Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7 *
  8 * SMP support for BMIPS
  9 */
 10
 11#include <linux/init.h>
 12#include <linux/sched.h>
 
 
 13#include <linux/mm.h>
 14#include <linux/delay.h>
 15#include <linux/smp.h>
 16#include <linux/interrupt.h>
 17#include <linux/spinlock.h>
 18#include <linux/cpu.h>
 19#include <linux/cpumask.h>
 20#include <linux/reboot.h>
 21#include <linux/io.h>
 22#include <linux/compiler.h>
 23#include <linux/linkage.h>
 24#include <linux/bug.h>
 25#include <linux/kernel.h>
 
 
 26
 27#include <asm/time.h>
 28#include <asm/pgtable.h>
 29#include <asm/processor.h>
 30#include <asm/bootinfo.h>
 31#include <asm/pmon.h>
 32#include <asm/cacheflush.h>
 33#include <asm/tlbflush.h>
 34#include <asm/mipsregs.h>
 35#include <asm/bmips.h>
 36#include <asm/traps.h>
 37#include <asm/barrier.h>
 
 38
 39static int __maybe_unused max_cpus = 1;
 40
 41/* these may be configured by the platform code */
 42int bmips_smp_enabled = 1;
 43int bmips_cpu_offset;
 44cpumask_t bmips_booted_mask;
 
 
 
 
 
 
 45
 46#ifdef CONFIG_SMP
 47
 
 
 48/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
 49unsigned long bmips_smp_boot_sp;
 50unsigned long bmips_smp_boot_gp;
 51
 52static void bmips_send_ipi_single(int cpu, unsigned int action);
 53static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id);
 
 
 54
 55/* SW interrupts 0,1 are used for interprocessor signaling */
 56#define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
 57#define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
 58
 59#define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
 60#define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 61#define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 62#define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
 63
 64static void __init bmips_smp_setup(void)
 65{
 66	int i;
 
 67
 68#if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
 69	/* arbitration priority */
 70	clear_c0_brcm_cmt_ctrl(0x30);
 71
 72	/* NBK and weak order flags */
 73	set_c0_brcm_config_0(0x30000);
 74
 75	/*
 76	 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other thread
 77	 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
 78	 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
 79	 */
 80	change_c0_brcm_cmt_intr(0xf8018000,
 81		(0x02 << 27) | (0x03 << 15));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 82
 83	/* single core, 2 threads (2 pipelines) */
 84	max_cpus = 2;
 85#elif defined(CONFIG_CPU_BMIPS5000)
 86	/* enable raceless SW interrupts */
 87	set_c0_brcm_config(0x03 << 22);
 88
 89	/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
 90	change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
 91
 92	/* N cores, 2 threads per core */
 93	max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
 94
 95	/* clear any pending SW interrupts */
 96	for (i = 0; i < max_cpus; i++) {
 97		write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
 98		write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
 99	}
100#endif
101
102	if (!bmips_smp_enabled)
103		max_cpus = 1;
104
105	/* this can be overridden by the BSP */
106	if (!board_ebase_setup)
107		board_ebase_setup = &bmips_ebase_setup;
108
109	for (i = 0; i < max_cpus; i++) {
110		__cpu_number_map[i] = 1;
111		__cpu_logical_map[i] = 1;
112		set_cpu_possible(i, 1);
113		set_cpu_present(i, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
114	}
115}
116
117/*
118 * IPI IRQ setup - runs on CPU0
119 */
120static void bmips_prepare_cpus(unsigned int max_cpus)
121{
122	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
123			"smp_ipi0", NULL))
124		panic("Can't request IPI0 interrupt\n");
125	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
126			"smp_ipi1", NULL))
127		panic("Can't request IPI1 interrupt\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128}
129
130/*
131 * Tell the hardware to boot CPUx - runs on CPU0
132 */
133static void bmips_boot_secondary(int cpu, struct task_struct *idle)
134{
135	bmips_smp_boot_sp = __KSTK_TOS(idle);
136	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
137	mb();
138
139	/*
140	 * Initial boot sequence for secondary CPU:
141	 *   bmips_reset_nmi_vec @ a000_0000 ->
142	 *   bmips_smp_entry ->
143	 *   plat_wired_tlb_setup (cached function call; optional) ->
144	 *   start_secondary (cached jump)
145	 *
146	 * Warm restart sequence:
147	 *   play_dead WAIT loop ->
148	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
149	 *   eret to play_dead ->
150	 *   bmips_secondary_reentry ->
151	 *   start_secondary
152	 */
153
154	pr_info("SMP: Booting CPU%d...\n", cpu);
155
156	if (cpumask_test_cpu(cpu, &bmips_booted_mask))
157		bmips_send_ipi_single(cpu, 0);
158	else {
159#if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
160		set_c0_brcm_cmt_ctrl(0x01);
161#elif defined(CONFIG_CPU_BMIPS5000)
162		if (cpu & 0x01)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
164		else {
165			/*
166			 * core N thread 0 was already booted; just
167			 * pulse the NMI line
168			 */
169			bmips_write_zscm_reg(0x210, 0xc0000000);
170			udelay(10);
171			bmips_write_zscm_reg(0x210, 0x00);
172		}
173#endif
174		cpumask_set_cpu(cpu, &bmips_booted_mask);
175	}
 
 
176}
177
178/*
179 * Early setup - runs on secondary CPU after cache probe
180 */
181static void bmips_init_secondary(void)
182{
183	/* move NMI vector to kseg0, in case XKS01 is enabled */
184
185#if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
186	void __iomem *cbr = BMIPS_GET_CBR();
187	unsigned long old_vec;
188
189	old_vec = __raw_readl(cbr + BMIPS_RELO_VECTOR_CONTROL_1);
190	__raw_writel(old_vec & ~0x20000000, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
191
192	clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
193#elif defined(CONFIG_CPU_BMIPS5000)
194	write_c0_brcm_bootvec(read_c0_brcm_bootvec() &
195		(smp_processor_id() & 0x01 ? ~0x20000000 : ~0x2000));
196
197	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
198#endif
 
 
 
199}
200
201/*
202 * Late setup - runs on secondary CPU before entering the idle loop
203 */
204static void bmips_smp_finish(void)
205{
206	pr_info("SMP: CPU%d is running\n", smp_processor_id());
207
208	/* make sure there won't be a timer interrupt for a little while */
209	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
210
211	irq_enable_hazard();
212	set_c0_status(IE_SW0 | IE_SW1 | IE_IRQ1 | IE_IRQ5 | ST0_IE);
213	irq_enable_hazard();
214}
215
216/*
217 * Runs on CPU0 after all CPUs have been booted
218 */
219static void bmips_cpus_done(void)
220{
221}
222
223#if defined(CONFIG_CPU_BMIPS5000)
224
225/*
226 * BMIPS5000 raceless IPIs
227 *
228 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
229 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
230 * IPI1 is used for SMP_CALL_FUNCTION
231 */
232
233static void bmips_send_ipi_single(int cpu, unsigned int action)
234{
235	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
236}
237
238static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id)
239{
240	int action = irq - IPI0_IRQ;
241
242	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
243
244	if (action == 0)
245		scheduler_ipi();
246	else
247		smp_call_function_interrupt();
248
249	return IRQ_HANDLED;
250}
251
252#else
 
 
 
 
 
 
 
253
254/*
255 * BMIPS43xx racey IPIs
256 *
257 * We use one inbound SW IRQ for each CPU.
258 *
259 * A spinlock must be held in order to keep CPUx from accidentally clearing
260 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
261 * same spinlock is used to protect the action masks.
262 */
263
264static DEFINE_SPINLOCK(ipi_lock);
265static DEFINE_PER_CPU(int, ipi_action_mask);
266
267static void bmips_send_ipi_single(int cpu, unsigned int action)
268{
269	unsigned long flags;
270
271	spin_lock_irqsave(&ipi_lock, flags);
272	set_c0_cause(cpu ? C_SW1 : C_SW0);
273	per_cpu(ipi_action_mask, cpu) |= action;
274	irq_enable_hazard();
275	spin_unlock_irqrestore(&ipi_lock, flags);
276}
277
278static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id)
279{
280	unsigned long flags;
281	int action, cpu = irq - IPI0_IRQ;
282
283	spin_lock_irqsave(&ipi_lock, flags);
284	action = __get_cpu_var(ipi_action_mask);
285	per_cpu(ipi_action_mask, cpu) = 0;
286	clear_c0_cause(cpu ? C_SW1 : C_SW0);
287	spin_unlock_irqrestore(&ipi_lock, flags);
288
289	if (action & SMP_RESCHEDULE_YOURSELF)
290		scheduler_ipi();
291	if (action & SMP_CALL_FUNCTION)
292		smp_call_function_interrupt();
293
294	return IRQ_HANDLED;
295}
296
297#endif /* BMIPS type */
298
299static void bmips_send_ipi_mask(const struct cpumask *mask,
300	unsigned int action)
301{
302	unsigned int i;
303
304	for_each_cpu(i, mask)
305		bmips_send_ipi_single(i, action);
306}
307
308#ifdef CONFIG_HOTPLUG_CPU
309
310static int bmips_cpu_disable(void)
311{
312	unsigned int cpu = smp_processor_id();
313
314	if (cpu == 0)
315		return -EBUSY;
316
317	pr_info("SMP: CPU%d is offline\n", cpu);
318
319	set_cpu_online(cpu, false);
320	cpu_clear(cpu, cpu_callin_map);
 
 
321
322	local_flush_tlb_all();
323	local_flush_icache_range(0, ~0);
324
325	return 0;
326}
327
328static void bmips_cpu_die(unsigned int cpu)
329{
330}
331
332void __ref play_dead(void)
333{
334	idle_task_exit();
 
335
336	/* flush data cache */
337	_dma_cache_wback_inv(0, ~0);
338
339	/*
340	 * Wakeup is on SW0 or SW1; disable everything else
341	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
342	 * IRQ handlers; this clears ST0_IE and returns immediately.
343	 */
344	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
345	change_c0_status(IE_IRQ5 | IE_IRQ1 | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
 
346		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
347	irq_disable_hazard();
348
349	/*
350	 * wait for SW interrupt from bmips_boot_secondary(), then jump
351	 * back to start_secondary()
352	 */
353	__asm__ __volatile__(
354	"	wait\n"
355	"	j	bmips_secondary_reentry\n"
356	: : : "memory");
 
 
357}
358
359#endif /* CONFIG_HOTPLUG_CPU */
360
361struct plat_smp_ops bmips_smp_ops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
362	.smp_setup		= bmips_smp_setup,
363	.prepare_cpus		= bmips_prepare_cpus,
364	.boot_secondary		= bmips_boot_secondary,
365	.smp_finish		= bmips_smp_finish,
366	.init_secondary		= bmips_init_secondary,
367	.cpus_done		= bmips_cpus_done,
368	.send_ipi_single	= bmips_send_ipi_single,
369	.send_ipi_mask		= bmips_send_ipi_mask,
370#ifdef CONFIG_HOTPLUG_CPU
371	.cpu_disable		= bmips_cpu_disable,
372	.cpu_die		= bmips_cpu_die,
373#endif
 
 
 
374};
375
376#endif /* CONFIG_SMP */
377
378/***********************************************************************
379 * BMIPS vector relocation
380 * This is primarily used for SMP boot, but it is applicable to some
381 * UP BMIPS systems as well.
382 ***********************************************************************/
383
384static void __cpuinit bmips_wr_vec(unsigned long dst, char *start, char *end)
385{
386	memcpy((void *)dst, start, end - start);
387	dma_cache_wback((unsigned long)start, end - start);
388	local_flush_icache_range(dst, dst + (end - start));
389	instruction_hazard();
390}
391
392static inline void __cpuinit bmips_nmi_handler_setup(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
393{
394	bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
395		&bmips_reset_nmi_vec_end);
396	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
397		&bmips_smp_int_vec_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
398}
399
400void __cpuinit bmips_ebase_setup(void)
401{
402	unsigned long new_ebase = ebase;
403	void __iomem __maybe_unused *cbr;
404
405	BUG_ON(ebase != CKSEG0);
406
407#if defined(CONFIG_CPU_BMIPS4350)
408	/*
409	 * BMIPS4350 cannot relocate the normal vectors, but it
410	 * can relocate the BEV=1 vectors.  So CPU1 starts up at
411	 * the relocated BEV=1, IV=0 general exception vector @
412	 * 0xa000_0380.
413	 *
414	 * set_uncached_handler() is used here because:
415	 *  - CPU1 will run this from uncached space
416	 *  - None of the cacheflush functions are set up yet
417	 */
418	set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
419		&bmips_smp_int_vec, 0x80);
420	__sync();
421	return;
422#elif defined(CONFIG_CPU_BMIPS4380)
423	/*
424	 * 0x8000_0000: reset/NMI (initially in kseg1)
425	 * 0x8000_0400: normal vectors
426	 */
427	new_ebase = 0x80000400;
428	cbr = BMIPS_GET_CBR();
429	__raw_writel(0x80080800, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
430	__raw_writel(0xa0080800, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
431#elif defined(CONFIG_CPU_BMIPS5000)
432	/*
433	 * 0x8000_0000: reset/NMI (initially in kseg1)
434	 * 0x8000_1000: normal vectors
435	 */
436	new_ebase = 0x80001000;
437	write_c0_brcm_bootvec(0xa0088008);
438	write_c0_ebase(new_ebase);
439	if (max_cpus > 2)
440		bmips_write_zscm_reg(0xa0, 0xa008a008);
441#else
442	return;
443#endif
 
444	board_nmi_handler_setup = &bmips_nmi_handler_setup;
445	ebase = new_ebase;
446}
447
448asmlinkage void __weak plat_wired_tlb_setup(void)
449{
450	/*
451	 * Called when starting/restarting a secondary CPU.
452	 * Kernel stacks and other important data might only be accessible
453	 * once the wired entries are present.
454	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455}
v6.8
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7 *
  8 * SMP support for BMIPS
  9 */
 10
 11#include <linux/init.h>
 12#include <linux/sched.h>
 13#include <linux/sched/hotplug.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/mm.h>
 16#include <linux/delay.h>
 17#include <linux/smp.h>
 18#include <linux/interrupt.h>
 19#include <linux/spinlock.h>
 20#include <linux/cpu.h>
 21#include <linux/cpumask.h>
 22#include <linux/reboot.h>
 23#include <linux/io.h>
 24#include <linux/compiler.h>
 25#include <linux/linkage.h>
 26#include <linux/bug.h>
 27#include <linux/kernel.h>
 28#include <linux/kexec.h>
 29#include <linux/irq.h>
 30
 31#include <asm/time.h>
 
 32#include <asm/processor.h>
 33#include <asm/bootinfo.h>
 
 34#include <asm/cacheflush.h>
 35#include <asm/tlbflush.h>
 36#include <asm/mipsregs.h>
 37#include <asm/bmips.h>
 38#include <asm/traps.h>
 39#include <asm/barrier.h>
 40#include <asm/cpu-features.h>
 41
 42static int __maybe_unused max_cpus = 1;
 43
 44/* these may be configured by the platform code */
 45int bmips_smp_enabled = 1;
 46int bmips_cpu_offset;
 47cpumask_t bmips_booted_mask;
 48unsigned long bmips_tp1_irqs = IE_IRQ1;
 49
 50#define RESET_FROM_KSEG0		0x80080800
 51#define RESET_FROM_KSEG1		0xa0080800
 52
 53static void bmips_set_reset_vec(int cpu, u32 val);
 54
 55#ifdef CONFIG_SMP
 56
 57#include <asm/smp.h>
 58
 59/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
 60unsigned long bmips_smp_boot_sp;
 61unsigned long bmips_smp_boot_gp;
 62
 63static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
 64static void bmips5000_send_ipi_single(int cpu, unsigned int action);
 65static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
 66static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
 67
 68/* SW interrupts 0,1 are used for interprocessor signaling */
 69#define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
 70#define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
 71
 72#define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
 73#define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 74#define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 75#define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
 76
 77static void __init bmips_smp_setup(void)
 78{
 79	int i, cpu = 1, boot_cpu = 0;
 80	int cpu_hw_intr;
 81
 82	switch (current_cpu_type()) {
 83	case CPU_BMIPS4350:
 84	case CPU_BMIPS4380:
 85		/* arbitration priority */
 86		clear_c0_brcm_cmt_ctrl(0x30);
 87
 88		/* NBK and weak order flags */
 89		set_c0_brcm_config_0(0x30000);
 90
 91		/* Find out if we are running on TP0 or TP1 */
 92		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
 93
 94		/*
 95		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
 96		 * thread
 97		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
 98		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
 99		 */
100		if (boot_cpu == 0)
101			cpu_hw_intr = 0x02;
102		else
103			cpu_hw_intr = 0x1d;
104
105		change_c0_brcm_cmt_intr(0xf8018000,
106					(cpu_hw_intr << 27) | (0x03 << 15));
107
108		/* single core, 2 threads (2 pipelines) */
109		max_cpus = 2;
110
111		break;
112	case CPU_BMIPS5000:
113		/* enable raceless SW interrupts */
114		set_c0_brcm_config(0x03 << 22);
115
116		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
117		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
118
119		/* N cores, 2 threads per core */
120		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
121
122		/* clear any pending SW interrupts */
123		for (i = 0; i < max_cpus; i++) {
124			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
125			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
126		}
127
128		break;
129	default:
130		max_cpus = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
131	}
 
132
133	if (!bmips_smp_enabled)
134		max_cpus = 1;
135
136	/* this can be overridden by the BSP */
137	if (!board_ebase_setup)
138		board_ebase_setup = &bmips_ebase_setup;
139
140	if (max_cpus > 1) {
141		__cpu_number_map[boot_cpu] = 0;
142		__cpu_logical_map[0] = boot_cpu;
143
144		for (i = 0; i < max_cpus; i++) {
145			if (i != boot_cpu) {
146				__cpu_number_map[i] = cpu;
147				__cpu_logical_map[cpu] = i;
148				cpu++;
149			}
150			set_cpu_possible(i, 1);
151			set_cpu_present(i, 1);
152		}
153	} else {
154		__cpu_number_map[0] = boot_cpu;
155		__cpu_logical_map[0] = 0;
156		set_cpu_possible(0, 1);
157		set_cpu_present(0, 1);
158	}
159}
160
161/*
162 * IPI IRQ setup - runs on CPU0
163 */
164static void bmips_prepare_cpus(unsigned int max_cpus)
165{
166	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
167
168	switch (current_cpu_type()) {
169	case CPU_BMIPS4350:
170	case CPU_BMIPS4380:
171		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
172		break;
173	case CPU_BMIPS5000:
174		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
175		break;
176	default:
177		return;
178	}
179
180	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
181			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
182		panic("Can't request IPI0 interrupt");
183	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
184			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
185		panic("Can't request IPI1 interrupt");
186}
187
188/*
189 * Tell the hardware to boot CPUx - runs on CPU0
190 */
191static int bmips_boot_secondary(int cpu, struct task_struct *idle)
192{
193	bmips_smp_boot_sp = __KSTK_TOS(idle);
194	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
195	mb();
196
197	/*
198	 * Initial boot sequence for secondary CPU:
199	 *   bmips_reset_nmi_vec @ a000_0000 ->
200	 *   bmips_smp_entry ->
201	 *   plat_wired_tlb_setup (cached function call; optional) ->
202	 *   start_secondary (cached jump)
203	 *
204	 * Warm restart sequence:
205	 *   play_dead WAIT loop ->
206	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
207	 *   eret to play_dead ->
208	 *   bmips_secondary_reentry ->
209	 *   start_secondary
210	 */
211
212	pr_info("SMP: Booting CPU%d...\n", cpu);
213
214	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
215		/* kseg1 might not exist if this CPU enabled XKS01 */
216		bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
217
218		switch (current_cpu_type()) {
219		case CPU_BMIPS4350:
220		case CPU_BMIPS4380:
221			bmips43xx_send_ipi_single(cpu, 0);
222			break;
223		case CPU_BMIPS5000:
224			bmips5000_send_ipi_single(cpu, 0);
225			break;
226		}
227	} else {
228		bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
229
230		switch (current_cpu_type()) {
231		case CPU_BMIPS4350:
232		case CPU_BMIPS4380:
233			/* Reset slave TP1 if booting from TP0 */
234			if (cpu_logical_map(cpu) == 1)
235				set_c0_brcm_cmt_ctrl(0x01);
236			break;
237		case CPU_BMIPS5000:
238			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
239			break;
 
 
 
 
 
 
 
240		}
 
241		cpumask_set_cpu(cpu, &bmips_booted_mask);
242	}
243
244	return 0;
245}
246
247/*
248 * Early setup - runs on secondary CPU after cache probe
249 */
250static void bmips_init_secondary(void)
251{
252	bmips_cpu_setup();
 
 
 
 
 
 
 
253
254	switch (current_cpu_type()) {
255	case CPU_BMIPS4350:
256	case CPU_BMIPS4380:
257		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
258		break;
259	case CPU_BMIPS5000:
260		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
261		cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
262		break;
263	}
264}
265
266/*
267 * Late setup - runs on secondary CPU before entering the idle loop
268 */
269static void bmips_smp_finish(void)
270{
271	pr_info("SMP: CPU%d is running\n", smp_processor_id());
272
273	/* make sure there won't be a timer interrupt for a little while */
274	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
275
276	irq_enable_hazard();
277	set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
278	irq_enable_hazard();
279}
280
281/*
 
 
 
 
 
 
 
 
 
282 * BMIPS5000 raceless IPIs
283 *
284 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
285 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
286 * IPI1 is used for SMP_CALL_FUNCTION
287 */
288
289static void bmips5000_send_ipi_single(int cpu, unsigned int action)
290{
291	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
292}
293
294static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
295{
296	int action = irq - IPI0_IRQ;
297
298	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
299
300	if (action == 0)
301		scheduler_ipi();
302	else
303		generic_smp_call_function_interrupt();
304
305	return IRQ_HANDLED;
306}
307
308static void bmips5000_send_ipi_mask(const struct cpumask *mask,
309	unsigned int action)
310{
311	unsigned int i;
312
313	for_each_cpu(i, mask)
314		bmips5000_send_ipi_single(i, action);
315}
316
317/*
318 * BMIPS43xx racey IPIs
319 *
320 * We use one inbound SW IRQ for each CPU.
321 *
322 * A spinlock must be held in order to keep CPUx from accidentally clearing
323 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
324 * same spinlock is used to protect the action masks.
325 */
326
327static DEFINE_SPINLOCK(ipi_lock);
328static DEFINE_PER_CPU(int, ipi_action_mask);
329
330static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
331{
332	unsigned long flags;
333
334	spin_lock_irqsave(&ipi_lock, flags);
335	set_c0_cause(cpu ? C_SW1 : C_SW0);
336	per_cpu(ipi_action_mask, cpu) |= action;
337	irq_enable_hazard();
338	spin_unlock_irqrestore(&ipi_lock, flags);
339}
340
341static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
342{
343	unsigned long flags;
344	int action, cpu = irq - IPI0_IRQ;
345
346	spin_lock_irqsave(&ipi_lock, flags);
347	action = __this_cpu_read(ipi_action_mask);
348	per_cpu(ipi_action_mask, cpu) = 0;
349	clear_c0_cause(cpu ? C_SW1 : C_SW0);
350	spin_unlock_irqrestore(&ipi_lock, flags);
351
352	if (action & SMP_RESCHEDULE_YOURSELF)
353		scheduler_ipi();
354	if (action & SMP_CALL_FUNCTION)
355		generic_smp_call_function_interrupt();
356
357	return IRQ_HANDLED;
358}
359
360static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
 
 
361	unsigned int action)
362{
363	unsigned int i;
364
365	for_each_cpu(i, mask)
366		bmips43xx_send_ipi_single(i, action);
367}
368
369#ifdef CONFIG_HOTPLUG_CPU
370
371static int bmips_cpu_disable(void)
372{
373	unsigned int cpu = smp_processor_id();
374
 
 
 
375	pr_info("SMP: CPU%d is offline\n", cpu);
376
377	set_cpu_online(cpu, false);
378	calculate_cpu_foreign_map();
379	irq_migrate_all_off_this_cpu();
380	clear_c0_status(IE_IRQ5);
381
382	local_flush_tlb_all();
383	local_flush_icache_range(0, ~0);
384
385	return 0;
386}
387
388static void bmips_cpu_die(unsigned int cpu)
389{
390}
391
392void __ref play_dead(void)
393{
394	idle_task_exit();
395	cpuhp_ap_report_dead();
396
397	/* flush data cache */
398	_dma_cache_wback_inv(0, ~0);
399
400	/*
401	 * Wakeup is on SW0 or SW1; disable everything else
402	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
403	 * IRQ handlers; this clears ST0_IE and returns immediately.
404	 */
405	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
406	change_c0_status(
407		IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
408		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
409	irq_disable_hazard();
410
411	/*
412	 * wait for SW interrupt from bmips_boot_secondary(), then jump
413	 * back to start_secondary()
414	 */
415	__asm__ __volatile__(
416	"	wait\n"
417	"	j	bmips_secondary_reentry\n"
418	: : : "memory");
419
420	BUG();
421}
422
423#endif /* CONFIG_HOTPLUG_CPU */
424
425const struct plat_smp_ops bmips43xx_smp_ops = {
426	.smp_setup		= bmips_smp_setup,
427	.prepare_cpus		= bmips_prepare_cpus,
428	.boot_secondary		= bmips_boot_secondary,
429	.smp_finish		= bmips_smp_finish,
430	.init_secondary		= bmips_init_secondary,
431	.send_ipi_single	= bmips43xx_send_ipi_single,
432	.send_ipi_mask		= bmips43xx_send_ipi_mask,
433#ifdef CONFIG_HOTPLUG_CPU
434	.cpu_disable		= bmips_cpu_disable,
435	.cpu_die		= bmips_cpu_die,
436#endif
437#ifdef CONFIG_KEXEC_CORE
438	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
439#endif
440};
441
442const struct plat_smp_ops bmips5000_smp_ops = {
443	.smp_setup		= bmips_smp_setup,
444	.prepare_cpus		= bmips_prepare_cpus,
445	.boot_secondary		= bmips_boot_secondary,
446	.smp_finish		= bmips_smp_finish,
447	.init_secondary		= bmips_init_secondary,
448	.send_ipi_single	= bmips5000_send_ipi_single,
449	.send_ipi_mask		= bmips5000_send_ipi_mask,
 
450#ifdef CONFIG_HOTPLUG_CPU
451	.cpu_disable		= bmips_cpu_disable,
452	.cpu_die		= bmips_cpu_die,
453#endif
454#ifdef CONFIG_KEXEC_CORE
455	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
456#endif
457};
458
459#endif /* CONFIG_SMP */
460
461/***********************************************************************
462 * BMIPS vector relocation
463 * This is primarily used for SMP boot, but it is applicable to some
464 * UP BMIPS systems as well.
465 ***********************************************************************/
466
467static void bmips_wr_vec(unsigned long dst, char *start, char *end)
468{
469	memcpy((void *)dst, start, end - start);
470	dma_cache_wback(dst, end - start);
471	local_flush_icache_range(dst, dst + (end - start));
472	instruction_hazard();
473}
474
475static inline void bmips_nmi_handler_setup(void)
476{
477	bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
478		bmips_reset_nmi_vec_end);
479	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
480		bmips_smp_int_vec_end);
481}
482
483struct reset_vec_info {
484	int cpu;
485	u32 val;
486};
487
488static void bmips_set_reset_vec_remote(void *vinfo)
489{
490	struct reset_vec_info *info = vinfo;
491	int shift = info->cpu & 0x01 ? 16 : 0;
492	u32 mask = ~(0xffff << shift), val = info->val >> 16;
493
494	preempt_disable();
495	if (smp_processor_id() > 0) {
496		smp_call_function_single(0, &bmips_set_reset_vec_remote,
497					 info, 1);
498	} else {
499		if (info->cpu & 0x02) {
500			/* BMIPS5200 "should" use mask/shift, but it's buggy */
501			bmips_write_zscm_reg(0xa0, (val << 16) | val);
502			bmips_read_zscm_reg(0xa0);
503		} else {
504			write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
505					      (val << shift));
506		}
507	}
508	preempt_enable();
509}
510
511static void bmips_set_reset_vec(int cpu, u32 val)
512{
513	struct reset_vec_info info;
514
515	if (current_cpu_type() == CPU_BMIPS5000) {
516		/* this needs to run from CPU0 (which is always online) */
517		info.cpu = cpu;
518		info.val = val;
519		bmips_set_reset_vec_remote(&info);
520	} else {
521		void __iomem *cbr = BMIPS_GET_CBR();
522
523		if (cpu == 0)
524			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
525		else {
526			if (current_cpu_type() != CPU_BMIPS4380)
527				return;
528			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
529		}
530	}
531	__sync();
532	back_to_back_c0_hazard();
533}
534
535void bmips_ebase_setup(void)
536{
537	unsigned long new_ebase = ebase;
 
538
539	BUG_ON(ebase != CKSEG0);
540
541	switch (current_cpu_type()) {
542	case CPU_BMIPS4350:
543		/*
544		 * BMIPS4350 cannot relocate the normal vectors, but it
545		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
546		 * the relocated BEV=1, IV=0 general exception vector @
547		 * 0xa000_0380.
548		 *
549		 * set_uncached_handler() is used here because:
550		 *  - CPU1 will run this from uncached space
551		 *  - None of the cacheflush functions are set up yet
552		 */
553		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
554			&bmips_smp_int_vec, 0x80);
555		__sync();
556		return;
557	case CPU_BMIPS3300:
558	case CPU_BMIPS4380:
559		/*
560		 * 0x8000_0000: reset/NMI (initially in kseg1)
561		 * 0x8000_0400: normal vectors
562		 */
563		new_ebase = 0x80000400;
564		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
565		break;
566	case CPU_BMIPS5000:
567		/*
568		 * 0x8000_0000: reset/NMI (initially in kseg1)
569		 * 0x8000_1000: normal vectors
570		 */
571		new_ebase = 0x80001000;
572		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
573		write_c0_ebase(new_ebase);
574		break;
575	default:
576		return;
577	}
578
579	board_nmi_handler_setup = &bmips_nmi_handler_setup;
580	ebase = new_ebase;
581}
582
583asmlinkage void __weak plat_wired_tlb_setup(void)
584{
585	/*
586	 * Called when starting/restarting a secondary CPU.
587	 * Kernel stacks and other important data might only be accessible
588	 * once the wired entries are present.
589	 */
590}
591
592void bmips_cpu_setup(void)
593{
594	void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
595	u32 __maybe_unused cfg;
596
597	switch (current_cpu_type()) {
598	case CPU_BMIPS3300:
599		/* Set BIU to async mode */
600		set_c0_brcm_bus_pll(BIT(22));
601		__sync();
602
603		/* put the BIU back in sync mode */
604		clear_c0_brcm_bus_pll(BIT(22));
605
606		/* clear BHTD to enable branch history table */
607		clear_c0_brcm_reset(BIT(16));
608
609		/* Flush and enable RAC */
610		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
611		__raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
612		__raw_readl(cbr + BMIPS_RAC_CONFIG);
613
614		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
615		__raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
616		__raw_readl(cbr + BMIPS_RAC_CONFIG);
617
618		cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
619		__raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
620		__raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
621		break;
622
623	case CPU_BMIPS4380:
624		/* CBG workaround for early BMIPS4380 CPUs */
625		switch (read_c0_prid()) {
626		case 0x2a040:
627		case 0x2a042:
628		case 0x2a044:
629		case 0x2a060:
630			cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
631			__raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
632			__raw_readl(cbr + BMIPS_L2_CONFIG);
633		}
634
635		/* clear BHTD to enable branch history table */
636		clear_c0_brcm_config_0(BIT(21));
637
638		/* XI/ROTR enable */
639		set_c0_brcm_config_0(BIT(23));
640		set_c0_brcm_cmt_ctrl(BIT(15));
641		break;
642
643	case CPU_BMIPS5000:
644		/* enable RDHWR, BRDHWR */
645		set_c0_brcm_config(BIT(17) | BIT(21));
646
647		/* Disable JTB */
648		__asm__ __volatile__(
649		"	.set	noreorder\n"
650		"	li	$8, 0x5a455048\n"
651		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
652		"	.word	0x4008b008\n"	/* mfc0	t0, $22, 8 */
653		"	li	$9, 0x00008000\n"
654		"	or	$8, $8, $9\n"
655		"	.word	0x4088b008\n"	/* mtc0	t0, $22, 8 */
656		"	sync\n"
657		"	li	$8, 0x0\n"
658		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
659		"	.set	reorder\n"
660		: : : "$8", "$9");
661
662		/* XI enable */
663		set_c0_brcm_config(BIT(27));
664
665		/* enable MIPS32R2 ROR instruction for XI TLB handlers */
666		__asm__ __volatile__(
667		"	li	$8, 0x5a455048\n"
668		"	.word	0x4088b00f\n"	/* mtc0 $8, $22, 15 */
669		"	nop; nop; nop\n"
670		"	.word	0x4008b008\n"	/* mfc0 $8, $22, 8 */
671		"	lui	$9, 0x0100\n"
672		"	or	$8, $9\n"
673		"	.word	0x4088b008\n"	/* mtc0 $8, $22, 8 */
674		: : : "$8", "$9");
675		break;
676	}
677}