Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7 *
8 * SMP support for BMIPS
9 */
10
11#include <linux/init.h>
12#include <linux/sched.h>
13#include <linux/mm.h>
14#include <linux/delay.h>
15#include <linux/smp.h>
16#include <linux/interrupt.h>
17#include <linux/spinlock.h>
18#include <linux/cpu.h>
19#include <linux/cpumask.h>
20#include <linux/reboot.h>
21#include <linux/io.h>
22#include <linux/compiler.h>
23#include <linux/linkage.h>
24#include <linux/bug.h>
25#include <linux/kernel.h>
26
27#include <asm/time.h>
28#include <asm/pgtable.h>
29#include <asm/processor.h>
30#include <asm/bootinfo.h>
31#include <asm/pmon.h>
32#include <asm/cacheflush.h>
33#include <asm/tlbflush.h>
34#include <asm/mipsregs.h>
35#include <asm/bmips.h>
36#include <asm/traps.h>
37#include <asm/barrier.h>
38
39static int __maybe_unused max_cpus = 1;
40
41/* these may be configured by the platform code */
42int bmips_smp_enabled = 1;
43int bmips_cpu_offset;
44cpumask_t bmips_booted_mask;
45
46#ifdef CONFIG_SMP
47
48/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
49unsigned long bmips_smp_boot_sp;
50unsigned long bmips_smp_boot_gp;
51
52static void bmips_send_ipi_single(int cpu, unsigned int action);
53static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id);
54
55/* SW interrupts 0,1 are used for interprocessor signaling */
56#define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0)
57#define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1)
58
59#define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift))
60#define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
61#define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
62#define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0))
63
64static void __init bmips_smp_setup(void)
65{
66 int i;
67
68#if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
69 /* arbitration priority */
70 clear_c0_brcm_cmt_ctrl(0x30);
71
72 /* NBK and weak order flags */
73 set_c0_brcm_config_0(0x30000);
74
75 /*
76 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other thread
77 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
78 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
79 */
80 change_c0_brcm_cmt_intr(0xf8018000,
81 (0x02 << 27) | (0x03 << 15));
82
83 /* single core, 2 threads (2 pipelines) */
84 max_cpus = 2;
85#elif defined(CONFIG_CPU_BMIPS5000)
86 /* enable raceless SW interrupts */
87 set_c0_brcm_config(0x03 << 22);
88
89 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
90 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
91
92 /* N cores, 2 threads per core */
93 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
94
95 /* clear any pending SW interrupts */
96 for (i = 0; i < max_cpus; i++) {
97 write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
98 write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
99 }
100#endif
101
102 if (!bmips_smp_enabled)
103 max_cpus = 1;
104
105 /* this can be overridden by the BSP */
106 if (!board_ebase_setup)
107 board_ebase_setup = &bmips_ebase_setup;
108
109 for (i = 0; i < max_cpus; i++) {
110 __cpu_number_map[i] = 1;
111 __cpu_logical_map[i] = 1;
112 set_cpu_possible(i, 1);
113 set_cpu_present(i, 1);
114 }
115}
116
117/*
118 * IPI IRQ setup - runs on CPU0
119 */
120static void bmips_prepare_cpus(unsigned int max_cpus)
121{
122 if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
123 "smp_ipi0", NULL))
124 panic("Can't request IPI0 interrupt\n");
125 if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
126 "smp_ipi1", NULL))
127 panic("Can't request IPI1 interrupt\n");
128}
129
130/*
131 * Tell the hardware to boot CPUx - runs on CPU0
132 */
133static void bmips_boot_secondary(int cpu, struct task_struct *idle)
134{
135 bmips_smp_boot_sp = __KSTK_TOS(idle);
136 bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
137 mb();
138
139 /*
140 * Initial boot sequence for secondary CPU:
141 * bmips_reset_nmi_vec @ a000_0000 ->
142 * bmips_smp_entry ->
143 * plat_wired_tlb_setup (cached function call; optional) ->
144 * start_secondary (cached jump)
145 *
146 * Warm restart sequence:
147 * play_dead WAIT loop ->
148 * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
149 * eret to play_dead ->
150 * bmips_secondary_reentry ->
151 * start_secondary
152 */
153
154 pr_info("SMP: Booting CPU%d...\n", cpu);
155
156 if (cpumask_test_cpu(cpu, &bmips_booted_mask))
157 bmips_send_ipi_single(cpu, 0);
158 else {
159#if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
160 set_c0_brcm_cmt_ctrl(0x01);
161#elif defined(CONFIG_CPU_BMIPS5000)
162 if (cpu & 0x01)
163 write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
164 else {
165 /*
166 * core N thread 0 was already booted; just
167 * pulse the NMI line
168 */
169 bmips_write_zscm_reg(0x210, 0xc0000000);
170 udelay(10);
171 bmips_write_zscm_reg(0x210, 0x00);
172 }
173#endif
174 cpumask_set_cpu(cpu, &bmips_booted_mask);
175 }
176}
177
178/*
179 * Early setup - runs on secondary CPU after cache probe
180 */
181static void bmips_init_secondary(void)
182{
183 /* move NMI vector to kseg0, in case XKS01 is enabled */
184
185#if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
186 void __iomem *cbr = BMIPS_GET_CBR();
187 unsigned long old_vec;
188
189 old_vec = __raw_readl(cbr + BMIPS_RELO_VECTOR_CONTROL_1);
190 __raw_writel(old_vec & ~0x20000000, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
191
192 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
193#elif defined(CONFIG_CPU_BMIPS5000)
194 write_c0_brcm_bootvec(read_c0_brcm_bootvec() &
195 (smp_processor_id() & 0x01 ? ~0x20000000 : ~0x2000));
196
197 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
198#endif
199}
200
201/*
202 * Late setup - runs on secondary CPU before entering the idle loop
203 */
204static void bmips_smp_finish(void)
205{
206 pr_info("SMP: CPU%d is running\n", smp_processor_id());
207
208 /* make sure there won't be a timer interrupt for a little while */
209 write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
210
211 irq_enable_hazard();
212 set_c0_status(IE_SW0 | IE_SW1 | IE_IRQ1 | IE_IRQ5 | ST0_IE);
213 irq_enable_hazard();
214}
215
216/*
217 * Runs on CPU0 after all CPUs have been booted
218 */
219static void bmips_cpus_done(void)
220{
221}
222
223#if defined(CONFIG_CPU_BMIPS5000)
224
225/*
226 * BMIPS5000 raceless IPIs
227 *
228 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
229 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
230 * IPI1 is used for SMP_CALL_FUNCTION
231 */
232
233static void bmips_send_ipi_single(int cpu, unsigned int action)
234{
235 write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
236}
237
238static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id)
239{
240 int action = irq - IPI0_IRQ;
241
242 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
243
244 if (action == 0)
245 scheduler_ipi();
246 else
247 smp_call_function_interrupt();
248
249 return IRQ_HANDLED;
250}
251
252#else
253
254/*
255 * BMIPS43xx racey IPIs
256 *
257 * We use one inbound SW IRQ for each CPU.
258 *
259 * A spinlock must be held in order to keep CPUx from accidentally clearing
260 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The
261 * same spinlock is used to protect the action masks.
262 */
263
264static DEFINE_SPINLOCK(ipi_lock);
265static DEFINE_PER_CPU(int, ipi_action_mask);
266
267static void bmips_send_ipi_single(int cpu, unsigned int action)
268{
269 unsigned long flags;
270
271 spin_lock_irqsave(&ipi_lock, flags);
272 set_c0_cause(cpu ? C_SW1 : C_SW0);
273 per_cpu(ipi_action_mask, cpu) |= action;
274 irq_enable_hazard();
275 spin_unlock_irqrestore(&ipi_lock, flags);
276}
277
278static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id)
279{
280 unsigned long flags;
281 int action, cpu = irq - IPI0_IRQ;
282
283 spin_lock_irqsave(&ipi_lock, flags);
284 action = __get_cpu_var(ipi_action_mask);
285 per_cpu(ipi_action_mask, cpu) = 0;
286 clear_c0_cause(cpu ? C_SW1 : C_SW0);
287 spin_unlock_irqrestore(&ipi_lock, flags);
288
289 if (action & SMP_RESCHEDULE_YOURSELF)
290 scheduler_ipi();
291 if (action & SMP_CALL_FUNCTION)
292 smp_call_function_interrupt();
293
294 return IRQ_HANDLED;
295}
296
297#endif /* BMIPS type */
298
299static void bmips_send_ipi_mask(const struct cpumask *mask,
300 unsigned int action)
301{
302 unsigned int i;
303
304 for_each_cpu(i, mask)
305 bmips_send_ipi_single(i, action);
306}
307
308#ifdef CONFIG_HOTPLUG_CPU
309
310static int bmips_cpu_disable(void)
311{
312 unsigned int cpu = smp_processor_id();
313
314 if (cpu == 0)
315 return -EBUSY;
316
317 pr_info("SMP: CPU%d is offline\n", cpu);
318
319 set_cpu_online(cpu, false);
320 cpu_clear(cpu, cpu_callin_map);
321
322 local_flush_tlb_all();
323 local_flush_icache_range(0, ~0);
324
325 return 0;
326}
327
328static void bmips_cpu_die(unsigned int cpu)
329{
330}
331
332void __ref play_dead(void)
333{
334 idle_task_exit();
335
336 /* flush data cache */
337 _dma_cache_wback_inv(0, ~0);
338
339 /*
340 * Wakeup is on SW0 or SW1; disable everything else
341 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
342 * IRQ handlers; this clears ST0_IE and returns immediately.
343 */
344 clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
345 change_c0_status(IE_IRQ5 | IE_IRQ1 | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
346 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
347 irq_disable_hazard();
348
349 /*
350 * wait for SW interrupt from bmips_boot_secondary(), then jump
351 * back to start_secondary()
352 */
353 __asm__ __volatile__(
354 " wait\n"
355 " j bmips_secondary_reentry\n"
356 : : : "memory");
357}
358
359#endif /* CONFIG_HOTPLUG_CPU */
360
361struct plat_smp_ops bmips_smp_ops = {
362 .smp_setup = bmips_smp_setup,
363 .prepare_cpus = bmips_prepare_cpus,
364 .boot_secondary = bmips_boot_secondary,
365 .smp_finish = bmips_smp_finish,
366 .init_secondary = bmips_init_secondary,
367 .cpus_done = bmips_cpus_done,
368 .send_ipi_single = bmips_send_ipi_single,
369 .send_ipi_mask = bmips_send_ipi_mask,
370#ifdef CONFIG_HOTPLUG_CPU
371 .cpu_disable = bmips_cpu_disable,
372 .cpu_die = bmips_cpu_die,
373#endif
374};
375
376#endif /* CONFIG_SMP */
377
378/***********************************************************************
379 * BMIPS vector relocation
380 * This is primarily used for SMP boot, but it is applicable to some
381 * UP BMIPS systems as well.
382 ***********************************************************************/
383
384static void __cpuinit bmips_wr_vec(unsigned long dst, char *start, char *end)
385{
386 memcpy((void *)dst, start, end - start);
387 dma_cache_wback((unsigned long)start, end - start);
388 local_flush_icache_range(dst, dst + (end - start));
389 instruction_hazard();
390}
391
392static inline void __cpuinit bmips_nmi_handler_setup(void)
393{
394 bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
395 &bmips_reset_nmi_vec_end);
396 bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
397 &bmips_smp_int_vec_end);
398}
399
400void __cpuinit bmips_ebase_setup(void)
401{
402 unsigned long new_ebase = ebase;
403 void __iomem __maybe_unused *cbr;
404
405 BUG_ON(ebase != CKSEG0);
406
407#if defined(CONFIG_CPU_BMIPS4350)
408 /*
409 * BMIPS4350 cannot relocate the normal vectors, but it
410 * can relocate the BEV=1 vectors. So CPU1 starts up at
411 * the relocated BEV=1, IV=0 general exception vector @
412 * 0xa000_0380.
413 *
414 * set_uncached_handler() is used here because:
415 * - CPU1 will run this from uncached space
416 * - None of the cacheflush functions are set up yet
417 */
418 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
419 &bmips_smp_int_vec, 0x80);
420 __sync();
421 return;
422#elif defined(CONFIG_CPU_BMIPS4380)
423 /*
424 * 0x8000_0000: reset/NMI (initially in kseg1)
425 * 0x8000_0400: normal vectors
426 */
427 new_ebase = 0x80000400;
428 cbr = BMIPS_GET_CBR();
429 __raw_writel(0x80080800, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
430 __raw_writel(0xa0080800, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
431#elif defined(CONFIG_CPU_BMIPS5000)
432 /*
433 * 0x8000_0000: reset/NMI (initially in kseg1)
434 * 0x8000_1000: normal vectors
435 */
436 new_ebase = 0x80001000;
437 write_c0_brcm_bootvec(0xa0088008);
438 write_c0_ebase(new_ebase);
439 if (max_cpus > 2)
440 bmips_write_zscm_reg(0xa0, 0xa008a008);
441#else
442 return;
443#endif
444 board_nmi_handler_setup = &bmips_nmi_handler_setup;
445 ebase = new_ebase;
446}
447
448asmlinkage void __weak plat_wired_tlb_setup(void)
449{
450 /*
451 * Called when starting/restarting a secondary CPU.
452 * Kernel stacks and other important data might only be accessible
453 * once the wired entries are present.
454 */
455}
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7 *
8 * SMP support for BMIPS
9 */
10
11#include <linux/init.h>
12#include <linux/sched.h>
13#include <linux/sched/hotplug.h>
14#include <linux/sched/task_stack.h>
15#include <linux/mm.h>
16#include <linux/delay.h>
17#include <linux/smp.h>
18#include <linux/interrupt.h>
19#include <linux/spinlock.h>
20#include <linux/cpu.h>
21#include <linux/cpumask.h>
22#include <linux/reboot.h>
23#include <linux/io.h>
24#include <linux/compiler.h>
25#include <linux/linkage.h>
26#include <linux/bug.h>
27#include <linux/kernel.h>
28#include <linux/kexec.h>
29
30#include <asm/time.h>
31#include <asm/processor.h>
32#include <asm/bootinfo.h>
33#include <asm/cacheflush.h>
34#include <asm/tlbflush.h>
35#include <asm/mipsregs.h>
36#include <asm/bmips.h>
37#include <asm/traps.h>
38#include <asm/barrier.h>
39#include <asm/cpu-features.h>
40
41static int __maybe_unused max_cpus = 1;
42
43/* these may be configured by the platform code */
44int bmips_smp_enabled = 1;
45int bmips_cpu_offset;
46cpumask_t bmips_booted_mask;
47unsigned long bmips_tp1_irqs = IE_IRQ1;
48
49#define RESET_FROM_KSEG0 0x80080800
50#define RESET_FROM_KSEG1 0xa0080800
51
52static void bmips_set_reset_vec(int cpu, u32 val);
53
54#ifdef CONFIG_SMP
55
56/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
57unsigned long bmips_smp_boot_sp;
58unsigned long bmips_smp_boot_gp;
59
60static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
61static void bmips5000_send_ipi_single(int cpu, unsigned int action);
62static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
63static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
64
65/* SW interrupts 0,1 are used for interprocessor signaling */
66#define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0)
67#define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1)
68
69#define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift))
70#define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
71#define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
72#define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0))
73
74static void __init bmips_smp_setup(void)
75{
76 int i, cpu = 1, boot_cpu = 0;
77 int cpu_hw_intr;
78
79 switch (current_cpu_type()) {
80 case CPU_BMIPS4350:
81 case CPU_BMIPS4380:
82 /* arbitration priority */
83 clear_c0_brcm_cmt_ctrl(0x30);
84
85 /* NBK and weak order flags */
86 set_c0_brcm_config_0(0x30000);
87
88 /* Find out if we are running on TP0 or TP1 */
89 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
90
91 /*
92 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
93 * thread
94 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
95 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
96 */
97 if (boot_cpu == 0)
98 cpu_hw_intr = 0x02;
99 else
100 cpu_hw_intr = 0x1d;
101
102 change_c0_brcm_cmt_intr(0xf8018000,
103 (cpu_hw_intr << 27) | (0x03 << 15));
104
105 /* single core, 2 threads (2 pipelines) */
106 max_cpus = 2;
107
108 break;
109 case CPU_BMIPS5000:
110 /* enable raceless SW interrupts */
111 set_c0_brcm_config(0x03 << 22);
112
113 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
114 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
115
116 /* N cores, 2 threads per core */
117 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
118
119 /* clear any pending SW interrupts */
120 for (i = 0; i < max_cpus; i++) {
121 write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
122 write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
123 }
124
125 break;
126 default:
127 max_cpus = 1;
128 }
129
130 if (!bmips_smp_enabled)
131 max_cpus = 1;
132
133 /* this can be overridden by the BSP */
134 if (!board_ebase_setup)
135 board_ebase_setup = &bmips_ebase_setup;
136
137 if (max_cpus > 1) {
138 __cpu_number_map[boot_cpu] = 0;
139 __cpu_logical_map[0] = boot_cpu;
140
141 for (i = 0; i < max_cpus; i++) {
142 if (i != boot_cpu) {
143 __cpu_number_map[i] = cpu;
144 __cpu_logical_map[cpu] = i;
145 cpu++;
146 }
147 set_cpu_possible(i, 1);
148 set_cpu_present(i, 1);
149 }
150 } else {
151 __cpu_number_map[0] = boot_cpu;
152 __cpu_logical_map[0] = 0;
153 set_cpu_possible(0, 1);
154 set_cpu_present(0, 1);
155 }
156}
157
158/*
159 * IPI IRQ setup - runs on CPU0
160 */
161static void bmips_prepare_cpus(unsigned int max_cpus)
162{
163 irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
164
165 switch (current_cpu_type()) {
166 case CPU_BMIPS4350:
167 case CPU_BMIPS4380:
168 bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
169 break;
170 case CPU_BMIPS5000:
171 bmips_ipi_interrupt = bmips5000_ipi_interrupt;
172 break;
173 default:
174 return;
175 }
176
177 if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
178 IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
179 panic("Can't request IPI0 interrupt");
180 if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
181 IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
182 panic("Can't request IPI1 interrupt");
183}
184
185/*
186 * Tell the hardware to boot CPUx - runs on CPU0
187 */
188static int bmips_boot_secondary(int cpu, struct task_struct *idle)
189{
190 bmips_smp_boot_sp = __KSTK_TOS(idle);
191 bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
192 mb();
193
194 /*
195 * Initial boot sequence for secondary CPU:
196 * bmips_reset_nmi_vec @ a000_0000 ->
197 * bmips_smp_entry ->
198 * plat_wired_tlb_setup (cached function call; optional) ->
199 * start_secondary (cached jump)
200 *
201 * Warm restart sequence:
202 * play_dead WAIT loop ->
203 * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
204 * eret to play_dead ->
205 * bmips_secondary_reentry ->
206 * start_secondary
207 */
208
209 pr_info("SMP: Booting CPU%d...\n", cpu);
210
211 if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
212 /* kseg1 might not exist if this CPU enabled XKS01 */
213 bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
214
215 switch (current_cpu_type()) {
216 case CPU_BMIPS4350:
217 case CPU_BMIPS4380:
218 bmips43xx_send_ipi_single(cpu, 0);
219 break;
220 case CPU_BMIPS5000:
221 bmips5000_send_ipi_single(cpu, 0);
222 break;
223 }
224 } else {
225 bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
226
227 switch (current_cpu_type()) {
228 case CPU_BMIPS4350:
229 case CPU_BMIPS4380:
230 /* Reset slave TP1 if booting from TP0 */
231 if (cpu_logical_map(cpu) == 1)
232 set_c0_brcm_cmt_ctrl(0x01);
233 break;
234 case CPU_BMIPS5000:
235 write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
236 break;
237 }
238 cpumask_set_cpu(cpu, &bmips_booted_mask);
239 }
240
241 return 0;
242}
243
244/*
245 * Early setup - runs on secondary CPU after cache probe
246 */
247static void bmips_init_secondary(void)
248{
249 bmips_cpu_setup();
250
251 switch (current_cpu_type()) {
252 case CPU_BMIPS4350:
253 case CPU_BMIPS4380:
254 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
255 break;
256 case CPU_BMIPS5000:
257 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
258 cpu_set_core(¤t_cpu_data, (read_c0_brcm_config() >> 25) & 3);
259 break;
260 }
261}
262
263/*
264 * Late setup - runs on secondary CPU before entering the idle loop
265 */
266static void bmips_smp_finish(void)
267{
268 pr_info("SMP: CPU%d is running\n", smp_processor_id());
269
270 /* make sure there won't be a timer interrupt for a little while */
271 write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
272
273 irq_enable_hazard();
274 set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
275 irq_enable_hazard();
276}
277
278/*
279 * BMIPS5000 raceless IPIs
280 *
281 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
282 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
283 * IPI1 is used for SMP_CALL_FUNCTION
284 */
285
286static void bmips5000_send_ipi_single(int cpu, unsigned int action)
287{
288 write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
289}
290
291static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
292{
293 int action = irq - IPI0_IRQ;
294
295 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
296
297 if (action == 0)
298 scheduler_ipi();
299 else
300 generic_smp_call_function_interrupt();
301
302 return IRQ_HANDLED;
303}
304
305static void bmips5000_send_ipi_mask(const struct cpumask *mask,
306 unsigned int action)
307{
308 unsigned int i;
309
310 for_each_cpu(i, mask)
311 bmips5000_send_ipi_single(i, action);
312}
313
314/*
315 * BMIPS43xx racey IPIs
316 *
317 * We use one inbound SW IRQ for each CPU.
318 *
319 * A spinlock must be held in order to keep CPUx from accidentally clearing
320 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The
321 * same spinlock is used to protect the action masks.
322 */
323
324static DEFINE_SPINLOCK(ipi_lock);
325static DEFINE_PER_CPU(int, ipi_action_mask);
326
327static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
328{
329 unsigned long flags;
330
331 spin_lock_irqsave(&ipi_lock, flags);
332 set_c0_cause(cpu ? C_SW1 : C_SW0);
333 per_cpu(ipi_action_mask, cpu) |= action;
334 irq_enable_hazard();
335 spin_unlock_irqrestore(&ipi_lock, flags);
336}
337
338static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
339{
340 unsigned long flags;
341 int action, cpu = irq - IPI0_IRQ;
342
343 spin_lock_irqsave(&ipi_lock, flags);
344 action = __this_cpu_read(ipi_action_mask);
345 per_cpu(ipi_action_mask, cpu) = 0;
346 clear_c0_cause(cpu ? C_SW1 : C_SW0);
347 spin_unlock_irqrestore(&ipi_lock, flags);
348
349 if (action & SMP_RESCHEDULE_YOURSELF)
350 scheduler_ipi();
351 if (action & SMP_CALL_FUNCTION)
352 generic_smp_call_function_interrupt();
353
354 return IRQ_HANDLED;
355}
356
357static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
358 unsigned int action)
359{
360 unsigned int i;
361
362 for_each_cpu(i, mask)
363 bmips43xx_send_ipi_single(i, action);
364}
365
366#ifdef CONFIG_HOTPLUG_CPU
367
368static int bmips_cpu_disable(void)
369{
370 unsigned int cpu = smp_processor_id();
371
372 pr_info("SMP: CPU%d is offline\n", cpu);
373
374 set_cpu_online(cpu, false);
375 calculate_cpu_foreign_map();
376 irq_cpu_offline();
377 clear_c0_status(IE_IRQ5);
378
379 local_flush_tlb_all();
380 local_flush_icache_range(0, ~0);
381
382 return 0;
383}
384
385static void bmips_cpu_die(unsigned int cpu)
386{
387}
388
389void __ref play_dead(void)
390{
391 idle_task_exit();
392
393 /* flush data cache */
394 _dma_cache_wback_inv(0, ~0);
395
396 /*
397 * Wakeup is on SW0 or SW1; disable everything else
398 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
399 * IRQ handlers; this clears ST0_IE and returns immediately.
400 */
401 clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
402 change_c0_status(
403 IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
404 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
405 irq_disable_hazard();
406
407 /*
408 * wait for SW interrupt from bmips_boot_secondary(), then jump
409 * back to start_secondary()
410 */
411 __asm__ __volatile__(
412 " wait\n"
413 " j bmips_secondary_reentry\n"
414 : : : "memory");
415}
416
417#endif /* CONFIG_HOTPLUG_CPU */
418
419const struct plat_smp_ops bmips43xx_smp_ops = {
420 .smp_setup = bmips_smp_setup,
421 .prepare_cpus = bmips_prepare_cpus,
422 .boot_secondary = bmips_boot_secondary,
423 .smp_finish = bmips_smp_finish,
424 .init_secondary = bmips_init_secondary,
425 .send_ipi_single = bmips43xx_send_ipi_single,
426 .send_ipi_mask = bmips43xx_send_ipi_mask,
427#ifdef CONFIG_HOTPLUG_CPU
428 .cpu_disable = bmips_cpu_disable,
429 .cpu_die = bmips_cpu_die,
430#endif
431#ifdef CONFIG_KEXEC
432 .kexec_nonboot_cpu = kexec_nonboot_cpu_jump,
433#endif
434};
435
436const struct plat_smp_ops bmips5000_smp_ops = {
437 .smp_setup = bmips_smp_setup,
438 .prepare_cpus = bmips_prepare_cpus,
439 .boot_secondary = bmips_boot_secondary,
440 .smp_finish = bmips_smp_finish,
441 .init_secondary = bmips_init_secondary,
442 .send_ipi_single = bmips5000_send_ipi_single,
443 .send_ipi_mask = bmips5000_send_ipi_mask,
444#ifdef CONFIG_HOTPLUG_CPU
445 .cpu_disable = bmips_cpu_disable,
446 .cpu_die = bmips_cpu_die,
447#endif
448#ifdef CONFIG_KEXEC
449 .kexec_nonboot_cpu = kexec_nonboot_cpu_jump,
450#endif
451};
452
453#endif /* CONFIG_SMP */
454
455/***********************************************************************
456 * BMIPS vector relocation
457 * This is primarily used for SMP boot, but it is applicable to some
458 * UP BMIPS systems as well.
459 ***********************************************************************/
460
461static void bmips_wr_vec(unsigned long dst, char *start, char *end)
462{
463 memcpy((void *)dst, start, end - start);
464 dma_cache_wback(dst, end - start);
465 local_flush_icache_range(dst, dst + (end - start));
466 instruction_hazard();
467}
468
469static inline void bmips_nmi_handler_setup(void)
470{
471 bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
472 bmips_reset_nmi_vec_end);
473 bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
474 bmips_smp_int_vec_end);
475}
476
477struct reset_vec_info {
478 int cpu;
479 u32 val;
480};
481
482static void bmips_set_reset_vec_remote(void *vinfo)
483{
484 struct reset_vec_info *info = vinfo;
485 int shift = info->cpu & 0x01 ? 16 : 0;
486 u32 mask = ~(0xffff << shift), val = info->val >> 16;
487
488 preempt_disable();
489 if (smp_processor_id() > 0) {
490 smp_call_function_single(0, &bmips_set_reset_vec_remote,
491 info, 1);
492 } else {
493 if (info->cpu & 0x02) {
494 /* BMIPS5200 "should" use mask/shift, but it's buggy */
495 bmips_write_zscm_reg(0xa0, (val << 16) | val);
496 bmips_read_zscm_reg(0xa0);
497 } else {
498 write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
499 (val << shift));
500 }
501 }
502 preempt_enable();
503}
504
505static void bmips_set_reset_vec(int cpu, u32 val)
506{
507 struct reset_vec_info info;
508
509 if (current_cpu_type() == CPU_BMIPS5000) {
510 /* this needs to run from CPU0 (which is always online) */
511 info.cpu = cpu;
512 info.val = val;
513 bmips_set_reset_vec_remote(&info);
514 } else {
515 void __iomem *cbr = BMIPS_GET_CBR();
516
517 if (cpu == 0)
518 __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
519 else {
520 if (current_cpu_type() != CPU_BMIPS4380)
521 return;
522 __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
523 }
524 }
525 __sync();
526 back_to_back_c0_hazard();
527}
528
529void bmips_ebase_setup(void)
530{
531 unsigned long new_ebase = ebase;
532
533 BUG_ON(ebase != CKSEG0);
534
535 switch (current_cpu_type()) {
536 case CPU_BMIPS4350:
537 /*
538 * BMIPS4350 cannot relocate the normal vectors, but it
539 * can relocate the BEV=1 vectors. So CPU1 starts up at
540 * the relocated BEV=1, IV=0 general exception vector @
541 * 0xa000_0380.
542 *
543 * set_uncached_handler() is used here because:
544 * - CPU1 will run this from uncached space
545 * - None of the cacheflush functions are set up yet
546 */
547 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
548 &bmips_smp_int_vec, 0x80);
549 __sync();
550 return;
551 case CPU_BMIPS3300:
552 case CPU_BMIPS4380:
553 /*
554 * 0x8000_0000: reset/NMI (initially in kseg1)
555 * 0x8000_0400: normal vectors
556 */
557 new_ebase = 0x80000400;
558 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
559 break;
560 case CPU_BMIPS5000:
561 /*
562 * 0x8000_0000: reset/NMI (initially in kseg1)
563 * 0x8000_1000: normal vectors
564 */
565 new_ebase = 0x80001000;
566 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
567 write_c0_ebase(new_ebase);
568 break;
569 default:
570 return;
571 }
572
573 board_nmi_handler_setup = &bmips_nmi_handler_setup;
574 ebase = new_ebase;
575}
576
577asmlinkage void __weak plat_wired_tlb_setup(void)
578{
579 /*
580 * Called when starting/restarting a secondary CPU.
581 * Kernel stacks and other important data might only be accessible
582 * once the wired entries are present.
583 */
584}
585
586void bmips_cpu_setup(void)
587{
588 void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
589 u32 __maybe_unused cfg;
590
591 switch (current_cpu_type()) {
592 case CPU_BMIPS3300:
593 /* Set BIU to async mode */
594 set_c0_brcm_bus_pll(BIT(22));
595 __sync();
596
597 /* put the BIU back in sync mode */
598 clear_c0_brcm_bus_pll(BIT(22));
599
600 /* clear BHTD to enable branch history table */
601 clear_c0_brcm_reset(BIT(16));
602
603 /* Flush and enable RAC */
604 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
605 __raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
606 __raw_readl(cbr + BMIPS_RAC_CONFIG);
607
608 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
609 __raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
610 __raw_readl(cbr + BMIPS_RAC_CONFIG);
611
612 cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
613 __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
614 __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
615 break;
616
617 case CPU_BMIPS4380:
618 /* CBG workaround for early BMIPS4380 CPUs */
619 switch (read_c0_prid()) {
620 case 0x2a040:
621 case 0x2a042:
622 case 0x2a044:
623 case 0x2a060:
624 cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
625 __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
626 __raw_readl(cbr + BMIPS_L2_CONFIG);
627 }
628
629 /* clear BHTD to enable branch history table */
630 clear_c0_brcm_config_0(BIT(21));
631
632 /* XI/ROTR enable */
633 set_c0_brcm_config_0(BIT(23));
634 set_c0_brcm_cmt_ctrl(BIT(15));
635 break;
636
637 case CPU_BMIPS5000:
638 /* enable RDHWR, BRDHWR */
639 set_c0_brcm_config(BIT(17) | BIT(21));
640
641 /* Disable JTB */
642 __asm__ __volatile__(
643 " .set noreorder\n"
644 " li $8, 0x5a455048\n"
645 " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
646 " .word 0x4008b008\n" /* mfc0 t0, $22, 8 */
647 " li $9, 0x00008000\n"
648 " or $8, $8, $9\n"
649 " .word 0x4088b008\n" /* mtc0 t0, $22, 8 */
650 " sync\n"
651 " li $8, 0x0\n"
652 " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
653 " .set reorder\n"
654 : : : "$8", "$9");
655
656 /* XI enable */
657 set_c0_brcm_config(BIT(27));
658
659 /* enable MIPS32R2 ROR instruction for XI TLB handlers */
660 __asm__ __volatile__(
661 " li $8, 0x5a455048\n"
662 " .word 0x4088b00f\n" /* mtc0 $8, $22, 15 */
663 " nop; nop; nop\n"
664 " .word 0x4008b008\n" /* mfc0 $8, $22, 8 */
665 " lui $9, 0x0100\n"
666 " or $8, $9\n"
667 " .word 0x4088b008\n" /* mtc0 $8, $22, 8 */
668 : : : "$8", "$9");
669 break;
670 }
671}