Loading...
1/*
2 * Device probing and sysfs code.
3 *
4 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21#include <linux/bug.h>
22#include <linux/ctype.h>
23#include <linux/delay.h>
24#include <linux/device.h>
25#include <linux/errno.h>
26#include <linux/firewire.h>
27#include <linux/firewire-constants.h>
28#include <linux/idr.h>
29#include <linux/jiffies.h>
30#include <linux/kobject.h>
31#include <linux/list.h>
32#include <linux/mod_devicetable.h>
33#include <linux/module.h>
34#include <linux/mutex.h>
35#include <linux/rwsem.h>
36#include <linux/slab.h>
37#include <linux/spinlock.h>
38#include <linux/string.h>
39#include <linux/workqueue.h>
40
41#include <linux/atomic.h>
42#include <asm/byteorder.h>
43
44#include "core.h"
45
46void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
47{
48 ci->p = p + 1;
49 ci->end = ci->p + (p[0] >> 16);
50}
51EXPORT_SYMBOL(fw_csr_iterator_init);
52
53int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
54{
55 *key = *ci->p >> 24;
56 *value = *ci->p & 0xffffff;
57
58 return ci->p++ < ci->end;
59}
60EXPORT_SYMBOL(fw_csr_iterator_next);
61
62static const u32 *search_leaf(const u32 *directory, int search_key)
63{
64 struct fw_csr_iterator ci;
65 int last_key = 0, key, value;
66
67 fw_csr_iterator_init(&ci, directory);
68 while (fw_csr_iterator_next(&ci, &key, &value)) {
69 if (last_key == search_key &&
70 key == (CSR_DESCRIPTOR | CSR_LEAF))
71 return ci.p - 1 + value;
72
73 last_key = key;
74 }
75
76 return NULL;
77}
78
79static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
80{
81 unsigned int quadlets, i;
82 char c;
83
84 if (!size || !buf)
85 return -EINVAL;
86
87 quadlets = min(block[0] >> 16, 256U);
88 if (quadlets < 2)
89 return -ENODATA;
90
91 if (block[1] != 0 || block[2] != 0)
92 /* unknown language/character set */
93 return -ENODATA;
94
95 block += 3;
96 quadlets -= 2;
97 for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
98 c = block[i / 4] >> (24 - 8 * (i % 4));
99 if (c == '\0')
100 break;
101 buf[i] = c;
102 }
103 buf[i] = '\0';
104
105 return i;
106}
107
108/**
109 * fw_csr_string() - reads a string from the configuration ROM
110 * @directory: e.g. root directory or unit directory
111 * @key: the key of the preceding directory entry
112 * @buf: where to put the string
113 * @size: size of @buf, in bytes
114 *
115 * The string is taken from a minimal ASCII text descriptor leaf after
116 * the immediate entry with @key. The string is zero-terminated.
117 * Returns strlen(buf) or a negative error code.
118 */
119int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
120{
121 const u32 *leaf = search_leaf(directory, key);
122 if (!leaf)
123 return -ENOENT;
124
125 return textual_leaf_to_string(leaf, buf, size);
126}
127EXPORT_SYMBOL(fw_csr_string);
128
129static void get_ids(const u32 *directory, int *id)
130{
131 struct fw_csr_iterator ci;
132 int key, value;
133
134 fw_csr_iterator_init(&ci, directory);
135 while (fw_csr_iterator_next(&ci, &key, &value)) {
136 switch (key) {
137 case CSR_VENDOR: id[0] = value; break;
138 case CSR_MODEL: id[1] = value; break;
139 case CSR_SPECIFIER_ID: id[2] = value; break;
140 case CSR_VERSION: id[3] = value; break;
141 }
142 }
143}
144
145static void get_modalias_ids(struct fw_unit *unit, int *id)
146{
147 get_ids(&fw_parent_device(unit)->config_rom[5], id);
148 get_ids(unit->directory, id);
149}
150
151static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
152{
153 int match = 0;
154
155 if (id[0] == id_table->vendor_id)
156 match |= IEEE1394_MATCH_VENDOR_ID;
157 if (id[1] == id_table->model_id)
158 match |= IEEE1394_MATCH_MODEL_ID;
159 if (id[2] == id_table->specifier_id)
160 match |= IEEE1394_MATCH_SPECIFIER_ID;
161 if (id[3] == id_table->version)
162 match |= IEEE1394_MATCH_VERSION;
163
164 return (match & id_table->match_flags) == id_table->match_flags;
165}
166
167static bool is_fw_unit(struct device *dev);
168
169static int fw_unit_match(struct device *dev, struct device_driver *drv)
170{
171 const struct ieee1394_device_id *id_table =
172 container_of(drv, struct fw_driver, driver)->id_table;
173 int id[] = {0, 0, 0, 0};
174
175 /* We only allow binding to fw_units. */
176 if (!is_fw_unit(dev))
177 return 0;
178
179 get_modalias_ids(fw_unit(dev), id);
180
181 for (; id_table->match_flags != 0; id_table++)
182 if (match_ids(id_table, id))
183 return 1;
184
185 return 0;
186}
187
188static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
189{
190 int id[] = {0, 0, 0, 0};
191
192 get_modalias_ids(unit, id);
193
194 return snprintf(buffer, buffer_size,
195 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
196 id[0], id[1], id[2], id[3]);
197}
198
199static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
200{
201 struct fw_unit *unit = fw_unit(dev);
202 char modalias[64];
203
204 get_modalias(unit, modalias, sizeof(modalias));
205
206 if (add_uevent_var(env, "MODALIAS=%s", modalias))
207 return -ENOMEM;
208
209 return 0;
210}
211
212struct bus_type fw_bus_type = {
213 .name = "firewire",
214 .match = fw_unit_match,
215};
216EXPORT_SYMBOL(fw_bus_type);
217
218int fw_device_enable_phys_dma(struct fw_device *device)
219{
220 int generation = device->generation;
221
222 /* device->node_id, accessed below, must not be older than generation */
223 smp_rmb();
224
225 return device->card->driver->enable_phys_dma(device->card,
226 device->node_id,
227 generation);
228}
229EXPORT_SYMBOL(fw_device_enable_phys_dma);
230
231struct config_rom_attribute {
232 struct device_attribute attr;
233 u32 key;
234};
235
236static ssize_t show_immediate(struct device *dev,
237 struct device_attribute *dattr, char *buf)
238{
239 struct config_rom_attribute *attr =
240 container_of(dattr, struct config_rom_attribute, attr);
241 struct fw_csr_iterator ci;
242 const u32 *dir;
243 int key, value, ret = -ENOENT;
244
245 down_read(&fw_device_rwsem);
246
247 if (is_fw_unit(dev))
248 dir = fw_unit(dev)->directory;
249 else
250 dir = fw_device(dev)->config_rom + 5;
251
252 fw_csr_iterator_init(&ci, dir);
253 while (fw_csr_iterator_next(&ci, &key, &value))
254 if (attr->key == key) {
255 ret = snprintf(buf, buf ? PAGE_SIZE : 0,
256 "0x%06x\n", value);
257 break;
258 }
259
260 up_read(&fw_device_rwsem);
261
262 return ret;
263}
264
265#define IMMEDIATE_ATTR(name, key) \
266 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
267
268static ssize_t show_text_leaf(struct device *dev,
269 struct device_attribute *dattr, char *buf)
270{
271 struct config_rom_attribute *attr =
272 container_of(dattr, struct config_rom_attribute, attr);
273 const u32 *dir;
274 size_t bufsize;
275 char dummy_buf[2];
276 int ret;
277
278 down_read(&fw_device_rwsem);
279
280 if (is_fw_unit(dev))
281 dir = fw_unit(dev)->directory;
282 else
283 dir = fw_device(dev)->config_rom + 5;
284
285 if (buf) {
286 bufsize = PAGE_SIZE - 1;
287 } else {
288 buf = dummy_buf;
289 bufsize = 1;
290 }
291
292 ret = fw_csr_string(dir, attr->key, buf, bufsize);
293
294 if (ret >= 0) {
295 /* Strip trailing whitespace and add newline. */
296 while (ret > 0 && isspace(buf[ret - 1]))
297 ret--;
298 strcpy(buf + ret, "\n");
299 ret++;
300 }
301
302 up_read(&fw_device_rwsem);
303
304 return ret;
305}
306
307#define TEXT_LEAF_ATTR(name, key) \
308 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
309
310static struct config_rom_attribute config_rom_attributes[] = {
311 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
312 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
313 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
314 IMMEDIATE_ATTR(version, CSR_VERSION),
315 IMMEDIATE_ATTR(model, CSR_MODEL),
316 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
317 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
318 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
319};
320
321static void init_fw_attribute_group(struct device *dev,
322 struct device_attribute *attrs,
323 struct fw_attribute_group *group)
324{
325 struct device_attribute *attr;
326 int i, j;
327
328 for (j = 0; attrs[j].attr.name != NULL; j++)
329 group->attrs[j] = &attrs[j].attr;
330
331 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
332 attr = &config_rom_attributes[i].attr;
333 if (attr->show(dev, attr, NULL) < 0)
334 continue;
335 group->attrs[j++] = &attr->attr;
336 }
337
338 group->attrs[j] = NULL;
339 group->groups[0] = &group->group;
340 group->groups[1] = NULL;
341 group->group.attrs = group->attrs;
342 dev->groups = (const struct attribute_group **) group->groups;
343}
344
345static ssize_t modalias_show(struct device *dev,
346 struct device_attribute *attr, char *buf)
347{
348 struct fw_unit *unit = fw_unit(dev);
349 int length;
350
351 length = get_modalias(unit, buf, PAGE_SIZE);
352 strcpy(buf + length, "\n");
353
354 return length + 1;
355}
356
357static ssize_t rom_index_show(struct device *dev,
358 struct device_attribute *attr, char *buf)
359{
360 struct fw_device *device = fw_device(dev->parent);
361 struct fw_unit *unit = fw_unit(dev);
362
363 return snprintf(buf, PAGE_SIZE, "%d\n",
364 (int)(unit->directory - device->config_rom));
365}
366
367static struct device_attribute fw_unit_attributes[] = {
368 __ATTR_RO(modalias),
369 __ATTR_RO(rom_index),
370 __ATTR_NULL,
371};
372
373static ssize_t config_rom_show(struct device *dev,
374 struct device_attribute *attr, char *buf)
375{
376 struct fw_device *device = fw_device(dev);
377 size_t length;
378
379 down_read(&fw_device_rwsem);
380 length = device->config_rom_length * 4;
381 memcpy(buf, device->config_rom, length);
382 up_read(&fw_device_rwsem);
383
384 return length;
385}
386
387static ssize_t guid_show(struct device *dev,
388 struct device_attribute *attr, char *buf)
389{
390 struct fw_device *device = fw_device(dev);
391 int ret;
392
393 down_read(&fw_device_rwsem);
394 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
395 device->config_rom[3], device->config_rom[4]);
396 up_read(&fw_device_rwsem);
397
398 return ret;
399}
400
401static int units_sprintf(char *buf, const u32 *directory)
402{
403 struct fw_csr_iterator ci;
404 int key, value;
405 int specifier_id = 0;
406 int version = 0;
407
408 fw_csr_iterator_init(&ci, directory);
409 while (fw_csr_iterator_next(&ci, &key, &value)) {
410 switch (key) {
411 case CSR_SPECIFIER_ID:
412 specifier_id = value;
413 break;
414 case CSR_VERSION:
415 version = value;
416 break;
417 }
418 }
419
420 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
421}
422
423static ssize_t units_show(struct device *dev,
424 struct device_attribute *attr, char *buf)
425{
426 struct fw_device *device = fw_device(dev);
427 struct fw_csr_iterator ci;
428 int key, value, i = 0;
429
430 down_read(&fw_device_rwsem);
431 fw_csr_iterator_init(&ci, &device->config_rom[5]);
432 while (fw_csr_iterator_next(&ci, &key, &value)) {
433 if (key != (CSR_UNIT | CSR_DIRECTORY))
434 continue;
435 i += units_sprintf(&buf[i], ci.p + value - 1);
436 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
437 break;
438 }
439 up_read(&fw_device_rwsem);
440
441 if (i)
442 buf[i - 1] = '\n';
443
444 return i;
445}
446
447static struct device_attribute fw_device_attributes[] = {
448 __ATTR_RO(config_rom),
449 __ATTR_RO(guid),
450 __ATTR_RO(units),
451 __ATTR_NULL,
452};
453
454static int read_rom(struct fw_device *device,
455 int generation, int index, u32 *data)
456{
457 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
458 int i, rcode;
459
460 /* device->node_id, accessed below, must not be older than generation */
461 smp_rmb();
462
463 for (i = 10; i < 100; i += 10) {
464 rcode = fw_run_transaction(device->card,
465 TCODE_READ_QUADLET_REQUEST, device->node_id,
466 generation, device->max_speed, offset, data, 4);
467 if (rcode != RCODE_BUSY)
468 break;
469 msleep(i);
470 }
471 be32_to_cpus(data);
472
473 return rcode;
474}
475
476#define MAX_CONFIG_ROM_SIZE 256
477
478/*
479 * Read the bus info block, perform a speed probe, and read all of the rest of
480 * the config ROM. We do all this with a cached bus generation. If the bus
481 * generation changes under us, read_config_rom will fail and get retried.
482 * It's better to start all over in this case because the node from which we
483 * are reading the ROM may have changed the ROM during the reset.
484 * Returns either a result code or a negative error code.
485 */
486static int read_config_rom(struct fw_device *device, int generation)
487{
488 struct fw_card *card = device->card;
489 const u32 *old_rom, *new_rom;
490 u32 *rom, *stack;
491 u32 sp, key;
492 int i, end, length, ret;
493
494 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
495 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
496 if (rom == NULL)
497 return -ENOMEM;
498
499 stack = &rom[MAX_CONFIG_ROM_SIZE];
500 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
501
502 device->max_speed = SCODE_100;
503
504 /* First read the bus info block. */
505 for (i = 0; i < 5; i++) {
506 ret = read_rom(device, generation, i, &rom[i]);
507 if (ret != RCODE_COMPLETE)
508 goto out;
509 /*
510 * As per IEEE1212 7.2, during initialization, devices can
511 * reply with a 0 for the first quadlet of the config
512 * rom to indicate that they are booting (for example,
513 * if the firmware is on the disk of a external
514 * harddisk). In that case we just fail, and the
515 * retry mechanism will try again later.
516 */
517 if (i == 0 && rom[i] == 0) {
518 ret = RCODE_BUSY;
519 goto out;
520 }
521 }
522
523 device->max_speed = device->node->max_speed;
524
525 /*
526 * Determine the speed of
527 * - devices with link speed less than PHY speed,
528 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
529 * - all devices if there are 1394b repeaters.
530 * Note, we cannot use the bus info block's link_spd as starting point
531 * because some buggy firmwares set it lower than necessary and because
532 * 1394-1995 nodes do not have the field.
533 */
534 if ((rom[2] & 0x7) < device->max_speed ||
535 device->max_speed == SCODE_BETA ||
536 card->beta_repeaters_present) {
537 u32 dummy;
538
539 /* for S1600 and S3200 */
540 if (device->max_speed == SCODE_BETA)
541 device->max_speed = card->link_speed;
542
543 while (device->max_speed > SCODE_100) {
544 if (read_rom(device, generation, 0, &dummy) ==
545 RCODE_COMPLETE)
546 break;
547 device->max_speed--;
548 }
549 }
550
551 /*
552 * Now parse the config rom. The config rom is a recursive
553 * directory structure so we parse it using a stack of
554 * references to the blocks that make up the structure. We
555 * push a reference to the root directory on the stack to
556 * start things off.
557 */
558 length = i;
559 sp = 0;
560 stack[sp++] = 0xc0000005;
561 while (sp > 0) {
562 /*
563 * Pop the next block reference of the stack. The
564 * lower 24 bits is the offset into the config rom,
565 * the upper 8 bits are the type of the reference the
566 * block.
567 */
568 key = stack[--sp];
569 i = key & 0xffffff;
570 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
571 ret = -ENXIO;
572 goto out;
573 }
574
575 /* Read header quadlet for the block to get the length. */
576 ret = read_rom(device, generation, i, &rom[i]);
577 if (ret != RCODE_COMPLETE)
578 goto out;
579 end = i + (rom[i] >> 16) + 1;
580 if (end > MAX_CONFIG_ROM_SIZE) {
581 /*
582 * This block extends outside the config ROM which is
583 * a firmware bug. Ignore this whole block, i.e.
584 * simply set a fake block length of 0.
585 */
586 fw_err(card, "skipped invalid ROM block %x at %llx\n",
587 rom[i],
588 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
589 rom[i] = 0;
590 end = i;
591 }
592 i++;
593
594 /*
595 * Now read in the block. If this is a directory
596 * block, check the entries as we read them to see if
597 * it references another block, and push it in that case.
598 */
599 for (; i < end; i++) {
600 ret = read_rom(device, generation, i, &rom[i]);
601 if (ret != RCODE_COMPLETE)
602 goto out;
603
604 if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
605 continue;
606 /*
607 * Offset points outside the ROM. May be a firmware
608 * bug or an Extended ROM entry (IEEE 1212-2001 clause
609 * 7.7.18). Simply overwrite this pointer here by a
610 * fake immediate entry so that later iterators over
611 * the ROM don't have to check offsets all the time.
612 */
613 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
614 fw_err(card,
615 "skipped unsupported ROM entry %x at %llx\n",
616 rom[i],
617 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
618 rom[i] = 0;
619 continue;
620 }
621 stack[sp++] = i + rom[i];
622 }
623 if (length < i)
624 length = i;
625 }
626
627 old_rom = device->config_rom;
628 new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
629 if (new_rom == NULL) {
630 ret = -ENOMEM;
631 goto out;
632 }
633
634 down_write(&fw_device_rwsem);
635 device->config_rom = new_rom;
636 device->config_rom_length = length;
637 up_write(&fw_device_rwsem);
638
639 kfree(old_rom);
640 ret = RCODE_COMPLETE;
641 device->max_rec = rom[2] >> 12 & 0xf;
642 device->cmc = rom[2] >> 30 & 1;
643 device->irmc = rom[2] >> 31 & 1;
644 out:
645 kfree(rom);
646
647 return ret;
648}
649
650static void fw_unit_release(struct device *dev)
651{
652 struct fw_unit *unit = fw_unit(dev);
653
654 fw_device_put(fw_parent_device(unit));
655 kfree(unit);
656}
657
658static struct device_type fw_unit_type = {
659 .uevent = fw_unit_uevent,
660 .release = fw_unit_release,
661};
662
663static bool is_fw_unit(struct device *dev)
664{
665 return dev->type == &fw_unit_type;
666}
667
668static void create_units(struct fw_device *device)
669{
670 struct fw_csr_iterator ci;
671 struct fw_unit *unit;
672 int key, value, i;
673
674 i = 0;
675 fw_csr_iterator_init(&ci, &device->config_rom[5]);
676 while (fw_csr_iterator_next(&ci, &key, &value)) {
677 if (key != (CSR_UNIT | CSR_DIRECTORY))
678 continue;
679
680 /*
681 * Get the address of the unit directory and try to
682 * match the drivers id_tables against it.
683 */
684 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
685 if (unit == NULL) {
686 fw_err(device->card, "out of memory for unit\n");
687 continue;
688 }
689
690 unit->directory = ci.p + value - 1;
691 unit->device.bus = &fw_bus_type;
692 unit->device.type = &fw_unit_type;
693 unit->device.parent = &device->device;
694 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
695
696 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
697 ARRAY_SIZE(fw_unit_attributes) +
698 ARRAY_SIZE(config_rom_attributes));
699 init_fw_attribute_group(&unit->device,
700 fw_unit_attributes,
701 &unit->attribute_group);
702
703 if (device_register(&unit->device) < 0)
704 goto skip_unit;
705
706 fw_device_get(device);
707 continue;
708
709 skip_unit:
710 kfree(unit);
711 }
712}
713
714static int shutdown_unit(struct device *device, void *data)
715{
716 device_unregister(device);
717
718 return 0;
719}
720
721/*
722 * fw_device_rwsem acts as dual purpose mutex:
723 * - serializes accesses to fw_device_idr,
724 * - serializes accesses to fw_device.config_rom/.config_rom_length and
725 * fw_unit.directory, unless those accesses happen at safe occasions
726 */
727DECLARE_RWSEM(fw_device_rwsem);
728
729DEFINE_IDR(fw_device_idr);
730int fw_cdev_major;
731
732struct fw_device *fw_device_get_by_devt(dev_t devt)
733{
734 struct fw_device *device;
735
736 down_read(&fw_device_rwsem);
737 device = idr_find(&fw_device_idr, MINOR(devt));
738 if (device)
739 fw_device_get(device);
740 up_read(&fw_device_rwsem);
741
742 return device;
743}
744
745struct workqueue_struct *fw_workqueue;
746EXPORT_SYMBOL(fw_workqueue);
747
748static void fw_schedule_device_work(struct fw_device *device,
749 unsigned long delay)
750{
751 queue_delayed_work(fw_workqueue, &device->work, delay);
752}
753
754/*
755 * These defines control the retry behavior for reading the config
756 * rom. It shouldn't be necessary to tweak these; if the device
757 * doesn't respond to a config rom read within 10 seconds, it's not
758 * going to respond at all. As for the initial delay, a lot of
759 * devices will be able to respond within half a second after bus
760 * reset. On the other hand, it's not really worth being more
761 * aggressive than that, since it scales pretty well; if 10 devices
762 * are plugged in, they're all getting read within one second.
763 */
764
765#define MAX_RETRIES 10
766#define RETRY_DELAY (3 * HZ)
767#define INITIAL_DELAY (HZ / 2)
768#define SHUTDOWN_DELAY (2 * HZ)
769
770static void fw_device_shutdown(struct work_struct *work)
771{
772 struct fw_device *device =
773 container_of(work, struct fw_device, work.work);
774 int minor = MINOR(device->device.devt);
775
776 if (time_before64(get_jiffies_64(),
777 device->card->reset_jiffies + SHUTDOWN_DELAY)
778 && !list_empty(&device->card->link)) {
779 fw_schedule_device_work(device, SHUTDOWN_DELAY);
780 return;
781 }
782
783 if (atomic_cmpxchg(&device->state,
784 FW_DEVICE_GONE,
785 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
786 return;
787
788 fw_device_cdev_remove(device);
789 device_for_each_child(&device->device, NULL, shutdown_unit);
790 device_unregister(&device->device);
791
792 down_write(&fw_device_rwsem);
793 idr_remove(&fw_device_idr, minor);
794 up_write(&fw_device_rwsem);
795
796 fw_device_put(device);
797}
798
799static void fw_device_release(struct device *dev)
800{
801 struct fw_device *device = fw_device(dev);
802 struct fw_card *card = device->card;
803 unsigned long flags;
804
805 /*
806 * Take the card lock so we don't set this to NULL while a
807 * FW_NODE_UPDATED callback is being handled or while the
808 * bus manager work looks at this node.
809 */
810 spin_lock_irqsave(&card->lock, flags);
811 device->node->data = NULL;
812 spin_unlock_irqrestore(&card->lock, flags);
813
814 fw_node_put(device->node);
815 kfree(device->config_rom);
816 kfree(device);
817 fw_card_put(card);
818}
819
820static struct device_type fw_device_type = {
821 .release = fw_device_release,
822};
823
824static bool is_fw_device(struct device *dev)
825{
826 return dev->type == &fw_device_type;
827}
828
829static int update_unit(struct device *dev, void *data)
830{
831 struct fw_unit *unit = fw_unit(dev);
832 struct fw_driver *driver = (struct fw_driver *)dev->driver;
833
834 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
835 device_lock(dev);
836 driver->update(unit);
837 device_unlock(dev);
838 }
839
840 return 0;
841}
842
843static void fw_device_update(struct work_struct *work)
844{
845 struct fw_device *device =
846 container_of(work, struct fw_device, work.work);
847
848 fw_device_cdev_update(device);
849 device_for_each_child(&device->device, NULL, update_unit);
850}
851
852/*
853 * If a device was pending for deletion because its node went away but its
854 * bus info block and root directory header matches that of a newly discovered
855 * device, revive the existing fw_device.
856 * The newly allocated fw_device becomes obsolete instead.
857 */
858static int lookup_existing_device(struct device *dev, void *data)
859{
860 struct fw_device *old = fw_device(dev);
861 struct fw_device *new = data;
862 struct fw_card *card = new->card;
863 int match = 0;
864
865 if (!is_fw_device(dev))
866 return 0;
867
868 down_read(&fw_device_rwsem); /* serialize config_rom access */
869 spin_lock_irq(&card->lock); /* serialize node access */
870
871 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
872 atomic_cmpxchg(&old->state,
873 FW_DEVICE_GONE,
874 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
875 struct fw_node *current_node = new->node;
876 struct fw_node *obsolete_node = old->node;
877
878 new->node = obsolete_node;
879 new->node->data = new;
880 old->node = current_node;
881 old->node->data = old;
882
883 old->max_speed = new->max_speed;
884 old->node_id = current_node->node_id;
885 smp_wmb(); /* update node_id before generation */
886 old->generation = card->generation;
887 old->config_rom_retries = 0;
888 fw_notice(card, "rediscovered device %s\n", dev_name(dev));
889
890 PREPARE_DELAYED_WORK(&old->work, fw_device_update);
891 fw_schedule_device_work(old, 0);
892
893 if (current_node == card->root_node)
894 fw_schedule_bm_work(card, 0);
895
896 match = 1;
897 }
898
899 spin_unlock_irq(&card->lock);
900 up_read(&fw_device_rwsem);
901
902 return match;
903}
904
905enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
906
907static void set_broadcast_channel(struct fw_device *device, int generation)
908{
909 struct fw_card *card = device->card;
910 __be32 data;
911 int rcode;
912
913 if (!card->broadcast_channel_allocated)
914 return;
915
916 /*
917 * The Broadcast_Channel Valid bit is required by nodes which want to
918 * transmit on this channel. Such transmissions are practically
919 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
920 * to be IRM capable and have a max_rec of 8 or more. We use this fact
921 * to narrow down to which nodes we send Broadcast_Channel updates.
922 */
923 if (!device->irmc || device->max_rec < 8)
924 return;
925
926 /*
927 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
928 * Perform a read test first.
929 */
930 if (device->bc_implemented == BC_UNKNOWN) {
931 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
932 device->node_id, generation, device->max_speed,
933 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
934 &data, 4);
935 switch (rcode) {
936 case RCODE_COMPLETE:
937 if (data & cpu_to_be32(1 << 31)) {
938 device->bc_implemented = BC_IMPLEMENTED;
939 break;
940 }
941 /* else fall through to case address error */
942 case RCODE_ADDRESS_ERROR:
943 device->bc_implemented = BC_UNIMPLEMENTED;
944 }
945 }
946
947 if (device->bc_implemented == BC_IMPLEMENTED) {
948 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
949 BROADCAST_CHANNEL_VALID);
950 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
951 device->node_id, generation, device->max_speed,
952 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
953 &data, 4);
954 }
955}
956
957int fw_device_set_broadcast_channel(struct device *dev, void *gen)
958{
959 if (is_fw_device(dev))
960 set_broadcast_channel(fw_device(dev), (long)gen);
961
962 return 0;
963}
964
965static void fw_device_init(struct work_struct *work)
966{
967 struct fw_device *device =
968 container_of(work, struct fw_device, work.work);
969 struct fw_card *card = device->card;
970 struct device *revived_dev;
971 int minor, ret;
972
973 /*
974 * All failure paths here set node->data to NULL, so that we
975 * don't try to do device_for_each_child() on a kfree()'d
976 * device.
977 */
978
979 ret = read_config_rom(device, device->generation);
980 if (ret != RCODE_COMPLETE) {
981 if (device->config_rom_retries < MAX_RETRIES &&
982 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
983 device->config_rom_retries++;
984 fw_schedule_device_work(device, RETRY_DELAY);
985 } else {
986 if (device->node->link_on)
987 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
988 device->node_id,
989 fw_rcode_string(ret));
990 if (device->node == card->root_node)
991 fw_schedule_bm_work(card, 0);
992 fw_device_release(&device->device);
993 }
994 return;
995 }
996
997 revived_dev = device_find_child(card->device,
998 device, lookup_existing_device);
999 if (revived_dev) {
1000 put_device(revived_dev);
1001 fw_device_release(&device->device);
1002
1003 return;
1004 }
1005
1006 device_initialize(&device->device);
1007
1008 fw_device_get(device);
1009 down_write(&fw_device_rwsem);
1010 ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
1011 idr_get_new(&fw_device_idr, device, &minor) :
1012 -ENOMEM;
1013 up_write(&fw_device_rwsem);
1014
1015 if (ret < 0)
1016 goto error;
1017
1018 device->device.bus = &fw_bus_type;
1019 device->device.type = &fw_device_type;
1020 device->device.parent = card->device;
1021 device->device.devt = MKDEV(fw_cdev_major, minor);
1022 dev_set_name(&device->device, "fw%d", minor);
1023
1024 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1025 ARRAY_SIZE(fw_device_attributes) +
1026 ARRAY_SIZE(config_rom_attributes));
1027 init_fw_attribute_group(&device->device,
1028 fw_device_attributes,
1029 &device->attribute_group);
1030
1031 if (device_add(&device->device)) {
1032 fw_err(card, "failed to add device\n");
1033 goto error_with_cdev;
1034 }
1035
1036 create_units(device);
1037
1038 /*
1039 * Transition the device to running state. If it got pulled
1040 * out from under us while we did the intialization work, we
1041 * have to shut down the device again here. Normally, though,
1042 * fw_node_event will be responsible for shutting it down when
1043 * necessary. We have to use the atomic cmpxchg here to avoid
1044 * racing with the FW_NODE_DESTROYED case in
1045 * fw_node_event().
1046 */
1047 if (atomic_cmpxchg(&device->state,
1048 FW_DEVICE_INITIALIZING,
1049 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1050 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1051 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1052 } else {
1053 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1054 dev_name(&device->device),
1055 device->config_rom[3], device->config_rom[4],
1056 1 << device->max_speed);
1057 device->config_rom_retries = 0;
1058
1059 set_broadcast_channel(device, device->generation);
1060 }
1061
1062 /*
1063 * Reschedule the IRM work if we just finished reading the
1064 * root node config rom. If this races with a bus reset we
1065 * just end up running the IRM work a couple of extra times -
1066 * pretty harmless.
1067 */
1068 if (device->node == card->root_node)
1069 fw_schedule_bm_work(card, 0);
1070
1071 return;
1072
1073 error_with_cdev:
1074 down_write(&fw_device_rwsem);
1075 idr_remove(&fw_device_idr, minor);
1076 up_write(&fw_device_rwsem);
1077 error:
1078 fw_device_put(device); /* fw_device_idr's reference */
1079
1080 put_device(&device->device); /* our reference */
1081}
1082
1083/* Reread and compare bus info block and header of root directory */
1084static int reread_config_rom(struct fw_device *device, int generation,
1085 bool *changed)
1086{
1087 u32 q;
1088 int i, rcode;
1089
1090 for (i = 0; i < 6; i++) {
1091 rcode = read_rom(device, generation, i, &q);
1092 if (rcode != RCODE_COMPLETE)
1093 return rcode;
1094
1095 if (i == 0 && q == 0)
1096 /* inaccessible (see read_config_rom); retry later */
1097 return RCODE_BUSY;
1098
1099 if (q != device->config_rom[i]) {
1100 *changed = true;
1101 return RCODE_COMPLETE;
1102 }
1103 }
1104
1105 *changed = false;
1106 return RCODE_COMPLETE;
1107}
1108
1109static void fw_device_refresh(struct work_struct *work)
1110{
1111 struct fw_device *device =
1112 container_of(work, struct fw_device, work.work);
1113 struct fw_card *card = device->card;
1114 int ret, node_id = device->node_id;
1115 bool changed;
1116
1117 ret = reread_config_rom(device, device->generation, &changed);
1118 if (ret != RCODE_COMPLETE)
1119 goto failed_config_rom;
1120
1121 if (!changed) {
1122 if (atomic_cmpxchg(&device->state,
1123 FW_DEVICE_INITIALIZING,
1124 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1125 goto gone;
1126
1127 fw_device_update(work);
1128 device->config_rom_retries = 0;
1129 goto out;
1130 }
1131
1132 /*
1133 * Something changed. We keep things simple and don't investigate
1134 * further. We just destroy all previous units and create new ones.
1135 */
1136 device_for_each_child(&device->device, NULL, shutdown_unit);
1137
1138 ret = read_config_rom(device, device->generation);
1139 if (ret != RCODE_COMPLETE)
1140 goto failed_config_rom;
1141
1142 fw_device_cdev_update(device);
1143 create_units(device);
1144
1145 /* Userspace may want to re-read attributes. */
1146 kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1147
1148 if (atomic_cmpxchg(&device->state,
1149 FW_DEVICE_INITIALIZING,
1150 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1151 goto gone;
1152
1153 fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1154 device->config_rom_retries = 0;
1155 goto out;
1156
1157 failed_config_rom:
1158 if (device->config_rom_retries < MAX_RETRIES &&
1159 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1160 device->config_rom_retries++;
1161 fw_schedule_device_work(device, RETRY_DELAY);
1162 return;
1163 }
1164
1165 fw_notice(card, "giving up on refresh of device %s: %s\n",
1166 dev_name(&device->device), fw_rcode_string(ret));
1167 gone:
1168 atomic_set(&device->state, FW_DEVICE_GONE);
1169 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1170 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1171 out:
1172 if (node_id == card->root_node->node_id)
1173 fw_schedule_bm_work(card, 0);
1174}
1175
1176void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1177{
1178 struct fw_device *device;
1179
1180 switch (event) {
1181 case FW_NODE_CREATED:
1182 /*
1183 * Attempt to scan the node, regardless whether its self ID has
1184 * the L (link active) flag set or not. Some broken devices
1185 * send L=0 but have an up-and-running link; others send L=1
1186 * without actually having a link.
1187 */
1188 create:
1189 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1190 if (device == NULL)
1191 break;
1192
1193 /*
1194 * Do minimal intialization of the device here, the
1195 * rest will happen in fw_device_init().
1196 *
1197 * Attention: A lot of things, even fw_device_get(),
1198 * cannot be done before fw_device_init() finished!
1199 * You can basically just check device->state and
1200 * schedule work until then, but only while holding
1201 * card->lock.
1202 */
1203 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1204 device->card = fw_card_get(card);
1205 device->node = fw_node_get(node);
1206 device->node_id = node->node_id;
1207 device->generation = card->generation;
1208 device->is_local = node == card->local_node;
1209 mutex_init(&device->client_list_mutex);
1210 INIT_LIST_HEAD(&device->client_list);
1211
1212 /*
1213 * Set the node data to point back to this device so
1214 * FW_NODE_UPDATED callbacks can update the node_id
1215 * and generation for the device.
1216 */
1217 node->data = device;
1218
1219 /*
1220 * Many devices are slow to respond after bus resets,
1221 * especially if they are bus powered and go through
1222 * power-up after getting plugged in. We schedule the
1223 * first config rom scan half a second after bus reset.
1224 */
1225 INIT_DELAYED_WORK(&device->work, fw_device_init);
1226 fw_schedule_device_work(device, INITIAL_DELAY);
1227 break;
1228
1229 case FW_NODE_INITIATED_RESET:
1230 case FW_NODE_LINK_ON:
1231 device = node->data;
1232 if (device == NULL)
1233 goto create;
1234
1235 device->node_id = node->node_id;
1236 smp_wmb(); /* update node_id before generation */
1237 device->generation = card->generation;
1238 if (atomic_cmpxchg(&device->state,
1239 FW_DEVICE_RUNNING,
1240 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1241 PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1242 fw_schedule_device_work(device,
1243 device->is_local ? 0 : INITIAL_DELAY);
1244 }
1245 break;
1246
1247 case FW_NODE_UPDATED:
1248 device = node->data;
1249 if (device == NULL)
1250 break;
1251
1252 device->node_id = node->node_id;
1253 smp_wmb(); /* update node_id before generation */
1254 device->generation = card->generation;
1255 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1256 PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1257 fw_schedule_device_work(device, 0);
1258 }
1259 break;
1260
1261 case FW_NODE_DESTROYED:
1262 case FW_NODE_LINK_OFF:
1263 if (!node->data)
1264 break;
1265
1266 /*
1267 * Destroy the device associated with the node. There
1268 * are two cases here: either the device is fully
1269 * initialized (FW_DEVICE_RUNNING) or we're in the
1270 * process of reading its config rom
1271 * (FW_DEVICE_INITIALIZING). If it is fully
1272 * initialized we can reuse device->work to schedule a
1273 * full fw_device_shutdown(). If not, there's work
1274 * scheduled to read it's config rom, and we just put
1275 * the device in shutdown state to have that code fail
1276 * to create the device.
1277 */
1278 device = node->data;
1279 if (atomic_xchg(&device->state,
1280 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1281 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1282 fw_schedule_device_work(device,
1283 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1284 }
1285 break;
1286 }
1287}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Device probing and sysfs code.
4 *
5 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8#include <linux/bug.h>
9#include <linux/ctype.h>
10#include <linux/delay.h>
11#include <linux/device.h>
12#include <linux/errno.h>
13#include <linux/firewire.h>
14#include <linux/firewire-constants.h>
15#include <linux/idr.h>
16#include <linux/jiffies.h>
17#include <linux/kobject.h>
18#include <linux/list.h>
19#include <linux/mod_devicetable.h>
20#include <linux/module.h>
21#include <linux/mutex.h>
22#include <linux/random.h>
23#include <linux/rwsem.h>
24#include <linux/slab.h>
25#include <linux/spinlock.h>
26#include <linux/string.h>
27#include <linux/workqueue.h>
28
29#include <linux/atomic.h>
30#include <asm/byteorder.h>
31
32#include "core.h"
33
34void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
35{
36 ci->p = p + 1;
37 ci->end = ci->p + (p[0] >> 16);
38}
39EXPORT_SYMBOL(fw_csr_iterator_init);
40
41int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
42{
43 *key = *ci->p >> 24;
44 *value = *ci->p & 0xffffff;
45
46 return ci->p++ < ci->end;
47}
48EXPORT_SYMBOL(fw_csr_iterator_next);
49
50static const u32 *search_leaf(const u32 *directory, int search_key)
51{
52 struct fw_csr_iterator ci;
53 int last_key = 0, key, value;
54
55 fw_csr_iterator_init(&ci, directory);
56 while (fw_csr_iterator_next(&ci, &key, &value)) {
57 if (last_key == search_key &&
58 key == (CSR_DESCRIPTOR | CSR_LEAF))
59 return ci.p - 1 + value;
60
61 last_key = key;
62 }
63
64 return NULL;
65}
66
67static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
68{
69 unsigned int quadlets, i;
70 char c;
71
72 if (!size || !buf)
73 return -EINVAL;
74
75 quadlets = min(block[0] >> 16, 256U);
76 if (quadlets < 2)
77 return -ENODATA;
78
79 if (block[1] != 0 || block[2] != 0)
80 /* unknown language/character set */
81 return -ENODATA;
82
83 block += 3;
84 quadlets -= 2;
85 for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
86 c = block[i / 4] >> (24 - 8 * (i % 4));
87 if (c == '\0')
88 break;
89 buf[i] = c;
90 }
91 buf[i] = '\0';
92
93 return i;
94}
95
96/**
97 * fw_csr_string() - reads a string from the configuration ROM
98 * @directory: e.g. root directory or unit directory
99 * @key: the key of the preceding directory entry
100 * @buf: where to put the string
101 * @size: size of @buf, in bytes
102 *
103 * The string is taken from a minimal ASCII text descriptor leaf after
104 * the immediate entry with @key. The string is zero-terminated.
105 * An overlong string is silently truncated such that it and the
106 * zero byte fit into @size.
107 *
108 * Returns strlen(buf) or a negative error code.
109 */
110int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
111{
112 const u32 *leaf = search_leaf(directory, key);
113 if (!leaf)
114 return -ENOENT;
115
116 return textual_leaf_to_string(leaf, buf, size);
117}
118EXPORT_SYMBOL(fw_csr_string);
119
120static void get_ids(const u32 *directory, int *id)
121{
122 struct fw_csr_iterator ci;
123 int key, value;
124
125 fw_csr_iterator_init(&ci, directory);
126 while (fw_csr_iterator_next(&ci, &key, &value)) {
127 switch (key) {
128 case CSR_VENDOR: id[0] = value; break;
129 case CSR_MODEL: id[1] = value; break;
130 case CSR_SPECIFIER_ID: id[2] = value; break;
131 case CSR_VERSION: id[3] = value; break;
132 }
133 }
134}
135
136static void get_modalias_ids(struct fw_unit *unit, int *id)
137{
138 get_ids(&fw_parent_device(unit)->config_rom[5], id);
139 get_ids(unit->directory, id);
140}
141
142static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
143{
144 int match = 0;
145
146 if (id[0] == id_table->vendor_id)
147 match |= IEEE1394_MATCH_VENDOR_ID;
148 if (id[1] == id_table->model_id)
149 match |= IEEE1394_MATCH_MODEL_ID;
150 if (id[2] == id_table->specifier_id)
151 match |= IEEE1394_MATCH_SPECIFIER_ID;
152 if (id[3] == id_table->version)
153 match |= IEEE1394_MATCH_VERSION;
154
155 return (match & id_table->match_flags) == id_table->match_flags;
156}
157
158static const struct ieee1394_device_id *unit_match(struct device *dev,
159 struct device_driver *drv)
160{
161 const struct ieee1394_device_id *id_table =
162 container_of(drv, struct fw_driver, driver)->id_table;
163 int id[] = {0, 0, 0, 0};
164
165 get_modalias_ids(fw_unit(dev), id);
166
167 for (; id_table->match_flags != 0; id_table++)
168 if (match_ids(id_table, id))
169 return id_table;
170
171 return NULL;
172}
173
174static bool is_fw_unit(struct device *dev);
175
176static int fw_unit_match(struct device *dev, struct device_driver *drv)
177{
178 /* We only allow binding to fw_units. */
179 return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
180}
181
182static int fw_unit_probe(struct device *dev)
183{
184 struct fw_driver *driver =
185 container_of(dev->driver, struct fw_driver, driver);
186
187 return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
188}
189
190static int fw_unit_remove(struct device *dev)
191{
192 struct fw_driver *driver =
193 container_of(dev->driver, struct fw_driver, driver);
194
195 driver->remove(fw_unit(dev));
196
197 return 0;
198}
199
200static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
201{
202 int id[] = {0, 0, 0, 0};
203
204 get_modalias_ids(unit, id);
205
206 return snprintf(buffer, buffer_size,
207 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
208 id[0], id[1], id[2], id[3]);
209}
210
211static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
212{
213 struct fw_unit *unit = fw_unit(dev);
214 char modalias[64];
215
216 get_modalias(unit, modalias, sizeof(modalias));
217
218 if (add_uevent_var(env, "MODALIAS=%s", modalias))
219 return -ENOMEM;
220
221 return 0;
222}
223
224struct bus_type fw_bus_type = {
225 .name = "firewire",
226 .match = fw_unit_match,
227 .probe = fw_unit_probe,
228 .remove = fw_unit_remove,
229};
230EXPORT_SYMBOL(fw_bus_type);
231
232int fw_device_enable_phys_dma(struct fw_device *device)
233{
234 int generation = device->generation;
235
236 /* device->node_id, accessed below, must not be older than generation */
237 smp_rmb();
238
239 return device->card->driver->enable_phys_dma(device->card,
240 device->node_id,
241 generation);
242}
243EXPORT_SYMBOL(fw_device_enable_phys_dma);
244
245struct config_rom_attribute {
246 struct device_attribute attr;
247 u32 key;
248};
249
250static ssize_t show_immediate(struct device *dev,
251 struct device_attribute *dattr, char *buf)
252{
253 struct config_rom_attribute *attr =
254 container_of(dattr, struct config_rom_attribute, attr);
255 struct fw_csr_iterator ci;
256 const u32 *dir;
257 int key, value, ret = -ENOENT;
258
259 down_read(&fw_device_rwsem);
260
261 if (is_fw_unit(dev))
262 dir = fw_unit(dev)->directory;
263 else
264 dir = fw_device(dev)->config_rom + 5;
265
266 fw_csr_iterator_init(&ci, dir);
267 while (fw_csr_iterator_next(&ci, &key, &value))
268 if (attr->key == key) {
269 ret = snprintf(buf, buf ? PAGE_SIZE : 0,
270 "0x%06x\n", value);
271 break;
272 }
273
274 up_read(&fw_device_rwsem);
275
276 return ret;
277}
278
279#define IMMEDIATE_ATTR(name, key) \
280 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
281
282static ssize_t show_text_leaf(struct device *dev,
283 struct device_attribute *dattr, char *buf)
284{
285 struct config_rom_attribute *attr =
286 container_of(dattr, struct config_rom_attribute, attr);
287 const u32 *dir;
288 size_t bufsize;
289 char dummy_buf[2];
290 int ret;
291
292 down_read(&fw_device_rwsem);
293
294 if (is_fw_unit(dev))
295 dir = fw_unit(dev)->directory;
296 else
297 dir = fw_device(dev)->config_rom + 5;
298
299 if (buf) {
300 bufsize = PAGE_SIZE - 1;
301 } else {
302 buf = dummy_buf;
303 bufsize = 1;
304 }
305
306 ret = fw_csr_string(dir, attr->key, buf, bufsize);
307
308 if (ret >= 0) {
309 /* Strip trailing whitespace and add newline. */
310 while (ret > 0 && isspace(buf[ret - 1]))
311 ret--;
312 strcpy(buf + ret, "\n");
313 ret++;
314 }
315
316 up_read(&fw_device_rwsem);
317
318 return ret;
319}
320
321#define TEXT_LEAF_ATTR(name, key) \
322 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
323
324static struct config_rom_attribute config_rom_attributes[] = {
325 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
326 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
327 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
328 IMMEDIATE_ATTR(version, CSR_VERSION),
329 IMMEDIATE_ATTR(model, CSR_MODEL),
330 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
331 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
332 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
333};
334
335static void init_fw_attribute_group(struct device *dev,
336 struct device_attribute *attrs,
337 struct fw_attribute_group *group)
338{
339 struct device_attribute *attr;
340 int i, j;
341
342 for (j = 0; attrs[j].attr.name != NULL; j++)
343 group->attrs[j] = &attrs[j].attr;
344
345 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
346 attr = &config_rom_attributes[i].attr;
347 if (attr->show(dev, attr, NULL) < 0)
348 continue;
349 group->attrs[j++] = &attr->attr;
350 }
351
352 group->attrs[j] = NULL;
353 group->groups[0] = &group->group;
354 group->groups[1] = NULL;
355 group->group.attrs = group->attrs;
356 dev->groups = (const struct attribute_group **) group->groups;
357}
358
359static ssize_t modalias_show(struct device *dev,
360 struct device_attribute *attr, char *buf)
361{
362 struct fw_unit *unit = fw_unit(dev);
363 int length;
364
365 length = get_modalias(unit, buf, PAGE_SIZE);
366 strcpy(buf + length, "\n");
367
368 return length + 1;
369}
370
371static ssize_t rom_index_show(struct device *dev,
372 struct device_attribute *attr, char *buf)
373{
374 struct fw_device *device = fw_device(dev->parent);
375 struct fw_unit *unit = fw_unit(dev);
376
377 return snprintf(buf, PAGE_SIZE, "%d\n",
378 (int)(unit->directory - device->config_rom));
379}
380
381static struct device_attribute fw_unit_attributes[] = {
382 __ATTR_RO(modalias),
383 __ATTR_RO(rom_index),
384 __ATTR_NULL,
385};
386
387static ssize_t config_rom_show(struct device *dev,
388 struct device_attribute *attr, char *buf)
389{
390 struct fw_device *device = fw_device(dev);
391 size_t length;
392
393 down_read(&fw_device_rwsem);
394 length = device->config_rom_length * 4;
395 memcpy(buf, device->config_rom, length);
396 up_read(&fw_device_rwsem);
397
398 return length;
399}
400
401static ssize_t guid_show(struct device *dev,
402 struct device_attribute *attr, char *buf)
403{
404 struct fw_device *device = fw_device(dev);
405 int ret;
406
407 down_read(&fw_device_rwsem);
408 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
409 device->config_rom[3], device->config_rom[4]);
410 up_read(&fw_device_rwsem);
411
412 return ret;
413}
414
415static ssize_t is_local_show(struct device *dev,
416 struct device_attribute *attr, char *buf)
417{
418 struct fw_device *device = fw_device(dev);
419
420 return sprintf(buf, "%u\n", device->is_local);
421}
422
423static int units_sprintf(char *buf, const u32 *directory)
424{
425 struct fw_csr_iterator ci;
426 int key, value;
427 int specifier_id = 0;
428 int version = 0;
429
430 fw_csr_iterator_init(&ci, directory);
431 while (fw_csr_iterator_next(&ci, &key, &value)) {
432 switch (key) {
433 case CSR_SPECIFIER_ID:
434 specifier_id = value;
435 break;
436 case CSR_VERSION:
437 version = value;
438 break;
439 }
440 }
441
442 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
443}
444
445static ssize_t units_show(struct device *dev,
446 struct device_attribute *attr, char *buf)
447{
448 struct fw_device *device = fw_device(dev);
449 struct fw_csr_iterator ci;
450 int key, value, i = 0;
451
452 down_read(&fw_device_rwsem);
453 fw_csr_iterator_init(&ci, &device->config_rom[5]);
454 while (fw_csr_iterator_next(&ci, &key, &value)) {
455 if (key != (CSR_UNIT | CSR_DIRECTORY))
456 continue;
457 i += units_sprintf(&buf[i], ci.p + value - 1);
458 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
459 break;
460 }
461 up_read(&fw_device_rwsem);
462
463 if (i)
464 buf[i - 1] = '\n';
465
466 return i;
467}
468
469static struct device_attribute fw_device_attributes[] = {
470 __ATTR_RO(config_rom),
471 __ATTR_RO(guid),
472 __ATTR_RO(is_local),
473 __ATTR_RO(units),
474 __ATTR_NULL,
475};
476
477static int read_rom(struct fw_device *device,
478 int generation, int index, u32 *data)
479{
480 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
481 int i, rcode;
482
483 /* device->node_id, accessed below, must not be older than generation */
484 smp_rmb();
485
486 for (i = 10; i < 100; i += 10) {
487 rcode = fw_run_transaction(device->card,
488 TCODE_READ_QUADLET_REQUEST, device->node_id,
489 generation, device->max_speed, offset, data, 4);
490 if (rcode != RCODE_BUSY)
491 break;
492 msleep(i);
493 }
494 be32_to_cpus(data);
495
496 return rcode;
497}
498
499#define MAX_CONFIG_ROM_SIZE 256
500
501/*
502 * Read the bus info block, perform a speed probe, and read all of the rest of
503 * the config ROM. We do all this with a cached bus generation. If the bus
504 * generation changes under us, read_config_rom will fail and get retried.
505 * It's better to start all over in this case because the node from which we
506 * are reading the ROM may have changed the ROM during the reset.
507 * Returns either a result code or a negative error code.
508 */
509static int read_config_rom(struct fw_device *device, int generation)
510{
511 struct fw_card *card = device->card;
512 const u32 *old_rom, *new_rom;
513 u32 *rom, *stack;
514 u32 sp, key;
515 int i, end, length, ret;
516
517 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
518 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
519 if (rom == NULL)
520 return -ENOMEM;
521
522 stack = &rom[MAX_CONFIG_ROM_SIZE];
523 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
524
525 device->max_speed = SCODE_100;
526
527 /* First read the bus info block. */
528 for (i = 0; i < 5; i++) {
529 ret = read_rom(device, generation, i, &rom[i]);
530 if (ret != RCODE_COMPLETE)
531 goto out;
532 /*
533 * As per IEEE1212 7.2, during initialization, devices can
534 * reply with a 0 for the first quadlet of the config
535 * rom to indicate that they are booting (for example,
536 * if the firmware is on the disk of a external
537 * harddisk). In that case we just fail, and the
538 * retry mechanism will try again later.
539 */
540 if (i == 0 && rom[i] == 0) {
541 ret = RCODE_BUSY;
542 goto out;
543 }
544 }
545
546 device->max_speed = device->node->max_speed;
547
548 /*
549 * Determine the speed of
550 * - devices with link speed less than PHY speed,
551 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
552 * - all devices if there are 1394b repeaters.
553 * Note, we cannot use the bus info block's link_spd as starting point
554 * because some buggy firmwares set it lower than necessary and because
555 * 1394-1995 nodes do not have the field.
556 */
557 if ((rom[2] & 0x7) < device->max_speed ||
558 device->max_speed == SCODE_BETA ||
559 card->beta_repeaters_present) {
560 u32 dummy;
561
562 /* for S1600 and S3200 */
563 if (device->max_speed == SCODE_BETA)
564 device->max_speed = card->link_speed;
565
566 while (device->max_speed > SCODE_100) {
567 if (read_rom(device, generation, 0, &dummy) ==
568 RCODE_COMPLETE)
569 break;
570 device->max_speed--;
571 }
572 }
573
574 /*
575 * Now parse the config rom. The config rom is a recursive
576 * directory structure so we parse it using a stack of
577 * references to the blocks that make up the structure. We
578 * push a reference to the root directory on the stack to
579 * start things off.
580 */
581 length = i;
582 sp = 0;
583 stack[sp++] = 0xc0000005;
584 while (sp > 0) {
585 /*
586 * Pop the next block reference of the stack. The
587 * lower 24 bits is the offset into the config rom,
588 * the upper 8 bits are the type of the reference the
589 * block.
590 */
591 key = stack[--sp];
592 i = key & 0xffffff;
593 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
594 ret = -ENXIO;
595 goto out;
596 }
597
598 /* Read header quadlet for the block to get the length. */
599 ret = read_rom(device, generation, i, &rom[i]);
600 if (ret != RCODE_COMPLETE)
601 goto out;
602 end = i + (rom[i] >> 16) + 1;
603 if (end > MAX_CONFIG_ROM_SIZE) {
604 /*
605 * This block extends outside the config ROM which is
606 * a firmware bug. Ignore this whole block, i.e.
607 * simply set a fake block length of 0.
608 */
609 fw_err(card, "skipped invalid ROM block %x at %llx\n",
610 rom[i],
611 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
612 rom[i] = 0;
613 end = i;
614 }
615 i++;
616
617 /*
618 * Now read in the block. If this is a directory
619 * block, check the entries as we read them to see if
620 * it references another block, and push it in that case.
621 */
622 for (; i < end; i++) {
623 ret = read_rom(device, generation, i, &rom[i]);
624 if (ret != RCODE_COMPLETE)
625 goto out;
626
627 if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
628 continue;
629 /*
630 * Offset points outside the ROM. May be a firmware
631 * bug or an Extended ROM entry (IEEE 1212-2001 clause
632 * 7.7.18). Simply overwrite this pointer here by a
633 * fake immediate entry so that later iterators over
634 * the ROM don't have to check offsets all the time.
635 */
636 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
637 fw_err(card,
638 "skipped unsupported ROM entry %x at %llx\n",
639 rom[i],
640 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
641 rom[i] = 0;
642 continue;
643 }
644 stack[sp++] = i + rom[i];
645 }
646 if (length < i)
647 length = i;
648 }
649
650 old_rom = device->config_rom;
651 new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
652 if (new_rom == NULL) {
653 ret = -ENOMEM;
654 goto out;
655 }
656
657 down_write(&fw_device_rwsem);
658 device->config_rom = new_rom;
659 device->config_rom_length = length;
660 up_write(&fw_device_rwsem);
661
662 kfree(old_rom);
663 ret = RCODE_COMPLETE;
664 device->max_rec = rom[2] >> 12 & 0xf;
665 device->cmc = rom[2] >> 30 & 1;
666 device->irmc = rom[2] >> 31 & 1;
667 out:
668 kfree(rom);
669
670 return ret;
671}
672
673static void fw_unit_release(struct device *dev)
674{
675 struct fw_unit *unit = fw_unit(dev);
676
677 fw_device_put(fw_parent_device(unit));
678 kfree(unit);
679}
680
681static struct device_type fw_unit_type = {
682 .uevent = fw_unit_uevent,
683 .release = fw_unit_release,
684};
685
686static bool is_fw_unit(struct device *dev)
687{
688 return dev->type == &fw_unit_type;
689}
690
691static void create_units(struct fw_device *device)
692{
693 struct fw_csr_iterator ci;
694 struct fw_unit *unit;
695 int key, value, i;
696
697 i = 0;
698 fw_csr_iterator_init(&ci, &device->config_rom[5]);
699 while (fw_csr_iterator_next(&ci, &key, &value)) {
700 if (key != (CSR_UNIT | CSR_DIRECTORY))
701 continue;
702
703 /*
704 * Get the address of the unit directory and try to
705 * match the drivers id_tables against it.
706 */
707 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
708 if (unit == NULL)
709 continue;
710
711 unit->directory = ci.p + value - 1;
712 unit->device.bus = &fw_bus_type;
713 unit->device.type = &fw_unit_type;
714 unit->device.parent = &device->device;
715 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
716
717 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
718 ARRAY_SIZE(fw_unit_attributes) +
719 ARRAY_SIZE(config_rom_attributes));
720 init_fw_attribute_group(&unit->device,
721 fw_unit_attributes,
722 &unit->attribute_group);
723
724 if (device_register(&unit->device) < 0)
725 goto skip_unit;
726
727 fw_device_get(device);
728 continue;
729
730 skip_unit:
731 kfree(unit);
732 }
733}
734
735static int shutdown_unit(struct device *device, void *data)
736{
737 device_unregister(device);
738
739 return 0;
740}
741
742/*
743 * fw_device_rwsem acts as dual purpose mutex:
744 * - serializes accesses to fw_device_idr,
745 * - serializes accesses to fw_device.config_rom/.config_rom_length and
746 * fw_unit.directory, unless those accesses happen at safe occasions
747 */
748DECLARE_RWSEM(fw_device_rwsem);
749
750DEFINE_IDR(fw_device_idr);
751int fw_cdev_major;
752
753struct fw_device *fw_device_get_by_devt(dev_t devt)
754{
755 struct fw_device *device;
756
757 down_read(&fw_device_rwsem);
758 device = idr_find(&fw_device_idr, MINOR(devt));
759 if (device)
760 fw_device_get(device);
761 up_read(&fw_device_rwsem);
762
763 return device;
764}
765
766struct workqueue_struct *fw_workqueue;
767EXPORT_SYMBOL(fw_workqueue);
768
769static void fw_schedule_device_work(struct fw_device *device,
770 unsigned long delay)
771{
772 queue_delayed_work(fw_workqueue, &device->work, delay);
773}
774
775/*
776 * These defines control the retry behavior for reading the config
777 * rom. It shouldn't be necessary to tweak these; if the device
778 * doesn't respond to a config rom read within 10 seconds, it's not
779 * going to respond at all. As for the initial delay, a lot of
780 * devices will be able to respond within half a second after bus
781 * reset. On the other hand, it's not really worth being more
782 * aggressive than that, since it scales pretty well; if 10 devices
783 * are plugged in, they're all getting read within one second.
784 */
785
786#define MAX_RETRIES 10
787#define RETRY_DELAY (3 * HZ)
788#define INITIAL_DELAY (HZ / 2)
789#define SHUTDOWN_DELAY (2 * HZ)
790
791static void fw_device_shutdown(struct work_struct *work)
792{
793 struct fw_device *device =
794 container_of(work, struct fw_device, work.work);
795 int minor = MINOR(device->device.devt);
796
797 if (time_before64(get_jiffies_64(),
798 device->card->reset_jiffies + SHUTDOWN_DELAY)
799 && !list_empty(&device->card->link)) {
800 fw_schedule_device_work(device, SHUTDOWN_DELAY);
801 return;
802 }
803
804 if (atomic_cmpxchg(&device->state,
805 FW_DEVICE_GONE,
806 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
807 return;
808
809 fw_device_cdev_remove(device);
810 device_for_each_child(&device->device, NULL, shutdown_unit);
811 device_unregister(&device->device);
812
813 down_write(&fw_device_rwsem);
814 idr_remove(&fw_device_idr, minor);
815 up_write(&fw_device_rwsem);
816
817 fw_device_put(device);
818}
819
820static void fw_device_release(struct device *dev)
821{
822 struct fw_device *device = fw_device(dev);
823 struct fw_card *card = device->card;
824 unsigned long flags;
825
826 /*
827 * Take the card lock so we don't set this to NULL while a
828 * FW_NODE_UPDATED callback is being handled or while the
829 * bus manager work looks at this node.
830 */
831 spin_lock_irqsave(&card->lock, flags);
832 device->node->data = NULL;
833 spin_unlock_irqrestore(&card->lock, flags);
834
835 fw_node_put(device->node);
836 kfree(device->config_rom);
837 kfree(device);
838 fw_card_put(card);
839}
840
841static struct device_type fw_device_type = {
842 .release = fw_device_release,
843};
844
845static bool is_fw_device(struct device *dev)
846{
847 return dev->type == &fw_device_type;
848}
849
850static int update_unit(struct device *dev, void *data)
851{
852 struct fw_unit *unit = fw_unit(dev);
853 struct fw_driver *driver = (struct fw_driver *)dev->driver;
854
855 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
856 device_lock(dev);
857 driver->update(unit);
858 device_unlock(dev);
859 }
860
861 return 0;
862}
863
864static void fw_device_update(struct work_struct *work)
865{
866 struct fw_device *device =
867 container_of(work, struct fw_device, work.work);
868
869 fw_device_cdev_update(device);
870 device_for_each_child(&device->device, NULL, update_unit);
871}
872
873/*
874 * If a device was pending for deletion because its node went away but its
875 * bus info block and root directory header matches that of a newly discovered
876 * device, revive the existing fw_device.
877 * The newly allocated fw_device becomes obsolete instead.
878 */
879static int lookup_existing_device(struct device *dev, void *data)
880{
881 struct fw_device *old = fw_device(dev);
882 struct fw_device *new = data;
883 struct fw_card *card = new->card;
884 int match = 0;
885
886 if (!is_fw_device(dev))
887 return 0;
888
889 down_read(&fw_device_rwsem); /* serialize config_rom access */
890 spin_lock_irq(&card->lock); /* serialize node access */
891
892 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
893 atomic_cmpxchg(&old->state,
894 FW_DEVICE_GONE,
895 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
896 struct fw_node *current_node = new->node;
897 struct fw_node *obsolete_node = old->node;
898
899 new->node = obsolete_node;
900 new->node->data = new;
901 old->node = current_node;
902 old->node->data = old;
903
904 old->max_speed = new->max_speed;
905 old->node_id = current_node->node_id;
906 smp_wmb(); /* update node_id before generation */
907 old->generation = card->generation;
908 old->config_rom_retries = 0;
909 fw_notice(card, "rediscovered device %s\n", dev_name(dev));
910
911 old->workfn = fw_device_update;
912 fw_schedule_device_work(old, 0);
913
914 if (current_node == card->root_node)
915 fw_schedule_bm_work(card, 0);
916
917 match = 1;
918 }
919
920 spin_unlock_irq(&card->lock);
921 up_read(&fw_device_rwsem);
922
923 return match;
924}
925
926enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
927
928static void set_broadcast_channel(struct fw_device *device, int generation)
929{
930 struct fw_card *card = device->card;
931 __be32 data;
932 int rcode;
933
934 if (!card->broadcast_channel_allocated)
935 return;
936
937 /*
938 * The Broadcast_Channel Valid bit is required by nodes which want to
939 * transmit on this channel. Such transmissions are practically
940 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
941 * to be IRM capable and have a max_rec of 8 or more. We use this fact
942 * to narrow down to which nodes we send Broadcast_Channel updates.
943 */
944 if (!device->irmc || device->max_rec < 8)
945 return;
946
947 /*
948 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
949 * Perform a read test first.
950 */
951 if (device->bc_implemented == BC_UNKNOWN) {
952 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
953 device->node_id, generation, device->max_speed,
954 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
955 &data, 4);
956 switch (rcode) {
957 case RCODE_COMPLETE:
958 if (data & cpu_to_be32(1 << 31)) {
959 device->bc_implemented = BC_IMPLEMENTED;
960 break;
961 }
962 fallthrough; /* to case address error */
963 case RCODE_ADDRESS_ERROR:
964 device->bc_implemented = BC_UNIMPLEMENTED;
965 }
966 }
967
968 if (device->bc_implemented == BC_IMPLEMENTED) {
969 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
970 BROADCAST_CHANNEL_VALID);
971 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
972 device->node_id, generation, device->max_speed,
973 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
974 &data, 4);
975 }
976}
977
978int fw_device_set_broadcast_channel(struct device *dev, void *gen)
979{
980 if (is_fw_device(dev))
981 set_broadcast_channel(fw_device(dev), (long)gen);
982
983 return 0;
984}
985
986static void fw_device_init(struct work_struct *work)
987{
988 struct fw_device *device =
989 container_of(work, struct fw_device, work.work);
990 struct fw_card *card = device->card;
991 struct device *revived_dev;
992 int minor, ret;
993
994 /*
995 * All failure paths here set node->data to NULL, so that we
996 * don't try to do device_for_each_child() on a kfree()'d
997 * device.
998 */
999
1000 ret = read_config_rom(device, device->generation);
1001 if (ret != RCODE_COMPLETE) {
1002 if (device->config_rom_retries < MAX_RETRIES &&
1003 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1004 device->config_rom_retries++;
1005 fw_schedule_device_work(device, RETRY_DELAY);
1006 } else {
1007 if (device->node->link_on)
1008 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1009 device->node_id,
1010 fw_rcode_string(ret));
1011 if (device->node == card->root_node)
1012 fw_schedule_bm_work(card, 0);
1013 fw_device_release(&device->device);
1014 }
1015 return;
1016 }
1017
1018 revived_dev = device_find_child(card->device,
1019 device, lookup_existing_device);
1020 if (revived_dev) {
1021 put_device(revived_dev);
1022 fw_device_release(&device->device);
1023
1024 return;
1025 }
1026
1027 device_initialize(&device->device);
1028
1029 fw_device_get(device);
1030 down_write(&fw_device_rwsem);
1031 minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1032 GFP_KERNEL);
1033 up_write(&fw_device_rwsem);
1034
1035 if (minor < 0)
1036 goto error;
1037
1038 device->device.bus = &fw_bus_type;
1039 device->device.type = &fw_device_type;
1040 device->device.parent = card->device;
1041 device->device.devt = MKDEV(fw_cdev_major, minor);
1042 dev_set_name(&device->device, "fw%d", minor);
1043
1044 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1045 ARRAY_SIZE(fw_device_attributes) +
1046 ARRAY_SIZE(config_rom_attributes));
1047 init_fw_attribute_group(&device->device,
1048 fw_device_attributes,
1049 &device->attribute_group);
1050
1051 if (device_add(&device->device)) {
1052 fw_err(card, "failed to add device\n");
1053 goto error_with_cdev;
1054 }
1055
1056 create_units(device);
1057
1058 /*
1059 * Transition the device to running state. If it got pulled
1060 * out from under us while we did the initialization work, we
1061 * have to shut down the device again here. Normally, though,
1062 * fw_node_event will be responsible for shutting it down when
1063 * necessary. We have to use the atomic cmpxchg here to avoid
1064 * racing with the FW_NODE_DESTROYED case in
1065 * fw_node_event().
1066 */
1067 if (atomic_cmpxchg(&device->state,
1068 FW_DEVICE_INITIALIZING,
1069 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1070 device->workfn = fw_device_shutdown;
1071 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1072 } else {
1073 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1074 dev_name(&device->device),
1075 device->config_rom[3], device->config_rom[4],
1076 1 << device->max_speed);
1077 device->config_rom_retries = 0;
1078
1079 set_broadcast_channel(device, device->generation);
1080
1081 add_device_randomness(&device->config_rom[3], 8);
1082 }
1083
1084 /*
1085 * Reschedule the IRM work if we just finished reading the
1086 * root node config rom. If this races with a bus reset we
1087 * just end up running the IRM work a couple of extra times -
1088 * pretty harmless.
1089 */
1090 if (device->node == card->root_node)
1091 fw_schedule_bm_work(card, 0);
1092
1093 return;
1094
1095 error_with_cdev:
1096 down_write(&fw_device_rwsem);
1097 idr_remove(&fw_device_idr, minor);
1098 up_write(&fw_device_rwsem);
1099 error:
1100 fw_device_put(device); /* fw_device_idr's reference */
1101
1102 put_device(&device->device); /* our reference */
1103}
1104
1105/* Reread and compare bus info block and header of root directory */
1106static int reread_config_rom(struct fw_device *device, int generation,
1107 bool *changed)
1108{
1109 u32 q;
1110 int i, rcode;
1111
1112 for (i = 0; i < 6; i++) {
1113 rcode = read_rom(device, generation, i, &q);
1114 if (rcode != RCODE_COMPLETE)
1115 return rcode;
1116
1117 if (i == 0 && q == 0)
1118 /* inaccessible (see read_config_rom); retry later */
1119 return RCODE_BUSY;
1120
1121 if (q != device->config_rom[i]) {
1122 *changed = true;
1123 return RCODE_COMPLETE;
1124 }
1125 }
1126
1127 *changed = false;
1128 return RCODE_COMPLETE;
1129}
1130
1131static void fw_device_refresh(struct work_struct *work)
1132{
1133 struct fw_device *device =
1134 container_of(work, struct fw_device, work.work);
1135 struct fw_card *card = device->card;
1136 int ret, node_id = device->node_id;
1137 bool changed;
1138
1139 ret = reread_config_rom(device, device->generation, &changed);
1140 if (ret != RCODE_COMPLETE)
1141 goto failed_config_rom;
1142
1143 if (!changed) {
1144 if (atomic_cmpxchg(&device->state,
1145 FW_DEVICE_INITIALIZING,
1146 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1147 goto gone;
1148
1149 fw_device_update(work);
1150 device->config_rom_retries = 0;
1151 goto out;
1152 }
1153
1154 /*
1155 * Something changed. We keep things simple and don't investigate
1156 * further. We just destroy all previous units and create new ones.
1157 */
1158 device_for_each_child(&device->device, NULL, shutdown_unit);
1159
1160 ret = read_config_rom(device, device->generation);
1161 if (ret != RCODE_COMPLETE)
1162 goto failed_config_rom;
1163
1164 fw_device_cdev_update(device);
1165 create_units(device);
1166
1167 /* Userspace may want to re-read attributes. */
1168 kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1169
1170 if (atomic_cmpxchg(&device->state,
1171 FW_DEVICE_INITIALIZING,
1172 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1173 goto gone;
1174
1175 fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1176 device->config_rom_retries = 0;
1177 goto out;
1178
1179 failed_config_rom:
1180 if (device->config_rom_retries < MAX_RETRIES &&
1181 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1182 device->config_rom_retries++;
1183 fw_schedule_device_work(device, RETRY_DELAY);
1184 return;
1185 }
1186
1187 fw_notice(card, "giving up on refresh of device %s: %s\n",
1188 dev_name(&device->device), fw_rcode_string(ret));
1189 gone:
1190 atomic_set(&device->state, FW_DEVICE_GONE);
1191 device->workfn = fw_device_shutdown;
1192 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1193 out:
1194 if (node_id == card->root_node->node_id)
1195 fw_schedule_bm_work(card, 0);
1196}
1197
1198static void fw_device_workfn(struct work_struct *work)
1199{
1200 struct fw_device *device = container_of(to_delayed_work(work),
1201 struct fw_device, work);
1202 device->workfn(work);
1203}
1204
1205void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1206{
1207 struct fw_device *device;
1208
1209 switch (event) {
1210 case FW_NODE_CREATED:
1211 /*
1212 * Attempt to scan the node, regardless whether its self ID has
1213 * the L (link active) flag set or not. Some broken devices
1214 * send L=0 but have an up-and-running link; others send L=1
1215 * without actually having a link.
1216 */
1217 create:
1218 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1219 if (device == NULL)
1220 break;
1221
1222 /*
1223 * Do minimal initialization of the device here, the
1224 * rest will happen in fw_device_init().
1225 *
1226 * Attention: A lot of things, even fw_device_get(),
1227 * cannot be done before fw_device_init() finished!
1228 * You can basically just check device->state and
1229 * schedule work until then, but only while holding
1230 * card->lock.
1231 */
1232 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1233 device->card = fw_card_get(card);
1234 device->node = fw_node_get(node);
1235 device->node_id = node->node_id;
1236 device->generation = card->generation;
1237 device->is_local = node == card->local_node;
1238 mutex_init(&device->client_list_mutex);
1239 INIT_LIST_HEAD(&device->client_list);
1240
1241 /*
1242 * Set the node data to point back to this device so
1243 * FW_NODE_UPDATED callbacks can update the node_id
1244 * and generation for the device.
1245 */
1246 node->data = device;
1247
1248 /*
1249 * Many devices are slow to respond after bus resets,
1250 * especially if they are bus powered and go through
1251 * power-up after getting plugged in. We schedule the
1252 * first config rom scan half a second after bus reset.
1253 */
1254 device->workfn = fw_device_init;
1255 INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1256 fw_schedule_device_work(device, INITIAL_DELAY);
1257 break;
1258
1259 case FW_NODE_INITIATED_RESET:
1260 case FW_NODE_LINK_ON:
1261 device = node->data;
1262 if (device == NULL)
1263 goto create;
1264
1265 device->node_id = node->node_id;
1266 smp_wmb(); /* update node_id before generation */
1267 device->generation = card->generation;
1268 if (atomic_cmpxchg(&device->state,
1269 FW_DEVICE_RUNNING,
1270 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1271 device->workfn = fw_device_refresh;
1272 fw_schedule_device_work(device,
1273 device->is_local ? 0 : INITIAL_DELAY);
1274 }
1275 break;
1276
1277 case FW_NODE_UPDATED:
1278 device = node->data;
1279 if (device == NULL)
1280 break;
1281
1282 device->node_id = node->node_id;
1283 smp_wmb(); /* update node_id before generation */
1284 device->generation = card->generation;
1285 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1286 device->workfn = fw_device_update;
1287 fw_schedule_device_work(device, 0);
1288 }
1289 break;
1290
1291 case FW_NODE_DESTROYED:
1292 case FW_NODE_LINK_OFF:
1293 if (!node->data)
1294 break;
1295
1296 /*
1297 * Destroy the device associated with the node. There
1298 * are two cases here: either the device is fully
1299 * initialized (FW_DEVICE_RUNNING) or we're in the
1300 * process of reading its config rom
1301 * (FW_DEVICE_INITIALIZING). If it is fully
1302 * initialized we can reuse device->work to schedule a
1303 * full fw_device_shutdown(). If not, there's work
1304 * scheduled to read it's config rom, and we just put
1305 * the device in shutdown state to have that code fail
1306 * to create the device.
1307 */
1308 device = node->data;
1309 if (atomic_xchg(&device->state,
1310 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1311 device->workfn = fw_device_shutdown;
1312 fw_schedule_device_work(device,
1313 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1314 }
1315 break;
1316 }
1317}