Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Copyright (C) 2011 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
 
 
   8
   9#include <linux/device-mapper.h>
  10#include <linux/dm-io.h>
  11#include <linux/dm-kcopyd.h>
 
 
  12#include <linux/list.h>
 
  13#include <linux/init.h>
  14#include <linux/module.h>
  15#include <linux/slab.h>
 
 
 
  16
  17#define	DM_MSG_PREFIX	"thin"
  18
  19/*
  20 * Tunable constants
  21 */
  22#define ENDIO_HOOK_POOL_SIZE 1024
  23#define DEFERRED_SET_SIZE 64
  24#define MAPPING_POOL_SIZE 1024
  25#define PRISON_CELLS 1024
  26#define COMMIT_PERIOD HZ
 
 
 
 
 
 
  27
  28/*
  29 * The block size of the device holding pool data must be
  30 * between 64KB and 1GB.
  31 */
  32#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  33#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  34
  35/*
  36 * Device id is restricted to 24 bits.
  37 */
  38#define MAX_DEV_ID ((1 << 24) - 1)
  39
  40/*
  41 * How do we handle breaking sharing of data blocks?
  42 * =================================================
  43 *
  44 * We use a standard copy-on-write btree to store the mappings for the
  45 * devices (note I'm talking about copy-on-write of the metadata here, not
  46 * the data).  When you take an internal snapshot you clone the root node
  47 * of the origin btree.  After this there is no concept of an origin or a
  48 * snapshot.  They are just two device trees that happen to point to the
  49 * same data blocks.
  50 *
  51 * When we get a write in we decide if it's to a shared data block using
  52 * some timestamp magic.  If it is, we have to break sharing.
  53 *
  54 * Let's say we write to a shared block in what was the origin.  The
  55 * steps are:
  56 *
  57 * i) plug io further to this physical block. (see bio_prison code).
  58 *
  59 * ii) quiesce any read io to that shared data block.  Obviously
  60 * including all devices that share this block.  (see deferred_set code)
  61 *
  62 * iii) copy the data block to a newly allocate block.  This step can be
  63 * missed out if the io covers the block. (schedule_copy).
  64 *
  65 * iv) insert the new mapping into the origin's btree
  66 * (process_prepared_mapping).  This act of inserting breaks some
  67 * sharing of btree nodes between the two devices.  Breaking sharing only
  68 * effects the btree of that specific device.  Btrees for the other
  69 * devices that share the block never change.  The btree for the origin
  70 * device as it was after the last commit is untouched, ie. we're using
  71 * persistent data structures in the functional programming sense.
  72 *
  73 * v) unplug io to this physical block, including the io that triggered
  74 * the breaking of sharing.
  75 *
  76 * Steps (ii) and (iii) occur in parallel.
  77 *
  78 * The metadata _doesn't_ need to be committed before the io continues.  We
  79 * get away with this because the io is always written to a _new_ block.
  80 * If there's a crash, then:
  81 *
  82 * - The origin mapping will point to the old origin block (the shared
  83 * one).  This will contain the data as it was before the io that triggered
  84 * the breaking of sharing came in.
  85 *
  86 * - The snap mapping still points to the old block.  As it would after
  87 * the commit.
  88 *
  89 * The downside of this scheme is the timestamp magic isn't perfect, and
  90 * will continue to think that data block in the snapshot device is shared
  91 * even after the write to the origin has broken sharing.  I suspect data
  92 * blocks will typically be shared by many different devices, so we're
  93 * breaking sharing n + 1 times, rather than n, where n is the number of
  94 * devices that reference this data block.  At the moment I think the
  95 * benefits far, far outweigh the disadvantages.
  96 */
  97
  98/*----------------------------------------------------------------*/
  99
 100/*
 101 * Sometimes we can't deal with a bio straight away.  We put them in prison
 102 * where they can't cause any mischief.  Bios are put in a cell identified
 103 * by a key, multiple bios can be in the same cell.  When the cell is
 104 * subsequently unlocked the bios become available.
 105 */
 106struct bio_prison;
 107
 108struct cell_key {
 109	int virtual;
 110	dm_thin_id dev;
 111	dm_block_t block;
 112};
 113
 114struct dm_bio_prison_cell {
 115	struct hlist_node list;
 116	struct bio_prison *prison;
 117	struct cell_key key;
 118	struct bio *holder;
 119	struct bio_list bios;
 120};
 121
 122struct bio_prison {
 123	spinlock_t lock;
 124	mempool_t *cell_pool;
 125
 126	unsigned nr_buckets;
 127	unsigned hash_mask;
 128	struct hlist_head *cells;
 129};
 130
 131static uint32_t calc_nr_buckets(unsigned nr_cells)
 
 132{
 133	uint32_t n = 128;
 134
 135	nr_cells /= 4;
 136	nr_cells = min(nr_cells, 8192u);
 137
 138	while (n < nr_cells)
 139		n <<= 1;
 140
 141	return n;
 142}
 143
 144static struct kmem_cache *_cell_cache;
 
 
 
 
 145
 146/*
 147 * @nr_cells should be the number of cells you want in use _concurrently_.
 148 * Don't confuse it with the number of distinct keys.
 149 */
 150static struct bio_prison *prison_create(unsigned nr_cells)
 151{
 152	unsigned i;
 153	uint32_t nr_buckets = calc_nr_buckets(nr_cells);
 154	size_t len = sizeof(struct bio_prison) +
 155		(sizeof(struct hlist_head) * nr_buckets);
 156	struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
 157
 158	if (!prison)
 159		return NULL;
 160
 161	spin_lock_init(&prison->lock);
 162	prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
 163	if (!prison->cell_pool) {
 164		kfree(prison);
 165		return NULL;
 166	}
 167
 168	prison->nr_buckets = nr_buckets;
 169	prison->hash_mask = nr_buckets - 1;
 170	prison->cells = (struct hlist_head *) (prison + 1);
 171	for (i = 0; i < nr_buckets; i++)
 172		INIT_HLIST_HEAD(prison->cells + i);
 173
 174	return prison;
 
 
 
 175}
 176
 177static void prison_destroy(struct bio_prison *prison)
 178{
 179	mempool_destroy(prison->cell_pool);
 180	kfree(prison);
 181}
 182
 183static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
 184{
 185	const unsigned long BIG_PRIME = 4294967291UL;
 186	uint64_t hash = key->block * BIG_PRIME;
 187
 188	return (uint32_t) (hash & prison->hash_mask);
 189}
 190
 191static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
 192{
 193	       return (lhs->virtual == rhs->virtual) &&
 194		       (lhs->dev == rhs->dev) &&
 195		       (lhs->block == rhs->block);
 
 196}
 197
 198static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
 199						  struct cell_key *key)
 200{
 201	struct dm_bio_prison_cell *cell;
 202	struct hlist_node *tmp;
 203
 204	hlist_for_each_entry(cell, tmp, bucket, list)
 205		if (keys_equal(&cell->key, key))
 206			return cell;
 207
 208	return NULL;
 209}
 210
 211/*
 212 * This may block if a new cell needs allocating.  You must ensure that
 213 * cells will be unlocked even if the calling thread is blocked.
 214 *
 215 * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
 216 */
 217static int bio_detain(struct bio_prison *prison, struct cell_key *key,
 218		      struct bio *inmate, struct dm_bio_prison_cell **ref)
 219{
 220	int r = 1;
 221	unsigned long flags;
 222	uint32_t hash = hash_key(prison, key);
 223	struct dm_bio_prison_cell *cell, *cell2;
 224
 225	BUG_ON(hash > prison->nr_buckets);
 226
 227	spin_lock_irqsave(&prison->lock, flags);
 
 
 
 
 
 228
 229	cell = __search_bucket(prison->cells + hash, key);
 230	if (cell) {
 231		bio_list_add(&cell->bios, inmate);
 232		goto out;
 233	}
 
 234
 235	/*
 236	 * Allocate a new cell
 237	 */
 238	spin_unlock_irqrestore(&prison->lock, flags);
 239	cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
 240	spin_lock_irqsave(&prison->lock, flags);
 241
 242	/*
 243	 * We've been unlocked, so we have to double check that
 244	 * nobody else has inserted this cell in the meantime.
 245	 */
 246	cell = __search_bucket(prison->cells + hash, key);
 247	if (cell) {
 248		mempool_free(cell2, prison->cell_pool);
 249		bio_list_add(&cell->bios, inmate);
 250		goto out;
 251	}
 252
 253	/*
 254	 * Use new cell.
 255	 */
 256	cell = cell2;
 257
 258	cell->prison = prison;
 259	memcpy(&cell->key, key, sizeof(cell->key));
 260	cell->holder = inmate;
 261	bio_list_init(&cell->bios);
 262	hlist_add_head(&cell->list, prison->cells + hash);
 263
 264	r = 0;
 
 
 
 265
 266out:
 267	spin_unlock_irqrestore(&prison->lock, flags);
 268
 269	*ref = cell;
 
 
 270
 271	return r;
 272}
 
 
 273
 274/*
 275 * @inmates must have been initialised prior to this call
 276 */
 277static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
 278{
 279	struct bio_prison *prison = cell->prison;
 280
 281	hlist_del(&cell->list);
 
 
 
 282
 283	if (inmates) {
 284		bio_list_add(inmates, cell->holder);
 285		bio_list_merge(inmates, &cell->bios);
 286	}
 287
 288	mempool_free(cell, prison->cell_pool);
 289}
 
 
 
 290
 291static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
 292{
 293	unsigned long flags;
 294	struct bio_prison *prison = cell->prison;
 295
 296	spin_lock_irqsave(&prison->lock, flags);
 297	__cell_release(cell, bios);
 298	spin_unlock_irqrestore(&prison->lock, flags);
 299}
 
 
 
 300
 301/*
 302 * There are a couple of places where we put a bio into a cell briefly
 303 * before taking it out again.  In these situations we know that no other
 304 * bio may be in the cell.  This function releases the cell, and also does
 305 * a sanity check.
 306 */
 307static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
 308{
 309	BUG_ON(cell->holder != bio);
 310	BUG_ON(!bio_list_empty(&cell->bios));
 311
 312	__cell_release(cell, NULL);
 313}
 314
 315static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
 316{
 317	unsigned long flags;
 318	struct bio_prison *prison = cell->prison;
 319
 320	spin_lock_irqsave(&prison->lock, flags);
 321	__cell_release_singleton(cell, bio);
 322	spin_unlock_irqrestore(&prison->lock, flags);
 323}
 324
 325/*
 326 * Sometimes we don't want the holder, just the additional bios.
 327 */
 328static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
 329				     struct bio_list *inmates)
 330{
 331	struct bio_prison *prison = cell->prison;
 332
 333	hlist_del(&cell->list);
 334	bio_list_merge(inmates, &cell->bios);
 335
 336	mempool_free(cell, prison->cell_pool);
 337}
 338
 339static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
 340				   struct bio_list *inmates)
 341{
 342	unsigned long flags;
 343	struct bio_prison *prison = cell->prison;
 344
 345	spin_lock_irqsave(&prison->lock, flags);
 346	__cell_release_no_holder(cell, inmates);
 347	spin_unlock_irqrestore(&prison->lock, flags);
 348}
 349
 350static void cell_error(struct dm_bio_prison_cell *cell)
 351{
 352	struct bio_prison *prison = cell->prison;
 353	struct bio_list bios;
 354	struct bio *bio;
 355	unsigned long flags;
 356
 357	bio_list_init(&bios);
 
 
 
 
 
 
 
 
 
 
 358
 359	spin_lock_irqsave(&prison->lock, flags);
 360	__cell_release(cell, &bios);
 361	spin_unlock_irqrestore(&prison->lock, flags);
 
 
 
 362
 363	while ((bio = bio_list_pop(&bios)))
 364		bio_io_error(bio);
 
 
 365}
 366
 367/*----------------------------------------------------------------*/
 368
 369/*
 370 * We use the deferred set to keep track of pending reads to shared blocks.
 371 * We do this to ensure the new mapping caused by a write isn't performed
 372 * until these prior reads have completed.  Otherwise the insertion of the
 373 * new mapping could free the old block that the read bios are mapped to.
 374 */
 
 
 
 
 
 375
 376struct deferred_set;
 377struct deferred_entry {
 378	struct deferred_set *ds;
 379	unsigned count;
 380	struct list_head work_items;
 381};
 382
 383struct deferred_set {
 384	spinlock_t lock;
 385	unsigned current_entry;
 386	unsigned sweeper;
 387	struct deferred_entry entries[DEFERRED_SET_SIZE];
 388};
 
 
 
 389
 390static void ds_init(struct deferred_set *ds)
 391{
 392	int i;
 393
 394	spin_lock_init(&ds->lock);
 395	ds->current_entry = 0;
 396	ds->sweeper = 0;
 397	for (i = 0; i < DEFERRED_SET_SIZE; i++) {
 398		ds->entries[i].ds = ds;
 399		ds->entries[i].count = 0;
 400		INIT_LIST_HEAD(&ds->entries[i].work_items);
 401	}
 402}
 403
 404static struct deferred_entry *ds_inc(struct deferred_set *ds)
 405{
 406	unsigned long flags;
 407	struct deferred_entry *entry;
 
 
 
 408
 409	spin_lock_irqsave(&ds->lock, flags);
 410	entry = ds->entries + ds->current_entry;
 411	entry->count++;
 412	spin_unlock_irqrestore(&ds->lock, flags);
 413
 414	return entry;
 
 
 415}
 416
 417static unsigned ds_next(unsigned index)
 418{
 419	return (index + 1) % DEFERRED_SET_SIZE;
 
 
 420}
 421
 422static void __sweep(struct deferred_set *ds, struct list_head *head)
 
 
 
 
 
 
 
 
 
 423{
 424	while ((ds->sweeper != ds->current_entry) &&
 425	       !ds->entries[ds->sweeper].count) {
 426		list_splice_init(&ds->entries[ds->sweeper].work_items, head);
 427		ds->sweeper = ds_next(ds->sweeper);
 428	}
 429
 430	if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
 431		list_splice_init(&ds->entries[ds->sweeper].work_items, head);
 
 
 432}
 433
 434static void ds_dec(struct deferred_entry *entry, struct list_head *head)
 435{
 436	unsigned long flags;
 
 
 437
 438	spin_lock_irqsave(&entry->ds->lock, flags);
 439	BUG_ON(!entry->count);
 440	--entry->count;
 441	__sweep(entry->ds, head);
 442	spin_unlock_irqrestore(&entry->ds->lock, flags);
 443}
 444
 445/*
 446 * Returns 1 if deferred or 0 if no pending items to delay job.
 447 */
 448static int ds_add_work(struct deferred_set *ds, struct list_head *work)
 449{
 450	int r = 1;
 451	unsigned long flags;
 452	unsigned next_entry;
 453
 454	spin_lock_irqsave(&ds->lock, flags);
 455	if ((ds->sweeper == ds->current_entry) &&
 456	    !ds->entries[ds->current_entry].count)
 457		r = 0;
 458	else {
 459		list_add(work, &ds->entries[ds->current_entry].work_items);
 460		next_entry = ds_next(ds->current_entry);
 461		if (!ds->entries[next_entry].count)
 462			ds->current_entry = next_entry;
 463	}
 464	spin_unlock_irqrestore(&ds->lock, flags);
 465
 466	return r;
 
 
 
 
 
 
 
 
 467}
 468
 469/*----------------------------------------------------------------*/
 470
 471/*
 472 * Key building.
 
 473 */
 474static void build_data_key(struct dm_thin_device *td,
 475			   dm_block_t b, struct cell_key *key)
 476{
 477	key->virtual = 0;
 478	key->dev = dm_thin_dev_id(td);
 479	key->block = b;
 480}
 481
 482static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 483			      struct cell_key *key)
 484{
 485	key->virtual = 1;
 486	key->dev = dm_thin_dev_id(td);
 487	key->block = b;
 488}
 489
 490/*----------------------------------------------------------------*/
 491
 492/*
 493 * A pool device ties together a metadata device and a data device.  It
 494 * also provides the interface for creating and destroying internal
 495 * devices.
 496 */
 497struct dm_thin_new_mapping;
 498
 499struct pool_features {
 500	unsigned zero_new_blocks:1;
 501	unsigned discard_enabled:1;
 502	unsigned discard_passdown:1;
 503};
 504
 505struct pool {
 506	struct list_head list;
 507	struct dm_target *ti;	/* Only set if a pool target is bound */
 508
 509	struct mapped_device *pool_md;
 510	struct block_device *md_dev;
 511	struct dm_pool_metadata *pmd;
 512
 513	uint32_t sectors_per_block;
 514	unsigned block_shift;
 515	dm_block_t offset_mask;
 516	dm_block_t low_water_blocks;
 517
 518	struct pool_features pf;
 519	unsigned low_water_triggered:1;	/* A dm event has been sent */
 520	unsigned no_free_space:1;	/* A -ENOSPC warning has been issued */
 521
 522	struct bio_prison *prison;
 523	struct dm_kcopyd_client *copier;
 
 
 
 524
 525	struct workqueue_struct *wq;
 526	struct work_struct worker;
 527	struct delayed_work waker;
 
 
 
 
 528
 529	unsigned ref_count;
 530	unsigned long last_commit_jiffies;
 531
 532	spinlock_t lock;
 533	struct bio_list deferred_bios;
 534	struct bio_list deferred_flush_bios;
 535	struct list_head prepared_mappings;
 536	struct list_head prepared_discards;
 
 
 537
 538	struct bio_list retry_on_resume_list;
 
 
 
 
 
 
 
 539
 540	struct deferred_set shared_read_ds;
 541	struct deferred_set all_io_ds;
 
 
 
 
 
 542
 543	struct dm_thin_new_mapping *next_mapping;
 544	mempool_t *mapping_pool;
 545	mempool_t *endio_hook_pool;
 546};
 
 
 547
 548/*
 549 * Target context for a pool.
 550 */
 551struct pool_c {
 552	struct dm_target *ti;
 553	struct pool *pool;
 554	struct dm_dev *data_dev;
 555	struct dm_dev *metadata_dev;
 556	struct dm_target_callbacks callbacks;
 557
 558	dm_block_t low_water_blocks;
 559	struct pool_features pf;
 560};
 
 561
 562/*
 563 * Target context for a thin.
 564 */
 565struct thin_c {
 566	struct dm_dev *pool_dev;
 567	struct dm_dev *origin_dev;
 568	dm_thin_id dev_id;
 569
 570	struct pool *pool;
 571	struct dm_thin_device *td;
 572};
 
 573
 574/*----------------------------------------------------------------*/
 575
 576/*
 577 * A global list of pools that uses a struct mapped_device as a key.
 578 */
 579static struct dm_thin_pool_table {
 580	struct mutex mutex;
 581	struct list_head pools;
 582} dm_thin_pool_table;
 583
 584static void pool_table_init(void)
 585{
 586	mutex_init(&dm_thin_pool_table.mutex);
 587	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 588}
 589
 
 
 
 
 
 590static void __pool_table_insert(struct pool *pool)
 591{
 592	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 593	list_add(&pool->list, &dm_thin_pool_table.pools);
 594}
 595
 596static void __pool_table_remove(struct pool *pool)
 597{
 598	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 599	list_del(&pool->list);
 600}
 601
 602static struct pool *__pool_table_lookup(struct mapped_device *md)
 603{
 604	struct pool *pool = NULL, *tmp;
 605
 606	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 607
 608	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 609		if (tmp->pool_md == md) {
 610			pool = tmp;
 611			break;
 612		}
 613	}
 614
 615	return pool;
 616}
 617
 618static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 619{
 620	struct pool *pool = NULL, *tmp;
 621
 622	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 623
 624	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 625		if (tmp->md_dev == md_dev) {
 626			pool = tmp;
 627			break;
 628		}
 629	}
 630
 631	return pool;
 632}
 633
 634/*----------------------------------------------------------------*/
 635
 636struct dm_thin_endio_hook {
 637	struct thin_c *tc;
 638	struct deferred_entry *shared_read_entry;
 639	struct deferred_entry *all_io_entry;
 640	struct dm_thin_new_mapping *overwrite_mapping;
 
 
 641};
 642
 643static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
 
 
 
 
 
 
 644{
 645	struct bio *bio;
 
 
 
 
 
 
 
 
 
 
 646	struct bio_list bios;
 647
 648	bio_list_init(&bios);
 649	bio_list_merge(&bios, master);
 650	bio_list_init(master);
 651
 652	while ((bio = bio_list_pop(&bios))) {
 653		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
 
 654
 655		if (h->tc == tc)
 656			bio_endio(bio, DM_ENDIO_REQUEUE);
 657		else
 658			bio_list_add(master, bio);
 659	}
 660}
 661
 662static void requeue_io(struct thin_c *tc)
 663{
 664	struct pool *pool = tc->pool;
 665	unsigned long flags;
 
 666
 667	spin_lock_irqsave(&pool->lock, flags);
 668	__requeue_bio_list(tc, &pool->deferred_bios);
 669	__requeue_bio_list(tc, &pool->retry_on_resume_list);
 670	spin_unlock_irqrestore(&pool->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671}
 672
 673/*
 674 * This section of code contains the logic for processing a thin device's IO.
 675 * Much of the code depends on pool object resources (lists, workqueues, etc)
 676 * but most is exclusively called from the thin target rather than the thin-pool
 677 * target.
 678 */
 679
 680static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 681{
 682	return bio->bi_sector >> tc->pool->block_shift;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683}
 684
 685static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 686{
 687	struct pool *pool = tc->pool;
 
 688
 689	bio->bi_bdev = tc->pool_dev->bdev;
 690	bio->bi_sector = (block << pool->block_shift) +
 691		(bio->bi_sector & pool->offset_mask);
 
 
 
 
 
 692}
 693
 694static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 695{
 696	bio->bi_bdev = tc->origin_dev->bdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 697}
 698
 699static void issue(struct thin_c *tc, struct bio *bio)
 700{
 701	struct pool *pool = tc->pool;
 702	unsigned long flags;
 
 
 
 
 703
 704	/*
 705	 * Batch together any FUA/FLUSH bios we find and then issue
 706	 * a single commit for them in process_deferred_bios().
 
 707	 */
 708	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
 709		spin_lock_irqsave(&pool->lock, flags);
 710		bio_list_add(&pool->deferred_flush_bios, bio);
 711		spin_unlock_irqrestore(&pool->lock, flags);
 712	} else
 713		generic_make_request(bio);
 
 
 
 
 
 
 714}
 715
 716static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 717{
 718	remap_to_origin(tc, bio);
 719	issue(tc, bio);
 720}
 721
 722static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 723			    dm_block_t block)
 724{
 725	remap(tc, bio, block);
 726	issue(tc, bio);
 727}
 728
 729/*
 730 * wake_worker() is used when new work is queued and when pool_resume is
 731 * ready to continue deferred IO processing.
 732 */
 733static void wake_worker(struct pool *pool)
 734{
 735	queue_work(pool->wq, &pool->worker);
 736}
 737
 738/*----------------------------------------------------------------*/
 739
 740/*
 741 * Bio endio functions.
 742 */
 743struct dm_thin_new_mapping {
 744	struct list_head list;
 745
 746	unsigned quiesced:1;
 747	unsigned prepared:1;
 748	unsigned pass_discard:1;
 
 
 
 
 
 
 749
 
 750	struct thin_c *tc;
 751	dm_block_t virt_block;
 752	dm_block_t data_block;
 753	struct dm_bio_prison_cell *cell, *cell2;
 754	int err;
 755
 756	/*
 757	 * If the bio covers the whole area of a block then we can avoid
 758	 * zeroing or copying.  Instead this bio is hooked.  The bio will
 759	 * still be in the cell, so care has to be taken to avoid issuing
 760	 * the bio twice.
 761	 */
 762	struct bio *bio;
 763	bio_end_io_t *saved_bi_end_io;
 764};
 765
 766static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
 767{
 768	struct pool *pool = m->tc->pool;
 769
 770	if (m->quiesced && m->prepared) {
 771		list_add(&m->list, &pool->prepared_mappings);
 772		wake_worker(pool);
 773	}
 774}
 775
 776static void copy_complete(int read_err, unsigned long write_err, void *context)
 777{
 778	unsigned long flags;
 779	struct dm_thin_new_mapping *m = context;
 780	struct pool *pool = m->tc->pool;
 781
 782	m->err = read_err || write_err ? -EIO : 0;
 783
 784	spin_lock_irqsave(&pool->lock, flags);
 785	m->prepared = 1;
 786	__maybe_add_mapping(m);
 787	spin_unlock_irqrestore(&pool->lock, flags);
 788}
 789
 790static void overwrite_endio(struct bio *bio, int err)
 
 
 
 
 
 
 
 
 791{
 792	unsigned long flags;
 793	struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
 794	struct dm_thin_new_mapping *m = h->overwrite_mapping;
 795	struct pool *pool = m->tc->pool;
 796
 797	m->err = err;
 798
 799	spin_lock_irqsave(&pool->lock, flags);
 800	m->prepared = 1;
 801	__maybe_add_mapping(m);
 802	spin_unlock_irqrestore(&pool->lock, flags);
 803}
 804
 805/*----------------------------------------------------------------*/
 806
 807/*
 808 * Workqueue.
 809 */
 810
 811/*
 812 * Prepared mapping jobs.
 813 */
 814
 815/*
 816 * This sends the bios in the cell back to the deferred_bios list.
 
 817 */
 818static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
 819		       dm_block_t data_block)
 820{
 821	struct pool *pool = tc->pool;
 822	unsigned long flags;
 
 823
 824	spin_lock_irqsave(&pool->lock, flags);
 825	cell_release(cell, &pool->deferred_bios);
 826	spin_unlock_irqrestore(&tc->pool->lock, flags);
 
 827
 828	wake_worker(pool);
 
 829}
 830
 831/*
 832 * Same as cell_defer above, except it omits one particular detainee,
 833 * a write bio that covers the block and has already been processed.
 834 */
 835static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 836{
 837	struct bio_list bios;
 838	struct pool *pool = tc->pool;
 839	unsigned long flags;
 840
 841	bio_list_init(&bios);
 
 
 
 
 
 
 
 842
 843	spin_lock_irqsave(&pool->lock, flags);
 844	cell_release_no_holder(cell, &pool->deferred_bios);
 845	spin_unlock_irqrestore(&pool->lock, flags);
 
 
 
 
 
 
 846
 847	wake_worker(pool);
 
 
 
 
 
 
 848}
 849
 850static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 851{
 852	struct thin_c *tc = m->tc;
 853	struct bio *bio;
 
 854	int r;
 855
 856	bio = m->bio;
 857	if (bio)
 858		bio->bi_end_io = m->saved_bi_end_io;
 859
 860	if (m->err) {
 861		cell_error(m->cell);
 862		goto out;
 863	}
 864
 865	/*
 866	 * Commit the prepared block into the mapping btree.
 867	 * Any I/O for this block arriving after this point will get
 868	 * remapped to it directly.
 869	 */
 870	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
 871	if (r) {
 872		DMERR("dm_thin_insert_block() failed");
 873		cell_error(m->cell);
 874		goto out;
 875	}
 876
 877	/*
 878	 * Release any bios held while the block was being provisioned.
 879	 * If we are processing a write bio that completely covers the block,
 880	 * we already processed it so can ignore it now when processing
 881	 * the bios in the cell.
 882	 */
 883	if (bio) {
 884		cell_defer_except(tc, m->cell);
 885		bio_endio(bio, 0);
 886	} else
 887		cell_defer(tc, m->cell, m->data_block);
 
 
 
 888
 889out:
 890	list_del(&m->list);
 891	mempool_free(m, tc->pool->mapping_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 892}
 893
 894static void process_prepared_discard(struct dm_thin_new_mapping *m)
 895{
 896	int r;
 897	struct thin_c *tc = m->tc;
 898
 899	r = dm_thin_remove_block(tc->td, m->virt_block);
 900	if (r)
 901		DMERR("dm_thin_remove_block() failed");
 
 
 
 
 
 
 
 902
 
 
 
 
 
 903	/*
 904	 * Pass the discard down to the underlying device?
 
 905	 */
 906	if (m->pass_discard)
 907		remap_and_issue(tc, m->bio, m->data_block);
 908	else
 909		bio_endio(m->bio, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 910
 911	cell_defer_except(tc, m->cell);
 912	cell_defer_except(tc, m->cell2);
 913	mempool_free(m, tc->pool->mapping_pool);
 
 914}
 915
 916static void process_prepared(struct pool *pool, struct list_head *head,
 917			     void (*fn)(struct dm_thin_new_mapping *))
 918{
 919	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 920	struct list_head maps;
 921	struct dm_thin_new_mapping *m, *tmp;
 922
 923	INIT_LIST_HEAD(&maps);
 924	spin_lock_irqsave(&pool->lock, flags);
 925	list_splice_init(head, &maps);
 926	spin_unlock_irqrestore(&pool->lock, flags);
 927
 928	list_for_each_entry_safe(m, tmp, &maps, list)
 929		fn(m);
 930}
 931
 932/*
 933 * Deferred bio jobs.
 934 */
 935static int io_overlaps_block(struct pool *pool, struct bio *bio)
 936{
 937	return !(bio->bi_sector & pool->offset_mask) &&
 938		(bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
 939
 940}
 941
 942static int io_overwrites_block(struct pool *pool, struct bio *bio)
 943{
 944	return (bio_data_dir(bio) == WRITE) &&
 945		io_overlaps_block(pool, bio);
 946}
 947
 948static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
 949			       bio_end_io_t *fn)
 950{
 951	*save = bio->bi_end_io;
 952	bio->bi_end_io = fn;
 953}
 954
 955static int ensure_next_mapping(struct pool *pool)
 956{
 957	if (pool->next_mapping)
 958		return 0;
 959
 960	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
 961
 962	return pool->next_mapping ? 0 : -ENOMEM;
 963}
 964
 965static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
 966{
 967	struct dm_thin_new_mapping *r = pool->next_mapping;
 968
 969	BUG_ON(!pool->next_mapping);
 970
 
 
 
 
 971	pool->next_mapping = NULL;
 972
 973	return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974}
 975
 
 
 
 976static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
 977			  struct dm_dev *origin, dm_block_t data_origin,
 978			  dm_block_t data_dest,
 979			  struct dm_bio_prison_cell *cell, struct bio *bio)
 
 980{
 981	int r;
 982	struct pool *pool = tc->pool;
 983	struct dm_thin_new_mapping *m = get_next_mapping(pool);
 984
 985	INIT_LIST_HEAD(&m->list);
 986	m->quiesced = 0;
 987	m->prepared = 0;
 988	m->tc = tc;
 989	m->virt_block = virt_block;
 
 990	m->data_block = data_dest;
 991	m->cell = cell;
 992	m->err = 0;
 993	m->bio = NULL;
 994
 995	if (!ds_add_work(&pool->shared_read_ds, &m->list))
 996		m->quiesced = 1;
 
 
 
 
 
 
 
 997
 998	/*
 999	 * IO to pool_dev remaps to the pool target's data_dev.
1000	 *
1001	 * If the whole block of data is being overwritten, we can issue the
1002	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1003	 */
1004	if (io_overwrites_block(pool, bio)) {
1005		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1006
1007		h->overwrite_mapping = m;
1008		m->bio = bio;
1009		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1010		remap_and_issue(tc, bio, data_dest);
1011	} else {
1012		struct dm_io_region from, to;
1013
1014		from.bdev = origin->bdev;
1015		from.sector = data_origin * pool->sectors_per_block;
1016		from.count = pool->sectors_per_block;
1017
1018		to.bdev = tc->pool_dev->bdev;
1019		to.sector = data_dest * pool->sectors_per_block;
1020		to.count = pool->sectors_per_block;
1021
1022		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1023				   0, copy_complete, m);
1024		if (r < 0) {
1025			mempool_free(m, pool->mapping_pool);
1026			DMERR("dm_kcopyd_copy() failed");
1027			cell_error(cell);
 
 
 
 
 
1028		}
1029	}
 
 
1030}
1031
1032static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1033				   dm_block_t data_origin, dm_block_t data_dest,
1034				   struct dm_bio_prison_cell *cell, struct bio *bio)
1035{
1036	schedule_copy(tc, virt_block, tc->pool_dev,
1037		      data_origin, data_dest, cell, bio);
1038}
1039
1040static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1041				   dm_block_t data_dest,
1042				   struct dm_bio_prison_cell *cell, struct bio *bio)
1043{
1044	schedule_copy(tc, virt_block, tc->origin_dev,
1045		      virt_block, data_dest, cell, bio);
1046}
1047
1048static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1049			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1050			  struct bio *bio)
1051{
1052	struct pool *pool = tc->pool;
1053	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1054
1055	INIT_LIST_HEAD(&m->list);
1056	m->quiesced = 1;
1057	m->prepared = 0;
1058	m->tc = tc;
1059	m->virt_block = virt_block;
 
1060	m->data_block = data_block;
1061	m->cell = cell;
1062	m->err = 0;
1063	m->bio = NULL;
1064
1065	/*
1066	 * If the whole block of data is being overwritten or we are not
1067	 * zeroing pre-existing data, we can issue the bio immediately.
1068	 * Otherwise we use kcopyd to zero the data first.
1069	 */
1070	if (!pool->pf.zero_new_blocks)
 
 
 
 
 
 
1071		process_prepared_mapping(m);
 
1072
1073	else if (io_overwrites_block(pool, bio)) {
1074		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
 
 
 
 
 
1075
1076		h->overwrite_mapping = m;
1077		m->bio = bio;
1078		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1079		remap_and_issue(tc, bio, data_block);
1080	} else {
1081		int r;
1082		struct dm_io_region to;
 
 
1083
1084		to.bdev = tc->pool_dev->bdev;
1085		to.sector = data_block * pool->sectors_per_block;
1086		to.count = pool->sectors_per_block;
1087
1088		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1089		if (r < 0) {
1090			mempool_free(m, pool->mapping_pool);
1091			DMERR("dm_kcopyd_zero() failed");
1092			cell_error(cell);
1093		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094	}
1095}
1096
1097static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1098{
1099	int r;
1100	dm_block_t free_blocks;
1101	unsigned long flags;
1102	struct pool *pool = tc->pool;
1103
1104	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
 
 
 
1105	if (r)
1106		return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107
 
 
1108	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1109		DMWARN("%s: reached low water mark, sending event.",
1110		       dm_device_name(pool->pool_md));
1111		spin_lock_irqsave(&pool->lock, flags);
1112		pool->low_water_triggered = 1;
1113		spin_unlock_irqrestore(&pool->lock, flags);
1114		dm_table_event(pool->ti->table);
1115	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1116
1117	if (!free_blocks) {
1118		if (pool->no_free_space)
1119			return -ENOSPC;
1120		else {
1121			/*
1122			 * Try to commit to see if that will free up some
1123			 * more space.
1124			 */
1125			r = dm_pool_commit_metadata(pool->pmd);
1126			if (r) {
1127				DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1128				      __func__, r);
1129				return r;
1130			}
1131
1132			r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1133			if (r)
1134				return r;
 
 
1135
1136			/*
1137			 * If we still have no space we set a flag to avoid
1138			 * doing all this checking and return -ENOSPC.
1139			 */
1140			if (!free_blocks) {
1141				DMWARN("%s: no free space available.",
1142				       dm_device_name(pool->pool_md));
1143				spin_lock_irqsave(&pool->lock, flags);
1144				pool->no_free_space = 1;
1145				spin_unlock_irqrestore(&pool->lock, flags);
1146				return -ENOSPC;
1147			}
1148		}
1149	}
1150
1151	r = dm_pool_alloc_data_block(pool->pmd, result);
1152	if (r)
 
 
 
 
 
 
 
 
 
 
1153		return r;
 
 
 
 
 
 
 
 
1154
1155	return 0;
1156}
1157
1158/*
1159 * If we have run out of space, queue bios until the device is
1160 * resumed, presumably after having been reloaded with more space.
1161 */
1162static void retry_on_resume(struct bio *bio)
1163{
1164	struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1165	struct thin_c *tc = h->tc;
1166	struct pool *pool = tc->pool;
1167	unsigned long flags;
1168
1169	spin_lock_irqsave(&pool->lock, flags);
1170	bio_list_add(&pool->retry_on_resume_list, bio);
1171	spin_unlock_irqrestore(&pool->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1172}
1173
1174static void no_space(struct dm_bio_prison_cell *cell)
 
 
 
 
 
 
 
 
 
 
 
1175{
1176	struct bio *bio;
1177	struct bio_list bios;
 
 
 
 
 
 
 
1178
1179	bio_list_init(&bios);
1180	cell_release(cell, &bios);
1181
1182	while ((bio = bio_list_pop(&bios)))
1183		retry_on_resume(bio);
1184}
1185
1186static void process_discard(struct thin_c *tc, struct bio *bio)
 
1187{
1188	int r;
1189	unsigned long flags;
1190	struct pool *pool = tc->pool;
1191	struct dm_bio_prison_cell *cell, *cell2;
1192	struct cell_key key, key2;
1193	dm_block_t block = get_bio_block(tc, bio);
1194	struct dm_thin_lookup_result lookup_result;
1195	struct dm_thin_new_mapping *m;
1196
1197	build_virtual_key(tc->td, block, &key);
1198	if (bio_detain(tc->pool->prison, &key, bio, &cell))
1199		return;
 
 
 
 
 
 
1200
1201	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1202	switch (r) {
1203	case 0:
1204		/*
1205		 * Check nobody is fiddling with this pool block.  This can
1206		 * happen if someone's in the process of breaking sharing
1207		 * on this block.
1208		 */
1209		build_data_key(tc->td, lookup_result.block, &key2);
1210		if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1211			cell_release_singleton(cell, bio);
1212			break;
1213		}
1214
1215		if (io_overlaps_block(pool, bio)) {
1216			/*
1217			 * IO may still be going to the destination block.  We must
1218			 * quiesce before we can do the removal.
1219			 */
1220			m = get_next_mapping(pool);
1221			m->tc = tc;
1222			m->pass_discard = (!lookup_result.shared) & pool->pf.discard_passdown;
1223			m->virt_block = block;
1224			m->data_block = lookup_result.block;
1225			m->cell = cell;
1226			m->cell2 = cell2;
1227			m->err = 0;
1228			m->bio = bio;
1229
1230			if (!ds_add_work(&pool->all_io_ds, &m->list)) {
1231				spin_lock_irqsave(&pool->lock, flags);
1232				list_add(&m->list, &pool->prepared_discards);
1233				spin_unlock_irqrestore(&pool->lock, flags);
1234				wake_worker(pool);
1235			}
1236		} else {
1237			/*
1238			 * This path is hit if people are ignoring
1239			 * limits->discard_granularity.  It ignores any
1240			 * part of the discard that is in a subsequent
1241			 * block.
1242			 */
1243			sector_t offset = bio->bi_sector - (block << pool->block_shift);
1244			unsigned remaining = (pool->sectors_per_block - offset) << 9;
1245			bio->bi_size = min(bio->bi_size, remaining);
1246
1247			cell_release_singleton(cell, bio);
1248			cell_release_singleton(cell2, bio);
1249			if ((!lookup_result.shared) && pool->pf.discard_passdown)
1250				remap_and_issue(tc, bio, lookup_result.block);
1251			else
1252				bio_endio(bio, 0);
1253		}
1254		break;
1255
1256	case -ENODATA:
1257		/*
1258		 * It isn't provisioned, just forget it.
 
1259		 */
1260		cell_release_singleton(cell, bio);
1261		bio_endio(bio, 0);
1262		break;
 
 
 
 
 
1263
1264	default:
1265		DMERR("discard: find block unexpectedly returned %d", r);
1266		cell_release_singleton(cell, bio);
1267		bio_io_error(bio);
1268		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1269	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1270}
1271
1272static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1273			  struct cell_key *key,
1274			  struct dm_thin_lookup_result *lookup_result,
1275			  struct dm_bio_prison_cell *cell)
1276{
1277	int r;
1278	dm_block_t data_block;
 
1279
1280	r = alloc_data_block(tc, &data_block);
1281	switch (r) {
1282	case 0:
1283		schedule_internal_copy(tc, block, lookup_result->block,
1284				       data_block, cell, bio);
1285		break;
1286
1287	case -ENOSPC:
1288		no_space(cell);
1289		break;
1290
1291	default:
1292		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1293		cell_error(cell);
 
1294		break;
1295	}
1296}
1297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1298static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1299			       dm_block_t block,
1300			       struct dm_thin_lookup_result *lookup_result)
 
1301{
1302	struct dm_bio_prison_cell *cell;
1303	struct pool *pool = tc->pool;
1304	struct cell_key key;
1305
1306	/*
1307	 * If cell is already occupied, then sharing is already in the process
1308	 * of being broken so we have nothing further to do here.
1309	 */
1310	build_data_key(tc->td, lookup_result->block, &key);
1311	if (bio_detain(pool->prison, &key, bio, &cell))
 
1312		return;
 
1313
1314	if (bio_data_dir(bio) == WRITE)
1315		break_sharing(tc, bio, block, &key, lookup_result, cell);
1316	else {
1317		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1318
1319		h->shared_read_entry = ds_inc(&pool->shared_read_ds);
1320
1321		cell_release_singleton(cell, bio);
 
1322		remap_and_issue(tc, bio, lookup_result->block);
 
 
 
1323	}
1324}
1325
1326static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1327			    struct dm_bio_prison_cell *cell)
1328{
1329	int r;
1330	dm_block_t data_block;
 
1331
1332	/*
1333	 * Remap empty bios (flushes) immediately, without provisioning.
1334	 */
1335	if (!bio->bi_size) {
1336		cell_release_singleton(cell, bio);
 
 
1337		remap_and_issue(tc, bio, 0);
1338		return;
1339	}
1340
1341	/*
1342	 * Fill read bios with zeroes and complete them immediately.
1343	 */
1344	if (bio_data_dir(bio) == READ) {
1345		zero_fill_bio(bio);
1346		cell_release_singleton(cell, bio);
1347		bio_endio(bio, 0);
1348		return;
1349	}
1350
1351	r = alloc_data_block(tc, &data_block);
1352	switch (r) {
1353	case 0:
1354		if (tc->origin_dev)
1355			schedule_external_copy(tc, block, data_block, cell, bio);
1356		else
1357			schedule_zero(tc, block, data_block, cell, bio);
1358		break;
1359
1360	case -ENOSPC:
1361		no_space(cell);
1362		break;
1363
1364	default:
1365		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1366		cell_error(cell);
 
1367		break;
1368	}
1369}
1370
1371static void process_bio(struct thin_c *tc, struct bio *bio)
1372{
1373	int r;
 
 
1374	dm_block_t block = get_bio_block(tc, bio);
1375	struct dm_bio_prison_cell *cell;
1376	struct cell_key key;
1377	struct dm_thin_lookup_result lookup_result;
1378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1379	/*
1380	 * If cell is already occupied, then the block is already
1381	 * being provisioned so we have nothing further to do here.
1382	 */
1383	build_virtual_key(tc->td, block, &key);
1384	if (bio_detain(tc->pool->prison, &key, bio, &cell))
1385		return;
1386
 
 
 
 
 
 
 
 
 
 
 
1387	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1388	switch (r) {
1389	case 0:
1390		/*
1391		 * We can release this cell now.  This thread is the only
1392		 * one that puts bios into a cell, and we know there were
1393		 * no preceding bios.
1394		 */
1395		/*
1396		 * TODO: this will probably have to change when discard goes
1397		 * back in.
1398		 */
1399		cell_release_singleton(cell, bio);
1400
1401		if (lookup_result.shared)
1402			process_shared_bio(tc, bio, block, &lookup_result);
1403		else
1404			remap_and_issue(tc, bio, lookup_result.block);
 
 
 
1405		break;
1406
1407	case -ENODATA:
1408		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1409			cell_release_singleton(cell, bio);
 
 
 
 
 
 
 
1410			remap_to_origin_and_issue(tc, bio);
1411		} else
1412			provision_block(tc, bio, block, cell);
 
 
 
1413		break;
1414
1415	default:
1416		DMERR("dm_thin_find_block() failed, error = %d", r);
1417		cell_release_singleton(cell, bio);
 
 
1418		bio_io_error(bio);
1419		break;
1420	}
1421}
1422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1423static int need_commit_due_to_time(struct pool *pool)
1424{
1425	return jiffies < pool->last_commit_jiffies ||
1426	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1427}
1428
1429static void process_deferred_bios(struct pool *pool)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1430{
1431	unsigned long flags;
1432	struct bio *bio;
1433	struct bio_list bios;
1434	int r;
1435
1436	bio_list_init(&bios);
 
 
1437
1438	spin_lock_irqsave(&pool->lock, flags);
1439	bio_list_merge(&bios, &pool->deferred_bios);
1440	bio_list_init(&pool->deferred_bios);
1441	spin_unlock_irqrestore(&pool->lock, flags);
1442
1443	while ((bio = bio_list_pop(&bios))) {
1444		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1445		struct thin_c *tc = h->tc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446
 
 
 
 
1447		/*
1448		 * If we've got no free new_mapping structs, and processing
1449		 * this bio might require one, we pause until there are some
1450		 * prepared mappings to process.
1451		 */
1452		if (ensure_next_mapping(pool)) {
1453			spin_lock_irqsave(&pool->lock, flags);
1454			bio_list_merge(&pool->deferred_bios, &bios);
1455			spin_unlock_irqrestore(&pool->lock, flags);
1456
1457			break;
1458		}
1459
1460		if (bio->bi_rw & REQ_DISCARD)
1461			process_discard(tc, bio);
1462		else
1463			process_bio(tc, bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1464	}
1465
1466	/*
1467	 * If there are any deferred flush bios, we must commit
1468	 * the metadata before issuing them.
1469	 */
1470	bio_list_init(&bios);
1471	spin_lock_irqsave(&pool->lock, flags);
 
 
1472	bio_list_merge(&bios, &pool->deferred_flush_bios);
1473	bio_list_init(&pool->deferred_flush_bios);
1474	spin_unlock_irqrestore(&pool->lock, flags);
1475
1476	if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
 
 
 
 
 
1477		return;
1478
1479	r = dm_pool_commit_metadata(pool->pmd);
1480	if (r) {
1481		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1482		      __func__, r);
1483		while ((bio = bio_list_pop(&bios)))
1484			bio_io_error(bio);
1485		return;
1486	}
1487	pool->last_commit_jiffies = jiffies;
1488
1489	while ((bio = bio_list_pop(&bios)))
1490		generic_make_request(bio);
 
 
 
 
 
 
 
 
 
 
 
1491}
1492
1493static void do_worker(struct work_struct *ws)
1494{
1495	struct pool *pool = container_of(ws, struct pool, worker);
1496
1497	process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
1498	process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
 
 
 
 
 
 
 
1499	process_deferred_bios(pool);
 
1500}
1501
1502/*
1503 * We want to commit periodically so that not too much
1504 * unwritten data builds up.
1505 */
1506static void do_waker(struct work_struct *ws)
1507{
1508	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1509	wake_worker(pool);
1510	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1511}
1512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1513/*----------------------------------------------------------------*/
1514
1515/*
1516 * Mapping functions.
1517 */
1518
1519/*
1520 * Called only while mapping a thin bio to hand it over to the workqueue.
1521 */
1522static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1523{
1524	unsigned long flags;
1525	struct pool *pool = tc->pool;
1526
1527	spin_lock_irqsave(&pool->lock, flags);
1528	bio_list_add(&pool->deferred_bios, bio);
1529	spin_unlock_irqrestore(&pool->lock, flags);
1530
1531	wake_worker(pool);
1532}
1533
1534static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
 
 
 
 
 
 
 
 
 
1535{
1536	struct pool *pool = tc->pool;
1537	struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
 
 
 
 
 
 
 
 
 
 
 
 
1538
1539	h->tc = tc;
1540	h->shared_read_entry = NULL;
1541	h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
1542	h->overwrite_mapping = NULL;
1543
1544	return h;
1545}
1546
1547/*
1548 * Non-blocking function called from the thin target's map function.
1549 */
1550static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1551			union map_info *map_context)
1552{
1553	int r;
1554	struct thin_c *tc = ti->private;
1555	dm_block_t block = get_bio_block(tc, bio);
1556	struct dm_thin_device *td = tc->td;
1557	struct dm_thin_lookup_result result;
 
 
1558
1559	map_context->ptr = thin_hook_bio(tc, bio);
1560	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1561		thin_defer_bio(tc, bio);
 
 
 
 
 
 
 
 
 
 
 
 
1562		return DM_MAPIO_SUBMITTED;
1563	}
1564
 
 
 
 
 
 
 
 
1565	r = dm_thin_find_block(td, block, 0, &result);
1566
1567	/*
1568	 * Note that we defer readahead too.
1569	 */
1570	switch (r) {
1571	case 0:
1572		if (unlikely(result.shared)) {
1573			/*
1574			 * We have a race condition here between the
1575			 * result.shared value returned by the lookup and
1576			 * snapshot creation, which may cause new
1577			 * sharing.
1578			 *
1579			 * To avoid this always quiesce the origin before
1580			 * taking the snap.  You want to do this anyway to
1581			 * ensure a consistent application view
1582			 * (i.e. lockfs).
1583			 *
1584			 * More distant ancestors are irrelevant. The
1585			 * shared flag will be set in their case.
1586			 */
1587			thin_defer_bio(tc, bio);
1588			r = DM_MAPIO_SUBMITTED;
1589		} else {
1590			remap(tc, bio, result.block);
1591			r = DM_MAPIO_REMAPPED;
1592		}
1593		break;
 
 
 
 
 
 
 
 
 
 
 
 
1594
1595	case -ENODATA:
 
 
 
 
 
1596		/*
1597		 * In future, the failed dm_thin_find_block above could
1598		 * provide the hint to load the metadata into cache.
 
1599		 */
1600	case -EWOULDBLOCK:
1601		thin_defer_bio(tc, bio);
1602		r = DM_MAPIO_SUBMITTED;
1603		break;
1604	}
1605
1606	return r;
1607}
1608
1609static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1610{
1611	int r;
1612	unsigned long flags;
1613	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1614
1615	spin_lock_irqsave(&pt->pool->lock, flags);
1616	r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1617	spin_unlock_irqrestore(&pt->pool->lock, flags);
1618
1619	if (!r) {
1620		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1621		r = bdi_congested(&q->backing_dev_info, bdi_bits);
1622	}
 
 
1623
1624	return r;
 
 
 
 
 
 
 
1625}
1626
1627static void __requeue_bios(struct pool *pool)
1628{
1629	bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1630	bio_list_init(&pool->retry_on_resume_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1631}
1632
1633/*----------------------------------------------------------------
1634 * Binding of control targets to a pool object
1635 *--------------------------------------------------------------*/
1636static int bind_control_target(struct pool *pool, struct dm_target *ti)
1637{
1638	struct pool_c *pt = ti->private;
1639
 
 
 
 
 
 
 
 
 
 
 
 
 
1640	pool->ti = ti;
 
1641	pool->low_water_blocks = pt->low_water_blocks;
1642	pool->pf = pt->pf;
1643
1644	/*
1645	 * If discard_passdown was enabled verify that the data device
1646	 * supports discards.  Disable discard_passdown if not; otherwise
1647	 * -EOPNOTSUPP will be returned.
1648	 */
1649	if (pt->pf.discard_passdown) {
1650		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1651		if (!q || !blk_queue_discard(q)) {
1652			char buf[BDEVNAME_SIZE];
1653			DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
1654			       bdevname(pt->data_dev->bdev, buf));
1655			pool->pf.discard_passdown = 0;
1656		}
1657	}
1658
1659	return 0;
1660}
1661
1662static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1663{
1664	if (pool->ti == ti)
1665		pool->ti = NULL;
1666}
1667
1668/*----------------------------------------------------------------
1669 * Pool creation
1670 *--------------------------------------------------------------*/
1671/* Initialize pool features. */
1672static void pool_features_init(struct pool_features *pf)
1673{
1674	pf->zero_new_blocks = 1;
1675	pf->discard_enabled = 1;
1676	pf->discard_passdown = 1;
 
 
1677}
1678
1679static void __pool_destroy(struct pool *pool)
1680{
1681	__pool_table_remove(pool);
1682
 
1683	if (dm_pool_metadata_close(pool->pmd) < 0)
1684		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1685
1686	prison_destroy(pool->prison);
1687	dm_kcopyd_client_destroy(pool->copier);
1688
1689	if (pool->wq)
1690		destroy_workqueue(pool->wq);
1691
1692	if (pool->next_mapping)
1693		mempool_free(pool->next_mapping, pool->mapping_pool);
1694	mempool_destroy(pool->mapping_pool);
1695	mempool_destroy(pool->endio_hook_pool);
 
 
1696	kfree(pool);
1697}
1698
1699static struct kmem_cache *_new_mapping_cache;
1700static struct kmem_cache *_endio_hook_cache;
1701
1702static struct pool *pool_create(struct mapped_device *pool_md,
1703				struct block_device *metadata_dev,
1704				unsigned long block_size, char **error)
 
 
1705{
1706	int r;
1707	void *err_p;
1708	struct pool *pool;
1709	struct dm_pool_metadata *pmd;
 
1710
1711	pmd = dm_pool_metadata_open(metadata_dev, block_size);
1712	if (IS_ERR(pmd)) {
1713		*error = "Error creating metadata object";
1714		return (struct pool *)pmd;
1715	}
1716
1717	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1718	if (!pool) {
1719		*error = "Error allocating memory for pool";
1720		err_p = ERR_PTR(-ENOMEM);
1721		goto bad_pool;
1722	}
1723
1724	pool->pmd = pmd;
1725	pool->sectors_per_block = block_size;
1726	pool->block_shift = ffs(block_size) - 1;
1727	pool->offset_mask = block_size - 1;
 
 
1728	pool->low_water_blocks = 0;
1729	pool_features_init(&pool->pf);
1730	pool->prison = prison_create(PRISON_CELLS);
1731	if (!pool->prison) {
1732		*error = "Error creating pool's bio prison";
1733		err_p = ERR_PTR(-ENOMEM);
1734		goto bad_prison;
1735	}
1736
1737	pool->copier = dm_kcopyd_client_create();
1738	if (IS_ERR(pool->copier)) {
1739		r = PTR_ERR(pool->copier);
1740		*error = "Error creating pool's kcopyd client";
1741		err_p = ERR_PTR(r);
1742		goto bad_kcopyd_client;
1743	}
1744
1745	/*
1746	 * Create singlethreaded workqueue that will service all devices
1747	 * that use this metadata.
1748	 */
1749	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1750	if (!pool->wq) {
1751		*error = "Error creating pool's workqueue";
1752		err_p = ERR_PTR(-ENOMEM);
1753		goto bad_wq;
1754	}
1755
 
1756	INIT_WORK(&pool->worker, do_worker);
1757	INIT_DELAYED_WORK(&pool->waker, do_waker);
 
1758	spin_lock_init(&pool->lock);
1759	bio_list_init(&pool->deferred_bios);
1760	bio_list_init(&pool->deferred_flush_bios);
 
1761	INIT_LIST_HEAD(&pool->prepared_mappings);
1762	INIT_LIST_HEAD(&pool->prepared_discards);
1763	pool->low_water_triggered = 0;
1764	pool->no_free_space = 0;
1765	bio_list_init(&pool->retry_on_resume_list);
1766	ds_init(&pool->shared_read_ds);
1767	ds_init(&pool->all_io_ds);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1768
1769	pool->next_mapping = NULL;
1770	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1771						      _new_mapping_cache);
1772	if (!pool->mapping_pool) {
1773		*error = "Error creating pool's mapping mempool";
1774		err_p = ERR_PTR(-ENOMEM);
1775		goto bad_mapping_pool;
1776	}
1777
1778	pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
1779							 _endio_hook_cache);
1780	if (!pool->endio_hook_pool) {
1781		*error = "Error creating pool's endio_hook mempool";
 
1782		err_p = ERR_PTR(-ENOMEM);
1783		goto bad_endio_hook_pool;
1784	}
 
1785	pool->ref_count = 1;
1786	pool->last_commit_jiffies = jiffies;
1787	pool->pool_md = pool_md;
1788	pool->md_dev = metadata_dev;
 
1789	__pool_table_insert(pool);
1790
1791	return pool;
1792
1793bad_endio_hook_pool:
1794	mempool_destroy(pool->mapping_pool);
1795bad_mapping_pool:
 
 
 
 
1796	destroy_workqueue(pool->wq);
1797bad_wq:
1798	dm_kcopyd_client_destroy(pool->copier);
1799bad_kcopyd_client:
1800	prison_destroy(pool->prison);
1801bad_prison:
1802	kfree(pool);
1803bad_pool:
1804	if (dm_pool_metadata_close(pmd))
1805		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1806
1807	return err_p;
1808}
1809
1810static void __pool_inc(struct pool *pool)
1811{
1812	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1813	pool->ref_count++;
1814}
1815
1816static void __pool_dec(struct pool *pool)
1817{
1818	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1819	BUG_ON(!pool->ref_count);
1820	if (!--pool->ref_count)
1821		__pool_destroy(pool);
1822}
1823
1824static struct pool *__pool_find(struct mapped_device *pool_md,
1825				struct block_device *metadata_dev,
1826				unsigned long block_size, char **error,
1827				int *created)
 
1828{
1829	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1830
1831	if (pool) {
1832		if (pool->pool_md != pool_md)
 
1833			return ERR_PTR(-EBUSY);
 
 
 
 
 
1834		__pool_inc(pool);
1835
1836	} else {
1837		pool = __pool_table_lookup(pool_md);
1838		if (pool) {
1839			if (pool->md_dev != metadata_dev)
 
1840				return ERR_PTR(-EINVAL);
 
1841			__pool_inc(pool);
1842
1843		} else {
1844			pool = pool_create(pool_md, metadata_dev, block_size, error);
1845			*created = 1;
1846		}
1847	}
1848
1849	return pool;
1850}
1851
1852/*----------------------------------------------------------------
1853 * Pool target methods
1854 *--------------------------------------------------------------*/
1855static void pool_dtr(struct dm_target *ti)
1856{
1857	struct pool_c *pt = ti->private;
1858
1859	mutex_lock(&dm_thin_pool_table.mutex);
1860
1861	unbind_control_target(pt->pool, ti);
1862	__pool_dec(pt->pool);
1863	dm_put_device(ti, pt->metadata_dev);
1864	dm_put_device(ti, pt->data_dev);
1865	kfree(pt);
1866
1867	mutex_unlock(&dm_thin_pool_table.mutex);
1868}
1869
1870static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1871			       struct dm_target *ti)
1872{
1873	int r;
1874	unsigned argc;
1875	const char *arg_name;
1876
1877	static struct dm_arg _args[] = {
1878		{0, 3, "Invalid number of pool feature arguments"},
1879	};
1880
1881	/*
1882	 * No feature arguments supplied.
1883	 */
1884	if (!as->argc)
1885		return 0;
1886
1887	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1888	if (r)
1889		return -EINVAL;
1890
1891	while (argc && !r) {
1892		arg_name = dm_shift_arg(as);
1893		argc--;
1894
1895		if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1896			pf->zero_new_blocks = 0;
1897			continue;
1898		} else if (!strcasecmp(arg_name, "ignore_discard")) {
1899			pf->discard_enabled = 0;
1900			continue;
1901		} else if (!strcasecmp(arg_name, "no_discard_passdown")) {
1902			pf->discard_passdown = 0;
1903			continue;
1904		}
1905
1906		ti->error = "Unrecognised pool feature requested";
1907		r = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1908	}
1909
1910	return r;
1911}
1912
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1913/*
1914 * thin-pool <metadata dev> <data dev>
1915 *	     <data block size (sectors)>
1916 *	     <low water mark (blocks)>
1917 *	     [<#feature args> [<arg>]*]
1918 *
1919 * Optional feature arguments are:
1920 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1921 *	     ignore_discard: disable discard
1922 *	     no_discard_passdown: don't pass discards down to the data device
 
 
1923 */
1924static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1925{
1926	int r, pool_created = 0;
1927	struct pool_c *pt;
1928	struct pool *pool;
1929	struct pool_features pf;
1930	struct dm_arg_set as;
1931	struct dm_dev *data_dev;
1932	unsigned long block_size;
1933	dm_block_t low_water_blocks;
1934	struct dm_dev *metadata_dev;
1935	sector_t metadata_dev_size;
1936	char b[BDEVNAME_SIZE];
1937
1938	/*
1939	 * FIXME Remove validation from scope of lock.
1940	 */
1941	mutex_lock(&dm_thin_pool_table.mutex);
1942
1943	if (argc < 4) {
1944		ti->error = "Invalid argument count";
1945		r = -EINVAL;
1946		goto out_unlock;
1947	}
 
1948	as.argc = argc;
1949	as.argv = argv;
1950
1951	r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1952	if (r) {
1953		ti->error = "Error opening metadata block device";
1954		goto out_unlock;
1955	}
1956
1957	metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1958	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1959		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1960		       bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1961
1962	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1963	if (r) {
1964		ti->error = "Error getting data device";
1965		goto out_metadata;
1966	}
1967
1968	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1969	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1970	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1971	    !is_power_of_2(block_size)) {
1972		ti->error = "Invalid block size";
1973		r = -EINVAL;
1974		goto out;
1975	}
1976
1977	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1978		ti->error = "Invalid low water mark";
1979		r = -EINVAL;
1980		goto out;
1981	}
1982
1983	/*
1984	 * Set default pool features.
1985	 */
1986	pool_features_init(&pf);
1987
1988	dm_consume_args(&as, 4);
1989	r = parse_pool_features(&as, &pf, ti);
1990	if (r)
1991		goto out;
1992
1993	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1994	if (!pt) {
1995		r = -ENOMEM;
1996		goto out;
1997	}
1998
1999	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2000			   block_size, &ti->error, &pool_created);
2001	if (IS_ERR(pool)) {
2002		r = PTR_ERR(pool);
2003		goto out_free_pt;
2004	}
2005
2006	/*
2007	 * 'pool_created' reflects whether this is the first table load.
2008	 * Top level discard support is not allowed to be changed after
2009	 * initial load.  This would require a pool reload to trigger thin
2010	 * device changes.
2011	 */
2012	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2013		ti->error = "Discard support cannot be disabled once enabled";
2014		r = -EINVAL;
2015		goto out_flags_changed;
2016	}
2017
2018	pt->pool = pool;
2019	pt->ti = ti;
2020	pt->metadata_dev = metadata_dev;
2021	pt->data_dev = data_dev;
2022	pt->low_water_blocks = low_water_blocks;
2023	pt->pf = pf;
2024	ti->num_flush_requests = 1;
 
2025	/*
2026	 * Only need to enable discards if the pool should pass
2027	 * them down to the data device.  The thin device's discard
2028	 * processing will cause mappings to be removed from the btree.
2029	 */
2030	if (pf.discard_enabled && pf.discard_passdown) {
2031		ti->num_discard_requests = 1;
 
2032		/*
2033		 * Setting 'discards_supported' circumvents the normal
2034		 * stacking of discard limits (this keeps the pool and
2035		 * thin devices' discard limits consistent).
2036		 */
2037		ti->discards_supported = 1;
2038	}
2039	ti->private = pt;
2040
2041	pt->callbacks.congested_fn = pool_is_congested;
2042	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
 
 
 
 
 
 
 
2043
2044	mutex_unlock(&dm_thin_pool_table.mutex);
2045
2046	return 0;
2047
2048out_flags_changed:
2049	__pool_dec(pool);
2050out_free_pt:
2051	kfree(pt);
2052out:
2053	dm_put_device(ti, data_dev);
2054out_metadata:
2055	dm_put_device(ti, metadata_dev);
2056out_unlock:
2057	mutex_unlock(&dm_thin_pool_table.mutex);
2058
2059	return r;
2060}
2061
2062static int pool_map(struct dm_target *ti, struct bio *bio,
2063		    union map_info *map_context)
2064{
2065	int r;
2066	struct pool_c *pt = ti->private;
2067	struct pool *pool = pt->pool;
2068	unsigned long flags;
2069
2070	/*
2071	 * As this is a singleton target, ti->begin is always zero.
2072	 */
2073	spin_lock_irqsave(&pool->lock, flags);
2074	bio->bi_bdev = pt->data_dev->bdev;
2075	r = DM_MAPIO_REMAPPED;
2076	spin_unlock_irqrestore(&pool->lock, flags);
2077
2078	return r;
2079}
2080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2081/*
2082 * Retrieves the number of blocks of the data device from
2083 * the superblock and compares it to the actual device size,
2084 * thus resizing the data device in case it has grown.
2085 *
2086 * This both copes with opening preallocated data devices in the ctr
2087 * being followed by a resume
2088 * -and-
2089 * calling the resume method individually after userspace has
2090 * grown the data device in reaction to a table event.
2091 */
2092static int pool_preresume(struct dm_target *ti)
2093{
2094	int r;
 
2095	struct pool_c *pt = ti->private;
2096	struct pool *pool = pt->pool;
2097	dm_block_t data_size, sb_data_size;
2098
2099	/*
2100	 * Take control of the pool object.
2101	 */
2102	r = bind_control_target(pool, ti);
2103	if (r)
2104		return r;
2105
2106	data_size = ti->len >> pool->block_shift;
2107	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2108	if (r) {
2109		DMERR("failed to retrieve data device size");
2110		return r;
2111	}
2112
2113	if (data_size < sb_data_size) {
2114		DMERR("pool target too small, is %llu blocks (expected %llu)",
2115		      data_size, sb_data_size);
2116		return -EINVAL;
2117
2118	} else if (data_size > sb_data_size) {
2119		r = dm_pool_resize_data_dev(pool->pmd, data_size);
2120		if (r) {
2121			DMERR("failed to resize data device");
2122			return r;
2123		}
2124
2125		r = dm_pool_commit_metadata(pool->pmd);
2126		if (r) {
2127			DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2128			      __func__, r);
2129			return r;
2130		}
 
 
 
 
 
 
2131	}
 
2132
2133	return 0;
 
 
 
 
 
 
 
 
 
2134}
2135
2136static void pool_resume(struct dm_target *ti)
2137{
2138	struct pool_c *pt = ti->private;
2139	struct pool *pool = pt->pool;
2140	unsigned long flags;
2141
2142	spin_lock_irqsave(&pool->lock, flags);
2143	pool->low_water_triggered = 0;
2144	pool->no_free_space = 0;
2145	__requeue_bios(pool);
2146	spin_unlock_irqrestore(&pool->lock, flags);
 
 
 
 
 
 
2147
2148	do_waker(&pool->waker.work);
2149}
2150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2151static void pool_postsuspend(struct dm_target *ti)
2152{
2153	int r;
2154	struct pool_c *pt = ti->private;
2155	struct pool *pool = pt->pool;
2156
2157	cancel_delayed_work(&pool->waker);
 
2158	flush_workqueue(pool->wq);
2159
2160	r = dm_pool_commit_metadata(pool->pmd);
2161	if (r < 0) {
2162		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2163		      __func__, r);
2164		/* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
2165	}
2166}
2167
2168static int check_arg_count(unsigned argc, unsigned args_required)
2169{
2170	if (argc != args_required) {
2171		DMWARN("Message received with %u arguments instead of %u.",
2172		       argc, args_required);
2173		return -EINVAL;
2174	}
2175
2176	return 0;
2177}
2178
2179static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2180{
2181	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2182	    *dev_id <= MAX_DEV_ID)
2183		return 0;
2184
2185	if (warning)
2186		DMWARN("Message received with invalid device id: %s", arg);
2187
2188	return -EINVAL;
2189}
2190
2191static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2192{
2193	dm_thin_id dev_id;
2194	int r;
2195
2196	r = check_arg_count(argc, 2);
2197	if (r)
2198		return r;
2199
2200	r = read_dev_id(argv[1], &dev_id, 1);
2201	if (r)
2202		return r;
2203
2204	r = dm_pool_create_thin(pool->pmd, dev_id);
2205	if (r) {
2206		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2207		       argv[1]);
2208		return r;
2209	}
2210
2211	return 0;
2212}
2213
2214static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2215{
2216	dm_thin_id dev_id;
2217	dm_thin_id origin_dev_id;
2218	int r;
2219
2220	r = check_arg_count(argc, 3);
2221	if (r)
2222		return r;
2223
2224	r = read_dev_id(argv[1], &dev_id, 1);
2225	if (r)
2226		return r;
2227
2228	r = read_dev_id(argv[2], &origin_dev_id, 1);
2229	if (r)
2230		return r;
2231
2232	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2233	if (r) {
2234		DMWARN("Creation of new snapshot %s of device %s failed.",
2235		       argv[1], argv[2]);
2236		return r;
2237	}
2238
2239	return 0;
2240}
2241
2242static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2243{
2244	dm_thin_id dev_id;
2245	int r;
2246
2247	r = check_arg_count(argc, 2);
2248	if (r)
2249		return r;
2250
2251	r = read_dev_id(argv[1], &dev_id, 1);
2252	if (r)
2253		return r;
2254
2255	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2256	if (r)
2257		DMWARN("Deletion of thin device %s failed.", argv[1]);
2258
2259	return r;
2260}
2261
2262static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2263{
2264	dm_thin_id old_id, new_id;
2265	int r;
2266
2267	r = check_arg_count(argc, 3);
2268	if (r)
2269		return r;
2270
2271	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2272		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2273		return -EINVAL;
2274	}
2275
2276	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2277		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2278		return -EINVAL;
2279	}
2280
2281	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2282	if (r) {
2283		DMWARN("Failed to change transaction id from %s to %s.",
2284		       argv[1], argv[2]);
2285		return r;
2286	}
2287
2288	return 0;
2289}
2290
2291static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2292{
2293	int r;
2294
2295	r = check_arg_count(argc, 1);
2296	if (r)
2297		return r;
2298
2299	r = dm_pool_commit_metadata(pool->pmd);
2300	if (r) {
2301		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2302		      __func__, r);
2303		return r;
2304	}
2305
2306	r = dm_pool_reserve_metadata_snap(pool->pmd);
2307	if (r)
2308		DMWARN("reserve_metadata_snap message failed.");
2309
2310	return r;
2311}
2312
2313static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2314{
2315	int r;
2316
2317	r = check_arg_count(argc, 1);
2318	if (r)
2319		return r;
2320
2321	r = dm_pool_release_metadata_snap(pool->pmd);
2322	if (r)
2323		DMWARN("release_metadata_snap message failed.");
2324
2325	return r;
2326}
2327
2328/*
2329 * Messages supported:
2330 *   create_thin	<dev_id>
2331 *   create_snap	<dev_id> <origin_id>
2332 *   delete		<dev_id>
2333 *   trim		<dev_id> <new_size_in_sectors>
2334 *   set_transaction_id <current_trans_id> <new_trans_id>
2335 *   reserve_metadata_snap
2336 *   release_metadata_snap
2337 */
2338static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
 
2339{
2340	int r = -EINVAL;
2341	struct pool_c *pt = ti->private;
2342	struct pool *pool = pt->pool;
2343
 
 
 
 
 
 
2344	if (!strcasecmp(argv[0], "create_thin"))
2345		r = process_create_thin_mesg(argc, argv, pool);
2346
2347	else if (!strcasecmp(argv[0], "create_snap"))
2348		r = process_create_snap_mesg(argc, argv, pool);
2349
2350	else if (!strcasecmp(argv[0], "delete"))
2351		r = process_delete_mesg(argc, argv, pool);
2352
2353	else if (!strcasecmp(argv[0], "set_transaction_id"))
2354		r = process_set_transaction_id_mesg(argc, argv, pool);
2355
2356	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2357		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2358
2359	else if (!strcasecmp(argv[0], "release_metadata_snap"))
2360		r = process_release_metadata_snap_mesg(argc, argv, pool);
2361
2362	else
2363		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2364
2365	if (!r) {
2366		r = dm_pool_commit_metadata(pool->pmd);
2367		if (r)
2368			DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2369			      argv[0], r);
2370	}
2371
2372	return r;
2373}
2374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2375/*
2376 * Status line is:
2377 *    <transaction id> <used metadata sectors>/<total metadata sectors>
2378 *    <used data sectors>/<total data sectors> <held metadata root>
 
2379 */
2380static int pool_status(struct dm_target *ti, status_type_t type,
2381		       char *result, unsigned maxlen)
2382{
2383	int r, count;
2384	unsigned sz = 0;
2385	uint64_t transaction_id;
2386	dm_block_t nr_free_blocks_data;
2387	dm_block_t nr_free_blocks_metadata;
2388	dm_block_t nr_blocks_data;
2389	dm_block_t nr_blocks_metadata;
2390	dm_block_t held_root;
 
2391	char buf[BDEVNAME_SIZE];
2392	char buf2[BDEVNAME_SIZE];
2393	struct pool_c *pt = ti->private;
2394	struct pool *pool = pt->pool;
2395
2396	switch (type) {
2397	case STATUSTYPE_INFO:
2398		r = dm_pool_get_metadata_transaction_id(pool->pmd,
2399							&transaction_id);
2400		if (r)
2401			return r;
2402
2403		r = dm_pool_get_free_metadata_block_count(pool->pmd,
2404							  &nr_free_blocks_metadata);
2405		if (r)
2406			return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
2407
2408		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2409		if (r)
2410			return r;
 
 
 
2411
2412		r = dm_pool_get_free_block_count(pool->pmd,
2413						 &nr_free_blocks_data);
2414		if (r)
2415			return r;
 
 
2416
2417		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2418		if (r)
2419			return r;
 
 
 
2420
2421		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2422		if (r)
2423			return r;
 
 
 
2424
2425		DMEMIT("%llu %llu/%llu %llu/%llu ",
2426		       (unsigned long long)transaction_id,
2427		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2428		       (unsigned long long)nr_blocks_metadata,
2429		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2430		       (unsigned long long)nr_blocks_data);
2431
2432		if (held_root)
2433			DMEMIT("%llu", held_root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2434		else
2435			DMEMIT("-");
 
 
 
 
 
 
 
2436
2437		break;
2438
2439	case STATUSTYPE_TABLE:
2440		DMEMIT("%s %s %lu %llu ",
2441		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2442		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2443		       (unsigned long)pool->sectors_per_block,
2444		       (unsigned long long)pt->low_water_blocks);
2445
2446		count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
2447			!pt->pf.discard_passdown;
2448		DMEMIT("%u ", count);
2449
2450		if (!pool->pf.zero_new_blocks)
2451			DMEMIT("skip_block_zeroing ");
2452
2453		if (!pool->pf.discard_enabled)
2454			DMEMIT("ignore_discard ");
2455
2456		if (!pt->pf.discard_passdown)
2457			DMEMIT("no_discard_passdown ");
2458
2459		break;
2460	}
 
2461
2462	return 0;
 
2463}
2464
2465static int pool_iterate_devices(struct dm_target *ti,
2466				iterate_devices_callout_fn fn, void *data)
2467{
2468	struct pool_c *pt = ti->private;
2469
2470	return fn(ti, pt->data_dev, 0, ti->len, data);
2471}
2472
2473static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2474		      struct bio_vec *biovec, int max_size)
2475{
2476	struct pool_c *pt = ti->private;
2477	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2478
2479	if (!q->merge_bvec_fn)
2480		return max_size;
2481
2482	bvm->bi_bdev = pt->data_dev->bdev;
2483
2484	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2485}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2486
2487static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2488{
2489	/*
2490	 * FIXME: these limits may be incompatible with the pool's data device
 
2491	 */
2492	limits->max_discard_sectors = pool->sectors_per_block;
 
 
 
 
 
 
 
2493
2494	/*
2495	 * This is just a hint, and not enforced.  We have to cope with
2496	 * bios that overlap 2 blocks.
 
2497	 */
2498	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2499	limits->discard_zeroes_data = pool->pf.zero_new_blocks;
2500}
 
 
 
 
 
 
 
2501
2502static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2503{
2504	struct pool_c *pt = ti->private;
2505	struct pool *pool = pt->pool;
2506
2507	blk_limits_io_min(limits, 0);
2508	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2509	if (pool->pf.discard_enabled)
2510		set_discard_limits(pool, limits);
2511}
2512
2513static struct target_type pool_target = {
2514	.name = "thin-pool",
2515	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2516		    DM_TARGET_IMMUTABLE,
2517	.version = {1, 2, 0},
2518	.module = THIS_MODULE,
2519	.ctr = pool_ctr,
2520	.dtr = pool_dtr,
2521	.map = pool_map,
 
 
2522	.postsuspend = pool_postsuspend,
2523	.preresume = pool_preresume,
2524	.resume = pool_resume,
2525	.message = pool_message,
2526	.status = pool_status,
2527	.merge = pool_merge,
2528	.iterate_devices = pool_iterate_devices,
2529	.io_hints = pool_io_hints,
2530};
2531
2532/*----------------------------------------------------------------
2533 * Thin target methods
2534 *--------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
2535static void thin_dtr(struct dm_target *ti)
2536{
2537	struct thin_c *tc = ti->private;
2538
 
 
 
 
 
 
 
 
2539	mutex_lock(&dm_thin_pool_table.mutex);
2540
2541	__pool_dec(tc->pool);
2542	dm_pool_close_thin_device(tc->td);
2543	dm_put_device(ti, tc->pool_dev);
2544	if (tc->origin_dev)
2545		dm_put_device(ti, tc->origin_dev);
2546	kfree(tc);
2547
2548	mutex_unlock(&dm_thin_pool_table.mutex);
2549}
2550
2551/*
2552 * Thin target parameters:
2553 *
2554 * <pool_dev> <dev_id> [origin_dev]
2555 *
2556 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2557 * dev_id: the internal device identifier
2558 * origin_dev: a device external to the pool that should act as the origin
2559 *
2560 * If the pool device has discards disabled, they get disabled for the thin
2561 * device as well.
2562 */
2563static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2564{
2565	int r;
2566	struct thin_c *tc;
2567	struct dm_dev *pool_dev, *origin_dev;
2568	struct mapped_device *pool_md;
2569
2570	mutex_lock(&dm_thin_pool_table.mutex);
2571
2572	if (argc != 2 && argc != 3) {
2573		ti->error = "Invalid argument count";
2574		r = -EINVAL;
2575		goto out_unlock;
2576	}
2577
2578	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2579	if (!tc) {
2580		ti->error = "Out of memory";
2581		r = -ENOMEM;
2582		goto out_unlock;
2583	}
 
 
 
 
 
 
2584
2585	if (argc == 3) {
 
 
 
 
 
 
2586		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2587		if (r) {
2588			ti->error = "Error opening origin device";
2589			goto bad_origin_dev;
2590		}
2591		tc->origin_dev = origin_dev;
2592	}
2593
2594	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2595	if (r) {
2596		ti->error = "Error opening pool device";
2597		goto bad_pool_dev;
2598	}
2599	tc->pool_dev = pool_dev;
2600
2601	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2602		ti->error = "Invalid device id";
2603		r = -EINVAL;
2604		goto bad_common;
2605	}
2606
2607	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2608	if (!pool_md) {
2609		ti->error = "Couldn't get pool mapped device";
2610		r = -EINVAL;
2611		goto bad_common;
2612	}
2613
2614	tc->pool = __pool_table_lookup(pool_md);
2615	if (!tc->pool) {
2616		ti->error = "Couldn't find pool object";
2617		r = -EINVAL;
2618		goto bad_pool_lookup;
2619	}
2620	__pool_inc(tc->pool);
2621
 
 
 
 
 
 
2622	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2623	if (r) {
2624		ti->error = "Couldn't open thin internal device";
2625		goto bad_thin_open;
2626	}
2627
2628	ti->split_io = tc->pool->sectors_per_block;
2629	ti->num_flush_requests = 1;
 
 
 
 
 
2630
2631	/* In case the pool supports discards, pass them on. */
2632	if (tc->pool->pf.discard_enabled) {
2633		ti->discards_supported = 1;
2634		ti->num_discard_requests = 1;
2635		ti->discard_zeroes_data_unsupported = 1;
2636	}
2637
2638	dm_put(pool_md);
2639
2640	mutex_unlock(&dm_thin_pool_table.mutex);
2641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2642	return 0;
2643
2644bad_thin_open:
 
 
2645	__pool_dec(tc->pool);
2646bad_pool_lookup:
2647	dm_put(pool_md);
2648bad_common:
2649	dm_put_device(ti, tc->pool_dev);
2650bad_pool_dev:
2651	if (tc->origin_dev)
2652		dm_put_device(ti, tc->origin_dev);
2653bad_origin_dev:
2654	kfree(tc);
2655out_unlock:
2656	mutex_unlock(&dm_thin_pool_table.mutex);
2657
2658	return r;
2659}
2660
2661static int thin_map(struct dm_target *ti, struct bio *bio,
2662		    union map_info *map_context)
2663{
2664	bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2665
2666	return thin_bio_map(ti, bio, map_context);
2667}
2668
2669static int thin_endio(struct dm_target *ti,
2670		      struct bio *bio, int err,
2671		      union map_info *map_context)
2672{
2673	unsigned long flags;
2674	struct dm_thin_endio_hook *h = map_context->ptr;
2675	struct list_head work;
2676	struct dm_thin_new_mapping *m, *tmp;
2677	struct pool *pool = h->tc->pool;
2678
2679	if (h->shared_read_entry) {
2680		INIT_LIST_HEAD(&work);
2681		ds_dec(h->shared_read_entry, &work);
2682
2683		spin_lock_irqsave(&pool->lock, flags);
2684		list_for_each_entry_safe(m, tmp, &work, list) {
2685			list_del(&m->list);
2686			m->quiesced = 1;
2687			__maybe_add_mapping(m);
2688		}
2689		spin_unlock_irqrestore(&pool->lock, flags);
2690	}
2691
2692	if (h->all_io_entry) {
2693		INIT_LIST_HEAD(&work);
2694		ds_dec(h->all_io_entry, &work);
2695		spin_lock_irqsave(&pool->lock, flags);
2696		list_for_each_entry_safe(m, tmp, &work, list)
2697			list_add(&m->list, &pool->prepared_discards);
2698		spin_unlock_irqrestore(&pool->lock, flags);
 
 
 
2699	}
2700
2701	mempool_free(h, pool->endio_hook_pool);
 
2702
2703	return 0;
2704}
2705
2706static void thin_postsuspend(struct dm_target *ti)
2707{
 
 
2708	if (dm_noflush_suspending(ti))
2709		requeue_io((struct thin_c *)ti->private);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2710}
2711
2712/*
2713 * <nr mapped sectors> <highest mapped sector>
2714 */
2715static int thin_status(struct dm_target *ti, status_type_t type,
2716		       char *result, unsigned maxlen)
2717{
2718	int r;
2719	ssize_t sz = 0;
2720	dm_block_t mapped, highest;
2721	char buf[BDEVNAME_SIZE];
2722	struct thin_c *tc = ti->private;
2723
 
 
 
 
 
2724	if (!tc->td)
2725		DMEMIT("-");
2726	else {
2727		switch (type) {
2728		case STATUSTYPE_INFO:
2729			r = dm_thin_get_mapped_count(tc->td, &mapped);
2730			if (r)
2731				return r;
 
 
2732
2733			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2734			if (r < 0)
2735				return r;
 
 
2736
2737			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2738			if (r)
2739				DMEMIT("%llu", ((highest + 1) *
2740						tc->pool->sectors_per_block) - 1);
2741			else
2742				DMEMIT("-");
2743			break;
2744
2745		case STATUSTYPE_TABLE:
2746			DMEMIT("%s %lu",
2747			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2748			       (unsigned long) tc->dev_id);
2749			if (tc->origin_dev)
2750				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2751			break;
2752		}
2753	}
2754
2755	return 0;
 
 
 
2756}
2757
2758static int thin_iterate_devices(struct dm_target *ti,
2759				iterate_devices_callout_fn fn, void *data)
2760{
2761	dm_block_t blocks;
2762	struct thin_c *tc = ti->private;
 
2763
2764	/*
2765	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2766	 * we follow a more convoluted path through to the pool's target.
2767	 */
2768	if (!tc->pool->ti)
2769		return 0;	/* nothing is bound */
2770
2771	blocks = tc->pool->ti->len >> tc->pool->block_shift;
 
2772	if (blocks)
2773		return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data);
2774
2775	return 0;
2776}
2777
2778static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2779{
2780	struct thin_c *tc = ti->private;
2781	struct pool *pool = tc->pool;
2782
2783	blk_limits_io_min(limits, 0);
2784	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2785	set_discard_limits(pool, limits);
 
 
2786}
2787
2788static struct target_type thin_target = {
2789	.name = "thin",
2790	.version = {1, 1, 0},
2791	.module	= THIS_MODULE,
2792	.ctr = thin_ctr,
2793	.dtr = thin_dtr,
2794	.map = thin_map,
2795	.end_io = thin_endio,
 
 
2796	.postsuspend = thin_postsuspend,
2797	.status = thin_status,
2798	.iterate_devices = thin_iterate_devices,
2799	.io_hints = thin_io_hints,
2800};
2801
2802/*----------------------------------------------------------------*/
2803
2804static int __init dm_thin_init(void)
2805{
2806	int r;
2807
2808	pool_table_init();
2809
2810	r = dm_register_target(&thin_target);
2811	if (r)
2812		return r;
2813
2814	r = dm_register_target(&pool_target);
2815	if (r)
2816		goto bad_pool_target;
2817
2818	r = -ENOMEM;
2819
2820	_cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
2821	if (!_cell_cache)
2822		goto bad_cell_cache;
2823
2824	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
2825	if (!_new_mapping_cache)
2826		goto bad_new_mapping_cache;
2827
2828	_endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
2829	if (!_endio_hook_cache)
2830		goto bad_endio_hook_cache;
2831
2832	return 0;
2833
2834bad_endio_hook_cache:
2835	kmem_cache_destroy(_new_mapping_cache);
2836bad_new_mapping_cache:
2837	kmem_cache_destroy(_cell_cache);
2838bad_cell_cache:
2839	dm_unregister_target(&pool_target);
2840bad_pool_target:
2841	dm_unregister_target(&thin_target);
 
 
2842
2843	return r;
2844}
2845
2846static void dm_thin_exit(void)
2847{
2848	dm_unregister_target(&thin_target);
2849	dm_unregister_target(&pool_target);
2850
2851	kmem_cache_destroy(_cell_cache);
2852	kmem_cache_destroy(_new_mapping_cache);
2853	kmem_cache_destroy(_endio_hook_cache);
 
2854}
2855
2856module_init(dm_thin_init);
2857module_exit(dm_thin_exit);
 
 
 
2858
2859MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
2860MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2861MODULE_LICENSE("GPL");
v5.14.15
   1/*
   2 * Copyright (C) 2011-2012 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "dm-bio-prison-v1.h"
   9#include "dm.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/log2.h>
  16#include <linux/list.h>
  17#include <linux/rculist.h>
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/vmalloc.h>
  22#include <linux/sort.h>
  23#include <linux/rbtree.h>
  24
  25#define	DM_MSG_PREFIX	"thin"
  26
  27/*
  28 * Tunable constants
  29 */
  30#define ENDIO_HOOK_POOL_SIZE 1024
 
  31#define MAPPING_POOL_SIZE 1024
 
  32#define COMMIT_PERIOD HZ
  33#define NO_SPACE_TIMEOUT_SECS 60
  34
  35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  36
  37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  38		"A percentage of time allocated for copy on write");
  39
  40/*
  41 * The block size of the device holding pool data must be
  42 * between 64KB and 1GB.
  43 */
  44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  46
  47/*
  48 * Device id is restricted to 24 bits.
  49 */
  50#define MAX_DEV_ID ((1 << 24) - 1)
  51
  52/*
  53 * How do we handle breaking sharing of data blocks?
  54 * =================================================
  55 *
  56 * We use a standard copy-on-write btree to store the mappings for the
  57 * devices (note I'm talking about copy-on-write of the metadata here, not
  58 * the data).  When you take an internal snapshot you clone the root node
  59 * of the origin btree.  After this there is no concept of an origin or a
  60 * snapshot.  They are just two device trees that happen to point to the
  61 * same data blocks.
  62 *
  63 * When we get a write in we decide if it's to a shared data block using
  64 * some timestamp magic.  If it is, we have to break sharing.
  65 *
  66 * Let's say we write to a shared block in what was the origin.  The
  67 * steps are:
  68 *
  69 * i) plug io further to this physical block. (see bio_prison code).
  70 *
  71 * ii) quiesce any read io to that shared data block.  Obviously
  72 * including all devices that share this block.  (see dm_deferred_set code)
  73 *
  74 * iii) copy the data block to a newly allocate block.  This step can be
  75 * missed out if the io covers the block. (schedule_copy).
  76 *
  77 * iv) insert the new mapping into the origin's btree
  78 * (process_prepared_mapping).  This act of inserting breaks some
  79 * sharing of btree nodes between the two devices.  Breaking sharing only
  80 * effects the btree of that specific device.  Btrees for the other
  81 * devices that share the block never change.  The btree for the origin
  82 * device as it was after the last commit is untouched, ie. we're using
  83 * persistent data structures in the functional programming sense.
  84 *
  85 * v) unplug io to this physical block, including the io that triggered
  86 * the breaking of sharing.
  87 *
  88 * Steps (ii) and (iii) occur in parallel.
  89 *
  90 * The metadata _doesn't_ need to be committed before the io continues.  We
  91 * get away with this because the io is always written to a _new_ block.
  92 * If there's a crash, then:
  93 *
  94 * - The origin mapping will point to the old origin block (the shared
  95 * one).  This will contain the data as it was before the io that triggered
  96 * the breaking of sharing came in.
  97 *
  98 * - The snap mapping still points to the old block.  As it would after
  99 * the commit.
 100 *
 101 * The downside of this scheme is the timestamp magic isn't perfect, and
 102 * will continue to think that data block in the snapshot device is shared
 103 * even after the write to the origin has broken sharing.  I suspect data
 104 * blocks will typically be shared by many different devices, so we're
 105 * breaking sharing n + 1 times, rather than n, where n is the number of
 106 * devices that reference this data block.  At the moment I think the
 107 * benefits far, far outweigh the disadvantages.
 108 */
 109
 110/*----------------------------------------------------------------*/
 111
 112/*
 113 * Key building.
 114 */
 115enum lock_space {
 116	VIRTUAL,
 117	PHYSICAL
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 118};
 119
 120static void build_key(struct dm_thin_device *td, enum lock_space ls,
 121		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 122{
 123	key->virtual = (ls == VIRTUAL);
 124	key->dev = dm_thin_dev_id(td);
 125	key->block_begin = b;
 126	key->block_end = e;
 
 
 
 
 
 127}
 128
 129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 130			   struct dm_cell_key *key)
 131{
 132	build_key(td, PHYSICAL, b, b + 1llu, key);
 133}
 134
 135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 136			      struct dm_cell_key *key)
 
 
 
 137{
 138	build_key(td, VIRTUAL, b, b + 1llu, key);
 139}
 
 
 
 140
 141/*----------------------------------------------------------------*/
 
 142
 143#define THROTTLE_THRESHOLD (1 * HZ)
 
 
 
 
 
 144
 145struct throttle {
 146	struct rw_semaphore lock;
 147	unsigned long threshold;
 148	bool throttle_applied;
 149};
 150
 151static void throttle_init(struct throttle *t)
 152{
 153	init_rwsem(&t->lock);
 154	t->throttle_applied = false;
 155}
 156
 157static void throttle_work_start(struct throttle *t)
 158{
 159	t->threshold = jiffies + THROTTLE_THRESHOLD;
 
 160}
 161
 162static void throttle_work_update(struct throttle *t)
 163{
 164	if (!t->throttle_applied && jiffies > t->threshold) {
 165		down_write(&t->lock);
 166		t->throttle_applied = true;
 167	}
 168}
 169
 170static void throttle_work_complete(struct throttle *t)
 171{
 172	if (t->throttle_applied) {
 173		t->throttle_applied = false;
 174		up_write(&t->lock);
 175	}
 176}
 177
 178static void throttle_lock(struct throttle *t)
 
 179{
 180	down_read(&t->lock);
 
 
 
 
 
 
 
 181}
 182
 183static void throttle_unlock(struct throttle *t)
 
 
 
 
 
 
 
 184{
 185	up_read(&t->lock);
 186}
 
 
 187
 188/*----------------------------------------------------------------*/
 189
 190/*
 191 * A pool device ties together a metadata device and a data device.  It
 192 * also provides the interface for creating and destroying internal
 193 * devices.
 194 */
 195struct dm_thin_new_mapping;
 196
 197/*
 198 * The pool runs in various modes.  Ordered in degraded order for comparisons.
 199 */
 200enum pool_mode {
 201	PM_WRITE,		/* metadata may be changed */
 202	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
 203
 204	/*
 205	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
 206	 */
 207	PM_OUT_OF_METADATA_SPACE,
 208	PM_READ_ONLY,		/* metadata may not be changed */
 
 209
 210	PM_FAIL,		/* all I/O fails */
 211};
 
 
 
 
 
 
 
 
 212
 213struct pool_features {
 214	enum pool_mode mode;
 
 
 215
 216	bool zero_new_blocks:1;
 217	bool discard_enabled:1;
 218	bool discard_passdown:1;
 219	bool error_if_no_space:1;
 220};
 221
 222struct thin_c;
 223typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 224typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 225typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 226
 227#define CELL_SORT_ARRAY_SIZE 8192
 
 228
 229struct pool {
 230	struct list_head list;
 231	struct dm_target *ti;	/* Only set if a pool target is bound */
 232
 233	struct mapped_device *pool_md;
 234	struct block_device *data_dev;
 235	struct block_device *md_dev;
 236	struct dm_pool_metadata *pmd;
 237
 238	dm_block_t low_water_blocks;
 239	uint32_t sectors_per_block;
 240	int sectors_per_block_shift;
 
 
 
 241
 242	struct pool_features pf;
 243	bool low_water_triggered:1;	/* A dm event has been sent */
 244	bool suspended:1;
 245	bool out_of_data_space:1;
 246
 247	struct dm_bio_prison *prison;
 248	struct dm_kcopyd_client *copier;
 
 
 249
 250	struct work_struct worker;
 251	struct workqueue_struct *wq;
 252	struct throttle throttle;
 253	struct delayed_work waker;
 254	struct delayed_work no_space_timeout;
 255
 256	unsigned long last_commit_jiffies;
 257	unsigned ref_count;
 
 
 258
 259	spinlock_t lock;
 260	struct bio_list deferred_flush_bios;
 261	struct bio_list deferred_flush_completions;
 262	struct list_head prepared_mappings;
 263	struct list_head prepared_discards;
 264	struct list_head prepared_discards_pt2;
 265	struct list_head active_thins;
 266
 267	struct dm_deferred_set *shared_read_ds;
 268	struct dm_deferred_set *all_io_ds;
 
 
 
 
 
 
 
 
 269
 270	struct dm_thin_new_mapping *next_mapping;
 
 271
 272	process_bio_fn process_bio;
 273	process_bio_fn process_discard;
 
 
 274
 275	process_cell_fn process_cell;
 276	process_cell_fn process_discard_cell;
 
 
 277
 278	process_mapping_fn process_prepared_mapping;
 279	process_mapping_fn process_prepared_discard;
 280	process_mapping_fn process_prepared_discard_pt2;
 
 
 
 
 281
 282	struct dm_bio_prison_cell **cell_sort_array;
 
 283
 284	mempool_t mapping_pool;
 
 285
 286	struct bio flush_bio;
 287};
 
 
 
 288
 289static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 
 
 
 290
 291static enum pool_mode get_pool_mode(struct pool *pool)
 292{
 293	return pool->pf.mode;
 294}
 
 
 295
 296static void notify_of_pool_mode_change(struct pool *pool)
 297{
 298	const char *descs[] = {
 299		"write",
 300		"out-of-data-space",
 301		"read-only",
 302		"read-only",
 303		"fail"
 304	};
 305	const char *extra_desc = NULL;
 306	enum pool_mode mode = get_pool_mode(pool);
 307
 308	if (mode == PM_OUT_OF_DATA_SPACE) {
 309		if (!pool->pf.error_if_no_space)
 310			extra_desc = " (queue IO)";
 311		else
 312			extra_desc = " (error IO)";
 313	}
 314
 315	dm_table_event(pool->ti->table);
 316	DMINFO("%s: switching pool to %s%s mode",
 317	       dm_device_name(pool->pool_md),
 318	       descs[(int)mode], extra_desc ? : "");
 319}
 320
 
 
 321/*
 322 * Target context for a pool.
 
 
 
 323 */
 324struct pool_c {
 325	struct dm_target *ti;
 326	struct pool *pool;
 327	struct dm_dev *data_dev;
 328	struct dm_dev *metadata_dev;
 329
 330	dm_block_t low_water_blocks;
 331	struct pool_features requested_pf; /* Features requested during table load */
 332	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 
 
 333};
 334
 335/*
 336 * Target context for a thin.
 337 */
 338struct thin_c {
 339	struct list_head list;
 340	struct dm_dev *pool_dev;
 341	struct dm_dev *origin_dev;
 342	sector_t origin_size;
 343	dm_thin_id dev_id;
 344
 345	struct pool *pool;
 346	struct dm_thin_device *td;
 347	struct mapped_device *thin_md;
 348
 349	bool requeue_mode:1;
 350	spinlock_t lock;
 351	struct list_head deferred_cells;
 352	struct bio_list deferred_bio_list;
 353	struct bio_list retry_on_resume_list;
 354	struct rb_root sort_bio_list; /* sorted list of deferred bios */
 
 
 
 355
 356	/*
 357	 * Ensures the thin is not destroyed until the worker has finished
 358	 * iterating the active_thins list.
 359	 */
 360	refcount_t refcount;
 361	struct completion can_destroy;
 362};
 363
 364/*----------------------------------------------------------------*/
 
 
 
 365
 366static bool block_size_is_power_of_two(struct pool *pool)
 367{
 368	return pool->sectors_per_block_shift >= 0;
 369}
 370
 371static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 372{
 373	return block_size_is_power_of_two(pool) ?
 374		(b << pool->sectors_per_block_shift) :
 375		(b * pool->sectors_per_block);
 376}
 377
 378/*----------------------------------------------------------------*/
 379
 380struct discard_op {
 381	struct thin_c *tc;
 382	struct blk_plug plug;
 383	struct bio *parent_bio;
 384	struct bio *bio;
 385};
 386
 387static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
 388{
 389	BUG_ON(!parent);
 
 
 
 
 390
 391	op->tc = tc;
 392	blk_start_plug(&op->plug);
 393	op->parent_bio = parent;
 394	op->bio = NULL;
 395}
 396
 397static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
 398{
 399	struct thin_c *tc = op->tc;
 400	sector_t s = block_to_sectors(tc->pool, data_b);
 401	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 402
 403	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
 404				      GFP_NOWAIT, 0, &op->bio);
 
 
 
 405}
 406
 407static void end_discard(struct discard_op *op, int r)
 
 
 
 408{
 409	if (op->bio) {
 410		/*
 411		 * Even if one of the calls to issue_discard failed, we
 412		 * need to wait for the chain to complete.
 413		 */
 414		bio_chain(op->bio, op->parent_bio);
 415		bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
 416		submit_bio(op->bio);
 
 
 
 
 
 417	}
 
 418
 419	blk_finish_plug(&op->plug);
 420
 421	/*
 422	 * Even if r is set, there could be sub discards in flight that we
 423	 * need to wait for.
 424	 */
 425	if (r && !op->parent_bio->bi_status)
 426		op->parent_bio->bi_status = errno_to_blk_status(r);
 427	bio_endio(op->parent_bio);
 428}
 429
 430/*----------------------------------------------------------------*/
 431
 432/*
 433 * wake_worker() is used when new work is queued and when pool_resume is
 434 * ready to continue deferred IO processing.
 435 */
 436static void wake_worker(struct pool *pool)
 
 
 
 
 
 
 
 
 
 437{
 438	queue_work(pool->wq, &pool->worker);
 
 
 439}
 440
 441/*----------------------------------------------------------------*/
 442
 443static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 444		      struct dm_bio_prison_cell **cell_result)
 445{
 446	int r;
 447	struct dm_bio_prison_cell *cell_prealloc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 448
 449	/*
 450	 * Allocate a cell from the prison's mempool.
 451	 * This might block but it can't fail.
 452	 */
 453	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 454
 455	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 456	if (r)
 457		/*
 458		 * We reused an old cell; we can get rid of
 459		 * the new one.
 460		 */
 461		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 462
 463	return r;
 464}
 465
 466static void cell_release(struct pool *pool,
 467			 struct dm_bio_prison_cell *cell,
 468			 struct bio_list *bios)
 469{
 470	dm_cell_release(pool->prison, cell, bios);
 471	dm_bio_prison_free_cell(pool->prison, cell);
 472}
 473
 474static void cell_visit_release(struct pool *pool,
 475			       void (*fn)(void *, struct dm_bio_prison_cell *),
 476			       void *context,
 477			       struct dm_bio_prison_cell *cell)
 478{
 479	dm_cell_visit_release(pool->prison, fn, context, cell);
 480	dm_bio_prison_free_cell(pool->prison, cell);
 481}
 482
 483static void cell_release_no_holder(struct pool *pool,
 484				   struct dm_bio_prison_cell *cell,
 485				   struct bio_list *bios)
 486{
 487	dm_cell_release_no_holder(pool->prison, cell, bios);
 488	dm_bio_prison_free_cell(pool->prison, cell);
 489}
 490
 491static void cell_error_with_code(struct pool *pool,
 492		struct dm_bio_prison_cell *cell, blk_status_t error_code)
 493{
 494	dm_cell_error(pool->prison, cell, error_code);
 495	dm_bio_prison_free_cell(pool->prison, cell);
 496}
 497
 498static blk_status_t get_pool_io_error_code(struct pool *pool)
 499{
 500	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
 501}
 
 
 
 
 
 502
 503static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 504{
 505	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
 506}
 507
 508static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 509{
 510	cell_error_with_code(pool, cell, 0);
 511}
 
 
 
 512
 513static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 514{
 515	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
 516}
 517
 518/*----------------------------------------------------------------*/
 519
 520/*
 521 * A global list of pools that uses a struct mapped_device as a key.
 522 */
 523static struct dm_thin_pool_table {
 524	struct mutex mutex;
 525	struct list_head pools;
 526} dm_thin_pool_table;
 527
 528static void pool_table_init(void)
 529{
 530	mutex_init(&dm_thin_pool_table.mutex);
 531	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 532}
 533
 534static void pool_table_exit(void)
 535{
 536	mutex_destroy(&dm_thin_pool_table.mutex);
 537}
 538
 539static void __pool_table_insert(struct pool *pool)
 540{
 541	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 542	list_add(&pool->list, &dm_thin_pool_table.pools);
 543}
 544
 545static void __pool_table_remove(struct pool *pool)
 546{
 547	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 548	list_del(&pool->list);
 549}
 550
 551static struct pool *__pool_table_lookup(struct mapped_device *md)
 552{
 553	struct pool *pool = NULL, *tmp;
 554
 555	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 556
 557	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 558		if (tmp->pool_md == md) {
 559			pool = tmp;
 560			break;
 561		}
 562	}
 563
 564	return pool;
 565}
 566
 567static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 568{
 569	struct pool *pool = NULL, *tmp;
 570
 571	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 572
 573	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 574		if (tmp->md_dev == md_dev) {
 575			pool = tmp;
 576			break;
 577		}
 578	}
 579
 580	return pool;
 581}
 582
 583/*----------------------------------------------------------------*/
 584
 585struct dm_thin_endio_hook {
 586	struct thin_c *tc;
 587	struct dm_deferred_entry *shared_read_entry;
 588	struct dm_deferred_entry *all_io_entry;
 589	struct dm_thin_new_mapping *overwrite_mapping;
 590	struct rb_node rb_node;
 591	struct dm_bio_prison_cell *cell;
 592};
 593
 594static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
 595{
 596	bio_list_merge(bios, master);
 597	bio_list_init(master);
 598}
 599
 600static void error_bio_list(struct bio_list *bios, blk_status_t error)
 601{
 602	struct bio *bio;
 603
 604	while ((bio = bio_list_pop(bios))) {
 605		bio->bi_status = error;
 606		bio_endio(bio);
 607	}
 608}
 609
 610static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
 611		blk_status_t error)
 612{
 613	struct bio_list bios;
 614
 615	bio_list_init(&bios);
 
 
 616
 617	spin_lock_irq(&tc->lock);
 618	__merge_bio_list(&bios, master);
 619	spin_unlock_irq(&tc->lock);
 620
 621	error_bio_list(&bios, error);
 
 
 
 
 622}
 623
 624static void requeue_deferred_cells(struct thin_c *tc)
 625{
 626	struct pool *pool = tc->pool;
 627	struct list_head cells;
 628	struct dm_bio_prison_cell *cell, *tmp;
 629
 630	INIT_LIST_HEAD(&cells);
 631
 632	spin_lock_irq(&tc->lock);
 633	list_splice_init(&tc->deferred_cells, &cells);
 634	spin_unlock_irq(&tc->lock);
 635
 636	list_for_each_entry_safe(cell, tmp, &cells, user_list)
 637		cell_requeue(pool, cell);
 638}
 639
 640static void requeue_io(struct thin_c *tc)
 641{
 642	struct bio_list bios;
 643
 644	bio_list_init(&bios);
 645
 646	spin_lock_irq(&tc->lock);
 647	__merge_bio_list(&bios, &tc->deferred_bio_list);
 648	__merge_bio_list(&bios, &tc->retry_on_resume_list);
 649	spin_unlock_irq(&tc->lock);
 650
 651	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
 652	requeue_deferred_cells(tc);
 653}
 654
 655static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
 656{
 657	struct thin_c *tc;
 658
 659	rcu_read_lock();
 660	list_for_each_entry_rcu(tc, &pool->active_thins, list)
 661		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 662	rcu_read_unlock();
 663}
 664
 665static void error_retry_list(struct pool *pool)
 666{
 667	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
 668}
 669
 670/*
 671 * This section of code contains the logic for processing a thin device's IO.
 672 * Much of the code depends on pool object resources (lists, workqueues, etc)
 673 * but most is exclusively called from the thin target rather than the thin-pool
 674 * target.
 675 */
 676
 677static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 678{
 679	struct pool *pool = tc->pool;
 680	sector_t block_nr = bio->bi_iter.bi_sector;
 681
 682	if (block_size_is_power_of_two(pool))
 683		block_nr >>= pool->sectors_per_block_shift;
 684	else
 685		(void) sector_div(block_nr, pool->sectors_per_block);
 686
 687	return block_nr;
 688}
 689
 690/*
 691 * Returns the _complete_ blocks that this bio covers.
 692 */
 693static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 694				dm_block_t *begin, dm_block_t *end)
 695{
 696	struct pool *pool = tc->pool;
 697	sector_t b = bio->bi_iter.bi_sector;
 698	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 699
 700	b += pool->sectors_per_block - 1ull; /* so we round up */
 701
 702	if (block_size_is_power_of_two(pool)) {
 703		b >>= pool->sectors_per_block_shift;
 704		e >>= pool->sectors_per_block_shift;
 705	} else {
 706		(void) sector_div(b, pool->sectors_per_block);
 707		(void) sector_div(e, pool->sectors_per_block);
 708	}
 709
 710	if (e < b)
 711		/* Can happen if the bio is within a single block. */
 712		e = b;
 713
 714	*begin = b;
 715	*end = e;
 716}
 717
 718static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 719{
 720	struct pool *pool = tc->pool;
 721	sector_t bi_sector = bio->bi_iter.bi_sector;
 722
 723	bio_set_dev(bio, tc->pool_dev->bdev);
 724	if (block_size_is_power_of_two(pool))
 725		bio->bi_iter.bi_sector =
 726			(block << pool->sectors_per_block_shift) |
 727			(bi_sector & (pool->sectors_per_block - 1));
 728	else
 729		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 730				 sector_div(bi_sector, pool->sectors_per_block);
 731}
 732
 733static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 734{
 735	bio_set_dev(bio, tc->origin_dev->bdev);
 736}
 737
 738static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 739{
 740	return op_is_flush(bio->bi_opf) &&
 741		dm_thin_changed_this_transaction(tc->td);
 742}
 743
 744static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 745{
 746	struct dm_thin_endio_hook *h;
 747
 748	if (bio_op(bio) == REQ_OP_DISCARD)
 749		return;
 750
 751	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 752	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 753}
 754
 755static void issue(struct thin_c *tc, struct bio *bio)
 756{
 757	struct pool *pool = tc->pool;
 758
 759	if (!bio_triggers_commit(tc, bio)) {
 760		submit_bio_noacct(bio);
 761		return;
 762	}
 763
 764	/*
 765	 * Complete bio with an error if earlier I/O caused changes to
 766	 * the metadata that can't be committed e.g, due to I/O errors
 767	 * on the metadata device.
 768	 */
 769	if (dm_thin_aborted_changes(tc->td)) {
 770		bio_io_error(bio);
 771		return;
 772	}
 773
 774	/*
 775	 * Batch together any bios that trigger commits and then issue a
 776	 * single commit for them in process_deferred_bios().
 777	 */
 778	spin_lock_irq(&pool->lock);
 779	bio_list_add(&pool->deferred_flush_bios, bio);
 780	spin_unlock_irq(&pool->lock);
 781}
 782
 783static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 784{
 785	remap_to_origin(tc, bio);
 786	issue(tc, bio);
 787}
 788
 789static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 790			    dm_block_t block)
 791{
 792	remap(tc, bio, block);
 793	issue(tc, bio);
 794}
 795
 
 
 
 
 
 
 
 
 
 796/*----------------------------------------------------------------*/
 797
 798/*
 799 * Bio endio functions.
 800 */
 801struct dm_thin_new_mapping {
 802	struct list_head list;
 803
 804	bool pass_discard:1;
 805	bool maybe_shared:1;
 806
 807	/*
 808	 * Track quiescing, copying and zeroing preparation actions.  When this
 809	 * counter hits zero the block is prepared and can be inserted into the
 810	 * btree.
 811	 */
 812	atomic_t prepare_actions;
 813
 814	blk_status_t status;
 815	struct thin_c *tc;
 816	dm_block_t virt_begin, virt_end;
 817	dm_block_t data_block;
 818	struct dm_bio_prison_cell *cell;
 
 819
 820	/*
 821	 * If the bio covers the whole area of a block then we can avoid
 822	 * zeroing or copying.  Instead this bio is hooked.  The bio will
 823	 * still be in the cell, so care has to be taken to avoid issuing
 824	 * the bio twice.
 825	 */
 826	struct bio *bio;
 827	bio_end_io_t *saved_bi_end_io;
 828};
 829
 830static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 831{
 832	struct pool *pool = m->tc->pool;
 833
 834	if (atomic_dec_and_test(&m->prepare_actions)) {
 835		list_add_tail(&m->list, &pool->prepared_mappings);
 836		wake_worker(pool);
 837	}
 838}
 839
 840static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 841{
 842	unsigned long flags;
 
 843	struct pool *pool = m->tc->pool;
 844
 
 
 845	spin_lock_irqsave(&pool->lock, flags);
 846	__complete_mapping_preparation(m);
 
 847	spin_unlock_irqrestore(&pool->lock, flags);
 848}
 849
 850static void copy_complete(int read_err, unsigned long write_err, void *context)
 851{
 852	struct dm_thin_new_mapping *m = context;
 853
 854	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
 855	complete_mapping_preparation(m);
 856}
 857
 858static void overwrite_endio(struct bio *bio)
 859{
 860	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 
 861	struct dm_thin_new_mapping *m = h->overwrite_mapping;
 
 862
 863	bio->bi_end_io = m->saved_bi_end_io;
 864
 865	m->status = bio->bi_status;
 866	complete_mapping_preparation(m);
 
 
 867}
 868
 869/*----------------------------------------------------------------*/
 870
 871/*
 872 * Workqueue.
 873 */
 874
 875/*
 876 * Prepared mapping jobs.
 877 */
 878
 879/*
 880 * This sends the bios in the cell, except the original holder, back
 881 * to the deferred_bios list.
 882 */
 883static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 
 884{
 885	struct pool *pool = tc->pool;
 886	unsigned long flags;
 887	int has_work;
 888
 889	spin_lock_irqsave(&tc->lock, flags);
 890	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
 891	has_work = !bio_list_empty(&tc->deferred_bio_list);
 892	spin_unlock_irqrestore(&tc->lock, flags);
 893
 894	if (has_work)
 895		wake_worker(pool);
 896}
 897
 898static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 899
 900struct remap_info {
 901	struct thin_c *tc;
 902	struct bio_list defer_bios;
 903	struct bio_list issue_bios;
 904};
 905
 906static void __inc_remap_and_issue_cell(void *context,
 907				       struct dm_bio_prison_cell *cell)
 908{
 909	struct remap_info *info = context;
 910	struct bio *bio;
 911
 912	while ((bio = bio_list_pop(&cell->bios))) {
 913		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
 914			bio_list_add(&info->defer_bios, bio);
 915		else {
 916			inc_all_io_entry(info->tc->pool, bio);
 917
 918			/*
 919			 * We can't issue the bios with the bio prison lock
 920			 * held, so we add them to a list to issue on
 921			 * return from this function.
 922			 */
 923			bio_list_add(&info->issue_bios, bio);
 924		}
 925	}
 926}
 927
 928static void inc_remap_and_issue_cell(struct thin_c *tc,
 929				     struct dm_bio_prison_cell *cell,
 930				     dm_block_t block)
 931{
 932	struct bio *bio;
 933	struct remap_info info;
 934
 935	info.tc = tc;
 936	bio_list_init(&info.defer_bios);
 937	bio_list_init(&info.issue_bios);
 938
 939	/*
 940	 * We have to be careful to inc any bios we're about to issue
 941	 * before the cell is released, and avoid a race with new bios
 942	 * being added to the cell.
 943	 */
 944	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 945			   &info, cell);
 946
 947	while ((bio = bio_list_pop(&info.defer_bios)))
 948		thin_defer_bio(tc, bio);
 949
 950	while ((bio = bio_list_pop(&info.issue_bios)))
 951		remap_and_issue(info.tc, bio, block);
 952}
 953
 954static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 955{
 956	cell_error(m->tc->pool, m->cell);
 957	list_del(&m->list);
 958	mempool_free(m, &m->tc->pool->mapping_pool);
 959}
 960
 961static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
 962{
 
 963	struct pool *pool = tc->pool;
 
 964
 965	/*
 966	 * If the bio has the REQ_FUA flag set we must commit the metadata
 967	 * before signaling its completion.
 968	 */
 969	if (!bio_triggers_commit(tc, bio)) {
 970		bio_endio(bio);
 971		return;
 972	}
 973
 974	/*
 975	 * Complete bio with an error if earlier I/O caused changes to the
 976	 * metadata that can't be committed, e.g, due to I/O errors on the
 977	 * metadata device.
 978	 */
 979	if (dm_thin_aborted_changes(tc->td)) {
 980		bio_io_error(bio);
 981		return;
 982	}
 983
 984	/*
 985	 * Batch together any bios that trigger commits and then issue a
 986	 * single commit for them in process_deferred_bios().
 987	 */
 988	spin_lock_irq(&pool->lock);
 989	bio_list_add(&pool->deferred_flush_completions, bio);
 990	spin_unlock_irq(&pool->lock);
 991}
 992
 993static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 994{
 995	struct thin_c *tc = m->tc;
 996	struct pool *pool = tc->pool;
 997	struct bio *bio = m->bio;
 998	int r;
 999
1000	if (m->status) {
1001		cell_error(pool, m->cell);
 
 
 
 
1002		goto out;
1003	}
1004
1005	/*
1006	 * Commit the prepared block into the mapping btree.
1007	 * Any I/O for this block arriving after this point will get
1008	 * remapped to it directly.
1009	 */
1010	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1011	if (r) {
1012		metadata_operation_failed(pool, "dm_thin_insert_block", r);
1013		cell_error(pool, m->cell);
1014		goto out;
1015	}
1016
1017	/*
1018	 * Release any bios held while the block was being provisioned.
1019	 * If we are processing a write bio that completely covers the block,
1020	 * we already processed it so can ignore it now when processing
1021	 * the bios in the cell.
1022	 */
1023	if (bio) {
1024		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1025		complete_overwrite_bio(tc, bio);
1026	} else {
1027		inc_all_io_entry(tc->pool, m->cell->holder);
1028		remap_and_issue(tc, m->cell->holder, m->data_block);
1029		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1030	}
1031
1032out:
1033	list_del(&m->list);
1034	mempool_free(m, &pool->mapping_pool);
1035}
1036
1037/*----------------------------------------------------------------*/
1038
1039static void free_discard_mapping(struct dm_thin_new_mapping *m)
1040{
1041	struct thin_c *tc = m->tc;
1042	if (m->cell)
1043		cell_defer_no_holder(tc, m->cell);
1044	mempool_free(m, &tc->pool->mapping_pool);
1045}
1046
1047static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1048{
1049	bio_io_error(m->bio);
1050	free_discard_mapping(m);
1051}
1052
1053static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1054{
1055	bio_endio(m->bio);
1056	free_discard_mapping(m);
1057}
1058
1059static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1060{
1061	int r;
1062	struct thin_c *tc = m->tc;
1063
1064	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1065	if (r) {
1066		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1067		bio_io_error(m->bio);
1068	} else
1069		bio_endio(m->bio);
1070
1071	cell_defer_no_holder(tc, m->cell);
1072	mempool_free(m, &tc->pool->mapping_pool);
1073}
1074
1075/*----------------------------------------------------------------*/
1076
1077static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1078						   struct bio *discard_parent)
1079{
1080	/*
1081	 * We've already unmapped this range of blocks, but before we
1082	 * passdown we have to check that these blocks are now unused.
1083	 */
1084	int r = 0;
1085	bool shared = true;
1086	struct thin_c *tc = m->tc;
1087	struct pool *pool = tc->pool;
1088	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1089	struct discard_op op;
1090
1091	begin_discard(&op, tc, discard_parent);
1092	while (b != end) {
1093		/* find start of unmapped run */
1094		for (; b < end; b++) {
1095			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1096			if (r)
1097				goto out;
1098
1099			if (!shared)
1100				break;
1101		}
1102
1103		if (b == end)
1104			break;
1105
1106		/* find end of run */
1107		for (e = b + 1; e != end; e++) {
1108			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1109			if (r)
1110				goto out;
1111
1112			if (shared)
1113				break;
1114		}
1115
1116		r = issue_discard(&op, b, e);
1117		if (r)
1118			goto out;
1119
1120		b = e;
1121	}
1122out:
1123	end_discard(&op, r);
1124}
1125
1126static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
 
1127{
1128	unsigned long flags;
1129	struct pool *pool = m->tc->pool;
1130
1131	spin_lock_irqsave(&pool->lock, flags);
1132	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1133	spin_unlock_irqrestore(&pool->lock, flags);
1134	wake_worker(pool);
1135}
1136
1137static void passdown_endio(struct bio *bio)
1138{
1139	/*
1140	 * It doesn't matter if the passdown discard failed, we still want
1141	 * to unmap (we ignore err).
1142	 */
1143	queue_passdown_pt2(bio->bi_private);
1144	bio_put(bio);
1145}
1146
1147static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1148{
1149	int r;
1150	struct thin_c *tc = m->tc;
1151	struct pool *pool = tc->pool;
1152	struct bio *discard_parent;
1153	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1154
1155	/*
1156	 * Only this thread allocates blocks, so we can be sure that the
1157	 * newly unmapped blocks will not be allocated before the end of
1158	 * the function.
1159	 */
1160	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1161	if (r) {
1162		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1163		bio_io_error(m->bio);
1164		cell_defer_no_holder(tc, m->cell);
1165		mempool_free(m, &pool->mapping_pool);
1166		return;
1167	}
1168
1169	/*
1170	 * Increment the unmapped blocks.  This prevents a race between the
1171	 * passdown io and reallocation of freed blocks.
1172	 */
1173	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1174	if (r) {
1175		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1176		bio_io_error(m->bio);
1177		cell_defer_no_holder(tc, m->cell);
1178		mempool_free(m, &pool->mapping_pool);
1179		return;
1180	}
1181
1182	discard_parent = bio_alloc(GFP_NOIO, 1);
1183	if (!discard_parent) {
1184		DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1185		       dm_device_name(tc->pool->pool_md));
1186		queue_passdown_pt2(m);
1187
1188	} else {
1189		discard_parent->bi_end_io = passdown_endio;
1190		discard_parent->bi_private = m;
1191
1192		if (m->maybe_shared)
1193			passdown_double_checking_shared_status(m, discard_parent);
1194		else {
1195			struct discard_op op;
1196
1197			begin_discard(&op, tc, discard_parent);
1198			r = issue_discard(&op, m->data_block, data_end);
1199			end_discard(&op, r);
1200		}
1201	}
1202}
1203
1204static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1205{
1206	int r;
1207	struct thin_c *tc = m->tc;
1208	struct pool *pool = tc->pool;
1209
1210	/*
1211	 * The passdown has completed, so now we can decrement all those
1212	 * unmapped blocks.
1213	 */
1214	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1215				   m->data_block + (m->virt_end - m->virt_begin));
1216	if (r) {
1217		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1218		bio_io_error(m->bio);
1219	} else
1220		bio_endio(m->bio);
1221
1222	cell_defer_no_holder(tc, m->cell);
1223	mempool_free(m, &pool->mapping_pool);
1224}
1225
1226static void process_prepared(struct pool *pool, struct list_head *head,
1227			     process_mapping_fn *fn)
1228{
1229	struct list_head maps;
1230	struct dm_thin_new_mapping *m, *tmp;
1231
1232	INIT_LIST_HEAD(&maps);
1233	spin_lock_irq(&pool->lock);
1234	list_splice_init(head, &maps);
1235	spin_unlock_irq(&pool->lock);
1236
1237	list_for_each_entry_safe(m, tmp, &maps, list)
1238		(*fn)(m);
1239}
1240
1241/*
1242 * Deferred bio jobs.
1243 */
1244static int io_overlaps_block(struct pool *pool, struct bio *bio)
1245{
1246	return bio->bi_iter.bi_size ==
1247		(pool->sectors_per_block << SECTOR_SHIFT);
 
1248}
1249
1250static int io_overwrites_block(struct pool *pool, struct bio *bio)
1251{
1252	return (bio_data_dir(bio) == WRITE) &&
1253		io_overlaps_block(pool, bio);
1254}
1255
1256static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1257			       bio_end_io_t *fn)
1258{
1259	*save = bio->bi_end_io;
1260	bio->bi_end_io = fn;
1261}
1262
1263static int ensure_next_mapping(struct pool *pool)
1264{
1265	if (pool->next_mapping)
1266		return 0;
1267
1268	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1269
1270	return pool->next_mapping ? 0 : -ENOMEM;
1271}
1272
1273static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1274{
1275	struct dm_thin_new_mapping *m = pool->next_mapping;
1276
1277	BUG_ON(!pool->next_mapping);
1278
1279	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1280	INIT_LIST_HEAD(&m->list);
1281	m->bio = NULL;
1282
1283	pool->next_mapping = NULL;
1284
1285	return m;
1286}
1287
1288static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1289		    sector_t begin, sector_t end)
1290{
1291	struct dm_io_region to;
1292
1293	to.bdev = tc->pool_dev->bdev;
1294	to.sector = begin;
1295	to.count = end - begin;
1296
1297	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1298}
1299
1300static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1301				      dm_block_t data_begin,
1302				      struct dm_thin_new_mapping *m)
1303{
1304	struct pool *pool = tc->pool;
1305	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1306
1307	h->overwrite_mapping = m;
1308	m->bio = bio;
1309	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1310	inc_all_io_entry(pool, bio);
1311	remap_and_issue(tc, bio, data_begin);
1312}
1313
1314/*
1315 * A partial copy also needs to zero the uncopied region.
1316 */
1317static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1318			  struct dm_dev *origin, dm_block_t data_origin,
1319			  dm_block_t data_dest,
1320			  struct dm_bio_prison_cell *cell, struct bio *bio,
1321			  sector_t len)
1322{
 
1323	struct pool *pool = tc->pool;
1324	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1325
 
 
 
1326	m->tc = tc;
1327	m->virt_begin = virt_block;
1328	m->virt_end = virt_block + 1u;
1329	m->data_block = data_dest;
1330	m->cell = cell;
 
 
1331
1332	/*
1333	 * quiesce action + copy action + an extra reference held for the
1334	 * duration of this function (we may need to inc later for a
1335	 * partial zero).
1336	 */
1337	atomic_set(&m->prepare_actions, 3);
1338
1339	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1340		complete_mapping_preparation(m); /* already quiesced */
1341
1342	/*
1343	 * IO to pool_dev remaps to the pool target's data_dev.
1344	 *
1345	 * If the whole block of data is being overwritten, we can issue the
1346	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1347	 */
1348	if (io_overwrites_block(pool, bio))
1349		remap_and_issue_overwrite(tc, bio, data_dest, m);
1350	else {
 
 
 
 
 
1351		struct dm_io_region from, to;
1352
1353		from.bdev = origin->bdev;
1354		from.sector = data_origin * pool->sectors_per_block;
1355		from.count = len;
1356
1357		to.bdev = tc->pool_dev->bdev;
1358		to.sector = data_dest * pool->sectors_per_block;
1359		to.count = len;
1360
1361		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1362			       0, copy_complete, m);
1363
1364		/*
1365		 * Do we need to zero a tail region?
1366		 */
1367		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1368			atomic_inc(&m->prepare_actions);
1369			ll_zero(tc, m,
1370				data_dest * pool->sectors_per_block + len,
1371				(data_dest + 1) * pool->sectors_per_block);
1372		}
1373	}
1374
1375	complete_mapping_preparation(m); /* drop our ref */
1376}
1377
1378static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1379				   dm_block_t data_origin, dm_block_t data_dest,
1380				   struct dm_bio_prison_cell *cell, struct bio *bio)
1381{
1382	schedule_copy(tc, virt_block, tc->pool_dev,
1383		      data_origin, data_dest, cell, bio,
1384		      tc->pool->sectors_per_block);
 
 
 
 
 
 
 
1385}
1386
1387static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1388			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1389			  struct bio *bio)
1390{
1391	struct pool *pool = tc->pool;
1392	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1393
1394	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
 
 
1395	m->tc = tc;
1396	m->virt_begin = virt_block;
1397	m->virt_end = virt_block + 1u;
1398	m->data_block = data_block;
1399	m->cell = cell;
 
 
1400
1401	/*
1402	 * If the whole block of data is being overwritten or we are not
1403	 * zeroing pre-existing data, we can issue the bio immediately.
1404	 * Otherwise we use kcopyd to zero the data first.
1405	 */
1406	if (pool->pf.zero_new_blocks) {
1407		if (io_overwrites_block(pool, bio))
1408			remap_and_issue_overwrite(tc, bio, data_block, m);
1409		else
1410			ll_zero(tc, m, data_block * pool->sectors_per_block,
1411				(data_block + 1) * pool->sectors_per_block);
1412	} else
1413		process_prepared_mapping(m);
1414}
1415
1416static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1417				   dm_block_t data_dest,
1418				   struct dm_bio_prison_cell *cell, struct bio *bio)
1419{
1420	struct pool *pool = tc->pool;
1421	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1422	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1423
1424	if (virt_block_end <= tc->origin_size)
1425		schedule_copy(tc, virt_block, tc->origin_dev,
1426			      virt_block, data_dest, cell, bio,
1427			      pool->sectors_per_block);
1428
1429	else if (virt_block_begin < tc->origin_size)
1430		schedule_copy(tc, virt_block, tc->origin_dev,
1431			      virt_block, data_dest, cell, bio,
1432			      tc->origin_size - virt_block_begin);
1433
1434	else
1435		schedule_zero(tc, virt_block, data_dest, cell, bio);
1436}
1437
1438static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1439
1440static void requeue_bios(struct pool *pool);
1441
1442static bool is_read_only_pool_mode(enum pool_mode mode)
1443{
1444	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1445}
1446
1447static bool is_read_only(struct pool *pool)
1448{
1449	return is_read_only_pool_mode(get_pool_mode(pool));
1450}
1451
1452static void check_for_metadata_space(struct pool *pool)
1453{
1454	int r;
1455	const char *ooms_reason = NULL;
1456	dm_block_t nr_free;
1457
1458	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1459	if (r)
1460		ooms_reason = "Could not get free metadata blocks";
1461	else if (!nr_free)
1462		ooms_reason = "No free metadata blocks";
1463
1464	if (ooms_reason && !is_read_only(pool)) {
1465		DMERR("%s", ooms_reason);
1466		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1467	}
1468}
1469
1470static void check_for_data_space(struct pool *pool)
1471{
1472	int r;
1473	dm_block_t nr_free;
 
 
1474
1475	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1476		return;
1477
1478	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1479	if (r)
1480		return;
1481
1482	if (nr_free) {
1483		set_pool_mode(pool, PM_WRITE);
1484		requeue_bios(pool);
1485	}
1486}
1487
1488/*
1489 * A non-zero return indicates read_only or fail_io mode.
1490 * Many callers don't care about the return value.
1491 */
1492static int commit(struct pool *pool)
1493{
1494	int r;
1495
1496	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1497		return -EINVAL;
1498
1499	r = dm_pool_commit_metadata(pool->pmd);
1500	if (r)
1501		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1502	else {
1503		check_for_metadata_space(pool);
1504		check_for_data_space(pool);
1505	}
1506
1507	return r;
1508}
1509
1510static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1511{
1512	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1513		DMWARN("%s: reached low water mark for data device: sending event.",
1514		       dm_device_name(pool->pool_md));
1515		spin_lock_irq(&pool->lock);
1516		pool->low_water_triggered = true;
1517		spin_unlock_irq(&pool->lock);
1518		dm_table_event(pool->ti->table);
1519	}
1520}
1521
1522static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1523{
1524	int r;
1525	dm_block_t free_blocks;
1526	struct pool *pool = tc->pool;
1527
1528	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1529		return -EINVAL;
1530
1531	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1532	if (r) {
1533		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1534		return r;
1535	}
1536
1537	check_low_water_mark(pool, free_blocks);
1538
1539	if (!free_blocks) {
1540		/*
1541		 * Try to commit to see if that will free up some
1542		 * more space.
1543		 */
1544		r = commit(pool);
1545		if (r)
1546			return r;
 
 
 
 
 
 
1547
1548		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1549		if (r) {
1550			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1551			return r;
1552		}
1553
1554		if (!free_blocks) {
1555			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1556			return -ENOSPC;
 
 
 
 
 
 
 
 
 
1557		}
1558	}
1559
1560	r = dm_pool_alloc_data_block(pool->pmd, result);
1561	if (r) {
1562		if (r == -ENOSPC)
1563			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1564		else
1565			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1566		return r;
1567	}
1568
1569	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1570	if (r) {
1571		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1572		return r;
1573	}
1574
1575	if (!free_blocks) {
1576		/* Let's commit before we use up the metadata reserve. */
1577		r = commit(pool);
1578		if (r)
1579			return r;
1580	}
1581
1582	return 0;
1583}
1584
1585/*
1586 * If we have run out of space, queue bios until the device is
1587 * resumed, presumably after having been reloaded with more space.
1588 */
1589static void retry_on_resume(struct bio *bio)
1590{
1591	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1592	struct thin_c *tc = h->tc;
 
 
1593
1594	spin_lock_irq(&tc->lock);
1595	bio_list_add(&tc->retry_on_resume_list, bio);
1596	spin_unlock_irq(&tc->lock);
1597}
1598
1599static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1600{
1601	enum pool_mode m = get_pool_mode(pool);
1602
1603	switch (m) {
1604	case PM_WRITE:
1605		/* Shouldn't get here */
1606		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1607		return BLK_STS_IOERR;
1608
1609	case PM_OUT_OF_DATA_SPACE:
1610		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1611
1612	case PM_OUT_OF_METADATA_SPACE:
1613	case PM_READ_ONLY:
1614	case PM_FAIL:
1615		return BLK_STS_IOERR;
1616	default:
1617		/* Shouldn't get here */
1618		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1619		return BLK_STS_IOERR;
1620	}
1621}
1622
1623static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1624{
1625	blk_status_t error = should_error_unserviceable_bio(pool);
1626
1627	if (error) {
1628		bio->bi_status = error;
1629		bio_endio(bio);
1630	} else
1631		retry_on_resume(bio);
1632}
1633
1634static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1635{
1636	struct bio *bio;
1637	struct bio_list bios;
1638	blk_status_t error;
1639
1640	error = should_error_unserviceable_bio(pool);
1641	if (error) {
1642		cell_error_with_code(pool, cell, error);
1643		return;
1644	}
1645
1646	bio_list_init(&bios);
1647	cell_release(pool, cell, &bios);
1648
1649	while ((bio = bio_list_pop(&bios)))
1650		retry_on_resume(bio);
1651}
1652
1653static void process_discard_cell_no_passdown(struct thin_c *tc,
1654					     struct dm_bio_prison_cell *virt_cell)
1655{
 
 
1656	struct pool *pool = tc->pool;
1657	struct dm_thin_new_mapping *m = get_next_mapping(pool);
 
 
 
 
1658
1659	/*
1660	 * We don't need to lock the data blocks, since there's no
1661	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1662	 */
1663	m->tc = tc;
1664	m->virt_begin = virt_cell->key.block_begin;
1665	m->virt_end = virt_cell->key.block_end;
1666	m->cell = virt_cell;
1667	m->bio = virt_cell->holder;
1668
1669	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1670		pool->process_prepared_discard(m);
1671}
 
 
 
 
 
 
 
 
 
 
1672
1673static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1674				 struct bio *bio)
1675{
1676	struct pool *pool = tc->pool;
1677
1678	int r;
1679	bool maybe_shared;
1680	struct dm_cell_key data_key;
1681	struct dm_bio_prison_cell *data_cell;
1682	struct dm_thin_new_mapping *m;
1683	dm_block_t virt_begin, virt_end, data_begin;
1684
1685	while (begin != end) {
1686		r = ensure_next_mapping(pool);
1687		if (r)
1688			/* we did our best */
1689			return;
1690
1691		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1692					      &data_begin, &maybe_shared);
1693		if (r)
 
1694			/*
1695			 * Silently fail, letting any mappings we've
1696			 * created complete.
 
 
1697			 */
1698			break;
1699
1700		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1701		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1702			/* contention, we'll give up with this range */
1703			begin = virt_end;
1704			continue;
 
 
 
1705		}
 
1706
 
1707		/*
1708		 * IO may still be going to the destination block.  We must
1709		 * quiesce before we can do the removal.
1710		 */
1711		m = get_next_mapping(pool);
1712		m->tc = tc;
1713		m->maybe_shared = maybe_shared;
1714		m->virt_begin = virt_begin;
1715		m->virt_end = virt_end;
1716		m->data_block = data_begin;
1717		m->cell = data_cell;
1718		m->bio = bio;
1719
1720		/*
1721		 * The parent bio must not complete before sub discard bios are
1722		 * chained to it (see end_discard's bio_chain)!
1723		 *
1724		 * This per-mapping bi_remaining increment is paired with
1725		 * the implicit decrement that occurs via bio_endio() in
1726		 * end_discard().
1727		 */
1728		bio_inc_remaining(bio);
1729		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1730			pool->process_prepared_discard(m);
1731
1732		begin = virt_end;
1733	}
1734}
1735
1736static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1737{
1738	struct bio *bio = virt_cell->holder;
1739	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1740
1741	/*
1742	 * The virt_cell will only get freed once the origin bio completes.
1743	 * This means it will remain locked while all the individual
1744	 * passdown bios are in flight.
1745	 */
1746	h->cell = virt_cell;
1747	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1748
1749	/*
1750	 * We complete the bio now, knowing that the bi_remaining field
1751	 * will prevent completion until the sub range discards have
1752	 * completed.
1753	 */
1754	bio_endio(bio);
1755}
1756
1757static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1758{
1759	dm_block_t begin, end;
1760	struct dm_cell_key virt_key;
1761	struct dm_bio_prison_cell *virt_cell;
1762
1763	get_bio_block_range(tc, bio, &begin, &end);
1764	if (begin == end) {
1765		/*
1766		 * The discard covers less than a block.
1767		 */
1768		bio_endio(bio);
1769		return;
1770	}
1771
1772	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1773	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1774		/*
1775		 * Potential starvation issue: We're relying on the
1776		 * fs/application being well behaved, and not trying to
1777		 * send IO to a region at the same time as discarding it.
1778		 * If they do this persistently then it's possible this
1779		 * cell will never be granted.
1780		 */
1781		return;
1782
1783	tc->pool->process_discard_cell(tc, virt_cell);
1784}
1785
1786static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1787			  struct dm_cell_key *key,
1788			  struct dm_thin_lookup_result *lookup_result,
1789			  struct dm_bio_prison_cell *cell)
1790{
1791	int r;
1792	dm_block_t data_block;
1793	struct pool *pool = tc->pool;
1794
1795	r = alloc_data_block(tc, &data_block);
1796	switch (r) {
1797	case 0:
1798		schedule_internal_copy(tc, block, lookup_result->block,
1799				       data_block, cell, bio);
1800		break;
1801
1802	case -ENOSPC:
1803		retry_bios_on_resume(pool, cell);
1804		break;
1805
1806	default:
1807		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1808			    __func__, r);
1809		cell_error(pool, cell);
1810		break;
1811	}
1812}
1813
1814static void __remap_and_issue_shared_cell(void *context,
1815					  struct dm_bio_prison_cell *cell)
1816{
1817	struct remap_info *info = context;
1818	struct bio *bio;
1819
1820	while ((bio = bio_list_pop(&cell->bios))) {
1821		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1822		    bio_op(bio) == REQ_OP_DISCARD)
1823			bio_list_add(&info->defer_bios, bio);
1824		else {
1825			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1826
1827			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1828			inc_all_io_entry(info->tc->pool, bio);
1829			bio_list_add(&info->issue_bios, bio);
1830		}
1831	}
1832}
1833
1834static void remap_and_issue_shared_cell(struct thin_c *tc,
1835					struct dm_bio_prison_cell *cell,
1836					dm_block_t block)
1837{
1838	struct bio *bio;
1839	struct remap_info info;
1840
1841	info.tc = tc;
1842	bio_list_init(&info.defer_bios);
1843	bio_list_init(&info.issue_bios);
1844
1845	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1846			   &info, cell);
1847
1848	while ((bio = bio_list_pop(&info.defer_bios)))
1849		thin_defer_bio(tc, bio);
1850
1851	while ((bio = bio_list_pop(&info.issue_bios)))
1852		remap_and_issue(tc, bio, block);
1853}
1854
1855static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1856			       dm_block_t block,
1857			       struct dm_thin_lookup_result *lookup_result,
1858			       struct dm_bio_prison_cell *virt_cell)
1859{
1860	struct dm_bio_prison_cell *data_cell;
1861	struct pool *pool = tc->pool;
1862	struct dm_cell_key key;
1863
1864	/*
1865	 * If cell is already occupied, then sharing is already in the process
1866	 * of being broken so we have nothing further to do here.
1867	 */
1868	build_data_key(tc->td, lookup_result->block, &key);
1869	if (bio_detain(pool, &key, bio, &data_cell)) {
1870		cell_defer_no_holder(tc, virt_cell);
1871		return;
1872	}
1873
1874	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1875		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1876		cell_defer_no_holder(tc, virt_cell);
1877	} else {
1878		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 
1879
1880		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1881		inc_all_io_entry(pool, bio);
1882		remap_and_issue(tc, bio, lookup_result->block);
1883
1884		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1885		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1886	}
1887}
1888
1889static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1890			    struct dm_bio_prison_cell *cell)
1891{
1892	int r;
1893	dm_block_t data_block;
1894	struct pool *pool = tc->pool;
1895
1896	/*
1897	 * Remap empty bios (flushes) immediately, without provisioning.
1898	 */
1899	if (!bio->bi_iter.bi_size) {
1900		inc_all_io_entry(pool, bio);
1901		cell_defer_no_holder(tc, cell);
1902
1903		remap_and_issue(tc, bio, 0);
1904		return;
1905	}
1906
1907	/*
1908	 * Fill read bios with zeroes and complete them immediately.
1909	 */
1910	if (bio_data_dir(bio) == READ) {
1911		zero_fill_bio(bio);
1912		cell_defer_no_holder(tc, cell);
1913		bio_endio(bio);
1914		return;
1915	}
1916
1917	r = alloc_data_block(tc, &data_block);
1918	switch (r) {
1919	case 0:
1920		if (tc->origin_dev)
1921			schedule_external_copy(tc, block, data_block, cell, bio);
1922		else
1923			schedule_zero(tc, block, data_block, cell, bio);
1924		break;
1925
1926	case -ENOSPC:
1927		retry_bios_on_resume(pool, cell);
1928		break;
1929
1930	default:
1931		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1932			    __func__, r);
1933		cell_error(pool, cell);
1934		break;
1935	}
1936}
1937
1938static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1939{
1940	int r;
1941	struct pool *pool = tc->pool;
1942	struct bio *bio = cell->holder;
1943	dm_block_t block = get_bio_block(tc, bio);
 
 
1944	struct dm_thin_lookup_result lookup_result;
1945
1946	if (tc->requeue_mode) {
1947		cell_requeue(pool, cell);
1948		return;
1949	}
1950
1951	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1952	switch (r) {
1953	case 0:
1954		if (lookup_result.shared)
1955			process_shared_bio(tc, bio, block, &lookup_result, cell);
1956		else {
1957			inc_all_io_entry(pool, bio);
1958			remap_and_issue(tc, bio, lookup_result.block);
1959			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1960		}
1961		break;
1962
1963	case -ENODATA:
1964		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1965			inc_all_io_entry(pool, bio);
1966			cell_defer_no_holder(tc, cell);
1967
1968			if (bio_end_sector(bio) <= tc->origin_size)
1969				remap_to_origin_and_issue(tc, bio);
1970
1971			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1972				zero_fill_bio(bio);
1973				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1974				remap_to_origin_and_issue(tc, bio);
1975
1976			} else {
1977				zero_fill_bio(bio);
1978				bio_endio(bio);
1979			}
1980		} else
1981			provision_block(tc, bio, block, cell);
1982		break;
1983
1984	default:
1985		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1986			    __func__, r);
1987		cell_defer_no_holder(tc, cell);
1988		bio_io_error(bio);
1989		break;
1990	}
1991}
1992
1993static void process_bio(struct thin_c *tc, struct bio *bio)
1994{
1995	struct pool *pool = tc->pool;
1996	dm_block_t block = get_bio_block(tc, bio);
1997	struct dm_bio_prison_cell *cell;
1998	struct dm_cell_key key;
1999
2000	/*
2001	 * If cell is already occupied, then the block is already
2002	 * being provisioned so we have nothing further to do here.
2003	 */
2004	build_virtual_key(tc->td, block, &key);
2005	if (bio_detain(pool, &key, bio, &cell))
2006		return;
2007
2008	process_cell(tc, cell);
2009}
2010
2011static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2012				    struct dm_bio_prison_cell *cell)
2013{
2014	int r;
2015	int rw = bio_data_dir(bio);
2016	dm_block_t block = get_bio_block(tc, bio);
2017	struct dm_thin_lookup_result lookup_result;
2018
2019	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2020	switch (r) {
2021	case 0:
2022		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2023			handle_unserviceable_bio(tc->pool, bio);
2024			if (cell)
2025				cell_defer_no_holder(tc, cell);
2026		} else {
2027			inc_all_io_entry(tc->pool, bio);
 
 
 
 
 
 
 
 
2028			remap_and_issue(tc, bio, lookup_result.block);
2029			if (cell)
2030				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2031		}
2032		break;
2033
2034	case -ENODATA:
2035		if (cell)
2036			cell_defer_no_holder(tc, cell);
2037		if (rw != READ) {
2038			handle_unserviceable_bio(tc->pool, bio);
2039			break;
2040		}
2041
2042		if (tc->origin_dev) {
2043			inc_all_io_entry(tc->pool, bio);
2044			remap_to_origin_and_issue(tc, bio);
2045			break;
2046		}
2047
2048		zero_fill_bio(bio);
2049		bio_endio(bio);
2050		break;
2051
2052	default:
2053		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2054			    __func__, r);
2055		if (cell)
2056			cell_defer_no_holder(tc, cell);
2057		bio_io_error(bio);
2058		break;
2059	}
2060}
2061
2062static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2063{
2064	__process_bio_read_only(tc, bio, NULL);
2065}
2066
2067static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2068{
2069	__process_bio_read_only(tc, cell->holder, cell);
2070}
2071
2072static void process_bio_success(struct thin_c *tc, struct bio *bio)
2073{
2074	bio_endio(bio);
2075}
2076
2077static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2078{
2079	bio_io_error(bio);
2080}
2081
2082static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2083{
2084	cell_success(tc->pool, cell);
2085}
2086
2087static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2088{
2089	cell_error(tc->pool, cell);
2090}
2091
2092/*
2093 * FIXME: should we also commit due to size of transaction, measured in
2094 * metadata blocks?
2095 */
2096static int need_commit_due_to_time(struct pool *pool)
2097{
2098	return !time_in_range(jiffies, pool->last_commit_jiffies,
2099			      pool->last_commit_jiffies + COMMIT_PERIOD);
2100}
2101
2102#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2103#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2104
2105static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2106{
2107	struct rb_node **rbp, *parent;
2108	struct dm_thin_endio_hook *pbd;
2109	sector_t bi_sector = bio->bi_iter.bi_sector;
2110
2111	rbp = &tc->sort_bio_list.rb_node;
2112	parent = NULL;
2113	while (*rbp) {
2114		parent = *rbp;
2115		pbd = thin_pbd(parent);
2116
2117		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2118			rbp = &(*rbp)->rb_left;
2119		else
2120			rbp = &(*rbp)->rb_right;
2121	}
2122
2123	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2124	rb_link_node(&pbd->rb_node, parent, rbp);
2125	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2126}
2127
2128static void __extract_sorted_bios(struct thin_c *tc)
2129{
2130	struct rb_node *node;
2131	struct dm_thin_endio_hook *pbd;
2132	struct bio *bio;
2133
2134	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2135		pbd = thin_pbd(node);
2136		bio = thin_bio(pbd);
2137
2138		bio_list_add(&tc->deferred_bio_list, bio);
2139		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2140	}
2141
2142	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2143}
2144
2145static void __sort_thin_deferred_bios(struct thin_c *tc)
2146{
 
2147	struct bio *bio;
2148	struct bio_list bios;
 
2149
2150	bio_list_init(&bios);
2151	bio_list_merge(&bios, &tc->deferred_bio_list);
2152	bio_list_init(&tc->deferred_bio_list);
2153
2154	/* Sort deferred_bio_list using rb-tree */
2155	while ((bio = bio_list_pop(&bios)))
2156		__thin_bio_rb_add(tc, bio);
 
2157
2158	/*
2159	 * Transfer the sorted bios in sort_bio_list back to
2160	 * deferred_bio_list to allow lockless submission of
2161	 * all bios.
2162	 */
2163	__extract_sorted_bios(tc);
2164}
2165
2166static void process_thin_deferred_bios(struct thin_c *tc)
2167{
2168	struct pool *pool = tc->pool;
2169	struct bio *bio;
2170	struct bio_list bios;
2171	struct blk_plug plug;
2172	unsigned count = 0;
2173
2174	if (tc->requeue_mode) {
2175		error_thin_bio_list(tc, &tc->deferred_bio_list,
2176				BLK_STS_DM_REQUEUE);
2177		return;
2178	}
2179
2180	bio_list_init(&bios);
2181
2182	spin_lock_irq(&tc->lock);
2183
2184	if (bio_list_empty(&tc->deferred_bio_list)) {
2185		spin_unlock_irq(&tc->lock);
2186		return;
2187	}
2188
2189	__sort_thin_deferred_bios(tc);
2190
2191	bio_list_merge(&bios, &tc->deferred_bio_list);
2192	bio_list_init(&tc->deferred_bio_list);
2193
2194	spin_unlock_irq(&tc->lock);
2195
2196	blk_start_plug(&plug);
2197	while ((bio = bio_list_pop(&bios))) {
2198		/*
2199		 * If we've got no free new_mapping structs, and processing
2200		 * this bio might require one, we pause until there are some
2201		 * prepared mappings to process.
2202		 */
2203		if (ensure_next_mapping(pool)) {
2204			spin_lock_irq(&tc->lock);
2205			bio_list_add(&tc->deferred_bio_list, bio);
2206			bio_list_merge(&tc->deferred_bio_list, &bios);
2207			spin_unlock_irq(&tc->lock);
2208			break;
2209		}
2210
2211		if (bio_op(bio) == REQ_OP_DISCARD)
2212			pool->process_discard(tc, bio);
2213		else
2214			pool->process_bio(tc, bio);
2215
2216		if ((count++ & 127) == 0) {
2217			throttle_work_update(&pool->throttle);
2218			dm_pool_issue_prefetches(pool->pmd);
2219		}
2220	}
2221	blk_finish_plug(&plug);
2222}
2223
2224static int cmp_cells(const void *lhs, const void *rhs)
2225{
2226	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2227	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2228
2229	BUG_ON(!lhs_cell->holder);
2230	BUG_ON(!rhs_cell->holder);
2231
2232	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2233		return -1;
2234
2235	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2236		return 1;
2237
2238	return 0;
2239}
2240
2241static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2242{
2243	unsigned count = 0;
2244	struct dm_bio_prison_cell *cell, *tmp;
2245
2246	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2247		if (count >= CELL_SORT_ARRAY_SIZE)
2248			break;
2249
2250		pool->cell_sort_array[count++] = cell;
2251		list_del(&cell->user_list);
2252	}
2253
2254	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2255
2256	return count;
2257}
2258
2259static void process_thin_deferred_cells(struct thin_c *tc)
2260{
2261	struct pool *pool = tc->pool;
2262	struct list_head cells;
2263	struct dm_bio_prison_cell *cell;
2264	unsigned i, j, count;
2265
2266	INIT_LIST_HEAD(&cells);
2267
2268	spin_lock_irq(&tc->lock);
2269	list_splice_init(&tc->deferred_cells, &cells);
2270	spin_unlock_irq(&tc->lock);
2271
2272	if (list_empty(&cells))
2273		return;
2274
2275	do {
2276		count = sort_cells(tc->pool, &cells);
2277
2278		for (i = 0; i < count; i++) {
2279			cell = pool->cell_sort_array[i];
2280			BUG_ON(!cell->holder);
2281
2282			/*
2283			 * If we've got no free new_mapping structs, and processing
2284			 * this bio might require one, we pause until there are some
2285			 * prepared mappings to process.
2286			 */
2287			if (ensure_next_mapping(pool)) {
2288				for (j = i; j < count; j++)
2289					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2290
2291				spin_lock_irq(&tc->lock);
2292				list_splice(&cells, &tc->deferred_cells);
2293				spin_unlock_irq(&tc->lock);
2294				return;
2295			}
2296
2297			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2298				pool->process_discard_cell(tc, cell);
2299			else
2300				pool->process_cell(tc, cell);
2301		}
2302	} while (!list_empty(&cells));
2303}
2304
2305static void thin_get(struct thin_c *tc);
2306static void thin_put(struct thin_c *tc);
2307
2308/*
2309 * We can't hold rcu_read_lock() around code that can block.  So we
2310 * find a thin with the rcu lock held; bump a refcount; then drop
2311 * the lock.
2312 */
2313static struct thin_c *get_first_thin(struct pool *pool)
2314{
2315	struct thin_c *tc = NULL;
2316
2317	rcu_read_lock();
2318	if (!list_empty(&pool->active_thins)) {
2319		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2320		thin_get(tc);
2321	}
2322	rcu_read_unlock();
2323
2324	return tc;
2325}
2326
2327static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2328{
2329	struct thin_c *old_tc = tc;
2330
2331	rcu_read_lock();
2332	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2333		thin_get(tc);
2334		thin_put(old_tc);
2335		rcu_read_unlock();
2336		return tc;
2337	}
2338	thin_put(old_tc);
2339	rcu_read_unlock();
2340
2341	return NULL;
2342}
2343
2344static void process_deferred_bios(struct pool *pool)
2345{
2346	struct bio *bio;
2347	struct bio_list bios, bio_completions;
2348	struct thin_c *tc;
2349
2350	tc = get_first_thin(pool);
2351	while (tc) {
2352		process_thin_deferred_cells(tc);
2353		process_thin_deferred_bios(tc);
2354		tc = get_next_thin(pool, tc);
2355	}
2356
2357	/*
2358	 * If there are any deferred flush bios, we must commit the metadata
2359	 * before issuing them or signaling their completion.
2360	 */
2361	bio_list_init(&bios);
2362	bio_list_init(&bio_completions);
2363
2364	spin_lock_irq(&pool->lock);
2365	bio_list_merge(&bios, &pool->deferred_flush_bios);
2366	bio_list_init(&pool->deferred_flush_bios);
 
2367
2368	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2369	bio_list_init(&pool->deferred_flush_completions);
2370	spin_unlock_irq(&pool->lock);
2371
2372	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2373	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2374		return;
2375
2376	if (commit(pool)) {
2377		bio_list_merge(&bios, &bio_completions);
2378
 
2379		while ((bio = bio_list_pop(&bios)))
2380			bio_io_error(bio);
2381		return;
2382	}
2383	pool->last_commit_jiffies = jiffies;
2384
2385	while ((bio = bio_list_pop(&bio_completions)))
2386		bio_endio(bio);
2387
2388	while ((bio = bio_list_pop(&bios))) {
2389		/*
2390		 * The data device was flushed as part of metadata commit,
2391		 * so complete redundant flushes immediately.
2392		 */
2393		if (bio->bi_opf & REQ_PREFLUSH)
2394			bio_endio(bio);
2395		else
2396			submit_bio_noacct(bio);
2397	}
2398}
2399
2400static void do_worker(struct work_struct *ws)
2401{
2402	struct pool *pool = container_of(ws, struct pool, worker);
2403
2404	throttle_work_start(&pool->throttle);
2405	dm_pool_issue_prefetches(pool->pmd);
2406	throttle_work_update(&pool->throttle);
2407	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2408	throttle_work_update(&pool->throttle);
2409	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2410	throttle_work_update(&pool->throttle);
2411	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2412	throttle_work_update(&pool->throttle);
2413	process_deferred_bios(pool);
2414	throttle_work_complete(&pool->throttle);
2415}
2416
2417/*
2418 * We want to commit periodically so that not too much
2419 * unwritten data builds up.
2420 */
2421static void do_waker(struct work_struct *ws)
2422{
2423	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2424	wake_worker(pool);
2425	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2426}
2427
2428/*
2429 * We're holding onto IO to allow userland time to react.  After the
2430 * timeout either the pool will have been resized (and thus back in
2431 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2432 */
2433static void do_no_space_timeout(struct work_struct *ws)
2434{
2435	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2436					 no_space_timeout);
2437
2438	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2439		pool->pf.error_if_no_space = true;
2440		notify_of_pool_mode_change(pool);
2441		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2442	}
2443}
2444
2445/*----------------------------------------------------------------*/
2446
2447struct pool_work {
2448	struct work_struct worker;
2449	struct completion complete;
2450};
2451
2452static struct pool_work *to_pool_work(struct work_struct *ws)
2453{
2454	return container_of(ws, struct pool_work, worker);
2455}
2456
2457static void pool_work_complete(struct pool_work *pw)
2458{
2459	complete(&pw->complete);
2460}
2461
2462static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2463			   void (*fn)(struct work_struct *))
2464{
2465	INIT_WORK_ONSTACK(&pw->worker, fn);
2466	init_completion(&pw->complete);
2467	queue_work(pool->wq, &pw->worker);
2468	wait_for_completion(&pw->complete);
2469}
2470
2471/*----------------------------------------------------------------*/
2472
2473struct noflush_work {
2474	struct pool_work pw;
2475	struct thin_c *tc;
2476};
2477
2478static struct noflush_work *to_noflush(struct work_struct *ws)
2479{
2480	return container_of(to_pool_work(ws), struct noflush_work, pw);
2481}
2482
2483static void do_noflush_start(struct work_struct *ws)
2484{
2485	struct noflush_work *w = to_noflush(ws);
2486	w->tc->requeue_mode = true;
2487	requeue_io(w->tc);
2488	pool_work_complete(&w->pw);
2489}
2490
2491static void do_noflush_stop(struct work_struct *ws)
2492{
2493	struct noflush_work *w = to_noflush(ws);
2494	w->tc->requeue_mode = false;
2495	pool_work_complete(&w->pw);
2496}
2497
2498static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2499{
2500	struct noflush_work w;
2501
2502	w.tc = tc;
2503	pool_work_wait(&w.pw, tc->pool, fn);
2504}
2505
2506/*----------------------------------------------------------------*/
2507
2508static bool passdown_enabled(struct pool_c *pt)
2509{
2510	return pt->adjusted_pf.discard_passdown;
2511}
2512
2513static void set_discard_callbacks(struct pool *pool)
2514{
2515	struct pool_c *pt = pool->ti->private;
2516
2517	if (passdown_enabled(pt)) {
2518		pool->process_discard_cell = process_discard_cell_passdown;
2519		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2520		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2521	} else {
2522		pool->process_discard_cell = process_discard_cell_no_passdown;
2523		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2524	}
2525}
2526
2527static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2528{
2529	struct pool_c *pt = pool->ti->private;
2530	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2531	enum pool_mode old_mode = get_pool_mode(pool);
2532	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2533
2534	/*
2535	 * Never allow the pool to transition to PM_WRITE mode if user
2536	 * intervention is required to verify metadata and data consistency.
2537	 */
2538	if (new_mode == PM_WRITE && needs_check) {
2539		DMERR("%s: unable to switch pool to write mode until repaired.",
2540		      dm_device_name(pool->pool_md));
2541		if (old_mode != new_mode)
2542			new_mode = old_mode;
2543		else
2544			new_mode = PM_READ_ONLY;
2545	}
2546	/*
2547	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2548	 * not going to recover without a thin_repair.	So we never let the
2549	 * pool move out of the old mode.
2550	 */
2551	if (old_mode == PM_FAIL)
2552		new_mode = old_mode;
2553
2554	switch (new_mode) {
2555	case PM_FAIL:
2556		dm_pool_metadata_read_only(pool->pmd);
2557		pool->process_bio = process_bio_fail;
2558		pool->process_discard = process_bio_fail;
2559		pool->process_cell = process_cell_fail;
2560		pool->process_discard_cell = process_cell_fail;
2561		pool->process_prepared_mapping = process_prepared_mapping_fail;
2562		pool->process_prepared_discard = process_prepared_discard_fail;
2563
2564		error_retry_list(pool);
2565		break;
2566
2567	case PM_OUT_OF_METADATA_SPACE:
2568	case PM_READ_ONLY:
2569		dm_pool_metadata_read_only(pool->pmd);
2570		pool->process_bio = process_bio_read_only;
2571		pool->process_discard = process_bio_success;
2572		pool->process_cell = process_cell_read_only;
2573		pool->process_discard_cell = process_cell_success;
2574		pool->process_prepared_mapping = process_prepared_mapping_fail;
2575		pool->process_prepared_discard = process_prepared_discard_success;
2576
2577		error_retry_list(pool);
2578		break;
2579
2580	case PM_OUT_OF_DATA_SPACE:
2581		/*
2582		 * Ideally we'd never hit this state; the low water mark
2583		 * would trigger userland to extend the pool before we
2584		 * completely run out of data space.  However, many small
2585		 * IOs to unprovisioned space can consume data space at an
2586		 * alarming rate.  Adjust your low water mark if you're
2587		 * frequently seeing this mode.
2588		 */
2589		pool->out_of_data_space = true;
2590		pool->process_bio = process_bio_read_only;
2591		pool->process_discard = process_discard_bio;
2592		pool->process_cell = process_cell_read_only;
2593		pool->process_prepared_mapping = process_prepared_mapping;
2594		set_discard_callbacks(pool);
2595
2596		if (!pool->pf.error_if_no_space && no_space_timeout)
2597			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2598		break;
2599
2600	case PM_WRITE:
2601		if (old_mode == PM_OUT_OF_DATA_SPACE)
2602			cancel_delayed_work_sync(&pool->no_space_timeout);
2603		pool->out_of_data_space = false;
2604		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2605		dm_pool_metadata_read_write(pool->pmd);
2606		pool->process_bio = process_bio;
2607		pool->process_discard = process_discard_bio;
2608		pool->process_cell = process_cell;
2609		pool->process_prepared_mapping = process_prepared_mapping;
2610		set_discard_callbacks(pool);
2611		break;
2612	}
2613
2614	pool->pf.mode = new_mode;
2615	/*
2616	 * The pool mode may have changed, sync it so bind_control_target()
2617	 * doesn't cause an unexpected mode transition on resume.
2618	 */
2619	pt->adjusted_pf.mode = new_mode;
2620
2621	if (old_mode != new_mode)
2622		notify_of_pool_mode_change(pool);
2623}
2624
2625static void abort_transaction(struct pool *pool)
2626{
2627	const char *dev_name = dm_device_name(pool->pool_md);
2628
2629	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2630	if (dm_pool_abort_metadata(pool->pmd)) {
2631		DMERR("%s: failed to abort metadata transaction", dev_name);
2632		set_pool_mode(pool, PM_FAIL);
2633	}
2634
2635	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2636		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2637		set_pool_mode(pool, PM_FAIL);
2638	}
2639}
2640
2641static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2642{
2643	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2644		    dm_device_name(pool->pool_md), op, r);
2645
2646	abort_transaction(pool);
2647	set_pool_mode(pool, PM_READ_ONLY);
2648}
2649
2650/*----------------------------------------------------------------*/
2651
2652/*
2653 * Mapping functions.
2654 */
2655
2656/*
2657 * Called only while mapping a thin bio to hand it over to the workqueue.
2658 */
2659static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2660{
 
2661	struct pool *pool = tc->pool;
2662
2663	spin_lock_irq(&tc->lock);
2664	bio_list_add(&tc->deferred_bio_list, bio);
2665	spin_unlock_irq(&tc->lock);
2666
2667	wake_worker(pool);
2668}
2669
2670static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2671{
2672	struct pool *pool = tc->pool;
2673
2674	throttle_lock(&pool->throttle);
2675	thin_defer_bio(tc, bio);
2676	throttle_unlock(&pool->throttle);
2677}
2678
2679static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2680{
2681	struct pool *pool = tc->pool;
2682
2683	throttle_lock(&pool->throttle);
2684	spin_lock_irq(&tc->lock);
2685	list_add_tail(&cell->user_list, &tc->deferred_cells);
2686	spin_unlock_irq(&tc->lock);
2687	throttle_unlock(&pool->throttle);
2688
2689	wake_worker(pool);
2690}
2691
2692static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2693{
2694	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2695
2696	h->tc = tc;
2697	h->shared_read_entry = NULL;
2698	h->all_io_entry = NULL;
2699	h->overwrite_mapping = NULL;
2700	h->cell = NULL;
 
2701}
2702
2703/*
2704 * Non-blocking function called from the thin target's map function.
2705 */
2706static int thin_bio_map(struct dm_target *ti, struct bio *bio)
 
2707{
2708	int r;
2709	struct thin_c *tc = ti->private;
2710	dm_block_t block = get_bio_block(tc, bio);
2711	struct dm_thin_device *td = tc->td;
2712	struct dm_thin_lookup_result result;
2713	struct dm_bio_prison_cell *virt_cell, *data_cell;
2714	struct dm_cell_key key;
2715
2716	thin_hook_bio(tc, bio);
2717
2718	if (tc->requeue_mode) {
2719		bio->bi_status = BLK_STS_DM_REQUEUE;
2720		bio_endio(bio);
2721		return DM_MAPIO_SUBMITTED;
2722	}
2723
2724	if (get_pool_mode(tc->pool) == PM_FAIL) {
2725		bio_io_error(bio);
2726		return DM_MAPIO_SUBMITTED;
2727	}
2728
2729	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2730		thin_defer_bio_with_throttle(tc, bio);
2731		return DM_MAPIO_SUBMITTED;
2732	}
2733
2734	/*
2735	 * We must hold the virtual cell before doing the lookup, otherwise
2736	 * there's a race with discard.
2737	 */
2738	build_virtual_key(tc->td, block, &key);
2739	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2740		return DM_MAPIO_SUBMITTED;
2741
2742	r = dm_thin_find_block(td, block, 0, &result);
2743
2744	/*
2745	 * Note that we defer readahead too.
2746	 */
2747	switch (r) {
2748	case 0:
2749		if (unlikely(result.shared)) {
2750			/*
2751			 * We have a race condition here between the
2752			 * result.shared value returned by the lookup and
2753			 * snapshot creation, which may cause new
2754			 * sharing.
2755			 *
2756			 * To avoid this always quiesce the origin before
2757			 * taking the snap.  You want to do this anyway to
2758			 * ensure a consistent application view
2759			 * (i.e. lockfs).
2760			 *
2761			 * More distant ancestors are irrelevant. The
2762			 * shared flag will be set in their case.
2763			 */
2764			thin_defer_cell(tc, virt_cell);
2765			return DM_MAPIO_SUBMITTED;
 
 
 
2766		}
2767
2768		build_data_key(tc->td, result.block, &key);
2769		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2770			cell_defer_no_holder(tc, virt_cell);
2771			return DM_MAPIO_SUBMITTED;
2772		}
2773
2774		inc_all_io_entry(tc->pool, bio);
2775		cell_defer_no_holder(tc, data_cell);
2776		cell_defer_no_holder(tc, virt_cell);
2777
2778		remap(tc, bio, result.block);
2779		return DM_MAPIO_REMAPPED;
2780
2781	case -ENODATA:
2782	case -EWOULDBLOCK:
2783		thin_defer_cell(tc, virt_cell);
2784		return DM_MAPIO_SUBMITTED;
2785
2786	default:
2787		/*
2788		 * Must always call bio_io_error on failure.
2789		 * dm_thin_find_block can fail with -EINVAL if the
2790		 * pool is switched to fail-io mode.
2791		 */
2792		bio_io_error(bio);
2793		cell_defer_no_holder(tc, virt_cell);
2794		return DM_MAPIO_SUBMITTED;
 
2795	}
 
 
2796}
2797
2798static void requeue_bios(struct pool *pool)
2799{
2800	struct thin_c *tc;
 
 
2801
2802	rcu_read_lock();
2803	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2804		spin_lock_irq(&tc->lock);
2805		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2806		bio_list_init(&tc->retry_on_resume_list);
2807		spin_unlock_irq(&tc->lock);
 
2808	}
2809	rcu_read_unlock();
2810}
2811
2812/*----------------------------------------------------------------
2813 * Binding of control targets to a pool object
2814 *--------------------------------------------------------------*/
2815static bool data_dev_supports_discard(struct pool_c *pt)
2816{
2817	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2818
2819	return blk_queue_discard(q);
2820}
2821
2822static bool is_factor(sector_t block_size, uint32_t n)
2823{
2824	return !sector_div(block_size, n);
2825}
2826
2827/*
2828 * If discard_passdown was enabled verify that the data device
2829 * supports discards.  Disable discard_passdown if not.
2830 */
2831static void disable_passdown_if_not_supported(struct pool_c *pt)
2832{
2833	struct pool *pool = pt->pool;
2834	struct block_device *data_bdev = pt->data_dev->bdev;
2835	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2836	const char *reason = NULL;
2837	char buf[BDEVNAME_SIZE];
2838
2839	if (!pt->adjusted_pf.discard_passdown)
2840		return;
2841
2842	if (!data_dev_supports_discard(pt))
2843		reason = "discard unsupported";
2844
2845	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2846		reason = "max discard sectors smaller than a block";
2847
2848	if (reason) {
2849		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2850		pt->adjusted_pf.discard_passdown = false;
2851	}
2852}
2853
 
 
 
2854static int bind_control_target(struct pool *pool, struct dm_target *ti)
2855{
2856	struct pool_c *pt = ti->private;
2857
2858	/*
2859	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2860	 */
2861	enum pool_mode old_mode = get_pool_mode(pool);
2862	enum pool_mode new_mode = pt->adjusted_pf.mode;
2863
2864	/*
2865	 * Don't change the pool's mode until set_pool_mode() below.
2866	 * Otherwise the pool's process_* function pointers may
2867	 * not match the desired pool mode.
2868	 */
2869	pt->adjusted_pf.mode = old_mode;
2870
2871	pool->ti = ti;
2872	pool->pf = pt->adjusted_pf;
2873	pool->low_water_blocks = pt->low_water_blocks;
 
2874
2875	set_pool_mode(pool, new_mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
2876
2877	return 0;
2878}
2879
2880static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2881{
2882	if (pool->ti == ti)
2883		pool->ti = NULL;
2884}
2885
2886/*----------------------------------------------------------------
2887 * Pool creation
2888 *--------------------------------------------------------------*/
2889/* Initialize pool features. */
2890static void pool_features_init(struct pool_features *pf)
2891{
2892	pf->mode = PM_WRITE;
2893	pf->zero_new_blocks = true;
2894	pf->discard_enabled = true;
2895	pf->discard_passdown = true;
2896	pf->error_if_no_space = false;
2897}
2898
2899static void __pool_destroy(struct pool *pool)
2900{
2901	__pool_table_remove(pool);
2902
2903	vfree(pool->cell_sort_array);
2904	if (dm_pool_metadata_close(pool->pmd) < 0)
2905		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2906
2907	dm_bio_prison_destroy(pool->prison);
2908	dm_kcopyd_client_destroy(pool->copier);
2909
2910	if (pool->wq)
2911		destroy_workqueue(pool->wq);
2912
2913	if (pool->next_mapping)
2914		mempool_free(pool->next_mapping, &pool->mapping_pool);
2915	mempool_exit(&pool->mapping_pool);
2916	bio_uninit(&pool->flush_bio);
2917	dm_deferred_set_destroy(pool->shared_read_ds);
2918	dm_deferred_set_destroy(pool->all_io_ds);
2919	kfree(pool);
2920}
2921
2922static struct kmem_cache *_new_mapping_cache;
 
2923
2924static struct pool *pool_create(struct mapped_device *pool_md,
2925				struct block_device *metadata_dev,
2926				struct block_device *data_dev,
2927				unsigned long block_size,
2928				int read_only, char **error)
2929{
2930	int r;
2931	void *err_p;
2932	struct pool *pool;
2933	struct dm_pool_metadata *pmd;
2934	bool format_device = read_only ? false : true;
2935
2936	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2937	if (IS_ERR(pmd)) {
2938		*error = "Error creating metadata object";
2939		return (struct pool *)pmd;
2940	}
2941
2942	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2943	if (!pool) {
2944		*error = "Error allocating memory for pool";
2945		err_p = ERR_PTR(-ENOMEM);
2946		goto bad_pool;
2947	}
2948
2949	pool->pmd = pmd;
2950	pool->sectors_per_block = block_size;
2951	if (block_size & (block_size - 1))
2952		pool->sectors_per_block_shift = -1;
2953	else
2954		pool->sectors_per_block_shift = __ffs(block_size);
2955	pool->low_water_blocks = 0;
2956	pool_features_init(&pool->pf);
2957	pool->prison = dm_bio_prison_create();
2958	if (!pool->prison) {
2959		*error = "Error creating pool's bio prison";
2960		err_p = ERR_PTR(-ENOMEM);
2961		goto bad_prison;
2962	}
2963
2964	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2965	if (IS_ERR(pool->copier)) {
2966		r = PTR_ERR(pool->copier);
2967		*error = "Error creating pool's kcopyd client";
2968		err_p = ERR_PTR(r);
2969		goto bad_kcopyd_client;
2970	}
2971
2972	/*
2973	 * Create singlethreaded workqueue that will service all devices
2974	 * that use this metadata.
2975	 */
2976	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2977	if (!pool->wq) {
2978		*error = "Error creating pool's workqueue";
2979		err_p = ERR_PTR(-ENOMEM);
2980		goto bad_wq;
2981	}
2982
2983	throttle_init(&pool->throttle);
2984	INIT_WORK(&pool->worker, do_worker);
2985	INIT_DELAYED_WORK(&pool->waker, do_waker);
2986	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2987	spin_lock_init(&pool->lock);
 
2988	bio_list_init(&pool->deferred_flush_bios);
2989	bio_list_init(&pool->deferred_flush_completions);
2990	INIT_LIST_HEAD(&pool->prepared_mappings);
2991	INIT_LIST_HEAD(&pool->prepared_discards);
2992	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2993	INIT_LIST_HEAD(&pool->active_thins);
2994	pool->low_water_triggered = false;
2995	pool->suspended = true;
2996	pool->out_of_data_space = false;
2997	bio_init(&pool->flush_bio, NULL, 0);
2998
2999	pool->shared_read_ds = dm_deferred_set_create();
3000	if (!pool->shared_read_ds) {
3001		*error = "Error creating pool's shared read deferred set";
3002		err_p = ERR_PTR(-ENOMEM);
3003		goto bad_shared_read_ds;
3004	}
3005
3006	pool->all_io_ds = dm_deferred_set_create();
3007	if (!pool->all_io_ds) {
3008		*error = "Error creating pool's all io deferred set";
3009		err_p = ERR_PTR(-ENOMEM);
3010		goto bad_all_io_ds;
3011	}
3012
3013	pool->next_mapping = NULL;
3014	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3015				   _new_mapping_cache);
3016	if (r) {
3017		*error = "Error creating pool's mapping mempool";
3018		err_p = ERR_PTR(r);
3019		goto bad_mapping_pool;
3020	}
3021
3022	pool->cell_sort_array =
3023		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3024				   sizeof(*pool->cell_sort_array)));
3025	if (!pool->cell_sort_array) {
3026		*error = "Error allocating cell sort array";
3027		err_p = ERR_PTR(-ENOMEM);
3028		goto bad_sort_array;
3029	}
3030
3031	pool->ref_count = 1;
3032	pool->last_commit_jiffies = jiffies;
3033	pool->pool_md = pool_md;
3034	pool->md_dev = metadata_dev;
3035	pool->data_dev = data_dev;
3036	__pool_table_insert(pool);
3037
3038	return pool;
3039
3040bad_sort_array:
3041	mempool_exit(&pool->mapping_pool);
3042bad_mapping_pool:
3043	dm_deferred_set_destroy(pool->all_io_ds);
3044bad_all_io_ds:
3045	dm_deferred_set_destroy(pool->shared_read_ds);
3046bad_shared_read_ds:
3047	destroy_workqueue(pool->wq);
3048bad_wq:
3049	dm_kcopyd_client_destroy(pool->copier);
3050bad_kcopyd_client:
3051	dm_bio_prison_destroy(pool->prison);
3052bad_prison:
3053	kfree(pool);
3054bad_pool:
3055	if (dm_pool_metadata_close(pmd))
3056		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3057
3058	return err_p;
3059}
3060
3061static void __pool_inc(struct pool *pool)
3062{
3063	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3064	pool->ref_count++;
3065}
3066
3067static void __pool_dec(struct pool *pool)
3068{
3069	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3070	BUG_ON(!pool->ref_count);
3071	if (!--pool->ref_count)
3072		__pool_destroy(pool);
3073}
3074
3075static struct pool *__pool_find(struct mapped_device *pool_md,
3076				struct block_device *metadata_dev,
3077				struct block_device *data_dev,
3078				unsigned long block_size, int read_only,
3079				char **error, int *created)
3080{
3081	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3082
3083	if (pool) {
3084		if (pool->pool_md != pool_md) {
3085			*error = "metadata device already in use by a pool";
3086			return ERR_PTR(-EBUSY);
3087		}
3088		if (pool->data_dev != data_dev) {
3089			*error = "data device already in use by a pool";
3090			return ERR_PTR(-EBUSY);
3091		}
3092		__pool_inc(pool);
3093
3094	} else {
3095		pool = __pool_table_lookup(pool_md);
3096		if (pool) {
3097			if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3098				*error = "different pool cannot replace a pool";
3099				return ERR_PTR(-EINVAL);
3100			}
3101			__pool_inc(pool);
3102
3103		} else {
3104			pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3105			*created = 1;
3106		}
3107	}
3108
3109	return pool;
3110}
3111
3112/*----------------------------------------------------------------
3113 * Pool target methods
3114 *--------------------------------------------------------------*/
3115static void pool_dtr(struct dm_target *ti)
3116{
3117	struct pool_c *pt = ti->private;
3118
3119	mutex_lock(&dm_thin_pool_table.mutex);
3120
3121	unbind_control_target(pt->pool, ti);
3122	__pool_dec(pt->pool);
3123	dm_put_device(ti, pt->metadata_dev);
3124	dm_put_device(ti, pt->data_dev);
3125	kfree(pt);
3126
3127	mutex_unlock(&dm_thin_pool_table.mutex);
3128}
3129
3130static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3131			       struct dm_target *ti)
3132{
3133	int r;
3134	unsigned argc;
3135	const char *arg_name;
3136
3137	static const struct dm_arg _args[] = {
3138		{0, 4, "Invalid number of pool feature arguments"},
3139	};
3140
3141	/*
3142	 * No feature arguments supplied.
3143	 */
3144	if (!as->argc)
3145		return 0;
3146
3147	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3148	if (r)
3149		return -EINVAL;
3150
3151	while (argc && !r) {
3152		arg_name = dm_shift_arg(as);
3153		argc--;
3154
3155		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3156			pf->zero_new_blocks = false;
 
 
 
 
 
 
 
 
3157
3158		else if (!strcasecmp(arg_name, "ignore_discard"))
3159			pf->discard_enabled = false;
3160
3161		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3162			pf->discard_passdown = false;
3163
3164		else if (!strcasecmp(arg_name, "read_only"))
3165			pf->mode = PM_READ_ONLY;
3166
3167		else if (!strcasecmp(arg_name, "error_if_no_space"))
3168			pf->error_if_no_space = true;
3169
3170		else {
3171			ti->error = "Unrecognised pool feature requested";
3172			r = -EINVAL;
3173			break;
3174		}
3175	}
3176
3177	return r;
3178}
3179
3180static void metadata_low_callback(void *context)
3181{
3182	struct pool *pool = context;
3183
3184	DMWARN("%s: reached low water mark for metadata device: sending event.",
3185	       dm_device_name(pool->pool_md));
3186
3187	dm_table_event(pool->ti->table);
3188}
3189
3190/*
3191 * We need to flush the data device **before** committing the metadata.
3192 *
3193 * This ensures that the data blocks of any newly inserted mappings are
3194 * properly written to non-volatile storage and won't be lost in case of a
3195 * crash.
3196 *
3197 * Failure to do so can result in data corruption in the case of internal or
3198 * external snapshots and in the case of newly provisioned blocks, when block
3199 * zeroing is enabled.
3200 */
3201static int metadata_pre_commit_callback(void *context)
3202{
3203	struct pool *pool = context;
3204	struct bio *flush_bio = &pool->flush_bio;
3205
3206	bio_reset(flush_bio);
3207	bio_set_dev(flush_bio, pool->data_dev);
3208	flush_bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
3209
3210	return submit_bio_wait(flush_bio);
3211}
3212
3213static sector_t get_dev_size(struct block_device *bdev)
3214{
3215	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3216}
3217
3218static void warn_if_metadata_device_too_big(struct block_device *bdev)
3219{
3220	sector_t metadata_dev_size = get_dev_size(bdev);
3221	char buffer[BDEVNAME_SIZE];
3222
3223	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3224		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3225		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3226}
3227
3228static sector_t get_metadata_dev_size(struct block_device *bdev)
3229{
3230	sector_t metadata_dev_size = get_dev_size(bdev);
3231
3232	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3233		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3234
3235	return metadata_dev_size;
3236}
3237
3238static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3239{
3240	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3241
3242	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3243
3244	return metadata_dev_size;
3245}
3246
3247/*
3248 * When a metadata threshold is crossed a dm event is triggered, and
3249 * userland should respond by growing the metadata device.  We could let
3250 * userland set the threshold, like we do with the data threshold, but I'm
3251 * not sure they know enough to do this well.
3252 */
3253static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3254{
3255	/*
3256	 * 4M is ample for all ops with the possible exception of thin
3257	 * device deletion which is harmless if it fails (just retry the
3258	 * delete after you've grown the device).
3259	 */
3260	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3261	return min((dm_block_t)1024ULL /* 4M */, quarter);
3262}
3263
3264/*
3265 * thin-pool <metadata dev> <data dev>
3266 *	     <data block size (sectors)>
3267 *	     <low water mark (blocks)>
3268 *	     [<#feature args> [<arg>]*]
3269 *
3270 * Optional feature arguments are:
3271 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3272 *	     ignore_discard: disable discard
3273 *	     no_discard_passdown: don't pass discards down to the data device
3274 *	     read_only: Don't allow any changes to be made to the pool metadata.
3275 *	     error_if_no_space: error IOs, instead of queueing, if no space.
3276 */
3277static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3278{
3279	int r, pool_created = 0;
3280	struct pool_c *pt;
3281	struct pool *pool;
3282	struct pool_features pf;
3283	struct dm_arg_set as;
3284	struct dm_dev *data_dev;
3285	unsigned long block_size;
3286	dm_block_t low_water_blocks;
3287	struct dm_dev *metadata_dev;
3288	fmode_t metadata_mode;
 
3289
3290	/*
3291	 * FIXME Remove validation from scope of lock.
3292	 */
3293	mutex_lock(&dm_thin_pool_table.mutex);
3294
3295	if (argc < 4) {
3296		ti->error = "Invalid argument count";
3297		r = -EINVAL;
3298		goto out_unlock;
3299	}
3300
3301	as.argc = argc;
3302	as.argv = argv;
3303
3304	/* make sure metadata and data are different devices */
3305	if (!strcmp(argv[0], argv[1])) {
3306		ti->error = "Error setting metadata or data device";
3307		r = -EINVAL;
3308		goto out_unlock;
3309	}
3310
3311	/*
3312	 * Set default pool features.
3313	 */
3314	pool_features_init(&pf);
3315
3316	dm_consume_args(&as, 4);
3317	r = parse_pool_features(&as, &pf, ti);
3318	if (r)
3319		goto out_unlock;
3320
3321	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3322	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3323	if (r) {
3324		ti->error = "Error opening metadata block device";
3325		goto out_unlock;
3326	}
3327	warn_if_metadata_device_too_big(metadata_dev->bdev);
 
 
 
 
3328
3329	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3330	if (r) {
3331		ti->error = "Error getting data device";
3332		goto out_metadata;
3333	}
3334
3335	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3336	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3337	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3338	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3339		ti->error = "Invalid block size";
3340		r = -EINVAL;
3341		goto out;
3342	}
3343
3344	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3345		ti->error = "Invalid low water mark";
3346		r = -EINVAL;
3347		goto out;
3348	}
3349
 
 
 
 
 
 
 
 
 
 
3350	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3351	if (!pt) {
3352		r = -ENOMEM;
3353		goto out;
3354	}
3355
3356	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3357			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3358	if (IS_ERR(pool)) {
3359		r = PTR_ERR(pool);
3360		goto out_free_pt;
3361	}
3362
3363	/*
3364	 * 'pool_created' reflects whether this is the first table load.
3365	 * Top level discard support is not allowed to be changed after
3366	 * initial load.  This would require a pool reload to trigger thin
3367	 * device changes.
3368	 */
3369	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3370		ti->error = "Discard support cannot be disabled once enabled";
3371		r = -EINVAL;
3372		goto out_flags_changed;
3373	}
3374
3375	pt->pool = pool;
3376	pt->ti = ti;
3377	pt->metadata_dev = metadata_dev;
3378	pt->data_dev = data_dev;
3379	pt->low_water_blocks = low_water_blocks;
3380	pt->adjusted_pf = pt->requested_pf = pf;
3381	ti->num_flush_bios = 1;
3382
3383	/*
3384	 * Only need to enable discards if the pool should pass
3385	 * them down to the data device.  The thin device's discard
3386	 * processing will cause mappings to be removed from the btree.
3387	 */
3388	if (pf.discard_enabled && pf.discard_passdown) {
3389		ti->num_discard_bios = 1;
3390
3391		/*
3392		 * Setting 'discards_supported' circumvents the normal
3393		 * stacking of discard limits (this keeps the pool and
3394		 * thin devices' discard limits consistent).
3395		 */
3396		ti->discards_supported = true;
3397	}
3398	ti->private = pt;
3399
3400	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3401						calc_metadata_threshold(pt),
3402						metadata_low_callback,
3403						pool);
3404	if (r)
3405		goto out_flags_changed;
3406
3407	dm_pool_register_pre_commit_callback(pool->pmd,
3408					     metadata_pre_commit_callback, pool);
3409
3410	mutex_unlock(&dm_thin_pool_table.mutex);
3411
3412	return 0;
3413
3414out_flags_changed:
3415	__pool_dec(pool);
3416out_free_pt:
3417	kfree(pt);
3418out:
3419	dm_put_device(ti, data_dev);
3420out_metadata:
3421	dm_put_device(ti, metadata_dev);
3422out_unlock:
3423	mutex_unlock(&dm_thin_pool_table.mutex);
3424
3425	return r;
3426}
3427
3428static int pool_map(struct dm_target *ti, struct bio *bio)
 
3429{
3430	int r;
3431	struct pool_c *pt = ti->private;
3432	struct pool *pool = pt->pool;
 
3433
3434	/*
3435	 * As this is a singleton target, ti->begin is always zero.
3436	 */
3437	spin_lock_irq(&pool->lock);
3438	bio_set_dev(bio, pt->data_dev->bdev);
3439	r = DM_MAPIO_REMAPPED;
3440	spin_unlock_irq(&pool->lock);
3441
3442	return r;
3443}
3444
3445static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3446{
3447	int r;
3448	struct pool_c *pt = ti->private;
3449	struct pool *pool = pt->pool;
3450	sector_t data_size = ti->len;
3451	dm_block_t sb_data_size;
3452
3453	*need_commit = false;
3454
3455	(void) sector_div(data_size, pool->sectors_per_block);
3456
3457	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3458	if (r) {
3459		DMERR("%s: failed to retrieve data device size",
3460		      dm_device_name(pool->pool_md));
3461		return r;
3462	}
3463
3464	if (data_size < sb_data_size) {
3465		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3466		      dm_device_name(pool->pool_md),
3467		      (unsigned long long)data_size, sb_data_size);
3468		return -EINVAL;
3469
3470	} else if (data_size > sb_data_size) {
3471		if (dm_pool_metadata_needs_check(pool->pmd)) {
3472			DMERR("%s: unable to grow the data device until repaired.",
3473			      dm_device_name(pool->pool_md));
3474			return 0;
3475		}
3476
3477		if (sb_data_size)
3478			DMINFO("%s: growing the data device from %llu to %llu blocks",
3479			       dm_device_name(pool->pool_md),
3480			       sb_data_size, (unsigned long long)data_size);
3481		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3482		if (r) {
3483			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3484			return r;
3485		}
3486
3487		*need_commit = true;
3488	}
3489
3490	return 0;
3491}
3492
3493static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3494{
3495	int r;
3496	struct pool_c *pt = ti->private;
3497	struct pool *pool = pt->pool;
3498	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3499
3500	*need_commit = false;
3501
3502	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3503
3504	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3505	if (r) {
3506		DMERR("%s: failed to retrieve metadata device size",
3507		      dm_device_name(pool->pool_md));
3508		return r;
3509	}
3510
3511	if (metadata_dev_size < sb_metadata_dev_size) {
3512		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3513		      dm_device_name(pool->pool_md),
3514		      metadata_dev_size, sb_metadata_dev_size);
3515		return -EINVAL;
3516
3517	} else if (metadata_dev_size > sb_metadata_dev_size) {
3518		if (dm_pool_metadata_needs_check(pool->pmd)) {
3519			DMERR("%s: unable to grow the metadata device until repaired.",
3520			      dm_device_name(pool->pool_md));
3521			return 0;
3522		}
3523
3524		warn_if_metadata_device_too_big(pool->md_dev);
3525		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3526		       dm_device_name(pool->pool_md),
3527		       sb_metadata_dev_size, metadata_dev_size);
3528
3529		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3530			set_pool_mode(pool, PM_WRITE);
3531
3532		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3533		if (r) {
3534			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3535			return r;
3536		}
3537
3538		*need_commit = true;
3539	}
3540
3541	return 0;
3542}
3543
3544/*
3545 * Retrieves the number of blocks of the data device from
3546 * the superblock and compares it to the actual device size,
3547 * thus resizing the data device in case it has grown.
3548 *
3549 * This both copes with opening preallocated data devices in the ctr
3550 * being followed by a resume
3551 * -and-
3552 * calling the resume method individually after userspace has
3553 * grown the data device in reaction to a table event.
3554 */
3555static int pool_preresume(struct dm_target *ti)
3556{
3557	int r;
3558	bool need_commit1, need_commit2;
3559	struct pool_c *pt = ti->private;
3560	struct pool *pool = pt->pool;
 
3561
3562	/*
3563	 * Take control of the pool object.
3564	 */
3565	r = bind_control_target(pool, ti);
3566	if (r)
3567		return r;
3568
3569	r = maybe_resize_data_dev(ti, &need_commit1);
3570	if (r)
 
 
3571		return r;
 
3572
3573	r = maybe_resize_metadata_dev(ti, &need_commit2);
3574	if (r)
3575		return r;
 
3576
3577	if (need_commit1 || need_commit2)
3578		(void) commit(pool);
 
 
 
 
3579
3580	return 0;
3581}
3582
3583static void pool_suspend_active_thins(struct pool *pool)
3584{
3585	struct thin_c *tc;
3586
3587	/* Suspend all active thin devices */
3588	tc = get_first_thin(pool);
3589	while (tc) {
3590		dm_internal_suspend_noflush(tc->thin_md);
3591		tc = get_next_thin(pool, tc);
3592	}
3593}
3594
3595static void pool_resume_active_thins(struct pool *pool)
3596{
3597	struct thin_c *tc;
3598
3599	/* Resume all active thin devices */
3600	tc = get_first_thin(pool);
3601	while (tc) {
3602		dm_internal_resume(tc->thin_md);
3603		tc = get_next_thin(pool, tc);
3604	}
3605}
3606
3607static void pool_resume(struct dm_target *ti)
3608{
3609	struct pool_c *pt = ti->private;
3610	struct pool *pool = pt->pool;
 
3611
3612	/*
3613	 * Must requeue active_thins' bios and then resume
3614	 * active_thins _before_ clearing 'suspend' flag.
3615	 */
3616	requeue_bios(pool);
3617	pool_resume_active_thins(pool);
3618
3619	spin_lock_irq(&pool->lock);
3620	pool->low_water_triggered = false;
3621	pool->suspended = false;
3622	spin_unlock_irq(&pool->lock);
3623
3624	do_waker(&pool->waker.work);
3625}
3626
3627static void pool_presuspend(struct dm_target *ti)
3628{
3629	struct pool_c *pt = ti->private;
3630	struct pool *pool = pt->pool;
3631
3632	spin_lock_irq(&pool->lock);
3633	pool->suspended = true;
3634	spin_unlock_irq(&pool->lock);
3635
3636	pool_suspend_active_thins(pool);
3637}
3638
3639static void pool_presuspend_undo(struct dm_target *ti)
3640{
3641	struct pool_c *pt = ti->private;
3642	struct pool *pool = pt->pool;
3643
3644	pool_resume_active_thins(pool);
3645
3646	spin_lock_irq(&pool->lock);
3647	pool->suspended = false;
3648	spin_unlock_irq(&pool->lock);
3649}
3650
3651static void pool_postsuspend(struct dm_target *ti)
3652{
 
3653	struct pool_c *pt = ti->private;
3654	struct pool *pool = pt->pool;
3655
3656	cancel_delayed_work_sync(&pool->waker);
3657	cancel_delayed_work_sync(&pool->no_space_timeout);
3658	flush_workqueue(pool->wq);
3659	(void) commit(pool);
 
 
 
 
 
 
3660}
3661
3662static int check_arg_count(unsigned argc, unsigned args_required)
3663{
3664	if (argc != args_required) {
3665		DMWARN("Message received with %u arguments instead of %u.",
3666		       argc, args_required);
3667		return -EINVAL;
3668	}
3669
3670	return 0;
3671}
3672
3673static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3674{
3675	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3676	    *dev_id <= MAX_DEV_ID)
3677		return 0;
3678
3679	if (warning)
3680		DMWARN("Message received with invalid device id: %s", arg);
3681
3682	return -EINVAL;
3683}
3684
3685static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3686{
3687	dm_thin_id dev_id;
3688	int r;
3689
3690	r = check_arg_count(argc, 2);
3691	if (r)
3692		return r;
3693
3694	r = read_dev_id(argv[1], &dev_id, 1);
3695	if (r)
3696		return r;
3697
3698	r = dm_pool_create_thin(pool->pmd, dev_id);
3699	if (r) {
3700		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3701		       argv[1]);
3702		return r;
3703	}
3704
3705	return 0;
3706}
3707
3708static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3709{
3710	dm_thin_id dev_id;
3711	dm_thin_id origin_dev_id;
3712	int r;
3713
3714	r = check_arg_count(argc, 3);
3715	if (r)
3716		return r;
3717
3718	r = read_dev_id(argv[1], &dev_id, 1);
3719	if (r)
3720		return r;
3721
3722	r = read_dev_id(argv[2], &origin_dev_id, 1);
3723	if (r)
3724		return r;
3725
3726	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3727	if (r) {
3728		DMWARN("Creation of new snapshot %s of device %s failed.",
3729		       argv[1], argv[2]);
3730		return r;
3731	}
3732
3733	return 0;
3734}
3735
3736static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3737{
3738	dm_thin_id dev_id;
3739	int r;
3740
3741	r = check_arg_count(argc, 2);
3742	if (r)
3743		return r;
3744
3745	r = read_dev_id(argv[1], &dev_id, 1);
3746	if (r)
3747		return r;
3748
3749	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3750	if (r)
3751		DMWARN("Deletion of thin device %s failed.", argv[1]);
3752
3753	return r;
3754}
3755
3756static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3757{
3758	dm_thin_id old_id, new_id;
3759	int r;
3760
3761	r = check_arg_count(argc, 3);
3762	if (r)
3763		return r;
3764
3765	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3766		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3767		return -EINVAL;
3768	}
3769
3770	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3771		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3772		return -EINVAL;
3773	}
3774
3775	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3776	if (r) {
3777		DMWARN("Failed to change transaction id from %s to %s.",
3778		       argv[1], argv[2]);
3779		return r;
3780	}
3781
3782	return 0;
3783}
3784
3785static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3786{
3787	int r;
3788
3789	r = check_arg_count(argc, 1);
3790	if (r)
3791		return r;
3792
3793	(void) commit(pool);
 
 
 
 
 
3794
3795	r = dm_pool_reserve_metadata_snap(pool->pmd);
3796	if (r)
3797		DMWARN("reserve_metadata_snap message failed.");
3798
3799	return r;
3800}
3801
3802static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3803{
3804	int r;
3805
3806	r = check_arg_count(argc, 1);
3807	if (r)
3808		return r;
3809
3810	r = dm_pool_release_metadata_snap(pool->pmd);
3811	if (r)
3812		DMWARN("release_metadata_snap message failed.");
3813
3814	return r;
3815}
3816
3817/*
3818 * Messages supported:
3819 *   create_thin	<dev_id>
3820 *   create_snap	<dev_id> <origin_id>
3821 *   delete		<dev_id>
 
3822 *   set_transaction_id <current_trans_id> <new_trans_id>
3823 *   reserve_metadata_snap
3824 *   release_metadata_snap
3825 */
3826static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3827			char *result, unsigned maxlen)
3828{
3829	int r = -EINVAL;
3830	struct pool_c *pt = ti->private;
3831	struct pool *pool = pt->pool;
3832
3833	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3834		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3835		      dm_device_name(pool->pool_md));
3836		return -EOPNOTSUPP;
3837	}
3838
3839	if (!strcasecmp(argv[0], "create_thin"))
3840		r = process_create_thin_mesg(argc, argv, pool);
3841
3842	else if (!strcasecmp(argv[0], "create_snap"))
3843		r = process_create_snap_mesg(argc, argv, pool);
3844
3845	else if (!strcasecmp(argv[0], "delete"))
3846		r = process_delete_mesg(argc, argv, pool);
3847
3848	else if (!strcasecmp(argv[0], "set_transaction_id"))
3849		r = process_set_transaction_id_mesg(argc, argv, pool);
3850
3851	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3852		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3853
3854	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3855		r = process_release_metadata_snap_mesg(argc, argv, pool);
3856
3857	else
3858		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3859
3860	if (!r)
3861		(void) commit(pool);
 
 
 
 
3862
3863	return r;
3864}
3865
3866static void emit_flags(struct pool_features *pf, char *result,
3867		       unsigned sz, unsigned maxlen)
3868{
3869	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3870		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3871		pf->error_if_no_space;
3872	DMEMIT("%u ", count);
3873
3874	if (!pf->zero_new_blocks)
3875		DMEMIT("skip_block_zeroing ");
3876
3877	if (!pf->discard_enabled)
3878		DMEMIT("ignore_discard ");
3879
3880	if (!pf->discard_passdown)
3881		DMEMIT("no_discard_passdown ");
3882
3883	if (pf->mode == PM_READ_ONLY)
3884		DMEMIT("read_only ");
3885
3886	if (pf->error_if_no_space)
3887		DMEMIT("error_if_no_space ");
3888}
3889
3890/*
3891 * Status line is:
3892 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3893 *    <used data sectors>/<total data sectors> <held metadata root>
3894 *    <pool mode> <discard config> <no space config> <needs_check>
3895 */
3896static void pool_status(struct dm_target *ti, status_type_t type,
3897			unsigned status_flags, char *result, unsigned maxlen)
3898{
3899	int r;
3900	unsigned sz = 0;
3901	uint64_t transaction_id;
3902	dm_block_t nr_free_blocks_data;
3903	dm_block_t nr_free_blocks_metadata;
3904	dm_block_t nr_blocks_data;
3905	dm_block_t nr_blocks_metadata;
3906	dm_block_t held_root;
3907	enum pool_mode mode;
3908	char buf[BDEVNAME_SIZE];
3909	char buf2[BDEVNAME_SIZE];
3910	struct pool_c *pt = ti->private;
3911	struct pool *pool = pt->pool;
3912
3913	switch (type) {
3914	case STATUSTYPE_INFO:
3915		if (get_pool_mode(pool) == PM_FAIL) {
3916			DMEMIT("Fail");
3917			break;
3918		}
3919
3920		/* Commit to ensure statistics aren't out-of-date */
3921		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3922			(void) commit(pool);
3923
3924		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3925		if (r) {
3926			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3927			      dm_device_name(pool->pool_md), r);
3928			goto err;
3929		}
3930
3931		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3932		if (r) {
3933			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3934			      dm_device_name(pool->pool_md), r);
3935			goto err;
3936		}
3937
3938		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3939		if (r) {
3940			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3941			      dm_device_name(pool->pool_md), r);
3942			goto err;
3943		}
3944
3945		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3946		if (r) {
3947			DMERR("%s: dm_pool_get_free_block_count returned %d",
3948			      dm_device_name(pool->pool_md), r);
3949			goto err;
3950		}
3951
3952		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3953		if (r) {
3954			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3955			      dm_device_name(pool->pool_md), r);
3956			goto err;
3957		}
3958
3959		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3960		if (r) {
3961			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3962			      dm_device_name(pool->pool_md), r);
3963			goto err;
3964		}
3965
3966		DMEMIT("%llu %llu/%llu %llu/%llu ",
3967		       (unsigned long long)transaction_id,
3968		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3969		       (unsigned long long)nr_blocks_metadata,
3970		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3971		       (unsigned long long)nr_blocks_data);
3972
3973		if (held_root)
3974			DMEMIT("%llu ", held_root);
3975		else
3976			DMEMIT("- ");
3977
3978		mode = get_pool_mode(pool);
3979		if (mode == PM_OUT_OF_DATA_SPACE)
3980			DMEMIT("out_of_data_space ");
3981		else if (is_read_only_pool_mode(mode))
3982			DMEMIT("ro ");
3983		else
3984			DMEMIT("rw ");
3985
3986		if (!pool->pf.discard_enabled)
3987			DMEMIT("ignore_discard ");
3988		else if (pool->pf.discard_passdown)
3989			DMEMIT("discard_passdown ");
3990		else
3991			DMEMIT("no_discard_passdown ");
3992
3993		if (pool->pf.error_if_no_space)
3994			DMEMIT("error_if_no_space ");
3995		else
3996			DMEMIT("queue_if_no_space ");
3997
3998		if (dm_pool_metadata_needs_check(pool->pmd))
3999			DMEMIT("needs_check ");
4000		else
4001			DMEMIT("- ");
4002
4003		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4004
4005		break;
4006
4007	case STATUSTYPE_TABLE:
4008		DMEMIT("%s %s %lu %llu ",
4009		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4010		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4011		       (unsigned long)pool->sectors_per_block,
4012		       (unsigned long long)pt->low_water_blocks);
4013		emit_flags(&pt->requested_pf, result, sz, maxlen);
 
 
 
 
 
 
 
 
 
 
 
 
 
4014		break;
4015	}
4016	return;
4017
4018err:
4019	DMEMIT("Error");
4020}
4021
4022static int pool_iterate_devices(struct dm_target *ti,
4023				iterate_devices_callout_fn fn, void *data)
4024{
4025	struct pool_c *pt = ti->private;
4026
4027	return fn(ti, pt->data_dev, 0, ti->len, data);
4028}
4029
4030static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
 
4031{
4032	struct pool_c *pt = ti->private;
4033	struct pool *pool = pt->pool;
4034	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
 
 
 
 
4035
4036	/*
4037	 * If max_sectors is smaller than pool->sectors_per_block adjust it
4038	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4039	 * This is especially beneficial when the pool's data device is a RAID
4040	 * device that has a full stripe width that matches pool->sectors_per_block
4041	 * -- because even though partial RAID stripe-sized IOs will be issued to a
4042	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
4043	 *    boundary.. which avoids additional partial RAID stripe writes cascading
4044	 */
4045	if (limits->max_sectors < pool->sectors_per_block) {
4046		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4047			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4048				limits->max_sectors--;
4049			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4050		}
4051	}
4052
 
 
4053	/*
4054	 * If the system-determined stacked limits are compatible with the
4055	 * pool's blocksize (io_opt is a factor) do not override them.
4056	 */
4057	if (io_opt_sectors < pool->sectors_per_block ||
4058	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4059		if (is_factor(pool->sectors_per_block, limits->max_sectors))
4060			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4061		else
4062			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4063		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4064	}
4065
4066	/*
4067	 * pt->adjusted_pf is a staging area for the actual features to use.
4068	 * They get transferred to the live pool in bind_control_target()
4069	 * called from pool_preresume().
4070	 */
4071	if (!pt->adjusted_pf.discard_enabled) {
4072		/*
4073		 * Must explicitly disallow stacking discard limits otherwise the
4074		 * block layer will stack them if pool's data device has support.
4075		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4076		 * user to see that, so make sure to set all discard limits to 0.
4077		 */
4078		limits->discard_granularity = 0;
4079		return;
4080	}
4081
4082	disable_passdown_if_not_supported(pt);
 
 
 
4083
4084	/*
4085	 * The pool uses the same discard limits as the underlying data
4086	 * device.  DM core has already set this up.
4087	 */
4088}
4089
4090static struct target_type pool_target = {
4091	.name = "thin-pool",
4092	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4093		    DM_TARGET_IMMUTABLE,
4094	.version = {1, 22, 0},
4095	.module = THIS_MODULE,
4096	.ctr = pool_ctr,
4097	.dtr = pool_dtr,
4098	.map = pool_map,
4099	.presuspend = pool_presuspend,
4100	.presuspend_undo = pool_presuspend_undo,
4101	.postsuspend = pool_postsuspend,
4102	.preresume = pool_preresume,
4103	.resume = pool_resume,
4104	.message = pool_message,
4105	.status = pool_status,
 
4106	.iterate_devices = pool_iterate_devices,
4107	.io_hints = pool_io_hints,
4108};
4109
4110/*----------------------------------------------------------------
4111 * Thin target methods
4112 *--------------------------------------------------------------*/
4113static void thin_get(struct thin_c *tc)
4114{
4115	refcount_inc(&tc->refcount);
4116}
4117
4118static void thin_put(struct thin_c *tc)
4119{
4120	if (refcount_dec_and_test(&tc->refcount))
4121		complete(&tc->can_destroy);
4122}
4123
4124static void thin_dtr(struct dm_target *ti)
4125{
4126	struct thin_c *tc = ti->private;
4127
4128	spin_lock_irq(&tc->pool->lock);
4129	list_del_rcu(&tc->list);
4130	spin_unlock_irq(&tc->pool->lock);
4131	synchronize_rcu();
4132
4133	thin_put(tc);
4134	wait_for_completion(&tc->can_destroy);
4135
4136	mutex_lock(&dm_thin_pool_table.mutex);
4137
4138	__pool_dec(tc->pool);
4139	dm_pool_close_thin_device(tc->td);
4140	dm_put_device(ti, tc->pool_dev);
4141	if (tc->origin_dev)
4142		dm_put_device(ti, tc->origin_dev);
4143	kfree(tc);
4144
4145	mutex_unlock(&dm_thin_pool_table.mutex);
4146}
4147
4148/*
4149 * Thin target parameters:
4150 *
4151 * <pool_dev> <dev_id> [origin_dev]
4152 *
4153 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4154 * dev_id: the internal device identifier
4155 * origin_dev: a device external to the pool that should act as the origin
4156 *
4157 * If the pool device has discards disabled, they get disabled for the thin
4158 * device as well.
4159 */
4160static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4161{
4162	int r;
4163	struct thin_c *tc;
4164	struct dm_dev *pool_dev, *origin_dev;
4165	struct mapped_device *pool_md;
4166
4167	mutex_lock(&dm_thin_pool_table.mutex);
4168
4169	if (argc != 2 && argc != 3) {
4170		ti->error = "Invalid argument count";
4171		r = -EINVAL;
4172		goto out_unlock;
4173	}
4174
4175	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4176	if (!tc) {
4177		ti->error = "Out of memory";
4178		r = -ENOMEM;
4179		goto out_unlock;
4180	}
4181	tc->thin_md = dm_table_get_md(ti->table);
4182	spin_lock_init(&tc->lock);
4183	INIT_LIST_HEAD(&tc->deferred_cells);
4184	bio_list_init(&tc->deferred_bio_list);
4185	bio_list_init(&tc->retry_on_resume_list);
4186	tc->sort_bio_list = RB_ROOT;
4187
4188	if (argc == 3) {
4189		if (!strcmp(argv[0], argv[2])) {
4190			ti->error = "Error setting origin device";
4191			r = -EINVAL;
4192			goto bad_origin_dev;
4193		}
4194
4195		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4196		if (r) {
4197			ti->error = "Error opening origin device";
4198			goto bad_origin_dev;
4199		}
4200		tc->origin_dev = origin_dev;
4201	}
4202
4203	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4204	if (r) {
4205		ti->error = "Error opening pool device";
4206		goto bad_pool_dev;
4207	}
4208	tc->pool_dev = pool_dev;
4209
4210	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4211		ti->error = "Invalid device id";
4212		r = -EINVAL;
4213		goto bad_common;
4214	}
4215
4216	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4217	if (!pool_md) {
4218		ti->error = "Couldn't get pool mapped device";
4219		r = -EINVAL;
4220		goto bad_common;
4221	}
4222
4223	tc->pool = __pool_table_lookup(pool_md);
4224	if (!tc->pool) {
4225		ti->error = "Couldn't find pool object";
4226		r = -EINVAL;
4227		goto bad_pool_lookup;
4228	}
4229	__pool_inc(tc->pool);
4230
4231	if (get_pool_mode(tc->pool) == PM_FAIL) {
4232		ti->error = "Couldn't open thin device, Pool is in fail mode";
4233		r = -EINVAL;
4234		goto bad_pool;
4235	}
4236
4237	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4238	if (r) {
4239		ti->error = "Couldn't open thin internal device";
4240		goto bad_pool;
4241	}
4242
4243	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4244	if (r)
4245		goto bad;
4246
4247	ti->num_flush_bios = 1;
4248	ti->flush_supported = true;
4249	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4250
4251	/* In case the pool supports discards, pass them on. */
4252	if (tc->pool->pf.discard_enabled) {
4253		ti->discards_supported = true;
4254		ti->num_discard_bios = 1;
 
4255	}
4256
 
 
4257	mutex_unlock(&dm_thin_pool_table.mutex);
4258
4259	spin_lock_irq(&tc->pool->lock);
4260	if (tc->pool->suspended) {
4261		spin_unlock_irq(&tc->pool->lock);
4262		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4263		ti->error = "Unable to activate thin device while pool is suspended";
4264		r = -EINVAL;
4265		goto bad;
4266	}
4267	refcount_set(&tc->refcount, 1);
4268	init_completion(&tc->can_destroy);
4269	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4270	spin_unlock_irq(&tc->pool->lock);
4271	/*
4272	 * This synchronize_rcu() call is needed here otherwise we risk a
4273	 * wake_worker() call finding no bios to process (because the newly
4274	 * added tc isn't yet visible).  So this reduces latency since we
4275	 * aren't then dependent on the periodic commit to wake_worker().
4276	 */
4277	synchronize_rcu();
4278
4279	dm_put(pool_md);
4280
4281	return 0;
4282
4283bad:
4284	dm_pool_close_thin_device(tc->td);
4285bad_pool:
4286	__pool_dec(tc->pool);
4287bad_pool_lookup:
4288	dm_put(pool_md);
4289bad_common:
4290	dm_put_device(ti, tc->pool_dev);
4291bad_pool_dev:
4292	if (tc->origin_dev)
4293		dm_put_device(ti, tc->origin_dev);
4294bad_origin_dev:
4295	kfree(tc);
4296out_unlock:
4297	mutex_unlock(&dm_thin_pool_table.mutex);
4298
4299	return r;
4300}
4301
4302static int thin_map(struct dm_target *ti, struct bio *bio)
 
4303{
4304	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4305
4306	return thin_bio_map(ti, bio);
4307}
4308
4309static int thin_endio(struct dm_target *ti, struct bio *bio,
4310		blk_status_t *err)
 
4311{
4312	unsigned long flags;
4313	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4314	struct list_head work;
4315	struct dm_thin_new_mapping *m, *tmp;
4316	struct pool *pool = h->tc->pool;
4317
4318	if (h->shared_read_entry) {
4319		INIT_LIST_HEAD(&work);
4320		dm_deferred_entry_dec(h->shared_read_entry, &work);
4321
4322		spin_lock_irqsave(&pool->lock, flags);
4323		list_for_each_entry_safe(m, tmp, &work, list) {
4324			list_del(&m->list);
4325			__complete_mapping_preparation(m);
 
4326		}
4327		spin_unlock_irqrestore(&pool->lock, flags);
4328	}
4329
4330	if (h->all_io_entry) {
4331		INIT_LIST_HEAD(&work);
4332		dm_deferred_entry_dec(h->all_io_entry, &work);
4333		if (!list_empty(&work)) {
4334			spin_lock_irqsave(&pool->lock, flags);
4335			list_for_each_entry_safe(m, tmp, &work, list)
4336				list_add_tail(&m->list, &pool->prepared_discards);
4337			spin_unlock_irqrestore(&pool->lock, flags);
4338			wake_worker(pool);
4339		}
4340	}
4341
4342	if (h->cell)
4343		cell_defer_no_holder(h->tc, h->cell);
4344
4345	return DM_ENDIO_DONE;
4346}
4347
4348static void thin_presuspend(struct dm_target *ti)
4349{
4350	struct thin_c *tc = ti->private;
4351
4352	if (dm_noflush_suspending(ti))
4353		noflush_work(tc, do_noflush_start);
4354}
4355
4356static void thin_postsuspend(struct dm_target *ti)
4357{
4358	struct thin_c *tc = ti->private;
4359
4360	/*
4361	 * The dm_noflush_suspending flag has been cleared by now, so
4362	 * unfortunately we must always run this.
4363	 */
4364	noflush_work(tc, do_noflush_stop);
4365}
4366
4367static int thin_preresume(struct dm_target *ti)
4368{
4369	struct thin_c *tc = ti->private;
4370
4371	if (tc->origin_dev)
4372		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4373
4374	return 0;
4375}
4376
4377/*
4378 * <nr mapped sectors> <highest mapped sector>
4379 */
4380static void thin_status(struct dm_target *ti, status_type_t type,
4381			unsigned status_flags, char *result, unsigned maxlen)
4382{
4383	int r;
4384	ssize_t sz = 0;
4385	dm_block_t mapped, highest;
4386	char buf[BDEVNAME_SIZE];
4387	struct thin_c *tc = ti->private;
4388
4389	if (get_pool_mode(tc->pool) == PM_FAIL) {
4390		DMEMIT("Fail");
4391		return;
4392	}
4393
4394	if (!tc->td)
4395		DMEMIT("-");
4396	else {
4397		switch (type) {
4398		case STATUSTYPE_INFO:
4399			r = dm_thin_get_mapped_count(tc->td, &mapped);
4400			if (r) {
4401				DMERR("dm_thin_get_mapped_count returned %d", r);
4402				goto err;
4403			}
4404
4405			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4406			if (r < 0) {
4407				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4408				goto err;
4409			}
4410
4411			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4412			if (r)
4413				DMEMIT("%llu", ((highest + 1) *
4414						tc->pool->sectors_per_block) - 1);
4415			else
4416				DMEMIT("-");
4417			break;
4418
4419		case STATUSTYPE_TABLE:
4420			DMEMIT("%s %lu",
4421			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4422			       (unsigned long) tc->dev_id);
4423			if (tc->origin_dev)
4424				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4425			break;
4426		}
4427	}
4428
4429	return;
4430
4431err:
4432	DMEMIT("Error");
4433}
4434
4435static int thin_iterate_devices(struct dm_target *ti,
4436				iterate_devices_callout_fn fn, void *data)
4437{
4438	sector_t blocks;
4439	struct thin_c *tc = ti->private;
4440	struct pool *pool = tc->pool;
4441
4442	/*
4443	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4444	 * we follow a more convoluted path through to the pool's target.
4445	 */
4446	if (!pool->ti)
4447		return 0;	/* nothing is bound */
4448
4449	blocks = pool->ti->len;
4450	(void) sector_div(blocks, pool->sectors_per_block);
4451	if (blocks)
4452		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4453
4454	return 0;
4455}
4456
4457static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4458{
4459	struct thin_c *tc = ti->private;
4460	struct pool *pool = tc->pool;
4461
4462	if (!pool->pf.discard_enabled)
4463		return;
4464
4465	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4466	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4467}
4468
4469static struct target_type thin_target = {
4470	.name = "thin",
4471	.version = {1, 22, 0},
4472	.module	= THIS_MODULE,
4473	.ctr = thin_ctr,
4474	.dtr = thin_dtr,
4475	.map = thin_map,
4476	.end_io = thin_endio,
4477	.preresume = thin_preresume,
4478	.presuspend = thin_presuspend,
4479	.postsuspend = thin_postsuspend,
4480	.status = thin_status,
4481	.iterate_devices = thin_iterate_devices,
4482	.io_hints = thin_io_hints,
4483};
4484
4485/*----------------------------------------------------------------*/
4486
4487static int __init dm_thin_init(void)
4488{
4489	int r = -ENOMEM;
4490
4491	pool_table_init();
4492
4493	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4494	if (!_new_mapping_cache)
4495		return r;
4496
4497	r = dm_register_target(&thin_target);
4498	if (r)
 
 
 
 
 
 
 
 
 
 
4499		goto bad_new_mapping_cache;
4500
4501	r = dm_register_target(&pool_target);
4502	if (r)
4503		goto bad_thin_target;
4504
4505	return 0;
4506
4507bad_thin_target:
 
 
 
 
 
 
4508	dm_unregister_target(&thin_target);
4509bad_new_mapping_cache:
4510	kmem_cache_destroy(_new_mapping_cache);
4511
4512	return r;
4513}
4514
4515static void dm_thin_exit(void)
4516{
4517	dm_unregister_target(&thin_target);
4518	dm_unregister_target(&pool_target);
4519
 
4520	kmem_cache_destroy(_new_mapping_cache);
4521
4522	pool_table_exit();
4523}
4524
4525module_init(dm_thin_init);
4526module_exit(dm_thin_exit);
4527
4528module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4529MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4530
4531MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4532MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4533MODULE_LICENSE("GPL");