Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v3.5.6
 
   1/*
   2 *  arch/sparc64/mm/init.c
   3 *
   4 *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
   5 *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   6 */
   7 
   8#include <linux/module.h>
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
  11#include <linux/string.h>
  12#include <linux/init.h>
  13#include <linux/bootmem.h>
  14#include <linux/mm.h>
  15#include <linux/hugetlb.h>
  16#include <linux/initrd.h>
  17#include <linux/swap.h>
  18#include <linux/pagemap.h>
  19#include <linux/poison.h>
  20#include <linux/fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/kprobes.h>
  23#include <linux/cache.h>
  24#include <linux/sort.h>
 
  25#include <linux/percpu.h>
  26#include <linux/memblock.h>
  27#include <linux/mmzone.h>
  28#include <linux/gfp.h>
 
  29
  30#include <asm/head.h>
  31#include <asm/page.h>
  32#include <asm/pgalloc.h>
  33#include <asm/pgtable.h>
  34#include <asm/oplib.h>
  35#include <asm/iommu.h>
  36#include <asm/io.h>
  37#include <asm/uaccess.h>
  38#include <asm/mmu_context.h>
  39#include <asm/tlbflush.h>
  40#include <asm/dma.h>
  41#include <asm/starfire.h>
  42#include <asm/tlb.h>
  43#include <asm/spitfire.h>
  44#include <asm/sections.h>
  45#include <asm/tsb.h>
  46#include <asm/hypervisor.h>
  47#include <asm/prom.h>
  48#include <asm/mdesc.h>
  49#include <asm/cpudata.h>
 
  50#include <asm/irq.h>
  51
  52#include "init_64.h"
  53
  54unsigned long kern_linear_pte_xor[2] __read_mostly;
 
  55
  56/* A bitmap, one bit for every 256MB of physical memory.  If the bit
  57 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
  58 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  59 */
  60unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
  61
  62#ifndef CONFIG_DEBUG_PAGEALLOC
  63/* A special kernel TSB for 4MB and 256MB linear mappings.
  64 * Space is allocated for this right after the trap table
  65 * in arch/sparc64/kernel/head.S
  66 */
  67extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  68#endif
 
 
 
  69
  70#define MAX_BANKS	32
  71
  72static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
  73static int pavail_ents __devinitdata;
 
 
  74
  75static int cmp_p64(const void *a, const void *b)
  76{
  77	const struct linux_prom64_registers *x = a, *y = b;
  78
  79	if (x->phys_addr > y->phys_addr)
  80		return 1;
  81	if (x->phys_addr < y->phys_addr)
  82		return -1;
  83	return 0;
  84}
  85
  86static void __init read_obp_memory(const char *property,
  87				   struct linux_prom64_registers *regs,
  88				   int *num_ents)
  89{
  90	phandle node = prom_finddevice("/memory");
  91	int prop_size = prom_getproplen(node, property);
  92	int ents, ret, i;
  93
  94	ents = prop_size / sizeof(struct linux_prom64_registers);
  95	if (ents > MAX_BANKS) {
  96		prom_printf("The machine has more %s property entries than "
  97			    "this kernel can support (%d).\n",
  98			    property, MAX_BANKS);
  99		prom_halt();
 100	}
 101
 102	ret = prom_getproperty(node, property, (char *) regs, prop_size);
 103	if (ret == -1) {
 104		prom_printf("Couldn't get %s property from /memory.\n");
 
 105		prom_halt();
 106	}
 107
 108	/* Sanitize what we got from the firmware, by page aligning
 109	 * everything.
 110	 */
 111	for (i = 0; i < ents; i++) {
 112		unsigned long base, size;
 113
 114		base = regs[i].phys_addr;
 115		size = regs[i].reg_size;
 116
 117		size &= PAGE_MASK;
 118		if (base & ~PAGE_MASK) {
 119			unsigned long new_base = PAGE_ALIGN(base);
 120
 121			size -= new_base - base;
 122			if ((long) size < 0L)
 123				size = 0UL;
 124			base = new_base;
 125		}
 126		if (size == 0UL) {
 127			/* If it is empty, simply get rid of it.
 128			 * This simplifies the logic of the other
 129			 * functions that process these arrays.
 130			 */
 131			memmove(&regs[i], &regs[i + 1],
 132				(ents - i - 1) * sizeof(regs[0]));
 133			i--;
 134			ents--;
 135			continue;
 136		}
 137		regs[i].phys_addr = base;
 138		regs[i].reg_size = size;
 139	}
 140
 141	*num_ents = ents;
 142
 143	sort(regs, ents, sizeof(struct linux_prom64_registers),
 144	     cmp_p64, NULL);
 145}
 146
 147unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
 148					sizeof(unsigned long)];
 149EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
 150
 151/* Kernel physical address base and size in bytes.  */
 152unsigned long kern_base __read_mostly;
 153unsigned long kern_size __read_mostly;
 154
 155/* Initial ramdisk setup */
 156extern unsigned long sparc_ramdisk_image64;
 157extern unsigned int sparc_ramdisk_image;
 158extern unsigned int sparc_ramdisk_size;
 159
 160struct page *mem_map_zero __read_mostly;
 161EXPORT_SYMBOL(mem_map_zero);
 162
 163unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
 164
 165unsigned long sparc64_kern_pri_context __read_mostly;
 166unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
 167unsigned long sparc64_kern_sec_context __read_mostly;
 168
 169int num_kernel_image_mappings;
 170
 171#ifdef CONFIG_DEBUG_DCFLUSH
 172atomic_t dcpage_flushes = ATOMIC_INIT(0);
 173#ifdef CONFIG_SMP
 174atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
 175#endif
 176#endif
 177
 178inline void flush_dcache_page_impl(struct page *page)
 179{
 180	BUG_ON(tlb_type == hypervisor);
 181#ifdef CONFIG_DEBUG_DCFLUSH
 182	atomic_inc(&dcpage_flushes);
 183#endif
 184
 185#ifdef DCACHE_ALIASING_POSSIBLE
 186	__flush_dcache_page(page_address(page),
 187			    ((tlb_type == spitfire) &&
 188			     page_mapping(page) != NULL));
 189#else
 190	if (page_mapping(page) != NULL &&
 191	    tlb_type == spitfire)
 192		__flush_icache_page(__pa(page_address(page)));
 193#endif
 194}
 195
 196#define PG_dcache_dirty		PG_arch_1
 197#define PG_dcache_cpu_shift	32UL
 198#define PG_dcache_cpu_mask	\
 199	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
 200
 201#define dcache_dirty_cpu(page) \
 202	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
 203
 204static inline void set_dcache_dirty(struct page *page, int this_cpu)
 205{
 206	unsigned long mask = this_cpu;
 207	unsigned long non_cpu_bits;
 208
 209	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
 210	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
 211
 212	__asm__ __volatile__("1:\n\t"
 213			     "ldx	[%2], %%g7\n\t"
 214			     "and	%%g7, %1, %%g1\n\t"
 215			     "or	%%g1, %0, %%g1\n\t"
 216			     "casx	[%2], %%g7, %%g1\n\t"
 217			     "cmp	%%g7, %%g1\n\t"
 218			     "bne,pn	%%xcc, 1b\n\t"
 219			     " nop"
 220			     : /* no outputs */
 221			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
 222			     : "g1", "g7");
 223}
 224
 225static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
 226{
 227	unsigned long mask = (1UL << PG_dcache_dirty);
 228
 229	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
 230			     "1:\n\t"
 231			     "ldx	[%2], %%g7\n\t"
 232			     "srlx	%%g7, %4, %%g1\n\t"
 233			     "and	%%g1, %3, %%g1\n\t"
 234			     "cmp	%%g1, %0\n\t"
 235			     "bne,pn	%%icc, 2f\n\t"
 236			     " andn	%%g7, %1, %%g1\n\t"
 237			     "casx	[%2], %%g7, %%g1\n\t"
 238			     "cmp	%%g7, %%g1\n\t"
 239			     "bne,pn	%%xcc, 1b\n\t"
 240			     " nop\n"
 241			     "2:"
 242			     : /* no outputs */
 243			     : "r" (cpu), "r" (mask), "r" (&page->flags),
 244			       "i" (PG_dcache_cpu_mask),
 245			       "i" (PG_dcache_cpu_shift)
 246			     : "g1", "g7");
 247}
 248
 249static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
 250{
 251	unsigned long tsb_addr = (unsigned long) ent;
 252
 253	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 254		tsb_addr = __pa(tsb_addr);
 255
 256	__tsb_insert(tsb_addr, tag, pte);
 257}
 258
 259unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
 260unsigned long _PAGE_SZBITS __read_mostly;
 261
 262static void flush_dcache(unsigned long pfn)
 263{
 264	struct page *page;
 265
 266	page = pfn_to_page(pfn);
 267	if (page) {
 268		unsigned long pg_flags;
 269
 270		pg_flags = page->flags;
 271		if (pg_flags & (1UL << PG_dcache_dirty)) {
 272			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
 273				   PG_dcache_cpu_mask);
 274			int this_cpu = get_cpu();
 275
 276			/* This is just to optimize away some function calls
 277			 * in the SMP case.
 278			 */
 279			if (cpu == this_cpu)
 280				flush_dcache_page_impl(page);
 281			else
 282				smp_flush_dcache_page_impl(page, cpu);
 283
 284			clear_dcache_dirty_cpu(page, cpu);
 285
 286			put_cpu();
 287		}
 288	}
 289}
 290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 291void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
 292{
 293	struct mm_struct *mm;
 294	struct tsb *tsb;
 295	unsigned long tag, flags;
 296	unsigned long tsb_index, tsb_hash_shift;
 297	pte_t pte = *ptep;
 298
 299	if (tlb_type != hypervisor) {
 300		unsigned long pfn = pte_pfn(pte);
 301
 302		if (pfn_valid(pfn))
 303			flush_dcache(pfn);
 304	}
 305
 306	mm = vma->vm_mm;
 307
 308	tsb_index = MM_TSB_BASE;
 309	tsb_hash_shift = PAGE_SHIFT;
 
 310
 311	spin_lock_irqsave(&mm->context.lock, flags);
 312
 313#ifdef CONFIG_HUGETLB_PAGE
 314	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
 315		if ((tlb_type == hypervisor &&
 316		     (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
 317		    (tlb_type != hypervisor &&
 318		     (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
 319			tsb_index = MM_TSB_HUGE;
 320			tsb_hash_shift = HPAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 321		}
 322	}
 323#endif
 324
 325	tsb = mm->context.tsb_block[tsb_index].tsb;
 326	tsb += ((address >> tsb_hash_shift) &
 327		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
 328	tag = (address >> 22UL);
 329	tsb_insert(tsb, tag, pte_val(pte));
 330
 331	spin_unlock_irqrestore(&mm->context.lock, flags);
 332}
 333
 334void flush_dcache_page(struct page *page)
 335{
 336	struct address_space *mapping;
 337	int this_cpu;
 338
 339	if (tlb_type == hypervisor)
 340		return;
 341
 342	/* Do not bother with the expensive D-cache flush if it
 343	 * is merely the zero page.  The 'bigcore' testcase in GDB
 344	 * causes this case to run millions of times.
 345	 */
 346	if (page == ZERO_PAGE(0))
 347		return;
 348
 349	this_cpu = get_cpu();
 350
 351	mapping = page_mapping(page);
 352	if (mapping && !mapping_mapped(mapping)) {
 353		int dirty = test_bit(PG_dcache_dirty, &page->flags);
 354		if (dirty) {
 355			int dirty_cpu = dcache_dirty_cpu(page);
 356
 357			if (dirty_cpu == this_cpu)
 358				goto out;
 359			smp_flush_dcache_page_impl(page, dirty_cpu);
 360		}
 361		set_dcache_dirty(page, this_cpu);
 362	} else {
 363		/* We could delay the flush for the !page_mapping
 364		 * case too.  But that case is for exec env/arg
 365		 * pages and those are %99 certainly going to get
 366		 * faulted into the tlb (and thus flushed) anyways.
 367		 */
 368		flush_dcache_page_impl(page);
 369	}
 370
 371out:
 372	put_cpu();
 373}
 374EXPORT_SYMBOL(flush_dcache_page);
 375
 376void __kprobes flush_icache_range(unsigned long start, unsigned long end)
 377{
 378	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
 379	if (tlb_type == spitfire) {
 380		unsigned long kaddr;
 381
 382		/* This code only runs on Spitfire cpus so this is
 383		 * why we can assume _PAGE_PADDR_4U.
 384		 */
 385		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
 386			unsigned long paddr, mask = _PAGE_PADDR_4U;
 387
 388			if (kaddr >= PAGE_OFFSET)
 389				paddr = kaddr & mask;
 390			else {
 391				pgd_t *pgdp = pgd_offset_k(kaddr);
 392				pud_t *pudp = pud_offset(pgdp, kaddr);
 393				pmd_t *pmdp = pmd_offset(pudp, kaddr);
 394				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
 395
 396				paddr = pte_val(*ptep) & mask;
 397			}
 398			__flush_icache_page(paddr);
 399		}
 400	}
 401}
 402EXPORT_SYMBOL(flush_icache_range);
 403
 404void mmu_info(struct seq_file *m)
 405{
 
 
 
 
 
 
 406	if (tlb_type == cheetah)
 407		seq_printf(m, "MMU Type\t: Cheetah\n");
 408	else if (tlb_type == cheetah_plus)
 409		seq_printf(m, "MMU Type\t: Cheetah+\n");
 410	else if (tlb_type == spitfire)
 411		seq_printf(m, "MMU Type\t: Spitfire\n");
 412	else if (tlb_type == hypervisor)
 413		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
 414	else
 415		seq_printf(m, "MMU Type\t: ???\n");
 416
 
 
 
 
 
 
 
 
 
 
 
 417#ifdef CONFIG_DEBUG_DCFLUSH
 418	seq_printf(m, "DCPageFlushes\t: %d\n",
 419		   atomic_read(&dcpage_flushes));
 420#ifdef CONFIG_SMP
 421	seq_printf(m, "DCPageFlushesXC\t: %d\n",
 422		   atomic_read(&dcpage_flushes_xcall));
 423#endif /* CONFIG_SMP */
 424#endif /* CONFIG_DEBUG_DCFLUSH */
 425}
 426
 427struct linux_prom_translation prom_trans[512] __read_mostly;
 428unsigned int prom_trans_ents __read_mostly;
 429
 430unsigned long kern_locked_tte_data;
 431
 432/* The obp translations are saved based on 8k pagesize, since obp can
 433 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
 434 * HI_OBP_ADDRESS range are handled in ktlb.S.
 435 */
 436static inline int in_obp_range(unsigned long vaddr)
 437{
 438	return (vaddr >= LOW_OBP_ADDRESS &&
 439		vaddr < HI_OBP_ADDRESS);
 440}
 441
 442static int cmp_ptrans(const void *a, const void *b)
 443{
 444	const struct linux_prom_translation *x = a, *y = b;
 445
 446	if (x->virt > y->virt)
 447		return 1;
 448	if (x->virt < y->virt)
 449		return -1;
 450	return 0;
 451}
 452
 453/* Read OBP translations property into 'prom_trans[]'.  */
 454static void __init read_obp_translations(void)
 455{
 456	int n, node, ents, first, last, i;
 457
 458	node = prom_finddevice("/virtual-memory");
 459	n = prom_getproplen(node, "translations");
 460	if (unlikely(n == 0 || n == -1)) {
 461		prom_printf("prom_mappings: Couldn't get size.\n");
 462		prom_halt();
 463	}
 464	if (unlikely(n > sizeof(prom_trans))) {
 465		prom_printf("prom_mappings: Size %Zd is too big.\n", n);
 466		prom_halt();
 467	}
 468
 469	if ((n = prom_getproperty(node, "translations",
 470				  (char *)&prom_trans[0],
 471				  sizeof(prom_trans))) == -1) {
 472		prom_printf("prom_mappings: Couldn't get property.\n");
 473		prom_halt();
 474	}
 475
 476	n = n / sizeof(struct linux_prom_translation);
 477
 478	ents = n;
 479
 480	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
 481	     cmp_ptrans, NULL);
 482
 483	/* Now kick out all the non-OBP entries.  */
 484	for (i = 0; i < ents; i++) {
 485		if (in_obp_range(prom_trans[i].virt))
 486			break;
 487	}
 488	first = i;
 489	for (; i < ents; i++) {
 490		if (!in_obp_range(prom_trans[i].virt))
 491			break;
 492	}
 493	last = i;
 494
 495	for (i = 0; i < (last - first); i++) {
 496		struct linux_prom_translation *src = &prom_trans[i + first];
 497		struct linux_prom_translation *dest = &prom_trans[i];
 498
 499		*dest = *src;
 500	}
 501	for (; i < ents; i++) {
 502		struct linux_prom_translation *dest = &prom_trans[i];
 503		dest->virt = dest->size = dest->data = 0x0UL;
 504	}
 505
 506	prom_trans_ents = last - first;
 507
 508	if (tlb_type == spitfire) {
 509		/* Clear diag TTE bits. */
 510		for (i = 0; i < prom_trans_ents; i++)
 511			prom_trans[i].data &= ~0x0003fe0000000000UL;
 512	}
 513
 514	/* Force execute bit on.  */
 515	for (i = 0; i < prom_trans_ents; i++)
 516		prom_trans[i].data |= (tlb_type == hypervisor ?
 517				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
 518}
 519
 520static void __init hypervisor_tlb_lock(unsigned long vaddr,
 521				       unsigned long pte,
 522				       unsigned long mmu)
 523{
 524	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
 525
 526	if (ret != 0) {
 527		prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
 528			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
 529		prom_halt();
 530	}
 531}
 532
 533static unsigned long kern_large_tte(unsigned long paddr);
 534
 535static void __init remap_kernel(void)
 536{
 537	unsigned long phys_page, tte_vaddr, tte_data;
 538	int i, tlb_ent = sparc64_highest_locked_tlbent();
 539
 540	tte_vaddr = (unsigned long) KERNBASE;
 541	phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
 542	tte_data = kern_large_tte(phys_page);
 543
 544	kern_locked_tte_data = tte_data;
 545
 546	/* Now lock us into the TLBs via Hypervisor or OBP. */
 547	if (tlb_type == hypervisor) {
 548		for (i = 0; i < num_kernel_image_mappings; i++) {
 549			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
 550			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
 551			tte_vaddr += 0x400000;
 552			tte_data += 0x400000;
 553		}
 554	} else {
 555		for (i = 0; i < num_kernel_image_mappings; i++) {
 556			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
 557			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
 558			tte_vaddr += 0x400000;
 559			tte_data += 0x400000;
 560		}
 561		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
 562	}
 563	if (tlb_type == cheetah_plus) {
 564		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
 565					    CTX_CHEETAH_PLUS_NUC);
 566		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
 567		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
 568	}
 569}
 570
 571
 572static void __init inherit_prom_mappings(void)
 573{
 574	/* Now fixup OBP's idea about where we really are mapped. */
 575	printk("Remapping the kernel... ");
 576	remap_kernel();
 577	printk("done.\n");
 578}
 579
 580void prom_world(int enter)
 581{
 582	if (!enter)
 583		set_fs((mm_segment_t) { get_thread_current_ds() });
 584
 585	__asm__ __volatile__("flushw");
 586}
 587
 588void __flush_dcache_range(unsigned long start, unsigned long end)
 589{
 590	unsigned long va;
 591
 592	if (tlb_type == spitfire) {
 593		int n = 0;
 594
 595		for (va = start; va < end; va += 32) {
 596			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
 597			if (++n >= 512)
 598				break;
 599		}
 600	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 601		start = __pa(start);
 602		end = __pa(end);
 603		for (va = start; va < end; va += 32)
 604			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 605					     "membar #Sync"
 606					     : /* no outputs */
 607					     : "r" (va),
 608					       "i" (ASI_DCACHE_INVALIDATE));
 609	}
 610}
 611EXPORT_SYMBOL(__flush_dcache_range);
 612
 613/* get_new_mmu_context() uses "cache + 1".  */
 614DEFINE_SPINLOCK(ctx_alloc_lock);
 615unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
 616#define MAX_CTX_NR	(1UL << CTX_NR_BITS)
 617#define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
 618DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619
 620/* Caller does TLB context flushing on local CPU if necessary.
 621 * The caller also ensures that CTX_VALID(mm->context) is false.
 622 *
 623 * We must be careful about boundary cases so that we never
 624 * let the user have CTX 0 (nucleus) or we ever use a CTX
 625 * version of zero (and thus NO_CONTEXT would not be caught
 626 * by version mis-match tests in mmu_context.h).
 627 *
 628 * Always invoked with interrupts disabled.
 629 */
 630void get_new_mmu_context(struct mm_struct *mm)
 631{
 632	unsigned long ctx, new_ctx;
 633	unsigned long orig_pgsz_bits;
 634	unsigned long flags;
 635	int new_version;
 636
 637	spin_lock_irqsave(&ctx_alloc_lock, flags);
 
 
 
 
 638	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
 639	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
 640	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
 641	new_version = 0;
 642	if (new_ctx >= (1 << CTX_NR_BITS)) {
 643		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
 644		if (new_ctx >= ctx) {
 645			int i;
 646			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
 647				CTX_FIRST_VERSION;
 648			if (new_ctx == 1)
 649				new_ctx = CTX_FIRST_VERSION;
 650
 651			/* Don't call memset, for 16 entries that's just
 652			 * plain silly...
 653			 */
 654			mmu_context_bmap[0] = 3;
 655			mmu_context_bmap[1] = 0;
 656			mmu_context_bmap[2] = 0;
 657			mmu_context_bmap[3] = 0;
 658			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
 659				mmu_context_bmap[i + 0] = 0;
 660				mmu_context_bmap[i + 1] = 0;
 661				mmu_context_bmap[i + 2] = 0;
 662				mmu_context_bmap[i + 3] = 0;
 663			}
 664			new_version = 1;
 665			goto out;
 666		}
 667	}
 
 
 668	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
 669	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
 670out:
 671	tlb_context_cache = new_ctx;
 672	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
 673	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
 674
 675	if (unlikely(new_version))
 676		smp_new_mmu_context_version();
 677}
 678
 679static int numa_enabled = 1;
 680static int numa_debug;
 681
 682static int __init early_numa(char *p)
 683{
 684	if (!p)
 685		return 0;
 686
 687	if (strstr(p, "off"))
 688		numa_enabled = 0;
 689
 690	if (strstr(p, "debug"))
 691		numa_debug = 1;
 692
 693	return 0;
 694}
 695early_param("numa", early_numa);
 696
 697#define numadbg(f, a...) \
 698do {	if (numa_debug) \
 699		printk(KERN_INFO f, ## a); \
 700} while (0)
 701
 702static void __init find_ramdisk(unsigned long phys_base)
 703{
 704#ifdef CONFIG_BLK_DEV_INITRD
 705	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
 706		unsigned long ramdisk_image;
 707
 708		/* Older versions of the bootloader only supported a
 709		 * 32-bit physical address for the ramdisk image
 710		 * location, stored at sparc_ramdisk_image.  Newer
 711		 * SILO versions set sparc_ramdisk_image to zero and
 712		 * provide a full 64-bit physical address at
 713		 * sparc_ramdisk_image64.
 714		 */
 715		ramdisk_image = sparc_ramdisk_image;
 716		if (!ramdisk_image)
 717			ramdisk_image = sparc_ramdisk_image64;
 718
 719		/* Another bootloader quirk.  The bootloader normalizes
 720		 * the physical address to KERNBASE, so we have to
 721		 * factor that back out and add in the lowest valid
 722		 * physical page address to get the true physical address.
 723		 */
 724		ramdisk_image -= KERNBASE;
 725		ramdisk_image += phys_base;
 726
 727		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
 728			ramdisk_image, sparc_ramdisk_size);
 729
 730		initrd_start = ramdisk_image;
 731		initrd_end = ramdisk_image + sparc_ramdisk_size;
 732
 733		memblock_reserve(initrd_start, sparc_ramdisk_size);
 734
 735		initrd_start += PAGE_OFFSET;
 736		initrd_end += PAGE_OFFSET;
 737	}
 738#endif
 739}
 740
 741struct node_mem_mask {
 742	unsigned long mask;
 743	unsigned long val;
 744};
 745static struct node_mem_mask node_masks[MAX_NUMNODES];
 746static int num_node_masks;
 747
 
 
 
 
 
 
 
 
 
 
 
 
 748int numa_cpu_lookup_table[NR_CPUS];
 749cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 750
 751#ifdef CONFIG_NEED_MULTIPLE_NODES
 752
 753struct mdesc_mblock {
 754	u64	base;
 755	u64	size;
 756	u64	offset; /* RA-to-PA */
 757};
 758static struct mdesc_mblock *mblocks;
 759static int num_mblocks;
 760
 761static unsigned long ra_to_pa(unsigned long addr)
 762{
 
 763	int i;
 764
 765	for (i = 0; i < num_mblocks; i++) {
 766		struct mdesc_mblock *m = &mblocks[i];
 767
 768		if (addr >= m->base &&
 769		    addr < (m->base + m->size)) {
 770			addr += m->offset;
 771			break;
 772		}
 773	}
 774	return addr;
 
 775}
 776
 777static int find_node(unsigned long addr)
 778{
 779	int i;
 780
 781	addr = ra_to_pa(addr);
 782	for (i = 0; i < num_node_masks; i++) {
 783		struct node_mem_mask *p = &node_masks[i];
 
 784
 785		if ((addr & p->mask) == p->val)
 786			return i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 787	}
 788	return -1;
 
 
 789}
 790
 791static u64 memblock_nid_range(u64 start, u64 end, int *nid)
 792{
 793	*nid = find_node(start);
 794	start += PAGE_SIZE;
 795	while (start < end) {
 796		int n = find_node(start);
 
 
 
 
 
 
 
 
 
 
 
 
 797
 798		if (n != *nid)
 
 
 
 
 
 
 
 
 
 799			break;
 800		start += PAGE_SIZE;
 801	}
 802
 803	if (start > end)
 804		start = end;
 
 
 
 
 805
 806	return start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 807}
 808#endif
 809
 810/* This must be invoked after performing all of the necessary
 811 * memblock_set_node() calls for 'nid'.  We need to be able to get
 812 * correct data from get_pfn_range_for_nid().
 813 */
 814static void __init allocate_node_data(int nid)
 815{
 816	struct pglist_data *p;
 817	unsigned long start_pfn, end_pfn;
 818#ifdef CONFIG_NEED_MULTIPLE_NODES
 819	unsigned long paddr;
 820
 821	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
 822	if (!paddr) {
 
 823		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
 824		prom_halt();
 825	}
 826	NODE_DATA(nid) = __va(paddr);
 827	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
 828
 829	NODE_DATA(nid)->node_id = nid;
 830#endif
 831
 832	p = NODE_DATA(nid);
 833
 834	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 835	p->node_start_pfn = start_pfn;
 836	p->node_spanned_pages = end_pfn - start_pfn;
 837}
 838
 839static void init_node_masks_nonnuma(void)
 840{
 
 841	int i;
 
 842
 843	numadbg("Initializing tables for non-numa.\n");
 844
 845	node_masks[0].mask = node_masks[0].val = 0;
 
 846	num_node_masks = 1;
 847
 
 848	for (i = 0; i < NR_CPUS; i++)
 849		numa_cpu_lookup_table[i] = 0;
 850
 851	cpumask_setall(&numa_cpumask_lookup_table[0]);
 
 852}
 853
 854#ifdef CONFIG_NEED_MULTIPLE_NODES
 855struct pglist_data *node_data[MAX_NUMNODES];
 856
 857EXPORT_SYMBOL(numa_cpu_lookup_table);
 858EXPORT_SYMBOL(numa_cpumask_lookup_table);
 859EXPORT_SYMBOL(node_data);
 860
 861struct mdesc_mlgroup {
 862	u64	node;
 863	u64	latency;
 864	u64	match;
 865	u64	mask;
 866};
 867static struct mdesc_mlgroup *mlgroups;
 868static int num_mlgroups;
 869
 870static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
 871				   u32 cfg_handle)
 872{
 873	u64 arc;
 874
 875	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
 876		u64 target = mdesc_arc_target(md, arc);
 877		const u64 *val;
 878
 879		val = mdesc_get_property(md, target,
 880					 "cfg-handle", NULL);
 881		if (val && *val == cfg_handle)
 882			return 0;
 883	}
 884	return -ENODEV;
 885}
 886
 887static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
 888				    u32 cfg_handle)
 889{
 890	u64 arc, candidate, best_latency = ~(u64)0;
 891
 892	candidate = MDESC_NODE_NULL;
 893	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
 894		u64 target = mdesc_arc_target(md, arc);
 895		const char *name = mdesc_node_name(md, target);
 896		const u64 *val;
 897
 898		if (strcmp(name, "pio-latency-group"))
 899			continue;
 900
 901		val = mdesc_get_property(md, target, "latency", NULL);
 902		if (!val)
 903			continue;
 904
 905		if (*val < best_latency) {
 906			candidate = target;
 907			best_latency = *val;
 908		}
 909	}
 910
 911	if (candidate == MDESC_NODE_NULL)
 912		return -ENODEV;
 913
 914	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
 915}
 916
 917int of_node_to_nid(struct device_node *dp)
 918{
 919	const struct linux_prom64_registers *regs;
 920	struct mdesc_handle *md;
 921	u32 cfg_handle;
 922	int count, nid;
 923	u64 grp;
 924
 925	/* This is the right thing to do on currently supported
 926	 * SUN4U NUMA platforms as well, as the PCI controller does
 927	 * not sit behind any particular memory controller.
 928	 */
 929	if (!mlgroups)
 930		return -1;
 931
 932	regs = of_get_property(dp, "reg", NULL);
 933	if (!regs)
 934		return -1;
 935
 936	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
 937
 938	md = mdesc_grab();
 939
 940	count = 0;
 941	nid = -1;
 942	mdesc_for_each_node_by_name(md, grp, "group") {
 943		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
 944			nid = count;
 945			break;
 946		}
 947		count++;
 948	}
 949
 950	mdesc_release(md);
 951
 952	return nid;
 953}
 954
 955static void __init add_node_ranges(void)
 956{
 957	struct memblock_region *reg;
 
 
 958
 959	for_each_memblock(memory, reg) {
 960		unsigned long size = reg->size;
 961		unsigned long start, end;
 962
 963		start = reg->base;
 964		end = start + size;
 965		while (start < end) {
 966			unsigned long this_end;
 967			int nid;
 968
 969			this_end = memblock_nid_range(start, end, &nid);
 970
 971			numadbg("Setting memblock NUMA node nid[%d] "
 972				"start[%lx] end[%lx]\n",
 973				nid, start, this_end);
 974
 975			memblock_set_node(start, this_end - start, nid);
 
 
 
 976			start = this_end;
 977		}
 978	}
 979}
 980
 981static int __init grab_mlgroups(struct mdesc_handle *md)
 982{
 983	unsigned long paddr;
 984	int count = 0;
 985	u64 node;
 986
 987	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
 988		count++;
 989	if (!count)
 990		return -ENOENT;
 991
 992	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
 993			  SMP_CACHE_BYTES);
 994	if (!paddr)
 995		return -ENOMEM;
 996
 997	mlgroups = __va(paddr);
 998	num_mlgroups = count;
 999
1000	count = 0;
1001	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1002		struct mdesc_mlgroup *m = &mlgroups[count++];
1003		const u64 *val;
1004
1005		m->node = node;
1006
1007		val = mdesc_get_property(md, node, "latency", NULL);
1008		m->latency = *val;
1009		val = mdesc_get_property(md, node, "address-match", NULL);
1010		m->match = *val;
1011		val = mdesc_get_property(md, node, "address-mask", NULL);
1012		m->mask = *val;
1013
1014		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1015			"match[%llx] mask[%llx]\n",
1016			count - 1, m->node, m->latency, m->match, m->mask);
1017	}
1018
1019	return 0;
1020}
1021
1022static int __init grab_mblocks(struct mdesc_handle *md)
1023{
1024	unsigned long paddr;
1025	int count = 0;
1026	u64 node;
1027
1028	mdesc_for_each_node_by_name(md, node, "mblock")
1029		count++;
1030	if (!count)
1031		return -ENOENT;
1032
1033	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1034			  SMP_CACHE_BYTES);
1035	if (!paddr)
1036		return -ENOMEM;
1037
1038	mblocks = __va(paddr);
1039	num_mblocks = count;
1040
1041	count = 0;
1042	mdesc_for_each_node_by_name(md, node, "mblock") {
1043		struct mdesc_mblock *m = &mblocks[count++];
1044		const u64 *val;
1045
1046		val = mdesc_get_property(md, node, "base", NULL);
1047		m->base = *val;
1048		val = mdesc_get_property(md, node, "size", NULL);
1049		m->size = *val;
1050		val = mdesc_get_property(md, node,
1051					 "address-congruence-offset", NULL);
1052		m->offset = *val;
 
 
 
 
 
 
 
1053
1054		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1055			count - 1, m->base, m->size, m->offset);
1056	}
1057
1058	return 0;
1059}
1060
1061static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1062					       u64 grp, cpumask_t *mask)
1063{
1064	u64 arc;
1065
1066	cpumask_clear(mask);
1067
1068	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1069		u64 target = mdesc_arc_target(md, arc);
1070		const char *name = mdesc_node_name(md, target);
1071		const u64 *id;
1072
1073		if (strcmp(name, "cpu"))
1074			continue;
1075		id = mdesc_get_property(md, target, "id", NULL);
1076		if (*id < nr_cpu_ids)
1077			cpumask_set_cpu(*id, mask);
1078	}
1079}
1080
1081static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1082{
1083	int i;
1084
1085	for (i = 0; i < num_mlgroups; i++) {
1086		struct mdesc_mlgroup *m = &mlgroups[i];
1087		if (m->node == node)
1088			return m;
1089	}
1090	return NULL;
1091}
1092
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1094				      int index)
1095{
1096	struct mdesc_mlgroup *candidate = NULL;
1097	u64 arc, best_latency = ~(u64)0;
1098	struct node_mem_mask *n;
1099
1100	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1101		u64 target = mdesc_arc_target(md, arc);
1102		struct mdesc_mlgroup *m = find_mlgroup(target);
1103		if (!m)
1104			continue;
1105		if (m->latency < best_latency) {
1106			candidate = m;
1107			best_latency = m->latency;
1108		}
1109	}
1110	if (!candidate)
1111		return -ENOENT;
1112
1113	if (num_node_masks != index) {
1114		printk(KERN_ERR "Inconsistent NUMA state, "
1115		       "index[%d] != num_node_masks[%d]\n",
1116		       index, num_node_masks);
1117		return -EINVAL;
1118	}
1119
1120	n = &node_masks[num_node_masks++];
1121
1122	n->mask = candidate->mask;
1123	n->val = candidate->match;
1124
1125	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1126		index, n->mask, n->val, candidate->latency);
1127
1128	return 0;
1129}
1130
1131static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1132					 int index)
1133{
1134	cpumask_t mask;
1135	int cpu;
1136
1137	numa_parse_mdesc_group_cpus(md, grp, &mask);
1138
1139	for_each_cpu(cpu, &mask)
1140		numa_cpu_lookup_table[cpu] = index;
1141	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1142
1143	if (numa_debug) {
1144		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1145		for_each_cpu(cpu, &mask)
1146			printk("%d ", cpu);
1147		printk("]\n");
1148	}
1149
1150	return numa_attach_mlgroup(md, grp, index);
1151}
1152
1153static int __init numa_parse_mdesc(void)
1154{
1155	struct mdesc_handle *md = mdesc_grab();
1156	int i, err, count;
1157	u64 node;
1158
1159	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1160	if (node == MDESC_NODE_NULL) {
1161		mdesc_release(md);
1162		return -ENOENT;
1163	}
1164
1165	err = grab_mblocks(md);
1166	if (err < 0)
1167		goto out;
1168
1169	err = grab_mlgroups(md);
1170	if (err < 0)
1171		goto out;
1172
1173	count = 0;
1174	mdesc_for_each_node_by_name(md, node, "group") {
1175		err = numa_parse_mdesc_group(md, node, count);
1176		if (err < 0)
1177			break;
1178		count++;
1179	}
1180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1181	add_node_ranges();
1182
1183	for (i = 0; i < num_node_masks; i++) {
1184		allocate_node_data(i);
1185		node_set_online(i);
1186	}
1187
1188	err = 0;
1189out:
1190	mdesc_release(md);
1191	return err;
1192}
1193
1194static int __init numa_parse_jbus(void)
1195{
1196	unsigned long cpu, index;
1197
1198	/* NUMA node id is encoded in bits 36 and higher, and there is
1199	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1200	 */
1201	index = 0;
1202	for_each_present_cpu(cpu) {
1203		numa_cpu_lookup_table[cpu] = index;
1204		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1205		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1206		node_masks[index].val = cpu << 36UL;
1207
1208		index++;
1209	}
1210	num_node_masks = index;
1211
1212	add_node_ranges();
1213
1214	for (index = 0; index < num_node_masks; index++) {
1215		allocate_node_data(index);
1216		node_set_online(index);
1217	}
1218
1219	return 0;
1220}
1221
1222static int __init numa_parse_sun4u(void)
1223{
1224	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1225		unsigned long ver;
1226
1227		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1228		if ((ver >> 32UL) == __JALAPENO_ID ||
1229		    (ver >> 32UL) == __SERRANO_ID)
1230			return numa_parse_jbus();
1231	}
1232	return -1;
1233}
1234
1235static int __init bootmem_init_numa(void)
1236{
 
1237	int err = -1;
1238
1239	numadbg("bootmem_init_numa()\n");
1240
 
 
 
 
 
 
 
1241	if (numa_enabled) {
1242		if (tlb_type == hypervisor)
1243			err = numa_parse_mdesc();
1244		else
1245			err = numa_parse_sun4u();
1246	}
1247	return err;
1248}
1249
1250#else
1251
1252static int bootmem_init_numa(void)
1253{
1254	return -1;
1255}
1256
1257#endif
1258
1259static void __init bootmem_init_nonnuma(void)
1260{
1261	unsigned long top_of_ram = memblock_end_of_DRAM();
1262	unsigned long total_ram = memblock_phys_mem_size();
1263
1264	numadbg("bootmem_init_nonnuma()\n");
1265
1266	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1267	       top_of_ram, total_ram);
1268	printk(KERN_INFO "Memory hole size: %ldMB\n",
1269	       (top_of_ram - total_ram) >> 20);
1270
1271	init_node_masks_nonnuma();
1272	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
1273	allocate_node_data(0);
1274	node_set_online(0);
1275}
1276
1277static unsigned long __init bootmem_init(unsigned long phys_base)
1278{
1279	unsigned long end_pfn;
1280
1281	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1282	max_pfn = max_low_pfn = end_pfn;
1283	min_low_pfn = (phys_base >> PAGE_SHIFT);
1284
1285	if (bootmem_init_numa() < 0)
1286		bootmem_init_nonnuma();
1287
1288	/* Dump memblock with node info. */
1289	memblock_dump_all();
1290
1291	/* XXX cpu notifier XXX */
1292
1293	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1294	sparse_init();
1295
1296	return end_pfn;
1297}
1298
1299static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1300static int pall_ents __initdata;
1301
1302#ifdef CONFIG_DEBUG_PAGEALLOC
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303static unsigned long __ref kernel_map_range(unsigned long pstart,
1304					    unsigned long pend, pgprot_t prot)
 
1305{
1306	unsigned long vstart = PAGE_OFFSET + pstart;
1307	unsigned long vend = PAGE_OFFSET + pend;
1308	unsigned long alloc_bytes = 0UL;
1309
1310	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1311		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1312			    vstart, vend);
1313		prom_halt();
1314	}
1315
1316	while (vstart < vend) {
1317		unsigned long this_end, paddr = __pa(vstart);
1318		pgd_t *pgd = pgd_offset_k(vstart);
 
1319		pud_t *pud;
1320		pmd_t *pmd;
1321		pte_t *pte;
1322
1323		pud = pud_offset(pgd, vstart);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324		if (pud_none(*pud)) {
1325			pmd_t *new;
1326
1327			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
 
 
 
 
 
 
 
1328			alloc_bytes += PAGE_SIZE;
1329			pud_populate(&init_mm, pud, new);
1330		}
1331
1332		pmd = pmd_offset(pud, vstart);
1333		if (!pmd_present(*pmd)) {
1334			pte_t *new;
1335
1336			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
 
 
 
 
 
 
 
1337			alloc_bytes += PAGE_SIZE;
1338			pmd_populate_kernel(&init_mm, pmd, new);
1339		}
1340
1341		pte = pte_offset_kernel(pmd, vstart);
1342		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1343		if (this_end > vend)
1344			this_end = vend;
1345
1346		while (vstart < this_end) {
1347			pte_val(*pte) = (paddr | pgprot_val(prot));
1348
1349			vstart += PAGE_SIZE;
1350			paddr += PAGE_SIZE;
1351			pte++;
1352		}
1353	}
1354
1355	return alloc_bytes;
1356}
1357
1358extern unsigned int kvmap_linear_patch[1];
1359#endif /* CONFIG_DEBUG_PAGEALLOC */
1360
1361static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1362{
1363	const unsigned long shift_256MB = 28;
1364	const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1365	const unsigned long size_256MB = (1UL << shift_256MB);
1366
1367	while (start < end) {
1368		long remains;
1369
1370		remains = end - start;
1371		if (remains < size_256MB)
1372			break;
1373
1374		if (start & mask_256MB) {
1375			start = (start + size_256MB) & ~mask_256MB;
1376			continue;
1377		}
1378
1379		while (remains >= size_256MB) {
1380			unsigned long index = start >> shift_256MB;
1381
1382			__set_bit(index, kpte_linear_bitmap);
1383
1384			start += size_256MB;
1385			remains -= size_256MB;
1386		}
1387	}
1388}
1389
1390static void __init init_kpte_bitmap(void)
1391{
1392	unsigned long i;
1393
1394	for (i = 0; i < pall_ents; i++) {
1395		unsigned long phys_start, phys_end;
1396
1397		phys_start = pall[i].phys_addr;
1398		phys_end = phys_start + pall[i].reg_size;
 
 
 
1399
1400		mark_kpte_bitmap(phys_start, phys_end);
1401	}
 
1402}
1403
 
 
1404static void __init kernel_physical_mapping_init(void)
1405{
1406#ifdef CONFIG_DEBUG_PAGEALLOC
1407	unsigned long i, mem_alloced = 0UL;
 
1408
 
 
 
1409	for (i = 0; i < pall_ents; i++) {
1410		unsigned long phys_start, phys_end;
1411
1412		phys_start = pall[i].phys_addr;
1413		phys_end = phys_start + pall[i].reg_size;
1414
1415		mem_alloced += kernel_map_range(phys_start, phys_end,
1416						PAGE_KERNEL);
1417	}
1418
1419	printk("Allocated %ld bytes for kernel page tables.\n",
1420	       mem_alloced);
1421
1422	kvmap_linear_patch[0] = 0x01000000; /* nop */
1423	flushi(&kvmap_linear_patch[0]);
1424
 
 
1425	__flush_tlb_all();
1426#endif
1427}
1428
1429#ifdef CONFIG_DEBUG_PAGEALLOC
1430void kernel_map_pages(struct page *page, int numpages, int enable)
1431{
1432	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1433	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1434
1435	kernel_map_range(phys_start, phys_end,
1436			 (enable ? PAGE_KERNEL : __pgprot(0)));
1437
1438	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1439			       PAGE_OFFSET + phys_end);
1440
1441	/* we should perform an IPI and flush all tlbs,
1442	 * but that can deadlock->flush only current cpu.
1443	 */
1444	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1445				 PAGE_OFFSET + phys_end);
1446}
1447#endif
1448
1449unsigned long __init find_ecache_flush_span(unsigned long size)
1450{
1451	int i;
1452
1453	for (i = 0; i < pavail_ents; i++) {
1454		if (pavail[i].reg_size >= size)
1455			return pavail[i].phys_addr;
1456	}
1457
1458	return ~0UL;
1459}
1460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1461static void __init tsb_phys_patch(void)
1462{
1463	struct tsb_ldquad_phys_patch_entry *pquad;
1464	struct tsb_phys_patch_entry *p;
1465
1466	pquad = &__tsb_ldquad_phys_patch;
1467	while (pquad < &__tsb_ldquad_phys_patch_end) {
1468		unsigned long addr = pquad->addr;
1469
1470		if (tlb_type == hypervisor)
1471			*(unsigned int *) addr = pquad->sun4v_insn;
1472		else
1473			*(unsigned int *) addr = pquad->sun4u_insn;
1474		wmb();
1475		__asm__ __volatile__("flush	%0"
1476				     : /* no outputs */
1477				     : "r" (addr));
1478
1479		pquad++;
1480	}
1481
1482	p = &__tsb_phys_patch;
1483	while (p < &__tsb_phys_patch_end) {
1484		unsigned long addr = p->addr;
1485
1486		*(unsigned int *) addr = p->insn;
1487		wmb();
1488		__asm__ __volatile__("flush	%0"
1489				     : /* no outputs */
1490				     : "r" (addr));
1491
1492		p++;
1493	}
1494}
1495
1496/* Don't mark as init, we give this to the Hypervisor.  */
1497#ifndef CONFIG_DEBUG_PAGEALLOC
1498#define NUM_KTSB_DESCR	2
1499#else
1500#define NUM_KTSB_DESCR	1
1501#endif
1502static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1503extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
 
 
 
 
 
 
 
 
 
 
 
 
1504
1505static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1506{
1507	pa >>= KTSB_PHYS_SHIFT;
 
 
 
1508
1509	while (start < end) {
1510		unsigned int *ia = (unsigned int *)(unsigned long)*start;
1511
1512		ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1513		__asm__ __volatile__("flush	%0" : : "r" (ia));
1514
1515		ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1516		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
1517
 
 
 
 
 
 
1518		start++;
1519	}
1520}
1521
1522static void ktsb_phys_patch(void)
1523{
1524	extern unsigned int __swapper_tsb_phys_patch;
1525	extern unsigned int __swapper_tsb_phys_patch_end;
1526	unsigned long ktsb_pa;
1527
1528	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1529	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1530			    &__swapper_tsb_phys_patch_end, ktsb_pa);
1531#ifndef CONFIG_DEBUG_PAGEALLOC
1532	{
1533	extern unsigned int __swapper_4m_tsb_phys_patch;
1534	extern unsigned int __swapper_4m_tsb_phys_patch_end;
1535	ktsb_pa = (kern_base +
1536		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1537	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1538			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1539	}
1540#endif
1541}
1542
1543static void __init sun4v_ktsb_init(void)
1544{
1545	unsigned long ktsb_pa;
1546
1547	/* First KTSB for PAGE_SIZE mappings.  */
1548	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1549
1550	switch (PAGE_SIZE) {
1551	case 8 * 1024:
1552	default:
1553		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1554		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1555		break;
1556
1557	case 64 * 1024:
1558		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1559		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1560		break;
1561
1562	case 512 * 1024:
1563		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1564		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1565		break;
1566
1567	case 4 * 1024 * 1024:
1568		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1569		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1570		break;
1571	}
1572
1573	ktsb_descr[0].assoc = 1;
1574	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1575	ktsb_descr[0].ctx_idx = 0;
1576	ktsb_descr[0].tsb_base = ktsb_pa;
1577	ktsb_descr[0].resv = 0;
1578
1579#ifndef CONFIG_DEBUG_PAGEALLOC
1580	/* Second KTSB for 4MB/256MB mappings.  */
1581	ktsb_pa = (kern_base +
1582		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1583
1584	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1585	ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1586				   HV_PGSZ_MASK_256MB);
 
 
 
1587	ktsb_descr[1].assoc = 1;
1588	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1589	ktsb_descr[1].ctx_idx = 0;
1590	ktsb_descr[1].tsb_base = ktsb_pa;
1591	ktsb_descr[1].resv = 0;
1592#endif
1593}
1594
1595void __cpuinit sun4v_ktsb_register(void)
1596{
1597	unsigned long pa, ret;
1598
1599	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1600
1601	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1602	if (ret != 0) {
1603		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1604			    "errors with %lx\n", pa, ret);
1605		prom_halt();
1606	}
1607}
1608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1609/* paging_init() sets up the page tables */
1610
1611static unsigned long last_valid_pfn;
1612pgd_t swapper_pg_dir[2048];
1613
1614static void sun4u_pgprot_init(void);
1615static void sun4v_pgprot_init(void);
1616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1617void __init paging_init(void)
1618{
1619	unsigned long end_pfn, shift, phys_base;
1620	unsigned long real_end, i;
1621	int node;
 
1622
1623	/* These build time checkes make sure that the dcache_dirty_cpu()
1624	 * page->flags usage will work.
1625	 *
1626	 * When a page gets marked as dcache-dirty, we store the
1627	 * cpu number starting at bit 32 in the page->flags.  Also,
1628	 * functions like clear_dcache_dirty_cpu use the cpu mask
1629	 * in 13-bit signed-immediate instruction fields.
1630	 */
1631
1632	/*
1633	 * Page flags must not reach into upper 32 bits that are used
1634	 * for the cpu number
1635	 */
1636	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1637
1638	/*
1639	 * The bit fields placed in the high range must not reach below
1640	 * the 32 bit boundary. Otherwise we cannot place the cpu field
1641	 * at the 32 bit boundary.
1642	 */
1643	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1644		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1645
1646	BUILD_BUG_ON(NR_CPUS > 4096);
1647
1648	kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1649	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1650
1651	/* Invalidate both kernel TSBs.  */
1652	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1653#ifndef CONFIG_DEBUG_PAGEALLOC
1654	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1655#endif
1656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1657	if (tlb_type == hypervisor)
1658		sun4v_pgprot_init();
1659	else
1660		sun4u_pgprot_init();
1661
1662	if (tlb_type == cheetah_plus ||
1663	    tlb_type == hypervisor) {
1664		tsb_phys_patch();
1665		ktsb_phys_patch();
1666	}
1667
1668	if (tlb_type == hypervisor) {
1669		sun4v_patch_tlb_handlers();
1670		sun4v_ktsb_init();
1671	}
1672
1673	/* Find available physical memory...
1674	 *
1675	 * Read it twice in order to work around a bug in openfirmware.
1676	 * The call to grab this table itself can cause openfirmware to
1677	 * allocate memory, which in turn can take away some space from
1678	 * the list of available memory.  Reading it twice makes sure
1679	 * we really do get the final value.
1680	 */
1681	read_obp_translations();
1682	read_obp_memory("reg", &pall[0], &pall_ents);
1683	read_obp_memory("available", &pavail[0], &pavail_ents);
1684	read_obp_memory("available", &pavail[0], &pavail_ents);
1685
1686	phys_base = 0xffffffffffffffffUL;
1687	for (i = 0; i < pavail_ents; i++) {
1688		phys_base = min(phys_base, pavail[i].phys_addr);
1689		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1690	}
1691
1692	memblock_reserve(kern_base, kern_size);
1693
1694	find_ramdisk(phys_base);
1695
1696	memblock_enforce_memory_limit(cmdline_memory_size);
 
1697
1698	memblock_allow_resize();
1699	memblock_dump_all();
1700
1701	set_bit(0, mmu_context_bmap);
1702
1703	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1704
1705	real_end = (unsigned long)_end;
1706	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1707	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1708	       num_kernel_image_mappings);
1709
1710	/* Set kernel pgd to upper alias so physical page computations
1711	 * work.
1712	 */
1713	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1714	
1715	memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1716
1717	/* Now can init the kernel/bad page tables. */
1718	pud_set(pud_offset(&swapper_pg_dir[0], 0),
1719		swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1720	
1721	inherit_prom_mappings();
1722	
1723	init_kpte_bitmap();
1724
1725	/* Ok, we can use our TLB miss and window trap handlers safely.  */
1726	setup_tba();
1727
1728	__flush_tlb_all();
1729
1730	if (tlb_type == hypervisor)
1731		sun4v_ktsb_register();
1732
1733	prom_build_devicetree();
1734	of_populate_present_mask();
1735#ifndef CONFIG_SMP
1736	of_fill_in_cpu_data();
1737#endif
1738
1739	if (tlb_type == hypervisor) {
1740		sun4v_mdesc_init();
1741		mdesc_populate_present_mask(cpu_all_mask);
1742#ifndef CONFIG_SMP
1743		mdesc_fill_in_cpu_data(cpu_all_mask);
1744#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1745	}
1746
 
 
 
 
 
 
 
 
 
1747	/* Setup bootmem... */
1748	last_valid_pfn = end_pfn = bootmem_init(phys_base);
1749
1750	/* Once the OF device tree and MDESC have been setup, we know
1751	 * the list of possible cpus.  Therefore we can allocate the
1752	 * IRQ stacks.
1753	 */
1754	for_each_possible_cpu(i) {
1755		node = cpu_to_node(i);
1756
1757		softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1758							THREAD_SIZE,
1759							THREAD_SIZE, 0);
1760		hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1761							THREAD_SIZE,
1762							THREAD_SIZE, 0);
1763	}
1764
1765	kernel_physical_mapping_init();
1766
1767	{
1768		unsigned long max_zone_pfns[MAX_NR_ZONES];
1769
1770		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1771
1772		max_zone_pfns[ZONE_NORMAL] = end_pfn;
1773
1774		free_area_init_nodes(max_zone_pfns);
1775	}
1776
1777	printk("Booting Linux...\n");
1778}
1779
1780int __devinit page_in_phys_avail(unsigned long paddr)
1781{
1782	int i;
1783
1784	paddr &= PAGE_MASK;
1785
1786	for (i = 0; i < pavail_ents; i++) {
1787		unsigned long start, end;
1788
1789		start = pavail[i].phys_addr;
1790		end = start + pavail[i].reg_size;
1791
1792		if (paddr >= start && paddr < end)
1793			return 1;
1794	}
1795	if (paddr >= kern_base && paddr < (kern_base + kern_size))
1796		return 1;
1797#ifdef CONFIG_BLK_DEV_INITRD
1798	if (paddr >= __pa(initrd_start) &&
1799	    paddr < __pa(PAGE_ALIGN(initrd_end)))
1800		return 1;
1801#endif
1802
1803	return 0;
1804}
1805
1806static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1807static int pavail_rescan_ents __initdata;
1808
1809/* Certain OBP calls, such as fetching "available" properties, can
1810 * claim physical memory.  So, along with initializing the valid
1811 * address bitmap, what we do here is refetch the physical available
1812 * memory list again, and make sure it provides at least as much
1813 * memory as 'pavail' does.
1814 */
1815static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1816{
 
1817	int i;
1818
1819	read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1820
1821	for (i = 0; i < pavail_ents; i++) {
1822		unsigned long old_start, old_end;
1823
1824		old_start = pavail[i].phys_addr;
1825		old_end = old_start + pavail[i].reg_size;
1826		while (old_start < old_end) {
1827			int n;
1828
1829			for (n = 0; n < pavail_rescan_ents; n++) {
1830				unsigned long new_start, new_end;
1831
1832				new_start = pavail_rescan[n].phys_addr;
1833				new_end = new_start +
1834					pavail_rescan[n].reg_size;
1835
1836				if (new_start <= old_start &&
1837				    new_end >= (old_start + PAGE_SIZE)) {
1838					set_bit(old_start >> 22, bitmap);
1839					goto do_next_page;
1840				}
1841			}
1842
1843			prom_printf("mem_init: Lost memory in pavail\n");
1844			prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1845				    pavail[i].phys_addr,
1846				    pavail[i].reg_size);
1847			prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1848				    pavail_rescan[i].phys_addr,
1849				    pavail_rescan[i].reg_size);
1850			prom_printf("mem_init: Cannot continue, aborting.\n");
1851			prom_halt();
1852
1853		do_next_page:
1854			old_start += PAGE_SIZE;
1855		}
1856	}
1857}
1858
1859static void __init patch_tlb_miss_handler_bitmap(void)
1860{
1861	extern unsigned int valid_addr_bitmap_insn[];
1862	extern unsigned int valid_addr_bitmap_patch[];
1863
1864	valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1865	mb();
1866	valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1867	flushi(&valid_addr_bitmap_insn[0]);
1868}
1869
1870void __init mem_init(void)
1871{
1872	unsigned long codepages, datapages, initpages;
1873	unsigned long addr, last;
1874
1875	addr = PAGE_OFFSET + kern_base;
1876	last = PAGE_ALIGN(kern_size) + addr;
1877	while (addr < last) {
1878		set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1879		addr += PAGE_SIZE;
1880	}
1881
1882	setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1883	patch_tlb_miss_handler_bitmap();
1884
1885	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1886
1887#ifdef CONFIG_NEED_MULTIPLE_NODES
1888	{
1889		int i;
1890		for_each_online_node(i) {
1891			if (NODE_DATA(i)->node_spanned_pages != 0) {
1892				totalram_pages +=
1893					free_all_bootmem_node(NODE_DATA(i));
1894			}
1895		}
1896		totalram_pages += free_low_memory_core_early(MAX_NUMNODES);
1897	}
1898#else
1899	totalram_pages = free_all_bootmem();
1900#endif
1901
1902	/* We subtract one to account for the mem_map_zero page
1903	 * allocated below.
 
 
 
1904	 */
1905	totalram_pages -= 1;
1906	num_physpages = totalram_pages;
1907
1908	/*
1909	 * Set up the zero page, mark it reserved, so that page count
1910	 * is not manipulated when freeing the page from user ptes.
1911	 */
1912	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1913	if (mem_map_zero == NULL) {
1914		prom_printf("paging_init: Cannot alloc zero page.\n");
1915		prom_halt();
1916	}
1917	SetPageReserved(mem_map_zero);
1918
1919	codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1920	codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1921	datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1922	datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1923	initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1924	initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1925
1926	printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1927	       nr_free_pages() << (PAGE_SHIFT-10),
1928	       codepages << (PAGE_SHIFT-10),
1929	       datapages << (PAGE_SHIFT-10), 
1930	       initpages << (PAGE_SHIFT-10), 
1931	       PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1932
1933	if (tlb_type == cheetah || tlb_type == cheetah_plus)
1934		cheetah_ecache_flush_init();
1935}
1936
1937void free_initmem(void)
1938{
1939	unsigned long addr, initend;
1940	int do_free = 1;
1941
1942	/* If the physical memory maps were trimmed by kernel command
1943	 * line options, don't even try freeing this initmem stuff up.
1944	 * The kernel image could have been in the trimmed out region
1945	 * and if so the freeing below will free invalid page structs.
1946	 */
1947	if (cmdline_memory_size)
1948		do_free = 0;
1949
1950	/*
1951	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1952	 */
1953	addr = PAGE_ALIGN((unsigned long)(__init_begin));
1954	initend = (unsigned long)(__init_end) & PAGE_MASK;
1955	for (; addr < initend; addr += PAGE_SIZE) {
1956		unsigned long page;
1957		struct page *p;
1958
1959		page = (addr +
1960			((unsigned long) __va(kern_base)) -
1961			((unsigned long) KERNBASE));
1962		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1963
1964		if (do_free) {
1965			p = virt_to_page(page);
1966
1967			ClearPageReserved(p);
1968			init_page_count(p);
1969			__free_page(p);
1970			num_physpages++;
1971			totalram_pages++;
1972		}
1973	}
1974}
1975
1976#ifdef CONFIG_BLK_DEV_INITRD
1977void free_initrd_mem(unsigned long start, unsigned long end)
1978{
1979	if (start < end)
1980		printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1981	for (; start < end; start += PAGE_SIZE) {
1982		struct page *p = virt_to_page(start);
1983
1984		ClearPageReserved(p);
1985		init_page_count(p);
1986		__free_page(p);
1987		num_physpages++;
1988		totalram_pages++;
1989	}
1990}
1991#endif
1992
1993#define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
1994#define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
1995#define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1996#define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1997#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1998#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1999
2000pgprot_t PAGE_KERNEL __read_mostly;
2001EXPORT_SYMBOL(PAGE_KERNEL);
2002
2003pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2004pgprot_t PAGE_COPY __read_mostly;
2005
2006pgprot_t PAGE_SHARED __read_mostly;
2007EXPORT_SYMBOL(PAGE_SHARED);
2008
2009unsigned long pg_iobits __read_mostly;
2010
2011unsigned long _PAGE_IE __read_mostly;
2012EXPORT_SYMBOL(_PAGE_IE);
2013
2014unsigned long _PAGE_E __read_mostly;
2015EXPORT_SYMBOL(_PAGE_E);
2016
2017unsigned long _PAGE_CACHE __read_mostly;
2018EXPORT_SYMBOL(_PAGE_CACHE);
2019
2020#ifdef CONFIG_SPARSEMEM_VMEMMAP
2021unsigned long vmemmap_table[VMEMMAP_SIZE];
2022
2023int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2024{
2025	unsigned long vstart = (unsigned long) start;
2026	unsigned long vend = (unsigned long) (start + nr);
2027	unsigned long phys_start = (vstart - VMEMMAP_BASE);
2028	unsigned long phys_end = (vend - VMEMMAP_BASE);
2029	unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2030	unsigned long end = VMEMMAP_ALIGN(phys_end);
2031	unsigned long pte_base;
2032
2033	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2034		    _PAGE_CP_4U | _PAGE_CV_4U |
2035		    _PAGE_P_4U | _PAGE_W_4U);
2036	if (tlb_type == hypervisor)
2037		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2038			    _PAGE_CP_4V | _PAGE_CV_4V |
2039			    _PAGE_P_4V | _PAGE_W_4V);
 
2040
2041	for (; addr < end; addr += VMEMMAP_CHUNK) {
2042		unsigned long *vmem_pp =
2043			vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2044		void *block;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2045
2046		if (!(*vmem_pp & _PAGE_VALID)) {
2047			block = vmemmap_alloc_block(1UL << 22, node);
2048			if (!block)
2049				return -ENOMEM;
2050
2051			*vmem_pp = pte_base | __pa(block);
2052
2053			printk(KERN_INFO "[%p-%p] page_structs=%lu "
2054			       "node=%d entry=%lu/%lu\n", start, block, nr,
2055			       node,
2056			       addr >> VMEMMAP_CHUNK_SHIFT,
2057			       VMEMMAP_SIZE);
2058		}
2059	}
 
2060	return 0;
2061}
 
 
 
 
 
2062#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2063
2064static void prot_init_common(unsigned long page_none,
2065			     unsigned long page_shared,
2066			     unsigned long page_copy,
2067			     unsigned long page_readonly,
2068			     unsigned long page_exec_bit)
2069{
2070	PAGE_COPY = __pgprot(page_copy);
2071	PAGE_SHARED = __pgprot(page_shared);
2072
2073	protection_map[0x0] = __pgprot(page_none);
2074	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2075	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2076	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2077	protection_map[0x4] = __pgprot(page_readonly);
2078	protection_map[0x5] = __pgprot(page_readonly);
2079	protection_map[0x6] = __pgprot(page_copy);
2080	protection_map[0x7] = __pgprot(page_copy);
2081	protection_map[0x8] = __pgprot(page_none);
2082	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2083	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2084	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2085	protection_map[0xc] = __pgprot(page_readonly);
2086	protection_map[0xd] = __pgprot(page_readonly);
2087	protection_map[0xe] = __pgprot(page_shared);
2088	protection_map[0xf] = __pgprot(page_shared);
2089}
2090
2091static void __init sun4u_pgprot_init(void)
2092{
2093	unsigned long page_none, page_shared, page_copy, page_readonly;
2094	unsigned long page_exec_bit;
 
2095
2096	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2097				_PAGE_CACHE_4U | _PAGE_P_4U |
2098				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2099				_PAGE_EXEC_4U);
2100	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2101				       _PAGE_CACHE_4U | _PAGE_P_4U |
2102				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2103				       _PAGE_EXEC_4U | _PAGE_L_4U);
2104
2105	_PAGE_IE = _PAGE_IE_4U;
2106	_PAGE_E = _PAGE_E_4U;
2107	_PAGE_CACHE = _PAGE_CACHE_4U;
2108
2109	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2110		     __ACCESS_BITS_4U | _PAGE_E_4U);
2111
2112#ifdef CONFIG_DEBUG_PAGEALLOC
2113	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2114		0xfffff80000000000UL;
2115#else
2116	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2117		0xfffff80000000000UL;
2118#endif
2119	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2120				   _PAGE_P_4U | _PAGE_W_4U);
2121
2122	/* XXX Should use 256MB on Panther. XXX */
2123	kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2124
2125	_PAGE_SZBITS = _PAGE_SZBITS_4U;
2126	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2127			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2128			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2129
2130
2131	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2132	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2133		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2134	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2135		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2136	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2137			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2138
2139	page_exec_bit = _PAGE_EXEC_4U;
2140
2141	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2142			 page_exec_bit);
2143}
2144
2145static void __init sun4v_pgprot_init(void)
2146{
2147	unsigned long page_none, page_shared, page_copy, page_readonly;
2148	unsigned long page_exec_bit;
 
2149
2150	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2151				_PAGE_CACHE_4V | _PAGE_P_4V |
2152				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2153				_PAGE_EXEC_4V);
2154	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2155
2156	_PAGE_IE = _PAGE_IE_4V;
2157	_PAGE_E = _PAGE_E_4V;
2158	_PAGE_CACHE = _PAGE_CACHE_4V;
2159
2160#ifdef CONFIG_DEBUG_PAGEALLOC
2161	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2162		0xfffff80000000000UL;
2163#else
2164	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2165		0xfffff80000000000UL;
2166#endif
2167	kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2168				   _PAGE_P_4V | _PAGE_W_4V);
2169
2170#ifdef CONFIG_DEBUG_PAGEALLOC
2171	kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2172		0xfffff80000000000UL;
2173#else
2174	kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2175		0xfffff80000000000UL;
2176#endif
2177	kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2178				   _PAGE_P_4V | _PAGE_W_4V);
2179
2180	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2181		     __ACCESS_BITS_4V | _PAGE_E_4V);
2182
2183	_PAGE_SZBITS = _PAGE_SZBITS_4V;
2184	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2185			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2186			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2187			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2188
2189	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2190	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2191		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2192	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2193		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2194	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2195			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2196
2197	page_exec_bit = _PAGE_EXEC_4V;
2198
2199	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2200			 page_exec_bit);
2201}
2202
2203unsigned long pte_sz_bits(unsigned long sz)
2204{
2205	if (tlb_type == hypervisor) {
2206		switch (sz) {
2207		case 8 * 1024:
2208		default:
2209			return _PAGE_SZ8K_4V;
2210		case 64 * 1024:
2211			return _PAGE_SZ64K_4V;
2212		case 512 * 1024:
2213			return _PAGE_SZ512K_4V;
2214		case 4 * 1024 * 1024:
2215			return _PAGE_SZ4MB_4V;
2216		}
2217	} else {
2218		switch (sz) {
2219		case 8 * 1024:
2220		default:
2221			return _PAGE_SZ8K_4U;
2222		case 64 * 1024:
2223			return _PAGE_SZ64K_4U;
2224		case 512 * 1024:
2225			return _PAGE_SZ512K_4U;
2226		case 4 * 1024 * 1024:
2227			return _PAGE_SZ4MB_4U;
2228		}
2229	}
2230}
2231
2232pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2233{
2234	pte_t pte;
2235
2236	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2237	pte_val(pte) |= (((unsigned long)space) << 32);
2238	pte_val(pte) |= pte_sz_bits(page_size);
2239
2240	return pte;
2241}
2242
2243static unsigned long kern_large_tte(unsigned long paddr)
2244{
2245	unsigned long val;
2246
2247	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2248	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2249	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2250	if (tlb_type == hypervisor)
2251		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2252		       _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2253		       _PAGE_EXEC_4V | _PAGE_W_4V);
2254
2255	return val | paddr;
2256}
2257
2258/* If not locked, zap it. */
2259void __flush_tlb_all(void)
2260{
2261	unsigned long pstate;
2262	int i;
2263
2264	__asm__ __volatile__("flushw\n\t"
2265			     "rdpr	%%pstate, %0\n\t"
2266			     "wrpr	%0, %1, %%pstate"
2267			     : "=r" (pstate)
2268			     : "i" (PSTATE_IE));
2269	if (tlb_type == hypervisor) {
2270		sun4v_mmu_demap_all();
2271	} else if (tlb_type == spitfire) {
2272		for (i = 0; i < 64; i++) {
2273			/* Spitfire Errata #32 workaround */
2274			/* NOTE: Always runs on spitfire, so no
2275			 *       cheetah+ page size encodings.
2276			 */
2277			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2278					     "flush	%%g6"
2279					     : /* No outputs */
2280					     : "r" (0),
2281					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2282
2283			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2284				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2285						     "membar #Sync"
2286						     : /* no outputs */
2287						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2288				spitfire_put_dtlb_data(i, 0x0UL);
2289			}
2290
2291			/* Spitfire Errata #32 workaround */
2292			/* NOTE: Always runs on spitfire, so no
2293			 *       cheetah+ page size encodings.
2294			 */
2295			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2296					     "flush	%%g6"
2297					     : /* No outputs */
2298					     : "r" (0),
2299					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2300
2301			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2302				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2303						     "membar #Sync"
2304						     : /* no outputs */
2305						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2306				spitfire_put_itlb_data(i, 0x0UL);
2307			}
2308		}
2309	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2310		cheetah_flush_dtlb_all();
2311		cheetah_flush_itlb_all();
2312	}
2313	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2314			     : : "r" (pstate));
2315}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  arch/sparc64/mm/init.c
   4 *
   5 *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
   6 *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   7 */
   8 
   9#include <linux/extable.h>
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/string.h>
  13#include <linux/init.h>
  14#include <linux/memblock.h>
  15#include <linux/mm.h>
  16#include <linux/hugetlb.h>
  17#include <linux/initrd.h>
  18#include <linux/swap.h>
  19#include <linux/pagemap.h>
  20#include <linux/poison.h>
  21#include <linux/fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/kprobes.h>
  24#include <linux/cache.h>
  25#include <linux/sort.h>
  26#include <linux/ioport.h>
  27#include <linux/percpu.h>
 
  28#include <linux/mmzone.h>
  29#include <linux/gfp.h>
  30#include <linux/bootmem_info.h>
  31
  32#include <asm/head.h>
  33#include <asm/page.h>
  34#include <asm/pgalloc.h>
 
  35#include <asm/oplib.h>
  36#include <asm/iommu.h>
  37#include <asm/io.h>
  38#include <linux/uaccess.h>
  39#include <asm/mmu_context.h>
  40#include <asm/tlbflush.h>
  41#include <asm/dma.h>
  42#include <asm/starfire.h>
  43#include <asm/tlb.h>
  44#include <asm/spitfire.h>
  45#include <asm/sections.h>
  46#include <asm/tsb.h>
  47#include <asm/hypervisor.h>
  48#include <asm/prom.h>
  49#include <asm/mdesc.h>
  50#include <asm/cpudata.h>
  51#include <asm/setup.h>
  52#include <asm/irq.h>
  53
  54#include "init_64.h"
  55
  56unsigned long kern_linear_pte_xor[4] __read_mostly;
  57static unsigned long page_cache4v_flag;
  58
  59/* A bitmap, two bits for every 256MB of physical memory.  These two
  60 * bits determine what page size we use for kernel linear
  61 * translations.  They form an index into kern_linear_pte_xor[].  The
  62 * value in the indexed slot is XOR'd with the TLB miss virtual
  63 * address to form the resulting TTE.  The mapping is:
  64 *
  65 *	0	==>	4MB
  66 *	1	==>	256MB
  67 *	2	==>	2GB
  68 *	3	==>	16GB
  69 *
  70 * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
  71 * support 2GB pages, and hopefully future cpus will support the 16GB
  72 * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
  73 * if these larger page sizes are not supported by the cpu.
  74 *
  75 * It would be nice to determine this from the machine description
  76 * 'cpu' properties, but we need to have this table setup before the
  77 * MDESC is initialized.
  78 */
 
  79
  80#ifndef CONFIG_DEBUG_PAGEALLOC
  81/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
  82 * Space is allocated for this right after the trap table in
  83 * arch/sparc64/kernel/head.S
  84 */
  85extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  86#endif
  87extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  88
  89static unsigned long cpu_pgsz_mask;
  90
  91#define MAX_BANKS	1024
  92
  93static struct linux_prom64_registers pavail[MAX_BANKS];
  94static int pavail_ents;
  95
  96u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
  97
  98static int cmp_p64(const void *a, const void *b)
  99{
 100	const struct linux_prom64_registers *x = a, *y = b;
 101
 102	if (x->phys_addr > y->phys_addr)
 103		return 1;
 104	if (x->phys_addr < y->phys_addr)
 105		return -1;
 106	return 0;
 107}
 108
 109static void __init read_obp_memory(const char *property,
 110				   struct linux_prom64_registers *regs,
 111				   int *num_ents)
 112{
 113	phandle node = prom_finddevice("/memory");
 114	int prop_size = prom_getproplen(node, property);
 115	int ents, ret, i;
 116
 117	ents = prop_size / sizeof(struct linux_prom64_registers);
 118	if (ents > MAX_BANKS) {
 119		prom_printf("The machine has more %s property entries than "
 120			    "this kernel can support (%d).\n",
 121			    property, MAX_BANKS);
 122		prom_halt();
 123	}
 124
 125	ret = prom_getproperty(node, property, (char *) regs, prop_size);
 126	if (ret == -1) {
 127		prom_printf("Couldn't get %s property from /memory.\n",
 128				property);
 129		prom_halt();
 130	}
 131
 132	/* Sanitize what we got from the firmware, by page aligning
 133	 * everything.
 134	 */
 135	for (i = 0; i < ents; i++) {
 136		unsigned long base, size;
 137
 138		base = regs[i].phys_addr;
 139		size = regs[i].reg_size;
 140
 141		size &= PAGE_MASK;
 142		if (base & ~PAGE_MASK) {
 143			unsigned long new_base = PAGE_ALIGN(base);
 144
 145			size -= new_base - base;
 146			if ((long) size < 0L)
 147				size = 0UL;
 148			base = new_base;
 149		}
 150		if (size == 0UL) {
 151			/* If it is empty, simply get rid of it.
 152			 * This simplifies the logic of the other
 153			 * functions that process these arrays.
 154			 */
 155			memmove(&regs[i], &regs[i + 1],
 156				(ents - i - 1) * sizeof(regs[0]));
 157			i--;
 158			ents--;
 159			continue;
 160		}
 161		regs[i].phys_addr = base;
 162		regs[i].reg_size = size;
 163	}
 164
 165	*num_ents = ents;
 166
 167	sort(regs, ents, sizeof(struct linux_prom64_registers),
 168	     cmp_p64, NULL);
 169}
 170
 
 
 
 
 171/* Kernel physical address base and size in bytes.  */
 172unsigned long kern_base __read_mostly;
 173unsigned long kern_size __read_mostly;
 174
 175/* Initial ramdisk setup */
 176extern unsigned long sparc_ramdisk_image64;
 177extern unsigned int sparc_ramdisk_image;
 178extern unsigned int sparc_ramdisk_size;
 179
 180struct page *mem_map_zero __read_mostly;
 181EXPORT_SYMBOL(mem_map_zero);
 182
 183unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
 184
 185unsigned long sparc64_kern_pri_context __read_mostly;
 186unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
 187unsigned long sparc64_kern_sec_context __read_mostly;
 188
 189int num_kernel_image_mappings;
 190
 191#ifdef CONFIG_DEBUG_DCFLUSH
 192atomic_t dcpage_flushes = ATOMIC_INIT(0);
 193#ifdef CONFIG_SMP
 194atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
 195#endif
 196#endif
 197
 198inline void flush_dcache_page_impl(struct page *page)
 199{
 200	BUG_ON(tlb_type == hypervisor);
 201#ifdef CONFIG_DEBUG_DCFLUSH
 202	atomic_inc(&dcpage_flushes);
 203#endif
 204
 205#ifdef DCACHE_ALIASING_POSSIBLE
 206	__flush_dcache_page(page_address(page),
 207			    ((tlb_type == spitfire) &&
 208			     page_mapping_file(page) != NULL));
 209#else
 210	if (page_mapping_file(page) != NULL &&
 211	    tlb_type == spitfire)
 212		__flush_icache_page(__pa(page_address(page)));
 213#endif
 214}
 215
 216#define PG_dcache_dirty		PG_arch_1
 217#define PG_dcache_cpu_shift	32UL
 218#define PG_dcache_cpu_mask	\
 219	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
 220
 221#define dcache_dirty_cpu(page) \
 222	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
 223
 224static inline void set_dcache_dirty(struct page *page, int this_cpu)
 225{
 226	unsigned long mask = this_cpu;
 227	unsigned long non_cpu_bits;
 228
 229	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
 230	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
 231
 232	__asm__ __volatile__("1:\n\t"
 233			     "ldx	[%2], %%g7\n\t"
 234			     "and	%%g7, %1, %%g1\n\t"
 235			     "or	%%g1, %0, %%g1\n\t"
 236			     "casx	[%2], %%g7, %%g1\n\t"
 237			     "cmp	%%g7, %%g1\n\t"
 238			     "bne,pn	%%xcc, 1b\n\t"
 239			     " nop"
 240			     : /* no outputs */
 241			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
 242			     : "g1", "g7");
 243}
 244
 245static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
 246{
 247	unsigned long mask = (1UL << PG_dcache_dirty);
 248
 249	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
 250			     "1:\n\t"
 251			     "ldx	[%2], %%g7\n\t"
 252			     "srlx	%%g7, %4, %%g1\n\t"
 253			     "and	%%g1, %3, %%g1\n\t"
 254			     "cmp	%%g1, %0\n\t"
 255			     "bne,pn	%%icc, 2f\n\t"
 256			     " andn	%%g7, %1, %%g1\n\t"
 257			     "casx	[%2], %%g7, %%g1\n\t"
 258			     "cmp	%%g7, %%g1\n\t"
 259			     "bne,pn	%%xcc, 1b\n\t"
 260			     " nop\n"
 261			     "2:"
 262			     : /* no outputs */
 263			     : "r" (cpu), "r" (mask), "r" (&page->flags),
 264			       "i" (PG_dcache_cpu_mask),
 265			       "i" (PG_dcache_cpu_shift)
 266			     : "g1", "g7");
 267}
 268
 269static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
 270{
 271	unsigned long tsb_addr = (unsigned long) ent;
 272
 273	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 274		tsb_addr = __pa(tsb_addr);
 275
 276	__tsb_insert(tsb_addr, tag, pte);
 277}
 278
 279unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
 
 280
 281static void flush_dcache(unsigned long pfn)
 282{
 283	struct page *page;
 284
 285	page = pfn_to_page(pfn);
 286	if (page) {
 287		unsigned long pg_flags;
 288
 289		pg_flags = page->flags;
 290		if (pg_flags & (1UL << PG_dcache_dirty)) {
 291			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
 292				   PG_dcache_cpu_mask);
 293			int this_cpu = get_cpu();
 294
 295			/* This is just to optimize away some function calls
 296			 * in the SMP case.
 297			 */
 298			if (cpu == this_cpu)
 299				flush_dcache_page_impl(page);
 300			else
 301				smp_flush_dcache_page_impl(page, cpu);
 302
 303			clear_dcache_dirty_cpu(page, cpu);
 304
 305			put_cpu();
 306		}
 307	}
 308}
 309
 310/* mm->context.lock must be held */
 311static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
 312				    unsigned long tsb_hash_shift, unsigned long address,
 313				    unsigned long tte)
 314{
 315	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
 316	unsigned long tag;
 317
 318	if (unlikely(!tsb))
 319		return;
 320
 321	tsb += ((address >> tsb_hash_shift) &
 322		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
 323	tag = (address >> 22UL);
 324	tsb_insert(tsb, tag, tte);
 325}
 326
 327#ifdef CONFIG_HUGETLB_PAGE
 328static int __init hugetlbpage_init(void)
 329{
 330	hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT);
 331	hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT);
 332	hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT);
 333	hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT);
 334
 335	return 0;
 336}
 337
 338arch_initcall(hugetlbpage_init);
 339
 340static void __init pud_huge_patch(void)
 341{
 342	struct pud_huge_patch_entry *p;
 343	unsigned long addr;
 344
 345	p = &__pud_huge_patch;
 346	addr = p->addr;
 347	*(unsigned int *)addr = p->insn;
 348
 349	__asm__ __volatile__("flush %0" : : "r" (addr));
 350}
 351
 352bool __init arch_hugetlb_valid_size(unsigned long size)
 353{
 354	unsigned int hugepage_shift = ilog2(size);
 355	unsigned short hv_pgsz_idx;
 356	unsigned int hv_pgsz_mask;
 357
 358	switch (hugepage_shift) {
 359	case HPAGE_16GB_SHIFT:
 360		hv_pgsz_mask = HV_PGSZ_MASK_16GB;
 361		hv_pgsz_idx = HV_PGSZ_IDX_16GB;
 362		pud_huge_patch();
 363		break;
 364	case HPAGE_2GB_SHIFT:
 365		hv_pgsz_mask = HV_PGSZ_MASK_2GB;
 366		hv_pgsz_idx = HV_PGSZ_IDX_2GB;
 367		break;
 368	case HPAGE_256MB_SHIFT:
 369		hv_pgsz_mask = HV_PGSZ_MASK_256MB;
 370		hv_pgsz_idx = HV_PGSZ_IDX_256MB;
 371		break;
 372	case HPAGE_SHIFT:
 373		hv_pgsz_mask = HV_PGSZ_MASK_4MB;
 374		hv_pgsz_idx = HV_PGSZ_IDX_4MB;
 375		break;
 376	case HPAGE_64K_SHIFT:
 377		hv_pgsz_mask = HV_PGSZ_MASK_64K;
 378		hv_pgsz_idx = HV_PGSZ_IDX_64K;
 379		break;
 380	default:
 381		hv_pgsz_mask = 0;
 382	}
 383
 384	if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U)
 385		return false;
 386
 387	return true;
 388}
 389#endif	/* CONFIG_HUGETLB_PAGE */
 390
 391void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
 392{
 393	struct mm_struct *mm;
 394	unsigned long flags;
 395	bool is_huge_tsb;
 
 396	pte_t pte = *ptep;
 397
 398	if (tlb_type != hypervisor) {
 399		unsigned long pfn = pte_pfn(pte);
 400
 401		if (pfn_valid(pfn))
 402			flush_dcache(pfn);
 403	}
 404
 405	mm = vma->vm_mm;
 406
 407	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
 408	if (!pte_accessible(mm, pte))
 409		return;
 410
 411	spin_lock_irqsave(&mm->context.lock, flags);
 412
 413	is_huge_tsb = false;
 414#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 415	if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
 416		unsigned long hugepage_size = PAGE_SIZE;
 417
 418		if (is_vm_hugetlb_page(vma))
 419			hugepage_size = huge_page_size(hstate_vma(vma));
 420
 421		if (hugepage_size >= PUD_SIZE) {
 422			unsigned long mask = 0x1ffc00000UL;
 423
 424			/* Transfer bits [32:22] from address to resolve
 425			 * at 4M granularity.
 426			 */
 427			pte_val(pte) &= ~mask;
 428			pte_val(pte) |= (address & mask);
 429		} else if (hugepage_size >= PMD_SIZE) {
 430			/* We are fabricating 8MB pages using 4MB
 431			 * real hw pages.
 432			 */
 433			pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
 434		}
 435
 436		if (hugepage_size >= PMD_SIZE) {
 437			__update_mmu_tsb_insert(mm, MM_TSB_HUGE,
 438				REAL_HPAGE_SHIFT, address, pte_val(pte));
 439			is_huge_tsb = true;
 440		}
 441	}
 442#endif
 443	if (!is_huge_tsb)
 444		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
 445					address, pte_val(pte));
 
 
 
 446
 447	spin_unlock_irqrestore(&mm->context.lock, flags);
 448}
 449
 450void flush_dcache_page(struct page *page)
 451{
 452	struct address_space *mapping;
 453	int this_cpu;
 454
 455	if (tlb_type == hypervisor)
 456		return;
 457
 458	/* Do not bother with the expensive D-cache flush if it
 459	 * is merely the zero page.  The 'bigcore' testcase in GDB
 460	 * causes this case to run millions of times.
 461	 */
 462	if (page == ZERO_PAGE(0))
 463		return;
 464
 465	this_cpu = get_cpu();
 466
 467	mapping = page_mapping_file(page);
 468	if (mapping && !mapping_mapped(mapping)) {
 469		int dirty = test_bit(PG_dcache_dirty, &page->flags);
 470		if (dirty) {
 471			int dirty_cpu = dcache_dirty_cpu(page);
 472
 473			if (dirty_cpu == this_cpu)
 474				goto out;
 475			smp_flush_dcache_page_impl(page, dirty_cpu);
 476		}
 477		set_dcache_dirty(page, this_cpu);
 478	} else {
 479		/* We could delay the flush for the !page_mapping
 480		 * case too.  But that case is for exec env/arg
 481		 * pages and those are %99 certainly going to get
 482		 * faulted into the tlb (and thus flushed) anyways.
 483		 */
 484		flush_dcache_page_impl(page);
 485	}
 486
 487out:
 488	put_cpu();
 489}
 490EXPORT_SYMBOL(flush_dcache_page);
 491
 492void __kprobes flush_icache_range(unsigned long start, unsigned long end)
 493{
 494	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
 495	if (tlb_type == spitfire) {
 496		unsigned long kaddr;
 497
 498		/* This code only runs on Spitfire cpus so this is
 499		 * why we can assume _PAGE_PADDR_4U.
 500		 */
 501		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
 502			unsigned long paddr, mask = _PAGE_PADDR_4U;
 503
 504			if (kaddr >= PAGE_OFFSET)
 505				paddr = kaddr & mask;
 506			else {
 507				pte_t *ptep = virt_to_kpte(kaddr);
 
 
 
 508
 509				paddr = pte_val(*ptep) & mask;
 510			}
 511			__flush_icache_page(paddr);
 512		}
 513	}
 514}
 515EXPORT_SYMBOL(flush_icache_range);
 516
 517void mmu_info(struct seq_file *m)
 518{
 519	static const char *pgsz_strings[] = {
 520		"8K", "64K", "512K", "4MB", "32MB",
 521		"256MB", "2GB", "16GB",
 522	};
 523	int i, printed;
 524
 525	if (tlb_type == cheetah)
 526		seq_printf(m, "MMU Type\t: Cheetah\n");
 527	else if (tlb_type == cheetah_plus)
 528		seq_printf(m, "MMU Type\t: Cheetah+\n");
 529	else if (tlb_type == spitfire)
 530		seq_printf(m, "MMU Type\t: Spitfire\n");
 531	else if (tlb_type == hypervisor)
 532		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
 533	else
 534		seq_printf(m, "MMU Type\t: ???\n");
 535
 536	seq_printf(m, "MMU PGSZs\t: ");
 537	printed = 0;
 538	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
 539		if (cpu_pgsz_mask & (1UL << i)) {
 540			seq_printf(m, "%s%s",
 541				   printed ? "," : "", pgsz_strings[i]);
 542			printed++;
 543		}
 544	}
 545	seq_putc(m, '\n');
 546
 547#ifdef CONFIG_DEBUG_DCFLUSH
 548	seq_printf(m, "DCPageFlushes\t: %d\n",
 549		   atomic_read(&dcpage_flushes));
 550#ifdef CONFIG_SMP
 551	seq_printf(m, "DCPageFlushesXC\t: %d\n",
 552		   atomic_read(&dcpage_flushes_xcall));
 553#endif /* CONFIG_SMP */
 554#endif /* CONFIG_DEBUG_DCFLUSH */
 555}
 556
 557struct linux_prom_translation prom_trans[512] __read_mostly;
 558unsigned int prom_trans_ents __read_mostly;
 559
 560unsigned long kern_locked_tte_data;
 561
 562/* The obp translations are saved based on 8k pagesize, since obp can
 563 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
 564 * HI_OBP_ADDRESS range are handled in ktlb.S.
 565 */
 566static inline int in_obp_range(unsigned long vaddr)
 567{
 568	return (vaddr >= LOW_OBP_ADDRESS &&
 569		vaddr < HI_OBP_ADDRESS);
 570}
 571
 572static int cmp_ptrans(const void *a, const void *b)
 573{
 574	const struct linux_prom_translation *x = a, *y = b;
 575
 576	if (x->virt > y->virt)
 577		return 1;
 578	if (x->virt < y->virt)
 579		return -1;
 580	return 0;
 581}
 582
 583/* Read OBP translations property into 'prom_trans[]'.  */
 584static void __init read_obp_translations(void)
 585{
 586	int n, node, ents, first, last, i;
 587
 588	node = prom_finddevice("/virtual-memory");
 589	n = prom_getproplen(node, "translations");
 590	if (unlikely(n == 0 || n == -1)) {
 591		prom_printf("prom_mappings: Couldn't get size.\n");
 592		prom_halt();
 593	}
 594	if (unlikely(n > sizeof(prom_trans))) {
 595		prom_printf("prom_mappings: Size %d is too big.\n", n);
 596		prom_halt();
 597	}
 598
 599	if ((n = prom_getproperty(node, "translations",
 600				  (char *)&prom_trans[0],
 601				  sizeof(prom_trans))) == -1) {
 602		prom_printf("prom_mappings: Couldn't get property.\n");
 603		prom_halt();
 604	}
 605
 606	n = n / sizeof(struct linux_prom_translation);
 607
 608	ents = n;
 609
 610	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
 611	     cmp_ptrans, NULL);
 612
 613	/* Now kick out all the non-OBP entries.  */
 614	for (i = 0; i < ents; i++) {
 615		if (in_obp_range(prom_trans[i].virt))
 616			break;
 617	}
 618	first = i;
 619	for (; i < ents; i++) {
 620		if (!in_obp_range(prom_trans[i].virt))
 621			break;
 622	}
 623	last = i;
 624
 625	for (i = 0; i < (last - first); i++) {
 626		struct linux_prom_translation *src = &prom_trans[i + first];
 627		struct linux_prom_translation *dest = &prom_trans[i];
 628
 629		*dest = *src;
 630	}
 631	for (; i < ents; i++) {
 632		struct linux_prom_translation *dest = &prom_trans[i];
 633		dest->virt = dest->size = dest->data = 0x0UL;
 634	}
 635
 636	prom_trans_ents = last - first;
 637
 638	if (tlb_type == spitfire) {
 639		/* Clear diag TTE bits. */
 640		for (i = 0; i < prom_trans_ents; i++)
 641			prom_trans[i].data &= ~0x0003fe0000000000UL;
 642	}
 643
 644	/* Force execute bit on.  */
 645	for (i = 0; i < prom_trans_ents; i++)
 646		prom_trans[i].data |= (tlb_type == hypervisor ?
 647				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
 648}
 649
 650static void __init hypervisor_tlb_lock(unsigned long vaddr,
 651				       unsigned long pte,
 652				       unsigned long mmu)
 653{
 654	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
 655
 656	if (ret != 0) {
 657		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
 658			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
 659		prom_halt();
 660	}
 661}
 662
 663static unsigned long kern_large_tte(unsigned long paddr);
 664
 665static void __init remap_kernel(void)
 666{
 667	unsigned long phys_page, tte_vaddr, tte_data;
 668	int i, tlb_ent = sparc64_highest_locked_tlbent();
 669
 670	tte_vaddr = (unsigned long) KERNBASE;
 671	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
 672	tte_data = kern_large_tte(phys_page);
 673
 674	kern_locked_tte_data = tte_data;
 675
 676	/* Now lock us into the TLBs via Hypervisor or OBP. */
 677	if (tlb_type == hypervisor) {
 678		for (i = 0; i < num_kernel_image_mappings; i++) {
 679			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
 680			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
 681			tte_vaddr += 0x400000;
 682			tte_data += 0x400000;
 683		}
 684	} else {
 685		for (i = 0; i < num_kernel_image_mappings; i++) {
 686			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
 687			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
 688			tte_vaddr += 0x400000;
 689			tte_data += 0x400000;
 690		}
 691		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
 692	}
 693	if (tlb_type == cheetah_plus) {
 694		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
 695					    CTX_CHEETAH_PLUS_NUC);
 696		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
 697		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
 698	}
 699}
 700
 701
 702static void __init inherit_prom_mappings(void)
 703{
 704	/* Now fixup OBP's idea about where we really are mapped. */
 705	printk("Remapping the kernel... ");
 706	remap_kernel();
 707	printk("done.\n");
 708}
 709
 710void prom_world(int enter)
 711{
 712	if (!enter)
 713		set_fs(get_fs());
 714
 715	__asm__ __volatile__("flushw");
 716}
 717
 718void __flush_dcache_range(unsigned long start, unsigned long end)
 719{
 720	unsigned long va;
 721
 722	if (tlb_type == spitfire) {
 723		int n = 0;
 724
 725		for (va = start; va < end; va += 32) {
 726			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
 727			if (++n >= 512)
 728				break;
 729		}
 730	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 731		start = __pa(start);
 732		end = __pa(end);
 733		for (va = start; va < end; va += 32)
 734			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 735					     "membar #Sync"
 736					     : /* no outputs */
 737					     : "r" (va),
 738					       "i" (ASI_DCACHE_INVALIDATE));
 739	}
 740}
 741EXPORT_SYMBOL(__flush_dcache_range);
 742
 743/* get_new_mmu_context() uses "cache + 1".  */
 744DEFINE_SPINLOCK(ctx_alloc_lock);
 745unsigned long tlb_context_cache = CTX_FIRST_VERSION;
 746#define MAX_CTX_NR	(1UL << CTX_NR_BITS)
 747#define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
 748DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
 749DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
 750
 751static void mmu_context_wrap(void)
 752{
 753	unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
 754	unsigned long new_ver, new_ctx, old_ctx;
 755	struct mm_struct *mm;
 756	int cpu;
 757
 758	bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
 759
 760	/* Reserve kernel context */
 761	set_bit(0, mmu_context_bmap);
 762
 763	new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
 764	if (unlikely(new_ver == 0))
 765		new_ver = CTX_FIRST_VERSION;
 766	tlb_context_cache = new_ver;
 767
 768	/*
 769	 * Make sure that any new mm that are added into per_cpu_secondary_mm,
 770	 * are going to go through get_new_mmu_context() path.
 771	 */
 772	mb();
 773
 774	/*
 775	 * Updated versions to current on those CPUs that had valid secondary
 776	 * contexts
 777	 */
 778	for_each_online_cpu(cpu) {
 779		/*
 780		 * If a new mm is stored after we took this mm from the array,
 781		 * it will go into get_new_mmu_context() path, because we
 782		 * already bumped the version in tlb_context_cache.
 783		 */
 784		mm = per_cpu(per_cpu_secondary_mm, cpu);
 785
 786		if (unlikely(!mm || mm == &init_mm))
 787			continue;
 788
 789		old_ctx = mm->context.sparc64_ctx_val;
 790		if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
 791			new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
 792			set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
 793			mm->context.sparc64_ctx_val = new_ctx;
 794		}
 795	}
 796}
 797
 798/* Caller does TLB context flushing on local CPU if necessary.
 799 * The caller also ensures that CTX_VALID(mm->context) is false.
 800 *
 801 * We must be careful about boundary cases so that we never
 802 * let the user have CTX 0 (nucleus) or we ever use a CTX
 803 * version of zero (and thus NO_CONTEXT would not be caught
 804 * by version mis-match tests in mmu_context.h).
 805 *
 806 * Always invoked with interrupts disabled.
 807 */
 808void get_new_mmu_context(struct mm_struct *mm)
 809{
 810	unsigned long ctx, new_ctx;
 811	unsigned long orig_pgsz_bits;
 
 
 812
 813	spin_lock(&ctx_alloc_lock);
 814retry:
 815	/* wrap might have happened, test again if our context became valid */
 816	if (unlikely(CTX_VALID(mm->context)))
 817		goto out;
 818	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
 819	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
 820	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
 
 821	if (new_ctx >= (1 << CTX_NR_BITS)) {
 822		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
 823		if (new_ctx >= ctx) {
 824			mmu_context_wrap();
 825			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826		}
 827	}
 828	if (mm->context.sparc64_ctx_val)
 829		cpumask_clear(mm_cpumask(mm));
 830	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
 831	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
 
 832	tlb_context_cache = new_ctx;
 833	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
 834out:
 835	spin_unlock(&ctx_alloc_lock);
 
 
 836}
 837
 838static int numa_enabled = 1;
 839static int numa_debug;
 840
 841static int __init early_numa(char *p)
 842{
 843	if (!p)
 844		return 0;
 845
 846	if (strstr(p, "off"))
 847		numa_enabled = 0;
 848
 849	if (strstr(p, "debug"))
 850		numa_debug = 1;
 851
 852	return 0;
 853}
 854early_param("numa", early_numa);
 855
 856#define numadbg(f, a...) \
 857do {	if (numa_debug) \
 858		printk(KERN_INFO f, ## a); \
 859} while (0)
 860
 861static void __init find_ramdisk(unsigned long phys_base)
 862{
 863#ifdef CONFIG_BLK_DEV_INITRD
 864	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
 865		unsigned long ramdisk_image;
 866
 867		/* Older versions of the bootloader only supported a
 868		 * 32-bit physical address for the ramdisk image
 869		 * location, stored at sparc_ramdisk_image.  Newer
 870		 * SILO versions set sparc_ramdisk_image to zero and
 871		 * provide a full 64-bit physical address at
 872		 * sparc_ramdisk_image64.
 873		 */
 874		ramdisk_image = sparc_ramdisk_image;
 875		if (!ramdisk_image)
 876			ramdisk_image = sparc_ramdisk_image64;
 877
 878		/* Another bootloader quirk.  The bootloader normalizes
 879		 * the physical address to KERNBASE, so we have to
 880		 * factor that back out and add in the lowest valid
 881		 * physical page address to get the true physical address.
 882		 */
 883		ramdisk_image -= KERNBASE;
 884		ramdisk_image += phys_base;
 885
 886		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
 887			ramdisk_image, sparc_ramdisk_size);
 888
 889		initrd_start = ramdisk_image;
 890		initrd_end = ramdisk_image + sparc_ramdisk_size;
 891
 892		memblock_reserve(initrd_start, sparc_ramdisk_size);
 893
 894		initrd_start += PAGE_OFFSET;
 895		initrd_end += PAGE_OFFSET;
 896	}
 897#endif
 898}
 899
 900struct node_mem_mask {
 901	unsigned long mask;
 902	unsigned long match;
 903};
 904static struct node_mem_mask node_masks[MAX_NUMNODES];
 905static int num_node_masks;
 906
 907#ifdef CONFIG_NUMA
 908
 909struct mdesc_mlgroup {
 910	u64	node;
 911	u64	latency;
 912	u64	match;
 913	u64	mask;
 914};
 915
 916static struct mdesc_mlgroup *mlgroups;
 917static int num_mlgroups;
 918
 919int numa_cpu_lookup_table[NR_CPUS];
 920cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 921
 
 
 922struct mdesc_mblock {
 923	u64	base;
 924	u64	size;
 925	u64	offset; /* RA-to-PA */
 926};
 927static struct mdesc_mblock *mblocks;
 928static int num_mblocks;
 929
 930static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
 931{
 932	struct mdesc_mblock *m = NULL;
 933	int i;
 934
 935	for (i = 0; i < num_mblocks; i++) {
 936		m = &mblocks[i];
 937
 938		if (addr >= m->base &&
 939		    addr < (m->base + m->size)) {
 
 940			break;
 941		}
 942	}
 943
 944	return m;
 945}
 946
 947static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
 948{
 949	int prev_nid, new_nid;
 950
 951	prev_nid = NUMA_NO_NODE;
 952	for ( ; start < end; start += PAGE_SIZE) {
 953		for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
 954			struct node_mem_mask *p = &node_masks[new_nid];
 955
 956			if ((start & p->mask) == p->match) {
 957				if (prev_nid == NUMA_NO_NODE)
 958					prev_nid = new_nid;
 959				break;
 960			}
 961		}
 962
 963		if (new_nid == num_node_masks) {
 964			prev_nid = 0;
 965			WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
 966				  start);
 967			break;
 968		}
 969
 970		if (prev_nid != new_nid)
 971			break;
 972	}
 973	*nid = prev_nid;
 974
 975	return start > end ? end : start;
 976}
 977
 978static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
 979{
 980	u64 ret_end, pa_start, m_mask, m_match, m_end;
 981	struct mdesc_mblock *mblock;
 982	int _nid, i;
 983
 984	if (tlb_type != hypervisor)
 985		return memblock_nid_range_sun4u(start, end, nid);
 986
 987	mblock = addr_to_mblock(start);
 988	if (!mblock) {
 989		WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
 990			  start);
 991
 992		_nid = 0;
 993		ret_end = end;
 994		goto done;
 995	}
 996
 997	pa_start = start + mblock->offset;
 998	m_match = 0;
 999	m_mask = 0;
1000
1001	for (_nid = 0; _nid < num_node_masks; _nid++) {
1002		struct node_mem_mask *const m = &node_masks[_nid];
1003
1004		if ((pa_start & m->mask) == m->match) {
1005			m_match = m->match;
1006			m_mask = m->mask;
1007			break;
1008		}
1009	}
1010
1011	if (num_node_masks == _nid) {
1012		/* We could not find NUMA group, so default to 0, but lets
1013		 * search for latency group, so we could calculate the correct
1014		 * end address that we return
1015		 */
1016		_nid = 0;
1017
1018		for (i = 0; i < num_mlgroups; i++) {
1019			struct mdesc_mlgroup *const m = &mlgroups[i];
1020
1021			if ((pa_start & m->mask) == m->match) {
1022				m_match = m->match;
1023				m_mask = m->mask;
1024				break;
1025			}
1026		}
1027
1028		if (i == num_mlgroups) {
1029			WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1030				  start);
1031
1032			ret_end = end;
1033			goto done;
1034		}
1035	}
1036
1037	/*
1038	 * Each latency group has match and mask, and each memory block has an
1039	 * offset.  An address belongs to a latency group if its address matches
1040	 * the following formula: ((addr + offset) & mask) == match
1041	 * It is, however, slow to check every single page if it matches a
1042	 * particular latency group. As optimization we calculate end value by
1043	 * using bit arithmetics.
1044	 */
1045	m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1046	m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1047	ret_end = m_end > end ? end : m_end;
1048
1049done:
1050	*nid = _nid;
1051	return ret_end;
1052}
1053#endif
1054
1055/* This must be invoked after performing all of the necessary
1056 * memblock_set_node() calls for 'nid'.  We need to be able to get
1057 * correct data from get_pfn_range_for_nid().
1058 */
1059static void __init allocate_node_data(int nid)
1060{
1061	struct pglist_data *p;
1062	unsigned long start_pfn, end_pfn;
1063#ifdef CONFIG_NUMA
 
1064
1065	NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data),
1066					     SMP_CACHE_BYTES, nid);
1067	if (!NODE_DATA(nid)) {
1068		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1069		prom_halt();
1070	}
 
 
1071
1072	NODE_DATA(nid)->node_id = nid;
1073#endif
1074
1075	p = NODE_DATA(nid);
1076
1077	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1078	p->node_start_pfn = start_pfn;
1079	p->node_spanned_pages = end_pfn - start_pfn;
1080}
1081
1082static void init_node_masks_nonnuma(void)
1083{
1084#ifdef CONFIG_NUMA
1085	int i;
1086#endif
1087
1088	numadbg("Initializing tables for non-numa.\n");
1089
1090	node_masks[0].mask = 0;
1091	node_masks[0].match = 0;
1092	num_node_masks = 1;
1093
1094#ifdef CONFIG_NUMA
1095	for (i = 0; i < NR_CPUS; i++)
1096		numa_cpu_lookup_table[i] = 0;
1097
1098	cpumask_setall(&numa_cpumask_lookup_table[0]);
1099#endif
1100}
1101
1102#ifdef CONFIG_NUMA
1103struct pglist_data *node_data[MAX_NUMNODES];
1104
1105EXPORT_SYMBOL(numa_cpu_lookup_table);
1106EXPORT_SYMBOL(numa_cpumask_lookup_table);
1107EXPORT_SYMBOL(node_data);
1108
 
 
 
 
 
 
 
 
 
1109static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1110				   u32 cfg_handle)
1111{
1112	u64 arc;
1113
1114	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1115		u64 target = mdesc_arc_target(md, arc);
1116		const u64 *val;
1117
1118		val = mdesc_get_property(md, target,
1119					 "cfg-handle", NULL);
1120		if (val && *val == cfg_handle)
1121			return 0;
1122	}
1123	return -ENODEV;
1124}
1125
1126static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1127				    u32 cfg_handle)
1128{
1129	u64 arc, candidate, best_latency = ~(u64)0;
1130
1131	candidate = MDESC_NODE_NULL;
1132	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1133		u64 target = mdesc_arc_target(md, arc);
1134		const char *name = mdesc_node_name(md, target);
1135		const u64 *val;
1136
1137		if (strcmp(name, "pio-latency-group"))
1138			continue;
1139
1140		val = mdesc_get_property(md, target, "latency", NULL);
1141		if (!val)
1142			continue;
1143
1144		if (*val < best_latency) {
1145			candidate = target;
1146			best_latency = *val;
1147		}
1148	}
1149
1150	if (candidate == MDESC_NODE_NULL)
1151		return -ENODEV;
1152
1153	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1154}
1155
1156int of_node_to_nid(struct device_node *dp)
1157{
1158	const struct linux_prom64_registers *regs;
1159	struct mdesc_handle *md;
1160	u32 cfg_handle;
1161	int count, nid;
1162	u64 grp;
1163
1164	/* This is the right thing to do on currently supported
1165	 * SUN4U NUMA platforms as well, as the PCI controller does
1166	 * not sit behind any particular memory controller.
1167	 */
1168	if (!mlgroups)
1169		return -1;
1170
1171	regs = of_get_property(dp, "reg", NULL);
1172	if (!regs)
1173		return -1;
1174
1175	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1176
1177	md = mdesc_grab();
1178
1179	count = 0;
1180	nid = NUMA_NO_NODE;
1181	mdesc_for_each_node_by_name(md, grp, "group") {
1182		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1183			nid = count;
1184			break;
1185		}
1186		count++;
1187	}
1188
1189	mdesc_release(md);
1190
1191	return nid;
1192}
1193
1194static void __init add_node_ranges(void)
1195{
1196	phys_addr_t start, end;
1197	unsigned long prev_max;
1198	u64 i;
1199
1200memblock_resized:
1201	prev_max = memblock.memory.max;
 
1202
1203	for_each_mem_range(i, &start, &end) {
 
1204		while (start < end) {
1205			unsigned long this_end;
1206			int nid;
1207
1208			this_end = memblock_nid_range(start, end, &nid);
1209
1210			numadbg("Setting memblock NUMA node nid[%d] "
1211				"start[%llx] end[%lx]\n",
1212				nid, start, this_end);
1213
1214			memblock_set_node(start, this_end - start,
1215					  &memblock.memory, nid);
1216			if (memblock.memory.max != prev_max)
1217				goto memblock_resized;
1218			start = this_end;
1219		}
1220	}
1221}
1222
1223static int __init grab_mlgroups(struct mdesc_handle *md)
1224{
1225	unsigned long paddr;
1226	int count = 0;
1227	u64 node;
1228
1229	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1230		count++;
1231	if (!count)
1232		return -ENOENT;
1233
1234	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
1235				    SMP_CACHE_BYTES);
1236	if (!paddr)
1237		return -ENOMEM;
1238
1239	mlgroups = __va(paddr);
1240	num_mlgroups = count;
1241
1242	count = 0;
1243	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1244		struct mdesc_mlgroup *m = &mlgroups[count++];
1245		const u64 *val;
1246
1247		m->node = node;
1248
1249		val = mdesc_get_property(md, node, "latency", NULL);
1250		m->latency = *val;
1251		val = mdesc_get_property(md, node, "address-match", NULL);
1252		m->match = *val;
1253		val = mdesc_get_property(md, node, "address-mask", NULL);
1254		m->mask = *val;
1255
1256		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1257			"match[%llx] mask[%llx]\n",
1258			count - 1, m->node, m->latency, m->match, m->mask);
1259	}
1260
1261	return 0;
1262}
1263
1264static int __init grab_mblocks(struct mdesc_handle *md)
1265{
1266	unsigned long paddr;
1267	int count = 0;
1268	u64 node;
1269
1270	mdesc_for_each_node_by_name(md, node, "mblock")
1271		count++;
1272	if (!count)
1273		return -ENOENT;
1274
1275	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
1276				    SMP_CACHE_BYTES);
1277	if (!paddr)
1278		return -ENOMEM;
1279
1280	mblocks = __va(paddr);
1281	num_mblocks = count;
1282
1283	count = 0;
1284	mdesc_for_each_node_by_name(md, node, "mblock") {
1285		struct mdesc_mblock *m = &mblocks[count++];
1286		const u64 *val;
1287
1288		val = mdesc_get_property(md, node, "base", NULL);
1289		m->base = *val;
1290		val = mdesc_get_property(md, node, "size", NULL);
1291		m->size = *val;
1292		val = mdesc_get_property(md, node,
1293					 "address-congruence-offset", NULL);
1294
1295		/* The address-congruence-offset property is optional.
1296		 * Explicity zero it be identifty this.
1297		 */
1298		if (val)
1299			m->offset = *val;
1300		else
1301			m->offset = 0UL;
1302
1303		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1304			count - 1, m->base, m->size, m->offset);
1305	}
1306
1307	return 0;
1308}
1309
1310static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1311					       u64 grp, cpumask_t *mask)
1312{
1313	u64 arc;
1314
1315	cpumask_clear(mask);
1316
1317	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1318		u64 target = mdesc_arc_target(md, arc);
1319		const char *name = mdesc_node_name(md, target);
1320		const u64 *id;
1321
1322		if (strcmp(name, "cpu"))
1323			continue;
1324		id = mdesc_get_property(md, target, "id", NULL);
1325		if (*id < nr_cpu_ids)
1326			cpumask_set_cpu(*id, mask);
1327	}
1328}
1329
1330static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1331{
1332	int i;
1333
1334	for (i = 0; i < num_mlgroups; i++) {
1335		struct mdesc_mlgroup *m = &mlgroups[i];
1336		if (m->node == node)
1337			return m;
1338	}
1339	return NULL;
1340}
1341
1342int __node_distance(int from, int to)
1343{
1344	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1345		pr_warn("Returning default NUMA distance value for %d->%d\n",
1346			from, to);
1347		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1348	}
1349	return numa_latency[from][to];
1350}
1351EXPORT_SYMBOL(__node_distance);
1352
1353static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1354{
1355	int i;
1356
1357	for (i = 0; i < MAX_NUMNODES; i++) {
1358		struct node_mem_mask *n = &node_masks[i];
1359
1360		if ((grp->mask == n->mask) && (grp->match == n->match))
1361			break;
1362	}
1363	return i;
1364}
1365
1366static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1367						 u64 grp, int index)
1368{
1369	u64 arc;
1370
1371	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1372		int tnode;
1373		u64 target = mdesc_arc_target(md, arc);
1374		struct mdesc_mlgroup *m = find_mlgroup(target);
1375
1376		if (!m)
1377			continue;
1378		tnode = find_best_numa_node_for_mlgroup(m);
1379		if (tnode == MAX_NUMNODES)
1380			continue;
1381		numa_latency[index][tnode] = m->latency;
1382	}
1383}
1384
1385static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1386				      int index)
1387{
1388	struct mdesc_mlgroup *candidate = NULL;
1389	u64 arc, best_latency = ~(u64)0;
1390	struct node_mem_mask *n;
1391
1392	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1393		u64 target = mdesc_arc_target(md, arc);
1394		struct mdesc_mlgroup *m = find_mlgroup(target);
1395		if (!m)
1396			continue;
1397		if (m->latency < best_latency) {
1398			candidate = m;
1399			best_latency = m->latency;
1400		}
1401	}
1402	if (!candidate)
1403		return -ENOENT;
1404
1405	if (num_node_masks != index) {
1406		printk(KERN_ERR "Inconsistent NUMA state, "
1407		       "index[%d] != num_node_masks[%d]\n",
1408		       index, num_node_masks);
1409		return -EINVAL;
1410	}
1411
1412	n = &node_masks[num_node_masks++];
1413
1414	n->mask = candidate->mask;
1415	n->match = candidate->match;
1416
1417	numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1418		index, n->mask, n->match, candidate->latency);
1419
1420	return 0;
1421}
1422
1423static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1424					 int index)
1425{
1426	cpumask_t mask;
1427	int cpu;
1428
1429	numa_parse_mdesc_group_cpus(md, grp, &mask);
1430
1431	for_each_cpu(cpu, &mask)
1432		numa_cpu_lookup_table[cpu] = index;
1433	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1434
1435	if (numa_debug) {
1436		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1437		for_each_cpu(cpu, &mask)
1438			printk("%d ", cpu);
1439		printk("]\n");
1440	}
1441
1442	return numa_attach_mlgroup(md, grp, index);
1443}
1444
1445static int __init numa_parse_mdesc(void)
1446{
1447	struct mdesc_handle *md = mdesc_grab();
1448	int i, j, err, count;
1449	u64 node;
1450
1451	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1452	if (node == MDESC_NODE_NULL) {
1453		mdesc_release(md);
1454		return -ENOENT;
1455	}
1456
1457	err = grab_mblocks(md);
1458	if (err < 0)
1459		goto out;
1460
1461	err = grab_mlgroups(md);
1462	if (err < 0)
1463		goto out;
1464
1465	count = 0;
1466	mdesc_for_each_node_by_name(md, node, "group") {
1467		err = numa_parse_mdesc_group(md, node, count);
1468		if (err < 0)
1469			break;
1470		count++;
1471	}
1472
1473	count = 0;
1474	mdesc_for_each_node_by_name(md, node, "group") {
1475		find_numa_latencies_for_group(md, node, count);
1476		count++;
1477	}
1478
1479	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1480	for (i = 0; i < MAX_NUMNODES; i++) {
1481		u64 self_latency = numa_latency[i][i];
1482
1483		for (j = 0; j < MAX_NUMNODES; j++) {
1484			numa_latency[i][j] =
1485				(numa_latency[i][j] * LOCAL_DISTANCE) /
1486				self_latency;
1487		}
1488	}
1489
1490	add_node_ranges();
1491
1492	for (i = 0; i < num_node_masks; i++) {
1493		allocate_node_data(i);
1494		node_set_online(i);
1495	}
1496
1497	err = 0;
1498out:
1499	mdesc_release(md);
1500	return err;
1501}
1502
1503static int __init numa_parse_jbus(void)
1504{
1505	unsigned long cpu, index;
1506
1507	/* NUMA node id is encoded in bits 36 and higher, and there is
1508	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1509	 */
1510	index = 0;
1511	for_each_present_cpu(cpu) {
1512		numa_cpu_lookup_table[cpu] = index;
1513		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1514		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1515		node_masks[index].match = cpu << 36UL;
1516
1517		index++;
1518	}
1519	num_node_masks = index;
1520
1521	add_node_ranges();
1522
1523	for (index = 0; index < num_node_masks; index++) {
1524		allocate_node_data(index);
1525		node_set_online(index);
1526	}
1527
1528	return 0;
1529}
1530
1531static int __init numa_parse_sun4u(void)
1532{
1533	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1534		unsigned long ver;
1535
1536		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1537		if ((ver >> 32UL) == __JALAPENO_ID ||
1538		    (ver >> 32UL) == __SERRANO_ID)
1539			return numa_parse_jbus();
1540	}
1541	return -1;
1542}
1543
1544static int __init bootmem_init_numa(void)
1545{
1546	int i, j;
1547	int err = -1;
1548
1549	numadbg("bootmem_init_numa()\n");
1550
1551	/* Some sane defaults for numa latency values */
1552	for (i = 0; i < MAX_NUMNODES; i++) {
1553		for (j = 0; j < MAX_NUMNODES; j++)
1554			numa_latency[i][j] = (i == j) ?
1555				LOCAL_DISTANCE : REMOTE_DISTANCE;
1556	}
1557
1558	if (numa_enabled) {
1559		if (tlb_type == hypervisor)
1560			err = numa_parse_mdesc();
1561		else
1562			err = numa_parse_sun4u();
1563	}
1564	return err;
1565}
1566
1567#else
1568
1569static int bootmem_init_numa(void)
1570{
1571	return -1;
1572}
1573
1574#endif
1575
1576static void __init bootmem_init_nonnuma(void)
1577{
1578	unsigned long top_of_ram = memblock_end_of_DRAM();
1579	unsigned long total_ram = memblock_phys_mem_size();
1580
1581	numadbg("bootmem_init_nonnuma()\n");
1582
1583	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1584	       top_of_ram, total_ram);
1585	printk(KERN_INFO "Memory hole size: %ldMB\n",
1586	       (top_of_ram - total_ram) >> 20);
1587
1588	init_node_masks_nonnuma();
1589	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1590	allocate_node_data(0);
1591	node_set_online(0);
1592}
1593
1594static unsigned long __init bootmem_init(unsigned long phys_base)
1595{
1596	unsigned long end_pfn;
1597
1598	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1599	max_pfn = max_low_pfn = end_pfn;
1600	min_low_pfn = (phys_base >> PAGE_SHIFT);
1601
1602	if (bootmem_init_numa() < 0)
1603		bootmem_init_nonnuma();
1604
1605	/* Dump memblock with node info. */
1606	memblock_dump_all();
1607
1608	/* XXX cpu notifier XXX */
1609
 
1610	sparse_init();
1611
1612	return end_pfn;
1613}
1614
1615static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1616static int pall_ents __initdata;
1617
1618static unsigned long max_phys_bits = 40;
1619
1620bool kern_addr_valid(unsigned long addr)
1621{
1622	pgd_t *pgd;
1623	p4d_t *p4d;
1624	pud_t *pud;
1625	pmd_t *pmd;
1626	pte_t *pte;
1627
1628	if ((long)addr < 0L) {
1629		unsigned long pa = __pa(addr);
1630
1631		if ((pa >> max_phys_bits) != 0UL)
1632			return false;
1633
1634		return pfn_valid(pa >> PAGE_SHIFT);
1635	}
1636
1637	if (addr >= (unsigned long) KERNBASE &&
1638	    addr < (unsigned long)&_end)
1639		return true;
1640
1641	pgd = pgd_offset_k(addr);
1642	if (pgd_none(*pgd))
1643		return false;
1644
1645	p4d = p4d_offset(pgd, addr);
1646	if (p4d_none(*p4d))
1647		return false;
1648
1649	pud = pud_offset(p4d, addr);
1650	if (pud_none(*pud))
1651		return false;
1652
1653	if (pud_large(*pud))
1654		return pfn_valid(pud_pfn(*pud));
1655
1656	pmd = pmd_offset(pud, addr);
1657	if (pmd_none(*pmd))
1658		return false;
1659
1660	if (pmd_large(*pmd))
1661		return pfn_valid(pmd_pfn(*pmd));
1662
1663	pte = pte_offset_kernel(pmd, addr);
1664	if (pte_none(*pte))
1665		return false;
1666
1667	return pfn_valid(pte_pfn(*pte));
1668}
1669EXPORT_SYMBOL(kern_addr_valid);
1670
1671static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1672					      unsigned long vend,
1673					      pud_t *pud)
1674{
1675	const unsigned long mask16gb = (1UL << 34) - 1UL;
1676	u64 pte_val = vstart;
1677
1678	/* Each PUD is 8GB */
1679	if ((vstart & mask16gb) ||
1680	    (vend - vstart <= mask16gb)) {
1681		pte_val ^= kern_linear_pte_xor[2];
1682		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1683
1684		return vstart + PUD_SIZE;
1685	}
1686
1687	pte_val ^= kern_linear_pte_xor[3];
1688	pte_val |= _PAGE_PUD_HUGE;
1689
1690	vend = vstart + mask16gb + 1UL;
1691	while (vstart < vend) {
1692		pud_val(*pud) = pte_val;
1693
1694		pte_val += PUD_SIZE;
1695		vstart += PUD_SIZE;
1696		pud++;
1697	}
1698	return vstart;
1699}
1700
1701static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1702				   bool guard)
1703{
1704	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1705		return true;
1706
1707	return false;
1708}
1709
1710static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1711					      unsigned long vend,
1712					      pmd_t *pmd)
1713{
1714	const unsigned long mask256mb = (1UL << 28) - 1UL;
1715	const unsigned long mask2gb = (1UL << 31) - 1UL;
1716	u64 pte_val = vstart;
1717
1718	/* Each PMD is 8MB */
1719	if ((vstart & mask256mb) ||
1720	    (vend - vstart <= mask256mb)) {
1721		pte_val ^= kern_linear_pte_xor[0];
1722		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1723
1724		return vstart + PMD_SIZE;
1725	}
1726
1727	if ((vstart & mask2gb) ||
1728	    (vend - vstart <= mask2gb)) {
1729		pte_val ^= kern_linear_pte_xor[1];
1730		pte_val |= _PAGE_PMD_HUGE;
1731		vend = vstart + mask256mb + 1UL;
1732	} else {
1733		pte_val ^= kern_linear_pte_xor[2];
1734		pte_val |= _PAGE_PMD_HUGE;
1735		vend = vstart + mask2gb + 1UL;
1736	}
1737
1738	while (vstart < vend) {
1739		pmd_val(*pmd) = pte_val;
1740
1741		pte_val += PMD_SIZE;
1742		vstart += PMD_SIZE;
1743		pmd++;
1744	}
1745
1746	return vstart;
1747}
1748
1749static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1750				   bool guard)
1751{
1752	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1753		return true;
1754
1755	return false;
1756}
1757
1758static unsigned long __ref kernel_map_range(unsigned long pstart,
1759					    unsigned long pend, pgprot_t prot,
1760					    bool use_huge)
1761{
1762	unsigned long vstart = PAGE_OFFSET + pstart;
1763	unsigned long vend = PAGE_OFFSET + pend;
1764	unsigned long alloc_bytes = 0UL;
1765
1766	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1767		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1768			    vstart, vend);
1769		prom_halt();
1770	}
1771
1772	while (vstart < vend) {
1773		unsigned long this_end, paddr = __pa(vstart);
1774		pgd_t *pgd = pgd_offset_k(vstart);
1775		p4d_t *p4d;
1776		pud_t *pud;
1777		pmd_t *pmd;
1778		pte_t *pte;
1779
1780		if (pgd_none(*pgd)) {
1781			pud_t *new;
1782
1783			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1784						  PAGE_SIZE);
1785			if (!new)
1786				goto err_alloc;
1787			alloc_bytes += PAGE_SIZE;
1788			pgd_populate(&init_mm, pgd, new);
1789		}
1790
1791		p4d = p4d_offset(pgd, vstart);
1792		if (p4d_none(*p4d)) {
1793			pud_t *new;
1794
1795			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1796						  PAGE_SIZE);
1797			if (!new)
1798				goto err_alloc;
1799			alloc_bytes += PAGE_SIZE;
1800			p4d_populate(&init_mm, p4d, new);
1801		}
1802
1803		pud = pud_offset(p4d, vstart);
1804		if (pud_none(*pud)) {
1805			pmd_t *new;
1806
1807			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1808				vstart = kernel_map_hugepud(vstart, vend, pud);
1809				continue;
1810			}
1811			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1812						  PAGE_SIZE);
1813			if (!new)
1814				goto err_alloc;
1815			alloc_bytes += PAGE_SIZE;
1816			pud_populate(&init_mm, pud, new);
1817		}
1818
1819		pmd = pmd_offset(pud, vstart);
1820		if (pmd_none(*pmd)) {
1821			pte_t *new;
1822
1823			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1824				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1825				continue;
1826			}
1827			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1828						  PAGE_SIZE);
1829			if (!new)
1830				goto err_alloc;
1831			alloc_bytes += PAGE_SIZE;
1832			pmd_populate_kernel(&init_mm, pmd, new);
1833		}
1834
1835		pte = pte_offset_kernel(pmd, vstart);
1836		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1837		if (this_end > vend)
1838			this_end = vend;
1839
1840		while (vstart < this_end) {
1841			pte_val(*pte) = (paddr | pgprot_val(prot));
1842
1843			vstart += PAGE_SIZE;
1844			paddr += PAGE_SIZE;
1845			pte++;
1846		}
1847	}
1848
1849	return alloc_bytes;
 
1850
1851err_alloc:
1852	panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1853	      __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1854	return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1855}
1856
1857static void __init flush_all_kernel_tsbs(void)
1858{
1859	int i;
1860
1861	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1862		struct tsb *ent = &swapper_tsb[i];
1863
1864		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1865	}
1866#ifndef CONFIG_DEBUG_PAGEALLOC
1867	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1868		struct tsb *ent = &swapper_4m_tsb[i];
1869
1870		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1871	}
1872#endif
1873}
1874
1875extern unsigned int kvmap_linear_patch[1];
1876
1877static void __init kernel_physical_mapping_init(void)
1878{
 
1879	unsigned long i, mem_alloced = 0UL;
1880	bool use_huge = true;
1881
1882#ifdef CONFIG_DEBUG_PAGEALLOC
1883	use_huge = false;
1884#endif
1885	for (i = 0; i < pall_ents; i++) {
1886		unsigned long phys_start, phys_end;
1887
1888		phys_start = pall[i].phys_addr;
1889		phys_end = phys_start + pall[i].reg_size;
1890
1891		mem_alloced += kernel_map_range(phys_start, phys_end,
1892						PAGE_KERNEL, use_huge);
1893	}
1894
1895	printk("Allocated %ld bytes for kernel page tables.\n",
1896	       mem_alloced);
1897
1898	kvmap_linear_patch[0] = 0x01000000; /* nop */
1899	flushi(&kvmap_linear_patch[0]);
1900
1901	flush_all_kernel_tsbs();
1902
1903	__flush_tlb_all();
 
1904}
1905
1906#ifdef CONFIG_DEBUG_PAGEALLOC
1907void __kernel_map_pages(struct page *page, int numpages, int enable)
1908{
1909	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1910	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1911
1912	kernel_map_range(phys_start, phys_end,
1913			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1914
1915	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1916			       PAGE_OFFSET + phys_end);
1917
1918	/* we should perform an IPI and flush all tlbs,
1919	 * but that can deadlock->flush only current cpu.
1920	 */
1921	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1922				 PAGE_OFFSET + phys_end);
1923}
1924#endif
1925
1926unsigned long __init find_ecache_flush_span(unsigned long size)
1927{
1928	int i;
1929
1930	for (i = 0; i < pavail_ents; i++) {
1931		if (pavail[i].reg_size >= size)
1932			return pavail[i].phys_addr;
1933	}
1934
1935	return ~0UL;
1936}
1937
1938unsigned long PAGE_OFFSET;
1939EXPORT_SYMBOL(PAGE_OFFSET);
1940
1941unsigned long VMALLOC_END   = 0x0000010000000000UL;
1942EXPORT_SYMBOL(VMALLOC_END);
1943
1944unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1945unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1946
1947static void __init setup_page_offset(void)
1948{
1949	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1950		/* Cheetah/Panther support a full 64-bit virtual
1951		 * address, so we can use all that our page tables
1952		 * support.
1953		 */
1954		sparc64_va_hole_top =    0xfff0000000000000UL;
1955		sparc64_va_hole_bottom = 0x0010000000000000UL;
1956
1957		max_phys_bits = 42;
1958	} else if (tlb_type == hypervisor) {
1959		switch (sun4v_chip_type) {
1960		case SUN4V_CHIP_NIAGARA1:
1961		case SUN4V_CHIP_NIAGARA2:
1962			/* T1 and T2 support 48-bit virtual addresses.  */
1963			sparc64_va_hole_top =    0xffff800000000000UL;
1964			sparc64_va_hole_bottom = 0x0000800000000000UL;
1965
1966			max_phys_bits = 39;
1967			break;
1968		case SUN4V_CHIP_NIAGARA3:
1969			/* T3 supports 48-bit virtual addresses.  */
1970			sparc64_va_hole_top =    0xffff800000000000UL;
1971			sparc64_va_hole_bottom = 0x0000800000000000UL;
1972
1973			max_phys_bits = 43;
1974			break;
1975		case SUN4V_CHIP_NIAGARA4:
1976		case SUN4V_CHIP_NIAGARA5:
1977		case SUN4V_CHIP_SPARC64X:
1978		case SUN4V_CHIP_SPARC_M6:
1979			/* T4 and later support 52-bit virtual addresses.  */
1980			sparc64_va_hole_top =    0xfff8000000000000UL;
1981			sparc64_va_hole_bottom = 0x0008000000000000UL;
1982			max_phys_bits = 47;
1983			break;
1984		case SUN4V_CHIP_SPARC_M7:
1985		case SUN4V_CHIP_SPARC_SN:
1986			/* M7 and later support 52-bit virtual addresses.  */
1987			sparc64_va_hole_top =    0xfff8000000000000UL;
1988			sparc64_va_hole_bottom = 0x0008000000000000UL;
1989			max_phys_bits = 49;
1990			break;
1991		case SUN4V_CHIP_SPARC_M8:
1992		default:
1993			/* M8 and later support 54-bit virtual addresses.
1994			 * However, restricting M8 and above VA bits to 53
1995			 * as 4-level page table cannot support more than
1996			 * 53 VA bits.
1997			 */
1998			sparc64_va_hole_top =    0xfff0000000000000UL;
1999			sparc64_va_hole_bottom = 0x0010000000000000UL;
2000			max_phys_bits = 51;
2001			break;
2002		}
2003	}
2004
2005	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2006		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2007			    max_phys_bits);
2008		prom_halt();
2009	}
2010
2011	PAGE_OFFSET = sparc64_va_hole_top;
2012	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2013		       (sparc64_va_hole_bottom >> 2));
2014
2015	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2016		PAGE_OFFSET, max_phys_bits);
2017	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2018		VMALLOC_START, VMALLOC_END);
2019	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2020		VMEMMAP_BASE, VMEMMAP_BASE << 1);
2021}
2022
2023static void __init tsb_phys_patch(void)
2024{
2025	struct tsb_ldquad_phys_patch_entry *pquad;
2026	struct tsb_phys_patch_entry *p;
2027
2028	pquad = &__tsb_ldquad_phys_patch;
2029	while (pquad < &__tsb_ldquad_phys_patch_end) {
2030		unsigned long addr = pquad->addr;
2031
2032		if (tlb_type == hypervisor)
2033			*(unsigned int *) addr = pquad->sun4v_insn;
2034		else
2035			*(unsigned int *) addr = pquad->sun4u_insn;
2036		wmb();
2037		__asm__ __volatile__("flush	%0"
2038				     : /* no outputs */
2039				     : "r" (addr));
2040
2041		pquad++;
2042	}
2043
2044	p = &__tsb_phys_patch;
2045	while (p < &__tsb_phys_patch_end) {
2046		unsigned long addr = p->addr;
2047
2048		*(unsigned int *) addr = p->insn;
2049		wmb();
2050		__asm__ __volatile__("flush	%0"
2051				     : /* no outputs */
2052				     : "r" (addr));
2053
2054		p++;
2055	}
2056}
2057
2058/* Don't mark as init, we give this to the Hypervisor.  */
2059#ifndef CONFIG_DEBUG_PAGEALLOC
2060#define NUM_KTSB_DESCR	2
2061#else
2062#define NUM_KTSB_DESCR	1
2063#endif
2064static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2065
2066/* The swapper TSBs are loaded with a base sequence of:
2067 *
2068 *	sethi	%uhi(SYMBOL), REG1
2069 *	sethi	%hi(SYMBOL), REG2
2070 *	or	REG1, %ulo(SYMBOL), REG1
2071 *	or	REG2, %lo(SYMBOL), REG2
2072 *	sllx	REG1, 32, REG1
2073 *	or	REG1, REG2, REG1
2074 *
2075 * When we use physical addressing for the TSB accesses, we patch the
2076 * first four instructions in the above sequence.
2077 */
2078
2079static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2080{
2081	unsigned long high_bits, low_bits;
2082
2083	high_bits = (pa >> 32) & 0xffffffff;
2084	low_bits = (pa >> 0) & 0xffffffff;
2085
2086	while (start < end) {
2087		unsigned int *ia = (unsigned int *)(unsigned long)*start;
2088
2089		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2090		__asm__ __volatile__("flush	%0" : : "r" (ia));
2091
2092		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2093		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
2094
2095		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2096		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
2097
2098		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2099		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
2100
2101		start++;
2102	}
2103}
2104
2105static void ktsb_phys_patch(void)
2106{
2107	extern unsigned int __swapper_tsb_phys_patch;
2108	extern unsigned int __swapper_tsb_phys_patch_end;
2109	unsigned long ktsb_pa;
2110
2111	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2112	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2113			    &__swapper_tsb_phys_patch_end, ktsb_pa);
2114#ifndef CONFIG_DEBUG_PAGEALLOC
2115	{
2116	extern unsigned int __swapper_4m_tsb_phys_patch;
2117	extern unsigned int __swapper_4m_tsb_phys_patch_end;
2118	ktsb_pa = (kern_base +
2119		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2120	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2121			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2122	}
2123#endif
2124}
2125
2126static void __init sun4v_ktsb_init(void)
2127{
2128	unsigned long ktsb_pa;
2129
2130	/* First KTSB for PAGE_SIZE mappings.  */
2131	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2132
2133	switch (PAGE_SIZE) {
2134	case 8 * 1024:
2135	default:
2136		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2137		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2138		break;
2139
2140	case 64 * 1024:
2141		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2142		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2143		break;
2144
2145	case 512 * 1024:
2146		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2147		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2148		break;
2149
2150	case 4 * 1024 * 1024:
2151		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2152		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2153		break;
2154	}
2155
2156	ktsb_descr[0].assoc = 1;
2157	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2158	ktsb_descr[0].ctx_idx = 0;
2159	ktsb_descr[0].tsb_base = ktsb_pa;
2160	ktsb_descr[0].resv = 0;
2161
2162#ifndef CONFIG_DEBUG_PAGEALLOC
2163	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2164	ktsb_pa = (kern_base +
2165		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2166
2167	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2168	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2169				    HV_PGSZ_MASK_256MB |
2170				    HV_PGSZ_MASK_2GB |
2171				    HV_PGSZ_MASK_16GB) &
2172				   cpu_pgsz_mask);
2173	ktsb_descr[1].assoc = 1;
2174	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2175	ktsb_descr[1].ctx_idx = 0;
2176	ktsb_descr[1].tsb_base = ktsb_pa;
2177	ktsb_descr[1].resv = 0;
2178#endif
2179}
2180
2181void sun4v_ktsb_register(void)
2182{
2183	unsigned long pa, ret;
2184
2185	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2186
2187	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2188	if (ret != 0) {
2189		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2190			    "errors with %lx\n", pa, ret);
2191		prom_halt();
2192	}
2193}
2194
2195static void __init sun4u_linear_pte_xor_finalize(void)
2196{
2197#ifndef CONFIG_DEBUG_PAGEALLOC
2198	/* This is where we would add Panther support for
2199	 * 32MB and 256MB pages.
2200	 */
2201#endif
2202}
2203
2204static void __init sun4v_linear_pte_xor_finalize(void)
2205{
2206	unsigned long pagecv_flag;
2207
2208	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2209	 * enables MCD error. Do not set bit 9 on M7 processor.
2210	 */
2211	switch (sun4v_chip_type) {
2212	case SUN4V_CHIP_SPARC_M7:
2213	case SUN4V_CHIP_SPARC_M8:
2214	case SUN4V_CHIP_SPARC_SN:
2215		pagecv_flag = 0x00;
2216		break;
2217	default:
2218		pagecv_flag = _PAGE_CV_4V;
2219		break;
2220	}
2221#ifndef CONFIG_DEBUG_PAGEALLOC
2222	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2223		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2224			PAGE_OFFSET;
2225		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2226					   _PAGE_P_4V | _PAGE_W_4V);
2227	} else {
2228		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2229	}
2230
2231	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2232		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2233			PAGE_OFFSET;
2234		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2235					   _PAGE_P_4V | _PAGE_W_4V);
2236	} else {
2237		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2238	}
2239
2240	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2241		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2242			PAGE_OFFSET;
2243		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2244					   _PAGE_P_4V | _PAGE_W_4V);
2245	} else {
2246		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2247	}
2248#endif
2249}
2250
2251/* paging_init() sets up the page tables */
2252
2253static unsigned long last_valid_pfn;
 
2254
2255static void sun4u_pgprot_init(void);
2256static void sun4v_pgprot_init(void);
2257
2258#define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2259#define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2260#define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2261#define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2262#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2263#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2264
2265/* We need to exclude reserved regions. This exclusion will include
2266 * vmlinux and initrd. To be more precise the initrd size could be used to
2267 * compute a new lower limit because it is freed later during initialization.
2268 */
2269static void __init reduce_memory(phys_addr_t limit_ram)
2270{
2271	limit_ram += memblock_reserved_size();
2272	memblock_enforce_memory_limit(limit_ram);
2273}
2274
2275void __init paging_init(void)
2276{
2277	unsigned long end_pfn, shift, phys_base;
2278	unsigned long real_end, i;
2279
2280	setup_page_offset();
2281
2282	/* These build time checkes make sure that the dcache_dirty_cpu()
2283	 * page->flags usage will work.
2284	 *
2285	 * When a page gets marked as dcache-dirty, we store the
2286	 * cpu number starting at bit 32 in the page->flags.  Also,
2287	 * functions like clear_dcache_dirty_cpu use the cpu mask
2288	 * in 13-bit signed-immediate instruction fields.
2289	 */
2290
2291	/*
2292	 * Page flags must not reach into upper 32 bits that are used
2293	 * for the cpu number
2294	 */
2295	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2296
2297	/*
2298	 * The bit fields placed in the high range must not reach below
2299	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2300	 * at the 32 bit boundary.
2301	 */
2302	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2303		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2304
2305	BUILD_BUG_ON(NR_CPUS > 4096);
2306
2307	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2308	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2309
2310	/* Invalidate both kernel TSBs.  */
2311	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2312#ifndef CONFIG_DEBUG_PAGEALLOC
2313	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2314#endif
2315
2316	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2317	 * bit on M7 processor. This is a conflicting usage of the same
2318	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2319	 * Detection error on all pages and this will lead to problems
2320	 * later. Kernel does not run with MCD enabled and hence rest
2321	 * of the required steps to fully configure memory corruption
2322	 * detection are not taken. We need to ensure TTE.mcde is not
2323	 * set on M7 processor. Compute the value of cacheability
2324	 * flag for use later taking this into consideration.
2325	 */
2326	switch (sun4v_chip_type) {
2327	case SUN4V_CHIP_SPARC_M7:
2328	case SUN4V_CHIP_SPARC_M8:
2329	case SUN4V_CHIP_SPARC_SN:
2330		page_cache4v_flag = _PAGE_CP_4V;
2331		break;
2332	default:
2333		page_cache4v_flag = _PAGE_CACHE_4V;
2334		break;
2335	}
2336
2337	if (tlb_type == hypervisor)
2338		sun4v_pgprot_init();
2339	else
2340		sun4u_pgprot_init();
2341
2342	if (tlb_type == cheetah_plus ||
2343	    tlb_type == hypervisor) {
2344		tsb_phys_patch();
2345		ktsb_phys_patch();
2346	}
2347
2348	if (tlb_type == hypervisor)
2349		sun4v_patch_tlb_handlers();
 
 
2350
2351	/* Find available physical memory...
2352	 *
2353	 * Read it twice in order to work around a bug in openfirmware.
2354	 * The call to grab this table itself can cause openfirmware to
2355	 * allocate memory, which in turn can take away some space from
2356	 * the list of available memory.  Reading it twice makes sure
2357	 * we really do get the final value.
2358	 */
2359	read_obp_translations();
2360	read_obp_memory("reg", &pall[0], &pall_ents);
2361	read_obp_memory("available", &pavail[0], &pavail_ents);
2362	read_obp_memory("available", &pavail[0], &pavail_ents);
2363
2364	phys_base = 0xffffffffffffffffUL;
2365	for (i = 0; i < pavail_ents; i++) {
2366		phys_base = min(phys_base, pavail[i].phys_addr);
2367		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2368	}
2369
2370	memblock_reserve(kern_base, kern_size);
2371
2372	find_ramdisk(phys_base);
2373
2374	if (cmdline_memory_size)
2375		reduce_memory(cmdline_memory_size);
2376
2377	memblock_allow_resize();
2378	memblock_dump_all();
2379
2380	set_bit(0, mmu_context_bmap);
2381
2382	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2383
2384	real_end = (unsigned long)_end;
2385	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2386	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2387	       num_kernel_image_mappings);
2388
2389	/* Set kernel pgd to upper alias so physical page computations
2390	 * work.
2391	 */
2392	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2393	
2394	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2395
 
 
 
 
2396	inherit_prom_mappings();
2397	
 
 
2398	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2399	setup_tba();
2400
2401	__flush_tlb_all();
2402
 
 
 
2403	prom_build_devicetree();
2404	of_populate_present_mask();
2405#ifndef CONFIG_SMP
2406	of_fill_in_cpu_data();
2407#endif
2408
2409	if (tlb_type == hypervisor) {
2410		sun4v_mdesc_init();
2411		mdesc_populate_present_mask(cpu_all_mask);
2412#ifndef CONFIG_SMP
2413		mdesc_fill_in_cpu_data(cpu_all_mask);
2414#endif
2415		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2416
2417		sun4v_linear_pte_xor_finalize();
2418
2419		sun4v_ktsb_init();
2420		sun4v_ktsb_register();
2421	} else {
2422		unsigned long impl, ver;
2423
2424		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2425				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2426
2427		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2428		impl = ((ver >> 32) & 0xffff);
2429		if (impl == PANTHER_IMPL)
2430			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2431					  HV_PGSZ_MASK_256MB);
2432
2433		sun4u_linear_pte_xor_finalize();
2434	}
2435
2436	/* Flush the TLBs and the 4M TSB so that the updated linear
2437	 * pte XOR settings are realized for all mappings.
2438	 */
2439	__flush_tlb_all();
2440#ifndef CONFIG_DEBUG_PAGEALLOC
2441	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2442#endif
2443	__flush_tlb_all();
2444
2445	/* Setup bootmem... */
2446	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2448	kernel_physical_mapping_init();
2449
2450	{
2451		unsigned long max_zone_pfns[MAX_NR_ZONES];
2452
2453		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2454
2455		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2456
2457		free_area_init(max_zone_pfns);
2458	}
2459
2460	printk("Booting Linux...\n");
2461}
2462
2463int page_in_phys_avail(unsigned long paddr)
2464{
2465	int i;
2466
2467	paddr &= PAGE_MASK;
2468
2469	for (i = 0; i < pavail_ents; i++) {
2470		unsigned long start, end;
2471
2472		start = pavail[i].phys_addr;
2473		end = start + pavail[i].reg_size;
2474
2475		if (paddr >= start && paddr < end)
2476			return 1;
2477	}
2478	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2479		return 1;
2480#ifdef CONFIG_BLK_DEV_INITRD
2481	if (paddr >= __pa(initrd_start) &&
2482	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2483		return 1;
2484#endif
2485
2486	return 0;
2487}
2488
2489static void __init register_page_bootmem_info(void)
 
 
 
 
 
 
 
 
 
2490{
2491#ifdef CONFIG_NUMA
2492	int i;
2493
2494	for_each_online_node(i)
2495		if (NODE_DATA(i)->node_spanned_pages)
2496			register_page_bootmem_info_node(NODE_DATA(i));
2497#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2498}
 
2499void __init mem_init(void)
2500{
 
 
 
 
 
 
 
 
 
 
 
 
 
2501	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2502
2503	memblock_free_all();
 
 
 
 
 
 
 
 
 
 
 
 
 
2504
2505	/*
2506	 * Must be done after boot memory is put on freelist, because here we
2507	 * might set fields in deferred struct pages that have not yet been
2508	 * initialized, and memblock_free_all() initializes all the reserved
2509	 * deferred pages for us.
2510	 */
2511	register_page_bootmem_info();
 
2512
2513	/*
2514	 * Set up the zero page, mark it reserved, so that page count
2515	 * is not manipulated when freeing the page from user ptes.
2516	 */
2517	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2518	if (mem_map_zero == NULL) {
2519		prom_printf("paging_init: Cannot alloc zero page.\n");
2520		prom_halt();
2521	}
2522	mark_page_reserved(mem_map_zero);
2523
 
 
 
 
 
 
 
 
 
 
 
 
 
2524
2525	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2526		cheetah_ecache_flush_init();
2527}
2528
2529void free_initmem(void)
2530{
2531	unsigned long addr, initend;
2532	int do_free = 1;
2533
2534	/* If the physical memory maps were trimmed by kernel command
2535	 * line options, don't even try freeing this initmem stuff up.
2536	 * The kernel image could have been in the trimmed out region
2537	 * and if so the freeing below will free invalid page structs.
2538	 */
2539	if (cmdline_memory_size)
2540		do_free = 0;
2541
2542	/*
2543	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2544	 */
2545	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2546	initend = (unsigned long)(__init_end) & PAGE_MASK;
2547	for (; addr < initend; addr += PAGE_SIZE) {
2548		unsigned long page;
 
2549
2550		page = (addr +
2551			((unsigned long) __va(kern_base)) -
2552			((unsigned long) KERNBASE));
2553		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2554
2555		if (do_free)
2556			free_reserved_page(virt_to_page(page));
 
 
 
 
 
 
 
2557	}
2558}
2559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2560pgprot_t PAGE_KERNEL __read_mostly;
2561EXPORT_SYMBOL(PAGE_KERNEL);
2562
2563pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2564pgprot_t PAGE_COPY __read_mostly;
2565
2566pgprot_t PAGE_SHARED __read_mostly;
2567EXPORT_SYMBOL(PAGE_SHARED);
2568
2569unsigned long pg_iobits __read_mostly;
2570
2571unsigned long _PAGE_IE __read_mostly;
2572EXPORT_SYMBOL(_PAGE_IE);
2573
2574unsigned long _PAGE_E __read_mostly;
2575EXPORT_SYMBOL(_PAGE_E);
2576
2577unsigned long _PAGE_CACHE __read_mostly;
2578EXPORT_SYMBOL(_PAGE_CACHE);
2579
2580#ifdef CONFIG_SPARSEMEM_VMEMMAP
2581int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2582			       int node, struct vmem_altmap *altmap)
 
2583{
 
 
 
 
 
 
2584	unsigned long pte_base;
2585
2586	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2587		    _PAGE_CP_4U | _PAGE_CV_4U |
2588		    _PAGE_P_4U | _PAGE_W_4U);
2589	if (tlb_type == hypervisor)
2590		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2591			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2592
2593	pte_base |= _PAGE_PMD_HUGE;
2594
2595	vstart = vstart & PMD_MASK;
2596	vend = ALIGN(vend, PMD_SIZE);
2597	for (; vstart < vend; vstart += PMD_SIZE) {
2598		pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2599		unsigned long pte;
2600		p4d_t *p4d;
2601		pud_t *pud;
2602		pmd_t *pmd;
2603
2604		if (!pgd)
2605			return -ENOMEM;
2606
2607		p4d = vmemmap_p4d_populate(pgd, vstart, node);
2608		if (!p4d)
2609			return -ENOMEM;
2610
2611		pud = vmemmap_pud_populate(p4d, vstart, node);
2612		if (!pud)
2613			return -ENOMEM;
2614
2615		pmd = pmd_offset(pud, vstart);
2616		pte = pmd_val(*pmd);
2617		if (!(pte & _PAGE_VALID)) {
2618			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2619
 
 
2620			if (!block)
2621				return -ENOMEM;
2622
2623			pmd_val(*pmd) = pte_base | __pa(block);
 
 
 
 
 
 
2624		}
2625	}
2626
2627	return 0;
2628}
2629
2630void vmemmap_free(unsigned long start, unsigned long end,
2631		struct vmem_altmap *altmap)
2632{
2633}
2634#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2635
2636static void prot_init_common(unsigned long page_none,
2637			     unsigned long page_shared,
2638			     unsigned long page_copy,
2639			     unsigned long page_readonly,
2640			     unsigned long page_exec_bit)
2641{
2642	PAGE_COPY = __pgprot(page_copy);
2643	PAGE_SHARED = __pgprot(page_shared);
2644
2645	protection_map[0x0] = __pgprot(page_none);
2646	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2647	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2648	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2649	protection_map[0x4] = __pgprot(page_readonly);
2650	protection_map[0x5] = __pgprot(page_readonly);
2651	protection_map[0x6] = __pgprot(page_copy);
2652	protection_map[0x7] = __pgprot(page_copy);
2653	protection_map[0x8] = __pgprot(page_none);
2654	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2655	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2656	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2657	protection_map[0xc] = __pgprot(page_readonly);
2658	protection_map[0xd] = __pgprot(page_readonly);
2659	protection_map[0xe] = __pgprot(page_shared);
2660	protection_map[0xf] = __pgprot(page_shared);
2661}
2662
2663static void __init sun4u_pgprot_init(void)
2664{
2665	unsigned long page_none, page_shared, page_copy, page_readonly;
2666	unsigned long page_exec_bit;
2667	int i;
2668
2669	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2670				_PAGE_CACHE_4U | _PAGE_P_4U |
2671				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2672				_PAGE_EXEC_4U);
2673	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2674				       _PAGE_CACHE_4U | _PAGE_P_4U |
2675				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2676				       _PAGE_EXEC_4U | _PAGE_L_4U);
2677
2678	_PAGE_IE = _PAGE_IE_4U;
2679	_PAGE_E = _PAGE_E_4U;
2680	_PAGE_CACHE = _PAGE_CACHE_4U;
2681
2682	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2683		     __ACCESS_BITS_4U | _PAGE_E_4U);
2684
2685#ifdef CONFIG_DEBUG_PAGEALLOC
2686	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
 
2687#else
2688	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2689		PAGE_OFFSET;
2690#endif
2691	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2692				   _PAGE_P_4U | _PAGE_W_4U);
2693
2694	for (i = 1; i < 4; i++)
2695		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2696
 
2697	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2698			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2699			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2700
2701
2702	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2703	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2704		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2705	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2706		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2707	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2708			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2709
2710	page_exec_bit = _PAGE_EXEC_4U;
2711
2712	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2713			 page_exec_bit);
2714}
2715
2716static void __init sun4v_pgprot_init(void)
2717{
2718	unsigned long page_none, page_shared, page_copy, page_readonly;
2719	unsigned long page_exec_bit;
2720	int i;
2721
2722	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2723				page_cache4v_flag | _PAGE_P_4V |
2724				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2725				_PAGE_EXEC_4V);
2726	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2727
2728	_PAGE_IE = _PAGE_IE_4V;
2729	_PAGE_E = _PAGE_E_4V;
2730	_PAGE_CACHE = page_cache4v_flag;
2731
2732#ifdef CONFIG_DEBUG_PAGEALLOC
2733	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
 
2734#else
2735	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2736		PAGE_OFFSET;
2737#endif
2738	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2739				   _PAGE_W_4V);
2740
2741	for (i = 1; i < 4; i++)
2742		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
 
 
 
 
 
 
 
2743
2744	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2745		     __ACCESS_BITS_4V | _PAGE_E_4V);
2746
 
2747	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2748			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2749			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2750			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2751
2752	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2753	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2754		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2755	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2756		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2757	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2758			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2759
2760	page_exec_bit = _PAGE_EXEC_4V;
2761
2762	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2763			 page_exec_bit);
2764}
2765
2766unsigned long pte_sz_bits(unsigned long sz)
2767{
2768	if (tlb_type == hypervisor) {
2769		switch (sz) {
2770		case 8 * 1024:
2771		default:
2772			return _PAGE_SZ8K_4V;
2773		case 64 * 1024:
2774			return _PAGE_SZ64K_4V;
2775		case 512 * 1024:
2776			return _PAGE_SZ512K_4V;
2777		case 4 * 1024 * 1024:
2778			return _PAGE_SZ4MB_4V;
2779		}
2780	} else {
2781		switch (sz) {
2782		case 8 * 1024:
2783		default:
2784			return _PAGE_SZ8K_4U;
2785		case 64 * 1024:
2786			return _PAGE_SZ64K_4U;
2787		case 512 * 1024:
2788			return _PAGE_SZ512K_4U;
2789		case 4 * 1024 * 1024:
2790			return _PAGE_SZ4MB_4U;
2791		}
2792	}
2793}
2794
2795pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2796{
2797	pte_t pte;
2798
2799	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2800	pte_val(pte) |= (((unsigned long)space) << 32);
2801	pte_val(pte) |= pte_sz_bits(page_size);
2802
2803	return pte;
2804}
2805
2806static unsigned long kern_large_tte(unsigned long paddr)
2807{
2808	unsigned long val;
2809
2810	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2811	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2812	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2813	if (tlb_type == hypervisor)
2814		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2815		       page_cache4v_flag | _PAGE_P_4V |
2816		       _PAGE_EXEC_4V | _PAGE_W_4V);
2817
2818	return val | paddr;
2819}
2820
2821/* If not locked, zap it. */
2822void __flush_tlb_all(void)
2823{
2824	unsigned long pstate;
2825	int i;
2826
2827	__asm__ __volatile__("flushw\n\t"
2828			     "rdpr	%%pstate, %0\n\t"
2829			     "wrpr	%0, %1, %%pstate"
2830			     : "=r" (pstate)
2831			     : "i" (PSTATE_IE));
2832	if (tlb_type == hypervisor) {
2833		sun4v_mmu_demap_all();
2834	} else if (tlb_type == spitfire) {
2835		for (i = 0; i < 64; i++) {
2836			/* Spitfire Errata #32 workaround */
2837			/* NOTE: Always runs on spitfire, so no
2838			 *       cheetah+ page size encodings.
2839			 */
2840			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2841					     "flush	%%g6"
2842					     : /* No outputs */
2843					     : "r" (0),
2844					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2845
2846			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2847				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2848						     "membar #Sync"
2849						     : /* no outputs */
2850						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2851				spitfire_put_dtlb_data(i, 0x0UL);
2852			}
2853
2854			/* Spitfire Errata #32 workaround */
2855			/* NOTE: Always runs on spitfire, so no
2856			 *       cheetah+ page size encodings.
2857			 */
2858			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2859					     "flush	%%g6"
2860					     : /* No outputs */
2861					     : "r" (0),
2862					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2863
2864			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2865				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2866						     "membar #Sync"
2867						     : /* no outputs */
2868						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2869				spitfire_put_itlb_data(i, 0x0UL);
2870			}
2871		}
2872	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2873		cheetah_flush_dtlb_all();
2874		cheetah_flush_itlb_all();
2875	}
2876	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2877			     : : "r" (pstate));
2878}
2879
2880pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
2881{
2882	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2883	pte_t *pte = NULL;
2884
2885	if (page)
2886		pte = (pte_t *) page_address(page);
2887
2888	return pte;
2889}
2890
2891pgtable_t pte_alloc_one(struct mm_struct *mm)
2892{
2893	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2894	if (!page)
2895		return NULL;
2896	if (!pgtable_pte_page_ctor(page)) {
2897		__free_page(page);
2898		return NULL;
2899	}
2900	return (pte_t *) page_address(page);
2901}
2902
2903void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2904{
2905	free_page((unsigned long)pte);
2906}
2907
2908static void __pte_free(pgtable_t pte)
2909{
2910	struct page *page = virt_to_page(pte);
2911
2912	pgtable_pte_page_dtor(page);
2913	__free_page(page);
2914}
2915
2916void pte_free(struct mm_struct *mm, pgtable_t pte)
2917{
2918	__pte_free(pte);
2919}
2920
2921void pgtable_free(void *table, bool is_page)
2922{
2923	if (is_page)
2924		__pte_free(table);
2925	else
2926		kmem_cache_free(pgtable_cache, table);
2927}
2928
2929#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2930void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2931			  pmd_t *pmd)
2932{
2933	unsigned long pte, flags;
2934	struct mm_struct *mm;
2935	pmd_t entry = *pmd;
2936
2937	if (!pmd_large(entry) || !pmd_young(entry))
2938		return;
2939
2940	pte = pmd_val(entry);
2941
2942	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2943	if (!(pte & _PAGE_VALID))
2944		return;
2945
2946	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2947	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2948
2949	mm = vma->vm_mm;
2950
2951	spin_lock_irqsave(&mm->context.lock, flags);
2952
2953	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2954		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2955					addr, pte);
2956
2957	spin_unlock_irqrestore(&mm->context.lock, flags);
2958}
2959#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2960
2961#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2962static void context_reload(void *__data)
2963{
2964	struct mm_struct *mm = __data;
2965
2966	if (mm == current->mm)
2967		load_secondary_context(mm);
2968}
2969
2970void hugetlb_setup(struct pt_regs *regs)
2971{
2972	struct mm_struct *mm = current->mm;
2973	struct tsb_config *tp;
2974
2975	if (faulthandler_disabled() || !mm) {
2976		const struct exception_table_entry *entry;
2977
2978		entry = search_exception_tables(regs->tpc);
2979		if (entry) {
2980			regs->tpc = entry->fixup;
2981			regs->tnpc = regs->tpc + 4;
2982			return;
2983		}
2984		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2985		die_if_kernel("HugeTSB in atomic", regs);
2986	}
2987
2988	tp = &mm->context.tsb_block[MM_TSB_HUGE];
2989	if (likely(tp->tsb == NULL))
2990		tsb_grow(mm, MM_TSB_HUGE, 0);
2991
2992	tsb_context_switch(mm);
2993	smp_tsb_sync(mm);
2994
2995	/* On UltraSPARC-III+ and later, configure the second half of
2996	 * the Data-TLB for huge pages.
2997	 */
2998	if (tlb_type == cheetah_plus) {
2999		bool need_context_reload = false;
3000		unsigned long ctx;
3001
3002		spin_lock_irq(&ctx_alloc_lock);
3003		ctx = mm->context.sparc64_ctx_val;
3004		ctx &= ~CTX_PGSZ_MASK;
3005		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3006		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3007
3008		if (ctx != mm->context.sparc64_ctx_val) {
3009			/* When changing the page size fields, we
3010			 * must perform a context flush so that no
3011			 * stale entries match.  This flush must
3012			 * occur with the original context register
3013			 * settings.
3014			 */
3015			do_flush_tlb_mm(mm);
3016
3017			/* Reload the context register of all processors
3018			 * also executing in this address space.
3019			 */
3020			mm->context.sparc64_ctx_val = ctx;
3021			need_context_reload = true;
3022		}
3023		spin_unlock_irq(&ctx_alloc_lock);
3024
3025		if (need_context_reload)
3026			on_each_cpu(context_reload, mm, 0);
3027	}
3028}
3029#endif
3030
3031static struct resource code_resource = {
3032	.name	= "Kernel code",
3033	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3034};
3035
3036static struct resource data_resource = {
3037	.name	= "Kernel data",
3038	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3039};
3040
3041static struct resource bss_resource = {
3042	.name	= "Kernel bss",
3043	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3044};
3045
3046static inline resource_size_t compute_kern_paddr(void *addr)
3047{
3048	return (resource_size_t) (addr - KERNBASE + kern_base);
3049}
3050
3051static void __init kernel_lds_init(void)
3052{
3053	code_resource.start = compute_kern_paddr(_text);
3054	code_resource.end   = compute_kern_paddr(_etext - 1);
3055	data_resource.start = compute_kern_paddr(_etext);
3056	data_resource.end   = compute_kern_paddr(_edata - 1);
3057	bss_resource.start  = compute_kern_paddr(__bss_start);
3058	bss_resource.end    = compute_kern_paddr(_end - 1);
3059}
3060
3061static int __init report_memory(void)
3062{
3063	int i;
3064	struct resource *res;
3065
3066	kernel_lds_init();
3067
3068	for (i = 0; i < pavail_ents; i++) {
3069		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3070
3071		if (!res) {
3072			pr_warn("Failed to allocate source.\n");
3073			break;
3074		}
3075
3076		res->name = "System RAM";
3077		res->start = pavail[i].phys_addr;
3078		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3079		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3080
3081		if (insert_resource(&iomem_resource, res) < 0) {
3082			pr_warn("Resource insertion failed.\n");
3083			break;
3084		}
3085
3086		insert_resource(res, &code_resource);
3087		insert_resource(res, &data_resource);
3088		insert_resource(res, &bss_resource);
3089	}
3090
3091	return 0;
3092}
3093arch_initcall(report_memory);
3094
3095#ifdef CONFIG_SMP
3096#define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
3097#else
3098#define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
3099#endif
3100
3101void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3102{
3103	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3104		if (start < LOW_OBP_ADDRESS) {
3105			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3106			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3107		}
3108		if (end > HI_OBP_ADDRESS) {
3109			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3110			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3111		}
3112	} else {
3113		flush_tsb_kernel_range(start, end);
3114		do_flush_tlb_kernel_range(start, end);
3115	}
3116}
3117
3118void copy_user_highpage(struct page *to, struct page *from,
3119	unsigned long vaddr, struct vm_area_struct *vma)
3120{
3121	char *vfrom, *vto;
3122
3123	vfrom = kmap_atomic(from);
3124	vto = kmap_atomic(to);
3125	copy_user_page(vto, vfrom, vaddr, to);
3126	kunmap_atomic(vto);
3127	kunmap_atomic(vfrom);
3128
3129	/* If this page has ADI enabled, copy over any ADI tags
3130	 * as well
3131	 */
3132	if (vma->vm_flags & VM_SPARC_ADI) {
3133		unsigned long pfrom, pto, i, adi_tag;
3134
3135		pfrom = page_to_phys(from);
3136		pto = page_to_phys(to);
3137
3138		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3139			asm volatile("ldxa [%1] %2, %0\n\t"
3140					: "=r" (adi_tag)
3141					:  "r" (i), "i" (ASI_MCD_REAL));
3142			asm volatile("stxa %0, [%1] %2\n\t"
3143					:
3144					: "r" (adi_tag), "r" (pto),
3145					  "i" (ASI_MCD_REAL));
3146			pto += adi_blksize();
3147		}
3148		asm volatile("membar #Sync\n\t");
3149	}
3150}
3151EXPORT_SYMBOL(copy_user_highpage);
3152
3153void copy_highpage(struct page *to, struct page *from)
3154{
3155	char *vfrom, *vto;
3156
3157	vfrom = kmap_atomic(from);
3158	vto = kmap_atomic(to);
3159	copy_page(vto, vfrom);
3160	kunmap_atomic(vto);
3161	kunmap_atomic(vfrom);
3162
3163	/* If this platform is ADI enabled, copy any ADI tags
3164	 * as well
3165	 */
3166	if (adi_capable()) {
3167		unsigned long pfrom, pto, i, adi_tag;
3168
3169		pfrom = page_to_phys(from);
3170		pto = page_to_phys(to);
3171
3172		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3173			asm volatile("ldxa [%1] %2, %0\n\t"
3174					: "=r" (adi_tag)
3175					:  "r" (i), "i" (ASI_MCD_REAL));
3176			asm volatile("stxa %0, [%1] %2\n\t"
3177					:
3178					: "r" (adi_tag), "r" (pto),
3179					  "i" (ASI_MCD_REAL));
3180			pto += adi_blksize();
3181		}
3182		asm volatile("membar #Sync\n\t");
3183	}
3184}
3185EXPORT_SYMBOL(copy_highpage);