Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v3.5.6
 
   1/*
   2 * Copyright (C) 2011 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
 
 
   8
   9#include <linux/device-mapper.h>
  10#include <linux/dm-io.h>
  11#include <linux/dm-kcopyd.h>
 
 
  12#include <linux/list.h>
 
  13#include <linux/init.h>
  14#include <linux/module.h>
  15#include <linux/slab.h>
 
 
 
  16
  17#define	DM_MSG_PREFIX	"thin"
  18
  19/*
  20 * Tunable constants
  21 */
  22#define ENDIO_HOOK_POOL_SIZE 1024
  23#define DEFERRED_SET_SIZE 64
  24#define MAPPING_POOL_SIZE 1024
  25#define PRISON_CELLS 1024
  26#define COMMIT_PERIOD HZ
 
 
 
 
 
 
  27
  28/*
  29 * The block size of the device holding pool data must be
  30 * between 64KB and 1GB.
  31 */
  32#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  33#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  34
  35/*
  36 * Device id is restricted to 24 bits.
  37 */
  38#define MAX_DEV_ID ((1 << 24) - 1)
  39
  40/*
  41 * How do we handle breaking sharing of data blocks?
  42 * =================================================
  43 *
  44 * We use a standard copy-on-write btree to store the mappings for the
  45 * devices (note I'm talking about copy-on-write of the metadata here, not
  46 * the data).  When you take an internal snapshot you clone the root node
  47 * of the origin btree.  After this there is no concept of an origin or a
  48 * snapshot.  They are just two device trees that happen to point to the
  49 * same data blocks.
  50 *
  51 * When we get a write in we decide if it's to a shared data block using
  52 * some timestamp magic.  If it is, we have to break sharing.
  53 *
  54 * Let's say we write to a shared block in what was the origin.  The
  55 * steps are:
  56 *
  57 * i) plug io further to this physical block. (see bio_prison code).
  58 *
  59 * ii) quiesce any read io to that shared data block.  Obviously
  60 * including all devices that share this block.  (see deferred_set code)
  61 *
  62 * iii) copy the data block to a newly allocate block.  This step can be
  63 * missed out if the io covers the block. (schedule_copy).
  64 *
  65 * iv) insert the new mapping into the origin's btree
  66 * (process_prepared_mapping).  This act of inserting breaks some
  67 * sharing of btree nodes between the two devices.  Breaking sharing only
  68 * effects the btree of that specific device.  Btrees for the other
  69 * devices that share the block never change.  The btree for the origin
  70 * device as it was after the last commit is untouched, ie. we're using
  71 * persistent data structures in the functional programming sense.
  72 *
  73 * v) unplug io to this physical block, including the io that triggered
  74 * the breaking of sharing.
  75 *
  76 * Steps (ii) and (iii) occur in parallel.
  77 *
  78 * The metadata _doesn't_ need to be committed before the io continues.  We
  79 * get away with this because the io is always written to a _new_ block.
  80 * If there's a crash, then:
  81 *
  82 * - The origin mapping will point to the old origin block (the shared
  83 * one).  This will contain the data as it was before the io that triggered
  84 * the breaking of sharing came in.
  85 *
  86 * - The snap mapping still points to the old block.  As it would after
  87 * the commit.
  88 *
  89 * The downside of this scheme is the timestamp magic isn't perfect, and
  90 * will continue to think that data block in the snapshot device is shared
  91 * even after the write to the origin has broken sharing.  I suspect data
  92 * blocks will typically be shared by many different devices, so we're
  93 * breaking sharing n + 1 times, rather than n, where n is the number of
  94 * devices that reference this data block.  At the moment I think the
  95 * benefits far, far outweigh the disadvantages.
  96 */
  97
  98/*----------------------------------------------------------------*/
  99
 100/*
 101 * Sometimes we can't deal with a bio straight away.  We put them in prison
 102 * where they can't cause any mischief.  Bios are put in a cell identified
 103 * by a key, multiple bios can be in the same cell.  When the cell is
 104 * subsequently unlocked the bios become available.
 105 */
 106struct bio_prison;
 107
 108struct cell_key {
 109	int virtual;
 110	dm_thin_id dev;
 111	dm_block_t block;
 112};
 113
 114struct dm_bio_prison_cell {
 115	struct hlist_node list;
 116	struct bio_prison *prison;
 117	struct cell_key key;
 118	struct bio *holder;
 119	struct bio_list bios;
 120};
 121
 122struct bio_prison {
 123	spinlock_t lock;
 124	mempool_t *cell_pool;
 125
 126	unsigned nr_buckets;
 127	unsigned hash_mask;
 128	struct hlist_head *cells;
 129};
 130
 131static uint32_t calc_nr_buckets(unsigned nr_cells)
 
 132{
 133	uint32_t n = 128;
 134
 135	nr_cells /= 4;
 136	nr_cells = min(nr_cells, 8192u);
 137
 138	while (n < nr_cells)
 139		n <<= 1;
 140
 141	return n;
 142}
 143
 144static struct kmem_cache *_cell_cache;
 
 
 
 
 145
 146/*
 147 * @nr_cells should be the number of cells you want in use _concurrently_.
 148 * Don't confuse it with the number of distinct keys.
 149 */
 150static struct bio_prison *prison_create(unsigned nr_cells)
 151{
 152	unsigned i;
 153	uint32_t nr_buckets = calc_nr_buckets(nr_cells);
 154	size_t len = sizeof(struct bio_prison) +
 155		(sizeof(struct hlist_head) * nr_buckets);
 156	struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
 157
 158	if (!prison)
 159		return NULL;
 160
 161	spin_lock_init(&prison->lock);
 162	prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
 163	if (!prison->cell_pool) {
 164		kfree(prison);
 165		return NULL;
 166	}
 167
 168	prison->nr_buckets = nr_buckets;
 169	prison->hash_mask = nr_buckets - 1;
 170	prison->cells = (struct hlist_head *) (prison + 1);
 171	for (i = 0; i < nr_buckets; i++)
 172		INIT_HLIST_HEAD(prison->cells + i);
 173
 174	return prison;
 
 
 
 175}
 176
 177static void prison_destroy(struct bio_prison *prison)
 178{
 179	mempool_destroy(prison->cell_pool);
 180	kfree(prison);
 181}
 182
 183static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
 184{
 185	const unsigned long BIG_PRIME = 4294967291UL;
 186	uint64_t hash = key->block * BIG_PRIME;
 187
 188	return (uint32_t) (hash & prison->hash_mask);
 189}
 190
 191static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
 192{
 193	       return (lhs->virtual == rhs->virtual) &&
 194		       (lhs->dev == rhs->dev) &&
 195		       (lhs->block == rhs->block);
 
 196}
 197
 198static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
 199						  struct cell_key *key)
 200{
 201	struct dm_bio_prison_cell *cell;
 202	struct hlist_node *tmp;
 203
 204	hlist_for_each_entry(cell, tmp, bucket, list)
 205		if (keys_equal(&cell->key, key))
 206			return cell;
 207
 208	return NULL;
 209}
 210
 211/*
 212 * This may block if a new cell needs allocating.  You must ensure that
 213 * cells will be unlocked even if the calling thread is blocked.
 214 *
 215 * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
 216 */
 217static int bio_detain(struct bio_prison *prison, struct cell_key *key,
 218		      struct bio *inmate, struct dm_bio_prison_cell **ref)
 219{
 220	int r = 1;
 221	unsigned long flags;
 222	uint32_t hash = hash_key(prison, key);
 223	struct dm_bio_prison_cell *cell, *cell2;
 224
 225	BUG_ON(hash > prison->nr_buckets);
 226
 227	spin_lock_irqsave(&prison->lock, flags);
 
 
 
 
 
 228
 229	cell = __search_bucket(prison->cells + hash, key);
 230	if (cell) {
 231		bio_list_add(&cell->bios, inmate);
 232		goto out;
 233	}
 
 234
 235	/*
 236	 * Allocate a new cell
 237	 */
 238	spin_unlock_irqrestore(&prison->lock, flags);
 239	cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
 240	spin_lock_irqsave(&prison->lock, flags);
 241
 242	/*
 243	 * We've been unlocked, so we have to double check that
 244	 * nobody else has inserted this cell in the meantime.
 245	 */
 246	cell = __search_bucket(prison->cells + hash, key);
 247	if (cell) {
 248		mempool_free(cell2, prison->cell_pool);
 249		bio_list_add(&cell->bios, inmate);
 250		goto out;
 251	}
 252
 253	/*
 254	 * Use new cell.
 255	 */
 256	cell = cell2;
 257
 258	cell->prison = prison;
 259	memcpy(&cell->key, key, sizeof(cell->key));
 260	cell->holder = inmate;
 261	bio_list_init(&cell->bios);
 262	hlist_add_head(&cell->list, prison->cells + hash);
 263
 264	r = 0;
 
 
 
 265
 266out:
 267	spin_unlock_irqrestore(&prison->lock, flags);
 268
 269	*ref = cell;
 
 
 270
 271	return r;
 272}
 
 
 273
 274/*
 275 * @inmates must have been initialised prior to this call
 276 */
 277static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
 278{
 279	struct bio_prison *prison = cell->prison;
 280
 281	hlist_del(&cell->list);
 
 
 
 282
 283	if (inmates) {
 284		bio_list_add(inmates, cell->holder);
 285		bio_list_merge(inmates, &cell->bios);
 286	}
 287
 288	mempool_free(cell, prison->cell_pool);
 289}
 
 
 
 290
 291static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
 292{
 293	unsigned long flags;
 294	struct bio_prison *prison = cell->prison;
 295
 296	spin_lock_irqsave(&prison->lock, flags);
 297	__cell_release(cell, bios);
 298	spin_unlock_irqrestore(&prison->lock, flags);
 299}
 
 
 
 300
 301/*
 302 * There are a couple of places where we put a bio into a cell briefly
 303 * before taking it out again.  In these situations we know that no other
 304 * bio may be in the cell.  This function releases the cell, and also does
 305 * a sanity check.
 306 */
 307static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
 308{
 309	BUG_ON(cell->holder != bio);
 310	BUG_ON(!bio_list_empty(&cell->bios));
 311
 312	__cell_release(cell, NULL);
 313}
 314
 315static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
 316{
 317	unsigned long flags;
 318	struct bio_prison *prison = cell->prison;
 319
 320	spin_lock_irqsave(&prison->lock, flags);
 321	__cell_release_singleton(cell, bio);
 322	spin_unlock_irqrestore(&prison->lock, flags);
 323}
 324
 325/*
 326 * Sometimes we don't want the holder, just the additional bios.
 327 */
 328static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
 329				     struct bio_list *inmates)
 330{
 331	struct bio_prison *prison = cell->prison;
 332
 333	hlist_del(&cell->list);
 334	bio_list_merge(inmates, &cell->bios);
 335
 336	mempool_free(cell, prison->cell_pool);
 337}
 338
 339static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
 340				   struct bio_list *inmates)
 341{
 342	unsigned long flags;
 343	struct bio_prison *prison = cell->prison;
 344
 345	spin_lock_irqsave(&prison->lock, flags);
 346	__cell_release_no_holder(cell, inmates);
 347	spin_unlock_irqrestore(&prison->lock, flags);
 348}
 349
 350static void cell_error(struct dm_bio_prison_cell *cell)
 351{
 352	struct bio_prison *prison = cell->prison;
 353	struct bio_list bios;
 354	struct bio *bio;
 355	unsigned long flags;
 356
 357	bio_list_init(&bios);
 
 
 
 358
 359	spin_lock_irqsave(&prison->lock, flags);
 360	__cell_release(cell, &bios);
 361	spin_unlock_irqrestore(&prison->lock, flags);
 
 
 
 362
 363	while ((bio = bio_list_pop(&bios)))
 364		bio_io_error(bio);
 
 
 365}
 366
 367/*----------------------------------------------------------------*/
 368
 369/*
 370 * We use the deferred set to keep track of pending reads to shared blocks.
 371 * We do this to ensure the new mapping caused by a write isn't performed
 372 * until these prior reads have completed.  Otherwise the insertion of the
 373 * new mapping could free the old block that the read bios are mapped to.
 374 */
 
 
 
 
 
 375
 376struct deferred_set;
 377struct deferred_entry {
 378	struct deferred_set *ds;
 379	unsigned count;
 380	struct list_head work_items;
 381};
 382
 383struct deferred_set {
 384	spinlock_t lock;
 385	unsigned current_entry;
 386	unsigned sweeper;
 387	struct deferred_entry entries[DEFERRED_SET_SIZE];
 388};
 
 
 
 389
 390static void ds_init(struct deferred_set *ds)
 391{
 392	int i;
 393
 394	spin_lock_init(&ds->lock);
 395	ds->current_entry = 0;
 396	ds->sweeper = 0;
 397	for (i = 0; i < DEFERRED_SET_SIZE; i++) {
 398		ds->entries[i].ds = ds;
 399		ds->entries[i].count = 0;
 400		INIT_LIST_HEAD(&ds->entries[i].work_items);
 401	}
 402}
 403
 404static struct deferred_entry *ds_inc(struct deferred_set *ds)
 405{
 406	unsigned long flags;
 407	struct deferred_entry *entry;
 
 
 
 408
 409	spin_lock_irqsave(&ds->lock, flags);
 410	entry = ds->entries + ds->current_entry;
 411	entry->count++;
 412	spin_unlock_irqrestore(&ds->lock, flags);
 413
 414	return entry;
 
 
 415}
 416
 417static unsigned ds_next(unsigned index)
 418{
 419	return (index + 1) % DEFERRED_SET_SIZE;
 
 
 420}
 421
 422static void __sweep(struct deferred_set *ds, struct list_head *head)
 
 
 
 
 
 
 
 
 
 423{
 424	while ((ds->sweeper != ds->current_entry) &&
 425	       !ds->entries[ds->sweeper].count) {
 426		list_splice_init(&ds->entries[ds->sweeper].work_items, head);
 427		ds->sweeper = ds_next(ds->sweeper);
 428	}
 429
 430	if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
 431		list_splice_init(&ds->entries[ds->sweeper].work_items, head);
 
 
 432}
 433
 434static void ds_dec(struct deferred_entry *entry, struct list_head *head)
 435{
 436	unsigned long flags;
 
 
 437
 438	spin_lock_irqsave(&entry->ds->lock, flags);
 439	BUG_ON(!entry->count);
 440	--entry->count;
 441	__sweep(entry->ds, head);
 442	spin_unlock_irqrestore(&entry->ds->lock, flags);
 443}
 444
 445/*
 446 * Returns 1 if deferred or 0 if no pending items to delay job.
 447 */
 448static int ds_add_work(struct deferred_set *ds, struct list_head *work)
 449{
 450	int r = 1;
 451	unsigned long flags;
 452	unsigned next_entry;
 453
 454	spin_lock_irqsave(&ds->lock, flags);
 455	if ((ds->sweeper == ds->current_entry) &&
 456	    !ds->entries[ds->current_entry].count)
 457		r = 0;
 458	else {
 459		list_add(work, &ds->entries[ds->current_entry].work_items);
 460		next_entry = ds_next(ds->current_entry);
 461		if (!ds->entries[next_entry].count)
 462			ds->current_entry = next_entry;
 463	}
 464	spin_unlock_irqrestore(&ds->lock, flags);
 465
 466	return r;
 
 
 
 
 
 
 
 
 467}
 468
 469/*----------------------------------------------------------------*/
 470
 471/*
 472 * Key building.
 
 473 */
 474static void build_data_key(struct dm_thin_device *td,
 475			   dm_block_t b, struct cell_key *key)
 476{
 477	key->virtual = 0;
 478	key->dev = dm_thin_dev_id(td);
 479	key->block = b;
 480}
 481
 482static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 483			      struct cell_key *key)
 484{
 485	key->virtual = 1;
 486	key->dev = dm_thin_dev_id(td);
 487	key->block = b;
 488}
 489
 490/*----------------------------------------------------------------*/
 491
 492/*
 493 * A pool device ties together a metadata device and a data device.  It
 494 * also provides the interface for creating and destroying internal
 495 * devices.
 496 */
 497struct dm_thin_new_mapping;
 498
 499struct pool_features {
 500	unsigned zero_new_blocks:1;
 501	unsigned discard_enabled:1;
 502	unsigned discard_passdown:1;
 503};
 504
 505struct pool {
 506	struct list_head list;
 507	struct dm_target *ti;	/* Only set if a pool target is bound */
 508
 509	struct mapped_device *pool_md;
 510	struct block_device *md_dev;
 511	struct dm_pool_metadata *pmd;
 512
 513	uint32_t sectors_per_block;
 514	unsigned block_shift;
 515	dm_block_t offset_mask;
 516	dm_block_t low_water_blocks;
 517
 518	struct pool_features pf;
 519	unsigned low_water_triggered:1;	/* A dm event has been sent */
 520	unsigned no_free_space:1;	/* A -ENOSPC warning has been issued */
 521
 522	struct bio_prison *prison;
 523	struct dm_kcopyd_client *copier;
 
 
 
 524
 525	struct workqueue_struct *wq;
 526	struct work_struct worker;
 527	struct delayed_work waker;
 
 
 
 
 
 528
 529	unsigned ref_count;
 530	unsigned long last_commit_jiffies;
 531
 532	spinlock_t lock;
 533	struct bio_list deferred_bios;
 534	struct bio_list deferred_flush_bios;
 535	struct list_head prepared_mappings;
 536	struct list_head prepared_discards;
 
 
 537
 538	struct bio_list retry_on_resume_list;
 
 
 
 
 
 
 
 539
 540	struct deferred_set shared_read_ds;
 541	struct deferred_set all_io_ds;
 
 
 
 
 
 542
 543	struct dm_thin_new_mapping *next_mapping;
 544	mempool_t *mapping_pool;
 545	mempool_t *endio_hook_pool;
 546};
 
 
 547
 548/*
 549 * Target context for a pool.
 550 */
 551struct pool_c {
 552	struct dm_target *ti;
 553	struct pool *pool;
 554	struct dm_dev *data_dev;
 555	struct dm_dev *metadata_dev;
 556	struct dm_target_callbacks callbacks;
 557
 558	dm_block_t low_water_blocks;
 559	struct pool_features pf;
 560};
 
 561
 562/*
 563 * Target context for a thin.
 564 */
 565struct thin_c {
 566	struct dm_dev *pool_dev;
 567	struct dm_dev *origin_dev;
 568	dm_thin_id dev_id;
 569
 570	struct pool *pool;
 571	struct dm_thin_device *td;
 572};
 
 573
 574/*----------------------------------------------------------------*/
 575
 576/*
 577 * A global list of pools that uses a struct mapped_device as a key.
 578 */
 579static struct dm_thin_pool_table {
 580	struct mutex mutex;
 581	struct list_head pools;
 582} dm_thin_pool_table;
 583
 584static void pool_table_init(void)
 585{
 586	mutex_init(&dm_thin_pool_table.mutex);
 587	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 588}
 589
 
 
 
 
 
 590static void __pool_table_insert(struct pool *pool)
 591{
 592	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 593	list_add(&pool->list, &dm_thin_pool_table.pools);
 594}
 595
 596static void __pool_table_remove(struct pool *pool)
 597{
 598	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 599	list_del(&pool->list);
 600}
 601
 602static struct pool *__pool_table_lookup(struct mapped_device *md)
 603{
 604	struct pool *pool = NULL, *tmp;
 605
 606	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 607
 608	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 609		if (tmp->pool_md == md) {
 610			pool = tmp;
 611			break;
 612		}
 613	}
 614
 615	return pool;
 616}
 617
 618static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 619{
 620	struct pool *pool = NULL, *tmp;
 621
 622	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 623
 624	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 625		if (tmp->md_dev == md_dev) {
 626			pool = tmp;
 627			break;
 628		}
 629	}
 630
 631	return pool;
 632}
 633
 634/*----------------------------------------------------------------*/
 635
 636struct dm_thin_endio_hook {
 637	struct thin_c *tc;
 638	struct deferred_entry *shared_read_entry;
 639	struct deferred_entry *all_io_entry;
 640	struct dm_thin_new_mapping *overwrite_mapping;
 
 
 641};
 642
 643static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
 644{
 645	struct bio *bio;
 
 
 
 
 
 
 
 
 
 
 646	struct bio_list bios;
 647
 648	bio_list_init(&bios);
 649	bio_list_merge(&bios, master);
 650	bio_list_init(master);
 651
 652	while ((bio = bio_list_pop(&bios))) {
 653		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
 
 654
 655		if (h->tc == tc)
 656			bio_endio(bio, DM_ENDIO_REQUEUE);
 657		else
 658			bio_list_add(master, bio);
 659	}
 660}
 661
 662static void requeue_io(struct thin_c *tc)
 663{
 664	struct pool *pool = tc->pool;
 665	unsigned long flags;
 
 666
 667	spin_lock_irqsave(&pool->lock, flags);
 668	__requeue_bio_list(tc, &pool->deferred_bios);
 669	__requeue_bio_list(tc, &pool->retry_on_resume_list);
 670	spin_unlock_irqrestore(&pool->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671}
 672
 673/*
 674 * This section of code contains the logic for processing a thin device's IO.
 675 * Much of the code depends on pool object resources (lists, workqueues, etc)
 676 * but most is exclusively called from the thin target rather than the thin-pool
 677 * target.
 678 */
 679
 680static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 681{
 682	return bio->bi_sector >> tc->pool->block_shift;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683}
 684
 685static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 686{
 687	struct pool *pool = tc->pool;
 
 688
 689	bio->bi_bdev = tc->pool_dev->bdev;
 690	bio->bi_sector = (block << pool->block_shift) +
 691		(bio->bi_sector & pool->offset_mask);
 
 
 
 
 
 
 692}
 693
 694static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 695{
 696	bio->bi_bdev = tc->origin_dev->bdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 697}
 698
 699static void issue(struct thin_c *tc, struct bio *bio)
 700{
 701	struct pool *pool = tc->pool;
 702	unsigned long flags;
 
 
 
 
 703
 704	/*
 705	 * Batch together any FUA/FLUSH bios we find and then issue
 706	 * a single commit for them in process_deferred_bios().
 
 707	 */
 708	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
 709		spin_lock_irqsave(&pool->lock, flags);
 710		bio_list_add(&pool->deferred_flush_bios, bio);
 711		spin_unlock_irqrestore(&pool->lock, flags);
 712	} else
 713		generic_make_request(bio);
 
 
 
 
 
 
 714}
 715
 716static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 717{
 718	remap_to_origin(tc, bio);
 719	issue(tc, bio);
 720}
 721
 722static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 723			    dm_block_t block)
 724{
 725	remap(tc, bio, block);
 726	issue(tc, bio);
 727}
 728
 729/*
 730 * wake_worker() is used when new work is queued and when pool_resume is
 731 * ready to continue deferred IO processing.
 732 */
 733static void wake_worker(struct pool *pool)
 734{
 735	queue_work(pool->wq, &pool->worker);
 736}
 737
 738/*----------------------------------------------------------------*/
 739
 740/*
 741 * Bio endio functions.
 742 */
 743struct dm_thin_new_mapping {
 744	struct list_head list;
 745
 746	unsigned quiesced:1;
 747	unsigned prepared:1;
 748	unsigned pass_discard:1;
 749
 
 
 
 
 
 
 
 
 750	struct thin_c *tc;
 751	dm_block_t virt_block;
 752	dm_block_t data_block;
 753	struct dm_bio_prison_cell *cell, *cell2;
 754	int err;
 755
 756	/*
 757	 * If the bio covers the whole area of a block then we can avoid
 758	 * zeroing or copying.  Instead this bio is hooked.  The bio will
 759	 * still be in the cell, so care has to be taken to avoid issuing
 760	 * the bio twice.
 761	 */
 762	struct bio *bio;
 763	bio_end_io_t *saved_bi_end_io;
 764};
 765
 766static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
 767{
 768	struct pool *pool = m->tc->pool;
 769
 770	if (m->quiesced && m->prepared) {
 771		list_add(&m->list, &pool->prepared_mappings);
 772		wake_worker(pool);
 773	}
 774}
 775
 776static void copy_complete(int read_err, unsigned long write_err, void *context)
 777{
 778	unsigned long flags;
 779	struct dm_thin_new_mapping *m = context;
 780	struct pool *pool = m->tc->pool;
 781
 782	m->err = read_err || write_err ? -EIO : 0;
 783
 784	spin_lock_irqsave(&pool->lock, flags);
 785	m->prepared = 1;
 786	__maybe_add_mapping(m);
 787	spin_unlock_irqrestore(&pool->lock, flags);
 788}
 789
 790static void overwrite_endio(struct bio *bio, int err)
 791{
 792	unsigned long flags;
 793	struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
 
 
 
 
 
 
 
 794	struct dm_thin_new_mapping *m = h->overwrite_mapping;
 795	struct pool *pool = m->tc->pool;
 796
 797	m->err = err;
 798
 799	spin_lock_irqsave(&pool->lock, flags);
 800	m->prepared = 1;
 801	__maybe_add_mapping(m);
 802	spin_unlock_irqrestore(&pool->lock, flags);
 803}
 804
 805/*----------------------------------------------------------------*/
 806
 807/*
 808 * Workqueue.
 809 */
 810
 811/*
 812 * Prepared mapping jobs.
 813 */
 814
 815/*
 816 * This sends the bios in the cell back to the deferred_bios list.
 
 817 */
 818static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
 819		       dm_block_t data_block)
 820{
 821	struct pool *pool = tc->pool;
 822	unsigned long flags;
 
 823
 824	spin_lock_irqsave(&pool->lock, flags);
 825	cell_release(cell, &pool->deferred_bios);
 826	spin_unlock_irqrestore(&tc->pool->lock, flags);
 827
 828	wake_worker(pool);
 
 
 
 
 
 829}
 830
 831/*
 832 * Same as cell_defer above, except it omits one particular detainee,
 833 * a write bio that covers the block and has already been processed.
 834 */
 835static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 836{
 837	struct bio_list bios;
 838	struct pool *pool = tc->pool;
 839	unsigned long flags;
 840
 841	bio_list_init(&bios);
 
 
 
 
 
 
 
 842
 843	spin_lock_irqsave(&pool->lock, flags);
 844	cell_release_no_holder(cell, &pool->deferred_bios);
 845	spin_unlock_irqrestore(&pool->lock, flags);
 
 
 
 
 
 
 846
 847	wake_worker(pool);
 
 
 
 
 
 
 848}
 849
 850static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 851{
 852	struct thin_c *tc = m->tc;
 853	struct bio *bio;
 
 854	int r;
 855
 856	bio = m->bio;
 857	if (bio)
 858		bio->bi_end_io = m->saved_bi_end_io;
 859
 860	if (m->err) {
 861		cell_error(m->cell);
 862		goto out;
 863	}
 864
 865	/*
 866	 * Commit the prepared block into the mapping btree.
 867	 * Any I/O for this block arriving after this point will get
 868	 * remapped to it directly.
 869	 */
 870	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
 871	if (r) {
 872		DMERR("dm_thin_insert_block() failed");
 873		cell_error(m->cell);
 874		goto out;
 875	}
 876
 877	/*
 878	 * Release any bios held while the block was being provisioned.
 879	 * If we are processing a write bio that completely covers the block,
 880	 * we already processed it so can ignore it now when processing
 881	 * the bios in the cell.
 882	 */
 883	if (bio) {
 884		cell_defer_except(tc, m->cell);
 885		bio_endio(bio, 0);
 886	} else
 887		cell_defer(tc, m->cell, m->data_block);
 
 
 
 888
 889out:
 890	list_del(&m->list);
 891	mempool_free(m, tc->pool->mapping_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 892}
 893
 894static void process_prepared_discard(struct dm_thin_new_mapping *m)
 895{
 896	int r;
 897	struct thin_c *tc = m->tc;
 898
 899	r = dm_thin_remove_block(tc->td, m->virt_block);
 900	if (r)
 901		DMERR("dm_thin_remove_block() failed");
 
 
 
 
 
 
 
 
 
 902
 
 
 
 903	/*
 904	 * Pass the discard down to the underlying device?
 
 905	 */
 906	if (m->pass_discard)
 907		remap_and_issue(tc, m->bio, m->data_block);
 908	else
 909		bio_endio(m->bio, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 910
 911	cell_defer_except(tc, m->cell);
 912	cell_defer_except(tc, m->cell2);
 913	mempool_free(m, tc->pool->mapping_pool);
 
 914}
 915
 916static void process_prepared(struct pool *pool, struct list_head *head,
 917			     void (*fn)(struct dm_thin_new_mapping *))
 918{
 919	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 920	struct list_head maps;
 921	struct dm_thin_new_mapping *m, *tmp;
 922
 923	INIT_LIST_HEAD(&maps);
 924	spin_lock_irqsave(&pool->lock, flags);
 925	list_splice_init(head, &maps);
 926	spin_unlock_irqrestore(&pool->lock, flags);
 927
 928	list_for_each_entry_safe(m, tmp, &maps, list)
 929		fn(m);
 930}
 931
 932/*
 933 * Deferred bio jobs.
 934 */
 935static int io_overlaps_block(struct pool *pool, struct bio *bio)
 936{
 937	return !(bio->bi_sector & pool->offset_mask) &&
 938		(bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
 939
 940}
 941
 942static int io_overwrites_block(struct pool *pool, struct bio *bio)
 943{
 944	return (bio_data_dir(bio) == WRITE) &&
 945		io_overlaps_block(pool, bio);
 946}
 947
 948static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
 949			       bio_end_io_t *fn)
 950{
 951	*save = bio->bi_end_io;
 952	bio->bi_end_io = fn;
 953}
 954
 955static int ensure_next_mapping(struct pool *pool)
 956{
 957	if (pool->next_mapping)
 958		return 0;
 959
 960	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
 961
 962	return pool->next_mapping ? 0 : -ENOMEM;
 963}
 964
 965static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
 966{
 967	struct dm_thin_new_mapping *r = pool->next_mapping;
 968
 969	BUG_ON(!pool->next_mapping);
 970
 
 
 
 
 971	pool->next_mapping = NULL;
 972
 973	return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974}
 975
 
 
 
 976static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
 977			  struct dm_dev *origin, dm_block_t data_origin,
 978			  dm_block_t data_dest,
 979			  struct dm_bio_prison_cell *cell, struct bio *bio)
 
 980{
 981	int r;
 982	struct pool *pool = tc->pool;
 983	struct dm_thin_new_mapping *m = get_next_mapping(pool);
 984
 985	INIT_LIST_HEAD(&m->list);
 986	m->quiesced = 0;
 987	m->prepared = 0;
 988	m->tc = tc;
 989	m->virt_block = virt_block;
 
 990	m->data_block = data_dest;
 991	m->cell = cell;
 992	m->err = 0;
 993	m->bio = NULL;
 994
 995	if (!ds_add_work(&pool->shared_read_ds, &m->list))
 996		m->quiesced = 1;
 
 
 
 
 
 
 
 997
 998	/*
 999	 * IO to pool_dev remaps to the pool target's data_dev.
1000	 *
1001	 * If the whole block of data is being overwritten, we can issue the
1002	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1003	 */
1004	if (io_overwrites_block(pool, bio)) {
1005		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1006
1007		h->overwrite_mapping = m;
1008		m->bio = bio;
1009		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1010		remap_and_issue(tc, bio, data_dest);
1011	} else {
1012		struct dm_io_region from, to;
1013
1014		from.bdev = origin->bdev;
1015		from.sector = data_origin * pool->sectors_per_block;
1016		from.count = pool->sectors_per_block;
1017
1018		to.bdev = tc->pool_dev->bdev;
1019		to.sector = data_dest * pool->sectors_per_block;
1020		to.count = pool->sectors_per_block;
 
 
 
1021
1022		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1023				   0, copy_complete, m);
1024		if (r < 0) {
1025			mempool_free(m, pool->mapping_pool);
1026			DMERR("dm_kcopyd_copy() failed");
1027			cell_error(cell);
 
 
1028		}
1029	}
 
 
1030}
1031
1032static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1033				   dm_block_t data_origin, dm_block_t data_dest,
1034				   struct dm_bio_prison_cell *cell, struct bio *bio)
1035{
1036	schedule_copy(tc, virt_block, tc->pool_dev,
1037		      data_origin, data_dest, cell, bio);
1038}
1039
1040static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1041				   dm_block_t data_dest,
1042				   struct dm_bio_prison_cell *cell, struct bio *bio)
1043{
1044	schedule_copy(tc, virt_block, tc->origin_dev,
1045		      virt_block, data_dest, cell, bio);
1046}
1047
1048static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1049			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1050			  struct bio *bio)
1051{
1052	struct pool *pool = tc->pool;
1053	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1054
1055	INIT_LIST_HEAD(&m->list);
1056	m->quiesced = 1;
1057	m->prepared = 0;
1058	m->tc = tc;
1059	m->virt_block = virt_block;
 
1060	m->data_block = data_block;
1061	m->cell = cell;
1062	m->err = 0;
1063	m->bio = NULL;
1064
1065	/*
1066	 * If the whole block of data is being overwritten or we are not
1067	 * zeroing pre-existing data, we can issue the bio immediately.
1068	 * Otherwise we use kcopyd to zero the data first.
1069	 */
1070	if (!pool->pf.zero_new_blocks)
 
 
 
 
 
 
 
1071		process_prepared_mapping(m);
 
1072
1073	else if (io_overwrites_block(pool, bio)) {
1074		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
 
 
 
 
 
1075
1076		h->overwrite_mapping = m;
1077		m->bio = bio;
1078		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1079		remap_and_issue(tc, bio, data_block);
1080	} else {
1081		int r;
1082		struct dm_io_region to;
 
 
1083
1084		to.bdev = tc->pool_dev->bdev;
1085		to.sector = data_block * pool->sectors_per_block;
1086		to.count = pool->sectors_per_block;
1087
1088		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1089		if (r < 0) {
1090			mempool_free(m, pool->mapping_pool);
1091			DMERR("dm_kcopyd_zero() failed");
1092			cell_error(cell);
1093		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094	}
1095}
1096
1097static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1098{
1099	int r;
1100	dm_block_t free_blocks;
1101	unsigned long flags;
1102	struct pool *pool = tc->pool;
1103
1104	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
 
 
 
1105	if (r)
1106		return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107
 
 
 
 
 
1108	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1109		DMWARN("%s: reached low water mark, sending event.",
1110		       dm_device_name(pool->pool_md));
1111		spin_lock_irqsave(&pool->lock, flags);
1112		pool->low_water_triggered = 1;
1113		spin_unlock_irqrestore(&pool->lock, flags);
1114		dm_table_event(pool->ti->table);
1115	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1116
1117	if (!free_blocks) {
1118		if (pool->no_free_space)
1119			return -ENOSPC;
1120		else {
1121			/*
1122			 * Try to commit to see if that will free up some
1123			 * more space.
1124			 */
1125			r = dm_pool_commit_metadata(pool->pmd);
1126			if (r) {
1127				DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1128				      __func__, r);
1129				return r;
1130			}
1131
1132			r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1133			if (r)
1134				return r;
 
 
1135
1136			/*
1137			 * If we still have no space we set a flag to avoid
1138			 * doing all this checking and return -ENOSPC.
1139			 */
1140			if (!free_blocks) {
1141				DMWARN("%s: no free space available.",
1142				       dm_device_name(pool->pool_md));
1143				spin_lock_irqsave(&pool->lock, flags);
1144				pool->no_free_space = 1;
1145				spin_unlock_irqrestore(&pool->lock, flags);
1146				return -ENOSPC;
1147			}
1148		}
1149	}
1150
1151	r = dm_pool_alloc_data_block(pool->pmd, result);
1152	if (r)
 
 
 
 
1153		return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1154
1155	return 0;
1156}
1157
1158/*
1159 * If we have run out of space, queue bios until the device is
1160 * resumed, presumably after having been reloaded with more space.
1161 */
1162static void retry_on_resume(struct bio *bio)
1163{
1164	struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1165	struct thin_c *tc = h->tc;
1166	struct pool *pool = tc->pool;
1167	unsigned long flags;
1168
1169	spin_lock_irqsave(&pool->lock, flags);
1170	bio_list_add(&pool->retry_on_resume_list, bio);
1171	spin_unlock_irqrestore(&pool->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1172}
1173
1174static void no_space(struct dm_bio_prison_cell *cell)
1175{
1176	struct bio *bio;
1177	struct bio_list bios;
 
 
 
 
 
 
 
1178
1179	bio_list_init(&bios);
1180	cell_release(cell, &bios);
1181
1182	while ((bio = bio_list_pop(&bios)))
1183		retry_on_resume(bio);
1184}
1185
1186static void process_discard(struct thin_c *tc, struct bio *bio)
 
1187{
1188	int r;
1189	unsigned long flags;
1190	struct pool *pool = tc->pool;
1191	struct dm_bio_prison_cell *cell, *cell2;
1192	struct cell_key key, key2;
1193	dm_block_t block = get_bio_block(tc, bio);
1194	struct dm_thin_lookup_result lookup_result;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1195	struct dm_thin_new_mapping *m;
 
 
1196
1197	build_virtual_key(tc->td, block, &key);
1198	if (bio_detain(tc->pool->prison, &key, bio, &cell))
1199		return;
 
 
 
 
 
 
 
 
 
1200
1201	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1202	switch (r) {
1203	case 0:
1204		/*
1205		 * Check nobody is fiddling with this pool block.  This can
1206		 * happen if someone's in the process of breaking sharing
1207		 * on this block.
1208		 */
1209		build_data_key(tc->td, lookup_result.block, &key2);
1210		if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1211			cell_release_singleton(cell, bio);
1212			break;
1213		}
 
 
 
 
 
 
 
 
 
 
 
1214
1215		if (io_overlaps_block(pool, bio)) {
1216			/*
1217			 * IO may still be going to the destination block.  We must
1218			 * quiesce before we can do the removal.
1219			 */
1220			m = get_next_mapping(pool);
1221			m->tc = tc;
1222			m->pass_discard = (!lookup_result.shared) & pool->pf.discard_passdown;
1223			m->virt_block = block;
1224			m->data_block = lookup_result.block;
1225			m->cell = cell;
1226			m->cell2 = cell2;
1227			m->err = 0;
1228			m->bio = bio;
1229
1230			if (!ds_add_work(&pool->all_io_ds, &m->list)) {
1231				spin_lock_irqsave(&pool->lock, flags);
1232				list_add(&m->list, &pool->prepared_discards);
1233				spin_unlock_irqrestore(&pool->lock, flags);
1234				wake_worker(pool);
1235			}
1236		} else {
1237			/*
1238			 * This path is hit if people are ignoring
1239			 * limits->discard_granularity.  It ignores any
1240			 * part of the discard that is in a subsequent
1241			 * block.
 
 
1242			 */
1243			sector_t offset = bio->bi_sector - (block << pool->block_shift);
1244			unsigned remaining = (pool->sectors_per_block - offset) << 9;
1245			bio->bi_size = min(bio->bi_size, remaining);
1246
1247			cell_release_singleton(cell, bio);
1248			cell_release_singleton(cell2, bio);
1249			if ((!lookup_result.shared) && pool->pf.discard_passdown)
1250				remap_and_issue(tc, bio, lookup_result.block);
1251			else
1252				bio_endio(bio, 0);
1253		}
1254		break;
1255
1256	case -ENODATA:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1257		/*
1258		 * It isn't provisioned, just forget it.
1259		 */
1260		cell_release_singleton(cell, bio);
1261		bio_endio(bio, 0);
1262		break;
1263
1264	default:
1265		DMERR("discard: find block unexpectedly returned %d", r);
1266		cell_release_singleton(cell, bio);
1267		bio_io_error(bio);
1268		break;
 
 
 
 
 
 
 
 
 
 
1269	}
 
 
1270}
1271
1272static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1273			  struct cell_key *key,
1274			  struct dm_thin_lookup_result *lookup_result,
1275			  struct dm_bio_prison_cell *cell)
1276{
1277	int r;
1278	dm_block_t data_block;
 
1279
1280	r = alloc_data_block(tc, &data_block);
1281	switch (r) {
1282	case 0:
1283		schedule_internal_copy(tc, block, lookup_result->block,
1284				       data_block, cell, bio);
1285		break;
1286
1287	case -ENOSPC:
1288		no_space(cell);
1289		break;
1290
1291	default:
1292		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1293		cell_error(cell);
 
1294		break;
1295	}
1296}
1297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1298static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1299			       dm_block_t block,
1300			       struct dm_thin_lookup_result *lookup_result)
 
1301{
1302	struct dm_bio_prison_cell *cell;
1303	struct pool *pool = tc->pool;
1304	struct cell_key key;
1305
1306	/*
1307	 * If cell is already occupied, then sharing is already in the process
1308	 * of being broken so we have nothing further to do here.
1309	 */
1310	build_data_key(tc->td, lookup_result->block, &key);
1311	if (bio_detain(pool->prison, &key, bio, &cell))
 
1312		return;
 
1313
1314	if (bio_data_dir(bio) == WRITE)
1315		break_sharing(tc, bio, block, &key, lookup_result, cell);
1316	else {
1317		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1318
1319		h->shared_read_entry = ds_inc(&pool->shared_read_ds);
1320
1321		cell_release_singleton(cell, bio);
 
1322		remap_and_issue(tc, bio, lookup_result->block);
 
 
 
1323	}
1324}
1325
1326static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1327			    struct dm_bio_prison_cell *cell)
1328{
1329	int r;
1330	dm_block_t data_block;
 
1331
1332	/*
1333	 * Remap empty bios (flushes) immediately, without provisioning.
1334	 */
1335	if (!bio->bi_size) {
1336		cell_release_singleton(cell, bio);
 
 
1337		remap_and_issue(tc, bio, 0);
1338		return;
1339	}
1340
1341	/*
1342	 * Fill read bios with zeroes and complete them immediately.
1343	 */
1344	if (bio_data_dir(bio) == READ) {
1345		zero_fill_bio(bio);
1346		cell_release_singleton(cell, bio);
1347		bio_endio(bio, 0);
1348		return;
1349	}
1350
1351	r = alloc_data_block(tc, &data_block);
1352	switch (r) {
1353	case 0:
1354		if (tc->origin_dev)
1355			schedule_external_copy(tc, block, data_block, cell, bio);
1356		else
1357			schedule_zero(tc, block, data_block, cell, bio);
1358		break;
1359
1360	case -ENOSPC:
1361		no_space(cell);
1362		break;
1363
1364	default:
1365		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1366		cell_error(cell);
 
1367		break;
1368	}
1369}
1370
1371static void process_bio(struct thin_c *tc, struct bio *bio)
1372{
1373	int r;
 
 
1374	dm_block_t block = get_bio_block(tc, bio);
1375	struct dm_bio_prison_cell *cell;
1376	struct cell_key key;
1377	struct dm_thin_lookup_result lookup_result;
1378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1379	/*
1380	 * If cell is already occupied, then the block is already
1381	 * being provisioned so we have nothing further to do here.
1382	 */
1383	build_virtual_key(tc->td, block, &key);
1384	if (bio_detain(tc->pool->prison, &key, bio, &cell))
1385		return;
1386
 
 
 
 
 
 
 
 
 
 
 
1387	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1388	switch (r) {
1389	case 0:
1390		/*
1391		 * We can release this cell now.  This thread is the only
1392		 * one that puts bios into a cell, and we know there were
1393		 * no preceding bios.
1394		 */
1395		/*
1396		 * TODO: this will probably have to change when discard goes
1397		 * back in.
1398		 */
1399		cell_release_singleton(cell, bio);
1400
1401		if (lookup_result.shared)
1402			process_shared_bio(tc, bio, block, &lookup_result);
1403		else
1404			remap_and_issue(tc, bio, lookup_result.block);
 
 
 
1405		break;
1406
1407	case -ENODATA:
1408		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1409			cell_release_singleton(cell, bio);
 
 
 
 
 
 
 
1410			remap_to_origin_and_issue(tc, bio);
1411		} else
1412			provision_block(tc, bio, block, cell);
 
 
 
1413		break;
1414
1415	default:
1416		DMERR("dm_thin_find_block() failed, error = %d", r);
1417		cell_release_singleton(cell, bio);
 
 
1418		bio_io_error(bio);
1419		break;
1420	}
1421}
1422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1423static int need_commit_due_to_time(struct pool *pool)
1424{
1425	return jiffies < pool->last_commit_jiffies ||
1426	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1427}
1428
1429static void process_deferred_bios(struct pool *pool)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1430{
1431	unsigned long flags;
1432	struct bio *bio;
1433	struct bio_list bios;
1434	int r;
1435
1436	bio_list_init(&bios);
 
 
1437
1438	spin_lock_irqsave(&pool->lock, flags);
1439	bio_list_merge(&bios, &pool->deferred_bios);
1440	bio_list_init(&pool->deferred_bios);
1441	spin_unlock_irqrestore(&pool->lock, flags);
1442
1443	while ((bio = bio_list_pop(&bios))) {
1444		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1445		struct thin_c *tc = h->tc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446
 
 
 
 
 
 
 
1447		/*
1448		 * If we've got no free new_mapping structs, and processing
1449		 * this bio might require one, we pause until there are some
1450		 * prepared mappings to process.
1451		 */
1452		if (ensure_next_mapping(pool)) {
1453			spin_lock_irqsave(&pool->lock, flags);
1454			bio_list_merge(&pool->deferred_bios, &bios);
1455			spin_unlock_irqrestore(&pool->lock, flags);
1456
1457			break;
1458		}
1459
1460		if (bio->bi_rw & REQ_DISCARD)
1461			process_discard(tc, bio);
1462		else
1463			process_bio(tc, bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1464	}
1465
1466	/*
1467	 * If there are any deferred flush bios, we must commit
1468	 * the metadata before issuing them.
1469	 */
1470	bio_list_init(&bios);
1471	spin_lock_irqsave(&pool->lock, flags);
 
 
1472	bio_list_merge(&bios, &pool->deferred_flush_bios);
1473	bio_list_init(&pool->deferred_flush_bios);
1474	spin_unlock_irqrestore(&pool->lock, flags);
1475
1476	if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
 
 
 
 
 
1477		return;
1478
1479	r = dm_pool_commit_metadata(pool->pmd);
1480	if (r) {
1481		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1482		      __func__, r);
1483		while ((bio = bio_list_pop(&bios)))
1484			bio_io_error(bio);
1485		return;
1486	}
1487	pool->last_commit_jiffies = jiffies;
1488
1489	while ((bio = bio_list_pop(&bios)))
1490		generic_make_request(bio);
 
 
 
 
 
 
 
 
 
 
 
1491}
1492
1493static void do_worker(struct work_struct *ws)
1494{
1495	struct pool *pool = container_of(ws, struct pool, worker);
1496
1497	process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
1498	process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
 
 
 
 
 
 
 
1499	process_deferred_bios(pool);
 
1500}
1501
1502/*
1503 * We want to commit periodically so that not too much
1504 * unwritten data builds up.
1505 */
1506static void do_waker(struct work_struct *ws)
1507{
1508	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
 
1509	wake_worker(pool);
1510	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1511}
1512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1513/*----------------------------------------------------------------*/
1514
1515/*
1516 * Mapping functions.
1517 */
1518
1519/*
1520 * Called only while mapping a thin bio to hand it over to the workqueue.
1521 */
1522static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1523{
1524	unsigned long flags;
1525	struct pool *pool = tc->pool;
1526
1527	spin_lock_irqsave(&pool->lock, flags);
1528	bio_list_add(&pool->deferred_bios, bio);
1529	spin_unlock_irqrestore(&pool->lock, flags);
1530
1531	wake_worker(pool);
1532}
1533
1534static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
 
 
 
 
 
 
 
 
 
1535{
1536	struct pool *pool = tc->pool;
1537	struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
 
 
 
 
 
 
 
 
 
 
 
 
1538
1539	h->tc = tc;
1540	h->shared_read_entry = NULL;
1541	h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
1542	h->overwrite_mapping = NULL;
1543
1544	return h;
1545}
1546
1547/*
1548 * Non-blocking function called from the thin target's map function.
1549 */
1550static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1551			union map_info *map_context)
1552{
1553	int r;
1554	struct thin_c *tc = ti->private;
1555	dm_block_t block = get_bio_block(tc, bio);
1556	struct dm_thin_device *td = tc->td;
1557	struct dm_thin_lookup_result result;
 
 
1558
1559	map_context->ptr = thin_hook_bio(tc, bio);
1560	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1561		thin_defer_bio(tc, bio);
 
 
 
 
 
 
 
 
 
 
 
 
1562		return DM_MAPIO_SUBMITTED;
1563	}
1564
 
 
 
 
 
 
 
 
1565	r = dm_thin_find_block(td, block, 0, &result);
1566
1567	/*
1568	 * Note that we defer readahead too.
1569	 */
1570	switch (r) {
1571	case 0:
1572		if (unlikely(result.shared)) {
1573			/*
1574			 * We have a race condition here between the
1575			 * result.shared value returned by the lookup and
1576			 * snapshot creation, which may cause new
1577			 * sharing.
1578			 *
1579			 * To avoid this always quiesce the origin before
1580			 * taking the snap.  You want to do this anyway to
1581			 * ensure a consistent application view
1582			 * (i.e. lockfs).
1583			 *
1584			 * More distant ancestors are irrelevant. The
1585			 * shared flag will be set in their case.
1586			 */
1587			thin_defer_bio(tc, bio);
1588			r = DM_MAPIO_SUBMITTED;
1589		} else {
1590			remap(tc, bio, result.block);
1591			r = DM_MAPIO_REMAPPED;
1592		}
1593		break;
 
 
 
 
 
 
 
 
 
 
 
 
1594
1595	case -ENODATA:
 
 
 
 
 
1596		/*
1597		 * In future, the failed dm_thin_find_block above could
1598		 * provide the hint to load the metadata into cache.
 
1599		 */
1600	case -EWOULDBLOCK:
1601		thin_defer_bio(tc, bio);
1602		r = DM_MAPIO_SUBMITTED;
1603		break;
1604	}
1605
1606	return r;
1607}
1608
1609static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1610{
1611	int r;
1612	unsigned long flags;
1613	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1614
1615	spin_lock_irqsave(&pt->pool->lock, flags);
1616	r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1617	spin_unlock_irqrestore(&pt->pool->lock, flags);
1618
1619	if (!r) {
1620		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1621		r = bdi_congested(&q->backing_dev_info, bdi_bits);
1622	}
 
 
1623
1624	return r;
 
 
 
 
 
 
 
1625}
1626
1627static void __requeue_bios(struct pool *pool)
 
 
 
 
1628{
1629	bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1630	bio_list_init(&pool->retry_on_resume_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1631}
1632
1633/*----------------------------------------------------------------
1634 * Binding of control targets to a pool object
1635 *--------------------------------------------------------------*/
1636static int bind_control_target(struct pool *pool, struct dm_target *ti)
1637{
1638	struct pool_c *pt = ti->private;
1639
 
 
 
 
 
 
 
 
 
 
 
 
 
1640	pool->ti = ti;
 
1641	pool->low_water_blocks = pt->low_water_blocks;
1642	pool->pf = pt->pf;
1643
1644	/*
1645	 * If discard_passdown was enabled verify that the data device
1646	 * supports discards.  Disable discard_passdown if not; otherwise
1647	 * -EOPNOTSUPP will be returned.
1648	 */
1649	if (pt->pf.discard_passdown) {
1650		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1651		if (!q || !blk_queue_discard(q)) {
1652			char buf[BDEVNAME_SIZE];
1653			DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
1654			       bdevname(pt->data_dev->bdev, buf));
1655			pool->pf.discard_passdown = 0;
1656		}
1657	}
1658
1659	return 0;
1660}
1661
1662static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1663{
1664	if (pool->ti == ti)
1665		pool->ti = NULL;
1666}
1667
1668/*----------------------------------------------------------------
 
1669 * Pool creation
1670 *--------------------------------------------------------------*/
 
1671/* Initialize pool features. */
1672static void pool_features_init(struct pool_features *pf)
1673{
1674	pf->zero_new_blocks = 1;
1675	pf->discard_enabled = 1;
1676	pf->discard_passdown = 1;
 
 
1677}
1678
1679static void __pool_destroy(struct pool *pool)
1680{
1681	__pool_table_remove(pool);
1682
 
1683	if (dm_pool_metadata_close(pool->pmd) < 0)
1684		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1685
1686	prison_destroy(pool->prison);
1687	dm_kcopyd_client_destroy(pool->copier);
1688
 
 
1689	if (pool->wq)
1690		destroy_workqueue(pool->wq);
1691
1692	if (pool->next_mapping)
1693		mempool_free(pool->next_mapping, pool->mapping_pool);
1694	mempool_destroy(pool->mapping_pool);
1695	mempool_destroy(pool->endio_hook_pool);
 
1696	kfree(pool);
1697}
1698
1699static struct kmem_cache *_new_mapping_cache;
1700static struct kmem_cache *_endio_hook_cache;
1701
1702static struct pool *pool_create(struct mapped_device *pool_md,
1703				struct block_device *metadata_dev,
1704				unsigned long block_size, char **error)
 
 
1705{
1706	int r;
1707	void *err_p;
1708	struct pool *pool;
1709	struct dm_pool_metadata *pmd;
 
1710
1711	pmd = dm_pool_metadata_open(metadata_dev, block_size);
1712	if (IS_ERR(pmd)) {
1713		*error = "Error creating metadata object";
1714		return (struct pool *)pmd;
1715	}
1716
1717	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1718	if (!pool) {
1719		*error = "Error allocating memory for pool";
1720		err_p = ERR_PTR(-ENOMEM);
1721		goto bad_pool;
1722	}
1723
1724	pool->pmd = pmd;
1725	pool->sectors_per_block = block_size;
1726	pool->block_shift = ffs(block_size) - 1;
1727	pool->offset_mask = block_size - 1;
 
 
1728	pool->low_water_blocks = 0;
1729	pool_features_init(&pool->pf);
1730	pool->prison = prison_create(PRISON_CELLS);
1731	if (!pool->prison) {
1732		*error = "Error creating pool's bio prison";
1733		err_p = ERR_PTR(-ENOMEM);
1734		goto bad_prison;
1735	}
1736
1737	pool->copier = dm_kcopyd_client_create();
1738	if (IS_ERR(pool->copier)) {
1739		r = PTR_ERR(pool->copier);
1740		*error = "Error creating pool's kcopyd client";
1741		err_p = ERR_PTR(r);
1742		goto bad_kcopyd_client;
1743	}
1744
1745	/*
1746	 * Create singlethreaded workqueue that will service all devices
1747	 * that use this metadata.
1748	 */
1749	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1750	if (!pool->wq) {
1751		*error = "Error creating pool's workqueue";
1752		err_p = ERR_PTR(-ENOMEM);
1753		goto bad_wq;
1754	}
1755
 
1756	INIT_WORK(&pool->worker, do_worker);
1757	INIT_DELAYED_WORK(&pool->waker, do_waker);
 
1758	spin_lock_init(&pool->lock);
1759	bio_list_init(&pool->deferred_bios);
1760	bio_list_init(&pool->deferred_flush_bios);
 
1761	INIT_LIST_HEAD(&pool->prepared_mappings);
1762	INIT_LIST_HEAD(&pool->prepared_discards);
1763	pool->low_water_triggered = 0;
1764	pool->no_free_space = 0;
1765	bio_list_init(&pool->retry_on_resume_list);
1766	ds_init(&pool->shared_read_ds);
1767	ds_init(&pool->all_io_ds);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1768
1769	pool->next_mapping = NULL;
1770	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1771						      _new_mapping_cache);
1772	if (!pool->mapping_pool) {
1773		*error = "Error creating pool's mapping mempool";
1774		err_p = ERR_PTR(-ENOMEM);
1775		goto bad_mapping_pool;
1776	}
1777
1778	pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
1779							 _endio_hook_cache);
1780	if (!pool->endio_hook_pool) {
1781		*error = "Error creating pool's endio_hook mempool";
 
1782		err_p = ERR_PTR(-ENOMEM);
1783		goto bad_endio_hook_pool;
1784	}
 
1785	pool->ref_count = 1;
1786	pool->last_commit_jiffies = jiffies;
1787	pool->pool_md = pool_md;
1788	pool->md_dev = metadata_dev;
 
1789	__pool_table_insert(pool);
1790
1791	return pool;
1792
1793bad_endio_hook_pool:
1794	mempool_destroy(pool->mapping_pool);
1795bad_mapping_pool:
 
 
 
 
1796	destroy_workqueue(pool->wq);
1797bad_wq:
1798	dm_kcopyd_client_destroy(pool->copier);
1799bad_kcopyd_client:
1800	prison_destroy(pool->prison);
1801bad_prison:
1802	kfree(pool);
1803bad_pool:
1804	if (dm_pool_metadata_close(pmd))
1805		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1806
1807	return err_p;
1808}
1809
1810static void __pool_inc(struct pool *pool)
1811{
1812	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1813	pool->ref_count++;
1814}
1815
1816static void __pool_dec(struct pool *pool)
1817{
1818	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1819	BUG_ON(!pool->ref_count);
1820	if (!--pool->ref_count)
1821		__pool_destroy(pool);
1822}
1823
1824static struct pool *__pool_find(struct mapped_device *pool_md,
1825				struct block_device *metadata_dev,
1826				unsigned long block_size, char **error,
1827				int *created)
 
1828{
1829	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1830
1831	if (pool) {
1832		if (pool->pool_md != pool_md)
 
 
 
 
 
1833			return ERR_PTR(-EBUSY);
 
1834		__pool_inc(pool);
1835
1836	} else {
1837		pool = __pool_table_lookup(pool_md);
1838		if (pool) {
1839			if (pool->md_dev != metadata_dev)
 
1840				return ERR_PTR(-EINVAL);
 
1841			__pool_inc(pool);
1842
1843		} else {
1844			pool = pool_create(pool_md, metadata_dev, block_size, error);
1845			*created = 1;
1846		}
1847	}
1848
1849	return pool;
1850}
1851
1852/*----------------------------------------------------------------
 
1853 * Pool target methods
1854 *--------------------------------------------------------------*/
 
1855static void pool_dtr(struct dm_target *ti)
1856{
1857	struct pool_c *pt = ti->private;
1858
1859	mutex_lock(&dm_thin_pool_table.mutex);
1860
1861	unbind_control_target(pt->pool, ti);
1862	__pool_dec(pt->pool);
1863	dm_put_device(ti, pt->metadata_dev);
1864	dm_put_device(ti, pt->data_dev);
1865	kfree(pt);
1866
1867	mutex_unlock(&dm_thin_pool_table.mutex);
1868}
1869
1870static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1871			       struct dm_target *ti)
1872{
1873	int r;
1874	unsigned argc;
1875	const char *arg_name;
1876
1877	static struct dm_arg _args[] = {
1878		{0, 3, "Invalid number of pool feature arguments"},
1879	};
1880
1881	/*
1882	 * No feature arguments supplied.
1883	 */
1884	if (!as->argc)
1885		return 0;
1886
1887	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1888	if (r)
1889		return -EINVAL;
1890
1891	while (argc && !r) {
1892		arg_name = dm_shift_arg(as);
1893		argc--;
1894
1895		if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1896			pf->zero_new_blocks = 0;
1897			continue;
1898		} else if (!strcasecmp(arg_name, "ignore_discard")) {
1899			pf->discard_enabled = 0;
1900			continue;
1901		} else if (!strcasecmp(arg_name, "no_discard_passdown")) {
1902			pf->discard_passdown = 0;
1903			continue;
1904		}
1905
1906		ti->error = "Unrecognised pool feature requested";
1907		r = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1908	}
1909
1910	return r;
1911}
1912
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1913/*
1914 * thin-pool <metadata dev> <data dev>
1915 *	     <data block size (sectors)>
1916 *	     <low water mark (blocks)>
1917 *	     [<#feature args> [<arg>]*]
1918 *
1919 * Optional feature arguments are:
1920 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1921 *	     ignore_discard: disable discard
1922 *	     no_discard_passdown: don't pass discards down to the data device
 
 
1923 */
1924static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1925{
1926	int r, pool_created = 0;
1927	struct pool_c *pt;
1928	struct pool *pool;
1929	struct pool_features pf;
1930	struct dm_arg_set as;
1931	struct dm_dev *data_dev;
1932	unsigned long block_size;
1933	dm_block_t low_water_blocks;
1934	struct dm_dev *metadata_dev;
1935	sector_t metadata_dev_size;
1936	char b[BDEVNAME_SIZE];
1937
1938	/*
1939	 * FIXME Remove validation from scope of lock.
1940	 */
1941	mutex_lock(&dm_thin_pool_table.mutex);
1942
1943	if (argc < 4) {
1944		ti->error = "Invalid argument count";
1945		r = -EINVAL;
1946		goto out_unlock;
1947	}
 
1948	as.argc = argc;
1949	as.argv = argv;
1950
1951	r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1952	if (r) {
1953		ti->error = "Error opening metadata block device";
1954		goto out_unlock;
1955	}
 
1956
1957	metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1958	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1959		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1960		       bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1961
1962	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1963	if (r) {
1964		ti->error = "Error getting data device";
1965		goto out_metadata;
1966	}
1967
1968	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1969	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1970	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1971	    !is_power_of_2(block_size)) {
1972		ti->error = "Invalid block size";
1973		r = -EINVAL;
1974		goto out;
1975	}
1976
1977	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1978		ti->error = "Invalid low water mark";
1979		r = -EINVAL;
1980		goto out;
1981	}
1982
1983	/*
1984	 * Set default pool features.
1985	 */
1986	pool_features_init(&pf);
1987
1988	dm_consume_args(&as, 4);
1989	r = parse_pool_features(&as, &pf, ti);
1990	if (r)
1991		goto out;
1992
1993	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1994	if (!pt) {
1995		r = -ENOMEM;
1996		goto out;
1997	}
1998
1999	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2000			   block_size, &ti->error, &pool_created);
2001	if (IS_ERR(pool)) {
2002		r = PTR_ERR(pool);
2003		goto out_free_pt;
2004	}
2005
2006	/*
2007	 * 'pool_created' reflects whether this is the first table load.
2008	 * Top level discard support is not allowed to be changed after
2009	 * initial load.  This would require a pool reload to trigger thin
2010	 * device changes.
2011	 */
2012	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2013		ti->error = "Discard support cannot be disabled once enabled";
2014		r = -EINVAL;
2015		goto out_flags_changed;
2016	}
2017
2018	pt->pool = pool;
2019	pt->ti = ti;
2020	pt->metadata_dev = metadata_dev;
2021	pt->data_dev = data_dev;
2022	pt->low_water_blocks = low_water_blocks;
2023	pt->pf = pf;
2024	ti->num_flush_requests = 1;
 
 
2025	/*
2026	 * Only need to enable discards if the pool should pass
2027	 * them down to the data device.  The thin device's discard
2028	 * processing will cause mappings to be removed from the btree.
2029	 */
2030	if (pf.discard_enabled && pf.discard_passdown) {
2031		ti->num_discard_requests = 1;
2032		/*
2033		 * Setting 'discards_supported' circumvents the normal
2034		 * stacking of discard limits (this keeps the pool and
2035		 * thin devices' discard limits consistent).
2036		 */
2037		ti->discards_supported = 1;
 
2038	}
2039	ti->private = pt;
2040
2041	pt->callbacks.congested_fn = pool_is_congested;
2042	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
 
 
 
 
 
 
 
 
 
2043
2044	mutex_unlock(&dm_thin_pool_table.mutex);
2045
2046	return 0;
2047
2048out_flags_changed:
2049	__pool_dec(pool);
2050out_free_pt:
2051	kfree(pt);
2052out:
2053	dm_put_device(ti, data_dev);
2054out_metadata:
2055	dm_put_device(ti, metadata_dev);
2056out_unlock:
2057	mutex_unlock(&dm_thin_pool_table.mutex);
2058
2059	return r;
2060}
2061
2062static int pool_map(struct dm_target *ti, struct bio *bio,
2063		    union map_info *map_context)
2064{
2065	int r;
2066	struct pool_c *pt = ti->private;
2067	struct pool *pool = pt->pool;
2068	unsigned long flags;
2069
2070	/*
2071	 * As this is a singleton target, ti->begin is always zero.
2072	 */
2073	spin_lock_irqsave(&pool->lock, flags);
2074	bio->bi_bdev = pt->data_dev->bdev;
2075	r = DM_MAPIO_REMAPPED;
2076	spin_unlock_irqrestore(&pool->lock, flags);
2077
2078	return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2079}
2080
2081/*
2082 * Retrieves the number of blocks of the data device from
2083 * the superblock and compares it to the actual device size,
2084 * thus resizing the data device in case it has grown.
2085 *
2086 * This both copes with opening preallocated data devices in the ctr
2087 * being followed by a resume
2088 * -and-
2089 * calling the resume method individually after userspace has
2090 * grown the data device in reaction to a table event.
2091 */
2092static int pool_preresume(struct dm_target *ti)
2093{
2094	int r;
 
2095	struct pool_c *pt = ti->private;
2096	struct pool *pool = pt->pool;
2097	dm_block_t data_size, sb_data_size;
2098
2099	/*
2100	 * Take control of the pool object.
2101	 */
2102	r = bind_control_target(pool, ti);
2103	if (r)
2104		return r;
2105
2106	data_size = ti->len >> pool->block_shift;
2107	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2108	if (r) {
2109		DMERR("failed to retrieve data device size");
2110		return r;
2111	}
2112
2113	if (data_size < sb_data_size) {
2114		DMERR("pool target too small, is %llu blocks (expected %llu)",
2115		      data_size, sb_data_size);
2116		return -EINVAL;
2117
2118	} else if (data_size > sb_data_size) {
2119		r = dm_pool_resize_data_dev(pool->pmd, data_size);
2120		if (r) {
2121			DMERR("failed to resize data device");
2122			return r;
2123		}
 
 
 
 
2124
2125		r = dm_pool_commit_metadata(pool->pmd);
2126		if (r) {
2127			DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2128			      __func__, r);
2129			return r;
2130		}
 
 
 
 
 
 
2131	}
 
2132
2133	return 0;
 
 
 
 
 
 
 
 
 
2134}
2135
2136static void pool_resume(struct dm_target *ti)
2137{
2138	struct pool_c *pt = ti->private;
2139	struct pool *pool = pt->pool;
2140	unsigned long flags;
2141
2142	spin_lock_irqsave(&pool->lock, flags);
2143	pool->low_water_triggered = 0;
2144	pool->no_free_space = 0;
2145	__requeue_bios(pool);
2146	spin_unlock_irqrestore(&pool->lock, flags);
 
 
 
 
 
 
2147
2148	do_waker(&pool->waker.work);
2149}
2150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2151static void pool_postsuspend(struct dm_target *ti)
2152{
2153	int r;
2154	struct pool_c *pt = ti->private;
2155	struct pool *pool = pt->pool;
2156
2157	cancel_delayed_work(&pool->waker);
 
2158	flush_workqueue(pool->wq);
2159
2160	r = dm_pool_commit_metadata(pool->pmd);
2161	if (r < 0) {
2162		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2163		      __func__, r);
2164		/* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
2165	}
2166}
2167
2168static int check_arg_count(unsigned argc, unsigned args_required)
2169{
2170	if (argc != args_required) {
2171		DMWARN("Message received with %u arguments instead of %u.",
2172		       argc, args_required);
2173		return -EINVAL;
2174	}
2175
2176	return 0;
2177}
2178
2179static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2180{
2181	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2182	    *dev_id <= MAX_DEV_ID)
2183		return 0;
2184
2185	if (warning)
2186		DMWARN("Message received with invalid device id: %s", arg);
2187
2188	return -EINVAL;
2189}
2190
2191static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2192{
2193	dm_thin_id dev_id;
2194	int r;
2195
2196	r = check_arg_count(argc, 2);
2197	if (r)
2198		return r;
2199
2200	r = read_dev_id(argv[1], &dev_id, 1);
2201	if (r)
2202		return r;
2203
2204	r = dm_pool_create_thin(pool->pmd, dev_id);
2205	if (r) {
2206		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2207		       argv[1]);
2208		return r;
2209	}
2210
2211	return 0;
2212}
2213
2214static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2215{
2216	dm_thin_id dev_id;
2217	dm_thin_id origin_dev_id;
2218	int r;
2219
2220	r = check_arg_count(argc, 3);
2221	if (r)
2222		return r;
2223
2224	r = read_dev_id(argv[1], &dev_id, 1);
2225	if (r)
2226		return r;
2227
2228	r = read_dev_id(argv[2], &origin_dev_id, 1);
2229	if (r)
2230		return r;
2231
2232	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2233	if (r) {
2234		DMWARN("Creation of new snapshot %s of device %s failed.",
2235		       argv[1], argv[2]);
2236		return r;
2237	}
2238
2239	return 0;
2240}
2241
2242static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2243{
2244	dm_thin_id dev_id;
2245	int r;
2246
2247	r = check_arg_count(argc, 2);
2248	if (r)
2249		return r;
2250
2251	r = read_dev_id(argv[1], &dev_id, 1);
2252	if (r)
2253		return r;
2254
2255	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2256	if (r)
2257		DMWARN("Deletion of thin device %s failed.", argv[1]);
2258
2259	return r;
2260}
2261
2262static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2263{
2264	dm_thin_id old_id, new_id;
2265	int r;
2266
2267	r = check_arg_count(argc, 3);
2268	if (r)
2269		return r;
2270
2271	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2272		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2273		return -EINVAL;
2274	}
2275
2276	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2277		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2278		return -EINVAL;
2279	}
2280
2281	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2282	if (r) {
2283		DMWARN("Failed to change transaction id from %s to %s.",
2284		       argv[1], argv[2]);
2285		return r;
2286	}
2287
2288	return 0;
2289}
2290
2291static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2292{
2293	int r;
2294
2295	r = check_arg_count(argc, 1);
2296	if (r)
2297		return r;
2298
2299	r = dm_pool_commit_metadata(pool->pmd);
2300	if (r) {
2301		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2302		      __func__, r);
2303		return r;
2304	}
2305
2306	r = dm_pool_reserve_metadata_snap(pool->pmd);
2307	if (r)
2308		DMWARN("reserve_metadata_snap message failed.");
2309
2310	return r;
2311}
2312
2313static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2314{
2315	int r;
2316
2317	r = check_arg_count(argc, 1);
2318	if (r)
2319		return r;
2320
2321	r = dm_pool_release_metadata_snap(pool->pmd);
2322	if (r)
2323		DMWARN("release_metadata_snap message failed.");
2324
2325	return r;
2326}
2327
2328/*
2329 * Messages supported:
2330 *   create_thin	<dev_id>
2331 *   create_snap	<dev_id> <origin_id>
2332 *   delete		<dev_id>
2333 *   trim		<dev_id> <new_size_in_sectors>
2334 *   set_transaction_id <current_trans_id> <new_trans_id>
2335 *   reserve_metadata_snap
2336 *   release_metadata_snap
2337 */
2338static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
 
2339{
2340	int r = -EINVAL;
2341	struct pool_c *pt = ti->private;
2342	struct pool *pool = pt->pool;
2343
 
 
 
 
 
 
2344	if (!strcasecmp(argv[0], "create_thin"))
2345		r = process_create_thin_mesg(argc, argv, pool);
2346
2347	else if (!strcasecmp(argv[0], "create_snap"))
2348		r = process_create_snap_mesg(argc, argv, pool);
2349
2350	else if (!strcasecmp(argv[0], "delete"))
2351		r = process_delete_mesg(argc, argv, pool);
2352
2353	else if (!strcasecmp(argv[0], "set_transaction_id"))
2354		r = process_set_transaction_id_mesg(argc, argv, pool);
2355
2356	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2357		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2358
2359	else if (!strcasecmp(argv[0], "release_metadata_snap"))
2360		r = process_release_metadata_snap_mesg(argc, argv, pool);
2361
2362	else
2363		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2364
2365	if (!r) {
2366		r = dm_pool_commit_metadata(pool->pmd);
2367		if (r)
2368			DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2369			      argv[0], r);
2370	}
2371
2372	return r;
2373}
2374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2375/*
2376 * Status line is:
2377 *    <transaction id> <used metadata sectors>/<total metadata sectors>
2378 *    <used data sectors>/<total data sectors> <held metadata root>
 
2379 */
2380static int pool_status(struct dm_target *ti, status_type_t type,
2381		       char *result, unsigned maxlen)
2382{
2383	int r, count;
2384	unsigned sz = 0;
2385	uint64_t transaction_id;
2386	dm_block_t nr_free_blocks_data;
2387	dm_block_t nr_free_blocks_metadata;
2388	dm_block_t nr_blocks_data;
2389	dm_block_t nr_blocks_metadata;
2390	dm_block_t held_root;
 
2391	char buf[BDEVNAME_SIZE];
2392	char buf2[BDEVNAME_SIZE];
2393	struct pool_c *pt = ti->private;
2394	struct pool *pool = pt->pool;
2395
2396	switch (type) {
2397	case STATUSTYPE_INFO:
2398		r = dm_pool_get_metadata_transaction_id(pool->pmd,
2399							&transaction_id);
2400		if (r)
2401			return r;
2402
2403		r = dm_pool_get_free_metadata_block_count(pool->pmd,
2404							  &nr_free_blocks_metadata);
2405		if (r)
2406			return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
2407
2408		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2409		if (r)
2410			return r;
 
 
 
2411
2412		r = dm_pool_get_free_block_count(pool->pmd,
2413						 &nr_free_blocks_data);
2414		if (r)
2415			return r;
 
 
2416
2417		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2418		if (r)
2419			return r;
 
 
 
2420
2421		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2422		if (r)
2423			return r;
 
 
 
2424
2425		DMEMIT("%llu %llu/%llu %llu/%llu ",
2426		       (unsigned long long)transaction_id,
2427		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2428		       (unsigned long long)nr_blocks_metadata,
2429		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2430		       (unsigned long long)nr_blocks_data);
2431
2432		if (held_root)
2433			DMEMIT("%llu", held_root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2434		else
2435			DMEMIT("-");
 
 
2436
2437		break;
2438
2439	case STATUSTYPE_TABLE:
2440		DMEMIT("%s %s %lu %llu ",
2441		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2442		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2443		       (unsigned long)pool->sectors_per_block,
2444		       (unsigned long long)pt->low_water_blocks);
 
 
2445
2446		count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
2447			!pt->pf.discard_passdown;
2448		DMEMIT("%u ", count);
2449
2450		if (!pool->pf.zero_new_blocks)
2451			DMEMIT("skip_block_zeroing ");
2452
2453		if (!pool->pf.discard_enabled)
2454			DMEMIT("ignore_discard ");
2455
2456		if (!pt->pf.discard_passdown)
2457			DMEMIT("no_discard_passdown ");
2458
2459		break;
2460	}
 
2461
2462	return 0;
 
2463}
2464
2465static int pool_iterate_devices(struct dm_target *ti,
2466				iterate_devices_callout_fn fn, void *data)
2467{
2468	struct pool_c *pt = ti->private;
2469
2470	return fn(ti, pt->data_dev, 0, ti->len, data);
2471}
2472
2473static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2474		      struct bio_vec *biovec, int max_size)
2475{
2476	struct pool_c *pt = ti->private;
2477	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2478
2479	if (!q->merge_bvec_fn)
2480		return max_size;
2481
2482	bvm->bi_bdev = pt->data_dev->bdev;
2483
2484	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2485}
2486
2487static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2488{
2489	/*
2490	 * FIXME: these limits may be incompatible with the pool's data device
 
 
 
 
 
 
2491	 */
2492	limits->max_discard_sectors = pool->sectors_per_block;
 
 
 
 
 
 
2493
2494	/*
2495	 * This is just a hint, and not enforced.  We have to cope with
2496	 * bios that overlap 2 blocks.
2497	 */
2498	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2499	limits->discard_zeroes_data = pool->pf.zero_new_blocks;
2500}
 
 
 
 
 
2501
2502static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2503{
2504	struct pool_c *pt = ti->private;
2505	struct pool *pool = pt->pool;
 
2506
2507	blk_limits_io_min(limits, 0);
2508	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2509	if (pool->pf.discard_enabled)
2510		set_discard_limits(pool, limits);
 
 
 
 
 
 
 
 
 
 
 
2511}
2512
2513static struct target_type pool_target = {
2514	.name = "thin-pool",
2515	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2516		    DM_TARGET_IMMUTABLE,
2517	.version = {1, 2, 0},
2518	.module = THIS_MODULE,
2519	.ctr = pool_ctr,
2520	.dtr = pool_dtr,
2521	.map = pool_map,
 
 
2522	.postsuspend = pool_postsuspend,
2523	.preresume = pool_preresume,
2524	.resume = pool_resume,
2525	.message = pool_message,
2526	.status = pool_status,
2527	.merge = pool_merge,
2528	.iterate_devices = pool_iterate_devices,
2529	.io_hints = pool_io_hints,
2530};
2531
2532/*----------------------------------------------------------------
 
2533 * Thin target methods
2534 *--------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
2535static void thin_dtr(struct dm_target *ti)
2536{
2537	struct thin_c *tc = ti->private;
2538
 
 
 
 
 
 
 
 
2539	mutex_lock(&dm_thin_pool_table.mutex);
2540
2541	__pool_dec(tc->pool);
2542	dm_pool_close_thin_device(tc->td);
2543	dm_put_device(ti, tc->pool_dev);
2544	if (tc->origin_dev)
2545		dm_put_device(ti, tc->origin_dev);
2546	kfree(tc);
2547
2548	mutex_unlock(&dm_thin_pool_table.mutex);
2549}
2550
2551/*
2552 * Thin target parameters:
2553 *
2554 * <pool_dev> <dev_id> [origin_dev]
2555 *
2556 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2557 * dev_id: the internal device identifier
2558 * origin_dev: a device external to the pool that should act as the origin
2559 *
2560 * If the pool device has discards disabled, they get disabled for the thin
2561 * device as well.
2562 */
2563static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2564{
2565	int r;
2566	struct thin_c *tc;
2567	struct dm_dev *pool_dev, *origin_dev;
2568	struct mapped_device *pool_md;
2569
2570	mutex_lock(&dm_thin_pool_table.mutex);
2571
2572	if (argc != 2 && argc != 3) {
2573		ti->error = "Invalid argument count";
2574		r = -EINVAL;
2575		goto out_unlock;
2576	}
2577
2578	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2579	if (!tc) {
2580		ti->error = "Out of memory";
2581		r = -ENOMEM;
2582		goto out_unlock;
2583	}
 
 
 
 
 
 
2584
2585	if (argc == 3) {
2586		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
 
 
 
 
 
 
2587		if (r) {
2588			ti->error = "Error opening origin device";
2589			goto bad_origin_dev;
2590		}
2591		tc->origin_dev = origin_dev;
2592	}
2593
2594	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2595	if (r) {
2596		ti->error = "Error opening pool device";
2597		goto bad_pool_dev;
2598	}
2599	tc->pool_dev = pool_dev;
2600
2601	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2602		ti->error = "Invalid device id";
2603		r = -EINVAL;
2604		goto bad_common;
2605	}
2606
2607	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2608	if (!pool_md) {
2609		ti->error = "Couldn't get pool mapped device";
2610		r = -EINVAL;
2611		goto bad_common;
2612	}
2613
2614	tc->pool = __pool_table_lookup(pool_md);
2615	if (!tc->pool) {
2616		ti->error = "Couldn't find pool object";
2617		r = -EINVAL;
2618		goto bad_pool_lookup;
2619	}
2620	__pool_inc(tc->pool);
2621
 
 
 
 
 
 
2622	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2623	if (r) {
2624		ti->error = "Couldn't open thin internal device";
2625		goto bad_thin_open;
2626	}
2627
2628	ti->split_io = tc->pool->sectors_per_block;
2629	ti->num_flush_requests = 1;
 
 
 
 
 
 
 
2630
2631	/* In case the pool supports discards, pass them on. */
2632	if (tc->pool->pf.discard_enabled) {
2633		ti->discards_supported = 1;
2634		ti->num_discard_requests = 1;
2635		ti->discard_zeroes_data_unsupported = 1;
2636	}
2637
2638	dm_put(pool_md);
2639
2640	mutex_unlock(&dm_thin_pool_table.mutex);
2641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2642	return 0;
2643
2644bad_thin_open:
 
 
2645	__pool_dec(tc->pool);
2646bad_pool_lookup:
2647	dm_put(pool_md);
2648bad_common:
2649	dm_put_device(ti, tc->pool_dev);
2650bad_pool_dev:
2651	if (tc->origin_dev)
2652		dm_put_device(ti, tc->origin_dev);
2653bad_origin_dev:
2654	kfree(tc);
2655out_unlock:
2656	mutex_unlock(&dm_thin_pool_table.mutex);
2657
2658	return r;
2659}
2660
2661static int thin_map(struct dm_target *ti, struct bio *bio,
2662		    union map_info *map_context)
2663{
2664	bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2665
2666	return thin_bio_map(ti, bio, map_context);
2667}
2668
2669static int thin_endio(struct dm_target *ti,
2670		      struct bio *bio, int err,
2671		      union map_info *map_context)
2672{
2673	unsigned long flags;
2674	struct dm_thin_endio_hook *h = map_context->ptr;
2675	struct list_head work;
2676	struct dm_thin_new_mapping *m, *tmp;
2677	struct pool *pool = h->tc->pool;
2678
2679	if (h->shared_read_entry) {
2680		INIT_LIST_HEAD(&work);
2681		ds_dec(h->shared_read_entry, &work);
2682
2683		spin_lock_irqsave(&pool->lock, flags);
2684		list_for_each_entry_safe(m, tmp, &work, list) {
2685			list_del(&m->list);
2686			m->quiesced = 1;
2687			__maybe_add_mapping(m);
2688		}
2689		spin_unlock_irqrestore(&pool->lock, flags);
2690	}
2691
2692	if (h->all_io_entry) {
2693		INIT_LIST_HEAD(&work);
2694		ds_dec(h->all_io_entry, &work);
2695		spin_lock_irqsave(&pool->lock, flags);
2696		list_for_each_entry_safe(m, tmp, &work, list)
2697			list_add(&m->list, &pool->prepared_discards);
2698		spin_unlock_irqrestore(&pool->lock, flags);
 
 
 
2699	}
2700
2701	mempool_free(h, pool->endio_hook_pool);
 
2702
2703	return 0;
2704}
2705
2706static void thin_postsuspend(struct dm_target *ti)
2707{
 
 
2708	if (dm_noflush_suspending(ti))
2709		requeue_io((struct thin_c *)ti->private);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2710}
2711
2712/*
2713 * <nr mapped sectors> <highest mapped sector>
2714 */
2715static int thin_status(struct dm_target *ti, status_type_t type,
2716		       char *result, unsigned maxlen)
2717{
2718	int r;
2719	ssize_t sz = 0;
2720	dm_block_t mapped, highest;
2721	char buf[BDEVNAME_SIZE];
2722	struct thin_c *tc = ti->private;
2723
 
 
 
 
 
2724	if (!tc->td)
2725		DMEMIT("-");
2726	else {
2727		switch (type) {
2728		case STATUSTYPE_INFO:
2729			r = dm_thin_get_mapped_count(tc->td, &mapped);
2730			if (r)
2731				return r;
 
 
2732
2733			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2734			if (r < 0)
2735				return r;
 
 
2736
2737			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2738			if (r)
2739				DMEMIT("%llu", ((highest + 1) *
2740						tc->pool->sectors_per_block) - 1);
2741			else
2742				DMEMIT("-");
2743			break;
2744
2745		case STATUSTYPE_TABLE:
2746			DMEMIT("%s %lu",
2747			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2748			       (unsigned long) tc->dev_id);
2749			if (tc->origin_dev)
2750				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2751			break;
 
 
 
 
2752		}
2753	}
2754
2755	return 0;
 
 
 
2756}
2757
2758static int thin_iterate_devices(struct dm_target *ti,
2759				iterate_devices_callout_fn fn, void *data)
2760{
2761	dm_block_t blocks;
2762	struct thin_c *tc = ti->private;
 
2763
2764	/*
2765	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2766	 * we follow a more convoluted path through to the pool's target.
2767	 */
2768	if (!tc->pool->ti)
2769		return 0;	/* nothing is bound */
2770
2771	blocks = tc->pool->ti->len >> tc->pool->block_shift;
 
2772	if (blocks)
2773		return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data);
2774
2775	return 0;
2776}
2777
2778static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2779{
2780	struct thin_c *tc = ti->private;
2781	struct pool *pool = tc->pool;
2782
2783	blk_limits_io_min(limits, 0);
2784	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2785	set_discard_limits(pool, limits);
 
2786}
2787
2788static struct target_type thin_target = {
2789	.name = "thin",
2790	.version = {1, 1, 0},
2791	.module	= THIS_MODULE,
2792	.ctr = thin_ctr,
2793	.dtr = thin_dtr,
2794	.map = thin_map,
2795	.end_io = thin_endio,
 
 
2796	.postsuspend = thin_postsuspend,
2797	.status = thin_status,
2798	.iterate_devices = thin_iterate_devices,
2799	.io_hints = thin_io_hints,
2800};
2801
2802/*----------------------------------------------------------------*/
2803
2804static int __init dm_thin_init(void)
2805{
2806	int r;
2807
2808	pool_table_init();
2809
2810	r = dm_register_target(&thin_target);
2811	if (r)
2812		return r;
2813
2814	r = dm_register_target(&pool_target);
2815	if (r)
2816		goto bad_pool_target;
2817
2818	r = -ENOMEM;
2819
2820	_cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
2821	if (!_cell_cache)
2822		goto bad_cell_cache;
2823
2824	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
2825	if (!_new_mapping_cache)
2826		goto bad_new_mapping_cache;
2827
2828	_endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
2829	if (!_endio_hook_cache)
2830		goto bad_endio_hook_cache;
2831
2832	return 0;
2833
2834bad_endio_hook_cache:
2835	kmem_cache_destroy(_new_mapping_cache);
2836bad_new_mapping_cache:
2837	kmem_cache_destroy(_cell_cache);
2838bad_cell_cache:
2839	dm_unregister_target(&pool_target);
2840bad_pool_target:
2841	dm_unregister_target(&thin_target);
 
 
2842
2843	return r;
2844}
2845
2846static void dm_thin_exit(void)
2847{
2848	dm_unregister_target(&thin_target);
2849	dm_unregister_target(&pool_target);
2850
2851	kmem_cache_destroy(_cell_cache);
2852	kmem_cache_destroy(_new_mapping_cache);
2853	kmem_cache_destroy(_endio_hook_cache);
 
2854}
2855
2856module_init(dm_thin_init);
2857module_exit(dm_thin_exit);
2858
 
 
 
2859MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
2860MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2861MODULE_LICENSE("GPL");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2011-2012 Red Hat UK.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-thin-metadata.h"
   9#include "dm-bio-prison-v1.h"
  10#include "dm.h"
  11
  12#include <linux/device-mapper.h>
  13#include <linux/dm-io.h>
  14#include <linux/dm-kcopyd.h>
  15#include <linux/jiffies.h>
  16#include <linux/log2.h>
  17#include <linux/list.h>
  18#include <linux/rculist.h>
  19#include <linux/init.h>
  20#include <linux/module.h>
  21#include <linux/slab.h>
  22#include <linux/vmalloc.h>
  23#include <linux/sort.h>
  24#include <linux/rbtree.h>
  25
  26#define	DM_MSG_PREFIX	"thin"
  27
  28/*
  29 * Tunable constants
  30 */
  31#define ENDIO_HOOK_POOL_SIZE 1024
 
  32#define MAPPING_POOL_SIZE 1024
 
  33#define COMMIT_PERIOD HZ
  34#define NO_SPACE_TIMEOUT_SECS 60
  35
  36static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  37
  38DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  39		"A percentage of time allocated for copy on write");
  40
  41/*
  42 * The block size of the device holding pool data must be
  43 * between 64KB and 1GB.
  44 */
  45#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  46#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  47
  48/*
  49 * Device id is restricted to 24 bits.
  50 */
  51#define MAX_DEV_ID ((1 << 24) - 1)
  52
  53/*
  54 * How do we handle breaking sharing of data blocks?
  55 * =================================================
  56 *
  57 * We use a standard copy-on-write btree to store the mappings for the
  58 * devices (note I'm talking about copy-on-write of the metadata here, not
  59 * the data).  When you take an internal snapshot you clone the root node
  60 * of the origin btree.  After this there is no concept of an origin or a
  61 * snapshot.  They are just two device trees that happen to point to the
  62 * same data blocks.
  63 *
  64 * When we get a write in we decide if it's to a shared data block using
  65 * some timestamp magic.  If it is, we have to break sharing.
  66 *
  67 * Let's say we write to a shared block in what was the origin.  The
  68 * steps are:
  69 *
  70 * i) plug io further to this physical block. (see bio_prison code).
  71 *
  72 * ii) quiesce any read io to that shared data block.  Obviously
  73 * including all devices that share this block.  (see dm_deferred_set code)
  74 *
  75 * iii) copy the data block to a newly allocate block.  This step can be
  76 * missed out if the io covers the block. (schedule_copy).
  77 *
  78 * iv) insert the new mapping into the origin's btree
  79 * (process_prepared_mapping).  This act of inserting breaks some
  80 * sharing of btree nodes between the two devices.  Breaking sharing only
  81 * effects the btree of that specific device.  Btrees for the other
  82 * devices that share the block never change.  The btree for the origin
  83 * device as it was after the last commit is untouched, ie. we're using
  84 * persistent data structures in the functional programming sense.
  85 *
  86 * v) unplug io to this physical block, including the io that triggered
  87 * the breaking of sharing.
  88 *
  89 * Steps (ii) and (iii) occur in parallel.
  90 *
  91 * The metadata _doesn't_ need to be committed before the io continues.  We
  92 * get away with this because the io is always written to a _new_ block.
  93 * If there's a crash, then:
  94 *
  95 * - The origin mapping will point to the old origin block (the shared
  96 * one).  This will contain the data as it was before the io that triggered
  97 * the breaking of sharing came in.
  98 *
  99 * - The snap mapping still points to the old block.  As it would after
 100 * the commit.
 101 *
 102 * The downside of this scheme is the timestamp magic isn't perfect, and
 103 * will continue to think that data block in the snapshot device is shared
 104 * even after the write to the origin has broken sharing.  I suspect data
 105 * blocks will typically be shared by many different devices, so we're
 106 * breaking sharing n + 1 times, rather than n, where n is the number of
 107 * devices that reference this data block.  At the moment I think the
 108 * benefits far, far outweigh the disadvantages.
 109 */
 110
 111/*----------------------------------------------------------------*/
 112
 113/*
 114 * Key building.
 115 */
 116enum lock_space {
 117	VIRTUAL,
 118	PHYSICAL
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 119};
 120
 121static bool build_key(struct dm_thin_device *td, enum lock_space ls,
 122		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 123{
 124	key->virtual = (ls == VIRTUAL);
 125	key->dev = dm_thin_dev_id(td);
 126	key->block_begin = b;
 127	key->block_end = e;
 
 
 
 128
 129	return dm_cell_key_has_valid_range(key);
 130}
 131
 132static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 133			   struct dm_cell_key *key)
 134{
 135	(void) build_key(td, PHYSICAL, b, b + 1llu, key);
 136}
 137
 138static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 139			      struct dm_cell_key *key)
 
 
 
 140{
 141	(void) build_key(td, VIRTUAL, b, b + 1llu, key);
 142}
 
 
 
 143
 144/*----------------------------------------------------------------*/
 
 145
 146#define THROTTLE_THRESHOLD (1 * HZ)
 
 
 
 
 
 147
 148struct throttle {
 149	struct rw_semaphore lock;
 150	unsigned long threshold;
 151	bool throttle_applied;
 152};
 153
 154static void throttle_init(struct throttle *t)
 155{
 156	init_rwsem(&t->lock);
 157	t->throttle_applied = false;
 158}
 159
 160static void throttle_work_start(struct throttle *t)
 161{
 162	t->threshold = jiffies + THROTTLE_THRESHOLD;
 
 163}
 164
 165static void throttle_work_update(struct throttle *t)
 166{
 167	if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
 168		down_write(&t->lock);
 169		t->throttle_applied = true;
 170	}
 171}
 172
 173static void throttle_work_complete(struct throttle *t)
 174{
 175	if (t->throttle_applied) {
 176		t->throttle_applied = false;
 177		up_write(&t->lock);
 178	}
 179}
 180
 181static void throttle_lock(struct throttle *t)
 
 182{
 183	down_read(&t->lock);
 
 
 
 
 
 
 
 184}
 185
 186static void throttle_unlock(struct throttle *t)
 
 
 
 
 
 
 
 187{
 188	up_read(&t->lock);
 189}
 
 
 190
 191/*----------------------------------------------------------------*/
 192
 193/*
 194 * A pool device ties together a metadata device and a data device.  It
 195 * also provides the interface for creating and destroying internal
 196 * devices.
 197 */
 198struct dm_thin_new_mapping;
 199
 200/*
 201 * The pool runs in various modes.  Ordered in degraded order for comparisons.
 202 */
 203enum pool_mode {
 204	PM_WRITE,		/* metadata may be changed */
 205	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
 206
 207	/*
 208	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
 209	 */
 210	PM_OUT_OF_METADATA_SPACE,
 211	PM_READ_ONLY,		/* metadata may not be changed */
 
 212
 213	PM_FAIL,		/* all I/O fails */
 214};
 
 
 
 
 
 
 
 
 215
 216struct pool_features {
 217	enum pool_mode mode;
 
 
 218
 219	bool zero_new_blocks:1;
 220	bool discard_enabled:1;
 221	bool discard_passdown:1;
 222	bool error_if_no_space:1;
 223};
 224
 225struct thin_c;
 226typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 227typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 228typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 229
 230#define CELL_SORT_ARRAY_SIZE 8192
 
 231
 232struct pool {
 233	struct list_head list;
 234	struct dm_target *ti;	/* Only set if a pool target is bound */
 235
 236	struct mapped_device *pool_md;
 237	struct block_device *data_dev;
 238	struct block_device *md_dev;
 239	struct dm_pool_metadata *pmd;
 240
 241	dm_block_t low_water_blocks;
 242	uint32_t sectors_per_block;
 243	int sectors_per_block_shift;
 
 
 
 244
 245	struct pool_features pf;
 246	bool low_water_triggered:1;	/* A dm event has been sent */
 247	bool suspended:1;
 248	bool out_of_data_space:1;
 249
 250	struct dm_bio_prison *prison;
 251	struct dm_kcopyd_client *copier;
 
 
 252
 253	struct work_struct worker;
 254	struct workqueue_struct *wq;
 255	struct throttle throttle;
 256	struct delayed_work waker;
 257	struct delayed_work no_space_timeout;
 258
 259	unsigned long last_commit_jiffies;
 260	unsigned int ref_count;
 
 
 261
 262	spinlock_t lock;
 263	struct bio_list deferred_flush_bios;
 264	struct bio_list deferred_flush_completions;
 265	struct list_head prepared_mappings;
 266	struct list_head prepared_discards;
 267	struct list_head prepared_discards_pt2;
 268	struct list_head active_thins;
 269
 270	struct dm_deferred_set *shared_read_ds;
 271	struct dm_deferred_set *all_io_ds;
 
 
 
 
 
 
 
 
 272
 273	struct dm_thin_new_mapping *next_mapping;
 
 274
 275	process_bio_fn process_bio;
 276	process_bio_fn process_discard;
 
 
 277
 278	process_cell_fn process_cell;
 279	process_cell_fn process_discard_cell;
 
 
 280
 281	process_mapping_fn process_prepared_mapping;
 282	process_mapping_fn process_prepared_discard;
 283	process_mapping_fn process_prepared_discard_pt2;
 
 
 
 
 284
 285	struct dm_bio_prison_cell **cell_sort_array;
 
 286
 287	mempool_t mapping_pool;
 288};
 289
 290static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 
 
 
 
 291
 292static enum pool_mode get_pool_mode(struct pool *pool)
 293{
 294	return pool->pf.mode;
 295}
 296
 297static void notify_of_pool_mode_change(struct pool *pool)
 298{
 299	static const char *descs[] = {
 300		"write",
 301		"out-of-data-space",
 302		"read-only",
 303		"read-only",
 304		"fail"
 305	};
 306	const char *extra_desc = NULL;
 307	enum pool_mode mode = get_pool_mode(pool);
 308
 309	if (mode == PM_OUT_OF_DATA_SPACE) {
 310		if (!pool->pf.error_if_no_space)
 311			extra_desc = " (queue IO)";
 312		else
 313			extra_desc = " (error IO)";
 314	}
 315
 316	dm_table_event(pool->ti->table);
 317	DMINFO("%s: switching pool to %s%s mode",
 318	       dm_device_name(pool->pool_md),
 319	       descs[(int)mode], extra_desc ? : "");
 320}
 321
 
 
 322/*
 323 * Target context for a pool.
 
 
 
 324 */
 325struct pool_c {
 326	struct dm_target *ti;
 327	struct pool *pool;
 328	struct dm_dev *data_dev;
 329	struct dm_dev *metadata_dev;
 330
 331	dm_block_t low_water_blocks;
 332	struct pool_features requested_pf; /* Features requested during table load */
 333	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 
 
 334};
 335
 336/*
 337 * Target context for a thin.
 338 */
 339struct thin_c {
 340	struct list_head list;
 341	struct dm_dev *pool_dev;
 342	struct dm_dev *origin_dev;
 343	sector_t origin_size;
 344	dm_thin_id dev_id;
 345
 346	struct pool *pool;
 347	struct dm_thin_device *td;
 348	struct mapped_device *thin_md;
 349
 350	bool requeue_mode:1;
 351	spinlock_t lock;
 352	struct list_head deferred_cells;
 353	struct bio_list deferred_bio_list;
 354	struct bio_list retry_on_resume_list;
 355	struct rb_root sort_bio_list; /* sorted list of deferred bios */
 
 
 
 356
 357	/*
 358	 * Ensures the thin is not destroyed until the worker has finished
 359	 * iterating the active_thins list.
 360	 */
 361	refcount_t refcount;
 362	struct completion can_destroy;
 363};
 364
 365/*----------------------------------------------------------------*/
 
 
 
 366
 367static bool block_size_is_power_of_two(struct pool *pool)
 368{
 369	return pool->sectors_per_block_shift >= 0;
 370}
 371
 372static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 373{
 374	return block_size_is_power_of_two(pool) ?
 375		(b << pool->sectors_per_block_shift) :
 376		(b * pool->sectors_per_block);
 377}
 378
 379/*----------------------------------------------------------------*/
 380
 381struct discard_op {
 382	struct thin_c *tc;
 383	struct blk_plug plug;
 384	struct bio *parent_bio;
 385	struct bio *bio;
 386};
 387
 388static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
 389{
 390	BUG_ON(!parent);
 
 
 
 
 391
 392	op->tc = tc;
 393	blk_start_plug(&op->plug);
 394	op->parent_bio = parent;
 395	op->bio = NULL;
 396}
 397
 398static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
 399{
 400	struct thin_c *tc = op->tc;
 401	sector_t s = block_to_sectors(tc->pool, data_b);
 402	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 403
 404	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOIO, &op->bio);
 
 
 
 
 405}
 406
 407static void end_discard(struct discard_op *op, int r)
 
 
 
 408{
 409	if (op->bio) {
 410		/*
 411		 * Even if one of the calls to issue_discard failed, we
 412		 * need to wait for the chain to complete.
 413		 */
 414		bio_chain(op->bio, op->parent_bio);
 415		op->bio->bi_opf = REQ_OP_DISCARD;
 416		submit_bio(op->bio);
 
 
 
 
 
 417	}
 
 418
 419	blk_finish_plug(&op->plug);
 420
 421	/*
 422	 * Even if r is set, there could be sub discards in flight that we
 423	 * need to wait for.
 424	 */
 425	if (r && !op->parent_bio->bi_status)
 426		op->parent_bio->bi_status = errno_to_blk_status(r);
 427	bio_endio(op->parent_bio);
 428}
 429
 430/*----------------------------------------------------------------*/
 431
 432/*
 433 * wake_worker() is used when new work is queued and when pool_resume is
 434 * ready to continue deferred IO processing.
 435 */
 436static void wake_worker(struct pool *pool)
 
 
 
 
 
 
 
 
 
 437{
 438	queue_work(pool->wq, &pool->worker);
 
 
 439}
 440
 441/*----------------------------------------------------------------*/
 442
 443static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 444		      struct dm_bio_prison_cell **cell_result)
 445{
 446	int r;
 447	struct dm_bio_prison_cell *cell_prealloc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 448
 449	/*
 450	 * Allocate a cell from the prison's mempool.
 451	 * This might block but it can't fail.
 452	 */
 453	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 454
 455	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 456	if (r) {
 457		/*
 458		 * We reused an old cell; we can get rid of
 459		 * the new one.
 460		 */
 461		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 462	}
 463
 464	return r;
 465}
 466
 467static void cell_release(struct pool *pool,
 468			 struct dm_bio_prison_cell *cell,
 469			 struct bio_list *bios)
 470{
 471	dm_cell_release(pool->prison, cell, bios);
 472	dm_bio_prison_free_cell(pool->prison, cell);
 473}
 474
 475static void cell_visit_release(struct pool *pool,
 476			       void (*fn)(void *, struct dm_bio_prison_cell *),
 477			       void *context,
 478			       struct dm_bio_prison_cell *cell)
 479{
 480	dm_cell_visit_release(pool->prison, fn, context, cell);
 481	dm_bio_prison_free_cell(pool->prison, cell);
 482}
 483
 484static void cell_release_no_holder(struct pool *pool,
 485				   struct dm_bio_prison_cell *cell,
 486				   struct bio_list *bios)
 487{
 488	dm_cell_release_no_holder(pool->prison, cell, bios);
 489	dm_bio_prison_free_cell(pool->prison, cell);
 490}
 491
 492static void cell_error_with_code(struct pool *pool,
 493		struct dm_bio_prison_cell *cell, blk_status_t error_code)
 494{
 495	dm_cell_error(pool->prison, cell, error_code);
 496	dm_bio_prison_free_cell(pool->prison, cell);
 497}
 498
 499static blk_status_t get_pool_io_error_code(struct pool *pool)
 500{
 501	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
 502}
 
 
 
 
 
 503
 504static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 505{
 506	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
 507}
 508
 509static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 510{
 511	cell_error_with_code(pool, cell, 0);
 512}
 
 
 
 513
 514static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 515{
 516	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
 517}
 518
 519/*----------------------------------------------------------------*/
 520
 521/*
 522 * A global list of pools that uses a struct mapped_device as a key.
 523 */
 524static struct dm_thin_pool_table {
 525	struct mutex mutex;
 526	struct list_head pools;
 527} dm_thin_pool_table;
 528
 529static void pool_table_init(void)
 530{
 531	mutex_init(&dm_thin_pool_table.mutex);
 532	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 533}
 534
 535static void pool_table_exit(void)
 536{
 537	mutex_destroy(&dm_thin_pool_table.mutex);
 538}
 539
 540static void __pool_table_insert(struct pool *pool)
 541{
 542	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 543	list_add(&pool->list, &dm_thin_pool_table.pools);
 544}
 545
 546static void __pool_table_remove(struct pool *pool)
 547{
 548	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 549	list_del(&pool->list);
 550}
 551
 552static struct pool *__pool_table_lookup(struct mapped_device *md)
 553{
 554	struct pool *pool = NULL, *tmp;
 555
 556	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 557
 558	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 559		if (tmp->pool_md == md) {
 560			pool = tmp;
 561			break;
 562		}
 563	}
 564
 565	return pool;
 566}
 567
 568static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 569{
 570	struct pool *pool = NULL, *tmp;
 571
 572	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 573
 574	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 575		if (tmp->md_dev == md_dev) {
 576			pool = tmp;
 577			break;
 578		}
 579	}
 580
 581	return pool;
 582}
 583
 584/*----------------------------------------------------------------*/
 585
 586struct dm_thin_endio_hook {
 587	struct thin_c *tc;
 588	struct dm_deferred_entry *shared_read_entry;
 589	struct dm_deferred_entry *all_io_entry;
 590	struct dm_thin_new_mapping *overwrite_mapping;
 591	struct rb_node rb_node;
 592	struct dm_bio_prison_cell *cell;
 593};
 594
 595static void error_bio_list(struct bio_list *bios, blk_status_t error)
 596{
 597	struct bio *bio;
 598
 599	while ((bio = bio_list_pop(bios))) {
 600		bio->bi_status = error;
 601		bio_endio(bio);
 602	}
 603}
 604
 605static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
 606		blk_status_t error)
 607{
 608	struct bio_list bios;
 609
 610	bio_list_init(&bios);
 
 
 611
 612	spin_lock_irq(&tc->lock);
 613	bio_list_merge_init(&bios, master);
 614	spin_unlock_irq(&tc->lock);
 615
 616	error_bio_list(&bios, error);
 
 
 
 
 617}
 618
 619static void requeue_deferred_cells(struct thin_c *tc)
 620{
 621	struct pool *pool = tc->pool;
 622	struct list_head cells;
 623	struct dm_bio_prison_cell *cell, *tmp;
 624
 625	INIT_LIST_HEAD(&cells);
 626
 627	spin_lock_irq(&tc->lock);
 628	list_splice_init(&tc->deferred_cells, &cells);
 629	spin_unlock_irq(&tc->lock);
 630
 631	list_for_each_entry_safe(cell, tmp, &cells, user_list)
 632		cell_requeue(pool, cell);
 633}
 634
 635static void requeue_io(struct thin_c *tc)
 636{
 637	struct bio_list bios;
 638
 639	bio_list_init(&bios);
 640
 641	spin_lock_irq(&tc->lock);
 642	bio_list_merge_init(&bios, &tc->deferred_bio_list);
 643	bio_list_merge_init(&bios, &tc->retry_on_resume_list);
 644	spin_unlock_irq(&tc->lock);
 645
 646	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
 647	requeue_deferred_cells(tc);
 648}
 649
 650static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
 651{
 652	struct thin_c *tc;
 653
 654	rcu_read_lock();
 655	list_for_each_entry_rcu(tc, &pool->active_thins, list)
 656		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 657	rcu_read_unlock();
 658}
 659
 660static void error_retry_list(struct pool *pool)
 661{
 662	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
 663}
 664
 665/*
 666 * This section of code contains the logic for processing a thin device's IO.
 667 * Much of the code depends on pool object resources (lists, workqueues, etc)
 668 * but most is exclusively called from the thin target rather than the thin-pool
 669 * target.
 670 */
 671
 672static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 673{
 674	struct pool *pool = tc->pool;
 675	sector_t block_nr = bio->bi_iter.bi_sector;
 676
 677	if (block_size_is_power_of_two(pool))
 678		block_nr >>= pool->sectors_per_block_shift;
 679	else
 680		(void) sector_div(block_nr, pool->sectors_per_block);
 681
 682	return block_nr;
 683}
 684
 685/*
 686 * Returns the _complete_ blocks that this bio covers.
 687 */
 688static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 689				dm_block_t *begin, dm_block_t *end)
 690{
 691	struct pool *pool = tc->pool;
 692	sector_t b = bio->bi_iter.bi_sector;
 693	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 694
 695	b += pool->sectors_per_block - 1ull; /* so we round up */
 696
 697	if (block_size_is_power_of_two(pool)) {
 698		b >>= pool->sectors_per_block_shift;
 699		e >>= pool->sectors_per_block_shift;
 700	} else {
 701		(void) sector_div(b, pool->sectors_per_block);
 702		(void) sector_div(e, pool->sectors_per_block);
 703	}
 704
 705	if (e < b) {
 706		/* Can happen if the bio is within a single block. */
 707		e = b;
 708	}
 709
 710	*begin = b;
 711	*end = e;
 712}
 713
 714static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 715{
 716	struct pool *pool = tc->pool;
 717	sector_t bi_sector = bio->bi_iter.bi_sector;
 718
 719	bio_set_dev(bio, tc->pool_dev->bdev);
 720	if (block_size_is_power_of_two(pool)) {
 721		bio->bi_iter.bi_sector =
 722			(block << pool->sectors_per_block_shift) |
 723			(bi_sector & (pool->sectors_per_block - 1));
 724	} else {
 725		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 726				 sector_div(bi_sector, pool->sectors_per_block);
 727	}
 728}
 729
 730static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 731{
 732	bio_set_dev(bio, tc->origin_dev->bdev);
 733}
 734
 735static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 736{
 737	return op_is_flush(bio->bi_opf) &&
 738		dm_thin_changed_this_transaction(tc->td);
 739}
 740
 741static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 742{
 743	struct dm_thin_endio_hook *h;
 744
 745	if (bio_op(bio) == REQ_OP_DISCARD)
 746		return;
 747
 748	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 749	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 750}
 751
 752static void issue(struct thin_c *tc, struct bio *bio)
 753{
 754	struct pool *pool = tc->pool;
 755
 756	if (!bio_triggers_commit(tc, bio)) {
 757		dm_submit_bio_remap(bio, NULL);
 758		return;
 759	}
 760
 761	/*
 762	 * Complete bio with an error if earlier I/O caused changes to
 763	 * the metadata that can't be committed e.g, due to I/O errors
 764	 * on the metadata device.
 765	 */
 766	if (dm_thin_aborted_changes(tc->td)) {
 767		bio_io_error(bio);
 768		return;
 769	}
 770
 771	/*
 772	 * Batch together any bios that trigger commits and then issue a
 773	 * single commit for them in process_deferred_bios().
 774	 */
 775	spin_lock_irq(&pool->lock);
 776	bio_list_add(&pool->deferred_flush_bios, bio);
 777	spin_unlock_irq(&pool->lock);
 778}
 779
 780static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 781{
 782	remap_to_origin(tc, bio);
 783	issue(tc, bio);
 784}
 785
 786static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 787			    dm_block_t block)
 788{
 789	remap(tc, bio, block);
 790	issue(tc, bio);
 791}
 792
 
 
 
 
 
 
 
 
 
 793/*----------------------------------------------------------------*/
 794
 795/*
 796 * Bio endio functions.
 797 */
 798struct dm_thin_new_mapping {
 799	struct list_head list;
 800
 801	bool pass_discard:1;
 802	bool maybe_shared:1;
 
 803
 804	/*
 805	 * Track quiescing, copying and zeroing preparation actions.  When this
 806	 * counter hits zero the block is prepared and can be inserted into the
 807	 * btree.
 808	 */
 809	atomic_t prepare_actions;
 810
 811	blk_status_t status;
 812	struct thin_c *tc;
 813	dm_block_t virt_begin, virt_end;
 814	dm_block_t data_block;
 815	struct dm_bio_prison_cell *cell;
 
 816
 817	/*
 818	 * If the bio covers the whole area of a block then we can avoid
 819	 * zeroing or copying.  Instead this bio is hooked.  The bio will
 820	 * still be in the cell, so care has to be taken to avoid issuing
 821	 * the bio twice.
 822	 */
 823	struct bio *bio;
 824	bio_end_io_t *saved_bi_end_io;
 825};
 826
 827static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 828{
 829	struct pool *pool = m->tc->pool;
 830
 831	if (atomic_dec_and_test(&m->prepare_actions)) {
 832		list_add_tail(&m->list, &pool->prepared_mappings);
 833		wake_worker(pool);
 834	}
 835}
 836
 837static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 838{
 839	unsigned long flags;
 
 840	struct pool *pool = m->tc->pool;
 841
 
 
 842	spin_lock_irqsave(&pool->lock, flags);
 843	__complete_mapping_preparation(m);
 
 844	spin_unlock_irqrestore(&pool->lock, flags);
 845}
 846
 847static void copy_complete(int read_err, unsigned long write_err, void *context)
 848{
 849	struct dm_thin_new_mapping *m = context;
 850
 851	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
 852	complete_mapping_preparation(m);
 853}
 854
 855static void overwrite_endio(struct bio *bio)
 856{
 857	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 858	struct dm_thin_new_mapping *m = h->overwrite_mapping;
 
 859
 860	bio->bi_end_io = m->saved_bi_end_io;
 861
 862	m->status = bio->bi_status;
 863	complete_mapping_preparation(m);
 
 
 864}
 865
 866/*----------------------------------------------------------------*/
 867
 868/*
 869 * Workqueue.
 870 */
 871
 872/*
 873 * Prepared mapping jobs.
 874 */
 875
 876/*
 877 * This sends the bios in the cell, except the original holder, back
 878 * to the deferred_bios list.
 879 */
 880static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 
 881{
 882	struct pool *pool = tc->pool;
 883	unsigned long flags;
 884	struct bio_list bios;
 885
 886	bio_list_init(&bios);
 887	cell_release_no_holder(pool, cell, &bios);
 
 888
 889	if (!bio_list_empty(&bios)) {
 890		spin_lock_irqsave(&tc->lock, flags);
 891		bio_list_merge(&tc->deferred_bio_list, &bios);
 892		spin_unlock_irqrestore(&tc->lock, flags);
 893		wake_worker(pool);
 894	}
 895}
 896
 897static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 898
 899struct remap_info {
 900	struct thin_c *tc;
 901	struct bio_list defer_bios;
 902	struct bio_list issue_bios;
 903};
 904
 905static void __inc_remap_and_issue_cell(void *context,
 906				       struct dm_bio_prison_cell *cell)
 907{
 908	struct remap_info *info = context;
 909	struct bio *bio;
 910
 911	while ((bio = bio_list_pop(&cell->bios))) {
 912		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
 913			bio_list_add(&info->defer_bios, bio);
 914		else {
 915			inc_all_io_entry(info->tc->pool, bio);
 916
 917			/*
 918			 * We can't issue the bios with the bio prison lock
 919			 * held, so we add them to a list to issue on
 920			 * return from this function.
 921			 */
 922			bio_list_add(&info->issue_bios, bio);
 923		}
 924	}
 925}
 926
 927static void inc_remap_and_issue_cell(struct thin_c *tc,
 928				     struct dm_bio_prison_cell *cell,
 929				     dm_block_t block)
 930{
 931	struct bio *bio;
 932	struct remap_info info;
 933
 934	info.tc = tc;
 935	bio_list_init(&info.defer_bios);
 936	bio_list_init(&info.issue_bios);
 937
 938	/*
 939	 * We have to be careful to inc any bios we're about to issue
 940	 * before the cell is released, and avoid a race with new bios
 941	 * being added to the cell.
 942	 */
 943	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 944			   &info, cell);
 945
 946	while ((bio = bio_list_pop(&info.defer_bios)))
 947		thin_defer_bio(tc, bio);
 948
 949	while ((bio = bio_list_pop(&info.issue_bios)))
 950		remap_and_issue(info.tc, bio, block);
 951}
 952
 953static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 954{
 955	cell_error(m->tc->pool, m->cell);
 956	list_del(&m->list);
 957	mempool_free(m, &m->tc->pool->mapping_pool);
 958}
 959
 960static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
 961{
 
 962	struct pool *pool = tc->pool;
 
 963
 964	/*
 965	 * If the bio has the REQ_FUA flag set we must commit the metadata
 966	 * before signaling its completion.
 967	 */
 968	if (!bio_triggers_commit(tc, bio)) {
 969		bio_endio(bio);
 970		return;
 971	}
 972
 973	/*
 974	 * Complete bio with an error if earlier I/O caused changes to the
 975	 * metadata that can't be committed, e.g, due to I/O errors on the
 976	 * metadata device.
 977	 */
 978	if (dm_thin_aborted_changes(tc->td)) {
 979		bio_io_error(bio);
 980		return;
 981	}
 982
 983	/*
 984	 * Batch together any bios that trigger commits and then issue a
 985	 * single commit for them in process_deferred_bios().
 986	 */
 987	spin_lock_irq(&pool->lock);
 988	bio_list_add(&pool->deferred_flush_completions, bio);
 989	spin_unlock_irq(&pool->lock);
 990}
 991
 992static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 993{
 994	struct thin_c *tc = m->tc;
 995	struct pool *pool = tc->pool;
 996	struct bio *bio = m->bio;
 997	int r;
 998
 999	if (m->status) {
1000		cell_error(pool, m->cell);
 
 
 
 
1001		goto out;
1002	}
1003
1004	/*
1005	 * Commit the prepared block into the mapping btree.
1006	 * Any I/O for this block arriving after this point will get
1007	 * remapped to it directly.
1008	 */
1009	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1010	if (r) {
1011		metadata_operation_failed(pool, "dm_thin_insert_block", r);
1012		cell_error(pool, m->cell);
1013		goto out;
1014	}
1015
1016	/*
1017	 * Release any bios held while the block was being provisioned.
1018	 * If we are processing a write bio that completely covers the block,
1019	 * we already processed it so can ignore it now when processing
1020	 * the bios in the cell.
1021	 */
1022	if (bio) {
1023		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1024		complete_overwrite_bio(tc, bio);
1025	} else {
1026		inc_all_io_entry(tc->pool, m->cell->holder);
1027		remap_and_issue(tc, m->cell->holder, m->data_block);
1028		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1029	}
1030
1031out:
1032	list_del(&m->list);
1033	mempool_free(m, &pool->mapping_pool);
1034}
1035
1036/*----------------------------------------------------------------*/
1037
1038static void free_discard_mapping(struct dm_thin_new_mapping *m)
1039{
1040	struct thin_c *tc = m->tc;
1041
1042	if (m->cell)
1043		cell_defer_no_holder(tc, m->cell);
1044	mempool_free(m, &tc->pool->mapping_pool);
1045}
1046
1047static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1048{
1049	bio_io_error(m->bio);
1050	free_discard_mapping(m);
1051}
1052
1053static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1054{
1055	bio_endio(m->bio);
1056	free_discard_mapping(m);
1057}
1058
1059static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1060{
1061	int r;
1062	struct thin_c *tc = m->tc;
1063
1064	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1065	if (r) {
1066		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1067		bio_io_error(m->bio);
1068	} else
1069		bio_endio(m->bio);
1070
1071	cell_defer_no_holder(tc, m->cell);
1072	mempool_free(m, &tc->pool->mapping_pool);
1073}
1074
1075/*----------------------------------------------------------------*/
1076
1077static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1078						   struct bio *discard_parent)
1079{
1080	/*
1081	 * We've already unmapped this range of blocks, but before we
1082	 * passdown we have to check that these blocks are now unused.
1083	 */
1084	int r = 0;
1085	bool shared = true;
1086	struct thin_c *tc = m->tc;
1087	struct pool *pool = tc->pool;
1088	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1089	struct discard_op op;
1090
1091	begin_discard(&op, tc, discard_parent);
1092	while (b != end) {
1093		/* find start of unmapped run */
1094		for (; b < end; b++) {
1095			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1096			if (r)
1097				goto out;
1098
1099			if (!shared)
1100				break;
1101		}
1102
1103		if (b == end)
1104			break;
1105
1106		/* find end of run */
1107		for (e = b + 1; e != end; e++) {
1108			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1109			if (r)
1110				goto out;
1111
1112			if (shared)
1113				break;
1114		}
1115
1116		r = issue_discard(&op, b, e);
1117		if (r)
1118			goto out;
1119
1120		b = e;
1121	}
1122out:
1123	end_discard(&op, r);
1124}
1125
1126static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
 
1127{
1128	unsigned long flags;
1129	struct pool *pool = m->tc->pool;
1130
1131	spin_lock_irqsave(&pool->lock, flags);
1132	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1133	spin_unlock_irqrestore(&pool->lock, flags);
1134	wake_worker(pool);
1135}
1136
1137static void passdown_endio(struct bio *bio)
1138{
1139	/*
1140	 * It doesn't matter if the passdown discard failed, we still want
1141	 * to unmap (we ignore err).
1142	 */
1143	queue_passdown_pt2(bio->bi_private);
1144	bio_put(bio);
1145}
1146
1147static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1148{
1149	int r;
1150	struct thin_c *tc = m->tc;
1151	struct pool *pool = tc->pool;
1152	struct bio *discard_parent;
1153	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1154
1155	/*
1156	 * Only this thread allocates blocks, so we can be sure that the
1157	 * newly unmapped blocks will not be allocated before the end of
1158	 * the function.
1159	 */
1160	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1161	if (r) {
1162		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1163		bio_io_error(m->bio);
1164		cell_defer_no_holder(tc, m->cell);
1165		mempool_free(m, &pool->mapping_pool);
1166		return;
1167	}
1168
1169	/*
1170	 * Increment the unmapped blocks.  This prevents a race between the
1171	 * passdown io and reallocation of freed blocks.
1172	 */
1173	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1174	if (r) {
1175		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1176		bio_io_error(m->bio);
1177		cell_defer_no_holder(tc, m->cell);
1178		mempool_free(m, &pool->mapping_pool);
1179		return;
1180	}
1181
1182	discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1183	discard_parent->bi_end_io = passdown_endio;
1184	discard_parent->bi_private = m;
1185	if (m->maybe_shared)
1186		passdown_double_checking_shared_status(m, discard_parent);
1187	else {
1188		struct discard_op op;
1189
1190		begin_discard(&op, tc, discard_parent);
1191		r = issue_discard(&op, m->data_block, data_end);
1192		end_discard(&op, r);
1193	}
1194}
1195
1196static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1197{
1198	int r;
1199	struct thin_c *tc = m->tc;
1200	struct pool *pool = tc->pool;
1201
1202	/*
1203	 * The passdown has completed, so now we can decrement all those
1204	 * unmapped blocks.
1205	 */
1206	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1207				   m->data_block + (m->virt_end - m->virt_begin));
1208	if (r) {
1209		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1210		bio_io_error(m->bio);
1211	} else
1212		bio_endio(m->bio);
1213
1214	cell_defer_no_holder(tc, m->cell);
1215	mempool_free(m, &pool->mapping_pool);
1216}
1217
1218static void process_prepared(struct pool *pool, struct list_head *head,
1219			     process_mapping_fn *fn)
1220{
1221	struct list_head maps;
1222	struct dm_thin_new_mapping *m, *tmp;
1223
1224	INIT_LIST_HEAD(&maps);
1225	spin_lock_irq(&pool->lock);
1226	list_splice_init(head, &maps);
1227	spin_unlock_irq(&pool->lock);
1228
1229	list_for_each_entry_safe(m, tmp, &maps, list)
1230		(*fn)(m);
1231}
1232
1233/*
1234 * Deferred bio jobs.
1235 */
1236static int io_overlaps_block(struct pool *pool, struct bio *bio)
1237{
1238	return bio->bi_iter.bi_size ==
1239		(pool->sectors_per_block << SECTOR_SHIFT);
 
1240}
1241
1242static int io_overwrites_block(struct pool *pool, struct bio *bio)
1243{
1244	return (bio_data_dir(bio) == WRITE) &&
1245		io_overlaps_block(pool, bio);
1246}
1247
1248static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1249			       bio_end_io_t *fn)
1250{
1251	*save = bio->bi_end_io;
1252	bio->bi_end_io = fn;
1253}
1254
1255static int ensure_next_mapping(struct pool *pool)
1256{
1257	if (pool->next_mapping)
1258		return 0;
1259
1260	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1261
1262	return pool->next_mapping ? 0 : -ENOMEM;
1263}
1264
1265static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1266{
1267	struct dm_thin_new_mapping *m = pool->next_mapping;
1268
1269	BUG_ON(!pool->next_mapping);
1270
1271	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1272	INIT_LIST_HEAD(&m->list);
1273	m->bio = NULL;
1274
1275	pool->next_mapping = NULL;
1276
1277	return m;
1278}
1279
1280static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1281		    sector_t begin, sector_t end)
1282{
1283	struct dm_io_region to;
1284
1285	to.bdev = tc->pool_dev->bdev;
1286	to.sector = begin;
1287	to.count = end - begin;
1288
1289	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1290}
1291
1292static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1293				      dm_block_t data_begin,
1294				      struct dm_thin_new_mapping *m)
1295{
1296	struct pool *pool = tc->pool;
1297	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1298
1299	h->overwrite_mapping = m;
1300	m->bio = bio;
1301	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1302	inc_all_io_entry(pool, bio);
1303	remap_and_issue(tc, bio, data_begin);
1304}
1305
1306/*
1307 * A partial copy also needs to zero the uncopied region.
1308 */
1309static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1310			  struct dm_dev *origin, dm_block_t data_origin,
1311			  dm_block_t data_dest,
1312			  struct dm_bio_prison_cell *cell, struct bio *bio,
1313			  sector_t len)
1314{
 
1315	struct pool *pool = tc->pool;
1316	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1317
 
 
 
1318	m->tc = tc;
1319	m->virt_begin = virt_block;
1320	m->virt_end = virt_block + 1u;
1321	m->data_block = data_dest;
1322	m->cell = cell;
 
 
1323
1324	/*
1325	 * quiesce action + copy action + an extra reference held for the
1326	 * duration of this function (we may need to inc later for a
1327	 * partial zero).
1328	 */
1329	atomic_set(&m->prepare_actions, 3);
1330
1331	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1332		complete_mapping_preparation(m); /* already quiesced */
1333
1334	/*
1335	 * IO to pool_dev remaps to the pool target's data_dev.
1336	 *
1337	 * If the whole block of data is being overwritten, we can issue the
1338	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1339	 */
1340	if (io_overwrites_block(pool, bio))
1341		remap_and_issue_overwrite(tc, bio, data_dest, m);
1342	else {
 
 
 
 
 
1343		struct dm_io_region from, to;
1344
1345		from.bdev = origin->bdev;
1346		from.sector = data_origin * pool->sectors_per_block;
1347		from.count = len;
1348
1349		to.bdev = tc->pool_dev->bdev;
1350		to.sector = data_dest * pool->sectors_per_block;
1351		to.count = len;
1352
1353		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1354			       0, copy_complete, m);
1355
1356		/*
1357		 * Do we need to zero a tail region?
1358		 */
1359		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1360			atomic_inc(&m->prepare_actions);
1361			ll_zero(tc, m,
1362				data_dest * pool->sectors_per_block + len,
1363				(data_dest + 1) * pool->sectors_per_block);
1364		}
1365	}
1366
1367	complete_mapping_preparation(m); /* drop our ref */
1368}
1369
1370static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1371				   dm_block_t data_origin, dm_block_t data_dest,
1372				   struct dm_bio_prison_cell *cell, struct bio *bio)
1373{
1374	schedule_copy(tc, virt_block, tc->pool_dev,
1375		      data_origin, data_dest, cell, bio,
1376		      tc->pool->sectors_per_block);
 
 
 
 
 
 
 
1377}
1378
1379static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1380			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1381			  struct bio *bio)
1382{
1383	struct pool *pool = tc->pool;
1384	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1385
1386	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
 
 
1387	m->tc = tc;
1388	m->virt_begin = virt_block;
1389	m->virt_end = virt_block + 1u;
1390	m->data_block = data_block;
1391	m->cell = cell;
 
 
1392
1393	/*
1394	 * If the whole block of data is being overwritten or we are not
1395	 * zeroing pre-existing data, we can issue the bio immediately.
1396	 * Otherwise we use kcopyd to zero the data first.
1397	 */
1398	if (pool->pf.zero_new_blocks) {
1399		if (io_overwrites_block(pool, bio))
1400			remap_and_issue_overwrite(tc, bio, data_block, m);
1401		else {
1402			ll_zero(tc, m, data_block * pool->sectors_per_block,
1403				(data_block + 1) * pool->sectors_per_block);
1404		}
1405	} else
1406		process_prepared_mapping(m);
1407}
1408
1409static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1410				   dm_block_t data_dest,
1411				   struct dm_bio_prison_cell *cell, struct bio *bio)
1412{
1413	struct pool *pool = tc->pool;
1414	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1415	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1416
1417	if (virt_block_end <= tc->origin_size) {
1418		schedule_copy(tc, virt_block, tc->origin_dev,
1419			      virt_block, data_dest, cell, bio,
1420			      pool->sectors_per_block);
1421
1422	} else if (virt_block_begin < tc->origin_size) {
1423		schedule_copy(tc, virt_block, tc->origin_dev,
1424			      virt_block, data_dest, cell, bio,
1425			      tc->origin_size - virt_block_begin);
1426
1427	} else
1428		schedule_zero(tc, virt_block, data_dest, cell, bio);
1429}
1430
1431static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1432
1433static void requeue_bios(struct pool *pool);
1434
1435static bool is_read_only_pool_mode(enum pool_mode mode)
1436{
1437	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1438}
1439
1440static bool is_read_only(struct pool *pool)
1441{
1442	return is_read_only_pool_mode(get_pool_mode(pool));
1443}
1444
1445static void check_for_metadata_space(struct pool *pool)
1446{
1447	int r;
1448	const char *ooms_reason = NULL;
1449	dm_block_t nr_free;
1450
1451	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1452	if (r)
1453		ooms_reason = "Could not get free metadata blocks";
1454	else if (!nr_free)
1455		ooms_reason = "No free metadata blocks";
1456
1457	if (ooms_reason && !is_read_only(pool)) {
1458		DMERR("%s", ooms_reason);
1459		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1460	}
1461}
1462
1463static void check_for_data_space(struct pool *pool)
1464{
1465	int r;
1466	dm_block_t nr_free;
 
 
1467
1468	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1469		return;
1470
1471	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1472	if (r)
1473		return;
1474
1475	if (nr_free) {
1476		set_pool_mode(pool, PM_WRITE);
1477		requeue_bios(pool);
1478	}
1479}
1480
1481/*
1482 * A non-zero return indicates read_only or fail_io mode.
1483 * Many callers don't care about the return value.
1484 */
1485static int commit(struct pool *pool)
1486{
1487	int r;
1488
1489	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1490		return -EINVAL;
1491
1492	r = dm_pool_commit_metadata(pool->pmd);
1493	if (r)
1494		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1495	else {
1496		check_for_metadata_space(pool);
1497		check_for_data_space(pool);
1498	}
1499
1500	return r;
1501}
1502
1503static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1504{
1505	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1506		DMWARN("%s: reached low water mark for data device: sending event.",
1507		       dm_device_name(pool->pool_md));
1508		spin_lock_irq(&pool->lock);
1509		pool->low_water_triggered = true;
1510		spin_unlock_irq(&pool->lock);
1511		dm_table_event(pool->ti->table);
1512	}
1513}
1514
1515static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1516{
1517	int r;
1518	dm_block_t free_blocks;
1519	struct pool *pool = tc->pool;
1520
1521	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1522		return -EINVAL;
1523
1524	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1525	if (r) {
1526		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1527		return r;
1528	}
1529
1530	check_low_water_mark(pool, free_blocks);
1531
1532	if (!free_blocks) {
1533		/*
1534		 * Try to commit to see if that will free up some
1535		 * more space.
1536		 */
1537		r = commit(pool);
1538		if (r)
1539			return r;
 
 
 
 
 
 
1540
1541		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1542		if (r) {
1543			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1544			return r;
1545		}
1546
1547		if (!free_blocks) {
1548			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1549			return -ENOSPC;
 
 
 
 
 
 
 
 
 
1550		}
1551	}
1552
1553	r = dm_pool_alloc_data_block(pool->pmd, result);
1554	if (r) {
1555		if (r == -ENOSPC)
1556			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1557		else
1558			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1559		return r;
1560	}
1561
1562	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1563	if (r) {
1564		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1565		return r;
1566	}
1567
1568	if (!free_blocks) {
1569		/* Let's commit before we use up the metadata reserve. */
1570		r = commit(pool);
1571		if (r)
1572			return r;
1573	}
1574
1575	return 0;
1576}
1577
1578/*
1579 * If we have run out of space, queue bios until the device is
1580 * resumed, presumably after having been reloaded with more space.
1581 */
1582static void retry_on_resume(struct bio *bio)
1583{
1584	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1585	struct thin_c *tc = h->tc;
 
 
1586
1587	spin_lock_irq(&tc->lock);
1588	bio_list_add(&tc->retry_on_resume_list, bio);
1589	spin_unlock_irq(&tc->lock);
1590}
1591
1592static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1593{
1594	enum pool_mode m = get_pool_mode(pool);
1595
1596	switch (m) {
1597	case PM_WRITE:
1598		/* Shouldn't get here */
1599		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1600		return BLK_STS_IOERR;
1601
1602	case PM_OUT_OF_DATA_SPACE:
1603		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1604
1605	case PM_OUT_OF_METADATA_SPACE:
1606	case PM_READ_ONLY:
1607	case PM_FAIL:
1608		return BLK_STS_IOERR;
1609	default:
1610		/* Shouldn't get here */
1611		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1612		return BLK_STS_IOERR;
1613	}
1614}
1615
1616static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1617{
1618	blk_status_t error = should_error_unserviceable_bio(pool);
1619
1620	if (error) {
1621		bio->bi_status = error;
1622		bio_endio(bio);
1623	} else
1624		retry_on_resume(bio);
1625}
1626
1627static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1628{
1629	struct bio *bio;
1630	struct bio_list bios;
1631	blk_status_t error;
1632
1633	error = should_error_unserviceable_bio(pool);
1634	if (error) {
1635		cell_error_with_code(pool, cell, error);
1636		return;
1637	}
1638
1639	bio_list_init(&bios);
1640	cell_release(pool, cell, &bios);
1641
1642	while ((bio = bio_list_pop(&bios)))
1643		retry_on_resume(bio);
1644}
1645
1646static void process_discard_cell_no_passdown(struct thin_c *tc,
1647					     struct dm_bio_prison_cell *virt_cell)
1648{
 
 
1649	struct pool *pool = tc->pool;
1650	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1651
1652	/*
1653	 * We don't need to lock the data blocks, since there's no
1654	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1655	 */
1656	m->tc = tc;
1657	m->virt_begin = virt_cell->key.block_begin;
1658	m->virt_end = virt_cell->key.block_end;
1659	m->cell = virt_cell;
1660	m->bio = virt_cell->holder;
1661
1662	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1663		pool->process_prepared_discard(m);
1664}
1665
1666static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1667				 struct bio *bio)
1668{
1669	struct pool *pool = tc->pool;
1670
1671	int r;
1672	bool maybe_shared;
1673	struct dm_cell_key data_key;
1674	struct dm_bio_prison_cell *data_cell;
1675	struct dm_thin_new_mapping *m;
1676	dm_block_t virt_begin, virt_end, data_begin, data_end;
1677	dm_block_t len, next_boundary;
1678
1679	while (begin != end) {
1680		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1681					      &data_begin, &maybe_shared);
1682		if (r) {
1683			/*
1684			 * Silently fail, letting any mappings we've
1685			 * created complete.
1686			 */
1687			break;
1688		}
1689
1690		data_end = data_begin + (virt_end - virt_begin);
1691
 
 
 
1692		/*
1693		 * Make sure the data region obeys the bio prison restrictions.
 
 
1694		 */
1695		while (data_begin < data_end) {
1696			r = ensure_next_mapping(pool);
1697			if (r)
1698				return; /* we did our best */
1699
1700			next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1)
1701				<< BIO_PRISON_MAX_RANGE_SHIFT;
1702			len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin);
1703
1704			/* This key is certainly within range given the above splitting */
1705			(void) build_key(tc->td, PHYSICAL, data_begin, data_begin + len, &data_key);
1706			if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1707				/* contention, we'll give up with this range */
1708				data_begin += len;
1709				continue;
1710			}
1711
 
1712			/*
1713			 * IO may still be going to the destination block.  We must
1714			 * quiesce before we can do the removal.
1715			 */
1716			m = get_next_mapping(pool);
1717			m->tc = tc;
1718			m->maybe_shared = maybe_shared;
1719			m->virt_begin = virt_begin;
1720			m->virt_end = virt_begin + len;
1721			m->data_block = data_begin;
1722			m->cell = data_cell;
 
1723			m->bio = bio;
1724
 
 
 
 
 
 
 
1725			/*
1726			 * The parent bio must not complete before sub discard bios are
1727			 * chained to it (see end_discard's bio_chain)!
1728			 *
1729			 * This per-mapping bi_remaining increment is paired with
1730			 * the implicit decrement that occurs via bio_endio() in
1731			 * end_discard().
1732			 */
1733			bio_inc_remaining(bio);
1734			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1735				pool->process_prepared_discard(m);
1736
1737			virt_begin += len;
1738			data_begin += len;
 
 
 
 
1739		}
 
1740
1741		begin = virt_end;
1742	}
1743}
1744
1745static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1746{
1747	struct bio *bio = virt_cell->holder;
1748	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1749
1750	/*
1751	 * The virt_cell will only get freed once the origin bio completes.
1752	 * This means it will remain locked while all the individual
1753	 * passdown bios are in flight.
1754	 */
1755	h->cell = virt_cell;
1756	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1757
1758	/*
1759	 * We complete the bio now, knowing that the bi_remaining field
1760	 * will prevent completion until the sub range discards have
1761	 * completed.
1762	 */
1763	bio_endio(bio);
1764}
1765
1766static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1767{
1768	dm_block_t begin, end;
1769	struct dm_cell_key virt_key;
1770	struct dm_bio_prison_cell *virt_cell;
1771
1772	get_bio_block_range(tc, bio, &begin, &end);
1773	if (begin == end) {
1774		/*
1775		 * The discard covers less than a block.
1776		 */
1777		bio_endio(bio);
1778		return;
1779	}
1780
1781	if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) {
1782		DMERR_LIMIT("Discard doesn't respect bio prison limits");
1783		bio_endio(bio);
1784		return;
1785	}
1786
1787	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) {
1788		/*
1789		 * Potential starvation issue: We're relying on the
1790		 * fs/application being well behaved, and not trying to
1791		 * send IO to a region at the same time as discarding it.
1792		 * If they do this persistently then it's possible this
1793		 * cell will never be granted.
1794		 */
1795		return;
1796	}
1797
1798	tc->pool->process_discard_cell(tc, virt_cell);
1799}
1800
1801static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1802			  struct dm_cell_key *key,
1803			  struct dm_thin_lookup_result *lookup_result,
1804			  struct dm_bio_prison_cell *cell)
1805{
1806	int r;
1807	dm_block_t data_block;
1808	struct pool *pool = tc->pool;
1809
1810	r = alloc_data_block(tc, &data_block);
1811	switch (r) {
1812	case 0:
1813		schedule_internal_copy(tc, block, lookup_result->block,
1814				       data_block, cell, bio);
1815		break;
1816
1817	case -ENOSPC:
1818		retry_bios_on_resume(pool, cell);
1819		break;
1820
1821	default:
1822		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1823			    __func__, r);
1824		cell_error(pool, cell);
1825		break;
1826	}
1827}
1828
1829static void __remap_and_issue_shared_cell(void *context,
1830					  struct dm_bio_prison_cell *cell)
1831{
1832	struct remap_info *info = context;
1833	struct bio *bio;
1834
1835	while ((bio = bio_list_pop(&cell->bios))) {
1836		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1837		    bio_op(bio) == REQ_OP_DISCARD)
1838			bio_list_add(&info->defer_bios, bio);
1839		else {
1840			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1841
1842			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1843			inc_all_io_entry(info->tc->pool, bio);
1844			bio_list_add(&info->issue_bios, bio);
1845		}
1846	}
1847}
1848
1849static void remap_and_issue_shared_cell(struct thin_c *tc,
1850					struct dm_bio_prison_cell *cell,
1851					dm_block_t block)
1852{
1853	struct bio *bio;
1854	struct remap_info info;
1855
1856	info.tc = tc;
1857	bio_list_init(&info.defer_bios);
1858	bio_list_init(&info.issue_bios);
1859
1860	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1861			   &info, cell);
1862
1863	while ((bio = bio_list_pop(&info.defer_bios)))
1864		thin_defer_bio(tc, bio);
1865
1866	while ((bio = bio_list_pop(&info.issue_bios)))
1867		remap_and_issue(tc, bio, block);
1868}
1869
1870static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1871			       dm_block_t block,
1872			       struct dm_thin_lookup_result *lookup_result,
1873			       struct dm_bio_prison_cell *virt_cell)
1874{
1875	struct dm_bio_prison_cell *data_cell;
1876	struct pool *pool = tc->pool;
1877	struct dm_cell_key key;
1878
1879	/*
1880	 * If cell is already occupied, then sharing is already in the process
1881	 * of being broken so we have nothing further to do here.
1882	 */
1883	build_data_key(tc->td, lookup_result->block, &key);
1884	if (bio_detain(pool, &key, bio, &data_cell)) {
1885		cell_defer_no_holder(tc, virt_cell);
1886		return;
1887	}
1888
1889	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1890		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1891		cell_defer_no_holder(tc, virt_cell);
1892	} else {
1893		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 
1894
1895		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1896		inc_all_io_entry(pool, bio);
1897		remap_and_issue(tc, bio, lookup_result->block);
1898
1899		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1900		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1901	}
1902}
1903
1904static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1905			    struct dm_bio_prison_cell *cell)
1906{
1907	int r;
1908	dm_block_t data_block;
1909	struct pool *pool = tc->pool;
1910
1911	/*
1912	 * Remap empty bios (flushes) immediately, without provisioning.
1913	 */
1914	if (!bio->bi_iter.bi_size) {
1915		inc_all_io_entry(pool, bio);
1916		cell_defer_no_holder(tc, cell);
1917
1918		remap_and_issue(tc, bio, 0);
1919		return;
1920	}
1921
1922	/*
1923	 * Fill read bios with zeroes and complete them immediately.
1924	 */
1925	if (bio_data_dir(bio) == READ) {
1926		zero_fill_bio(bio);
1927		cell_defer_no_holder(tc, cell);
1928		bio_endio(bio);
1929		return;
1930	}
1931
1932	r = alloc_data_block(tc, &data_block);
1933	switch (r) {
1934	case 0:
1935		if (tc->origin_dev)
1936			schedule_external_copy(tc, block, data_block, cell, bio);
1937		else
1938			schedule_zero(tc, block, data_block, cell, bio);
1939		break;
1940
1941	case -ENOSPC:
1942		retry_bios_on_resume(pool, cell);
1943		break;
1944
1945	default:
1946		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1947			    __func__, r);
1948		cell_error(pool, cell);
1949		break;
1950	}
1951}
1952
1953static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1954{
1955	int r;
1956	struct pool *pool = tc->pool;
1957	struct bio *bio = cell->holder;
1958	dm_block_t block = get_bio_block(tc, bio);
 
 
1959	struct dm_thin_lookup_result lookup_result;
1960
1961	if (tc->requeue_mode) {
1962		cell_requeue(pool, cell);
1963		return;
1964	}
1965
1966	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1967	switch (r) {
1968	case 0:
1969		if (lookup_result.shared)
1970			process_shared_bio(tc, bio, block, &lookup_result, cell);
1971		else {
1972			inc_all_io_entry(pool, bio);
1973			remap_and_issue(tc, bio, lookup_result.block);
1974			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1975		}
1976		break;
1977
1978	case -ENODATA:
1979		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1980			inc_all_io_entry(pool, bio);
1981			cell_defer_no_holder(tc, cell);
1982
1983			if (bio_end_sector(bio) <= tc->origin_size)
1984				remap_to_origin_and_issue(tc, bio);
1985
1986			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1987				zero_fill_bio(bio);
1988				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1989				remap_to_origin_and_issue(tc, bio);
1990
1991			} else {
1992				zero_fill_bio(bio);
1993				bio_endio(bio);
1994			}
1995		} else
1996			provision_block(tc, bio, block, cell);
1997		break;
1998
1999	default:
2000		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2001			    __func__, r);
2002		cell_defer_no_holder(tc, cell);
2003		bio_io_error(bio);
2004		break;
2005	}
2006}
2007
2008static void process_bio(struct thin_c *tc, struct bio *bio)
2009{
2010	struct pool *pool = tc->pool;
2011	dm_block_t block = get_bio_block(tc, bio);
2012	struct dm_bio_prison_cell *cell;
2013	struct dm_cell_key key;
2014
2015	/*
2016	 * If cell is already occupied, then the block is already
2017	 * being provisioned so we have nothing further to do here.
2018	 */
2019	build_virtual_key(tc->td, block, &key);
2020	if (bio_detain(pool, &key, bio, &cell))
2021		return;
2022
2023	process_cell(tc, cell);
2024}
2025
2026static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2027				    struct dm_bio_prison_cell *cell)
2028{
2029	int r;
2030	int rw = bio_data_dir(bio);
2031	dm_block_t block = get_bio_block(tc, bio);
2032	struct dm_thin_lookup_result lookup_result;
2033
2034	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2035	switch (r) {
2036	case 0:
2037		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2038			handle_unserviceable_bio(tc->pool, bio);
2039			if (cell)
2040				cell_defer_no_holder(tc, cell);
2041		} else {
2042			inc_all_io_entry(tc->pool, bio);
 
 
 
 
 
 
 
 
2043			remap_and_issue(tc, bio, lookup_result.block);
2044			if (cell)
2045				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2046		}
2047		break;
2048
2049	case -ENODATA:
2050		if (cell)
2051			cell_defer_no_holder(tc, cell);
2052		if (rw != READ) {
2053			handle_unserviceable_bio(tc->pool, bio);
2054			break;
2055		}
2056
2057		if (tc->origin_dev) {
2058			inc_all_io_entry(tc->pool, bio);
2059			remap_to_origin_and_issue(tc, bio);
2060			break;
2061		}
2062
2063		zero_fill_bio(bio);
2064		bio_endio(bio);
2065		break;
2066
2067	default:
2068		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2069			    __func__, r);
2070		if (cell)
2071			cell_defer_no_holder(tc, cell);
2072		bio_io_error(bio);
2073		break;
2074	}
2075}
2076
2077static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2078{
2079	__process_bio_read_only(tc, bio, NULL);
2080}
2081
2082static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2083{
2084	__process_bio_read_only(tc, cell->holder, cell);
2085}
2086
2087static void process_bio_success(struct thin_c *tc, struct bio *bio)
2088{
2089	bio_endio(bio);
2090}
2091
2092static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2093{
2094	bio_io_error(bio);
2095}
2096
2097static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2098{
2099	cell_success(tc->pool, cell);
2100}
2101
2102static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2103{
2104	cell_error(tc->pool, cell);
2105}
2106
2107/*
2108 * FIXME: should we also commit due to size of transaction, measured in
2109 * metadata blocks?
2110 */
2111static int need_commit_due_to_time(struct pool *pool)
2112{
2113	return !time_in_range(jiffies, pool->last_commit_jiffies,
2114			      pool->last_commit_jiffies + COMMIT_PERIOD);
2115}
2116
2117#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2118#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2119
2120static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2121{
2122	struct rb_node **rbp, *parent;
2123	struct dm_thin_endio_hook *pbd;
2124	sector_t bi_sector = bio->bi_iter.bi_sector;
2125
2126	rbp = &tc->sort_bio_list.rb_node;
2127	parent = NULL;
2128	while (*rbp) {
2129		parent = *rbp;
2130		pbd = thin_pbd(parent);
2131
2132		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2133			rbp = &(*rbp)->rb_left;
2134		else
2135			rbp = &(*rbp)->rb_right;
2136	}
2137
2138	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2139	rb_link_node(&pbd->rb_node, parent, rbp);
2140	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2141}
2142
2143static void __extract_sorted_bios(struct thin_c *tc)
2144{
2145	struct rb_node *node;
2146	struct dm_thin_endio_hook *pbd;
2147	struct bio *bio;
2148
2149	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2150		pbd = thin_pbd(node);
2151		bio = thin_bio(pbd);
2152
2153		bio_list_add(&tc->deferred_bio_list, bio);
2154		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2155	}
2156
2157	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2158}
2159
2160static void __sort_thin_deferred_bios(struct thin_c *tc)
2161{
 
2162	struct bio *bio;
2163	struct bio_list bios;
 
2164
2165	bio_list_init(&bios);
2166	bio_list_merge(&bios, &tc->deferred_bio_list);
2167	bio_list_init(&tc->deferred_bio_list);
2168
2169	/* Sort deferred_bio_list using rb-tree */
2170	while ((bio = bio_list_pop(&bios)))
2171		__thin_bio_rb_add(tc, bio);
 
2172
2173	/*
2174	 * Transfer the sorted bios in sort_bio_list back to
2175	 * deferred_bio_list to allow lockless submission of
2176	 * all bios.
2177	 */
2178	__extract_sorted_bios(tc);
2179}
2180
2181static void process_thin_deferred_bios(struct thin_c *tc)
2182{
2183	struct pool *pool = tc->pool;
2184	struct bio *bio;
2185	struct bio_list bios;
2186	struct blk_plug plug;
2187	unsigned int count = 0;
2188
2189	if (tc->requeue_mode) {
2190		error_thin_bio_list(tc, &tc->deferred_bio_list,
2191				BLK_STS_DM_REQUEUE);
2192		return;
2193	}
2194
2195	bio_list_init(&bios);
2196
2197	spin_lock_irq(&tc->lock);
2198
2199	if (bio_list_empty(&tc->deferred_bio_list)) {
2200		spin_unlock_irq(&tc->lock);
2201		return;
2202	}
2203
2204	__sort_thin_deferred_bios(tc);
2205
2206	bio_list_merge(&bios, &tc->deferred_bio_list);
2207	bio_list_init(&tc->deferred_bio_list);
2208
2209	spin_unlock_irq(&tc->lock);
2210
2211	blk_start_plug(&plug);
2212	while ((bio = bio_list_pop(&bios))) {
2213		/*
2214		 * If we've got no free new_mapping structs, and processing
2215		 * this bio might require one, we pause until there are some
2216		 * prepared mappings to process.
2217		 */
2218		if (ensure_next_mapping(pool)) {
2219			spin_lock_irq(&tc->lock);
2220			bio_list_add(&tc->deferred_bio_list, bio);
2221			bio_list_merge(&tc->deferred_bio_list, &bios);
2222			spin_unlock_irq(&tc->lock);
2223			break;
2224		}
2225
2226		if (bio_op(bio) == REQ_OP_DISCARD)
2227			pool->process_discard(tc, bio);
2228		else
2229			pool->process_bio(tc, bio);
2230
2231		if ((count++ & 127) == 0) {
2232			throttle_work_update(&pool->throttle);
2233			dm_pool_issue_prefetches(pool->pmd);
2234		}
2235		cond_resched();
2236	}
2237	blk_finish_plug(&plug);
2238}
2239
2240static int cmp_cells(const void *lhs, const void *rhs)
2241{
2242	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2243	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2244
2245	BUG_ON(!lhs_cell->holder);
2246	BUG_ON(!rhs_cell->holder);
2247
2248	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2249		return -1;
2250
2251	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2252		return 1;
2253
2254	return 0;
2255}
2256
2257static unsigned int sort_cells(struct pool *pool, struct list_head *cells)
2258{
2259	unsigned int count = 0;
2260	struct dm_bio_prison_cell *cell, *tmp;
2261
2262	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2263		if (count >= CELL_SORT_ARRAY_SIZE)
2264			break;
2265
2266		pool->cell_sort_array[count++] = cell;
2267		list_del(&cell->user_list);
2268	}
2269
2270	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2271
2272	return count;
2273}
2274
2275static void process_thin_deferred_cells(struct thin_c *tc)
2276{
2277	struct pool *pool = tc->pool;
2278	struct list_head cells;
2279	struct dm_bio_prison_cell *cell;
2280	unsigned int i, j, count;
2281
2282	INIT_LIST_HEAD(&cells);
2283
2284	spin_lock_irq(&tc->lock);
2285	list_splice_init(&tc->deferred_cells, &cells);
2286	spin_unlock_irq(&tc->lock);
2287
2288	if (list_empty(&cells))
2289		return;
2290
2291	do {
2292		count = sort_cells(tc->pool, &cells);
2293
2294		for (i = 0; i < count; i++) {
2295			cell = pool->cell_sort_array[i];
2296			BUG_ON(!cell->holder);
2297
2298			/*
2299			 * If we've got no free new_mapping structs, and processing
2300			 * this bio might require one, we pause until there are some
2301			 * prepared mappings to process.
2302			 */
2303			if (ensure_next_mapping(pool)) {
2304				for (j = i; j < count; j++)
2305					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2306
2307				spin_lock_irq(&tc->lock);
2308				list_splice(&cells, &tc->deferred_cells);
2309				spin_unlock_irq(&tc->lock);
2310				return;
2311			}
2312
2313			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2314				pool->process_discard_cell(tc, cell);
2315			else
2316				pool->process_cell(tc, cell);
2317		}
2318		cond_resched();
2319	} while (!list_empty(&cells));
2320}
2321
2322static void thin_get(struct thin_c *tc);
2323static void thin_put(struct thin_c *tc);
2324
2325/*
2326 * We can't hold rcu_read_lock() around code that can block.  So we
2327 * find a thin with the rcu lock held; bump a refcount; then drop
2328 * the lock.
2329 */
2330static struct thin_c *get_first_thin(struct pool *pool)
2331{
2332	struct thin_c *tc = NULL;
2333
2334	rcu_read_lock();
2335	tc = list_first_or_null_rcu(&pool->active_thins, struct thin_c, list);
2336	if (tc)
2337		thin_get(tc);
2338	rcu_read_unlock();
2339
2340	return tc;
2341}
2342
2343static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2344{
2345	struct thin_c *old_tc = tc;
2346
2347	rcu_read_lock();
2348	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2349		thin_get(tc);
2350		thin_put(old_tc);
2351		rcu_read_unlock();
2352		return tc;
2353	}
2354	thin_put(old_tc);
2355	rcu_read_unlock();
2356
2357	return NULL;
2358}
2359
2360static void process_deferred_bios(struct pool *pool)
2361{
2362	struct bio *bio;
2363	struct bio_list bios, bio_completions;
2364	struct thin_c *tc;
2365
2366	tc = get_first_thin(pool);
2367	while (tc) {
2368		process_thin_deferred_cells(tc);
2369		process_thin_deferred_bios(tc);
2370		tc = get_next_thin(pool, tc);
2371	}
2372
2373	/*
2374	 * If there are any deferred flush bios, we must commit the metadata
2375	 * before issuing them or signaling their completion.
2376	 */
2377	bio_list_init(&bios);
2378	bio_list_init(&bio_completions);
2379
2380	spin_lock_irq(&pool->lock);
2381	bio_list_merge(&bios, &pool->deferred_flush_bios);
2382	bio_list_init(&pool->deferred_flush_bios);
 
2383
2384	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2385	bio_list_init(&pool->deferred_flush_completions);
2386	spin_unlock_irq(&pool->lock);
2387
2388	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2389	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2390		return;
2391
2392	if (commit(pool)) {
2393		bio_list_merge(&bios, &bio_completions);
2394
 
2395		while ((bio = bio_list_pop(&bios)))
2396			bio_io_error(bio);
2397		return;
2398	}
2399	pool->last_commit_jiffies = jiffies;
2400
2401	while ((bio = bio_list_pop(&bio_completions)))
2402		bio_endio(bio);
2403
2404	while ((bio = bio_list_pop(&bios))) {
2405		/*
2406		 * The data device was flushed as part of metadata commit,
2407		 * so complete redundant flushes immediately.
2408		 */
2409		if (bio->bi_opf & REQ_PREFLUSH)
2410			bio_endio(bio);
2411		else
2412			dm_submit_bio_remap(bio, NULL);
2413	}
2414}
2415
2416static void do_worker(struct work_struct *ws)
2417{
2418	struct pool *pool = container_of(ws, struct pool, worker);
2419
2420	throttle_work_start(&pool->throttle);
2421	dm_pool_issue_prefetches(pool->pmd);
2422	throttle_work_update(&pool->throttle);
2423	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2424	throttle_work_update(&pool->throttle);
2425	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2426	throttle_work_update(&pool->throttle);
2427	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2428	throttle_work_update(&pool->throttle);
2429	process_deferred_bios(pool);
2430	throttle_work_complete(&pool->throttle);
2431}
2432
2433/*
2434 * We want to commit periodically so that not too much
2435 * unwritten data builds up.
2436 */
2437static void do_waker(struct work_struct *ws)
2438{
2439	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2440
2441	wake_worker(pool);
2442	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2443}
2444
2445/*
2446 * We're holding onto IO to allow userland time to react.  After the
2447 * timeout either the pool will have been resized (and thus back in
2448 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2449 */
2450static void do_no_space_timeout(struct work_struct *ws)
2451{
2452	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2453					 no_space_timeout);
2454
2455	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2456		pool->pf.error_if_no_space = true;
2457		notify_of_pool_mode_change(pool);
2458		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2459	}
2460}
2461
2462/*----------------------------------------------------------------*/
2463
2464struct pool_work {
2465	struct work_struct worker;
2466	struct completion complete;
2467};
2468
2469static struct pool_work *to_pool_work(struct work_struct *ws)
2470{
2471	return container_of(ws, struct pool_work, worker);
2472}
2473
2474static void pool_work_complete(struct pool_work *pw)
2475{
2476	complete(&pw->complete);
2477}
2478
2479static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2480			   void (*fn)(struct work_struct *))
2481{
2482	INIT_WORK_ONSTACK(&pw->worker, fn);
2483	init_completion(&pw->complete);
2484	queue_work(pool->wq, &pw->worker);
2485	wait_for_completion(&pw->complete);
2486	destroy_work_on_stack(&pw->worker);
2487}
2488
2489/*----------------------------------------------------------------*/
2490
2491struct noflush_work {
2492	struct pool_work pw;
2493	struct thin_c *tc;
2494};
2495
2496static struct noflush_work *to_noflush(struct work_struct *ws)
2497{
2498	return container_of(to_pool_work(ws), struct noflush_work, pw);
2499}
2500
2501static void do_noflush_start(struct work_struct *ws)
2502{
2503	struct noflush_work *w = to_noflush(ws);
2504
2505	w->tc->requeue_mode = true;
2506	requeue_io(w->tc);
2507	pool_work_complete(&w->pw);
2508}
2509
2510static void do_noflush_stop(struct work_struct *ws)
2511{
2512	struct noflush_work *w = to_noflush(ws);
2513
2514	w->tc->requeue_mode = false;
2515	pool_work_complete(&w->pw);
2516}
2517
2518static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2519{
2520	struct noflush_work w;
2521
2522	w.tc = tc;
2523	pool_work_wait(&w.pw, tc->pool, fn);
2524}
2525
2526/*----------------------------------------------------------------*/
2527
2528static void set_discard_callbacks(struct pool *pool)
2529{
2530	struct pool_c *pt = pool->ti->private;
2531
2532	if (pt->adjusted_pf.discard_passdown) {
2533		pool->process_discard_cell = process_discard_cell_passdown;
2534		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2535		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2536	} else {
2537		pool->process_discard_cell = process_discard_cell_no_passdown;
2538		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2539	}
2540}
2541
2542static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2543{
2544	struct pool_c *pt = pool->ti->private;
2545	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2546	enum pool_mode old_mode = get_pool_mode(pool);
2547	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2548
2549	/*
2550	 * Never allow the pool to transition to PM_WRITE mode if user
2551	 * intervention is required to verify metadata and data consistency.
2552	 */
2553	if (new_mode == PM_WRITE && needs_check) {
2554		DMERR("%s: unable to switch pool to write mode until repaired.",
2555		      dm_device_name(pool->pool_md));
2556		if (old_mode != new_mode)
2557			new_mode = old_mode;
2558		else
2559			new_mode = PM_READ_ONLY;
2560	}
2561	/*
2562	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2563	 * not going to recover without a thin_repair.	So we never let the
2564	 * pool move out of the old mode.
2565	 */
2566	if (old_mode == PM_FAIL)
2567		new_mode = old_mode;
2568
2569	switch (new_mode) {
2570	case PM_FAIL:
2571		dm_pool_metadata_read_only(pool->pmd);
2572		pool->process_bio = process_bio_fail;
2573		pool->process_discard = process_bio_fail;
2574		pool->process_cell = process_cell_fail;
2575		pool->process_discard_cell = process_cell_fail;
2576		pool->process_prepared_mapping = process_prepared_mapping_fail;
2577		pool->process_prepared_discard = process_prepared_discard_fail;
2578
2579		error_retry_list(pool);
2580		break;
2581
2582	case PM_OUT_OF_METADATA_SPACE:
2583	case PM_READ_ONLY:
2584		dm_pool_metadata_read_only(pool->pmd);
2585		pool->process_bio = process_bio_read_only;
2586		pool->process_discard = process_bio_success;
2587		pool->process_cell = process_cell_read_only;
2588		pool->process_discard_cell = process_cell_success;
2589		pool->process_prepared_mapping = process_prepared_mapping_fail;
2590		pool->process_prepared_discard = process_prepared_discard_success;
2591
2592		error_retry_list(pool);
2593		break;
2594
2595	case PM_OUT_OF_DATA_SPACE:
2596		/*
2597		 * Ideally we'd never hit this state; the low water mark
2598		 * would trigger userland to extend the pool before we
2599		 * completely run out of data space.  However, many small
2600		 * IOs to unprovisioned space can consume data space at an
2601		 * alarming rate.  Adjust your low water mark if you're
2602		 * frequently seeing this mode.
2603		 */
2604		pool->out_of_data_space = true;
2605		pool->process_bio = process_bio_read_only;
2606		pool->process_discard = process_discard_bio;
2607		pool->process_cell = process_cell_read_only;
2608		pool->process_prepared_mapping = process_prepared_mapping;
2609		set_discard_callbacks(pool);
2610
2611		if (!pool->pf.error_if_no_space && no_space_timeout)
2612			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2613		break;
2614
2615	case PM_WRITE:
2616		if (old_mode == PM_OUT_OF_DATA_SPACE)
2617			cancel_delayed_work_sync(&pool->no_space_timeout);
2618		pool->out_of_data_space = false;
2619		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2620		dm_pool_metadata_read_write(pool->pmd);
2621		pool->process_bio = process_bio;
2622		pool->process_discard = process_discard_bio;
2623		pool->process_cell = process_cell;
2624		pool->process_prepared_mapping = process_prepared_mapping;
2625		set_discard_callbacks(pool);
2626		break;
2627	}
2628
2629	pool->pf.mode = new_mode;
2630	/*
2631	 * The pool mode may have changed, sync it so bind_control_target()
2632	 * doesn't cause an unexpected mode transition on resume.
2633	 */
2634	pt->adjusted_pf.mode = new_mode;
2635
2636	if (old_mode != new_mode)
2637		notify_of_pool_mode_change(pool);
2638}
2639
2640static void abort_transaction(struct pool *pool)
2641{
2642	const char *dev_name = dm_device_name(pool->pool_md);
2643
2644	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2645	if (dm_pool_abort_metadata(pool->pmd)) {
2646		DMERR("%s: failed to abort metadata transaction", dev_name);
2647		set_pool_mode(pool, PM_FAIL);
2648	}
2649
2650	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2651		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2652		set_pool_mode(pool, PM_FAIL);
2653	}
2654}
2655
2656static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2657{
2658	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2659		    dm_device_name(pool->pool_md), op, r);
2660
2661	abort_transaction(pool);
2662	set_pool_mode(pool, PM_READ_ONLY);
2663}
2664
2665/*----------------------------------------------------------------*/
2666
2667/*
2668 * Mapping functions.
2669 */
2670
2671/*
2672 * Called only while mapping a thin bio to hand it over to the workqueue.
2673 */
2674static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2675{
 
2676	struct pool *pool = tc->pool;
2677
2678	spin_lock_irq(&tc->lock);
2679	bio_list_add(&tc->deferred_bio_list, bio);
2680	spin_unlock_irq(&tc->lock);
2681
2682	wake_worker(pool);
2683}
2684
2685static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2686{
2687	struct pool *pool = tc->pool;
2688
2689	throttle_lock(&pool->throttle);
2690	thin_defer_bio(tc, bio);
2691	throttle_unlock(&pool->throttle);
2692}
2693
2694static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2695{
2696	struct pool *pool = tc->pool;
2697
2698	throttle_lock(&pool->throttle);
2699	spin_lock_irq(&tc->lock);
2700	list_add_tail(&cell->user_list, &tc->deferred_cells);
2701	spin_unlock_irq(&tc->lock);
2702	throttle_unlock(&pool->throttle);
2703
2704	wake_worker(pool);
2705}
2706
2707static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2708{
2709	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2710
2711	h->tc = tc;
2712	h->shared_read_entry = NULL;
2713	h->all_io_entry = NULL;
2714	h->overwrite_mapping = NULL;
2715	h->cell = NULL;
 
2716}
2717
2718/*
2719 * Non-blocking function called from the thin target's map function.
2720 */
2721static int thin_bio_map(struct dm_target *ti, struct bio *bio)
 
2722{
2723	int r;
2724	struct thin_c *tc = ti->private;
2725	dm_block_t block = get_bio_block(tc, bio);
2726	struct dm_thin_device *td = tc->td;
2727	struct dm_thin_lookup_result result;
2728	struct dm_bio_prison_cell *virt_cell, *data_cell;
2729	struct dm_cell_key key;
2730
2731	thin_hook_bio(tc, bio);
2732
2733	if (tc->requeue_mode) {
2734		bio->bi_status = BLK_STS_DM_REQUEUE;
2735		bio_endio(bio);
2736		return DM_MAPIO_SUBMITTED;
2737	}
2738
2739	if (get_pool_mode(tc->pool) == PM_FAIL) {
2740		bio_io_error(bio);
2741		return DM_MAPIO_SUBMITTED;
2742	}
2743
2744	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2745		thin_defer_bio_with_throttle(tc, bio);
2746		return DM_MAPIO_SUBMITTED;
2747	}
2748
2749	/*
2750	 * We must hold the virtual cell before doing the lookup, otherwise
2751	 * there's a race with discard.
2752	 */
2753	build_virtual_key(tc->td, block, &key);
2754	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2755		return DM_MAPIO_SUBMITTED;
2756
2757	r = dm_thin_find_block(td, block, 0, &result);
2758
2759	/*
2760	 * Note that we defer readahead too.
2761	 */
2762	switch (r) {
2763	case 0:
2764		if (unlikely(result.shared)) {
2765			/*
2766			 * We have a race condition here between the
2767			 * result.shared value returned by the lookup and
2768			 * snapshot creation, which may cause new
2769			 * sharing.
2770			 *
2771			 * To avoid this always quiesce the origin before
2772			 * taking the snap.  You want to do this anyway to
2773			 * ensure a consistent application view
2774			 * (i.e. lockfs).
2775			 *
2776			 * More distant ancestors are irrelevant. The
2777			 * shared flag will be set in their case.
2778			 */
2779			thin_defer_cell(tc, virt_cell);
2780			return DM_MAPIO_SUBMITTED;
 
 
 
2781		}
2782
2783		build_data_key(tc->td, result.block, &key);
2784		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2785			cell_defer_no_holder(tc, virt_cell);
2786			return DM_MAPIO_SUBMITTED;
2787		}
2788
2789		inc_all_io_entry(tc->pool, bio);
2790		cell_defer_no_holder(tc, data_cell);
2791		cell_defer_no_holder(tc, virt_cell);
2792
2793		remap(tc, bio, result.block);
2794		return DM_MAPIO_REMAPPED;
2795
2796	case -ENODATA:
2797	case -EWOULDBLOCK:
2798		thin_defer_cell(tc, virt_cell);
2799		return DM_MAPIO_SUBMITTED;
2800
2801	default:
2802		/*
2803		 * Must always call bio_io_error on failure.
2804		 * dm_thin_find_block can fail with -EINVAL if the
2805		 * pool is switched to fail-io mode.
2806		 */
2807		bio_io_error(bio);
2808		cell_defer_no_holder(tc, virt_cell);
2809		return DM_MAPIO_SUBMITTED;
 
2810	}
 
 
2811}
2812
2813static void requeue_bios(struct pool *pool)
2814{
2815	struct thin_c *tc;
 
 
2816
2817	rcu_read_lock();
2818	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2819		spin_lock_irq(&tc->lock);
2820		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2821		bio_list_init(&tc->retry_on_resume_list);
2822		spin_unlock_irq(&tc->lock);
 
2823	}
2824	rcu_read_unlock();
2825}
2826
2827/*
2828 *--------------------------------------------------------------
2829 * Binding of control targets to a pool object
2830 *--------------------------------------------------------------
2831 */
2832static bool is_factor(sector_t block_size, uint32_t n)
2833{
2834	return !sector_div(block_size, n);
2835}
2836
2837/*
2838 * If discard_passdown was enabled verify that the data device
2839 * supports discards.  Disable discard_passdown if not.
2840 */
2841static void disable_discard_passdown_if_not_supported(struct pool_c *pt)
2842{
2843	struct pool *pool = pt->pool;
2844	struct block_device *data_bdev = pt->data_dev->bdev;
2845	struct queue_limits *data_limits = bdev_limits(data_bdev);
2846	const char *reason = NULL;
2847
2848	if (!pt->adjusted_pf.discard_passdown)
2849		return;
2850
2851	if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2852		reason = "discard unsupported";
2853
2854	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2855		reason = "max discard sectors smaller than a block";
2856
2857	if (reason) {
2858		DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2859		pt->adjusted_pf.discard_passdown = false;
2860	}
2861}
2862
 
 
 
2863static int bind_control_target(struct pool *pool, struct dm_target *ti)
2864{
2865	struct pool_c *pt = ti->private;
2866
2867	/*
2868	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2869	 */
2870	enum pool_mode old_mode = get_pool_mode(pool);
2871	enum pool_mode new_mode = pt->adjusted_pf.mode;
2872
2873	/*
2874	 * Don't change the pool's mode until set_pool_mode() below.
2875	 * Otherwise the pool's process_* function pointers may
2876	 * not match the desired pool mode.
2877	 */
2878	pt->adjusted_pf.mode = old_mode;
2879
2880	pool->ti = ti;
2881	pool->pf = pt->adjusted_pf;
2882	pool->low_water_blocks = pt->low_water_blocks;
 
2883
2884	set_pool_mode(pool, new_mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
2885
2886	return 0;
2887}
2888
2889static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2890{
2891	if (pool->ti == ti)
2892		pool->ti = NULL;
2893}
2894
2895/*
2896 *--------------------------------------------------------------
2897 * Pool creation
2898 *--------------------------------------------------------------
2899 */
2900/* Initialize pool features. */
2901static void pool_features_init(struct pool_features *pf)
2902{
2903	pf->mode = PM_WRITE;
2904	pf->zero_new_blocks = true;
2905	pf->discard_enabled = true;
2906	pf->discard_passdown = true;
2907	pf->error_if_no_space = false;
2908}
2909
2910static void __pool_destroy(struct pool *pool)
2911{
2912	__pool_table_remove(pool);
2913
2914	vfree(pool->cell_sort_array);
2915	if (dm_pool_metadata_close(pool->pmd) < 0)
2916		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2917
2918	dm_bio_prison_destroy(pool->prison);
2919	dm_kcopyd_client_destroy(pool->copier);
2920
2921	cancel_delayed_work_sync(&pool->waker);
2922	cancel_delayed_work_sync(&pool->no_space_timeout);
2923	if (pool->wq)
2924		destroy_workqueue(pool->wq);
2925
2926	if (pool->next_mapping)
2927		mempool_free(pool->next_mapping, &pool->mapping_pool);
2928	mempool_exit(&pool->mapping_pool);
2929	dm_deferred_set_destroy(pool->shared_read_ds);
2930	dm_deferred_set_destroy(pool->all_io_ds);
2931	kfree(pool);
2932}
2933
2934static struct kmem_cache *_new_mapping_cache;
 
2935
2936static struct pool *pool_create(struct mapped_device *pool_md,
2937				struct block_device *metadata_dev,
2938				struct block_device *data_dev,
2939				unsigned long block_size,
2940				int read_only, char **error)
2941{
2942	int r;
2943	void *err_p;
2944	struct pool *pool;
2945	struct dm_pool_metadata *pmd;
2946	bool format_device = read_only ? false : true;
2947
2948	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2949	if (IS_ERR(pmd)) {
2950		*error = "Error creating metadata object";
2951		return ERR_CAST(pmd);
2952	}
2953
2954	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2955	if (!pool) {
2956		*error = "Error allocating memory for pool";
2957		err_p = ERR_PTR(-ENOMEM);
2958		goto bad_pool;
2959	}
2960
2961	pool->pmd = pmd;
2962	pool->sectors_per_block = block_size;
2963	if (block_size & (block_size - 1))
2964		pool->sectors_per_block_shift = -1;
2965	else
2966		pool->sectors_per_block_shift = __ffs(block_size);
2967	pool->low_water_blocks = 0;
2968	pool_features_init(&pool->pf);
2969	pool->prison = dm_bio_prison_create();
2970	if (!pool->prison) {
2971		*error = "Error creating pool's bio prison";
2972		err_p = ERR_PTR(-ENOMEM);
2973		goto bad_prison;
2974	}
2975
2976	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2977	if (IS_ERR(pool->copier)) {
2978		r = PTR_ERR(pool->copier);
2979		*error = "Error creating pool's kcopyd client";
2980		err_p = ERR_PTR(r);
2981		goto bad_kcopyd_client;
2982	}
2983
2984	/*
2985	 * Create singlethreaded workqueue that will service all devices
2986	 * that use this metadata.
2987	 */
2988	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2989	if (!pool->wq) {
2990		*error = "Error creating pool's workqueue";
2991		err_p = ERR_PTR(-ENOMEM);
2992		goto bad_wq;
2993	}
2994
2995	throttle_init(&pool->throttle);
2996	INIT_WORK(&pool->worker, do_worker);
2997	INIT_DELAYED_WORK(&pool->waker, do_waker);
2998	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2999	spin_lock_init(&pool->lock);
 
3000	bio_list_init(&pool->deferred_flush_bios);
3001	bio_list_init(&pool->deferred_flush_completions);
3002	INIT_LIST_HEAD(&pool->prepared_mappings);
3003	INIT_LIST_HEAD(&pool->prepared_discards);
3004	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3005	INIT_LIST_HEAD(&pool->active_thins);
3006	pool->low_water_triggered = false;
3007	pool->suspended = true;
3008	pool->out_of_data_space = false;
3009
3010	pool->shared_read_ds = dm_deferred_set_create();
3011	if (!pool->shared_read_ds) {
3012		*error = "Error creating pool's shared read deferred set";
3013		err_p = ERR_PTR(-ENOMEM);
3014		goto bad_shared_read_ds;
3015	}
3016
3017	pool->all_io_ds = dm_deferred_set_create();
3018	if (!pool->all_io_ds) {
3019		*error = "Error creating pool's all io deferred set";
3020		err_p = ERR_PTR(-ENOMEM);
3021		goto bad_all_io_ds;
3022	}
3023
3024	pool->next_mapping = NULL;
3025	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3026				   _new_mapping_cache);
3027	if (r) {
3028		*error = "Error creating pool's mapping mempool";
3029		err_p = ERR_PTR(r);
3030		goto bad_mapping_pool;
3031	}
3032
3033	pool->cell_sort_array =
3034		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3035				   sizeof(*pool->cell_sort_array)));
3036	if (!pool->cell_sort_array) {
3037		*error = "Error allocating cell sort array";
3038		err_p = ERR_PTR(-ENOMEM);
3039		goto bad_sort_array;
3040	}
3041
3042	pool->ref_count = 1;
3043	pool->last_commit_jiffies = jiffies;
3044	pool->pool_md = pool_md;
3045	pool->md_dev = metadata_dev;
3046	pool->data_dev = data_dev;
3047	__pool_table_insert(pool);
3048
3049	return pool;
3050
3051bad_sort_array:
3052	mempool_exit(&pool->mapping_pool);
3053bad_mapping_pool:
3054	dm_deferred_set_destroy(pool->all_io_ds);
3055bad_all_io_ds:
3056	dm_deferred_set_destroy(pool->shared_read_ds);
3057bad_shared_read_ds:
3058	destroy_workqueue(pool->wq);
3059bad_wq:
3060	dm_kcopyd_client_destroy(pool->copier);
3061bad_kcopyd_client:
3062	dm_bio_prison_destroy(pool->prison);
3063bad_prison:
3064	kfree(pool);
3065bad_pool:
3066	if (dm_pool_metadata_close(pmd))
3067		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3068
3069	return err_p;
3070}
3071
3072static void __pool_inc(struct pool *pool)
3073{
3074	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3075	pool->ref_count++;
3076}
3077
3078static void __pool_dec(struct pool *pool)
3079{
3080	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3081	BUG_ON(!pool->ref_count);
3082	if (!--pool->ref_count)
3083		__pool_destroy(pool);
3084}
3085
3086static struct pool *__pool_find(struct mapped_device *pool_md,
3087				struct block_device *metadata_dev,
3088				struct block_device *data_dev,
3089				unsigned long block_size, int read_only,
3090				char **error, int *created)
3091{
3092	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3093
3094	if (pool) {
3095		if (pool->pool_md != pool_md) {
3096			*error = "metadata device already in use by a pool";
3097			return ERR_PTR(-EBUSY);
3098		}
3099		if (pool->data_dev != data_dev) {
3100			*error = "data device already in use by a pool";
3101			return ERR_PTR(-EBUSY);
3102		}
3103		__pool_inc(pool);
3104
3105	} else {
3106		pool = __pool_table_lookup(pool_md);
3107		if (pool) {
3108			if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3109				*error = "different pool cannot replace a pool";
3110				return ERR_PTR(-EINVAL);
3111			}
3112			__pool_inc(pool);
3113
3114		} else {
3115			pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3116			*created = 1;
3117		}
3118	}
3119
3120	return pool;
3121}
3122
3123/*
3124 *--------------------------------------------------------------
3125 * Pool target methods
3126 *--------------------------------------------------------------
3127 */
3128static void pool_dtr(struct dm_target *ti)
3129{
3130	struct pool_c *pt = ti->private;
3131
3132	mutex_lock(&dm_thin_pool_table.mutex);
3133
3134	unbind_control_target(pt->pool, ti);
3135	__pool_dec(pt->pool);
3136	dm_put_device(ti, pt->metadata_dev);
3137	dm_put_device(ti, pt->data_dev);
3138	kfree(pt);
3139
3140	mutex_unlock(&dm_thin_pool_table.mutex);
3141}
3142
3143static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3144			       struct dm_target *ti)
3145{
3146	int r;
3147	unsigned int argc;
3148	const char *arg_name;
3149
3150	static const struct dm_arg _args[] = {
3151		{0, 4, "Invalid number of pool feature arguments"},
3152	};
3153
3154	/*
3155	 * No feature arguments supplied.
3156	 */
3157	if (!as->argc)
3158		return 0;
3159
3160	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3161	if (r)
3162		return -EINVAL;
3163
3164	while (argc && !r) {
3165		arg_name = dm_shift_arg(as);
3166		argc--;
3167
3168		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3169			pf->zero_new_blocks = false;
 
 
 
 
 
 
 
 
3170
3171		else if (!strcasecmp(arg_name, "ignore_discard"))
3172			pf->discard_enabled = false;
3173
3174		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3175			pf->discard_passdown = false;
3176
3177		else if (!strcasecmp(arg_name, "read_only"))
3178			pf->mode = PM_READ_ONLY;
3179
3180		else if (!strcasecmp(arg_name, "error_if_no_space"))
3181			pf->error_if_no_space = true;
3182
3183		else {
3184			ti->error = "Unrecognised pool feature requested";
3185			r = -EINVAL;
3186			break;
3187		}
3188	}
3189
3190	return r;
3191}
3192
3193static void metadata_low_callback(void *context)
3194{
3195	struct pool *pool = context;
3196
3197	DMWARN("%s: reached low water mark for metadata device: sending event.",
3198	       dm_device_name(pool->pool_md));
3199
3200	dm_table_event(pool->ti->table);
3201}
3202
3203/*
3204 * We need to flush the data device **before** committing the metadata.
3205 *
3206 * This ensures that the data blocks of any newly inserted mappings are
3207 * properly written to non-volatile storage and won't be lost in case of a
3208 * crash.
3209 *
3210 * Failure to do so can result in data corruption in the case of internal or
3211 * external snapshots and in the case of newly provisioned blocks, when block
3212 * zeroing is enabled.
3213 */
3214static int metadata_pre_commit_callback(void *context)
3215{
3216	struct pool *pool = context;
3217
3218	return blkdev_issue_flush(pool->data_dev);
3219}
3220
3221static sector_t get_dev_size(struct block_device *bdev)
3222{
3223	return bdev_nr_sectors(bdev);
3224}
3225
3226static void warn_if_metadata_device_too_big(struct block_device *bdev)
3227{
3228	sector_t metadata_dev_size = get_dev_size(bdev);
3229
3230	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3231		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3232		       bdev, THIN_METADATA_MAX_SECTORS);
3233}
3234
3235static sector_t get_metadata_dev_size(struct block_device *bdev)
3236{
3237	sector_t metadata_dev_size = get_dev_size(bdev);
3238
3239	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3240		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3241
3242	return metadata_dev_size;
3243}
3244
3245static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3246{
3247	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3248
3249	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3250
3251	return metadata_dev_size;
3252}
3253
3254/*
3255 * When a metadata threshold is crossed a dm event is triggered, and
3256 * userland should respond by growing the metadata device.  We could let
3257 * userland set the threshold, like we do with the data threshold, but I'm
3258 * not sure they know enough to do this well.
3259 */
3260static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3261{
3262	/*
3263	 * 4M is ample for all ops with the possible exception of thin
3264	 * device deletion which is harmless if it fails (just retry the
3265	 * delete after you've grown the device).
3266	 */
3267	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3268
3269	return min((dm_block_t)1024ULL /* 4M */, quarter);
3270}
3271
3272/*
3273 * thin-pool <metadata dev> <data dev>
3274 *	     <data block size (sectors)>
3275 *	     <low water mark (blocks)>
3276 *	     [<#feature args> [<arg>]*]
3277 *
3278 * Optional feature arguments are:
3279 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3280 *	     ignore_discard: disable discard
3281 *	     no_discard_passdown: don't pass discards down to the data device
3282 *	     read_only: Don't allow any changes to be made to the pool metadata.
3283 *	     error_if_no_space: error IOs, instead of queueing, if no space.
3284 */
3285static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3286{
3287	int r, pool_created = 0;
3288	struct pool_c *pt;
3289	struct pool *pool;
3290	struct pool_features pf;
3291	struct dm_arg_set as;
3292	struct dm_dev *data_dev;
3293	unsigned long block_size;
3294	dm_block_t low_water_blocks;
3295	struct dm_dev *metadata_dev;
3296	blk_mode_t metadata_mode;
 
3297
3298	/*
3299	 * FIXME Remove validation from scope of lock.
3300	 */
3301	mutex_lock(&dm_thin_pool_table.mutex);
3302
3303	if (argc < 4) {
3304		ti->error = "Invalid argument count";
3305		r = -EINVAL;
3306		goto out_unlock;
3307	}
3308
3309	as.argc = argc;
3310	as.argv = argv;
3311
3312	/* make sure metadata and data are different devices */
3313	if (!strcmp(argv[0], argv[1])) {
3314		ti->error = "Error setting metadata or data device";
3315		r = -EINVAL;
3316		goto out_unlock;
3317	}
3318
3319	/*
3320	 * Set default pool features.
3321	 */
3322	pool_features_init(&pf);
3323
3324	dm_consume_args(&as, 4);
3325	r = parse_pool_features(&as, &pf, ti);
3326	if (r)
3327		goto out_unlock;
3328
3329	metadata_mode = BLK_OPEN_READ |
3330		((pf.mode == PM_READ_ONLY) ? 0 : BLK_OPEN_WRITE);
3331	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3332	if (r) {
3333		ti->error = "Error opening metadata block device";
3334		goto out_unlock;
3335	}
3336	warn_if_metadata_device_too_big(metadata_dev->bdev);
3337
3338	r = dm_get_device(ti, argv[1], BLK_OPEN_READ | BLK_OPEN_WRITE, &data_dev);
 
 
 
 
 
3339	if (r) {
3340		ti->error = "Error getting data device";
3341		goto out_metadata;
3342	}
3343
3344	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3345	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3346	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3347	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3348		ti->error = "Invalid block size";
3349		r = -EINVAL;
3350		goto out;
3351	}
3352
3353	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3354		ti->error = "Invalid low water mark";
3355		r = -EINVAL;
3356		goto out;
3357	}
3358
 
 
 
 
 
 
 
 
 
 
3359	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3360	if (!pt) {
3361		r = -ENOMEM;
3362		goto out;
3363	}
3364
3365	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3366			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3367	if (IS_ERR(pool)) {
3368		r = PTR_ERR(pool);
3369		goto out_free_pt;
3370	}
3371
3372	/*
3373	 * 'pool_created' reflects whether this is the first table load.
3374	 * Top level discard support is not allowed to be changed after
3375	 * initial load.  This would require a pool reload to trigger thin
3376	 * device changes.
3377	 */
3378	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3379		ti->error = "Discard support cannot be disabled once enabled";
3380		r = -EINVAL;
3381		goto out_flags_changed;
3382	}
3383
3384	pt->pool = pool;
3385	pt->ti = ti;
3386	pt->metadata_dev = metadata_dev;
3387	pt->data_dev = data_dev;
3388	pt->low_water_blocks = low_water_blocks;
3389	pt->adjusted_pf = pt->requested_pf = pf;
3390	ti->num_flush_bios = 1;
3391	ti->limit_swap_bios = true;
3392
3393	/*
3394	 * Only need to enable discards if the pool should pass
3395	 * them down to the data device.  The thin device's discard
3396	 * processing will cause mappings to be removed from the btree.
3397	 */
3398	if (pf.discard_enabled && pf.discard_passdown) {
3399		ti->num_discard_bios = 1;
3400		/*
3401		 * Setting 'discards_supported' circumvents the normal
3402		 * stacking of discard limits (this keeps the pool and
3403		 * thin devices' discard limits consistent).
3404		 */
3405		ti->discards_supported = true;
3406		ti->max_discard_granularity = true;
3407	}
3408	ti->private = pt;
3409
3410	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3411						calc_metadata_threshold(pt),
3412						metadata_low_callback,
3413						pool);
3414	if (r) {
3415		ti->error = "Error registering metadata threshold";
3416		goto out_flags_changed;
3417	}
3418
3419	dm_pool_register_pre_commit_callback(pool->pmd,
3420					     metadata_pre_commit_callback, pool);
3421
3422	mutex_unlock(&dm_thin_pool_table.mutex);
3423
3424	return 0;
3425
3426out_flags_changed:
3427	__pool_dec(pool);
3428out_free_pt:
3429	kfree(pt);
3430out:
3431	dm_put_device(ti, data_dev);
3432out_metadata:
3433	dm_put_device(ti, metadata_dev);
3434out_unlock:
3435	mutex_unlock(&dm_thin_pool_table.mutex);
3436
3437	return r;
3438}
3439
3440static int pool_map(struct dm_target *ti, struct bio *bio)
 
3441{
 
3442	struct pool_c *pt = ti->private;
3443	struct pool *pool = pt->pool;
 
3444
3445	/*
3446	 * As this is a singleton target, ti->begin is always zero.
3447	 */
3448	spin_lock_irq(&pool->lock);
3449	bio_set_dev(bio, pt->data_dev->bdev);
3450	spin_unlock_irq(&pool->lock);
 
3451
3452	return DM_MAPIO_REMAPPED;
3453}
3454
3455static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3456{
3457	int r;
3458	struct pool_c *pt = ti->private;
3459	struct pool *pool = pt->pool;
3460	sector_t data_size = ti->len;
3461	dm_block_t sb_data_size;
3462
3463	*need_commit = false;
3464
3465	(void) sector_div(data_size, pool->sectors_per_block);
3466
3467	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3468	if (r) {
3469		DMERR("%s: failed to retrieve data device size",
3470		      dm_device_name(pool->pool_md));
3471		return r;
3472	}
3473
3474	if (data_size < sb_data_size) {
3475		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3476		      dm_device_name(pool->pool_md),
3477		      (unsigned long long)data_size, sb_data_size);
3478		return -EINVAL;
3479
3480	} else if (data_size > sb_data_size) {
3481		if (dm_pool_metadata_needs_check(pool->pmd)) {
3482			DMERR("%s: unable to grow the data device until repaired.",
3483			      dm_device_name(pool->pool_md));
3484			return 0;
3485		}
3486
3487		if (sb_data_size)
3488			DMINFO("%s: growing the data device from %llu to %llu blocks",
3489			       dm_device_name(pool->pool_md),
3490			       sb_data_size, (unsigned long long)data_size);
3491		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3492		if (r) {
3493			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3494			return r;
3495		}
3496
3497		*need_commit = true;
3498	}
3499
3500	return 0;
3501}
3502
3503static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3504{
3505	int r;
3506	struct pool_c *pt = ti->private;
3507	struct pool *pool = pt->pool;
3508	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3509
3510	*need_commit = false;
3511
3512	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3513
3514	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3515	if (r) {
3516		DMERR("%s: failed to retrieve metadata device size",
3517		      dm_device_name(pool->pool_md));
3518		return r;
3519	}
3520
3521	if (metadata_dev_size < sb_metadata_dev_size) {
3522		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3523		      dm_device_name(pool->pool_md),
3524		      metadata_dev_size, sb_metadata_dev_size);
3525		return -EINVAL;
3526
3527	} else if (metadata_dev_size > sb_metadata_dev_size) {
3528		if (dm_pool_metadata_needs_check(pool->pmd)) {
3529			DMERR("%s: unable to grow the metadata device until repaired.",
3530			      dm_device_name(pool->pool_md));
3531			return 0;
3532		}
3533
3534		warn_if_metadata_device_too_big(pool->md_dev);
3535		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3536		       dm_device_name(pool->pool_md),
3537		       sb_metadata_dev_size, metadata_dev_size);
3538
3539		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3540			set_pool_mode(pool, PM_WRITE);
3541
3542		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3543		if (r) {
3544			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3545			return r;
3546		}
3547
3548		*need_commit = true;
3549	}
3550
3551	return 0;
3552}
3553
3554/*
3555 * Retrieves the number of blocks of the data device from
3556 * the superblock and compares it to the actual device size,
3557 * thus resizing the data device in case it has grown.
3558 *
3559 * This both copes with opening preallocated data devices in the ctr
3560 * being followed by a resume
3561 * -and-
3562 * calling the resume method individually after userspace has
3563 * grown the data device in reaction to a table event.
3564 */
3565static int pool_preresume(struct dm_target *ti)
3566{
3567	int r;
3568	bool need_commit1, need_commit2;
3569	struct pool_c *pt = ti->private;
3570	struct pool *pool = pt->pool;
 
3571
3572	/*
3573	 * Take control of the pool object.
3574	 */
3575	r = bind_control_target(pool, ti);
3576	if (r)
3577		goto out;
3578
3579	r = maybe_resize_data_dev(ti, &need_commit1);
3580	if (r)
3581		goto out;
 
 
 
3582
3583	r = maybe_resize_metadata_dev(ti, &need_commit2);
3584	if (r)
3585		goto out;
 
3586
3587	if (need_commit1 || need_commit2)
3588		(void) commit(pool);
3589out:
3590	/*
3591	 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3592	 * bio is in deferred list. Therefore need to return 0
3593	 * to allow pool_resume() to flush IO.
3594	 */
3595	if (r && get_pool_mode(pool) == PM_FAIL)
3596		r = 0;
3597
3598	return r;
3599}
3600
3601static void pool_suspend_active_thins(struct pool *pool)
3602{
3603	struct thin_c *tc;
3604
3605	/* Suspend all active thin devices */
3606	tc = get_first_thin(pool);
3607	while (tc) {
3608		dm_internal_suspend_noflush(tc->thin_md);
3609		tc = get_next_thin(pool, tc);
3610	}
3611}
3612
3613static void pool_resume_active_thins(struct pool *pool)
3614{
3615	struct thin_c *tc;
3616
3617	/* Resume all active thin devices */
3618	tc = get_first_thin(pool);
3619	while (tc) {
3620		dm_internal_resume(tc->thin_md);
3621		tc = get_next_thin(pool, tc);
3622	}
3623}
3624
3625static void pool_resume(struct dm_target *ti)
3626{
3627	struct pool_c *pt = ti->private;
3628	struct pool *pool = pt->pool;
 
3629
3630	/*
3631	 * Must requeue active_thins' bios and then resume
3632	 * active_thins _before_ clearing 'suspend' flag.
3633	 */
3634	requeue_bios(pool);
3635	pool_resume_active_thins(pool);
3636
3637	spin_lock_irq(&pool->lock);
3638	pool->low_water_triggered = false;
3639	pool->suspended = false;
3640	spin_unlock_irq(&pool->lock);
3641
3642	do_waker(&pool->waker.work);
3643}
3644
3645static void pool_presuspend(struct dm_target *ti)
3646{
3647	struct pool_c *pt = ti->private;
3648	struct pool *pool = pt->pool;
3649
3650	spin_lock_irq(&pool->lock);
3651	pool->suspended = true;
3652	spin_unlock_irq(&pool->lock);
3653
3654	pool_suspend_active_thins(pool);
3655}
3656
3657static void pool_presuspend_undo(struct dm_target *ti)
3658{
3659	struct pool_c *pt = ti->private;
3660	struct pool *pool = pt->pool;
3661
3662	pool_resume_active_thins(pool);
3663
3664	spin_lock_irq(&pool->lock);
3665	pool->suspended = false;
3666	spin_unlock_irq(&pool->lock);
3667}
3668
3669static void pool_postsuspend(struct dm_target *ti)
3670{
 
3671	struct pool_c *pt = ti->private;
3672	struct pool *pool = pt->pool;
3673
3674	cancel_delayed_work_sync(&pool->waker);
3675	cancel_delayed_work_sync(&pool->no_space_timeout);
3676	flush_workqueue(pool->wq);
3677	(void) commit(pool);
 
 
 
 
 
 
3678}
3679
3680static int check_arg_count(unsigned int argc, unsigned int args_required)
3681{
3682	if (argc != args_required) {
3683		DMWARN("Message received with %u arguments instead of %u.",
3684		       argc, args_required);
3685		return -EINVAL;
3686	}
3687
3688	return 0;
3689}
3690
3691static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3692{
3693	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3694	    *dev_id <= MAX_DEV_ID)
3695		return 0;
3696
3697	if (warning)
3698		DMWARN("Message received with invalid device id: %s", arg);
3699
3700	return -EINVAL;
3701}
3702
3703static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool)
3704{
3705	dm_thin_id dev_id;
3706	int r;
3707
3708	r = check_arg_count(argc, 2);
3709	if (r)
3710		return r;
3711
3712	r = read_dev_id(argv[1], &dev_id, 1);
3713	if (r)
3714		return r;
3715
3716	r = dm_pool_create_thin(pool->pmd, dev_id);
3717	if (r) {
3718		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3719		       argv[1]);
3720		return r;
3721	}
3722
3723	return 0;
3724}
3725
3726static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3727{
3728	dm_thin_id dev_id;
3729	dm_thin_id origin_dev_id;
3730	int r;
3731
3732	r = check_arg_count(argc, 3);
3733	if (r)
3734		return r;
3735
3736	r = read_dev_id(argv[1], &dev_id, 1);
3737	if (r)
3738		return r;
3739
3740	r = read_dev_id(argv[2], &origin_dev_id, 1);
3741	if (r)
3742		return r;
3743
3744	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3745	if (r) {
3746		DMWARN("Creation of new snapshot %s of device %s failed.",
3747		       argv[1], argv[2]);
3748		return r;
3749	}
3750
3751	return 0;
3752}
3753
3754static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool)
3755{
3756	dm_thin_id dev_id;
3757	int r;
3758
3759	r = check_arg_count(argc, 2);
3760	if (r)
3761		return r;
3762
3763	r = read_dev_id(argv[1], &dev_id, 1);
3764	if (r)
3765		return r;
3766
3767	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3768	if (r)
3769		DMWARN("Deletion of thin device %s failed.", argv[1]);
3770
3771	return r;
3772}
3773
3774static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool)
3775{
3776	dm_thin_id old_id, new_id;
3777	int r;
3778
3779	r = check_arg_count(argc, 3);
3780	if (r)
3781		return r;
3782
3783	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3784		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3785		return -EINVAL;
3786	}
3787
3788	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3789		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3790		return -EINVAL;
3791	}
3792
3793	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3794	if (r) {
3795		DMWARN("Failed to change transaction id from %s to %s.",
3796		       argv[1], argv[2]);
3797		return r;
3798	}
3799
3800	return 0;
3801}
3802
3803static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3804{
3805	int r;
3806
3807	r = check_arg_count(argc, 1);
3808	if (r)
3809		return r;
3810
3811	(void) commit(pool);
 
 
 
 
 
3812
3813	r = dm_pool_reserve_metadata_snap(pool->pmd);
3814	if (r)
3815		DMWARN("reserve_metadata_snap message failed.");
3816
3817	return r;
3818}
3819
3820static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3821{
3822	int r;
3823
3824	r = check_arg_count(argc, 1);
3825	if (r)
3826		return r;
3827
3828	r = dm_pool_release_metadata_snap(pool->pmd);
3829	if (r)
3830		DMWARN("release_metadata_snap message failed.");
3831
3832	return r;
3833}
3834
3835/*
3836 * Messages supported:
3837 *   create_thin	<dev_id>
3838 *   create_snap	<dev_id> <origin_id>
3839 *   delete		<dev_id>
 
3840 *   set_transaction_id <current_trans_id> <new_trans_id>
3841 *   reserve_metadata_snap
3842 *   release_metadata_snap
3843 */
3844static int pool_message(struct dm_target *ti, unsigned int argc, char **argv,
3845			char *result, unsigned int maxlen)
3846{
3847	int r = -EINVAL;
3848	struct pool_c *pt = ti->private;
3849	struct pool *pool = pt->pool;
3850
3851	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3852		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3853		      dm_device_name(pool->pool_md));
3854		return -EOPNOTSUPP;
3855	}
3856
3857	if (!strcasecmp(argv[0], "create_thin"))
3858		r = process_create_thin_mesg(argc, argv, pool);
3859
3860	else if (!strcasecmp(argv[0], "create_snap"))
3861		r = process_create_snap_mesg(argc, argv, pool);
3862
3863	else if (!strcasecmp(argv[0], "delete"))
3864		r = process_delete_mesg(argc, argv, pool);
3865
3866	else if (!strcasecmp(argv[0], "set_transaction_id"))
3867		r = process_set_transaction_id_mesg(argc, argv, pool);
3868
3869	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3870		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3871
3872	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3873		r = process_release_metadata_snap_mesg(argc, argv, pool);
3874
3875	else
3876		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3877
3878	if (!r)
3879		(void) commit(pool);
 
 
 
 
3880
3881	return r;
3882}
3883
3884static void emit_flags(struct pool_features *pf, char *result,
3885		       unsigned int sz, unsigned int maxlen)
3886{
3887	unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled +
3888		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3889		pf->error_if_no_space;
3890	DMEMIT("%u ", count);
3891
3892	if (!pf->zero_new_blocks)
3893		DMEMIT("skip_block_zeroing ");
3894
3895	if (!pf->discard_enabled)
3896		DMEMIT("ignore_discard ");
3897
3898	if (!pf->discard_passdown)
3899		DMEMIT("no_discard_passdown ");
3900
3901	if (pf->mode == PM_READ_ONLY)
3902		DMEMIT("read_only ");
3903
3904	if (pf->error_if_no_space)
3905		DMEMIT("error_if_no_space ");
3906}
3907
3908/*
3909 * Status line is:
3910 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3911 *    <used data sectors>/<total data sectors> <held metadata root>
3912 *    <pool mode> <discard config> <no space config> <needs_check>
3913 */
3914static void pool_status(struct dm_target *ti, status_type_t type,
3915			unsigned int status_flags, char *result, unsigned int maxlen)
3916{
3917	int r;
3918	unsigned int sz = 0;
3919	uint64_t transaction_id;
3920	dm_block_t nr_free_blocks_data;
3921	dm_block_t nr_free_blocks_metadata;
3922	dm_block_t nr_blocks_data;
3923	dm_block_t nr_blocks_metadata;
3924	dm_block_t held_root;
3925	enum pool_mode mode;
3926	char buf[BDEVNAME_SIZE];
3927	char buf2[BDEVNAME_SIZE];
3928	struct pool_c *pt = ti->private;
3929	struct pool *pool = pt->pool;
3930
3931	switch (type) {
3932	case STATUSTYPE_INFO:
3933		if (get_pool_mode(pool) == PM_FAIL) {
3934			DMEMIT("Fail");
3935			break;
3936		}
3937
3938		/* Commit to ensure statistics aren't out-of-date */
3939		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3940			(void) commit(pool);
3941
3942		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3943		if (r) {
3944			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3945			      dm_device_name(pool->pool_md), r);
3946			goto err;
3947		}
3948
3949		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3950		if (r) {
3951			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3952			      dm_device_name(pool->pool_md), r);
3953			goto err;
3954		}
3955
3956		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3957		if (r) {
3958			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3959			      dm_device_name(pool->pool_md), r);
3960			goto err;
3961		}
3962
3963		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3964		if (r) {
3965			DMERR("%s: dm_pool_get_free_block_count returned %d",
3966			      dm_device_name(pool->pool_md), r);
3967			goto err;
3968		}
3969
3970		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3971		if (r) {
3972			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3973			      dm_device_name(pool->pool_md), r);
3974			goto err;
3975		}
3976
3977		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3978		if (r) {
3979			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3980			      dm_device_name(pool->pool_md), r);
3981			goto err;
3982		}
3983
3984		DMEMIT("%llu %llu/%llu %llu/%llu ",
3985		       (unsigned long long)transaction_id,
3986		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3987		       (unsigned long long)nr_blocks_metadata,
3988		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3989		       (unsigned long long)nr_blocks_data);
3990
3991		if (held_root)
3992			DMEMIT("%llu ", held_root);
3993		else
3994			DMEMIT("- ");
3995
3996		mode = get_pool_mode(pool);
3997		if (mode == PM_OUT_OF_DATA_SPACE)
3998			DMEMIT("out_of_data_space ");
3999		else if (is_read_only_pool_mode(mode))
4000			DMEMIT("ro ");
4001		else
4002			DMEMIT("rw ");
4003
4004		if (!pool->pf.discard_enabled)
4005			DMEMIT("ignore_discard ");
4006		else if (pool->pf.discard_passdown)
4007			DMEMIT("discard_passdown ");
4008		else
4009			DMEMIT("no_discard_passdown ");
4010
4011		if (pool->pf.error_if_no_space)
4012			DMEMIT("error_if_no_space ");
4013		else
4014			DMEMIT("queue_if_no_space ");
4015
4016		if (dm_pool_metadata_needs_check(pool->pmd))
4017			DMEMIT("needs_check ");
4018		else
4019			DMEMIT("- ");
4020
4021		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4022
4023		break;
4024
4025	case STATUSTYPE_TABLE:
4026		DMEMIT("%s %s %lu %llu ",
4027		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4028		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4029		       (unsigned long)pool->sectors_per_block,
4030		       (unsigned long long)pt->low_water_blocks);
4031		emit_flags(&pt->requested_pf, result, sz, maxlen);
4032		break;
4033
4034	case STATUSTYPE_IMA:
4035		*result = '\0';
 
 
 
 
 
 
 
 
 
 
 
4036		break;
4037	}
4038	return;
4039
4040err:
4041	DMEMIT("Error");
4042}
4043
4044static int pool_iterate_devices(struct dm_target *ti,
4045				iterate_devices_callout_fn fn, void *data)
4046{
4047	struct pool_c *pt = ti->private;
4048
4049	return fn(ti, pt->data_dev, 0, ti->len, data);
4050}
4051
4052static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
 
4053{
4054	struct pool_c *pt = ti->private;
4055	struct pool *pool = pt->pool;
4056	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
 
 
 
 
 
 
 
4057
 
 
4058	/*
4059	 * If max_sectors is smaller than pool->sectors_per_block adjust it
4060	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4061	 * This is especially beneficial when the pool's data device is a RAID
4062	 * device that has a full stripe width that matches pool->sectors_per_block
4063	 * -- because even though partial RAID stripe-sized IOs will be issued to a
4064	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
4065	 *    boundary.. which avoids additional partial RAID stripe writes cascading
4066	 */
4067	if (limits->max_sectors < pool->sectors_per_block) {
4068		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4069			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4070				limits->max_sectors--;
4071			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4072		}
4073	}
4074
4075	/*
4076	 * If the system-determined stacked limits are compatible with the
4077	 * pool's blocksize (io_opt is a factor) do not override them.
4078	 */
4079	if (io_opt_sectors < pool->sectors_per_block ||
4080	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4081		if (is_factor(pool->sectors_per_block, limits->max_sectors))
4082			limits->io_min = limits->max_sectors << SECTOR_SHIFT;
4083		else
4084			limits->io_min = pool->sectors_per_block << SECTOR_SHIFT;
4085		limits->io_opt = pool->sectors_per_block << SECTOR_SHIFT;
4086	}
4087
4088	/*
4089	 * pt->adjusted_pf is a staging area for the actual features to use.
4090	 * They get transferred to the live pool in bind_control_target()
4091	 * called from pool_preresume().
4092	 */
4093
4094	if (pt->adjusted_pf.discard_enabled) {
4095		disable_discard_passdown_if_not_supported(pt);
4096		if (!pt->adjusted_pf.discard_passdown)
4097			limits->max_hw_discard_sectors = 0;
4098		/*
4099		 * The pool uses the same discard limits as the underlying data
4100		 * device.  DM core has already set this up.
4101		 */
4102	} else {
4103		/*
4104		 * Must explicitly disallow stacking discard limits otherwise the
4105		 * block layer will stack them if pool's data device has support.
4106		 */
4107		limits->discard_granularity = 0;
4108	}
4109}
4110
4111static struct target_type pool_target = {
4112	.name = "thin-pool",
4113	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4114		    DM_TARGET_IMMUTABLE,
4115	.version = {1, 23, 0},
4116	.module = THIS_MODULE,
4117	.ctr = pool_ctr,
4118	.dtr = pool_dtr,
4119	.map = pool_map,
4120	.presuspend = pool_presuspend,
4121	.presuspend_undo = pool_presuspend_undo,
4122	.postsuspend = pool_postsuspend,
4123	.preresume = pool_preresume,
4124	.resume = pool_resume,
4125	.message = pool_message,
4126	.status = pool_status,
 
4127	.iterate_devices = pool_iterate_devices,
4128	.io_hints = pool_io_hints,
4129};
4130
4131/*
4132 *--------------------------------------------------------------
4133 * Thin target methods
4134 *--------------------------------------------------------------
4135 */
4136static void thin_get(struct thin_c *tc)
4137{
4138	refcount_inc(&tc->refcount);
4139}
4140
4141static void thin_put(struct thin_c *tc)
4142{
4143	if (refcount_dec_and_test(&tc->refcount))
4144		complete(&tc->can_destroy);
4145}
4146
4147static void thin_dtr(struct dm_target *ti)
4148{
4149	struct thin_c *tc = ti->private;
4150
4151	spin_lock_irq(&tc->pool->lock);
4152	list_del_rcu(&tc->list);
4153	spin_unlock_irq(&tc->pool->lock);
4154	synchronize_rcu();
4155
4156	thin_put(tc);
4157	wait_for_completion(&tc->can_destroy);
4158
4159	mutex_lock(&dm_thin_pool_table.mutex);
4160
4161	__pool_dec(tc->pool);
4162	dm_pool_close_thin_device(tc->td);
4163	dm_put_device(ti, tc->pool_dev);
4164	if (tc->origin_dev)
4165		dm_put_device(ti, tc->origin_dev);
4166	kfree(tc);
4167
4168	mutex_unlock(&dm_thin_pool_table.mutex);
4169}
4170
4171/*
4172 * Thin target parameters:
4173 *
4174 * <pool_dev> <dev_id> [origin_dev]
4175 *
4176 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4177 * dev_id: the internal device identifier
4178 * origin_dev: a device external to the pool that should act as the origin
4179 *
4180 * If the pool device has discards disabled, they get disabled for the thin
4181 * device as well.
4182 */
4183static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4184{
4185	int r;
4186	struct thin_c *tc;
4187	struct dm_dev *pool_dev, *origin_dev;
4188	struct mapped_device *pool_md;
4189
4190	mutex_lock(&dm_thin_pool_table.mutex);
4191
4192	if (argc != 2 && argc != 3) {
4193		ti->error = "Invalid argument count";
4194		r = -EINVAL;
4195		goto out_unlock;
4196	}
4197
4198	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4199	if (!tc) {
4200		ti->error = "Out of memory";
4201		r = -ENOMEM;
4202		goto out_unlock;
4203	}
4204	tc->thin_md = dm_table_get_md(ti->table);
4205	spin_lock_init(&tc->lock);
4206	INIT_LIST_HEAD(&tc->deferred_cells);
4207	bio_list_init(&tc->deferred_bio_list);
4208	bio_list_init(&tc->retry_on_resume_list);
4209	tc->sort_bio_list = RB_ROOT;
4210
4211	if (argc == 3) {
4212		if (!strcmp(argv[0], argv[2])) {
4213			ti->error = "Error setting origin device";
4214			r = -EINVAL;
4215			goto bad_origin_dev;
4216		}
4217
4218		r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &origin_dev);
4219		if (r) {
4220			ti->error = "Error opening origin device";
4221			goto bad_origin_dev;
4222		}
4223		tc->origin_dev = origin_dev;
4224	}
4225
4226	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4227	if (r) {
4228		ti->error = "Error opening pool device";
4229		goto bad_pool_dev;
4230	}
4231	tc->pool_dev = pool_dev;
4232
4233	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4234		ti->error = "Invalid device id";
4235		r = -EINVAL;
4236		goto bad_common;
4237	}
4238
4239	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4240	if (!pool_md) {
4241		ti->error = "Couldn't get pool mapped device";
4242		r = -EINVAL;
4243		goto bad_common;
4244	}
4245
4246	tc->pool = __pool_table_lookup(pool_md);
4247	if (!tc->pool) {
4248		ti->error = "Couldn't find pool object";
4249		r = -EINVAL;
4250		goto bad_pool_lookup;
4251	}
4252	__pool_inc(tc->pool);
4253
4254	if (get_pool_mode(tc->pool) == PM_FAIL) {
4255		ti->error = "Couldn't open thin device, Pool is in fail mode";
4256		r = -EINVAL;
4257		goto bad_pool;
4258	}
4259
4260	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4261	if (r) {
4262		ti->error = "Couldn't open thin internal device";
4263		goto bad_pool;
4264	}
4265
4266	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4267	if (r)
4268		goto bad;
4269
4270	ti->num_flush_bios = 1;
4271	ti->limit_swap_bios = true;
4272	ti->flush_supported = true;
4273	ti->accounts_remapped_io = true;
4274	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4275
4276	/* In case the pool supports discards, pass them on. */
4277	if (tc->pool->pf.discard_enabled) {
4278		ti->discards_supported = true;
4279		ti->num_discard_bios = 1;
4280		ti->max_discard_granularity = true;
4281	}
4282
 
 
4283	mutex_unlock(&dm_thin_pool_table.mutex);
4284
4285	spin_lock_irq(&tc->pool->lock);
4286	if (tc->pool->suspended) {
4287		spin_unlock_irq(&tc->pool->lock);
4288		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4289		ti->error = "Unable to activate thin device while pool is suspended";
4290		r = -EINVAL;
4291		goto bad;
4292	}
4293	refcount_set(&tc->refcount, 1);
4294	init_completion(&tc->can_destroy);
4295	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4296	spin_unlock_irq(&tc->pool->lock);
4297	/*
4298	 * This synchronize_rcu() call is needed here otherwise we risk a
4299	 * wake_worker() call finding no bios to process (because the newly
4300	 * added tc isn't yet visible).  So this reduces latency since we
4301	 * aren't then dependent on the periodic commit to wake_worker().
4302	 */
4303	synchronize_rcu();
4304
4305	dm_put(pool_md);
4306
4307	return 0;
4308
4309bad:
4310	dm_pool_close_thin_device(tc->td);
4311bad_pool:
4312	__pool_dec(tc->pool);
4313bad_pool_lookup:
4314	dm_put(pool_md);
4315bad_common:
4316	dm_put_device(ti, tc->pool_dev);
4317bad_pool_dev:
4318	if (tc->origin_dev)
4319		dm_put_device(ti, tc->origin_dev);
4320bad_origin_dev:
4321	kfree(tc);
4322out_unlock:
4323	mutex_unlock(&dm_thin_pool_table.mutex);
4324
4325	return r;
4326}
4327
4328static int thin_map(struct dm_target *ti, struct bio *bio)
 
4329{
4330	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4331
4332	return thin_bio_map(ti, bio);
4333}
4334
4335static int thin_endio(struct dm_target *ti, struct bio *bio,
4336		blk_status_t *err)
 
4337{
4338	unsigned long flags;
4339	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4340	struct list_head work;
4341	struct dm_thin_new_mapping *m, *tmp;
4342	struct pool *pool = h->tc->pool;
4343
4344	if (h->shared_read_entry) {
4345		INIT_LIST_HEAD(&work);
4346		dm_deferred_entry_dec(h->shared_read_entry, &work);
4347
4348		spin_lock_irqsave(&pool->lock, flags);
4349		list_for_each_entry_safe(m, tmp, &work, list) {
4350			list_del(&m->list);
4351			__complete_mapping_preparation(m);
 
4352		}
4353		spin_unlock_irqrestore(&pool->lock, flags);
4354	}
4355
4356	if (h->all_io_entry) {
4357		INIT_LIST_HEAD(&work);
4358		dm_deferred_entry_dec(h->all_io_entry, &work);
4359		if (!list_empty(&work)) {
4360			spin_lock_irqsave(&pool->lock, flags);
4361			list_for_each_entry_safe(m, tmp, &work, list)
4362				list_add_tail(&m->list, &pool->prepared_discards);
4363			spin_unlock_irqrestore(&pool->lock, flags);
4364			wake_worker(pool);
4365		}
4366	}
4367
4368	if (h->cell)
4369		cell_defer_no_holder(h->tc, h->cell);
4370
4371	return DM_ENDIO_DONE;
4372}
4373
4374static void thin_presuspend(struct dm_target *ti)
4375{
4376	struct thin_c *tc = ti->private;
4377
4378	if (dm_noflush_suspending(ti))
4379		noflush_work(tc, do_noflush_start);
4380}
4381
4382static void thin_postsuspend(struct dm_target *ti)
4383{
4384	struct thin_c *tc = ti->private;
4385
4386	/*
4387	 * The dm_noflush_suspending flag has been cleared by now, so
4388	 * unfortunately we must always run this.
4389	 */
4390	noflush_work(tc, do_noflush_stop);
4391}
4392
4393static int thin_preresume(struct dm_target *ti)
4394{
4395	struct thin_c *tc = ti->private;
4396
4397	if (tc->origin_dev)
4398		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4399
4400	return 0;
4401}
4402
4403/*
4404 * <nr mapped sectors> <highest mapped sector>
4405 */
4406static void thin_status(struct dm_target *ti, status_type_t type,
4407			unsigned int status_flags, char *result, unsigned int maxlen)
4408{
4409	int r;
4410	ssize_t sz = 0;
4411	dm_block_t mapped, highest;
4412	char buf[BDEVNAME_SIZE];
4413	struct thin_c *tc = ti->private;
4414
4415	if (get_pool_mode(tc->pool) == PM_FAIL) {
4416		DMEMIT("Fail");
4417		return;
4418	}
4419
4420	if (!tc->td)
4421		DMEMIT("-");
4422	else {
4423		switch (type) {
4424		case STATUSTYPE_INFO:
4425			r = dm_thin_get_mapped_count(tc->td, &mapped);
4426			if (r) {
4427				DMERR("dm_thin_get_mapped_count returned %d", r);
4428				goto err;
4429			}
4430
4431			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4432			if (r < 0) {
4433				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4434				goto err;
4435			}
4436
4437			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4438			if (r)
4439				DMEMIT("%llu", ((highest + 1) *
4440						tc->pool->sectors_per_block) - 1);
4441			else
4442				DMEMIT("-");
4443			break;
4444
4445		case STATUSTYPE_TABLE:
4446			DMEMIT("%s %lu",
4447			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4448			       (unsigned long) tc->dev_id);
4449			if (tc->origin_dev)
4450				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4451			break;
4452
4453		case STATUSTYPE_IMA:
4454			*result = '\0';
4455			break;
4456		}
4457	}
4458
4459	return;
4460
4461err:
4462	DMEMIT("Error");
4463}
4464
4465static int thin_iterate_devices(struct dm_target *ti,
4466				iterate_devices_callout_fn fn, void *data)
4467{
4468	sector_t blocks;
4469	struct thin_c *tc = ti->private;
4470	struct pool *pool = tc->pool;
4471
4472	/*
4473	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4474	 * we follow a more convoluted path through to the pool's target.
4475	 */
4476	if (!pool->ti)
4477		return 0;	/* nothing is bound */
4478
4479	blocks = pool->ti->len;
4480	(void) sector_div(blocks, pool->sectors_per_block);
4481	if (blocks)
4482		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4483
4484	return 0;
4485}
4486
4487static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4488{
4489	struct thin_c *tc = ti->private;
4490	struct pool *pool = tc->pool;
4491
4492	if (pool->pf.discard_enabled) {
4493		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4494		limits->max_hw_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE;
4495	}
4496}
4497
4498static struct target_type thin_target = {
4499	.name = "thin",
4500	.version = {1, 23, 0},
4501	.module	= THIS_MODULE,
4502	.ctr = thin_ctr,
4503	.dtr = thin_dtr,
4504	.map = thin_map,
4505	.end_io = thin_endio,
4506	.preresume = thin_preresume,
4507	.presuspend = thin_presuspend,
4508	.postsuspend = thin_postsuspend,
4509	.status = thin_status,
4510	.iterate_devices = thin_iterate_devices,
4511	.io_hints = thin_io_hints,
4512};
4513
4514/*----------------------------------------------------------------*/
4515
4516static int __init dm_thin_init(void)
4517{
4518	int r = -ENOMEM;
4519
4520	pool_table_init();
4521
4522	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4523	if (!_new_mapping_cache)
4524		return r;
4525
4526	r = dm_register_target(&thin_target);
4527	if (r)
 
 
 
 
 
 
 
 
 
 
4528		goto bad_new_mapping_cache;
4529
4530	r = dm_register_target(&pool_target);
4531	if (r)
4532		goto bad_thin_target;
4533
4534	return 0;
4535
4536bad_thin_target:
 
 
 
 
 
 
4537	dm_unregister_target(&thin_target);
4538bad_new_mapping_cache:
4539	kmem_cache_destroy(_new_mapping_cache);
4540
4541	return r;
4542}
4543
4544static void dm_thin_exit(void)
4545{
4546	dm_unregister_target(&thin_target);
4547	dm_unregister_target(&pool_target);
4548
 
4549	kmem_cache_destroy(_new_mapping_cache);
4550
4551	pool_table_exit();
4552}
4553
4554module_init(dm_thin_init);
4555module_exit(dm_thin_exit);
4556
4557module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644);
4558MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4559
4560MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4561MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
4562MODULE_LICENSE("GPL");