3480	.set_eee		= igb_set_eee,
3481	.get_module_info	= igb_get_module_info,
3482	.get_module_eeprom	= igb_get_module_eeprom,
3483	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
3484	.get_rxfh		= igb_get_rxfh,
3485	.set_rxfh		= igb_set_rxfh,
3486	.get_channels		= igb_get_channels,
3487	.set_channels		= igb_set_channels,
3488	.get_priv_flags		= igb_get_priv_flags,
3489	.set_priv_flags		= igb_set_priv_flags,
3490	.begin			= igb_ethtool_begin,
3491	.complete		= igb_ethtool_complete,
3492	.get_link_ksettings	= igb_get_link_ksettings,
3493	.set_link_ksettings	= igb_set_link_ksettings,
3494};
3495
3496void igb_set_ethtool_ops(struct net_device *netdev)
3497{
3498	netdev->ethtool_ops = &igb_ethtool_ops;
3499}