Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Device probing and sysfs code.
   3 *
   4 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bug.h>
  22#include <linux/ctype.h>
  23#include <linux/delay.h>
  24#include <linux/device.h>
  25#include <linux/errno.h>
  26#include <linux/firewire.h>
  27#include <linux/firewire-constants.h>
  28#include <linux/idr.h>
  29#include <linux/jiffies.h>
  30#include <linux/kobject.h>
  31#include <linux/list.h>
  32#include <linux/mod_devicetable.h>
  33#include <linux/module.h>
  34#include <linux/mutex.h>
 
  35#include <linux/rwsem.h>
  36#include <linux/slab.h>
  37#include <linux/spinlock.h>
  38#include <linux/string.h>
  39#include <linux/workqueue.h>
  40
  41#include <linux/atomic.h>
  42#include <asm/byteorder.h>
  43
  44#include "core.h"
  45
  46void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
  47{
  48	ci->p = p + 1;
  49	ci->end = ci->p + (p[0] >> 16);
  50}
  51EXPORT_SYMBOL(fw_csr_iterator_init);
  52
  53int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
  54{
  55	*key = *ci->p >> 24;
  56	*value = *ci->p & 0xffffff;
  57
  58	return ci->p++ < ci->end;
  59}
  60EXPORT_SYMBOL(fw_csr_iterator_next);
  61
  62static const u32 *search_leaf(const u32 *directory, int search_key)
  63{
  64	struct fw_csr_iterator ci;
  65	int last_key = 0, key, value;
  66
  67	fw_csr_iterator_init(&ci, directory);
  68	while (fw_csr_iterator_next(&ci, &key, &value)) {
  69		if (last_key == search_key &&
  70		    key == (CSR_DESCRIPTOR | CSR_LEAF))
  71			return ci.p - 1 + value;
  72
  73		last_key = key;
  74	}
  75
  76	return NULL;
  77}
  78
  79static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
  80{
  81	unsigned int quadlets, i;
  82	char c;
  83
  84	if (!size || !buf)
  85		return -EINVAL;
  86
  87	quadlets = min(block[0] >> 16, 256U);
  88	if (quadlets < 2)
  89		return -ENODATA;
  90
  91	if (block[1] != 0 || block[2] != 0)
  92		/* unknown language/character set */
  93		return -ENODATA;
  94
  95	block += 3;
  96	quadlets -= 2;
  97	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
  98		c = block[i / 4] >> (24 - 8 * (i % 4));
  99		if (c == '\0')
 100			break;
 101		buf[i] = c;
 102	}
 103	buf[i] = '\0';
 104
 105	return i;
 106}
 107
 108/**
 109 * fw_csr_string() - reads a string from the configuration ROM
 110 * @directory:	e.g. root directory or unit directory
 111 * @key:	the key of the preceding directory entry
 112 * @buf:	where to put the string
 113 * @size:	size of @buf, in bytes
 114 *
 115 * The string is taken from a minimal ASCII text descriptor leaf after
 116 * the immediate entry with @key.  The string is zero-terminated.
 
 
 
 117 * Returns strlen(buf) or a negative error code.
 118 */
 119int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
 120{
 121	const u32 *leaf = search_leaf(directory, key);
 122	if (!leaf)
 123		return -ENOENT;
 124
 125	return textual_leaf_to_string(leaf, buf, size);
 126}
 127EXPORT_SYMBOL(fw_csr_string);
 128
 129static void get_ids(const u32 *directory, int *id)
 130{
 131	struct fw_csr_iterator ci;
 132	int key, value;
 133
 134	fw_csr_iterator_init(&ci, directory);
 135	while (fw_csr_iterator_next(&ci, &key, &value)) {
 136		switch (key) {
 137		case CSR_VENDOR:	id[0] = value; break;
 138		case CSR_MODEL:		id[1] = value; break;
 139		case CSR_SPECIFIER_ID:	id[2] = value; break;
 140		case CSR_VERSION:	id[3] = value; break;
 141		}
 142	}
 143}
 144
 145static void get_modalias_ids(struct fw_unit *unit, int *id)
 146{
 147	get_ids(&fw_parent_device(unit)->config_rom[5], id);
 148	get_ids(unit->directory, id);
 149}
 150
 151static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
 152{
 153	int match = 0;
 154
 155	if (id[0] == id_table->vendor_id)
 156		match |= IEEE1394_MATCH_VENDOR_ID;
 157	if (id[1] == id_table->model_id)
 158		match |= IEEE1394_MATCH_MODEL_ID;
 159	if (id[2] == id_table->specifier_id)
 160		match |= IEEE1394_MATCH_SPECIFIER_ID;
 161	if (id[3] == id_table->version)
 162		match |= IEEE1394_MATCH_VERSION;
 163
 164	return (match & id_table->match_flags) == id_table->match_flags;
 165}
 166
 167static bool is_fw_unit(struct device *dev);
 168
 169static int fw_unit_match(struct device *dev, struct device_driver *drv)
 170{
 171	const struct ieee1394_device_id *id_table =
 172			container_of(drv, struct fw_driver, driver)->id_table;
 173	int id[] = {0, 0, 0, 0};
 174
 175	/* We only allow binding to fw_units. */
 176	if (!is_fw_unit(dev))
 177		return 0;
 178
 179	get_modalias_ids(fw_unit(dev), id);
 180
 181	for (; id_table->match_flags != 0; id_table++)
 182		if (match_ids(id_table, id))
 183			return 1;
 184
 185	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 186}
 187
 188static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
 189{
 190	int id[] = {0, 0, 0, 0};
 191
 192	get_modalias_ids(unit, id);
 193
 194	return snprintf(buffer, buffer_size,
 195			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
 196			id[0], id[1], id[2], id[3]);
 197}
 198
 199static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
 200{
 201	struct fw_unit *unit = fw_unit(dev);
 202	char modalias[64];
 203
 204	get_modalias(unit, modalias, sizeof(modalias));
 205
 206	if (add_uevent_var(env, "MODALIAS=%s", modalias))
 207		return -ENOMEM;
 208
 209	return 0;
 210}
 211
 212struct bus_type fw_bus_type = {
 213	.name = "firewire",
 214	.match = fw_unit_match,
 
 
 215};
 216EXPORT_SYMBOL(fw_bus_type);
 217
 218int fw_device_enable_phys_dma(struct fw_device *device)
 219{
 220	int generation = device->generation;
 221
 222	/* device->node_id, accessed below, must not be older than generation */
 223	smp_rmb();
 224
 225	return device->card->driver->enable_phys_dma(device->card,
 226						     device->node_id,
 227						     generation);
 228}
 229EXPORT_SYMBOL(fw_device_enable_phys_dma);
 230
 231struct config_rom_attribute {
 232	struct device_attribute attr;
 233	u32 key;
 234};
 235
 236static ssize_t show_immediate(struct device *dev,
 237			      struct device_attribute *dattr, char *buf)
 238{
 239	struct config_rom_attribute *attr =
 240		container_of(dattr, struct config_rom_attribute, attr);
 241	struct fw_csr_iterator ci;
 242	const u32 *dir;
 243	int key, value, ret = -ENOENT;
 244
 245	down_read(&fw_device_rwsem);
 246
 247	if (is_fw_unit(dev))
 248		dir = fw_unit(dev)->directory;
 249	else
 250		dir = fw_device(dev)->config_rom + 5;
 251
 252	fw_csr_iterator_init(&ci, dir);
 253	while (fw_csr_iterator_next(&ci, &key, &value))
 254		if (attr->key == key) {
 255			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
 256				       "0x%06x\n", value);
 257			break;
 258		}
 259
 260	up_read(&fw_device_rwsem);
 261
 262	return ret;
 263}
 264
 265#define IMMEDIATE_ATTR(name, key)				\
 266	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
 267
 268static ssize_t show_text_leaf(struct device *dev,
 269			      struct device_attribute *dattr, char *buf)
 270{
 271	struct config_rom_attribute *attr =
 272		container_of(dattr, struct config_rom_attribute, attr);
 273	const u32 *dir;
 274	size_t bufsize;
 275	char dummy_buf[2];
 276	int ret;
 277
 278	down_read(&fw_device_rwsem);
 279
 280	if (is_fw_unit(dev))
 281		dir = fw_unit(dev)->directory;
 282	else
 283		dir = fw_device(dev)->config_rom + 5;
 284
 285	if (buf) {
 286		bufsize = PAGE_SIZE - 1;
 287	} else {
 288		buf = dummy_buf;
 289		bufsize = 1;
 290	}
 291
 292	ret = fw_csr_string(dir, attr->key, buf, bufsize);
 293
 294	if (ret >= 0) {
 295		/* Strip trailing whitespace and add newline. */
 296		while (ret > 0 && isspace(buf[ret - 1]))
 297			ret--;
 298		strcpy(buf + ret, "\n");
 299		ret++;
 300	}
 301
 302	up_read(&fw_device_rwsem);
 303
 304	return ret;
 305}
 306
 307#define TEXT_LEAF_ATTR(name, key)				\
 308	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
 309
 310static struct config_rom_attribute config_rom_attributes[] = {
 311	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
 312	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
 313	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
 314	IMMEDIATE_ATTR(version, CSR_VERSION),
 315	IMMEDIATE_ATTR(model, CSR_MODEL),
 316	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
 317	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
 318	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
 319};
 320
 321static void init_fw_attribute_group(struct device *dev,
 322				    struct device_attribute *attrs,
 323				    struct fw_attribute_group *group)
 324{
 325	struct device_attribute *attr;
 326	int i, j;
 327
 328	for (j = 0; attrs[j].attr.name != NULL; j++)
 329		group->attrs[j] = &attrs[j].attr;
 330
 331	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
 332		attr = &config_rom_attributes[i].attr;
 333		if (attr->show(dev, attr, NULL) < 0)
 334			continue;
 335		group->attrs[j++] = &attr->attr;
 336	}
 337
 338	group->attrs[j] = NULL;
 339	group->groups[0] = &group->group;
 340	group->groups[1] = NULL;
 341	group->group.attrs = group->attrs;
 342	dev->groups = (const struct attribute_group **) group->groups;
 343}
 344
 345static ssize_t modalias_show(struct device *dev,
 346			     struct device_attribute *attr, char *buf)
 347{
 348	struct fw_unit *unit = fw_unit(dev);
 349	int length;
 350
 351	length = get_modalias(unit, buf, PAGE_SIZE);
 352	strcpy(buf + length, "\n");
 353
 354	return length + 1;
 355}
 356
 357static ssize_t rom_index_show(struct device *dev,
 358			      struct device_attribute *attr, char *buf)
 359{
 360	struct fw_device *device = fw_device(dev->parent);
 361	struct fw_unit *unit = fw_unit(dev);
 362
 363	return snprintf(buf, PAGE_SIZE, "%d\n",
 364			(int)(unit->directory - device->config_rom));
 365}
 366
 367static struct device_attribute fw_unit_attributes[] = {
 368	__ATTR_RO(modalias),
 369	__ATTR_RO(rom_index),
 370	__ATTR_NULL,
 371};
 372
 373static ssize_t config_rom_show(struct device *dev,
 374			       struct device_attribute *attr, char *buf)
 375{
 376	struct fw_device *device = fw_device(dev);
 377	size_t length;
 378
 379	down_read(&fw_device_rwsem);
 380	length = device->config_rom_length * 4;
 381	memcpy(buf, device->config_rom, length);
 382	up_read(&fw_device_rwsem);
 383
 384	return length;
 385}
 386
 387static ssize_t guid_show(struct device *dev,
 388			 struct device_attribute *attr, char *buf)
 389{
 390	struct fw_device *device = fw_device(dev);
 391	int ret;
 392
 393	down_read(&fw_device_rwsem);
 394	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
 395		       device->config_rom[3], device->config_rom[4]);
 396	up_read(&fw_device_rwsem);
 397
 398	return ret;
 399}
 400
 
 
 
 
 
 
 
 
 401static int units_sprintf(char *buf, const u32 *directory)
 402{
 403	struct fw_csr_iterator ci;
 404	int key, value;
 405	int specifier_id = 0;
 406	int version = 0;
 407
 408	fw_csr_iterator_init(&ci, directory);
 409	while (fw_csr_iterator_next(&ci, &key, &value)) {
 410		switch (key) {
 411		case CSR_SPECIFIER_ID:
 412			specifier_id = value;
 413			break;
 414		case CSR_VERSION:
 415			version = value;
 416			break;
 417		}
 418	}
 419
 420	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
 421}
 422
 423static ssize_t units_show(struct device *dev,
 424			  struct device_attribute *attr, char *buf)
 425{
 426	struct fw_device *device = fw_device(dev);
 427	struct fw_csr_iterator ci;
 428	int key, value, i = 0;
 429
 430	down_read(&fw_device_rwsem);
 431	fw_csr_iterator_init(&ci, &device->config_rom[5]);
 432	while (fw_csr_iterator_next(&ci, &key, &value)) {
 433		if (key != (CSR_UNIT | CSR_DIRECTORY))
 434			continue;
 435		i += units_sprintf(&buf[i], ci.p + value - 1);
 436		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
 437			break;
 438	}
 439	up_read(&fw_device_rwsem);
 440
 441	if (i)
 442		buf[i - 1] = '\n';
 443
 444	return i;
 445}
 446
 447static struct device_attribute fw_device_attributes[] = {
 448	__ATTR_RO(config_rom),
 449	__ATTR_RO(guid),
 
 450	__ATTR_RO(units),
 451	__ATTR_NULL,
 452};
 453
 454static int read_rom(struct fw_device *device,
 455		    int generation, int index, u32 *data)
 456{
 457	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
 458	int i, rcode;
 459
 460	/* device->node_id, accessed below, must not be older than generation */
 461	smp_rmb();
 462
 463	for (i = 10; i < 100; i += 10) {
 464		rcode = fw_run_transaction(device->card,
 465				TCODE_READ_QUADLET_REQUEST, device->node_id,
 466				generation, device->max_speed, offset, data, 4);
 467		if (rcode != RCODE_BUSY)
 468			break;
 469		msleep(i);
 470	}
 471	be32_to_cpus(data);
 472
 473	return rcode;
 474}
 475
 476#define MAX_CONFIG_ROM_SIZE 256
 477
 478/*
 479 * Read the bus info block, perform a speed probe, and read all of the rest of
 480 * the config ROM.  We do all this with a cached bus generation.  If the bus
 481 * generation changes under us, read_config_rom will fail and get retried.
 482 * It's better to start all over in this case because the node from which we
 483 * are reading the ROM may have changed the ROM during the reset.
 484 * Returns either a result code or a negative error code.
 485 */
 486static int read_config_rom(struct fw_device *device, int generation)
 487{
 488	struct fw_card *card = device->card;
 489	const u32 *old_rom, *new_rom;
 490	u32 *rom, *stack;
 491	u32 sp, key;
 492	int i, end, length, ret;
 493
 494	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
 495		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
 496	if (rom == NULL)
 497		return -ENOMEM;
 498
 499	stack = &rom[MAX_CONFIG_ROM_SIZE];
 500	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
 501
 502	device->max_speed = SCODE_100;
 503
 504	/* First read the bus info block. */
 505	for (i = 0; i < 5; i++) {
 506		ret = read_rom(device, generation, i, &rom[i]);
 507		if (ret != RCODE_COMPLETE)
 508			goto out;
 509		/*
 510		 * As per IEEE1212 7.2, during initialization, devices can
 511		 * reply with a 0 for the first quadlet of the config
 512		 * rom to indicate that they are booting (for example,
 513		 * if the firmware is on the disk of a external
 514		 * harddisk).  In that case we just fail, and the
 515		 * retry mechanism will try again later.
 516		 */
 517		if (i == 0 && rom[i] == 0) {
 518			ret = RCODE_BUSY;
 519			goto out;
 520		}
 521	}
 522
 523	device->max_speed = device->node->max_speed;
 524
 525	/*
 526	 * Determine the speed of
 527	 *   - devices with link speed less than PHY speed,
 528	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
 529	 *   - all devices if there are 1394b repeaters.
 530	 * Note, we cannot use the bus info block's link_spd as starting point
 531	 * because some buggy firmwares set it lower than necessary and because
 532	 * 1394-1995 nodes do not have the field.
 533	 */
 534	if ((rom[2] & 0x7) < device->max_speed ||
 535	    device->max_speed == SCODE_BETA ||
 536	    card->beta_repeaters_present) {
 537		u32 dummy;
 538
 539		/* for S1600 and S3200 */
 540		if (device->max_speed == SCODE_BETA)
 541			device->max_speed = card->link_speed;
 542
 543		while (device->max_speed > SCODE_100) {
 544			if (read_rom(device, generation, 0, &dummy) ==
 545			    RCODE_COMPLETE)
 546				break;
 547			device->max_speed--;
 548		}
 549	}
 550
 551	/*
 552	 * Now parse the config rom.  The config rom is a recursive
 553	 * directory structure so we parse it using a stack of
 554	 * references to the blocks that make up the structure.  We
 555	 * push a reference to the root directory on the stack to
 556	 * start things off.
 557	 */
 558	length = i;
 559	sp = 0;
 560	stack[sp++] = 0xc0000005;
 561	while (sp > 0) {
 562		/*
 563		 * Pop the next block reference of the stack.  The
 564		 * lower 24 bits is the offset into the config rom,
 565		 * the upper 8 bits are the type of the reference the
 566		 * block.
 567		 */
 568		key = stack[--sp];
 569		i = key & 0xffffff;
 570		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
 571			ret = -ENXIO;
 572			goto out;
 573		}
 574
 575		/* Read header quadlet for the block to get the length. */
 576		ret = read_rom(device, generation, i, &rom[i]);
 577		if (ret != RCODE_COMPLETE)
 578			goto out;
 579		end = i + (rom[i] >> 16) + 1;
 580		if (end > MAX_CONFIG_ROM_SIZE) {
 581			/*
 582			 * This block extends outside the config ROM which is
 583			 * a firmware bug.  Ignore this whole block, i.e.
 584			 * simply set a fake block length of 0.
 585			 */
 586			fw_err(card, "skipped invalid ROM block %x at %llx\n",
 587			       rom[i],
 588			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
 589			rom[i] = 0;
 590			end = i;
 591		}
 592		i++;
 593
 594		/*
 595		 * Now read in the block.  If this is a directory
 596		 * block, check the entries as we read them to see if
 597		 * it references another block, and push it in that case.
 598		 */
 599		for (; i < end; i++) {
 600			ret = read_rom(device, generation, i, &rom[i]);
 601			if (ret != RCODE_COMPLETE)
 602				goto out;
 603
 604			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
 605				continue;
 606			/*
 607			 * Offset points outside the ROM.  May be a firmware
 608			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
 609			 * 7.7.18).  Simply overwrite this pointer here by a
 610			 * fake immediate entry so that later iterators over
 611			 * the ROM don't have to check offsets all the time.
 612			 */
 613			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
 614				fw_err(card,
 615				       "skipped unsupported ROM entry %x at %llx\n",
 616				       rom[i],
 617				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
 618				rom[i] = 0;
 619				continue;
 620			}
 621			stack[sp++] = i + rom[i];
 622		}
 623		if (length < i)
 624			length = i;
 625	}
 626
 627	old_rom = device->config_rom;
 628	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
 629	if (new_rom == NULL) {
 630		ret = -ENOMEM;
 631		goto out;
 632	}
 633
 634	down_write(&fw_device_rwsem);
 635	device->config_rom = new_rom;
 636	device->config_rom_length = length;
 637	up_write(&fw_device_rwsem);
 638
 639	kfree(old_rom);
 640	ret = RCODE_COMPLETE;
 641	device->max_rec	= rom[2] >> 12 & 0xf;
 642	device->cmc	= rom[2] >> 30 & 1;
 643	device->irmc	= rom[2] >> 31 & 1;
 644 out:
 645	kfree(rom);
 646
 647	return ret;
 648}
 649
 650static void fw_unit_release(struct device *dev)
 651{
 652	struct fw_unit *unit = fw_unit(dev);
 653
 654	fw_device_put(fw_parent_device(unit));
 655	kfree(unit);
 656}
 657
 658static struct device_type fw_unit_type = {
 659	.uevent		= fw_unit_uevent,
 660	.release	= fw_unit_release,
 661};
 662
 663static bool is_fw_unit(struct device *dev)
 664{
 665	return dev->type == &fw_unit_type;
 666}
 667
 668static void create_units(struct fw_device *device)
 669{
 670	struct fw_csr_iterator ci;
 671	struct fw_unit *unit;
 672	int key, value, i;
 673
 674	i = 0;
 675	fw_csr_iterator_init(&ci, &device->config_rom[5]);
 676	while (fw_csr_iterator_next(&ci, &key, &value)) {
 677		if (key != (CSR_UNIT | CSR_DIRECTORY))
 678			continue;
 679
 680		/*
 681		 * Get the address of the unit directory and try to
 682		 * match the drivers id_tables against it.
 683		 */
 684		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
 685		if (unit == NULL) {
 686			fw_err(device->card, "out of memory for unit\n");
 687			continue;
 688		}
 689
 690		unit->directory = ci.p + value - 1;
 691		unit->device.bus = &fw_bus_type;
 692		unit->device.type = &fw_unit_type;
 693		unit->device.parent = &device->device;
 694		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
 695
 696		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
 697				ARRAY_SIZE(fw_unit_attributes) +
 698				ARRAY_SIZE(config_rom_attributes));
 699		init_fw_attribute_group(&unit->device,
 700					fw_unit_attributes,
 701					&unit->attribute_group);
 702
 703		if (device_register(&unit->device) < 0)
 704			goto skip_unit;
 705
 706		fw_device_get(device);
 707		continue;
 708
 709	skip_unit:
 710		kfree(unit);
 711	}
 712}
 713
 714static int shutdown_unit(struct device *device, void *data)
 715{
 716	device_unregister(device);
 717
 718	return 0;
 719}
 720
 721/*
 722 * fw_device_rwsem acts as dual purpose mutex:
 723 *   - serializes accesses to fw_device_idr,
 724 *   - serializes accesses to fw_device.config_rom/.config_rom_length and
 725 *     fw_unit.directory, unless those accesses happen at safe occasions
 726 */
 727DECLARE_RWSEM(fw_device_rwsem);
 728
 729DEFINE_IDR(fw_device_idr);
 730int fw_cdev_major;
 731
 732struct fw_device *fw_device_get_by_devt(dev_t devt)
 733{
 734	struct fw_device *device;
 735
 736	down_read(&fw_device_rwsem);
 737	device = idr_find(&fw_device_idr, MINOR(devt));
 738	if (device)
 739		fw_device_get(device);
 740	up_read(&fw_device_rwsem);
 741
 742	return device;
 743}
 744
 745struct workqueue_struct *fw_workqueue;
 746EXPORT_SYMBOL(fw_workqueue);
 747
 748static void fw_schedule_device_work(struct fw_device *device,
 749				    unsigned long delay)
 750{
 751	queue_delayed_work(fw_workqueue, &device->work, delay);
 752}
 753
 754/*
 755 * These defines control the retry behavior for reading the config
 756 * rom.  It shouldn't be necessary to tweak these; if the device
 757 * doesn't respond to a config rom read within 10 seconds, it's not
 758 * going to respond at all.  As for the initial delay, a lot of
 759 * devices will be able to respond within half a second after bus
 760 * reset.  On the other hand, it's not really worth being more
 761 * aggressive than that, since it scales pretty well; if 10 devices
 762 * are plugged in, they're all getting read within one second.
 763 */
 764
 765#define MAX_RETRIES	10
 766#define RETRY_DELAY	(3 * HZ)
 767#define INITIAL_DELAY	(HZ / 2)
 768#define SHUTDOWN_DELAY	(2 * HZ)
 769
 770static void fw_device_shutdown(struct work_struct *work)
 771{
 772	struct fw_device *device =
 773		container_of(work, struct fw_device, work.work);
 774	int minor = MINOR(device->device.devt);
 775
 776	if (time_before64(get_jiffies_64(),
 777			  device->card->reset_jiffies + SHUTDOWN_DELAY)
 778	    && !list_empty(&device->card->link)) {
 779		fw_schedule_device_work(device, SHUTDOWN_DELAY);
 780		return;
 781	}
 782
 783	if (atomic_cmpxchg(&device->state,
 784			   FW_DEVICE_GONE,
 785			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
 786		return;
 787
 788	fw_device_cdev_remove(device);
 789	device_for_each_child(&device->device, NULL, shutdown_unit);
 790	device_unregister(&device->device);
 791
 792	down_write(&fw_device_rwsem);
 793	idr_remove(&fw_device_idr, minor);
 794	up_write(&fw_device_rwsem);
 795
 796	fw_device_put(device);
 797}
 798
 799static void fw_device_release(struct device *dev)
 800{
 801	struct fw_device *device = fw_device(dev);
 802	struct fw_card *card = device->card;
 803	unsigned long flags;
 804
 805	/*
 806	 * Take the card lock so we don't set this to NULL while a
 807	 * FW_NODE_UPDATED callback is being handled or while the
 808	 * bus manager work looks at this node.
 809	 */
 810	spin_lock_irqsave(&card->lock, flags);
 811	device->node->data = NULL;
 812	spin_unlock_irqrestore(&card->lock, flags);
 813
 814	fw_node_put(device->node);
 815	kfree(device->config_rom);
 816	kfree(device);
 817	fw_card_put(card);
 818}
 819
 820static struct device_type fw_device_type = {
 821	.release = fw_device_release,
 822};
 823
 824static bool is_fw_device(struct device *dev)
 825{
 826	return dev->type == &fw_device_type;
 827}
 828
 829static int update_unit(struct device *dev, void *data)
 830{
 831	struct fw_unit *unit = fw_unit(dev);
 832	struct fw_driver *driver = (struct fw_driver *)dev->driver;
 833
 834	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
 835		device_lock(dev);
 836		driver->update(unit);
 837		device_unlock(dev);
 838	}
 839
 840	return 0;
 841}
 842
 843static void fw_device_update(struct work_struct *work)
 844{
 845	struct fw_device *device =
 846		container_of(work, struct fw_device, work.work);
 847
 848	fw_device_cdev_update(device);
 849	device_for_each_child(&device->device, NULL, update_unit);
 850}
 851
 852/*
 853 * If a device was pending for deletion because its node went away but its
 854 * bus info block and root directory header matches that of a newly discovered
 855 * device, revive the existing fw_device.
 856 * The newly allocated fw_device becomes obsolete instead.
 857 */
 858static int lookup_existing_device(struct device *dev, void *data)
 859{
 860	struct fw_device *old = fw_device(dev);
 861	struct fw_device *new = data;
 862	struct fw_card *card = new->card;
 863	int match = 0;
 864
 865	if (!is_fw_device(dev))
 866		return 0;
 867
 868	down_read(&fw_device_rwsem); /* serialize config_rom access */
 869	spin_lock_irq(&card->lock);  /* serialize node access */
 870
 871	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
 872	    atomic_cmpxchg(&old->state,
 873			   FW_DEVICE_GONE,
 874			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
 875		struct fw_node *current_node = new->node;
 876		struct fw_node *obsolete_node = old->node;
 877
 878		new->node = obsolete_node;
 879		new->node->data = new;
 880		old->node = current_node;
 881		old->node->data = old;
 882
 883		old->max_speed = new->max_speed;
 884		old->node_id = current_node->node_id;
 885		smp_wmb();  /* update node_id before generation */
 886		old->generation = card->generation;
 887		old->config_rom_retries = 0;
 888		fw_notice(card, "rediscovered device %s\n", dev_name(dev));
 889
 890		PREPARE_DELAYED_WORK(&old->work, fw_device_update);
 891		fw_schedule_device_work(old, 0);
 892
 893		if (current_node == card->root_node)
 894			fw_schedule_bm_work(card, 0);
 895
 896		match = 1;
 897	}
 898
 899	spin_unlock_irq(&card->lock);
 900	up_read(&fw_device_rwsem);
 901
 902	return match;
 903}
 904
 905enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
 906
 907static void set_broadcast_channel(struct fw_device *device, int generation)
 908{
 909	struct fw_card *card = device->card;
 910	__be32 data;
 911	int rcode;
 912
 913	if (!card->broadcast_channel_allocated)
 914		return;
 915
 916	/*
 917	 * The Broadcast_Channel Valid bit is required by nodes which want to
 918	 * transmit on this channel.  Such transmissions are practically
 919	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
 920	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
 921	 * to narrow down to which nodes we send Broadcast_Channel updates.
 922	 */
 923	if (!device->irmc || device->max_rec < 8)
 924		return;
 925
 926	/*
 927	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
 928	 * Perform a read test first.
 929	 */
 930	if (device->bc_implemented == BC_UNKNOWN) {
 931		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
 932				device->node_id, generation, device->max_speed,
 933				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
 934				&data, 4);
 935		switch (rcode) {
 936		case RCODE_COMPLETE:
 937			if (data & cpu_to_be32(1 << 31)) {
 938				device->bc_implemented = BC_IMPLEMENTED;
 939				break;
 940			}
 941			/* else fall through to case address error */
 942		case RCODE_ADDRESS_ERROR:
 943			device->bc_implemented = BC_UNIMPLEMENTED;
 944		}
 945	}
 946
 947	if (device->bc_implemented == BC_IMPLEMENTED) {
 948		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
 949				   BROADCAST_CHANNEL_VALID);
 950		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
 951				device->node_id, generation, device->max_speed,
 952				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
 953				&data, 4);
 954	}
 955}
 956
 957int fw_device_set_broadcast_channel(struct device *dev, void *gen)
 958{
 959	if (is_fw_device(dev))
 960		set_broadcast_channel(fw_device(dev), (long)gen);
 961
 962	return 0;
 963}
 964
 965static void fw_device_init(struct work_struct *work)
 966{
 967	struct fw_device *device =
 968		container_of(work, struct fw_device, work.work);
 969	struct fw_card *card = device->card;
 970	struct device *revived_dev;
 971	int minor, ret;
 972
 973	/*
 974	 * All failure paths here set node->data to NULL, so that we
 975	 * don't try to do device_for_each_child() on a kfree()'d
 976	 * device.
 977	 */
 978
 979	ret = read_config_rom(device, device->generation);
 980	if (ret != RCODE_COMPLETE) {
 981		if (device->config_rom_retries < MAX_RETRIES &&
 982		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
 983			device->config_rom_retries++;
 984			fw_schedule_device_work(device, RETRY_DELAY);
 985		} else {
 986			if (device->node->link_on)
 987				fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
 988					  device->node_id,
 989					  fw_rcode_string(ret));
 990			if (device->node == card->root_node)
 991				fw_schedule_bm_work(card, 0);
 992			fw_device_release(&device->device);
 993		}
 994		return;
 995	}
 996
 997	revived_dev = device_find_child(card->device,
 998					device, lookup_existing_device);
 999	if (revived_dev) {
1000		put_device(revived_dev);
1001		fw_device_release(&device->device);
1002
1003		return;
1004	}
1005
1006	device_initialize(&device->device);
1007
1008	fw_device_get(device);
1009	down_write(&fw_device_rwsem);
1010	ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
1011	      idr_get_new(&fw_device_idr, device, &minor) :
1012	      -ENOMEM;
1013	up_write(&fw_device_rwsem);
1014
1015	if (ret < 0)
1016		goto error;
1017
1018	device->device.bus = &fw_bus_type;
1019	device->device.type = &fw_device_type;
1020	device->device.parent = card->device;
1021	device->device.devt = MKDEV(fw_cdev_major, minor);
1022	dev_set_name(&device->device, "fw%d", minor);
1023
1024	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1025			ARRAY_SIZE(fw_device_attributes) +
1026			ARRAY_SIZE(config_rom_attributes));
1027	init_fw_attribute_group(&device->device,
1028				fw_device_attributes,
1029				&device->attribute_group);
1030
1031	if (device_add(&device->device)) {
1032		fw_err(card, "failed to add device\n");
1033		goto error_with_cdev;
1034	}
1035
1036	create_units(device);
1037
1038	/*
1039	 * Transition the device to running state.  If it got pulled
1040	 * out from under us while we did the intialization work, we
1041	 * have to shut down the device again here.  Normally, though,
1042	 * fw_node_event will be responsible for shutting it down when
1043	 * necessary.  We have to use the atomic cmpxchg here to avoid
1044	 * racing with the FW_NODE_DESTROYED case in
1045	 * fw_node_event().
1046	 */
1047	if (atomic_cmpxchg(&device->state,
1048			   FW_DEVICE_INITIALIZING,
1049			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1050		PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1051		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1052	} else {
1053		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1054			  dev_name(&device->device),
1055			  device->config_rom[3], device->config_rom[4],
1056			  1 << device->max_speed);
1057		device->config_rom_retries = 0;
1058
1059		set_broadcast_channel(device, device->generation);
 
 
1060	}
1061
1062	/*
1063	 * Reschedule the IRM work if we just finished reading the
1064	 * root node config rom.  If this races with a bus reset we
1065	 * just end up running the IRM work a couple of extra times -
1066	 * pretty harmless.
1067	 */
1068	if (device->node == card->root_node)
1069		fw_schedule_bm_work(card, 0);
1070
1071	return;
1072
1073 error_with_cdev:
1074	down_write(&fw_device_rwsem);
1075	idr_remove(&fw_device_idr, minor);
1076	up_write(&fw_device_rwsem);
1077 error:
1078	fw_device_put(device);		/* fw_device_idr's reference */
1079
1080	put_device(&device->device);	/* our reference */
1081}
1082
1083/* Reread and compare bus info block and header of root directory */
1084static int reread_config_rom(struct fw_device *device, int generation,
1085			     bool *changed)
1086{
1087	u32 q;
1088	int i, rcode;
1089
1090	for (i = 0; i < 6; i++) {
1091		rcode = read_rom(device, generation, i, &q);
1092		if (rcode != RCODE_COMPLETE)
1093			return rcode;
1094
1095		if (i == 0 && q == 0)
1096			/* inaccessible (see read_config_rom); retry later */
1097			return RCODE_BUSY;
1098
1099		if (q != device->config_rom[i]) {
1100			*changed = true;
1101			return RCODE_COMPLETE;
1102		}
1103	}
1104
1105	*changed = false;
1106	return RCODE_COMPLETE;
1107}
1108
1109static void fw_device_refresh(struct work_struct *work)
1110{
1111	struct fw_device *device =
1112		container_of(work, struct fw_device, work.work);
1113	struct fw_card *card = device->card;
1114	int ret, node_id = device->node_id;
1115	bool changed;
1116
1117	ret = reread_config_rom(device, device->generation, &changed);
1118	if (ret != RCODE_COMPLETE)
1119		goto failed_config_rom;
1120
1121	if (!changed) {
1122		if (atomic_cmpxchg(&device->state,
1123				   FW_DEVICE_INITIALIZING,
1124				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1125			goto gone;
1126
1127		fw_device_update(work);
1128		device->config_rom_retries = 0;
1129		goto out;
1130	}
1131
1132	/*
1133	 * Something changed.  We keep things simple and don't investigate
1134	 * further.  We just destroy all previous units and create new ones.
1135	 */
1136	device_for_each_child(&device->device, NULL, shutdown_unit);
1137
1138	ret = read_config_rom(device, device->generation);
1139	if (ret != RCODE_COMPLETE)
1140		goto failed_config_rom;
1141
1142	fw_device_cdev_update(device);
1143	create_units(device);
1144
1145	/* Userspace may want to re-read attributes. */
1146	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1147
1148	if (atomic_cmpxchg(&device->state,
1149			   FW_DEVICE_INITIALIZING,
1150			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1151		goto gone;
1152
1153	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1154	device->config_rom_retries = 0;
1155	goto out;
1156
1157 failed_config_rom:
1158	if (device->config_rom_retries < MAX_RETRIES &&
1159	    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1160		device->config_rom_retries++;
1161		fw_schedule_device_work(device, RETRY_DELAY);
1162		return;
1163	}
1164
1165	fw_notice(card, "giving up on refresh of device %s: %s\n",
1166		  dev_name(&device->device), fw_rcode_string(ret));
1167 gone:
1168	atomic_set(&device->state, FW_DEVICE_GONE);
1169	PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1170	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1171 out:
1172	if (node_id == card->root_node->node_id)
1173		fw_schedule_bm_work(card, 0);
1174}
1175
 
 
 
 
 
 
 
1176void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1177{
1178	struct fw_device *device;
1179
1180	switch (event) {
1181	case FW_NODE_CREATED:
1182		/*
1183		 * Attempt to scan the node, regardless whether its self ID has
1184		 * the L (link active) flag set or not.  Some broken devices
1185		 * send L=0 but have an up-and-running link; others send L=1
1186		 * without actually having a link.
1187		 */
1188 create:
1189		device = kzalloc(sizeof(*device), GFP_ATOMIC);
1190		if (device == NULL)
1191			break;
1192
1193		/*
1194		 * Do minimal intialization of the device here, the
1195		 * rest will happen in fw_device_init().
1196		 *
1197		 * Attention:  A lot of things, even fw_device_get(),
1198		 * cannot be done before fw_device_init() finished!
1199		 * You can basically just check device->state and
1200		 * schedule work until then, but only while holding
1201		 * card->lock.
1202		 */
1203		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1204		device->card = fw_card_get(card);
1205		device->node = fw_node_get(node);
1206		device->node_id = node->node_id;
1207		device->generation = card->generation;
1208		device->is_local = node == card->local_node;
1209		mutex_init(&device->client_list_mutex);
1210		INIT_LIST_HEAD(&device->client_list);
1211
1212		/*
1213		 * Set the node data to point back to this device so
1214		 * FW_NODE_UPDATED callbacks can update the node_id
1215		 * and generation for the device.
1216		 */
1217		node->data = device;
1218
1219		/*
1220		 * Many devices are slow to respond after bus resets,
1221		 * especially if they are bus powered and go through
1222		 * power-up after getting plugged in.  We schedule the
1223		 * first config rom scan half a second after bus reset.
1224		 */
1225		INIT_DELAYED_WORK(&device->work, fw_device_init);
 
1226		fw_schedule_device_work(device, INITIAL_DELAY);
1227		break;
1228
1229	case FW_NODE_INITIATED_RESET:
1230	case FW_NODE_LINK_ON:
1231		device = node->data;
1232		if (device == NULL)
1233			goto create;
1234
1235		device->node_id = node->node_id;
1236		smp_wmb();  /* update node_id before generation */
1237		device->generation = card->generation;
1238		if (atomic_cmpxchg(&device->state,
1239			    FW_DEVICE_RUNNING,
1240			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1241			PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1242			fw_schedule_device_work(device,
1243				device->is_local ? 0 : INITIAL_DELAY);
1244		}
1245		break;
1246
1247	case FW_NODE_UPDATED:
1248		device = node->data;
1249		if (device == NULL)
1250			break;
1251
1252		device->node_id = node->node_id;
1253		smp_wmb();  /* update node_id before generation */
1254		device->generation = card->generation;
1255		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1256			PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1257			fw_schedule_device_work(device, 0);
1258		}
1259		break;
1260
1261	case FW_NODE_DESTROYED:
1262	case FW_NODE_LINK_OFF:
1263		if (!node->data)
1264			break;
1265
1266		/*
1267		 * Destroy the device associated with the node.  There
1268		 * are two cases here: either the device is fully
1269		 * initialized (FW_DEVICE_RUNNING) or we're in the
1270		 * process of reading its config rom
1271		 * (FW_DEVICE_INITIALIZING).  If it is fully
1272		 * initialized we can reuse device->work to schedule a
1273		 * full fw_device_shutdown().  If not, there's work
1274		 * scheduled to read it's config rom, and we just put
1275		 * the device in shutdown state to have that code fail
1276		 * to create the device.
1277		 */
1278		device = node->data;
1279		if (atomic_xchg(&device->state,
1280				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1281			PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1282			fw_schedule_device_work(device,
1283				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1284		}
1285		break;
1286	}
1287}
v4.17
   1/*
   2 * Device probing and sysfs code.
   3 *
   4 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bug.h>
  22#include <linux/ctype.h>
  23#include <linux/delay.h>
  24#include <linux/device.h>
  25#include <linux/errno.h>
  26#include <linux/firewire.h>
  27#include <linux/firewire-constants.h>
  28#include <linux/idr.h>
  29#include <linux/jiffies.h>
  30#include <linux/kobject.h>
  31#include <linux/list.h>
  32#include <linux/mod_devicetable.h>
  33#include <linux/module.h>
  34#include <linux/mutex.h>
  35#include <linux/random.h>
  36#include <linux/rwsem.h>
  37#include <linux/slab.h>
  38#include <linux/spinlock.h>
  39#include <linux/string.h>
  40#include <linux/workqueue.h>
  41
  42#include <linux/atomic.h>
  43#include <asm/byteorder.h>
  44
  45#include "core.h"
  46
  47void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
  48{
  49	ci->p = p + 1;
  50	ci->end = ci->p + (p[0] >> 16);
  51}
  52EXPORT_SYMBOL(fw_csr_iterator_init);
  53
  54int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
  55{
  56	*key = *ci->p >> 24;
  57	*value = *ci->p & 0xffffff;
  58
  59	return ci->p++ < ci->end;
  60}
  61EXPORT_SYMBOL(fw_csr_iterator_next);
  62
  63static const u32 *search_leaf(const u32 *directory, int search_key)
  64{
  65	struct fw_csr_iterator ci;
  66	int last_key = 0, key, value;
  67
  68	fw_csr_iterator_init(&ci, directory);
  69	while (fw_csr_iterator_next(&ci, &key, &value)) {
  70		if (last_key == search_key &&
  71		    key == (CSR_DESCRIPTOR | CSR_LEAF))
  72			return ci.p - 1 + value;
  73
  74		last_key = key;
  75	}
  76
  77	return NULL;
  78}
  79
  80static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
  81{
  82	unsigned int quadlets, i;
  83	char c;
  84
  85	if (!size || !buf)
  86		return -EINVAL;
  87
  88	quadlets = min(block[0] >> 16, 256U);
  89	if (quadlets < 2)
  90		return -ENODATA;
  91
  92	if (block[1] != 0 || block[2] != 0)
  93		/* unknown language/character set */
  94		return -ENODATA;
  95
  96	block += 3;
  97	quadlets -= 2;
  98	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
  99		c = block[i / 4] >> (24 - 8 * (i % 4));
 100		if (c == '\0')
 101			break;
 102		buf[i] = c;
 103	}
 104	buf[i] = '\0';
 105
 106	return i;
 107}
 108
 109/**
 110 * fw_csr_string() - reads a string from the configuration ROM
 111 * @directory:	e.g. root directory or unit directory
 112 * @key:	the key of the preceding directory entry
 113 * @buf:	where to put the string
 114 * @size:	size of @buf, in bytes
 115 *
 116 * The string is taken from a minimal ASCII text descriptor leaf after
 117 * the immediate entry with @key.  The string is zero-terminated.
 118 * An overlong string is silently truncated such that it and the
 119 * zero byte fit into @size.
 120 *
 121 * Returns strlen(buf) or a negative error code.
 122 */
 123int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
 124{
 125	const u32 *leaf = search_leaf(directory, key);
 126	if (!leaf)
 127		return -ENOENT;
 128
 129	return textual_leaf_to_string(leaf, buf, size);
 130}
 131EXPORT_SYMBOL(fw_csr_string);
 132
 133static void get_ids(const u32 *directory, int *id)
 134{
 135	struct fw_csr_iterator ci;
 136	int key, value;
 137
 138	fw_csr_iterator_init(&ci, directory);
 139	while (fw_csr_iterator_next(&ci, &key, &value)) {
 140		switch (key) {
 141		case CSR_VENDOR:	id[0] = value; break;
 142		case CSR_MODEL:		id[1] = value; break;
 143		case CSR_SPECIFIER_ID:	id[2] = value; break;
 144		case CSR_VERSION:	id[3] = value; break;
 145		}
 146	}
 147}
 148
 149static void get_modalias_ids(struct fw_unit *unit, int *id)
 150{
 151	get_ids(&fw_parent_device(unit)->config_rom[5], id);
 152	get_ids(unit->directory, id);
 153}
 154
 155static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
 156{
 157	int match = 0;
 158
 159	if (id[0] == id_table->vendor_id)
 160		match |= IEEE1394_MATCH_VENDOR_ID;
 161	if (id[1] == id_table->model_id)
 162		match |= IEEE1394_MATCH_MODEL_ID;
 163	if (id[2] == id_table->specifier_id)
 164		match |= IEEE1394_MATCH_SPECIFIER_ID;
 165	if (id[3] == id_table->version)
 166		match |= IEEE1394_MATCH_VERSION;
 167
 168	return (match & id_table->match_flags) == id_table->match_flags;
 169}
 170
 171static const struct ieee1394_device_id *unit_match(struct device *dev,
 172						   struct device_driver *drv)
 
 173{
 174	const struct ieee1394_device_id *id_table =
 175			container_of(drv, struct fw_driver, driver)->id_table;
 176	int id[] = {0, 0, 0, 0};
 177
 
 
 
 
 178	get_modalias_ids(fw_unit(dev), id);
 179
 180	for (; id_table->match_flags != 0; id_table++)
 181		if (match_ids(id_table, id))
 182			return id_table;
 183
 184	return NULL;
 185}
 186
 187static bool is_fw_unit(struct device *dev);
 188
 189static int fw_unit_match(struct device *dev, struct device_driver *drv)
 190{
 191	/* We only allow binding to fw_units. */
 192	return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
 193}
 194
 195static int fw_unit_probe(struct device *dev)
 196{
 197	struct fw_driver *driver =
 198			container_of(dev->driver, struct fw_driver, driver);
 199
 200	return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
 201}
 202
 203static int fw_unit_remove(struct device *dev)
 204{
 205	struct fw_driver *driver =
 206			container_of(dev->driver, struct fw_driver, driver);
 207
 208	return driver->remove(fw_unit(dev)), 0;
 209}
 210
 211static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
 212{
 213	int id[] = {0, 0, 0, 0};
 214
 215	get_modalias_ids(unit, id);
 216
 217	return snprintf(buffer, buffer_size,
 218			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
 219			id[0], id[1], id[2], id[3]);
 220}
 221
 222static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
 223{
 224	struct fw_unit *unit = fw_unit(dev);
 225	char modalias[64];
 226
 227	get_modalias(unit, modalias, sizeof(modalias));
 228
 229	if (add_uevent_var(env, "MODALIAS=%s", modalias))
 230		return -ENOMEM;
 231
 232	return 0;
 233}
 234
 235struct bus_type fw_bus_type = {
 236	.name = "firewire",
 237	.match = fw_unit_match,
 238	.probe = fw_unit_probe,
 239	.remove = fw_unit_remove,
 240};
 241EXPORT_SYMBOL(fw_bus_type);
 242
 243int fw_device_enable_phys_dma(struct fw_device *device)
 244{
 245	int generation = device->generation;
 246
 247	/* device->node_id, accessed below, must not be older than generation */
 248	smp_rmb();
 249
 250	return device->card->driver->enable_phys_dma(device->card,
 251						     device->node_id,
 252						     generation);
 253}
 254EXPORT_SYMBOL(fw_device_enable_phys_dma);
 255
 256struct config_rom_attribute {
 257	struct device_attribute attr;
 258	u32 key;
 259};
 260
 261static ssize_t show_immediate(struct device *dev,
 262			      struct device_attribute *dattr, char *buf)
 263{
 264	struct config_rom_attribute *attr =
 265		container_of(dattr, struct config_rom_attribute, attr);
 266	struct fw_csr_iterator ci;
 267	const u32 *dir;
 268	int key, value, ret = -ENOENT;
 269
 270	down_read(&fw_device_rwsem);
 271
 272	if (is_fw_unit(dev))
 273		dir = fw_unit(dev)->directory;
 274	else
 275		dir = fw_device(dev)->config_rom + 5;
 276
 277	fw_csr_iterator_init(&ci, dir);
 278	while (fw_csr_iterator_next(&ci, &key, &value))
 279		if (attr->key == key) {
 280			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
 281				       "0x%06x\n", value);
 282			break;
 283		}
 284
 285	up_read(&fw_device_rwsem);
 286
 287	return ret;
 288}
 289
 290#define IMMEDIATE_ATTR(name, key)				\
 291	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
 292
 293static ssize_t show_text_leaf(struct device *dev,
 294			      struct device_attribute *dattr, char *buf)
 295{
 296	struct config_rom_attribute *attr =
 297		container_of(dattr, struct config_rom_attribute, attr);
 298	const u32 *dir;
 299	size_t bufsize;
 300	char dummy_buf[2];
 301	int ret;
 302
 303	down_read(&fw_device_rwsem);
 304
 305	if (is_fw_unit(dev))
 306		dir = fw_unit(dev)->directory;
 307	else
 308		dir = fw_device(dev)->config_rom + 5;
 309
 310	if (buf) {
 311		bufsize = PAGE_SIZE - 1;
 312	} else {
 313		buf = dummy_buf;
 314		bufsize = 1;
 315	}
 316
 317	ret = fw_csr_string(dir, attr->key, buf, bufsize);
 318
 319	if (ret >= 0) {
 320		/* Strip trailing whitespace and add newline. */
 321		while (ret > 0 && isspace(buf[ret - 1]))
 322			ret--;
 323		strcpy(buf + ret, "\n");
 324		ret++;
 325	}
 326
 327	up_read(&fw_device_rwsem);
 328
 329	return ret;
 330}
 331
 332#define TEXT_LEAF_ATTR(name, key)				\
 333	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
 334
 335static struct config_rom_attribute config_rom_attributes[] = {
 336	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
 337	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
 338	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
 339	IMMEDIATE_ATTR(version, CSR_VERSION),
 340	IMMEDIATE_ATTR(model, CSR_MODEL),
 341	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
 342	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
 343	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
 344};
 345
 346static void init_fw_attribute_group(struct device *dev,
 347				    struct device_attribute *attrs,
 348				    struct fw_attribute_group *group)
 349{
 350	struct device_attribute *attr;
 351	int i, j;
 352
 353	for (j = 0; attrs[j].attr.name != NULL; j++)
 354		group->attrs[j] = &attrs[j].attr;
 355
 356	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
 357		attr = &config_rom_attributes[i].attr;
 358		if (attr->show(dev, attr, NULL) < 0)
 359			continue;
 360		group->attrs[j++] = &attr->attr;
 361	}
 362
 363	group->attrs[j] = NULL;
 364	group->groups[0] = &group->group;
 365	group->groups[1] = NULL;
 366	group->group.attrs = group->attrs;
 367	dev->groups = (const struct attribute_group **) group->groups;
 368}
 369
 370static ssize_t modalias_show(struct device *dev,
 371			     struct device_attribute *attr, char *buf)
 372{
 373	struct fw_unit *unit = fw_unit(dev);
 374	int length;
 375
 376	length = get_modalias(unit, buf, PAGE_SIZE);
 377	strcpy(buf + length, "\n");
 378
 379	return length + 1;
 380}
 381
 382static ssize_t rom_index_show(struct device *dev,
 383			      struct device_attribute *attr, char *buf)
 384{
 385	struct fw_device *device = fw_device(dev->parent);
 386	struct fw_unit *unit = fw_unit(dev);
 387
 388	return snprintf(buf, PAGE_SIZE, "%d\n",
 389			(int)(unit->directory - device->config_rom));
 390}
 391
 392static struct device_attribute fw_unit_attributes[] = {
 393	__ATTR_RO(modalias),
 394	__ATTR_RO(rom_index),
 395	__ATTR_NULL,
 396};
 397
 398static ssize_t config_rom_show(struct device *dev,
 399			       struct device_attribute *attr, char *buf)
 400{
 401	struct fw_device *device = fw_device(dev);
 402	size_t length;
 403
 404	down_read(&fw_device_rwsem);
 405	length = device->config_rom_length * 4;
 406	memcpy(buf, device->config_rom, length);
 407	up_read(&fw_device_rwsem);
 408
 409	return length;
 410}
 411
 412static ssize_t guid_show(struct device *dev,
 413			 struct device_attribute *attr, char *buf)
 414{
 415	struct fw_device *device = fw_device(dev);
 416	int ret;
 417
 418	down_read(&fw_device_rwsem);
 419	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
 420		       device->config_rom[3], device->config_rom[4]);
 421	up_read(&fw_device_rwsem);
 422
 423	return ret;
 424}
 425
 426static ssize_t is_local_show(struct device *dev,
 427			     struct device_attribute *attr, char *buf)
 428{
 429	struct fw_device *device = fw_device(dev);
 430
 431	return sprintf(buf, "%u\n", device->is_local);
 432}
 433
 434static int units_sprintf(char *buf, const u32 *directory)
 435{
 436	struct fw_csr_iterator ci;
 437	int key, value;
 438	int specifier_id = 0;
 439	int version = 0;
 440
 441	fw_csr_iterator_init(&ci, directory);
 442	while (fw_csr_iterator_next(&ci, &key, &value)) {
 443		switch (key) {
 444		case CSR_SPECIFIER_ID:
 445			specifier_id = value;
 446			break;
 447		case CSR_VERSION:
 448			version = value;
 449			break;
 450		}
 451	}
 452
 453	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
 454}
 455
 456static ssize_t units_show(struct device *dev,
 457			  struct device_attribute *attr, char *buf)
 458{
 459	struct fw_device *device = fw_device(dev);
 460	struct fw_csr_iterator ci;
 461	int key, value, i = 0;
 462
 463	down_read(&fw_device_rwsem);
 464	fw_csr_iterator_init(&ci, &device->config_rom[5]);
 465	while (fw_csr_iterator_next(&ci, &key, &value)) {
 466		if (key != (CSR_UNIT | CSR_DIRECTORY))
 467			continue;
 468		i += units_sprintf(&buf[i], ci.p + value - 1);
 469		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
 470			break;
 471	}
 472	up_read(&fw_device_rwsem);
 473
 474	if (i)
 475		buf[i - 1] = '\n';
 476
 477	return i;
 478}
 479
 480static struct device_attribute fw_device_attributes[] = {
 481	__ATTR_RO(config_rom),
 482	__ATTR_RO(guid),
 483	__ATTR_RO(is_local),
 484	__ATTR_RO(units),
 485	__ATTR_NULL,
 486};
 487
 488static int read_rom(struct fw_device *device,
 489		    int generation, int index, u32 *data)
 490{
 491	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
 492	int i, rcode;
 493
 494	/* device->node_id, accessed below, must not be older than generation */
 495	smp_rmb();
 496
 497	for (i = 10; i < 100; i += 10) {
 498		rcode = fw_run_transaction(device->card,
 499				TCODE_READ_QUADLET_REQUEST, device->node_id,
 500				generation, device->max_speed, offset, data, 4);
 501		if (rcode != RCODE_BUSY)
 502			break;
 503		msleep(i);
 504	}
 505	be32_to_cpus(data);
 506
 507	return rcode;
 508}
 509
 510#define MAX_CONFIG_ROM_SIZE 256
 511
 512/*
 513 * Read the bus info block, perform a speed probe, and read all of the rest of
 514 * the config ROM.  We do all this with a cached bus generation.  If the bus
 515 * generation changes under us, read_config_rom will fail and get retried.
 516 * It's better to start all over in this case because the node from which we
 517 * are reading the ROM may have changed the ROM during the reset.
 518 * Returns either a result code or a negative error code.
 519 */
 520static int read_config_rom(struct fw_device *device, int generation)
 521{
 522	struct fw_card *card = device->card;
 523	const u32 *old_rom, *new_rom;
 524	u32 *rom, *stack;
 525	u32 sp, key;
 526	int i, end, length, ret;
 527
 528	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
 529		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
 530	if (rom == NULL)
 531		return -ENOMEM;
 532
 533	stack = &rom[MAX_CONFIG_ROM_SIZE];
 534	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
 535
 536	device->max_speed = SCODE_100;
 537
 538	/* First read the bus info block. */
 539	for (i = 0; i < 5; i++) {
 540		ret = read_rom(device, generation, i, &rom[i]);
 541		if (ret != RCODE_COMPLETE)
 542			goto out;
 543		/*
 544		 * As per IEEE1212 7.2, during initialization, devices can
 545		 * reply with a 0 for the first quadlet of the config
 546		 * rom to indicate that they are booting (for example,
 547		 * if the firmware is on the disk of a external
 548		 * harddisk).  In that case we just fail, and the
 549		 * retry mechanism will try again later.
 550		 */
 551		if (i == 0 && rom[i] == 0) {
 552			ret = RCODE_BUSY;
 553			goto out;
 554		}
 555	}
 556
 557	device->max_speed = device->node->max_speed;
 558
 559	/*
 560	 * Determine the speed of
 561	 *   - devices with link speed less than PHY speed,
 562	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
 563	 *   - all devices if there are 1394b repeaters.
 564	 * Note, we cannot use the bus info block's link_spd as starting point
 565	 * because some buggy firmwares set it lower than necessary and because
 566	 * 1394-1995 nodes do not have the field.
 567	 */
 568	if ((rom[2] & 0x7) < device->max_speed ||
 569	    device->max_speed == SCODE_BETA ||
 570	    card->beta_repeaters_present) {
 571		u32 dummy;
 572
 573		/* for S1600 and S3200 */
 574		if (device->max_speed == SCODE_BETA)
 575			device->max_speed = card->link_speed;
 576
 577		while (device->max_speed > SCODE_100) {
 578			if (read_rom(device, generation, 0, &dummy) ==
 579			    RCODE_COMPLETE)
 580				break;
 581			device->max_speed--;
 582		}
 583	}
 584
 585	/*
 586	 * Now parse the config rom.  The config rom is a recursive
 587	 * directory structure so we parse it using a stack of
 588	 * references to the blocks that make up the structure.  We
 589	 * push a reference to the root directory on the stack to
 590	 * start things off.
 591	 */
 592	length = i;
 593	sp = 0;
 594	stack[sp++] = 0xc0000005;
 595	while (sp > 0) {
 596		/*
 597		 * Pop the next block reference of the stack.  The
 598		 * lower 24 bits is the offset into the config rom,
 599		 * the upper 8 bits are the type of the reference the
 600		 * block.
 601		 */
 602		key = stack[--sp];
 603		i = key & 0xffffff;
 604		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
 605			ret = -ENXIO;
 606			goto out;
 607		}
 608
 609		/* Read header quadlet for the block to get the length. */
 610		ret = read_rom(device, generation, i, &rom[i]);
 611		if (ret != RCODE_COMPLETE)
 612			goto out;
 613		end = i + (rom[i] >> 16) + 1;
 614		if (end > MAX_CONFIG_ROM_SIZE) {
 615			/*
 616			 * This block extends outside the config ROM which is
 617			 * a firmware bug.  Ignore this whole block, i.e.
 618			 * simply set a fake block length of 0.
 619			 */
 620			fw_err(card, "skipped invalid ROM block %x at %llx\n",
 621			       rom[i],
 622			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
 623			rom[i] = 0;
 624			end = i;
 625		}
 626		i++;
 627
 628		/*
 629		 * Now read in the block.  If this is a directory
 630		 * block, check the entries as we read them to see if
 631		 * it references another block, and push it in that case.
 632		 */
 633		for (; i < end; i++) {
 634			ret = read_rom(device, generation, i, &rom[i]);
 635			if (ret != RCODE_COMPLETE)
 636				goto out;
 637
 638			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
 639				continue;
 640			/*
 641			 * Offset points outside the ROM.  May be a firmware
 642			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
 643			 * 7.7.18).  Simply overwrite this pointer here by a
 644			 * fake immediate entry so that later iterators over
 645			 * the ROM don't have to check offsets all the time.
 646			 */
 647			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
 648				fw_err(card,
 649				       "skipped unsupported ROM entry %x at %llx\n",
 650				       rom[i],
 651				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
 652				rom[i] = 0;
 653				continue;
 654			}
 655			stack[sp++] = i + rom[i];
 656		}
 657		if (length < i)
 658			length = i;
 659	}
 660
 661	old_rom = device->config_rom;
 662	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
 663	if (new_rom == NULL) {
 664		ret = -ENOMEM;
 665		goto out;
 666	}
 667
 668	down_write(&fw_device_rwsem);
 669	device->config_rom = new_rom;
 670	device->config_rom_length = length;
 671	up_write(&fw_device_rwsem);
 672
 673	kfree(old_rom);
 674	ret = RCODE_COMPLETE;
 675	device->max_rec	= rom[2] >> 12 & 0xf;
 676	device->cmc	= rom[2] >> 30 & 1;
 677	device->irmc	= rom[2] >> 31 & 1;
 678 out:
 679	kfree(rom);
 680
 681	return ret;
 682}
 683
 684static void fw_unit_release(struct device *dev)
 685{
 686	struct fw_unit *unit = fw_unit(dev);
 687
 688	fw_device_put(fw_parent_device(unit));
 689	kfree(unit);
 690}
 691
 692static struct device_type fw_unit_type = {
 693	.uevent		= fw_unit_uevent,
 694	.release	= fw_unit_release,
 695};
 696
 697static bool is_fw_unit(struct device *dev)
 698{
 699	return dev->type == &fw_unit_type;
 700}
 701
 702static void create_units(struct fw_device *device)
 703{
 704	struct fw_csr_iterator ci;
 705	struct fw_unit *unit;
 706	int key, value, i;
 707
 708	i = 0;
 709	fw_csr_iterator_init(&ci, &device->config_rom[5]);
 710	while (fw_csr_iterator_next(&ci, &key, &value)) {
 711		if (key != (CSR_UNIT | CSR_DIRECTORY))
 712			continue;
 713
 714		/*
 715		 * Get the address of the unit directory and try to
 716		 * match the drivers id_tables against it.
 717		 */
 718		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
 719		if (unit == NULL)
 
 720			continue;
 
 721
 722		unit->directory = ci.p + value - 1;
 723		unit->device.bus = &fw_bus_type;
 724		unit->device.type = &fw_unit_type;
 725		unit->device.parent = &device->device;
 726		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
 727
 728		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
 729				ARRAY_SIZE(fw_unit_attributes) +
 730				ARRAY_SIZE(config_rom_attributes));
 731		init_fw_attribute_group(&unit->device,
 732					fw_unit_attributes,
 733					&unit->attribute_group);
 734
 735		if (device_register(&unit->device) < 0)
 736			goto skip_unit;
 737
 738		fw_device_get(device);
 739		continue;
 740
 741	skip_unit:
 742		kfree(unit);
 743	}
 744}
 745
 746static int shutdown_unit(struct device *device, void *data)
 747{
 748	device_unregister(device);
 749
 750	return 0;
 751}
 752
 753/*
 754 * fw_device_rwsem acts as dual purpose mutex:
 755 *   - serializes accesses to fw_device_idr,
 756 *   - serializes accesses to fw_device.config_rom/.config_rom_length and
 757 *     fw_unit.directory, unless those accesses happen at safe occasions
 758 */
 759DECLARE_RWSEM(fw_device_rwsem);
 760
 761DEFINE_IDR(fw_device_idr);
 762int fw_cdev_major;
 763
 764struct fw_device *fw_device_get_by_devt(dev_t devt)
 765{
 766	struct fw_device *device;
 767
 768	down_read(&fw_device_rwsem);
 769	device = idr_find(&fw_device_idr, MINOR(devt));
 770	if (device)
 771		fw_device_get(device);
 772	up_read(&fw_device_rwsem);
 773
 774	return device;
 775}
 776
 777struct workqueue_struct *fw_workqueue;
 778EXPORT_SYMBOL(fw_workqueue);
 779
 780static void fw_schedule_device_work(struct fw_device *device,
 781				    unsigned long delay)
 782{
 783	queue_delayed_work(fw_workqueue, &device->work, delay);
 784}
 785
 786/*
 787 * These defines control the retry behavior for reading the config
 788 * rom.  It shouldn't be necessary to tweak these; if the device
 789 * doesn't respond to a config rom read within 10 seconds, it's not
 790 * going to respond at all.  As for the initial delay, a lot of
 791 * devices will be able to respond within half a second after bus
 792 * reset.  On the other hand, it's not really worth being more
 793 * aggressive than that, since it scales pretty well; if 10 devices
 794 * are plugged in, they're all getting read within one second.
 795 */
 796
 797#define MAX_RETRIES	10
 798#define RETRY_DELAY	(3 * HZ)
 799#define INITIAL_DELAY	(HZ / 2)
 800#define SHUTDOWN_DELAY	(2 * HZ)
 801
 802static void fw_device_shutdown(struct work_struct *work)
 803{
 804	struct fw_device *device =
 805		container_of(work, struct fw_device, work.work);
 806	int minor = MINOR(device->device.devt);
 807
 808	if (time_before64(get_jiffies_64(),
 809			  device->card->reset_jiffies + SHUTDOWN_DELAY)
 810	    && !list_empty(&device->card->link)) {
 811		fw_schedule_device_work(device, SHUTDOWN_DELAY);
 812		return;
 813	}
 814
 815	if (atomic_cmpxchg(&device->state,
 816			   FW_DEVICE_GONE,
 817			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
 818		return;
 819
 820	fw_device_cdev_remove(device);
 821	device_for_each_child(&device->device, NULL, shutdown_unit);
 822	device_unregister(&device->device);
 823
 824	down_write(&fw_device_rwsem);
 825	idr_remove(&fw_device_idr, minor);
 826	up_write(&fw_device_rwsem);
 827
 828	fw_device_put(device);
 829}
 830
 831static void fw_device_release(struct device *dev)
 832{
 833	struct fw_device *device = fw_device(dev);
 834	struct fw_card *card = device->card;
 835	unsigned long flags;
 836
 837	/*
 838	 * Take the card lock so we don't set this to NULL while a
 839	 * FW_NODE_UPDATED callback is being handled or while the
 840	 * bus manager work looks at this node.
 841	 */
 842	spin_lock_irqsave(&card->lock, flags);
 843	device->node->data = NULL;
 844	spin_unlock_irqrestore(&card->lock, flags);
 845
 846	fw_node_put(device->node);
 847	kfree(device->config_rom);
 848	kfree(device);
 849	fw_card_put(card);
 850}
 851
 852static struct device_type fw_device_type = {
 853	.release = fw_device_release,
 854};
 855
 856static bool is_fw_device(struct device *dev)
 857{
 858	return dev->type == &fw_device_type;
 859}
 860
 861static int update_unit(struct device *dev, void *data)
 862{
 863	struct fw_unit *unit = fw_unit(dev);
 864	struct fw_driver *driver = (struct fw_driver *)dev->driver;
 865
 866	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
 867		device_lock(dev);
 868		driver->update(unit);
 869		device_unlock(dev);
 870	}
 871
 872	return 0;
 873}
 874
 875static void fw_device_update(struct work_struct *work)
 876{
 877	struct fw_device *device =
 878		container_of(work, struct fw_device, work.work);
 879
 880	fw_device_cdev_update(device);
 881	device_for_each_child(&device->device, NULL, update_unit);
 882}
 883
 884/*
 885 * If a device was pending for deletion because its node went away but its
 886 * bus info block and root directory header matches that of a newly discovered
 887 * device, revive the existing fw_device.
 888 * The newly allocated fw_device becomes obsolete instead.
 889 */
 890static int lookup_existing_device(struct device *dev, void *data)
 891{
 892	struct fw_device *old = fw_device(dev);
 893	struct fw_device *new = data;
 894	struct fw_card *card = new->card;
 895	int match = 0;
 896
 897	if (!is_fw_device(dev))
 898		return 0;
 899
 900	down_read(&fw_device_rwsem); /* serialize config_rom access */
 901	spin_lock_irq(&card->lock);  /* serialize node access */
 902
 903	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
 904	    atomic_cmpxchg(&old->state,
 905			   FW_DEVICE_GONE,
 906			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
 907		struct fw_node *current_node = new->node;
 908		struct fw_node *obsolete_node = old->node;
 909
 910		new->node = obsolete_node;
 911		new->node->data = new;
 912		old->node = current_node;
 913		old->node->data = old;
 914
 915		old->max_speed = new->max_speed;
 916		old->node_id = current_node->node_id;
 917		smp_wmb();  /* update node_id before generation */
 918		old->generation = card->generation;
 919		old->config_rom_retries = 0;
 920		fw_notice(card, "rediscovered device %s\n", dev_name(dev));
 921
 922		old->workfn = fw_device_update;
 923		fw_schedule_device_work(old, 0);
 924
 925		if (current_node == card->root_node)
 926			fw_schedule_bm_work(card, 0);
 927
 928		match = 1;
 929	}
 930
 931	spin_unlock_irq(&card->lock);
 932	up_read(&fw_device_rwsem);
 933
 934	return match;
 935}
 936
 937enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
 938
 939static void set_broadcast_channel(struct fw_device *device, int generation)
 940{
 941	struct fw_card *card = device->card;
 942	__be32 data;
 943	int rcode;
 944
 945	if (!card->broadcast_channel_allocated)
 946		return;
 947
 948	/*
 949	 * The Broadcast_Channel Valid bit is required by nodes which want to
 950	 * transmit on this channel.  Such transmissions are practically
 951	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
 952	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
 953	 * to narrow down to which nodes we send Broadcast_Channel updates.
 954	 */
 955	if (!device->irmc || device->max_rec < 8)
 956		return;
 957
 958	/*
 959	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
 960	 * Perform a read test first.
 961	 */
 962	if (device->bc_implemented == BC_UNKNOWN) {
 963		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
 964				device->node_id, generation, device->max_speed,
 965				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
 966				&data, 4);
 967		switch (rcode) {
 968		case RCODE_COMPLETE:
 969			if (data & cpu_to_be32(1 << 31)) {
 970				device->bc_implemented = BC_IMPLEMENTED;
 971				break;
 972			}
 973			/* else fall through to case address error */
 974		case RCODE_ADDRESS_ERROR:
 975			device->bc_implemented = BC_UNIMPLEMENTED;
 976		}
 977	}
 978
 979	if (device->bc_implemented == BC_IMPLEMENTED) {
 980		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
 981				   BROADCAST_CHANNEL_VALID);
 982		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
 983				device->node_id, generation, device->max_speed,
 984				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
 985				&data, 4);
 986	}
 987}
 988
 989int fw_device_set_broadcast_channel(struct device *dev, void *gen)
 990{
 991	if (is_fw_device(dev))
 992		set_broadcast_channel(fw_device(dev), (long)gen);
 993
 994	return 0;
 995}
 996
 997static void fw_device_init(struct work_struct *work)
 998{
 999	struct fw_device *device =
1000		container_of(work, struct fw_device, work.work);
1001	struct fw_card *card = device->card;
1002	struct device *revived_dev;
1003	int minor, ret;
1004
1005	/*
1006	 * All failure paths here set node->data to NULL, so that we
1007	 * don't try to do device_for_each_child() on a kfree()'d
1008	 * device.
1009	 */
1010
1011	ret = read_config_rom(device, device->generation);
1012	if (ret != RCODE_COMPLETE) {
1013		if (device->config_rom_retries < MAX_RETRIES &&
1014		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1015			device->config_rom_retries++;
1016			fw_schedule_device_work(device, RETRY_DELAY);
1017		} else {
1018			if (device->node->link_on)
1019				fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1020					  device->node_id,
1021					  fw_rcode_string(ret));
1022			if (device->node == card->root_node)
1023				fw_schedule_bm_work(card, 0);
1024			fw_device_release(&device->device);
1025		}
1026		return;
1027	}
1028
1029	revived_dev = device_find_child(card->device,
1030					device, lookup_existing_device);
1031	if (revived_dev) {
1032		put_device(revived_dev);
1033		fw_device_release(&device->device);
1034
1035		return;
1036	}
1037
1038	device_initialize(&device->device);
1039
1040	fw_device_get(device);
1041	down_write(&fw_device_rwsem);
1042	minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1043			GFP_KERNEL);
 
1044	up_write(&fw_device_rwsem);
1045
1046	if (minor < 0)
1047		goto error;
1048
1049	device->device.bus = &fw_bus_type;
1050	device->device.type = &fw_device_type;
1051	device->device.parent = card->device;
1052	device->device.devt = MKDEV(fw_cdev_major, minor);
1053	dev_set_name(&device->device, "fw%d", minor);
1054
1055	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1056			ARRAY_SIZE(fw_device_attributes) +
1057			ARRAY_SIZE(config_rom_attributes));
1058	init_fw_attribute_group(&device->device,
1059				fw_device_attributes,
1060				&device->attribute_group);
1061
1062	if (device_add(&device->device)) {
1063		fw_err(card, "failed to add device\n");
1064		goto error_with_cdev;
1065	}
1066
1067	create_units(device);
1068
1069	/*
1070	 * Transition the device to running state.  If it got pulled
1071	 * out from under us while we did the initialization work, we
1072	 * have to shut down the device again here.  Normally, though,
1073	 * fw_node_event will be responsible for shutting it down when
1074	 * necessary.  We have to use the atomic cmpxchg here to avoid
1075	 * racing with the FW_NODE_DESTROYED case in
1076	 * fw_node_event().
1077	 */
1078	if (atomic_cmpxchg(&device->state,
1079			   FW_DEVICE_INITIALIZING,
1080			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1081		device->workfn = fw_device_shutdown;
1082		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1083	} else {
1084		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1085			  dev_name(&device->device),
1086			  device->config_rom[3], device->config_rom[4],
1087			  1 << device->max_speed);
1088		device->config_rom_retries = 0;
1089
1090		set_broadcast_channel(device, device->generation);
1091
1092		add_device_randomness(&device->config_rom[3], 8);
1093	}
1094
1095	/*
1096	 * Reschedule the IRM work if we just finished reading the
1097	 * root node config rom.  If this races with a bus reset we
1098	 * just end up running the IRM work a couple of extra times -
1099	 * pretty harmless.
1100	 */
1101	if (device->node == card->root_node)
1102		fw_schedule_bm_work(card, 0);
1103
1104	return;
1105
1106 error_with_cdev:
1107	down_write(&fw_device_rwsem);
1108	idr_remove(&fw_device_idr, minor);
1109	up_write(&fw_device_rwsem);
1110 error:
1111	fw_device_put(device);		/* fw_device_idr's reference */
1112
1113	put_device(&device->device);	/* our reference */
1114}
1115
1116/* Reread and compare bus info block and header of root directory */
1117static int reread_config_rom(struct fw_device *device, int generation,
1118			     bool *changed)
1119{
1120	u32 q;
1121	int i, rcode;
1122
1123	for (i = 0; i < 6; i++) {
1124		rcode = read_rom(device, generation, i, &q);
1125		if (rcode != RCODE_COMPLETE)
1126			return rcode;
1127
1128		if (i == 0 && q == 0)
1129			/* inaccessible (see read_config_rom); retry later */
1130			return RCODE_BUSY;
1131
1132		if (q != device->config_rom[i]) {
1133			*changed = true;
1134			return RCODE_COMPLETE;
1135		}
1136	}
1137
1138	*changed = false;
1139	return RCODE_COMPLETE;
1140}
1141
1142static void fw_device_refresh(struct work_struct *work)
1143{
1144	struct fw_device *device =
1145		container_of(work, struct fw_device, work.work);
1146	struct fw_card *card = device->card;
1147	int ret, node_id = device->node_id;
1148	bool changed;
1149
1150	ret = reread_config_rom(device, device->generation, &changed);
1151	if (ret != RCODE_COMPLETE)
1152		goto failed_config_rom;
1153
1154	if (!changed) {
1155		if (atomic_cmpxchg(&device->state,
1156				   FW_DEVICE_INITIALIZING,
1157				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1158			goto gone;
1159
1160		fw_device_update(work);
1161		device->config_rom_retries = 0;
1162		goto out;
1163	}
1164
1165	/*
1166	 * Something changed.  We keep things simple and don't investigate
1167	 * further.  We just destroy all previous units and create new ones.
1168	 */
1169	device_for_each_child(&device->device, NULL, shutdown_unit);
1170
1171	ret = read_config_rom(device, device->generation);
1172	if (ret != RCODE_COMPLETE)
1173		goto failed_config_rom;
1174
1175	fw_device_cdev_update(device);
1176	create_units(device);
1177
1178	/* Userspace may want to re-read attributes. */
1179	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1180
1181	if (atomic_cmpxchg(&device->state,
1182			   FW_DEVICE_INITIALIZING,
1183			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1184		goto gone;
1185
1186	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1187	device->config_rom_retries = 0;
1188	goto out;
1189
1190 failed_config_rom:
1191	if (device->config_rom_retries < MAX_RETRIES &&
1192	    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1193		device->config_rom_retries++;
1194		fw_schedule_device_work(device, RETRY_DELAY);
1195		return;
1196	}
1197
1198	fw_notice(card, "giving up on refresh of device %s: %s\n",
1199		  dev_name(&device->device), fw_rcode_string(ret));
1200 gone:
1201	atomic_set(&device->state, FW_DEVICE_GONE);
1202	device->workfn = fw_device_shutdown;
1203	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1204 out:
1205	if (node_id == card->root_node->node_id)
1206		fw_schedule_bm_work(card, 0);
1207}
1208
1209static void fw_device_workfn(struct work_struct *work)
1210{
1211	struct fw_device *device = container_of(to_delayed_work(work),
1212						struct fw_device, work);
1213	device->workfn(work);
1214}
1215
1216void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1217{
1218	struct fw_device *device;
1219
1220	switch (event) {
1221	case FW_NODE_CREATED:
1222		/*
1223		 * Attempt to scan the node, regardless whether its self ID has
1224		 * the L (link active) flag set or not.  Some broken devices
1225		 * send L=0 but have an up-and-running link; others send L=1
1226		 * without actually having a link.
1227		 */
1228 create:
1229		device = kzalloc(sizeof(*device), GFP_ATOMIC);
1230		if (device == NULL)
1231			break;
1232
1233		/*
1234		 * Do minimal initialization of the device here, the
1235		 * rest will happen in fw_device_init().
1236		 *
1237		 * Attention:  A lot of things, even fw_device_get(),
1238		 * cannot be done before fw_device_init() finished!
1239		 * You can basically just check device->state and
1240		 * schedule work until then, but only while holding
1241		 * card->lock.
1242		 */
1243		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1244		device->card = fw_card_get(card);
1245		device->node = fw_node_get(node);
1246		device->node_id = node->node_id;
1247		device->generation = card->generation;
1248		device->is_local = node == card->local_node;
1249		mutex_init(&device->client_list_mutex);
1250		INIT_LIST_HEAD(&device->client_list);
1251
1252		/*
1253		 * Set the node data to point back to this device so
1254		 * FW_NODE_UPDATED callbacks can update the node_id
1255		 * and generation for the device.
1256		 */
1257		node->data = device;
1258
1259		/*
1260		 * Many devices are slow to respond after bus resets,
1261		 * especially if they are bus powered and go through
1262		 * power-up after getting plugged in.  We schedule the
1263		 * first config rom scan half a second after bus reset.
1264		 */
1265		device->workfn = fw_device_init;
1266		INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1267		fw_schedule_device_work(device, INITIAL_DELAY);
1268		break;
1269
1270	case FW_NODE_INITIATED_RESET:
1271	case FW_NODE_LINK_ON:
1272		device = node->data;
1273		if (device == NULL)
1274			goto create;
1275
1276		device->node_id = node->node_id;
1277		smp_wmb();  /* update node_id before generation */
1278		device->generation = card->generation;
1279		if (atomic_cmpxchg(&device->state,
1280			    FW_DEVICE_RUNNING,
1281			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1282			device->workfn = fw_device_refresh;
1283			fw_schedule_device_work(device,
1284				device->is_local ? 0 : INITIAL_DELAY);
1285		}
1286		break;
1287
1288	case FW_NODE_UPDATED:
1289		device = node->data;
1290		if (device == NULL)
1291			break;
1292
1293		device->node_id = node->node_id;
1294		smp_wmb();  /* update node_id before generation */
1295		device->generation = card->generation;
1296		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1297			device->workfn = fw_device_update;
1298			fw_schedule_device_work(device, 0);
1299		}
1300		break;
1301
1302	case FW_NODE_DESTROYED:
1303	case FW_NODE_LINK_OFF:
1304		if (!node->data)
1305			break;
1306
1307		/*
1308		 * Destroy the device associated with the node.  There
1309		 * are two cases here: either the device is fully
1310		 * initialized (FW_DEVICE_RUNNING) or we're in the
1311		 * process of reading its config rom
1312		 * (FW_DEVICE_INITIALIZING).  If it is fully
1313		 * initialized we can reuse device->work to schedule a
1314		 * full fw_device_shutdown().  If not, there's work
1315		 * scheduled to read it's config rom, and we just put
1316		 * the device in shutdown state to have that code fail
1317		 * to create the device.
1318		 */
1319		device = node->data;
1320		if (atomic_xchg(&device->state,
1321				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1322			device->workfn = fw_device_shutdown;
1323			fw_schedule_device_work(device,
1324				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1325		}
1326		break;
1327	}
1328}