Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/scatterlist.h>
  22#include <linux/swap.h>
  23#include <linux/radix-tree.h>
  24#include <linux/writeback.h>
  25#include <linux/buffer_head.h>
  26#include <linux/workqueue.h>
  27#include <linux/kthread.h>
  28#include <linux/freezer.h>
  29#include <linux/crc32c.h>
  30#include <linux/slab.h>
  31#include <linux/migrate.h>
  32#include <linux/ratelimit.h>
 
 
  33#include <asm/unaligned.h>
  34#include "compat.h"
  35#include "ctree.h"
  36#include "disk-io.h"
 
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "print-tree.h"
  41#include "async-thread.h"
  42#include "locking.h"
  43#include "tree-log.h"
  44#include "free-space-cache.h"
 
  45#include "inode-map.h"
  46#include "check-integrity.h"
  47#include "rcu-string.h"
 
 
 
 
 
  48
  49static struct extent_io_ops btree_extent_io_ops;
 
 
 
 
 
 
 
 
 
 
  50static void end_workqueue_fn(struct btrfs_work *work);
  51static void free_fs_root(struct btrfs_root *root);
  52static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  53				    int read_only);
  54static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
  55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  57				      struct btrfs_root *root);
  58static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  60static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  61					struct extent_io_tree *dirty_pages,
  62					int mark);
  63static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  64				       struct extent_io_tree *pinned_extents);
 
 
  65
  66/*
  67 * end_io_wq structs are used to do processing in task context when an IO is
  68 * complete.  This is used during reads to verify checksums, and it is used
  69 * by writes to insert metadata for new file extents after IO is complete.
  70 */
  71struct end_io_wq {
  72	struct bio *bio;
  73	bio_end_io_t *end_io;
  74	void *private;
  75	struct btrfs_fs_info *info;
  76	int error;
  77	int metadata;
  78	struct list_head list;
  79	struct btrfs_work work;
  80};
  81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  82/*
  83 * async submit bios are used to offload expensive checksumming
  84 * onto the worker threads.  They checksum file and metadata bios
  85 * just before they are sent down the IO stack.
  86 */
  87struct async_submit_bio {
  88	struct inode *inode;
  89	struct bio *bio;
  90	struct list_head list;
  91	extent_submit_bio_hook_t *submit_bio_start;
  92	extent_submit_bio_hook_t *submit_bio_done;
  93	int rw;
  94	int mirror_num;
  95	unsigned long bio_flags;
  96	/*
  97	 * bio_offset is optional, can be used if the pages in the bio
  98	 * can't tell us where in the file the bio should go
  99	 */
 100	u64 bio_offset;
 101	struct btrfs_work work;
 102	int error;
 103};
 104
 105/*
 106 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 107 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 108 * the level the eb occupies in the tree.
 109 *
 110 * Different roots are used for different purposes and may nest inside each
 111 * other and they require separate keysets.  As lockdep keys should be
 112 * static, assign keysets according to the purpose of the root as indicated
 113 * by btrfs_root->objectid.  This ensures that all special purpose roots
 114 * have separate keysets.
 115 *
 116 * Lock-nesting across peer nodes is always done with the immediate parent
 117 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 118 * subclass to avoid triggering lockdep warning in such cases.
 119 *
 120 * The key is set by the readpage_end_io_hook after the buffer has passed
 121 * csum validation but before the pages are unlocked.  It is also set by
 122 * btrfs_init_new_buffer on freshly allocated blocks.
 123 *
 124 * We also add a check to make sure the highest level of the tree is the
 125 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 126 * needs update as well.
 127 */
 128#ifdef CONFIG_DEBUG_LOCK_ALLOC
 129# if BTRFS_MAX_LEVEL != 8
 130#  error
 131# endif
 132
 133static struct btrfs_lockdep_keyset {
 134	u64			id;		/* root objectid */
 135	const char		*name_stem;	/* lock name stem */
 136	char			names[BTRFS_MAX_LEVEL + 1][20];
 137	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
 138} btrfs_lockdep_keysets[] = {
 139	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
 140	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
 141	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
 142	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
 143	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
 144	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
 145	{ .id = BTRFS_ORPHAN_OBJECTID,		.name_stem = "orphan"	},
 146	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
 147	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
 148	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
 
 
 149	{ .id = 0,				.name_stem = "tree"	},
 150};
 151
 152void __init btrfs_init_lockdep(void)
 153{
 154	int i, j;
 155
 156	/* initialize lockdep class names */
 157	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 158		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 159
 160		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 161			snprintf(ks->names[j], sizeof(ks->names[j]),
 162				 "btrfs-%s-%02d", ks->name_stem, j);
 163	}
 164}
 165
 166void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 167				    int level)
 168{
 169	struct btrfs_lockdep_keyset *ks;
 170
 171	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 172
 173	/* find the matching keyset, id 0 is the default entry */
 174	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 175		if (ks->id == objectid)
 176			break;
 177
 178	lockdep_set_class_and_name(&eb->lock,
 179				   &ks->keys[level], ks->names[level]);
 180}
 181
 182#endif
 183
 184/*
 185 * extents on the btree inode are pretty simple, there's one extent
 186 * that covers the entire device
 187 */
 188static struct extent_map *btree_get_extent(struct inode *inode,
 189		struct page *page, size_t pg_offset, u64 start, u64 len,
 190		int create)
 191{
 192	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 193	struct extent_map *em;
 194	int ret;
 195
 196	read_lock(&em_tree->lock);
 197	em = lookup_extent_mapping(em_tree, start, len);
 198	if (em) {
 199		em->bdev =
 200			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 201		read_unlock(&em_tree->lock);
 202		goto out;
 203	}
 204	read_unlock(&em_tree->lock);
 205
 206	em = alloc_extent_map();
 207	if (!em) {
 208		em = ERR_PTR(-ENOMEM);
 209		goto out;
 210	}
 211	em->start = 0;
 212	em->len = (u64)-1;
 213	em->block_len = (u64)-1;
 214	em->block_start = 0;
 215	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 216
 217	write_lock(&em_tree->lock);
 218	ret = add_extent_mapping(em_tree, em);
 219	if (ret == -EEXIST) {
 220		u64 failed_start = em->start;
 221		u64 failed_len = em->len;
 222
 223		free_extent_map(em);
 224		em = lookup_extent_mapping(em_tree, start, len);
 225		if (em) {
 226			ret = 0;
 227		} else {
 228			em = lookup_extent_mapping(em_tree, failed_start,
 229						   failed_len);
 230			ret = -EIO;
 231		}
 232	} else if (ret) {
 233		free_extent_map(em);
 234		em = NULL;
 235	}
 236	write_unlock(&em_tree->lock);
 237
 238	if (ret)
 239		em = ERR_PTR(ret);
 240out:
 241	return em;
 242}
 243
 244u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
 245{
 246	return crc32c(seed, data, len);
 247}
 248
 249void btrfs_csum_final(u32 crc, char *result)
 250{
 251	put_unaligned_le32(~crc, result);
 252}
 253
 254/*
 255 * compute the csum for a btree block, and either verify it or write it
 256 * into the csum field of the block.
 257 */
 258static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
 
 259			   int verify)
 260{
 261	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
 262	char *result = NULL;
 263	unsigned long len;
 264	unsigned long cur_len;
 265	unsigned long offset = BTRFS_CSUM_SIZE;
 266	char *kaddr;
 267	unsigned long map_start;
 268	unsigned long map_len;
 269	int err;
 270	u32 crc = ~(u32)0;
 271	unsigned long inline_result;
 272
 273	len = buf->len - offset;
 274	while (len > 0) {
 275		err = map_private_extent_buffer(buf, offset, 32,
 276					&kaddr, &map_start, &map_len);
 277		if (err)
 278			return 1;
 279		cur_len = min(len, map_len - (offset - map_start));
 280		crc = btrfs_csum_data(root, kaddr + offset - map_start,
 281				      crc, cur_len);
 282		len -= cur_len;
 283		offset += cur_len;
 284	}
 285	if (csum_size > sizeof(inline_result)) {
 286		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
 287		if (!result)
 288			return 1;
 289	} else {
 290		result = (char *)&inline_result;
 291	}
 292
 293	btrfs_csum_final(crc, result);
 294
 295	if (verify) {
 296		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 297			u32 val;
 298			u32 found = 0;
 299			memcpy(&found, result, csum_size);
 300
 301			read_extent_buffer(buf, &val, 0, csum_size);
 302			printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
 303				       "failed on %llu wanted %X found %X "
 304				       "level %d\n",
 305				       root->fs_info->sb->s_id,
 306				       (unsigned long long)buf->start, val, found,
 307				       btrfs_header_level(buf));
 308			if (result != (char *)&inline_result)
 309				kfree(result);
 310			return 1;
 311		}
 312	} else {
 313		write_extent_buffer(buf, result, 0, csum_size);
 314	}
 315	if (result != (char *)&inline_result)
 316		kfree(result);
 317	return 0;
 318}
 319
 320/*
 321 * we can't consider a given block up to date unless the transid of the
 322 * block matches the transid in the parent node's pointer.  This is how we
 323 * detect blocks that either didn't get written at all or got written
 324 * in the wrong place.
 325 */
 326static int verify_parent_transid(struct extent_io_tree *io_tree,
 327				 struct extent_buffer *eb, u64 parent_transid,
 328				 int atomic)
 329{
 330	struct extent_state *cached_state = NULL;
 331	int ret;
 
 332
 333	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 334		return 0;
 335
 336	if (atomic)
 337		return -EAGAIN;
 338
 
 
 
 
 
 339	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 340			 0, &cached_state);
 341	if (extent_buffer_uptodate(eb) &&
 342	    btrfs_header_generation(eb) == parent_transid) {
 343		ret = 0;
 344		goto out;
 345	}
 346	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
 347		       "found %llu\n",
 348		       (unsigned long long)eb->start,
 349		       (unsigned long long)parent_transid,
 350		       (unsigned long long)btrfs_header_generation(eb));
 351	ret = 1;
 352	clear_extent_buffer_uptodate(eb);
 
 
 
 
 
 
 
 
 
 
 353out:
 354	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 355			     &cached_state, GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 356	return ret;
 357}
 358
 359/*
 360 * helper to read a given tree block, doing retries as required when
 361 * the checksums don't match and we have alternate mirrors to try.
 362 */
 363static int btree_read_extent_buffer_pages(struct btrfs_root *root,
 364					  struct extent_buffer *eb,
 365					  u64 start, u64 parent_transid)
 366{
 367	struct extent_io_tree *io_tree;
 368	int failed = 0;
 369	int ret;
 370	int num_copies = 0;
 371	int mirror_num = 0;
 372	int failed_mirror = 0;
 373
 374	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 375	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
 376	while (1) {
 377		ret = read_extent_buffer_pages(io_tree, eb, start,
 378					       WAIT_COMPLETE,
 379					       btree_get_extent, mirror_num);
 380		if (!ret && !verify_parent_transid(io_tree, eb,
 
 381						   parent_transid, 0))
 382			break;
 
 
 
 383
 384		/*
 385		 * This buffer's crc is fine, but its contents are corrupted, so
 386		 * there is no reason to read the other copies, they won't be
 387		 * any less wrong.
 388		 */
 389		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
 390			break;
 391
 392		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
 393					      eb->start, eb->len);
 394		if (num_copies == 1)
 395			break;
 396
 397		if (!failed_mirror) {
 398			failed = 1;
 399			failed_mirror = eb->read_mirror;
 400		}
 401
 402		mirror_num++;
 403		if (mirror_num == failed_mirror)
 404			mirror_num++;
 405
 406		if (mirror_num > num_copies)
 407			break;
 408	}
 409
 410	if (failed && !ret)
 411		repair_eb_io_failure(root, eb, failed_mirror);
 412
 413	return ret;
 414}
 415
 416/*
 417 * checksum a dirty tree block before IO.  This has extra checks to make sure
 418 * we only fill in the checksum field in the first page of a multi-page block
 419 */
 420
 421static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
 422{
 423	struct extent_io_tree *tree;
 424	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
 425	u64 found_start;
 426	struct extent_buffer *eb;
 427
 428	tree = &BTRFS_I(page->mapping->host)->io_tree;
 429
 430	eb = (struct extent_buffer *)page->private;
 431	if (page != eb->pages[0])
 432		return 0;
 
 433	found_start = btrfs_header_bytenr(eb);
 434	if (found_start != start) {
 435		WARN_ON(1);
 436		return 0;
 437	}
 438	if (eb->pages[0] != page) {
 439		WARN_ON(1);
 440		return 0;
 441	}
 442	if (!PageUptodate(page)) {
 443		WARN_ON(1);
 444		return 0;
 445	}
 446	csum_tree_block(root, eb, 0);
 447	return 0;
 448}
 449
 450static int check_tree_block_fsid(struct btrfs_root *root,
 451				 struct extent_buffer *eb)
 452{
 453	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
 454	u8 fsid[BTRFS_UUID_SIZE];
 455	int ret = 1;
 456
 457	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
 458			   BTRFS_FSID_SIZE);
 459	while (fs_devices) {
 460		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 461			ret = 0;
 462			break;
 463		}
 464		fs_devices = fs_devices->seed;
 465	}
 466	return ret;
 467}
 468
 469#define CORRUPT(reason, eb, root, slot)				\
 470	printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu,"	\
 471	       "root=%llu, slot=%d\n", reason,			\
 472	       (unsigned long long)btrfs_header_bytenr(eb),	\
 473	       (unsigned long long)root->objectid, slot)
 474
 475static noinline int check_leaf(struct btrfs_root *root,
 476			       struct extent_buffer *leaf)
 477{
 478	struct btrfs_key key;
 479	struct btrfs_key leaf_key;
 480	u32 nritems = btrfs_header_nritems(leaf);
 481	int slot;
 482
 483	if (nritems == 0)
 484		return 0;
 485
 486	/* Check the 0 item */
 487	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
 488	    BTRFS_LEAF_DATA_SIZE(root)) {
 489		CORRUPT("invalid item offset size pair", leaf, root, 0);
 490		return -EIO;
 491	}
 492
 493	/*
 494	 * Check to make sure each items keys are in the correct order and their
 495	 * offsets make sense.  We only have to loop through nritems-1 because
 496	 * we check the current slot against the next slot, which verifies the
 497	 * next slot's offset+size makes sense and that the current's slot
 498	 * offset is correct.
 499	 */
 500	for (slot = 0; slot < nritems - 1; slot++) {
 501		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
 502		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
 503
 504		/* Make sure the keys are in the right order */
 505		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
 506			CORRUPT("bad key order", leaf, root, slot);
 507			return -EIO;
 508		}
 509
 510		/*
 511		 * Make sure the offset and ends are right, remember that the
 512		 * item data starts at the end of the leaf and grows towards the
 513		 * front.
 514		 */
 515		if (btrfs_item_offset_nr(leaf, slot) !=
 516			btrfs_item_end_nr(leaf, slot + 1)) {
 517			CORRUPT("slot offset bad", leaf, root, slot);
 518			return -EIO;
 519		}
 520
 521		/*
 522		 * Check to make sure that we don't point outside of the leaf,
 523		 * just incase all the items are consistent to eachother, but
 524		 * all point outside of the leaf.
 525		 */
 526		if (btrfs_item_end_nr(leaf, slot) >
 527		    BTRFS_LEAF_DATA_SIZE(root)) {
 528			CORRUPT("slot end outside of leaf", leaf, root, slot);
 529			return -EIO;
 530		}
 531	}
 532
 533	return 0;
 534}
 535
 536struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
 537				       struct page *page, int max_walk)
 
 538{
 539	struct extent_buffer *eb;
 540	u64 start = page_offset(page);
 541	u64 target = start;
 542	u64 min_start;
 543
 544	if (start < max_walk)
 545		min_start = 0;
 546	else
 547		min_start = start - max_walk;
 548
 549	while (start >= min_start) {
 550		eb = find_extent_buffer(tree, start, 0);
 551		if (eb) {
 552			/*
 553			 * we found an extent buffer and it contains our page
 554			 * horray!
 555			 */
 556			if (eb->start <= target &&
 557			    eb->start + eb->len > target)
 558				return eb;
 559
 560			/* we found an extent buffer that wasn't for us */
 561			free_extent_buffer(eb);
 562			return NULL;
 563		}
 564		if (start == 0)
 565			break;
 566		start -= PAGE_CACHE_SIZE;
 567	}
 568	return NULL;
 569}
 570
 571static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
 572			       struct extent_state *state, int mirror)
 573{
 574	struct extent_io_tree *tree;
 575	u64 found_start;
 576	int found_level;
 577	struct extent_buffer *eb;
 578	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 
 579	int ret = 0;
 580	int reads_done;
 581
 582	if (!page->private)
 583		goto out;
 584
 585	tree = &BTRFS_I(page->mapping->host)->io_tree;
 586	eb = (struct extent_buffer *)page->private;
 587
 588	/* the pending IO might have been the only thing that kept this buffer
 589	 * in memory.  Make sure we have a ref for all this other checks
 590	 */
 591	extent_buffer_get(eb);
 592
 593	reads_done = atomic_dec_and_test(&eb->io_pages);
 594	if (!reads_done)
 595		goto err;
 596
 597	eb->read_mirror = mirror;
 598	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
 599		ret = -EIO;
 600		goto err;
 601	}
 602
 603	found_start = btrfs_header_bytenr(eb);
 604	if (found_start != eb->start) {
 605		printk_ratelimited(KERN_INFO "btrfs bad tree block start "
 606			       "%llu %llu\n",
 607			       (unsigned long long)found_start,
 608			       (unsigned long long)eb->start);
 609		ret = -EIO;
 610		goto err;
 611	}
 612	if (check_tree_block_fsid(root, eb)) {
 613		printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
 614			       (unsigned long long)eb->start);
 615		ret = -EIO;
 616		goto err;
 617	}
 618	found_level = btrfs_header_level(eb);
 
 
 
 
 
 
 619
 620	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 621				       eb, found_level);
 622
 623	ret = csum_tree_block(root, eb, 1);
 624	if (ret) {
 625		ret = -EIO;
 626		goto err;
 627	}
 628
 629	/*
 630	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 631	 * that we don't try and read the other copies of this block, just
 632	 * return -EIO.
 633	 */
 634	if (found_level == 0 && check_leaf(root, eb)) {
 635		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 636		ret = -EIO;
 637	}
 638
 639	if (!ret)
 640		set_extent_buffer_uptodate(eb);
 641err:
 642	if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
 643		clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
 644		btree_readahead_hook(root, eb, eb->start, ret);
 645	}
 646
 647	if (ret)
 
 
 
 
 
 
 648		clear_extent_buffer_uptodate(eb);
 
 649	free_extent_buffer(eb);
 650out:
 651	return ret;
 652}
 653
 654static int btree_io_failed_hook(struct page *page, int failed_mirror)
 655{
 656	struct extent_buffer *eb;
 657	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 658
 659	eb = (struct extent_buffer *)page->private;
 660	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
 661	eb->read_mirror = failed_mirror;
 
 662	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 663		btree_readahead_hook(root, eb, eb->start, -EIO);
 664	return -EIO;	/* we fixed nothing */
 665}
 666
 667static void end_workqueue_bio(struct bio *bio, int err)
 668{
 669	struct end_io_wq *end_io_wq = bio->bi_private;
 670	struct btrfs_fs_info *fs_info;
 
 
 671
 672	fs_info = end_io_wq->info;
 673	end_io_wq->error = err;
 674	end_io_wq->work.func = end_workqueue_fn;
 675	end_io_wq->work.flags = 0;
 676
 677	if (bio->bi_rw & REQ_WRITE) {
 678		if (end_io_wq->metadata == 1)
 679			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
 680					   &end_io_wq->work);
 681		else if (end_io_wq->metadata == 2)
 682			btrfs_queue_worker(&fs_info->endio_freespace_worker,
 683					   &end_io_wq->work);
 684		else
 685			btrfs_queue_worker(&fs_info->endio_write_workers,
 686					   &end_io_wq->work);
 
 
 
 
 687	} else {
 688		if (end_io_wq->metadata)
 689			btrfs_queue_worker(&fs_info->endio_meta_workers,
 690					   &end_io_wq->work);
 691		else
 692			btrfs_queue_worker(&fs_info->endio_workers,
 693					   &end_io_wq->work);
 
 
 
 
 
 
 
 
 694	}
 
 
 
 695}
 696
 697/*
 698 * For the metadata arg you want
 699 *
 700 * 0 - if data
 701 * 1 - if normal metadta
 702 * 2 - if writing to the free space cache area
 703 */
 704int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 705			int metadata)
 706{
 707	struct end_io_wq *end_io_wq;
 708	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
 
 709	if (!end_io_wq)
 710		return -ENOMEM;
 711
 712	end_io_wq->private = bio->bi_private;
 713	end_io_wq->end_io = bio->bi_end_io;
 714	end_io_wq->info = info;
 715	end_io_wq->error = 0;
 716	end_io_wq->bio = bio;
 717	end_io_wq->metadata = metadata;
 718
 719	bio->bi_private = end_io_wq;
 720	bio->bi_end_io = end_workqueue_bio;
 721	return 0;
 722}
 723
 724unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
 725{
 726	unsigned long limit = min_t(unsigned long,
 727				    info->workers.max_workers,
 728				    info->fs_devices->open_devices);
 729	return 256 * limit;
 730}
 731
 732static void run_one_async_start(struct btrfs_work *work)
 733{
 734	struct async_submit_bio *async;
 735	int ret;
 736
 737	async = container_of(work, struct  async_submit_bio, work);
 738	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
 739				      async->mirror_num, async->bio_flags,
 740				      async->bio_offset);
 741	if (ret)
 742		async->error = ret;
 743}
 744
 745static void run_one_async_done(struct btrfs_work *work)
 746{
 747	struct btrfs_fs_info *fs_info;
 748	struct async_submit_bio *async;
 749	int limit;
 750
 751	async = container_of(work, struct  async_submit_bio, work);
 752	fs_info = BTRFS_I(async->inode)->root->fs_info;
 753
 754	limit = btrfs_async_submit_limit(fs_info);
 755	limit = limit * 2 / 3;
 756
 757	atomic_dec(&fs_info->nr_async_submits);
 758
 759	if (atomic_read(&fs_info->nr_async_submits) < limit &&
 
 760	    waitqueue_active(&fs_info->async_submit_wait))
 761		wake_up(&fs_info->async_submit_wait);
 762
 763	/* If an error occured we just want to clean up the bio and move on */
 764	if (async->error) {
 765		bio_endio(async->bio, async->error);
 
 766		return;
 767	}
 768
 769	async->submit_bio_done(async->inode, async->rw, async->bio,
 770			       async->mirror_num, async->bio_flags,
 771			       async->bio_offset);
 772}
 773
 774static void run_one_async_free(struct btrfs_work *work)
 775{
 776	struct async_submit_bio *async;
 777
 778	async = container_of(work, struct  async_submit_bio, work);
 779	kfree(async);
 780}
 781
 782int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
 783			int rw, struct bio *bio, int mirror_num,
 784			unsigned long bio_flags,
 785			u64 bio_offset,
 786			extent_submit_bio_hook_t *submit_bio_start,
 787			extent_submit_bio_hook_t *submit_bio_done)
 788{
 789	struct async_submit_bio *async;
 790
 791	async = kmalloc(sizeof(*async), GFP_NOFS);
 792	if (!async)
 793		return -ENOMEM;
 794
 795	async->inode = inode;
 796	async->rw = rw;
 797	async->bio = bio;
 798	async->mirror_num = mirror_num;
 799	async->submit_bio_start = submit_bio_start;
 800	async->submit_bio_done = submit_bio_done;
 801
 802	async->work.func = run_one_async_start;
 803	async->work.ordered_func = run_one_async_done;
 804	async->work.ordered_free = run_one_async_free;
 805
 806	async->work.flags = 0;
 807	async->bio_flags = bio_flags;
 808	async->bio_offset = bio_offset;
 809
 810	async->error = 0;
 811
 812	atomic_inc(&fs_info->nr_async_submits);
 813
 814	if (rw & REQ_SYNC)
 815		btrfs_set_work_high_prio(&async->work);
 816
 817	btrfs_queue_worker(&fs_info->workers, &async->work);
 818
 819	while (atomic_read(&fs_info->async_submit_draining) &&
 820	      atomic_read(&fs_info->nr_async_submits)) {
 821		wait_event(fs_info->async_submit_wait,
 822			   (atomic_read(&fs_info->nr_async_submits) == 0));
 823	}
 824
 825	return 0;
 826}
 827
 828static int btree_csum_one_bio(struct bio *bio)
 829{
 830	struct bio_vec *bvec = bio->bi_io_vec;
 831	int bio_index = 0;
 832	struct btrfs_root *root;
 833	int ret = 0;
 834
 835	WARN_ON(bio->bi_vcnt <= 0);
 836	while (bio_index < bio->bi_vcnt) {
 837		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 838		ret = csum_dirty_buffer(root, bvec->bv_page);
 839		if (ret)
 840			break;
 841		bio_index++;
 842		bvec++;
 843	}
 
 844	return ret;
 845}
 846
 847static int __btree_submit_bio_start(struct inode *inode, int rw,
 848				    struct bio *bio, int mirror_num,
 849				    unsigned long bio_flags,
 850				    u64 bio_offset)
 851{
 852	/*
 853	 * when we're called for a write, we're already in the async
 854	 * submission context.  Just jump into btrfs_map_bio
 855	 */
 856	return btree_csum_one_bio(bio);
 857}
 858
 859static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
 860				 int mirror_num, unsigned long bio_flags,
 861				 u64 bio_offset)
 862{
 
 
 863	/*
 864	 * when we're called for a write, we're already in the async
 865	 * submission context.  Just jump into btrfs_map_bio
 866	 */
 867	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868}
 869
 870static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
 871				 int mirror_num, unsigned long bio_flags,
 872				 u64 bio_offset)
 873{
 
 874	int ret;
 875
 876	if (!(rw & REQ_WRITE)) {
 877
 878		/*
 879		 * called for a read, do the setup so that checksum validation
 880		 * can happen in the async kernel threads
 881		 */
 882		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
 883					  bio, 1);
 884		if (ret)
 885			return ret;
 886		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 887				     mirror_num, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 888	}
 889
 890	/*
 891	 * kthread helpers are used to submit writes so that checksumming
 892	 * can happen in parallel across all CPUs
 893	 */
 894	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
 895				   inode, rw, bio, mirror_num, 0,
 896				   bio_offset,
 897				   __btree_submit_bio_start,
 898				   __btree_submit_bio_done);
 899}
 900
 901#ifdef CONFIG_MIGRATION
 902static int btree_migratepage(struct address_space *mapping,
 903			struct page *newpage, struct page *page,
 904			enum migrate_mode mode)
 905{
 906	/*
 907	 * we can't safely write a btree page from here,
 908	 * we haven't done the locking hook
 909	 */
 910	if (PageDirty(page))
 911		return -EAGAIN;
 912	/*
 913	 * Buffers may be managed in a filesystem specific way.
 914	 * We must have no buffers or drop them.
 915	 */
 916	if (page_has_private(page) &&
 917	    !try_to_release_page(page, GFP_KERNEL))
 918		return -EAGAIN;
 919	return migrate_page(mapping, newpage, page, mode);
 920}
 921#endif
 922
 923
 924static int btree_writepages(struct address_space *mapping,
 925			    struct writeback_control *wbc)
 926{
 927	struct extent_io_tree *tree;
 928	tree = &BTRFS_I(mapping->host)->io_tree;
 
 929	if (wbc->sync_mode == WB_SYNC_NONE) {
 930		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
 931		u64 num_dirty;
 932		unsigned long thresh = 32 * 1024 * 1024;
 933
 934		if (wbc->for_kupdate)
 935			return 0;
 936
 
 937		/* this is a bit racy, but that's ok */
 938		num_dirty = root->fs_info->dirty_metadata_bytes;
 939		if (num_dirty < thresh)
 
 940			return 0;
 941	}
 942	return btree_write_cache_pages(mapping, wbc);
 943}
 944
 945static int btree_readpage(struct file *file, struct page *page)
 946{
 947	struct extent_io_tree *tree;
 948	tree = &BTRFS_I(page->mapping->host)->io_tree;
 949	return extent_read_full_page(tree, page, btree_get_extent, 0);
 950}
 951
 952static int btree_releasepage(struct page *page, gfp_t gfp_flags)
 953{
 954	if (PageWriteback(page) || PageDirty(page))
 955		return 0;
 956	/*
 957	 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
 958	 * slab allocation from alloc_extent_state down the callchain where
 959	 * it'd hit a BUG_ON as those flags are not allowed.
 960	 */
 961	gfp_flags &= ~GFP_SLAB_BUG_MASK;
 962
 963	return try_release_extent_buffer(page, gfp_flags);
 964}
 965
 966static void btree_invalidatepage(struct page *page, unsigned long offset)
 
 967{
 968	struct extent_io_tree *tree;
 969	tree = &BTRFS_I(page->mapping->host)->io_tree;
 970	extent_invalidatepage(tree, page, offset);
 971	btree_releasepage(page, GFP_NOFS);
 972	if (PagePrivate(page)) {
 973		printk(KERN_WARNING "btrfs warning page private not zero "
 974		       "on page %llu\n", (unsigned long long)page_offset(page));
 
 975		ClearPagePrivate(page);
 976		set_page_private(page, 0);
 977		page_cache_release(page);
 978	}
 979}
 980
 981static int btree_set_page_dirty(struct page *page)
 982{
 
 983	struct extent_buffer *eb;
 984
 985	BUG_ON(!PagePrivate(page));
 986	eb = (struct extent_buffer *)page->private;
 987	BUG_ON(!eb);
 988	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 989	BUG_ON(!atomic_read(&eb->refs));
 990	btrfs_assert_tree_locked(eb);
 
 991	return __set_page_dirty_nobuffers(page);
 992}
 993
 994static const struct address_space_operations btree_aops = {
 995	.readpage	= btree_readpage,
 996	.writepages	= btree_writepages,
 997	.releasepage	= btree_releasepage,
 998	.invalidatepage = btree_invalidatepage,
 999#ifdef CONFIG_MIGRATION
1000	.migratepage	= btree_migratepage,
1001#endif
1002	.set_page_dirty = btree_set_page_dirty,
1003};
1004
1005int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1006			 u64 parent_transid)
1007{
1008	struct extent_buffer *buf = NULL;
1009	struct inode *btree_inode = root->fs_info->btree_inode;
1010	int ret = 0;
1011
1012	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1013	if (!buf)
1014		return 0;
1015	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1016				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1017	free_extent_buffer(buf);
1018	return ret;
1019}
1020
1021int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1022			 int mirror_num, struct extent_buffer **eb)
1023{
1024	struct extent_buffer *buf = NULL;
1025	struct inode *btree_inode = root->fs_info->btree_inode;
1026	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1027	int ret;
1028
1029	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1030	if (!buf)
1031		return 0;
1032
1033	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1034
1035	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1036				       btree_get_extent, mirror_num);
1037	if (ret) {
1038		free_extent_buffer(buf);
1039		return ret;
1040	}
1041
1042	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1043		free_extent_buffer(buf);
1044		return -EIO;
1045	} else if (extent_buffer_uptodate(buf)) {
1046		*eb = buf;
1047	} else {
1048		free_extent_buffer(buf);
1049	}
1050	return 0;
1051}
1052
1053struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1054					    u64 bytenr, u32 blocksize)
1055{
1056	struct inode *btree_inode = root->fs_info->btree_inode;
1057	struct extent_buffer *eb;
1058	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1059				bytenr, blocksize);
1060	return eb;
1061}
1062
1063struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1064						 u64 bytenr, u32 blocksize)
1065{
1066	struct inode *btree_inode = root->fs_info->btree_inode;
1067	struct extent_buffer *eb;
1068
1069	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1070				 bytenr, blocksize);
1071	return eb;
1072}
1073
1074
1075int btrfs_write_tree_block(struct extent_buffer *buf)
1076{
1077	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1078					buf->start + buf->len - 1);
1079}
1080
1081int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1082{
1083	return filemap_fdatawait_range(buf->pages[0]->mapping,
1084				       buf->start, buf->start + buf->len - 1);
1085}
1086
1087struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1088				      u32 blocksize, u64 parent_transid)
1089{
1090	struct extent_buffer *buf = NULL;
1091	int ret;
1092
1093	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1094	if (!buf)
1095		return NULL;
1096
1097	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
 
 
 
 
1098	return buf;
1099
1100}
1101
1102void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 
1103		      struct extent_buffer *buf)
1104{
1105	if (btrfs_header_generation(buf) ==
1106	    root->fs_info->running_transaction->transid) {
1107		btrfs_assert_tree_locked(buf);
1108
1109		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1110			spin_lock(&root->fs_info->delalloc_lock);
1111			if (root->fs_info->dirty_metadata_bytes >= buf->len)
1112				root->fs_info->dirty_metadata_bytes -= buf->len;
1113			else {
1114				spin_unlock(&root->fs_info->delalloc_lock);
1115				btrfs_panic(root->fs_info, -EOVERFLOW,
1116					  "Can't clear %lu bytes from "
1117					  " dirty_mdatadata_bytes (%lu)",
1118					  buf->len,
1119					  root->fs_info->dirty_metadata_bytes);
1120			}
1121			spin_unlock(&root->fs_info->delalloc_lock);
1122		}
 
 
 
 
 
 
 
 
 
 
 
1123
1124		/* ugh, clear_extent_buffer_dirty needs to lock the page */
1125		btrfs_set_lock_blocking(buf);
1126		clear_extent_buffer_dirty(buf);
 
1127	}
 
 
 
 
 
 
 
 
 
 
1128}
1129
1130static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1131			 u32 stripesize, struct btrfs_root *root,
1132			 struct btrfs_fs_info *fs_info,
1133			 u64 objectid)
1134{
1135	root->node = NULL;
1136	root->commit_root = NULL;
1137	root->sectorsize = sectorsize;
1138	root->nodesize = nodesize;
1139	root->leafsize = leafsize;
1140	root->stripesize = stripesize;
1141	root->ref_cows = 0;
1142	root->track_dirty = 0;
1143	root->in_radix = 0;
1144	root->orphan_item_inserted = 0;
1145	root->orphan_cleanup_state = 0;
1146
1147	root->objectid = objectid;
1148	root->last_trans = 0;
1149	root->highest_objectid = 0;
 
 
1150	root->name = NULL;
1151	root->inode_tree = RB_ROOT;
1152	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1153	root->block_rsv = NULL;
1154	root->orphan_block_rsv = NULL;
1155
1156	INIT_LIST_HEAD(&root->dirty_list);
1157	INIT_LIST_HEAD(&root->root_list);
 
 
 
 
 
 
1158	spin_lock_init(&root->orphan_lock);
1159	spin_lock_init(&root->inode_lock);
 
 
1160	spin_lock_init(&root->accounting_lock);
 
 
1161	mutex_init(&root->objectid_mutex);
1162	mutex_init(&root->log_mutex);
 
 
1163	init_waitqueue_head(&root->log_writer_wait);
1164	init_waitqueue_head(&root->log_commit_wait[0]);
1165	init_waitqueue_head(&root->log_commit_wait[1]);
 
 
1166	atomic_set(&root->log_commit[0], 0);
1167	atomic_set(&root->log_commit[1], 0);
1168	atomic_set(&root->log_writers, 0);
 
1169	atomic_set(&root->orphan_inodes, 0);
1170	root->log_batch = 0;
 
 
1171	root->log_transid = 0;
 
1172	root->last_log_commit = 0;
1173	extent_io_tree_init(&root->dirty_log_pages,
1174			     fs_info->btree_inode->i_mapping);
 
1175
1176	memset(&root->root_key, 0, sizeof(root->root_key));
1177	memset(&root->root_item, 0, sizeof(root->root_item));
1178	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1179	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1180	root->defrag_trans_start = fs_info->generation;
1181	init_completion(&root->kobj_unregister);
1182	root->defrag_running = 0;
1183	root->root_key.objectid = objectid;
1184	root->anon_dev = 0;
 
 
1185}
1186
1187static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1188					    struct btrfs_fs_info *fs_info,
1189					    u64 objectid,
1190					    struct btrfs_root *root)
1191{
1192	int ret;
1193	u32 blocksize;
1194	u64 generation;
 
 
1195
1196	__setup_root(tree_root->nodesize, tree_root->leafsize,
1197		     tree_root->sectorsize, tree_root->stripesize,
1198		     root, fs_info, objectid);
1199	ret = btrfs_find_last_root(tree_root, objectid,
1200				   &root->root_item, &root->root_key);
1201	if (ret > 0)
1202		return -ENOENT;
1203	else if (ret < 0)
1204		return ret;
1205
1206	generation = btrfs_root_generation(&root->root_item);
1207	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1208	root->commit_root = NULL;
1209	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1210				     blocksize, generation);
1211	if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1212		free_extent_buffer(root->node);
1213		root->node = NULL;
1214		return -EIO;
1215	}
1216	root->commit_root = btrfs_root_node(root);
1217	return 0;
1218}
 
1219
1220static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
 
 
1221{
1222	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1223	if (root)
1224		root->fs_info = fs_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1225	return root;
 
 
 
 
 
 
 
 
 
 
1226}
1227
1228static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1229					 struct btrfs_fs_info *fs_info)
1230{
1231	struct btrfs_root *root;
1232	struct btrfs_root *tree_root = fs_info->tree_root;
1233	struct extent_buffer *leaf;
1234
1235	root = btrfs_alloc_root(fs_info);
1236	if (!root)
1237		return ERR_PTR(-ENOMEM);
1238
1239	__setup_root(tree_root->nodesize, tree_root->leafsize,
1240		     tree_root->sectorsize, tree_root->stripesize,
1241		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1242
1243	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1244	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1245	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
 
1246	/*
 
 
1247	 * log trees do not get reference counted because they go away
1248	 * before a real commit is actually done.  They do store pointers
1249	 * to file data extents, and those reference counts still get
1250	 * updated (along with back refs to the log tree).
1251	 */
1252	root->ref_cows = 0;
1253
1254	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1255				      BTRFS_TREE_LOG_OBJECTID, NULL,
1256				      0, 0, 0);
1257	if (IS_ERR(leaf)) {
1258		kfree(root);
1259		return ERR_CAST(leaf);
1260	}
1261
1262	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1263	btrfs_set_header_bytenr(leaf, leaf->start);
1264	btrfs_set_header_generation(leaf, trans->transid);
1265	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1266	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1267	root->node = leaf;
1268
1269	write_extent_buffer(root->node, root->fs_info->fsid,
1270			    (unsigned long)btrfs_header_fsid(root->node),
1271			    BTRFS_FSID_SIZE);
1272	btrfs_mark_buffer_dirty(root->node);
1273	btrfs_tree_unlock(root->node);
1274	return root;
1275}
1276
1277int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1278			     struct btrfs_fs_info *fs_info)
1279{
1280	struct btrfs_root *log_root;
1281
1282	log_root = alloc_log_tree(trans, fs_info);
1283	if (IS_ERR(log_root))
1284		return PTR_ERR(log_root);
1285	WARN_ON(fs_info->log_root_tree);
1286	fs_info->log_root_tree = log_root;
1287	return 0;
1288}
1289
1290int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1291		       struct btrfs_root *root)
1292{
1293	struct btrfs_root *log_root;
1294	struct btrfs_inode_item *inode_item;
1295
1296	log_root = alloc_log_tree(trans, root->fs_info);
1297	if (IS_ERR(log_root))
1298		return PTR_ERR(log_root);
1299
1300	log_root->last_trans = trans->transid;
1301	log_root->root_key.offset = root->root_key.objectid;
1302
1303	inode_item = &log_root->root_item.inode;
1304	inode_item->generation = cpu_to_le64(1);
1305	inode_item->size = cpu_to_le64(3);
1306	inode_item->nlink = cpu_to_le32(1);
1307	inode_item->nbytes = cpu_to_le64(root->leafsize);
1308	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1309
1310	btrfs_set_root_node(&log_root->root_item, log_root->node);
1311
1312	WARN_ON(root->log_root);
1313	root->log_root = log_root;
1314	root->log_transid = 0;
 
1315	root->last_log_commit = 0;
1316	return 0;
1317}
1318
1319struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1320					       struct btrfs_key *location)
1321{
1322	struct btrfs_root *root;
1323	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1324	struct btrfs_path *path;
1325	struct extent_buffer *l;
1326	u64 generation;
1327	u32 blocksize;
1328	int ret = 0;
1329
1330	root = btrfs_alloc_root(fs_info);
1331	if (!root)
1332		return ERR_PTR(-ENOMEM);
1333	if (location->offset == (u64)-1) {
1334		ret = find_and_setup_root(tree_root, fs_info,
1335					  location->objectid, root);
1336		if (ret) {
1337			kfree(root);
1338			return ERR_PTR(ret);
1339		}
1340		goto out;
1341	}
1342
1343	__setup_root(tree_root->nodesize, tree_root->leafsize,
1344		     tree_root->sectorsize, tree_root->stripesize,
1345		     root, fs_info, location->objectid);
1346
1347	path = btrfs_alloc_path();
1348	if (!path) {
1349		kfree(root);
1350		return ERR_PTR(-ENOMEM);
1351	}
1352	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1353	if (ret == 0) {
1354		l = path->nodes[0];
1355		read_extent_buffer(l, &root->root_item,
1356				btrfs_item_ptr_offset(l, path->slots[0]),
1357				sizeof(root->root_item));
1358		memcpy(&root->root_key, location, sizeof(*location));
1359	}
1360	btrfs_free_path(path);
1361	if (ret) {
1362		kfree(root);
1363		if (ret > 0)
1364			ret = -ENOENT;
1365		return ERR_PTR(ret);
1366	}
1367
1368	generation = btrfs_root_generation(&root->root_item);
1369	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1370	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1371				     blocksize, generation);
 
 
 
 
 
 
 
 
1372	root->commit_root = btrfs_root_node(root);
1373	BUG_ON(!root->node); /* -ENOMEM */
1374out:
1375	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1376		root->ref_cows = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377		btrfs_check_and_init_root_item(&root->root_item);
1378	}
1379
1380	return root;
1381}
1382
1383struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1384					      struct btrfs_key *location)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385{
1386	struct btrfs_root *root;
 
 
1387	int ret;
1388
1389	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1390		return fs_info->tree_root;
1391	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1392		return fs_info->extent_root;
1393	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1394		return fs_info->chunk_root;
1395	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1396		return fs_info->dev_root;
1397	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1398		return fs_info->csum_root;
 
 
 
 
 
 
 
 
 
1399again:
1400	spin_lock(&fs_info->fs_roots_radix_lock);
1401	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1402				 (unsigned long)location->objectid);
1403	spin_unlock(&fs_info->fs_roots_radix_lock);
1404	if (root)
1405		return root;
 
1406
1407	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1408	if (IS_ERR(root))
1409		return root;
1410
1411	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1412	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1413					GFP_NOFS);
1414	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1415		ret = -ENOMEM;
1416		goto fail;
1417	}
1418
1419	btrfs_init_free_ino_ctl(root);
1420	mutex_init(&root->fs_commit_mutex);
1421	spin_lock_init(&root->cache_lock);
1422	init_waitqueue_head(&root->cache_wait);
1423
1424	ret = get_anon_bdev(&root->anon_dev);
1425	if (ret)
1426		goto fail;
1427
1428	if (btrfs_root_refs(&root->root_item) == 0) {
1429		ret = -ENOENT;
 
1430		goto fail;
1431	}
 
 
 
1432
1433	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
 
1434	if (ret < 0)
1435		goto fail;
1436	if (ret == 0)
1437		root->orphan_item_inserted = 1;
1438
1439	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1440	if (ret)
1441		goto fail;
1442
1443	spin_lock(&fs_info->fs_roots_radix_lock);
1444	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1445				(unsigned long)root->root_key.objectid,
1446				root);
1447	if (ret == 0)
1448		root->in_radix = 1;
1449
1450	spin_unlock(&fs_info->fs_roots_radix_lock);
1451	radix_tree_preload_end();
1452	if (ret) {
1453		if (ret == -EEXIST) {
1454			free_fs_root(root);
1455			goto again;
1456		}
1457		goto fail;
1458	}
1459
1460	ret = btrfs_find_dead_roots(fs_info->tree_root,
1461				    root->root_key.objectid);
1462	WARN_ON(ret);
1463	return root;
1464fail:
1465	free_fs_root(root);
1466	return ERR_PTR(ret);
1467}
1468
1469static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1470{
1471	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1472	int ret = 0;
1473	struct btrfs_device *device;
1474	struct backing_dev_info *bdi;
1475
1476	rcu_read_lock();
1477	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1478		if (!device->bdev)
1479			continue;
1480		bdi = blk_get_backing_dev_info(device->bdev);
1481		if (bdi && bdi_congested(bdi, bdi_bits)) {
1482			ret = 1;
1483			break;
1484		}
1485	}
1486	rcu_read_unlock();
1487	return ret;
1488}
1489
1490/*
1491 * If this fails, caller must call bdi_destroy() to get rid of the
1492 * bdi again.
1493 */
1494static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1495{
1496	int err;
1497
1498	bdi->capabilities = BDI_CAP_MAP_COPY;
1499	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1500	if (err)
1501		return err;
1502
1503	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1504	bdi->congested_fn	= btrfs_congested_fn;
1505	bdi->congested_data	= info;
 
1506	return 0;
1507}
1508
1509/*
1510 * called by the kthread helper functions to finally call the bio end_io
1511 * functions.  This is where read checksum verification actually happens
1512 */
1513static void end_workqueue_fn(struct btrfs_work *work)
1514{
1515	struct bio *bio;
1516	struct end_io_wq *end_io_wq;
1517	struct btrfs_fs_info *fs_info;
1518	int error;
1519
1520	end_io_wq = container_of(work, struct end_io_wq, work);
1521	bio = end_io_wq->bio;
1522	fs_info = end_io_wq->info;
1523
1524	error = end_io_wq->error;
1525	bio->bi_private = end_io_wq->private;
1526	bio->bi_end_io = end_io_wq->end_io;
1527	kfree(end_io_wq);
1528	bio_endio(bio, error);
1529}
1530
1531static int cleaner_kthread(void *arg)
1532{
1533	struct btrfs_root *root = arg;
 
 
1534
1535	do {
1536		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
 
 
 
 
 
 
 
1537
1538		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1539		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1540			btrfs_run_delayed_iputs(root);
1541			btrfs_clean_old_snapshots(root);
 
1542			mutex_unlock(&root->fs_info->cleaner_mutex);
1543			btrfs_run_defrag_inodes(root->fs_info);
1544		}
1545
1546		if (!try_to_freeze()) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1547			set_current_state(TASK_INTERRUPTIBLE);
1548			if (!kthread_should_stop())
1549				schedule();
1550			__set_current_state(TASK_RUNNING);
1551		}
1552	} while (!kthread_should_stop());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1553	return 0;
1554}
1555
1556static int transaction_kthread(void *arg)
1557{
1558	struct btrfs_root *root = arg;
1559	struct btrfs_trans_handle *trans;
1560	struct btrfs_transaction *cur;
1561	u64 transid;
1562	unsigned long now;
1563	unsigned long delay;
1564	bool cannot_commit;
1565
1566	do {
1567		cannot_commit = false;
1568		delay = HZ * 30;
1569		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1570		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1571
1572		spin_lock(&root->fs_info->trans_lock);
1573		cur = root->fs_info->running_transaction;
1574		if (!cur) {
1575			spin_unlock(&root->fs_info->trans_lock);
1576			goto sleep;
1577		}
1578
1579		now = get_seconds();
1580		if (!cur->blocked &&
1581		    (now < cur->start_time || now - cur->start_time < 30)) {
 
1582			spin_unlock(&root->fs_info->trans_lock);
1583			delay = HZ * 5;
1584			goto sleep;
1585		}
1586		transid = cur->transid;
1587		spin_unlock(&root->fs_info->trans_lock);
1588
1589		/* If the file system is aborted, this will always fail. */
1590		trans = btrfs_join_transaction(root);
1591		if (IS_ERR(trans)) {
1592			cannot_commit = true;
 
1593			goto sleep;
1594		}
1595		if (transid == trans->transid) {
1596			btrfs_commit_transaction(trans, root);
1597		} else {
1598			btrfs_end_transaction(trans, root);
1599		}
1600sleep:
1601		wake_up_process(root->fs_info->cleaner_kthread);
1602		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1603
1604		if (!try_to_freeze()) {
1605			set_current_state(TASK_INTERRUPTIBLE);
1606			if (!kthread_should_stop() &&
1607			    (!btrfs_transaction_blocked(root->fs_info) ||
1608			     cannot_commit))
1609				schedule_timeout(delay);
1610			__set_current_state(TASK_RUNNING);
1611		}
 
1612	} while (!kthread_should_stop());
1613	return 0;
1614}
1615
1616/*
1617 * this will find the highest generation in the array of
1618 * root backups.  The index of the highest array is returned,
1619 * or -1 if we can't find anything.
1620 *
1621 * We check to make sure the array is valid by comparing the
1622 * generation of the latest  root in the array with the generation
1623 * in the super block.  If they don't match we pitch it.
1624 */
1625static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1626{
1627	u64 cur;
1628	int newest_index = -1;
1629	struct btrfs_root_backup *root_backup;
1630	int i;
1631
1632	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1633		root_backup = info->super_copy->super_roots + i;
1634		cur = btrfs_backup_tree_root_gen(root_backup);
1635		if (cur == newest_gen)
1636			newest_index = i;
1637	}
1638
1639	/* check to see if we actually wrapped around */
1640	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1641		root_backup = info->super_copy->super_roots;
1642		cur = btrfs_backup_tree_root_gen(root_backup);
1643		if (cur == newest_gen)
1644			newest_index = 0;
1645	}
1646	return newest_index;
1647}
1648
1649
1650/*
1651 * find the oldest backup so we know where to store new entries
1652 * in the backup array.  This will set the backup_root_index
1653 * field in the fs_info struct
1654 */
1655static void find_oldest_super_backup(struct btrfs_fs_info *info,
1656				     u64 newest_gen)
1657{
1658	int newest_index = -1;
1659
1660	newest_index = find_newest_super_backup(info, newest_gen);
1661	/* if there was garbage in there, just move along */
1662	if (newest_index == -1) {
1663		info->backup_root_index = 0;
1664	} else {
1665		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1666	}
1667}
1668
1669/*
1670 * copy all the root pointers into the super backup array.
1671 * this will bump the backup pointer by one when it is
1672 * done
1673 */
1674static void backup_super_roots(struct btrfs_fs_info *info)
1675{
1676	int next_backup;
1677	struct btrfs_root_backup *root_backup;
1678	int last_backup;
1679
1680	next_backup = info->backup_root_index;
1681	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1682		BTRFS_NUM_BACKUP_ROOTS;
1683
1684	/*
1685	 * just overwrite the last backup if we're at the same generation
1686	 * this happens only at umount
1687	 */
1688	root_backup = info->super_for_commit->super_roots + last_backup;
1689	if (btrfs_backup_tree_root_gen(root_backup) ==
1690	    btrfs_header_generation(info->tree_root->node))
1691		next_backup = last_backup;
1692
1693	root_backup = info->super_for_commit->super_roots + next_backup;
1694
1695	/*
1696	 * make sure all of our padding and empty slots get zero filled
1697	 * regardless of which ones we use today
1698	 */
1699	memset(root_backup, 0, sizeof(*root_backup));
1700
1701	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1702
1703	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1704	btrfs_set_backup_tree_root_gen(root_backup,
1705			       btrfs_header_generation(info->tree_root->node));
1706
1707	btrfs_set_backup_tree_root_level(root_backup,
1708			       btrfs_header_level(info->tree_root->node));
1709
1710	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1711	btrfs_set_backup_chunk_root_gen(root_backup,
1712			       btrfs_header_generation(info->chunk_root->node));
1713	btrfs_set_backup_chunk_root_level(root_backup,
1714			       btrfs_header_level(info->chunk_root->node));
1715
1716	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1717	btrfs_set_backup_extent_root_gen(root_backup,
1718			       btrfs_header_generation(info->extent_root->node));
1719	btrfs_set_backup_extent_root_level(root_backup,
1720			       btrfs_header_level(info->extent_root->node));
1721
1722	/*
1723	 * we might commit during log recovery, which happens before we set
1724	 * the fs_root.  Make sure it is valid before we fill it in.
1725	 */
1726	if (info->fs_root && info->fs_root->node) {
1727		btrfs_set_backup_fs_root(root_backup,
1728					 info->fs_root->node->start);
1729		btrfs_set_backup_fs_root_gen(root_backup,
1730			       btrfs_header_generation(info->fs_root->node));
1731		btrfs_set_backup_fs_root_level(root_backup,
1732			       btrfs_header_level(info->fs_root->node));
1733	}
1734
1735	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1736	btrfs_set_backup_dev_root_gen(root_backup,
1737			       btrfs_header_generation(info->dev_root->node));
1738	btrfs_set_backup_dev_root_level(root_backup,
1739				       btrfs_header_level(info->dev_root->node));
1740
1741	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1742	btrfs_set_backup_csum_root_gen(root_backup,
1743			       btrfs_header_generation(info->csum_root->node));
1744	btrfs_set_backup_csum_root_level(root_backup,
1745			       btrfs_header_level(info->csum_root->node));
1746
1747	btrfs_set_backup_total_bytes(root_backup,
1748			     btrfs_super_total_bytes(info->super_copy));
1749	btrfs_set_backup_bytes_used(root_backup,
1750			     btrfs_super_bytes_used(info->super_copy));
1751	btrfs_set_backup_num_devices(root_backup,
1752			     btrfs_super_num_devices(info->super_copy));
1753
1754	/*
1755	 * if we don't copy this out to the super_copy, it won't get remembered
1756	 * for the next commit
1757	 */
1758	memcpy(&info->super_copy->super_roots,
1759	       &info->super_for_commit->super_roots,
1760	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1761}
1762
1763/*
1764 * this copies info out of the root backup array and back into
1765 * the in-memory super block.  It is meant to help iterate through
1766 * the array, so you send it the number of backups you've already
1767 * tried and the last backup index you used.
1768 *
1769 * this returns -1 when it has tried all the backups
1770 */
1771static noinline int next_root_backup(struct btrfs_fs_info *info,
1772				     struct btrfs_super_block *super,
1773				     int *num_backups_tried, int *backup_index)
1774{
1775	struct btrfs_root_backup *root_backup;
1776	int newest = *backup_index;
1777
1778	if (*num_backups_tried == 0) {
1779		u64 gen = btrfs_super_generation(super);
1780
1781		newest = find_newest_super_backup(info, gen);
1782		if (newest == -1)
1783			return -1;
1784
1785		*backup_index = newest;
1786		*num_backups_tried = 1;
1787	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1788		/* we've tried all the backups, all done */
1789		return -1;
1790	} else {
1791		/* jump to the next oldest backup */
1792		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1793			BTRFS_NUM_BACKUP_ROOTS;
1794		*backup_index = newest;
1795		*num_backups_tried += 1;
1796	}
1797	root_backup = super->super_roots + newest;
1798
1799	btrfs_set_super_generation(super,
1800				   btrfs_backup_tree_root_gen(root_backup));
1801	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1802	btrfs_set_super_root_level(super,
1803				   btrfs_backup_tree_root_level(root_backup));
1804	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1805
1806	/*
1807	 * fixme: the total bytes and num_devices need to match or we should
1808	 * need a fsck
1809	 */
1810	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1811	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1812	return 0;
1813}
1814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815/* helper to cleanup tree roots */
1816static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1817{
1818	free_extent_buffer(info->tree_root->node);
1819	free_extent_buffer(info->tree_root->commit_root);
1820	free_extent_buffer(info->dev_root->node);
1821	free_extent_buffer(info->dev_root->commit_root);
1822	free_extent_buffer(info->extent_root->node);
1823	free_extent_buffer(info->extent_root->commit_root);
1824	free_extent_buffer(info->csum_root->node);
1825	free_extent_buffer(info->csum_root->commit_root);
1826
1827	info->tree_root->node = NULL;
1828	info->tree_root->commit_root = NULL;
1829	info->dev_root->node = NULL;
1830	info->dev_root->commit_root = NULL;
1831	info->extent_root->node = NULL;
1832	info->extent_root->commit_root = NULL;
1833	info->csum_root->node = NULL;
1834	info->csum_root->commit_root = NULL;
1835
1836	if (chunk_root) {
1837		free_extent_buffer(info->chunk_root->node);
1838		free_extent_buffer(info->chunk_root->commit_root);
1839		info->chunk_root->node = NULL;
1840		info->chunk_root->commit_root = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1841	}
 
 
1842}
1843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1844
1845int open_ctree(struct super_block *sb,
1846	       struct btrfs_fs_devices *fs_devices,
1847	       char *options)
1848{
1849	u32 sectorsize;
1850	u32 nodesize;
1851	u32 leafsize;
1852	u32 blocksize;
1853	u32 stripesize;
1854	u64 generation;
1855	u64 features;
1856	struct btrfs_key location;
1857	struct buffer_head *bh;
1858	struct btrfs_super_block *disk_super;
1859	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1860	struct btrfs_root *tree_root;
1861	struct btrfs_root *extent_root;
1862	struct btrfs_root *csum_root;
1863	struct btrfs_root *chunk_root;
1864	struct btrfs_root *dev_root;
1865	struct btrfs_root *log_tree_root;
1866	int ret;
1867	int err = -EINVAL;
1868	int num_backups_tried = 0;
1869	int backup_index = 0;
 
1870
1871	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1872	extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1873	csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1874	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1875	dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1876
1877	if (!tree_root || !extent_root || !csum_root ||
1878	    !chunk_root || !dev_root) {
1879		err = -ENOMEM;
1880		goto fail;
1881	}
1882
1883	ret = init_srcu_struct(&fs_info->subvol_srcu);
1884	if (ret) {
1885		err = ret;
1886		goto fail;
1887	}
1888
1889	ret = setup_bdi(fs_info, &fs_info->bdi);
1890	if (ret) {
1891		err = ret;
1892		goto fail_srcu;
1893	}
1894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1895	fs_info->btree_inode = new_inode(sb);
1896	if (!fs_info->btree_inode) {
1897		err = -ENOMEM;
1898		goto fail_bdi;
1899	}
1900
1901	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1902
1903	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
 
1904	INIT_LIST_HEAD(&fs_info->trans_list);
1905	INIT_LIST_HEAD(&fs_info->dead_roots);
1906	INIT_LIST_HEAD(&fs_info->delayed_iputs);
1907	INIT_LIST_HEAD(&fs_info->hashers);
1908	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1909	INIT_LIST_HEAD(&fs_info->ordered_operations);
1910	INIT_LIST_HEAD(&fs_info->caching_block_groups);
1911	spin_lock_init(&fs_info->delalloc_lock);
1912	spin_lock_init(&fs_info->trans_lock);
1913	spin_lock_init(&fs_info->ref_cache_lock);
1914	spin_lock_init(&fs_info->fs_roots_radix_lock);
1915	spin_lock_init(&fs_info->delayed_iput_lock);
1916	spin_lock_init(&fs_info->defrag_inodes_lock);
1917	spin_lock_init(&fs_info->free_chunk_lock);
1918	spin_lock_init(&fs_info->tree_mod_seq_lock);
 
 
 
 
1919	rwlock_init(&fs_info->tree_mod_log_lock);
 
 
1920	mutex_init(&fs_info->reloc_mutex);
 
 
 
1921
1922	init_completion(&fs_info->kobj_unregister);
1923	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1924	INIT_LIST_HEAD(&fs_info->space_info);
1925	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
 
1926	btrfs_mapping_init(&fs_info->mapping_tree);
1927	btrfs_init_block_rsv(&fs_info->global_block_rsv);
1928	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1929	btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1930	btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1931	btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1932	btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
 
 
 
1933	atomic_set(&fs_info->nr_async_submits, 0);
1934	atomic_set(&fs_info->async_delalloc_pages, 0);
1935	atomic_set(&fs_info->async_submit_draining, 0);
1936	atomic_set(&fs_info->nr_async_bios, 0);
1937	atomic_set(&fs_info->defrag_running, 0);
1938	atomic_set(&fs_info->tree_mod_seq, 0);
 
 
1939	fs_info->sb = sb;
1940	fs_info->max_inline = 8192 * 1024;
1941	fs_info->metadata_ratio = 0;
1942	fs_info->defrag_inodes = RB_ROOT;
1943	fs_info->trans_no_join = 0;
1944	fs_info->free_chunk_space = 0;
1945	fs_info->tree_mod_log = RB_ROOT;
1946
 
1947	/* readahead state */
1948	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1949	spin_lock_init(&fs_info->reada_lock);
1950
1951	fs_info->thread_pool_size = min_t(unsigned long,
1952					  num_online_cpus() + 2, 8);
1953
1954	INIT_LIST_HEAD(&fs_info->ordered_extents);
1955	spin_lock_init(&fs_info->ordered_extent_lock);
1956	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1957					GFP_NOFS);
1958	if (!fs_info->delayed_root) {
1959		err = -ENOMEM;
1960		goto fail_iput;
1961	}
1962	btrfs_init_delayed_root(fs_info->delayed_root);
1963
1964	mutex_init(&fs_info->scrub_lock);
1965	atomic_set(&fs_info->scrubs_running, 0);
1966	atomic_set(&fs_info->scrub_pause_req, 0);
1967	atomic_set(&fs_info->scrubs_paused, 0);
1968	atomic_set(&fs_info->scrub_cancel_req, 0);
1969	init_waitqueue_head(&fs_info->scrub_pause_wait);
1970	init_rwsem(&fs_info->scrub_super_lock);
1971	fs_info->scrub_workers_refcnt = 0;
1972#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1973	fs_info->check_integrity_print_mask = 0;
1974#endif
1975
1976	spin_lock_init(&fs_info->balance_lock);
1977	mutex_init(&fs_info->balance_mutex);
1978	atomic_set(&fs_info->balance_running, 0);
1979	atomic_set(&fs_info->balance_pause_req, 0);
1980	atomic_set(&fs_info->balance_cancel_req, 0);
1981	fs_info->balance_ctl = NULL;
1982	init_waitqueue_head(&fs_info->balance_wait_q);
1983
1984	sb->s_blocksize = 4096;
1985	sb->s_blocksize_bits = blksize_bits(4096);
1986	sb->s_bdi = &fs_info->bdi;
1987
1988	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1989	set_nlink(fs_info->btree_inode, 1);
1990	/*
1991	 * we set the i_size on the btree inode to the max possible int.
1992	 * the real end of the address space is determined by all of
1993	 * the devices in the system
1994	 */
1995	fs_info->btree_inode->i_size = OFFSET_MAX;
1996	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1997	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1998
1999	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2000	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2001			     fs_info->btree_inode->i_mapping);
2002	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2003	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2004
2005	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2006
2007	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2008	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2009	       sizeof(struct btrfs_key));
2010	set_bit(BTRFS_INODE_DUMMY,
2011		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2012	insert_inode_hash(fs_info->btree_inode);
2013
2014	spin_lock_init(&fs_info->block_group_cache_lock);
2015	fs_info->block_group_cache_tree = RB_ROOT;
 
2016
2017	extent_io_tree_init(&fs_info->freed_extents[0],
2018			     fs_info->btree_inode->i_mapping);
2019	extent_io_tree_init(&fs_info->freed_extents[1],
2020			     fs_info->btree_inode->i_mapping);
2021	fs_info->pinned_extents = &fs_info->freed_extents[0];
2022	fs_info->do_barriers = 1;
2023
2024
2025	mutex_init(&fs_info->ordered_operations_mutex);
2026	mutex_init(&fs_info->tree_log_mutex);
2027	mutex_init(&fs_info->chunk_mutex);
2028	mutex_init(&fs_info->transaction_kthread_mutex);
2029	mutex_init(&fs_info->cleaner_mutex);
2030	mutex_init(&fs_info->volume_mutex);
2031	init_rwsem(&fs_info->extent_commit_sem);
 
2032	init_rwsem(&fs_info->cleanup_work_sem);
2033	init_rwsem(&fs_info->subvol_sem);
 
 
 
 
2034
2035	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2036	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2037
2038	init_waitqueue_head(&fs_info->transaction_throttle);
2039	init_waitqueue_head(&fs_info->transaction_wait);
2040	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2041	init_waitqueue_head(&fs_info->async_submit_wait);
2042
2043	__setup_root(4096, 4096, 4096, 4096, tree_root,
 
 
 
 
 
 
 
 
2044		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2045
2046	invalidate_bdev(fs_devices->latest_bdev);
 
 
 
 
2047	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2048	if (!bh) {
 
 
 
 
 
 
 
 
 
 
2049		err = -EINVAL;
 
2050		goto fail_alloc;
2051	}
2052
 
 
 
 
 
2053	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2054	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2055	       sizeof(*fs_info->super_for_commit));
2056	brelse(bh);
2057
2058	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2059
 
 
 
 
 
 
 
2060	disk_super = fs_info->super_copy;
2061	if (!btrfs_super_root(disk_super))
2062		goto fail_alloc;
2063
2064	/* check FS state, whether FS is broken. */
2065	fs_info->fs_state |= btrfs_super_flags(disk_super);
2066
2067	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2068	if (ret) {
2069		printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2070		err = ret;
2071		goto fail_alloc;
2072	}
2073
2074	/*
2075	 * run through our array of backup supers and setup
2076	 * our ring pointer to the oldest one
2077	 */
2078	generation = btrfs_super_generation(disk_super);
2079	find_oldest_super_backup(fs_info, generation);
2080
2081	/*
2082	 * In the long term, we'll store the compression type in the super
2083	 * block, and it'll be used for per file compression control.
2084	 */
2085	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2086
2087	ret = btrfs_parse_options(tree_root, options);
2088	if (ret) {
2089		err = ret;
2090		goto fail_alloc;
2091	}
2092
2093	features = btrfs_super_incompat_flags(disk_super) &
2094		~BTRFS_FEATURE_INCOMPAT_SUPP;
2095	if (features) {
2096		printk(KERN_ERR "BTRFS: couldn't mount because of "
2097		       "unsupported optional features (%Lx).\n",
2098		       (unsigned long long)features);
2099		err = -EINVAL;
2100		goto fail_alloc;
2101	}
2102
2103	if (btrfs_super_leafsize(disk_super) !=
2104	    btrfs_super_nodesize(disk_super)) {
2105		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2106		       "blocksizes don't match.  node %d leaf %d\n",
2107		       btrfs_super_nodesize(disk_super),
2108		       btrfs_super_leafsize(disk_super));
2109		err = -EINVAL;
2110		goto fail_alloc;
2111	}
2112	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2113		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2114		       "blocksize (%d) was too large\n",
2115		       btrfs_super_leafsize(disk_super));
2116		err = -EINVAL;
2117		goto fail_alloc;
2118	}
2119
2120	features = btrfs_super_incompat_flags(disk_super);
2121	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2122	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2123		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2124
 
 
 
2125	/*
2126	 * flag our filesystem as having big metadata blocks if
2127	 * they are bigger than the page size
2128	 */
2129	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2130		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2131			printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2132		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2133	}
2134
2135	nodesize = btrfs_super_nodesize(disk_super);
2136	leafsize = btrfs_super_leafsize(disk_super);
2137	sectorsize = btrfs_super_sectorsize(disk_super);
2138	stripesize = btrfs_super_stripesize(disk_super);
 
 
2139
2140	/*
2141	 * mixed block groups end up with duplicate but slightly offset
2142	 * extent buffers for the same range.  It leads to corruptions
2143	 */
2144	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2145	    (sectorsize != leafsize)) {
2146		printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2147				"are not allowed for mixed block groups on %s\n",
2148				sb->s_id);
2149		goto fail_alloc;
2150	}
2151
 
 
 
 
2152	btrfs_set_super_incompat_flags(disk_super, features);
2153
2154	features = btrfs_super_compat_ro_flags(disk_super) &
2155		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2156	if (!(sb->s_flags & MS_RDONLY) && features) {
2157		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2158		       "unsupported option features (%Lx).\n",
2159		       (unsigned long long)features);
2160		err = -EINVAL;
2161		goto fail_alloc;
2162	}
2163
2164	btrfs_init_workers(&fs_info->generic_worker,
2165			   "genwork", 1, NULL);
2166
2167	btrfs_init_workers(&fs_info->workers, "worker",
2168			   fs_info->thread_pool_size,
2169			   &fs_info->generic_worker);
2170
2171	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2172			   fs_info->thread_pool_size,
2173			   &fs_info->generic_worker);
2174
2175	btrfs_init_workers(&fs_info->submit_workers, "submit",
2176			   min_t(u64, fs_devices->num_devices,
2177			   fs_info->thread_pool_size),
2178			   &fs_info->generic_worker);
2179
2180	btrfs_init_workers(&fs_info->caching_workers, "cache",
2181			   2, &fs_info->generic_worker);
2182
2183	/* a higher idle thresh on the submit workers makes it much more
2184	 * likely that bios will be send down in a sane order to the
2185	 * devices
2186	 */
2187	fs_info->submit_workers.idle_thresh = 64;
2188
2189	fs_info->workers.idle_thresh = 16;
2190	fs_info->workers.ordered = 1;
2191
2192	fs_info->delalloc_workers.idle_thresh = 2;
2193	fs_info->delalloc_workers.ordered = 1;
2194
2195	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2196			   &fs_info->generic_worker);
2197	btrfs_init_workers(&fs_info->endio_workers, "endio",
2198			   fs_info->thread_pool_size,
2199			   &fs_info->generic_worker);
2200	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2201			   fs_info->thread_pool_size,
2202			   &fs_info->generic_worker);
2203	btrfs_init_workers(&fs_info->endio_meta_write_workers,
2204			   "endio-meta-write", fs_info->thread_pool_size,
2205			   &fs_info->generic_worker);
2206	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2207			   fs_info->thread_pool_size,
2208			   &fs_info->generic_worker);
2209	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2210			   1, &fs_info->generic_worker);
2211	btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2212			   fs_info->thread_pool_size,
2213			   &fs_info->generic_worker);
2214	btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2215			   fs_info->thread_pool_size,
2216			   &fs_info->generic_worker);
2217
2218	/*
2219	 * endios are largely parallel and should have a very
2220	 * low idle thresh
2221	 */
2222	fs_info->endio_workers.idle_thresh = 4;
2223	fs_info->endio_meta_workers.idle_thresh = 4;
2224
2225	fs_info->endio_write_workers.idle_thresh = 2;
2226	fs_info->endio_meta_write_workers.idle_thresh = 2;
2227	fs_info->readahead_workers.idle_thresh = 2;
2228
2229	/*
2230	 * btrfs_start_workers can really only fail because of ENOMEM so just
2231	 * return -ENOMEM if any of these fail.
2232	 */
2233	ret = btrfs_start_workers(&fs_info->workers);
2234	ret |= btrfs_start_workers(&fs_info->generic_worker);
2235	ret |= btrfs_start_workers(&fs_info->submit_workers);
2236	ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2237	ret |= btrfs_start_workers(&fs_info->fixup_workers);
2238	ret |= btrfs_start_workers(&fs_info->endio_workers);
2239	ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2240	ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2241	ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2242	ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2243	ret |= btrfs_start_workers(&fs_info->delayed_workers);
2244	ret |= btrfs_start_workers(&fs_info->caching_workers);
2245	ret |= btrfs_start_workers(&fs_info->readahead_workers);
2246	if (ret) {
2247		ret = -ENOMEM;
2248		goto fail_sb_buffer;
2249	}
2250
2251	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2252	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2253				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2254
2255	tree_root->nodesize = nodesize;
2256	tree_root->leafsize = leafsize;
2257	tree_root->sectorsize = sectorsize;
2258	tree_root->stripesize = stripesize;
2259
2260	sb->s_blocksize = sectorsize;
2261	sb->s_blocksize_bits = blksize_bits(sectorsize);
2262
2263	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2264		    sizeof(disk_super->magic))) {
2265		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2266		goto fail_sb_buffer;
2267	}
2268
2269	if (sectorsize != PAGE_SIZE) {
2270		printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2271		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2272		goto fail_sb_buffer;
2273	}
2274
2275	mutex_lock(&fs_info->chunk_mutex);
2276	ret = btrfs_read_sys_array(tree_root);
2277	mutex_unlock(&fs_info->chunk_mutex);
2278	if (ret) {
2279		printk(KERN_WARNING "btrfs: failed to read the system "
2280		       "array on %s\n", sb->s_id);
2281		goto fail_sb_buffer;
2282	}
2283
2284	blocksize = btrfs_level_size(tree_root,
2285				     btrfs_super_chunk_root_level(disk_super));
2286	generation = btrfs_super_chunk_root_generation(disk_super);
2287
2288	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2289		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2290
2291	chunk_root->node = read_tree_block(chunk_root,
2292					   btrfs_super_chunk_root(disk_super),
2293					   blocksize, generation);
2294	BUG_ON(!chunk_root->node); /* -ENOMEM */
2295	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2296		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2297		       sb->s_id);
 
 
 
2298		goto fail_tree_roots;
2299	}
2300	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2301	chunk_root->commit_root = btrfs_root_node(chunk_root);
2302
2303	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2304	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2305	   BTRFS_UUID_SIZE);
2306
2307	ret = btrfs_read_chunk_tree(chunk_root);
2308	if (ret) {
2309		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2310		       sb->s_id);
2311		goto fail_tree_roots;
2312	}
2313
2314	btrfs_close_extra_devices(fs_devices);
 
 
 
 
2315
2316	if (!fs_devices->latest_bdev) {
2317		printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2318		       sb->s_id);
2319		goto fail_tree_roots;
2320	}
2321
2322retry_root_backup:
2323	blocksize = btrfs_level_size(tree_root,
2324				     btrfs_super_root_level(disk_super));
2325	generation = btrfs_super_generation(disk_super);
2326
2327	tree_root->node = read_tree_block(tree_root,
2328					  btrfs_super_root(disk_super),
2329					  blocksize, generation);
2330	if (!tree_root->node ||
2331	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2332		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2333		       sb->s_id);
2334
 
 
2335		goto recovery_tree_root;
2336	}
2337
2338	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2339	tree_root->commit_root = btrfs_root_node(tree_root);
 
2340
2341	ret = find_and_setup_root(tree_root, fs_info,
2342				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2343	if (ret)
 
 
2344		goto recovery_tree_root;
2345	extent_root->track_dirty = 1;
2346
2347	ret = find_and_setup_root(tree_root, fs_info,
2348				  BTRFS_DEV_TREE_OBJECTID, dev_root);
2349	if (ret)
2350		goto recovery_tree_root;
2351	dev_root->track_dirty = 1;
2352
2353	ret = find_and_setup_root(tree_root, fs_info,
2354				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
2355	if (ret)
2356		goto recovery_tree_root;
2357	csum_root->track_dirty = 1;
2358
2359	fs_info->generation = generation;
2360	fs_info->last_trans_committed = generation;
2361
2362	ret = btrfs_recover_balance(fs_info);
2363	if (ret) {
2364		printk(KERN_WARNING "btrfs: failed to recover balance\n");
2365		goto fail_block_groups;
2366	}
2367
2368	ret = btrfs_init_dev_stats(fs_info);
2369	if (ret) {
2370		printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2371		       ret);
2372		goto fail_block_groups;
2373	}
2374
2375	ret = btrfs_init_space_info(fs_info);
2376	if (ret) {
2377		printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2378		goto fail_block_groups;
2379	}
2380
2381	ret = btrfs_read_block_groups(extent_root);
 
 
2382	if (ret) {
2383		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2384		goto fail_block_groups;
2385	}
2386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2387	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2388					       "btrfs-cleaner");
2389	if (IS_ERR(fs_info->cleaner_kthread))
2390		goto fail_block_groups;
2391
2392	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2393						   tree_root,
2394						   "btrfs-transaction");
2395	if (IS_ERR(fs_info->transaction_kthread))
2396		goto fail_cleaner;
2397
2398	if (!btrfs_test_opt(tree_root, SSD) &&
2399	    !btrfs_test_opt(tree_root, NOSSD) &&
2400	    !fs_info->fs_devices->rotating) {
2401		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2402		       "mode\n");
2403		btrfs_set_opt(fs_info->mount_opt, SSD);
2404	}
2405
 
 
 
 
 
 
2406#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2407	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2408		ret = btrfsic_mount(tree_root, fs_devices,
2409				    btrfs_test_opt(tree_root,
2410					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2411				    1 : 0,
2412				    fs_info->check_integrity_print_mask);
2413		if (ret)
2414			printk(KERN_WARNING "btrfs: failed to initialize"
2415			       " integrity check module %s\n", sb->s_id);
2416	}
2417#endif
 
 
 
2418
2419	/* do not make disk changes in broken FS */
2420	if (btrfs_super_log_root(disk_super) != 0 &&
2421	    !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2422		u64 bytenr = btrfs_super_log_root(disk_super);
2423
2424		if (fs_devices->rw_devices == 0) {
2425			printk(KERN_WARNING "Btrfs log replay required "
2426			       "on RO media\n");
2427			err = -EIO;
2428			goto fail_trans_kthread;
2429		}
2430		blocksize =
2431		     btrfs_level_size(tree_root,
2432				      btrfs_super_log_root_level(disk_super));
2433
2434		log_tree_root = btrfs_alloc_root(fs_info);
2435		if (!log_tree_root) {
2436			err = -ENOMEM;
2437			goto fail_trans_kthread;
2438		}
2439
2440		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2441			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2442
2443		log_tree_root->node = read_tree_block(tree_root, bytenr,
2444						      blocksize,
2445						      generation + 1);
2446		/* returns with log_tree_root freed on success */
2447		ret = btrfs_recover_log_trees(log_tree_root);
2448		if (ret) {
2449			btrfs_error(tree_root->fs_info, ret,
2450				    "Failed to recover log tree");
2451			free_extent_buffer(log_tree_root->node);
2452			kfree(log_tree_root);
2453			goto fail_trans_kthread;
2454		}
2455
2456		if (sb->s_flags & MS_RDONLY) {
2457			ret = btrfs_commit_super(tree_root);
2458			if (ret)
2459				goto fail_trans_kthread;
2460		}
2461	}
2462
2463	ret = btrfs_find_orphan_roots(tree_root);
2464	if (ret)
2465		goto fail_trans_kthread;
2466
2467	if (!(sb->s_flags & MS_RDONLY)) {
2468		ret = btrfs_cleanup_fs_roots(fs_info);
2469		if (ret) {
2470			}
2471
 
2472		ret = btrfs_recover_relocation(tree_root);
 
2473		if (ret < 0) {
2474			printk(KERN_WARNING
2475			       "btrfs: failed to recover relocation\n");
2476			err = -EINVAL;
2477			goto fail_trans_kthread;
2478		}
2479	}
2480
2481	location.objectid = BTRFS_FS_TREE_OBJECTID;
2482	location.type = BTRFS_ROOT_ITEM_KEY;
2483	location.offset = (u64)-1;
2484
2485	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2486	if (!fs_info->fs_root)
2487		goto fail_trans_kthread;
2488	if (IS_ERR(fs_info->fs_root)) {
2489		err = PTR_ERR(fs_info->fs_root);
2490		goto fail_trans_kthread;
2491	}
2492
2493	if (sb->s_flags & MS_RDONLY)
2494		return 0;
2495
 
 
 
 
 
 
 
 
 
 
 
 
2496	down_read(&fs_info->cleanup_work_sem);
2497	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2498	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2499		up_read(&fs_info->cleanup_work_sem);
2500		close_ctree(tree_root);
2501		return ret;
2502	}
2503	up_read(&fs_info->cleanup_work_sem);
2504
2505	ret = btrfs_resume_balance_async(fs_info);
2506	if (ret) {
2507		printk(KERN_WARNING "btrfs: failed to resume balance\n");
 
 
 
 
 
 
 
2508		close_ctree(tree_root);
2509		return ret;
2510	}
2511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2512	return 0;
2513
 
 
2514fail_trans_kthread:
2515	kthread_stop(fs_info->transaction_kthread);
 
 
2516fail_cleaner:
2517	kthread_stop(fs_info->cleaner_kthread);
2518
2519	/*
2520	 * make sure we're done with the btree inode before we stop our
2521	 * kthreads
2522	 */
2523	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2524	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
 
 
 
 
 
2525
2526fail_block_groups:
 
2527	btrfs_free_block_groups(fs_info);
2528
2529fail_tree_roots:
2530	free_root_pointers(fs_info, 1);
 
2531
2532fail_sb_buffer:
2533	btrfs_stop_workers(&fs_info->generic_worker);
2534	btrfs_stop_workers(&fs_info->readahead_workers);
2535	btrfs_stop_workers(&fs_info->fixup_workers);
2536	btrfs_stop_workers(&fs_info->delalloc_workers);
2537	btrfs_stop_workers(&fs_info->workers);
2538	btrfs_stop_workers(&fs_info->endio_workers);
2539	btrfs_stop_workers(&fs_info->endio_meta_workers);
2540	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2541	btrfs_stop_workers(&fs_info->endio_write_workers);
2542	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2543	btrfs_stop_workers(&fs_info->submit_workers);
2544	btrfs_stop_workers(&fs_info->delayed_workers);
2545	btrfs_stop_workers(&fs_info->caching_workers);
2546fail_alloc:
2547fail_iput:
2548	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2549
2550	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2551	iput(fs_info->btree_inode);
 
 
 
 
 
 
2552fail_bdi:
2553	bdi_destroy(&fs_info->bdi);
2554fail_srcu:
2555	cleanup_srcu_struct(&fs_info->subvol_srcu);
2556fail:
 
2557	btrfs_close_devices(fs_info->fs_devices);
2558	return err;
2559
2560recovery_tree_root:
2561	if (!btrfs_test_opt(tree_root, RECOVERY))
2562		goto fail_tree_roots;
2563
2564	free_root_pointers(fs_info, 0);
2565
2566	/* don't use the log in recovery mode, it won't be valid */
2567	btrfs_set_super_log_root(disk_super, 0);
2568
2569	/* we can't trust the free space cache either */
2570	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2571
2572	ret = next_root_backup(fs_info, fs_info->super_copy,
2573			       &num_backups_tried, &backup_index);
2574	if (ret == -1)
2575		goto fail_block_groups;
2576	goto retry_root_backup;
2577}
2578
2579static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2580{
2581	if (uptodate) {
2582		set_buffer_uptodate(bh);
2583	} else {
2584		struct btrfs_device *device = (struct btrfs_device *)
2585			bh->b_private;
2586
2587		printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2588					  "I/O error on %s\n",
2589					  rcu_str_deref(device->name));
2590		/* note, we dont' set_buffer_write_io_error because we have
2591		 * our own ways of dealing with the IO errors
2592		 */
2593		clear_buffer_uptodate(bh);
2594		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2595	}
2596	unlock_buffer(bh);
2597	put_bh(bh);
2598}
2599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2600struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2601{
2602	struct buffer_head *bh;
2603	struct buffer_head *latest = NULL;
2604	struct btrfs_super_block *super;
2605	int i;
2606	u64 transid = 0;
2607	u64 bytenr;
2608
2609	/* we would like to check all the supers, but that would make
2610	 * a btrfs mount succeed after a mkfs from a different FS.
2611	 * So, we need to add a special mount option to scan for
2612	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2613	 */
2614	for (i = 0; i < 1; i++) {
2615		bytenr = btrfs_sb_offset(i);
2616		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2617			break;
2618		bh = __bread(bdev, bytenr / 4096, 4096);
2619		if (!bh)
2620			continue;
2621
2622		super = (struct btrfs_super_block *)bh->b_data;
2623		if (btrfs_super_bytenr(super) != bytenr ||
2624		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2625			    sizeof(super->magic))) {
2626			brelse(bh);
2627			continue;
2628		}
2629
2630		if (!latest || btrfs_super_generation(super) > transid) {
2631			brelse(latest);
2632			latest = bh;
2633			transid = btrfs_super_generation(super);
2634		} else {
2635			brelse(bh);
2636		}
2637	}
 
 
 
 
2638	return latest;
2639}
2640
2641/*
2642 * this should be called twice, once with wait == 0 and
2643 * once with wait == 1.  When wait == 0 is done, all the buffer heads
2644 * we write are pinned.
2645 *
2646 * They are released when wait == 1 is done.
2647 * max_mirrors must be the same for both runs, and it indicates how
2648 * many supers on this one device should be written.
2649 *
2650 * max_mirrors == 0 means to write them all.
2651 */
2652static int write_dev_supers(struct btrfs_device *device,
2653			    struct btrfs_super_block *sb,
2654			    int do_barriers, int wait, int max_mirrors)
2655{
2656	struct buffer_head *bh;
2657	int i;
2658	int ret;
2659	int errors = 0;
2660	u32 crc;
2661	u64 bytenr;
2662
2663	if (max_mirrors == 0)
2664		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2665
2666	for (i = 0; i < max_mirrors; i++) {
2667		bytenr = btrfs_sb_offset(i);
2668		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
 
2669			break;
2670
2671		if (wait) {
2672			bh = __find_get_block(device->bdev, bytenr / 4096,
2673					      BTRFS_SUPER_INFO_SIZE);
2674			BUG_ON(!bh);
 
 
 
2675			wait_on_buffer(bh);
2676			if (!buffer_uptodate(bh))
2677				errors++;
2678
2679			/* drop our reference */
2680			brelse(bh);
2681
2682			/* drop the reference from the wait == 0 run */
2683			brelse(bh);
2684			continue;
2685		} else {
2686			btrfs_set_super_bytenr(sb, bytenr);
2687
2688			crc = ~(u32)0;
2689			crc = btrfs_csum_data(NULL, (char *)sb +
2690					      BTRFS_CSUM_SIZE, crc,
2691					      BTRFS_SUPER_INFO_SIZE -
2692					      BTRFS_CSUM_SIZE);
2693			btrfs_csum_final(crc, sb->csum);
2694
2695			/*
2696			 * one reference for us, and we leave it for the
2697			 * caller
2698			 */
2699			bh = __getblk(device->bdev, bytenr / 4096,
2700				      BTRFS_SUPER_INFO_SIZE);
 
 
 
 
 
 
 
 
2701			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2702
2703			/* one reference for submit_bh */
2704			get_bh(bh);
2705
2706			set_buffer_uptodate(bh);
2707			lock_buffer(bh);
2708			bh->b_end_io = btrfs_end_buffer_write_sync;
2709			bh->b_private = device;
2710		}
2711
2712		/*
2713		 * we fua the first super.  The others we allow
2714		 * to go down lazy.
2715		 */
2716		ret = btrfsic_submit_bh(WRITE_FUA, bh);
 
 
 
2717		if (ret)
2718			errors++;
2719	}
2720	return errors < i ? 0 : -1;
2721}
2722
2723/*
2724 * endio for the write_dev_flush, this will wake anyone waiting
2725 * for the barrier when it is done
2726 */
2727static void btrfs_end_empty_barrier(struct bio *bio, int err)
2728{
2729	if (err) {
2730		if (err == -EOPNOTSUPP)
2731			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2732		clear_bit(BIO_UPTODATE, &bio->bi_flags);
2733	}
2734	if (bio->bi_private)
2735		complete(bio->bi_private);
2736	bio_put(bio);
2737}
2738
2739/*
2740 * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2741 * sent down.  With wait == 1, it waits for the previous flush.
2742 *
2743 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2744 * capable
2745 */
2746static int write_dev_flush(struct btrfs_device *device, int wait)
2747{
2748	struct bio *bio;
2749	int ret = 0;
2750
2751	if (device->nobarriers)
2752		return 0;
2753
2754	if (wait) {
2755		bio = device->flush_bio;
2756		if (!bio)
2757			return 0;
2758
2759		wait_for_completion(&device->flush_wait);
2760
2761		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2762			printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2763				      rcu_str_deref(device->name));
2764			device->nobarriers = 1;
2765		}
2766		if (!bio_flagged(bio, BIO_UPTODATE)) {
2767			ret = -EIO;
2768			if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2769				btrfs_dev_stat_inc_and_print(device,
2770					BTRFS_DEV_STAT_FLUSH_ERRS);
2771		}
2772
2773		/* drop the reference from the wait == 0 run */
2774		bio_put(bio);
2775		device->flush_bio = NULL;
2776
2777		return ret;
2778	}
2779
2780	/*
2781	 * one reference for us, and we leave it for the
2782	 * caller
2783	 */
2784	device->flush_bio = NULL;
2785	bio = bio_alloc(GFP_NOFS, 0);
2786	if (!bio)
2787		return -ENOMEM;
2788
2789	bio->bi_end_io = btrfs_end_empty_barrier;
2790	bio->bi_bdev = device->bdev;
2791	init_completion(&device->flush_wait);
2792	bio->bi_private = &device->flush_wait;
2793	device->flush_bio = bio;
2794
2795	bio_get(bio);
2796	btrfsic_submit_bio(WRITE_FLUSH, bio);
2797
2798	return 0;
2799}
2800
2801/*
2802 * send an empty flush down to each device in parallel,
2803 * then wait for them
2804 */
2805static int barrier_all_devices(struct btrfs_fs_info *info)
2806{
2807	struct list_head *head;
2808	struct btrfs_device *dev;
2809	int errors = 0;
 
2810	int ret;
2811
2812	/* send down all the barriers */
2813	head = &info->fs_devices->devices;
2814	list_for_each_entry_rcu(dev, head, dev_list) {
 
 
2815		if (!dev->bdev) {
2816			errors++;
2817			continue;
2818		}
2819		if (!dev->in_fs_metadata || !dev->writeable)
2820			continue;
2821
2822		ret = write_dev_flush(dev, 0);
2823		if (ret)
2824			errors++;
2825	}
2826
2827	/* wait for all the barriers */
2828	list_for_each_entry_rcu(dev, head, dev_list) {
 
 
2829		if (!dev->bdev) {
2830			errors++;
2831			continue;
2832		}
2833		if (!dev->in_fs_metadata || !dev->writeable)
2834			continue;
2835
2836		ret = write_dev_flush(dev, 1);
2837		if (ret)
2838			errors++;
2839	}
2840	if (errors)
 
2841		return -EIO;
2842	return 0;
2843}
2844
2845int write_all_supers(struct btrfs_root *root, int max_mirrors)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2846{
2847	struct list_head *head;
2848	struct btrfs_device *dev;
2849	struct btrfs_super_block *sb;
2850	struct btrfs_dev_item *dev_item;
2851	int ret;
2852	int do_barriers;
2853	int max_errors;
2854	int total_errors = 0;
2855	u64 flags;
2856
2857	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2858	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2859	backup_super_roots(root->fs_info);
2860
2861	sb = root->fs_info->super_for_commit;
2862	dev_item = &sb->dev_item;
2863
2864	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2865	head = &root->fs_info->fs_devices->devices;
 
2866
2867	if (do_barriers)
2868		barrier_all_devices(root->fs_info);
 
 
 
 
 
 
 
 
2869
2870	list_for_each_entry_rcu(dev, head, dev_list) {
2871		if (!dev->bdev) {
2872			total_errors++;
2873			continue;
2874		}
2875		if (!dev->in_fs_metadata || !dev->writeable)
2876			continue;
2877
2878		btrfs_set_stack_device_generation(dev_item, 0);
2879		btrfs_set_stack_device_type(dev_item, dev->type);
2880		btrfs_set_stack_device_id(dev_item, dev->devid);
2881		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2882		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
 
 
2883		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2884		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2885		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2886		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2887		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2888
2889		flags = btrfs_super_flags(sb);
2890		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2891
2892		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2893		if (ret)
2894			total_errors++;
2895	}
2896	if (total_errors > max_errors) {
2897		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2898		       total_errors);
 
2899
2900		/* This shouldn't happen. FUA is masked off if unsupported */
2901		BUG();
 
 
2902	}
2903
2904	total_errors = 0;
2905	list_for_each_entry_rcu(dev, head, dev_list) {
2906		if (!dev->bdev)
2907			continue;
2908		if (!dev->in_fs_metadata || !dev->writeable)
2909			continue;
2910
2911		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2912		if (ret)
2913			total_errors++;
2914	}
2915	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2916	if (total_errors > max_errors) {
2917		btrfs_error(root->fs_info, -EIO,
2918			    "%d errors while writing supers", total_errors);
2919		return -EIO;
2920	}
2921	return 0;
2922}
2923
2924int write_ctree_super(struct btrfs_trans_handle *trans,
2925		      struct btrfs_root *root, int max_mirrors)
2926{
2927	int ret;
2928
2929	ret = write_all_supers(root, max_mirrors);
2930	return ret;
2931}
2932
2933void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
 
 
2934{
2935	spin_lock(&fs_info->fs_roots_radix_lock);
2936	radix_tree_delete(&fs_info->fs_roots_radix,
2937			  (unsigned long)root->root_key.objectid);
2938	spin_unlock(&fs_info->fs_roots_radix_lock);
2939
2940	if (btrfs_root_refs(&root->root_item) == 0)
2941		synchronize_srcu(&fs_info->subvol_srcu);
2942
2943	__btrfs_remove_free_space_cache(root->free_ino_pinned);
2944	__btrfs_remove_free_space_cache(root->free_ino_ctl);
 
 
 
 
 
2945	free_fs_root(root);
2946}
2947
2948static void free_fs_root(struct btrfs_root *root)
2949{
2950	iput(root->cache_inode);
2951	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
 
 
2952	if (root->anon_dev)
2953		free_anon_bdev(root->anon_dev);
 
 
2954	free_extent_buffer(root->node);
2955	free_extent_buffer(root->commit_root);
2956	kfree(root->free_ino_ctl);
2957	kfree(root->free_ino_pinned);
2958	kfree(root->name);
2959	kfree(root);
2960}
2961
2962static void del_fs_roots(struct btrfs_fs_info *fs_info)
2963{
2964	int ret;
2965	struct btrfs_root *gang[8];
2966	int i;
2967
2968	while (!list_empty(&fs_info->dead_roots)) {
2969		gang[0] = list_entry(fs_info->dead_roots.next,
2970				     struct btrfs_root, root_list);
2971		list_del(&gang[0]->root_list);
2972
2973		if (gang[0]->in_radix) {
2974			btrfs_free_fs_root(fs_info, gang[0]);
2975		} else {
2976			free_extent_buffer(gang[0]->node);
2977			free_extent_buffer(gang[0]->commit_root);
2978			kfree(gang[0]);
2979		}
2980	}
2981
2982	while (1) {
2983		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2984					     (void **)gang, 0,
2985					     ARRAY_SIZE(gang));
2986		if (!ret)
2987			break;
2988		for (i = 0; i < ret; i++)
2989			btrfs_free_fs_root(fs_info, gang[i]);
2990	}
2991}
2992
2993int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2994{
2995	u64 root_objectid = 0;
2996	struct btrfs_root *gang[8];
2997	int i;
2998	int ret;
 
 
2999
3000	while (1) {
 
3001		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3002					     (void **)gang, root_objectid,
3003					     ARRAY_SIZE(gang));
3004		if (!ret)
 
3005			break;
3006
3007		root_objectid = gang[ret - 1]->root_key.objectid + 1;
 
3008		for (i = 0; i < ret; i++) {
3009			int err;
 
 
 
 
 
 
 
 
3010
 
 
 
3011			root_objectid = gang[i]->root_key.objectid;
3012			err = btrfs_orphan_cleanup(gang[i]);
3013			if (err)
3014				return err;
 
3015		}
3016		root_objectid++;
3017	}
3018	return 0;
 
 
 
 
 
 
3019}
3020
3021int btrfs_commit_super(struct btrfs_root *root)
3022{
3023	struct btrfs_trans_handle *trans;
3024	int ret;
3025
3026	mutex_lock(&root->fs_info->cleaner_mutex);
3027	btrfs_run_delayed_iputs(root);
3028	btrfs_clean_old_snapshots(root);
3029	mutex_unlock(&root->fs_info->cleaner_mutex);
 
3030
3031	/* wait until ongoing cleanup work done */
3032	down_write(&root->fs_info->cleanup_work_sem);
3033	up_write(&root->fs_info->cleanup_work_sem);
3034
3035	trans = btrfs_join_transaction(root);
3036	if (IS_ERR(trans))
3037		return PTR_ERR(trans);
3038	ret = btrfs_commit_transaction(trans, root);
3039	if (ret)
3040		return ret;
3041	/* run commit again to drop the original snapshot */
3042	trans = btrfs_join_transaction(root);
3043	if (IS_ERR(trans))
3044		return PTR_ERR(trans);
3045	ret = btrfs_commit_transaction(trans, root);
3046	if (ret)
3047		return ret;
3048	ret = btrfs_write_and_wait_transaction(NULL, root);
3049	if (ret) {
3050		btrfs_error(root->fs_info, ret,
3051			    "Failed to sync btree inode to disk.");
3052		return ret;
3053	}
3054
3055	ret = write_ctree_super(NULL, root, 0);
3056	return ret;
3057}
3058
3059int close_ctree(struct btrfs_root *root)
3060{
3061	struct btrfs_fs_info *fs_info = root->fs_info;
3062	int ret;
3063
3064	fs_info->closing = 1;
3065	smp_mb();
3066
 
 
 
 
 
 
 
 
3067	/* pause restriper - we want to resume on mount */
3068	btrfs_pause_balance(root->fs_info);
3069
3070	btrfs_scrub_cancel(root);
 
 
3071
3072	/* wait for any defraggers to finish */
3073	wait_event(fs_info->transaction_wait,
3074		   (atomic_read(&fs_info->defrag_running) == 0));
3075
3076	/* clear out the rbtree of defraggable inodes */
3077	btrfs_run_defrag_inodes(fs_info);
 
 
3078
3079	/*
3080	 * Here come 2 situations when btrfs is broken to flip readonly:
3081	 *
3082	 * 1. when btrfs flips readonly somewhere else before
3083	 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3084	 * and btrfs will skip to write sb directly to keep
3085	 * ERROR state on disk.
3086	 *
3087	 * 2. when btrfs flips readonly just in btrfs_commit_super,
3088	 * and in such case, btrfs cannot write sb via btrfs_commit_super,
3089	 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3090	 * btrfs will cleanup all FS resources first and write sb then.
3091	 */
3092	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3093		ret = btrfs_commit_super(root);
3094		if (ret)
3095			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3096	}
 
 
3097
3098	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3099		ret = btrfs_error_commit_super(root);
3100		if (ret)
3101			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3102	}
3103
3104	btrfs_put_block_group_cache(fs_info);
 
3105
3106	kthread_stop(fs_info->transaction_kthread);
3107	kthread_stop(fs_info->cleaner_kthread);
3108
3109	fs_info->closing = 2;
3110	smp_mb();
3111
3112	if (fs_info->delalloc_bytes) {
3113		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3114		       (unsigned long long)fs_info->delalloc_bytes);
3115	}
3116	if (fs_info->total_ref_cache_size) {
3117		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3118		       (unsigned long long)fs_info->total_ref_cache_size);
3119	}
3120
3121	free_extent_buffer(fs_info->extent_root->node);
3122	free_extent_buffer(fs_info->extent_root->commit_root);
3123	free_extent_buffer(fs_info->tree_root->node);
3124	free_extent_buffer(fs_info->tree_root->commit_root);
3125	free_extent_buffer(fs_info->chunk_root->node);
3126	free_extent_buffer(fs_info->chunk_root->commit_root);
3127	free_extent_buffer(fs_info->dev_root->node);
3128	free_extent_buffer(fs_info->dev_root->commit_root);
3129	free_extent_buffer(fs_info->csum_root->node);
3130	free_extent_buffer(fs_info->csum_root->commit_root);
3131
3132	btrfs_free_block_groups(fs_info);
3133
3134	del_fs_roots(fs_info);
 
 
 
 
 
3135
3136	iput(fs_info->btree_inode);
 
3137
3138	btrfs_stop_workers(&fs_info->generic_worker);
3139	btrfs_stop_workers(&fs_info->fixup_workers);
3140	btrfs_stop_workers(&fs_info->delalloc_workers);
3141	btrfs_stop_workers(&fs_info->workers);
3142	btrfs_stop_workers(&fs_info->endio_workers);
3143	btrfs_stop_workers(&fs_info->endio_meta_workers);
3144	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3145	btrfs_stop_workers(&fs_info->endio_write_workers);
3146	btrfs_stop_workers(&fs_info->endio_freespace_worker);
3147	btrfs_stop_workers(&fs_info->submit_workers);
3148	btrfs_stop_workers(&fs_info->delayed_workers);
3149	btrfs_stop_workers(&fs_info->caching_workers);
3150	btrfs_stop_workers(&fs_info->readahead_workers);
3151
3152#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3153	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3154		btrfsic_unmount(root, fs_info->fs_devices);
3155#endif
3156
3157	btrfs_close_devices(fs_info->fs_devices);
3158	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3159
 
 
 
3160	bdi_destroy(&fs_info->bdi);
3161	cleanup_srcu_struct(&fs_info->subvol_srcu);
3162
3163	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3164}
3165
3166int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3167			  int atomic)
3168{
3169	int ret;
3170	struct inode *btree_inode = buf->pages[0]->mapping->host;
3171
3172	ret = extent_buffer_uptodate(buf);
3173	if (!ret)
3174		return ret;
3175
3176	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3177				    parent_transid, atomic);
3178	if (ret == -EAGAIN)
3179		return ret;
3180	return !ret;
3181}
3182
3183int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3184{
3185	return set_extent_buffer_uptodate(buf);
3186}
3187
3188void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3189{
3190	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3191	u64 transid = btrfs_header_generation(buf);
3192	int was_dirty;
3193
 
 
 
 
 
 
 
 
 
 
3194	btrfs_assert_tree_locked(buf);
3195	if (transid != root->fs_info->generation) {
3196		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3197		       "found %llu running %llu\n",
3198			(unsigned long long)buf->start,
3199			(unsigned long long)transid,
3200			(unsigned long long)root->fs_info->generation);
3201		WARN_ON(1);
3202	}
3203	was_dirty = set_extent_buffer_dirty(buf);
3204	if (!was_dirty) {
3205		spin_lock(&root->fs_info->delalloc_lock);
3206		root->fs_info->dirty_metadata_bytes += buf->len;
3207		spin_unlock(&root->fs_info->delalloc_lock);
 
 
 
 
3208	}
 
3209}
3210
3211void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
 
3212{
3213	/*
3214	 * looks as though older kernels can get into trouble with
3215	 * this code, they end up stuck in balance_dirty_pages forever
3216	 */
3217	u64 num_dirty;
3218	unsigned long thresh = 32 * 1024 * 1024;
3219
3220	if (current->flags & PF_MEMALLOC)
3221		return;
3222
3223	btrfs_balance_delayed_items(root);
3224
3225	num_dirty = root->fs_info->dirty_metadata_bytes;
3226
3227	if (num_dirty > thresh) {
3228		balance_dirty_pages_ratelimited_nr(
3229				   root->fs_info->btree_inode->i_mapping, 1);
 
 
3230	}
3231	return;
3232}
3233
3234void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3235{
3236	/*
3237	 * looks as though older kernels can get into trouble with
3238	 * this code, they end up stuck in balance_dirty_pages forever
3239	 */
3240	u64 num_dirty;
3241	unsigned long thresh = 32 * 1024 * 1024;
3242
3243	if (current->flags & PF_MEMALLOC)
3244		return;
3245
3246	num_dirty = root->fs_info->dirty_metadata_bytes;
3247
3248	if (num_dirty > thresh) {
3249		balance_dirty_pages_ratelimited_nr(
3250				   root->fs_info->btree_inode->i_mapping, 1);
3251	}
3252	return;
3253}
3254
3255int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3256{
3257	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3258	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3259}
3260
3261static int btree_lock_page_hook(struct page *page, void *data,
3262				void (*flush_fn)(void *))
3263{
3264	struct inode *inode = page->mapping->host;
3265	struct btrfs_root *root = BTRFS_I(inode)->root;
3266	struct extent_buffer *eb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3267
3268	/*
3269	 * We culled this eb but the page is still hanging out on the mapping,
3270	 * carry on.
3271	 */
3272	if (!PagePrivate(page))
3273		goto out;
3274
3275	eb = (struct extent_buffer *)page->private;
3276	if (!eb) {
3277		WARN_ON(1);
3278		goto out;
3279	}
3280	if (page != eb->pages[0])
3281		goto out;
3282
3283	if (!btrfs_try_tree_write_lock(eb)) {
3284		flush_fn(data);
3285		btrfs_tree_lock(eb);
3286	}
3287	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3288
3289	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3290		spin_lock(&root->fs_info->delalloc_lock);
3291		if (root->fs_info->dirty_metadata_bytes >= eb->len)
3292			root->fs_info->dirty_metadata_bytes -= eb->len;
3293		else
3294			WARN_ON(1);
3295		spin_unlock(&root->fs_info->delalloc_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3296	}
3297
3298	btrfs_tree_unlock(eb);
3299out:
3300	if (!trylock_page(page)) {
3301		flush_fn(data);
3302		lock_page(page);
 
 
 
 
 
3303	}
3304	return 0;
3305}
3306
3307static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3308			      int read_only)
3309{
3310	if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3311		printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3312		return -EINVAL;
3313	}
3314
3315	if (read_only)
3316		return 0;
3317
3318	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3319		printk(KERN_WARNING "warning: mount fs with errors, "
3320		       "running btrfsck is recommended\n");
 
 
 
 
 
 
 
 
 
 
 
3321	}
3322
3323	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3324}
3325
3326int btrfs_error_commit_super(struct btrfs_root *root)
3327{
3328	int ret;
3329
3330	mutex_lock(&root->fs_info->cleaner_mutex);
3331	btrfs_run_delayed_iputs(root);
3332	mutex_unlock(&root->fs_info->cleaner_mutex);
3333
3334	down_write(&root->fs_info->cleanup_work_sem);
3335	up_write(&root->fs_info->cleanup_work_sem);
3336
3337	/* cleanup FS via transaction */
3338	btrfs_cleanup_transaction(root);
3339
3340	ret = write_ctree_super(NULL, root, 0);
3341
3342	return ret;
3343}
3344
3345static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3346{
3347	struct btrfs_inode *btrfs_inode;
3348	struct list_head splice;
3349
3350	INIT_LIST_HEAD(&splice);
3351
3352	mutex_lock(&root->fs_info->ordered_operations_mutex);
3353	spin_lock(&root->fs_info->ordered_extent_lock);
3354
3355	list_splice_init(&root->fs_info->ordered_operations, &splice);
3356	while (!list_empty(&splice)) {
3357		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3358					 ordered_operations);
3359
3360		list_del_init(&btrfs_inode->ordered_operations);
3361
3362		btrfs_invalidate_inodes(btrfs_inode->root);
3363	}
3364
3365	spin_unlock(&root->fs_info->ordered_extent_lock);
3366	mutex_unlock(&root->fs_info->ordered_operations_mutex);
 
 
 
 
 
 
 
3367}
3368
3369static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3370{
 
3371	struct list_head splice;
3372	struct btrfs_ordered_extent *ordered;
3373	struct inode *inode;
3374
3375	INIT_LIST_HEAD(&splice);
3376
3377	spin_lock(&root->fs_info->ordered_extent_lock);
3378
3379	list_splice_init(&root->fs_info->ordered_extents, &splice);
3380	while (!list_empty(&splice)) {
3381		ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3382				     root_extent_list);
3383
3384		list_del_init(&ordered->root_extent_list);
3385		atomic_inc(&ordered->refs);
3386
3387		/* the inode may be getting freed (in sys_unlink path). */
3388		inode = igrab(ordered->inode);
3389
3390		spin_unlock(&root->fs_info->ordered_extent_lock);
3391		if (inode)
3392			iput(inode);
3393
3394		atomic_set(&ordered->refs, 1);
3395		btrfs_put_ordered_extent(ordered);
3396
3397		spin_lock(&root->fs_info->ordered_extent_lock);
 
3398	}
3399
3400	spin_unlock(&root->fs_info->ordered_extent_lock);
3401}
3402
3403int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3404			       struct btrfs_root *root)
3405{
3406	struct rb_node *node;
3407	struct btrfs_delayed_ref_root *delayed_refs;
3408	struct btrfs_delayed_ref_node *ref;
3409	int ret = 0;
3410
3411	delayed_refs = &trans->delayed_refs;
3412
3413	spin_lock(&delayed_refs->lock);
3414	if (delayed_refs->num_entries == 0) {
3415		spin_unlock(&delayed_refs->lock);
3416		printk(KERN_INFO "delayed_refs has NO entry\n");
3417		return ret;
3418	}
3419
3420	while ((node = rb_first(&delayed_refs->root)) != NULL) {
3421		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3422
3423		atomic_set(&ref->refs, 1);
3424		if (btrfs_delayed_ref_is_head(ref)) {
3425			struct btrfs_delayed_ref_head *head;
3426
3427			head = btrfs_delayed_node_to_head(ref);
3428			if (!mutex_trylock(&head->mutex)) {
3429				atomic_inc(&ref->refs);
3430				spin_unlock(&delayed_refs->lock);
3431
3432				/* Need to wait for the delayed ref to run */
3433				mutex_lock(&head->mutex);
3434				mutex_unlock(&head->mutex);
3435				btrfs_put_delayed_ref(ref);
3436
3437				spin_lock(&delayed_refs->lock);
3438				continue;
3439			}
3440
3441			kfree(head->extent_op);
3442			delayed_refs->num_heads--;
3443			if (list_empty(&head->cluster))
3444				delayed_refs->num_heads_ready--;
3445			list_del_init(&head->cluster);
3446		}
3447		ref->in_tree = 0;
3448		rb_erase(&ref->rb_node, &delayed_refs->root);
3449		delayed_refs->num_entries--;
3450
 
 
 
 
3451		spin_unlock(&delayed_refs->lock);
3452		btrfs_put_delayed_ref(ref);
3453
 
 
 
 
3454		cond_resched();
3455		spin_lock(&delayed_refs->lock);
3456	}
3457
3458	spin_unlock(&delayed_refs->lock);
3459
3460	return ret;
3461}
3462
3463static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3464{
3465	struct btrfs_pending_snapshot *snapshot;
3466	struct list_head splice;
3467
3468	INIT_LIST_HEAD(&splice);
3469
3470	list_splice_init(&t->pending_snapshots, &splice);
 
3471
3472	while (!list_empty(&splice)) {
3473		snapshot = list_entry(splice.next,
3474				      struct btrfs_pending_snapshot,
3475				      list);
3476
3477		list_del_init(&snapshot->list);
 
 
 
3478
3479		kfree(snapshot);
 
 
3480	}
 
 
3481}
3482
3483static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3484{
3485	struct btrfs_inode *btrfs_inode;
3486	struct list_head splice;
3487
3488	INIT_LIST_HEAD(&splice);
3489
3490	spin_lock(&root->fs_info->delalloc_lock);
3491	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3492
3493	while (!list_empty(&splice)) {
3494		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3495				    delalloc_inodes);
 
 
 
 
3496
3497		list_del_init(&btrfs_inode->delalloc_inodes);
 
3498
3499		btrfs_invalidate_inodes(btrfs_inode->root);
3500	}
3501
3502	spin_unlock(&root->fs_info->delalloc_lock);
3503}
3504
3505static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3506					struct extent_io_tree *dirty_pages,
3507					int mark)
3508{
3509	int ret;
3510	struct page *page;
3511	struct inode *btree_inode = root->fs_info->btree_inode;
3512	struct extent_buffer *eb;
3513	u64 start = 0;
3514	u64 end;
3515	u64 offset;
3516	unsigned long index;
3517
3518	while (1) {
3519		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3520					    mark);
3521		if (ret)
3522			break;
3523
3524		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3525		while (start <= end) {
3526			index = start >> PAGE_CACHE_SHIFT;
3527			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3528			page = find_get_page(btree_inode->i_mapping, index);
3529			if (!page)
3530				continue;
3531			offset = page_offset(page);
3532
3533			spin_lock(&dirty_pages->buffer_lock);
3534			eb = radix_tree_lookup(
3535			     &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3536					       offset >> PAGE_CACHE_SHIFT);
3537			spin_unlock(&dirty_pages->buffer_lock);
3538			if (eb)
3539				ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3540							 &eb->bflags);
3541			if (PageWriteback(page))
3542				end_page_writeback(page);
3543
3544			lock_page(page);
3545			if (PageDirty(page)) {
3546				clear_page_dirty_for_io(page);
3547				spin_lock_irq(&page->mapping->tree_lock);
3548				radix_tree_tag_clear(&page->mapping->page_tree,
3549							page_index(page),
3550							PAGECACHE_TAG_DIRTY);
3551				spin_unlock_irq(&page->mapping->tree_lock);
3552			}
3553
3554			unlock_page(page);
3555			page_cache_release(page);
 
 
3556		}
3557	}
3558
3559	return ret;
3560}
3561
3562static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3563				       struct extent_io_tree *pinned_extents)
3564{
3565	struct extent_io_tree *unpin;
3566	u64 start;
3567	u64 end;
3568	int ret;
3569	bool loop = true;
3570
3571	unpin = pinned_extents;
3572again:
3573	while (1) {
3574		ret = find_first_extent_bit(unpin, 0, &start, &end,
3575					    EXTENT_DIRTY);
3576		if (ret)
3577			break;
3578
3579		/* opt_discard */
3580		if (btrfs_test_opt(root, DISCARD))
3581			ret = btrfs_error_discard_extent(root, start,
3582							 end + 1 - start,
3583							 NULL);
3584
3585		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3586		btrfs_error_unpin_extent_range(root, start, end);
3587		cond_resched();
3588	}
3589
3590	if (loop) {
3591		if (unpin == &root->fs_info->freed_extents[0])
3592			unpin = &root->fs_info->freed_extents[1];
3593		else
3594			unpin = &root->fs_info->freed_extents[0];
3595		loop = false;
3596		goto again;
3597	}
3598
3599	return 0;
3600}
3601
3602void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3603				   struct btrfs_root *root)
3604{
3605	btrfs_destroy_delayed_refs(cur_trans, root);
3606	btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3607				cur_trans->dirty_pages.dirty_bytes);
3608
3609	/* FIXME: cleanup wait for commit */
3610	cur_trans->in_commit = 1;
3611	cur_trans->blocked = 1;
3612	wake_up(&root->fs_info->transaction_blocked_wait);
3613
3614	cur_trans->blocked = 0;
3615	wake_up(&root->fs_info->transaction_wait);
3616
3617	cur_trans->commit_done = 1;
3618	wake_up(&cur_trans->commit_wait);
3619
3620	btrfs_destroy_delayed_inodes(root);
3621	btrfs_assert_delayed_root_empty(root);
3622
3623	btrfs_destroy_pending_snapshots(cur_trans);
3624
3625	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3626				     EXTENT_DIRTY);
3627	btrfs_destroy_pinned_extent(root,
3628				    root->fs_info->pinned_extents);
3629
 
 
 
3630	/*
3631	memset(cur_trans, 0, sizeof(*cur_trans));
3632	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3633	*/
3634}
3635
3636int btrfs_cleanup_transaction(struct btrfs_root *root)
3637{
3638	struct btrfs_transaction *t;
3639	LIST_HEAD(list);
3640
3641	mutex_lock(&root->fs_info->transaction_kthread_mutex);
3642
3643	spin_lock(&root->fs_info->trans_lock);
3644	list_splice_init(&root->fs_info->trans_list, &list);
3645	root->fs_info->trans_no_join = 1;
3646	spin_unlock(&root->fs_info->trans_lock);
3647
3648	while (!list_empty(&list)) {
3649		t = list_entry(list.next, struct btrfs_transaction, list);
3650		if (!t)
3651			break;
3652
3653		btrfs_destroy_ordered_operations(root);
3654
3655		btrfs_destroy_ordered_extents(root);
3656
3657		btrfs_destroy_delayed_refs(t, root);
3658
3659		btrfs_block_rsv_release(root,
3660					&root->fs_info->trans_block_rsv,
3661					t->dirty_pages.dirty_bytes);
3662
3663		/* FIXME: cleanup wait for commit */
3664		t->in_commit = 1;
3665		t->blocked = 1;
3666		if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3667			wake_up(&root->fs_info->transaction_blocked_wait);
3668
3669		t->blocked = 0;
3670		if (waitqueue_active(&root->fs_info->transaction_wait))
3671			wake_up(&root->fs_info->transaction_wait);
3672
3673		t->commit_done = 1;
3674		if (waitqueue_active(&t->commit_wait))
3675			wake_up(&t->commit_wait);
3676
3677		btrfs_destroy_delayed_inodes(root);
3678		btrfs_assert_delayed_root_empty(root);
3679
3680		btrfs_destroy_pending_snapshots(t);
3681
3682		btrfs_destroy_delalloc_inodes(root);
3683
3684		spin_lock(&root->fs_info->trans_lock);
3685		root->fs_info->running_transaction = NULL;
 
 
3686		spin_unlock(&root->fs_info->trans_lock);
3687
3688		btrfs_destroy_marked_extents(root, &t->dirty_pages,
3689					     EXTENT_DIRTY);
3690
3691		btrfs_destroy_pinned_extent(root,
3692					    root->fs_info->pinned_extents);
3693
3694		atomic_set(&t->use_count, 0);
3695		list_del_init(&t->list);
3696		memset(t, 0, sizeof(*t));
3697		kmem_cache_free(btrfs_transaction_cachep, t);
3698	}
3699
3700	spin_lock(&root->fs_info->trans_lock);
3701	root->fs_info->trans_no_join = 0;
3702	spin_unlock(&root->fs_info->trans_lock);
 
 
 
 
 
3703	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3704
3705	return 0;
3706}
3707
3708static struct extent_io_ops btree_extent_io_ops = {
3709	.write_cache_pages_lock_hook = btree_lock_page_hook,
3710	.readpage_end_io_hook = btree_readpage_end_io_hook,
3711	.readpage_io_failed_hook = btree_io_failed_hook,
3712	.submit_bio_hook = btree_submit_bio_hook,
3713	/* note we're sharing with inode.c for the merge bio hook */
3714	.merge_bio_hook = btrfs_merge_bio_hook,
3715};
v4.6
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/scatterlist.h>
  22#include <linux/swap.h>
  23#include <linux/radix-tree.h>
  24#include <linux/writeback.h>
  25#include <linux/buffer_head.h>
  26#include <linux/workqueue.h>
  27#include <linux/kthread.h>
 
 
  28#include <linux/slab.h>
  29#include <linux/migrate.h>
  30#include <linux/ratelimit.h>
  31#include <linux/uuid.h>
  32#include <linux/semaphore.h>
  33#include <asm/unaligned.h>
 
  34#include "ctree.h"
  35#include "disk-io.h"
  36#include "hash.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "print-tree.h"
 
  41#include "locking.h"
  42#include "tree-log.h"
  43#include "free-space-cache.h"
  44#include "free-space-tree.h"
  45#include "inode-map.h"
  46#include "check-integrity.h"
  47#include "rcu-string.h"
  48#include "dev-replace.h"
  49#include "raid56.h"
  50#include "sysfs.h"
  51#include "qgroup.h"
  52#include "compression.h"
  53
  54#ifdef CONFIG_X86
  55#include <asm/cpufeature.h>
  56#endif
  57
  58#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
  59				 BTRFS_HEADER_FLAG_RELOC |\
  60				 BTRFS_SUPER_FLAG_ERROR |\
  61				 BTRFS_SUPER_FLAG_SEEDING |\
  62				 BTRFS_SUPER_FLAG_METADUMP)
  63
  64static const struct extent_io_ops btree_extent_io_ops;
  65static void end_workqueue_fn(struct btrfs_work *work);
  66static void free_fs_root(struct btrfs_root *root);
  67static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  68				    int read_only);
 
  69static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  70static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  71				      struct btrfs_root *root);
 
  72static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  73static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  74					struct extent_io_tree *dirty_pages,
  75					int mark);
  76static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  77				       struct extent_io_tree *pinned_extents);
  78static int btrfs_cleanup_transaction(struct btrfs_root *root);
  79static void btrfs_error_commit_super(struct btrfs_root *root);
  80
  81/*
  82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  83 * is complete.  This is used during reads to verify checksums, and it is used
  84 * by writes to insert metadata for new file extents after IO is complete.
  85 */
  86struct btrfs_end_io_wq {
  87	struct bio *bio;
  88	bio_end_io_t *end_io;
  89	void *private;
  90	struct btrfs_fs_info *info;
  91	int error;
  92	enum btrfs_wq_endio_type metadata;
  93	struct list_head list;
  94	struct btrfs_work work;
  95};
  96
  97static struct kmem_cache *btrfs_end_io_wq_cache;
  98
  99int __init btrfs_end_io_wq_init(void)
 100{
 101	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
 102					sizeof(struct btrfs_end_io_wq),
 103					0,
 104					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
 105					NULL);
 106	if (!btrfs_end_io_wq_cache)
 107		return -ENOMEM;
 108	return 0;
 109}
 110
 111void btrfs_end_io_wq_exit(void)
 112{
 113	kmem_cache_destroy(btrfs_end_io_wq_cache);
 114}
 115
 116/*
 117 * async submit bios are used to offload expensive checksumming
 118 * onto the worker threads.  They checksum file and metadata bios
 119 * just before they are sent down the IO stack.
 120 */
 121struct async_submit_bio {
 122	struct inode *inode;
 123	struct bio *bio;
 124	struct list_head list;
 125	extent_submit_bio_hook_t *submit_bio_start;
 126	extent_submit_bio_hook_t *submit_bio_done;
 127	int rw;
 128	int mirror_num;
 129	unsigned long bio_flags;
 130	/*
 131	 * bio_offset is optional, can be used if the pages in the bio
 132	 * can't tell us where in the file the bio should go
 133	 */
 134	u64 bio_offset;
 135	struct btrfs_work work;
 136	int error;
 137};
 138
 139/*
 140 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 141 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 142 * the level the eb occupies in the tree.
 143 *
 144 * Different roots are used for different purposes and may nest inside each
 145 * other and they require separate keysets.  As lockdep keys should be
 146 * static, assign keysets according to the purpose of the root as indicated
 147 * by btrfs_root->objectid.  This ensures that all special purpose roots
 148 * have separate keysets.
 149 *
 150 * Lock-nesting across peer nodes is always done with the immediate parent
 151 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 152 * subclass to avoid triggering lockdep warning in such cases.
 153 *
 154 * The key is set by the readpage_end_io_hook after the buffer has passed
 155 * csum validation but before the pages are unlocked.  It is also set by
 156 * btrfs_init_new_buffer on freshly allocated blocks.
 157 *
 158 * We also add a check to make sure the highest level of the tree is the
 159 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 160 * needs update as well.
 161 */
 162#ifdef CONFIG_DEBUG_LOCK_ALLOC
 163# if BTRFS_MAX_LEVEL != 8
 164#  error
 165# endif
 166
 167static struct btrfs_lockdep_keyset {
 168	u64			id;		/* root objectid */
 169	const char		*name_stem;	/* lock name stem */
 170	char			names[BTRFS_MAX_LEVEL + 1][20];
 171	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
 172} btrfs_lockdep_keysets[] = {
 173	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
 174	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
 175	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
 176	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
 177	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
 178	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
 179	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
 180	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
 181	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
 182	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
 183	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
 184	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
 185	{ .id = 0,				.name_stem = "tree"	},
 186};
 187
 188void __init btrfs_init_lockdep(void)
 189{
 190	int i, j;
 191
 192	/* initialize lockdep class names */
 193	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 194		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 195
 196		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 197			snprintf(ks->names[j], sizeof(ks->names[j]),
 198				 "btrfs-%s-%02d", ks->name_stem, j);
 199	}
 200}
 201
 202void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 203				    int level)
 204{
 205	struct btrfs_lockdep_keyset *ks;
 206
 207	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 208
 209	/* find the matching keyset, id 0 is the default entry */
 210	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 211		if (ks->id == objectid)
 212			break;
 213
 214	lockdep_set_class_and_name(&eb->lock,
 215				   &ks->keys[level], ks->names[level]);
 216}
 217
 218#endif
 219
 220/*
 221 * extents on the btree inode are pretty simple, there's one extent
 222 * that covers the entire device
 223 */
 224static struct extent_map *btree_get_extent(struct inode *inode,
 225		struct page *page, size_t pg_offset, u64 start, u64 len,
 226		int create)
 227{
 228	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 229	struct extent_map *em;
 230	int ret;
 231
 232	read_lock(&em_tree->lock);
 233	em = lookup_extent_mapping(em_tree, start, len);
 234	if (em) {
 235		em->bdev =
 236			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 237		read_unlock(&em_tree->lock);
 238		goto out;
 239	}
 240	read_unlock(&em_tree->lock);
 241
 242	em = alloc_extent_map();
 243	if (!em) {
 244		em = ERR_PTR(-ENOMEM);
 245		goto out;
 246	}
 247	em->start = 0;
 248	em->len = (u64)-1;
 249	em->block_len = (u64)-1;
 250	em->block_start = 0;
 251	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 252
 253	write_lock(&em_tree->lock);
 254	ret = add_extent_mapping(em_tree, em, 0);
 255	if (ret == -EEXIST) {
 
 
 
 256		free_extent_map(em);
 257		em = lookup_extent_mapping(em_tree, start, len);
 258		if (!em)
 259			em = ERR_PTR(-EIO);
 
 
 
 
 
 260	} else if (ret) {
 261		free_extent_map(em);
 262		em = ERR_PTR(ret);
 263	}
 264	write_unlock(&em_tree->lock);
 265
 
 
 266out:
 267	return em;
 268}
 269
 270u32 btrfs_csum_data(char *data, u32 seed, size_t len)
 271{
 272	return btrfs_crc32c(seed, data, len);
 273}
 274
 275void btrfs_csum_final(u32 crc, char *result)
 276{
 277	put_unaligned_le32(~crc, result);
 278}
 279
 280/*
 281 * compute the csum for a btree block, and either verify it or write it
 282 * into the csum field of the block.
 283 */
 284static int csum_tree_block(struct btrfs_fs_info *fs_info,
 285			   struct extent_buffer *buf,
 286			   int verify)
 287{
 288	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 289	char *result = NULL;
 290	unsigned long len;
 291	unsigned long cur_len;
 292	unsigned long offset = BTRFS_CSUM_SIZE;
 293	char *kaddr;
 294	unsigned long map_start;
 295	unsigned long map_len;
 296	int err;
 297	u32 crc = ~(u32)0;
 298	unsigned long inline_result;
 299
 300	len = buf->len - offset;
 301	while (len > 0) {
 302		err = map_private_extent_buffer(buf, offset, 32,
 303					&kaddr, &map_start, &map_len);
 304		if (err)
 305			return err;
 306		cur_len = min(len, map_len - (offset - map_start));
 307		crc = btrfs_csum_data(kaddr + offset - map_start,
 308				      crc, cur_len);
 309		len -= cur_len;
 310		offset += cur_len;
 311	}
 312	if (csum_size > sizeof(inline_result)) {
 313		result = kzalloc(csum_size, GFP_NOFS);
 314		if (!result)
 315			return -ENOMEM;
 316	} else {
 317		result = (char *)&inline_result;
 318	}
 319
 320	btrfs_csum_final(crc, result);
 321
 322	if (verify) {
 323		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 324			u32 val;
 325			u32 found = 0;
 326			memcpy(&found, result, csum_size);
 327
 328			read_extent_buffer(buf, &val, 0, csum_size);
 329			btrfs_warn_rl(fs_info,
 330				"%s checksum verify failed on %llu wanted %X found %X "
 331				"level %d",
 332				fs_info->sb->s_id, buf->start,
 333				val, found, btrfs_header_level(buf));
 
 334			if (result != (char *)&inline_result)
 335				kfree(result);
 336			return -EUCLEAN;
 337		}
 338	} else {
 339		write_extent_buffer(buf, result, 0, csum_size);
 340	}
 341	if (result != (char *)&inline_result)
 342		kfree(result);
 343	return 0;
 344}
 345
 346/*
 347 * we can't consider a given block up to date unless the transid of the
 348 * block matches the transid in the parent node's pointer.  This is how we
 349 * detect blocks that either didn't get written at all or got written
 350 * in the wrong place.
 351 */
 352static int verify_parent_transid(struct extent_io_tree *io_tree,
 353				 struct extent_buffer *eb, u64 parent_transid,
 354				 int atomic)
 355{
 356	struct extent_state *cached_state = NULL;
 357	int ret;
 358	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
 359
 360	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 361		return 0;
 362
 363	if (atomic)
 364		return -EAGAIN;
 365
 366	if (need_lock) {
 367		btrfs_tree_read_lock(eb);
 368		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 369	}
 370
 371	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 372			 &cached_state);
 373	if (extent_buffer_uptodate(eb) &&
 374	    btrfs_header_generation(eb) == parent_transid) {
 375		ret = 0;
 376		goto out;
 377	}
 378	btrfs_err_rl(eb->fs_info,
 379		"parent transid verify failed on %llu wanted %llu found %llu",
 380			eb->start,
 381			parent_transid, btrfs_header_generation(eb));
 
 382	ret = 1;
 383
 384	/*
 385	 * Things reading via commit roots that don't have normal protection,
 386	 * like send, can have a really old block in cache that may point at a
 387	 * block that has been free'd and re-allocated.  So don't clear uptodate
 388	 * if we find an eb that is under IO (dirty/writeback) because we could
 389	 * end up reading in the stale data and then writing it back out and
 390	 * making everybody very sad.
 391	 */
 392	if (!extent_buffer_under_io(eb))
 393		clear_extent_buffer_uptodate(eb);
 394out:
 395	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 396			     &cached_state, GFP_NOFS);
 397	if (need_lock)
 398		btrfs_tree_read_unlock_blocking(eb);
 399	return ret;
 400}
 401
 402/*
 403 * Return 0 if the superblock checksum type matches the checksum value of that
 404 * algorithm. Pass the raw disk superblock data.
 405 */
 406static int btrfs_check_super_csum(char *raw_disk_sb)
 407{
 408	struct btrfs_super_block *disk_sb =
 409		(struct btrfs_super_block *)raw_disk_sb;
 410	u16 csum_type = btrfs_super_csum_type(disk_sb);
 411	int ret = 0;
 412
 413	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
 414		u32 crc = ~(u32)0;
 415		const int csum_size = sizeof(crc);
 416		char result[csum_size];
 417
 418		/*
 419		 * The super_block structure does not span the whole
 420		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
 421		 * is filled with zeros and is included in the checkum.
 422		 */
 423		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
 424				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
 425		btrfs_csum_final(crc, result);
 426
 427		if (memcmp(raw_disk_sb, result, csum_size))
 428			ret = 1;
 429	}
 430
 431	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
 432		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
 433				csum_type);
 434		ret = 1;
 435	}
 436
 437	return ret;
 438}
 439
 440/*
 441 * helper to read a given tree block, doing retries as required when
 442 * the checksums don't match and we have alternate mirrors to try.
 443 */
 444static int btree_read_extent_buffer_pages(struct btrfs_root *root,
 445					  struct extent_buffer *eb,
 446					  u64 start, u64 parent_transid)
 447{
 448	struct extent_io_tree *io_tree;
 449	int failed = 0;
 450	int ret;
 451	int num_copies = 0;
 452	int mirror_num = 0;
 453	int failed_mirror = 0;
 454
 455	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 456	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
 457	while (1) {
 458		ret = read_extent_buffer_pages(io_tree, eb, start,
 459					       WAIT_COMPLETE,
 460					       btree_get_extent, mirror_num);
 461		if (!ret) {
 462			if (!verify_parent_transid(io_tree, eb,
 463						   parent_transid, 0))
 464				break;
 465			else
 466				ret = -EIO;
 467		}
 468
 469		/*
 470		 * This buffer's crc is fine, but its contents are corrupted, so
 471		 * there is no reason to read the other copies, they won't be
 472		 * any less wrong.
 473		 */
 474		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
 475			break;
 476
 477		num_copies = btrfs_num_copies(root->fs_info,
 478					      eb->start, eb->len);
 479		if (num_copies == 1)
 480			break;
 481
 482		if (!failed_mirror) {
 483			failed = 1;
 484			failed_mirror = eb->read_mirror;
 485		}
 486
 487		mirror_num++;
 488		if (mirror_num == failed_mirror)
 489			mirror_num++;
 490
 491		if (mirror_num > num_copies)
 492			break;
 493	}
 494
 495	if (failed && !ret && failed_mirror)
 496		repair_eb_io_failure(root, eb, failed_mirror);
 497
 498	return ret;
 499}
 500
 501/*
 502 * checksum a dirty tree block before IO.  This has extra checks to make sure
 503 * we only fill in the checksum field in the first page of a multi-page block
 504 */
 505
 506static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
 507{
 508	u64 start = page_offset(page);
 
 509	u64 found_start;
 510	struct extent_buffer *eb;
 511
 
 
 512	eb = (struct extent_buffer *)page->private;
 513	if (page != eb->pages[0])
 514		return 0;
 515
 516	found_start = btrfs_header_bytenr(eb);
 517	/*
 518	 * Please do not consolidate these warnings into a single if.
 519	 * It is useful to know what went wrong.
 520	 */
 521	if (WARN_ON(found_start != start))
 522		return -EUCLEAN;
 523	if (WARN_ON(!PageUptodate(page)))
 524		return -EUCLEAN;
 525
 526	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
 527			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
 528
 529	return csum_tree_block(fs_info, eb, 0);
 
 530}
 531
 532static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
 533				 struct extent_buffer *eb)
 534{
 535	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 536	u8 fsid[BTRFS_UUID_SIZE];
 537	int ret = 1;
 538
 539	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
 
 540	while (fs_devices) {
 541		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 542			ret = 0;
 543			break;
 544		}
 545		fs_devices = fs_devices->seed;
 546	}
 547	return ret;
 548}
 549
 550#define CORRUPT(reason, eb, root, slot)				\
 551	btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\
 552		   "root=%llu, slot=%d", reason,			\
 553	       btrfs_header_bytenr(eb),	root->objectid, slot)
 
 554
 555static noinline int check_leaf(struct btrfs_root *root,
 556			       struct extent_buffer *leaf)
 557{
 558	struct btrfs_key key;
 559	struct btrfs_key leaf_key;
 560	u32 nritems = btrfs_header_nritems(leaf);
 561	int slot;
 562
 563	if (nritems == 0)
 564		return 0;
 565
 566	/* Check the 0 item */
 567	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
 568	    BTRFS_LEAF_DATA_SIZE(root)) {
 569		CORRUPT("invalid item offset size pair", leaf, root, 0);
 570		return -EIO;
 571	}
 572
 573	/*
 574	 * Check to make sure each items keys are in the correct order and their
 575	 * offsets make sense.  We only have to loop through nritems-1 because
 576	 * we check the current slot against the next slot, which verifies the
 577	 * next slot's offset+size makes sense and that the current's slot
 578	 * offset is correct.
 579	 */
 580	for (slot = 0; slot < nritems - 1; slot++) {
 581		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
 582		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
 583
 584		/* Make sure the keys are in the right order */
 585		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
 586			CORRUPT("bad key order", leaf, root, slot);
 587			return -EIO;
 588		}
 589
 590		/*
 591		 * Make sure the offset and ends are right, remember that the
 592		 * item data starts at the end of the leaf and grows towards the
 593		 * front.
 594		 */
 595		if (btrfs_item_offset_nr(leaf, slot) !=
 596			btrfs_item_end_nr(leaf, slot + 1)) {
 597			CORRUPT("slot offset bad", leaf, root, slot);
 598			return -EIO;
 599		}
 600
 601		/*
 602		 * Check to make sure that we don't point outside of the leaf,
 603		 * just incase all the items are consistent to eachother, but
 604		 * all point outside of the leaf.
 605		 */
 606		if (btrfs_item_end_nr(leaf, slot) >
 607		    BTRFS_LEAF_DATA_SIZE(root)) {
 608			CORRUPT("slot end outside of leaf", leaf, root, slot);
 609			return -EIO;
 610		}
 611	}
 612
 613	return 0;
 614}
 615
 616static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 617				      u64 phy_offset, struct page *page,
 618				      u64 start, u64 end, int mirror)
 619{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 620	u64 found_start;
 621	int found_level;
 622	struct extent_buffer *eb;
 623	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 624	struct btrfs_fs_info *fs_info = root->fs_info;
 625	int ret = 0;
 626	int reads_done;
 627
 628	if (!page->private)
 629		goto out;
 630
 
 631	eb = (struct extent_buffer *)page->private;
 632
 633	/* the pending IO might have been the only thing that kept this buffer
 634	 * in memory.  Make sure we have a ref for all this other checks
 635	 */
 636	extent_buffer_get(eb);
 637
 638	reads_done = atomic_dec_and_test(&eb->io_pages);
 639	if (!reads_done)
 640		goto err;
 641
 642	eb->read_mirror = mirror;
 643	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 644		ret = -EIO;
 645		goto err;
 646	}
 647
 648	found_start = btrfs_header_bytenr(eb);
 649	if (found_start != eb->start) {
 650		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
 651			     found_start, eb->start);
 
 
 652		ret = -EIO;
 653		goto err;
 654	}
 655	if (check_tree_block_fsid(fs_info, eb)) {
 656		btrfs_err_rl(fs_info, "bad fsid on block %llu",
 657			     eb->start);
 658		ret = -EIO;
 659		goto err;
 660	}
 661	found_level = btrfs_header_level(eb);
 662	if (found_level >= BTRFS_MAX_LEVEL) {
 663		btrfs_err(fs_info, "bad tree block level %d",
 664			  (int)btrfs_header_level(eb));
 665		ret = -EIO;
 666		goto err;
 667	}
 668
 669	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 670				       eb, found_level);
 671
 672	ret = csum_tree_block(fs_info, eb, 1);
 673	if (ret)
 
 674		goto err;
 
 675
 676	/*
 677	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 678	 * that we don't try and read the other copies of this block, just
 679	 * return -EIO.
 680	 */
 681	if (found_level == 0 && check_leaf(root, eb)) {
 682		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 683		ret = -EIO;
 684	}
 685
 686	if (!ret)
 687		set_extent_buffer_uptodate(eb);
 688err:
 689	if (reads_done &&
 690	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 691		btree_readahead_hook(fs_info, eb, eb->start, ret);
 
 692
 693	if (ret) {
 694		/*
 695		 * our io error hook is going to dec the io pages
 696		 * again, we have to make sure it has something
 697		 * to decrement
 698		 */
 699		atomic_inc(&eb->io_pages);
 700		clear_extent_buffer_uptodate(eb);
 701	}
 702	free_extent_buffer(eb);
 703out:
 704	return ret;
 705}
 706
 707static int btree_io_failed_hook(struct page *page, int failed_mirror)
 708{
 709	struct extent_buffer *eb;
 
 710
 711	eb = (struct extent_buffer *)page->private;
 712	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
 713	eb->read_mirror = failed_mirror;
 714	atomic_dec(&eb->io_pages);
 715	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 716		btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
 717	return -EIO;	/* we fixed nothing */
 718}
 719
 720static void end_workqueue_bio(struct bio *bio)
 721{
 722	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 723	struct btrfs_fs_info *fs_info;
 724	struct btrfs_workqueue *wq;
 725	btrfs_work_func_t func;
 726
 727	fs_info = end_io_wq->info;
 728	end_io_wq->error = bio->bi_error;
 
 
 729
 730	if (bio->bi_rw & REQ_WRITE) {
 731		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
 732			wq = fs_info->endio_meta_write_workers;
 733			func = btrfs_endio_meta_write_helper;
 734		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
 735			wq = fs_info->endio_freespace_worker;
 736			func = btrfs_freespace_write_helper;
 737		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 738			wq = fs_info->endio_raid56_workers;
 739			func = btrfs_endio_raid56_helper;
 740		} else {
 741			wq = fs_info->endio_write_workers;
 742			func = btrfs_endio_write_helper;
 743		}
 744	} else {
 745		if (unlikely(end_io_wq->metadata ==
 746			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
 747			wq = fs_info->endio_repair_workers;
 748			func = btrfs_endio_repair_helper;
 749		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 750			wq = fs_info->endio_raid56_workers;
 751			func = btrfs_endio_raid56_helper;
 752		} else if (end_io_wq->metadata) {
 753			wq = fs_info->endio_meta_workers;
 754			func = btrfs_endio_meta_helper;
 755		} else {
 756			wq = fs_info->endio_workers;
 757			func = btrfs_endio_helper;
 758		}
 759	}
 760
 761	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
 762	btrfs_queue_work(wq, &end_io_wq->work);
 763}
 764
 
 
 
 
 
 
 
 765int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 766			enum btrfs_wq_endio_type metadata)
 767{
 768	struct btrfs_end_io_wq *end_io_wq;
 769
 770	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 771	if (!end_io_wq)
 772		return -ENOMEM;
 773
 774	end_io_wq->private = bio->bi_private;
 775	end_io_wq->end_io = bio->bi_end_io;
 776	end_io_wq->info = info;
 777	end_io_wq->error = 0;
 778	end_io_wq->bio = bio;
 779	end_io_wq->metadata = metadata;
 780
 781	bio->bi_private = end_io_wq;
 782	bio->bi_end_io = end_workqueue_bio;
 783	return 0;
 784}
 785
 786unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
 787{
 788	unsigned long limit = min_t(unsigned long,
 789				    info->thread_pool_size,
 790				    info->fs_devices->open_devices);
 791	return 256 * limit;
 792}
 793
 794static void run_one_async_start(struct btrfs_work *work)
 795{
 796	struct async_submit_bio *async;
 797	int ret;
 798
 799	async = container_of(work, struct  async_submit_bio, work);
 800	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
 801				      async->mirror_num, async->bio_flags,
 802				      async->bio_offset);
 803	if (ret)
 804		async->error = ret;
 805}
 806
 807static void run_one_async_done(struct btrfs_work *work)
 808{
 809	struct btrfs_fs_info *fs_info;
 810	struct async_submit_bio *async;
 811	int limit;
 812
 813	async = container_of(work, struct  async_submit_bio, work);
 814	fs_info = BTRFS_I(async->inode)->root->fs_info;
 815
 816	limit = btrfs_async_submit_limit(fs_info);
 817	limit = limit * 2 / 3;
 818
 819	/*
 820	 * atomic_dec_return implies a barrier for waitqueue_active
 821	 */
 822	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
 823	    waitqueue_active(&fs_info->async_submit_wait))
 824		wake_up(&fs_info->async_submit_wait);
 825
 826	/* If an error occurred we just want to clean up the bio and move on */
 827	if (async->error) {
 828		async->bio->bi_error = async->error;
 829		bio_endio(async->bio);
 830		return;
 831	}
 832
 833	async->submit_bio_done(async->inode, async->rw, async->bio,
 834			       async->mirror_num, async->bio_flags,
 835			       async->bio_offset);
 836}
 837
 838static void run_one_async_free(struct btrfs_work *work)
 839{
 840	struct async_submit_bio *async;
 841
 842	async = container_of(work, struct  async_submit_bio, work);
 843	kfree(async);
 844}
 845
 846int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
 847			int rw, struct bio *bio, int mirror_num,
 848			unsigned long bio_flags,
 849			u64 bio_offset,
 850			extent_submit_bio_hook_t *submit_bio_start,
 851			extent_submit_bio_hook_t *submit_bio_done)
 852{
 853	struct async_submit_bio *async;
 854
 855	async = kmalloc(sizeof(*async), GFP_NOFS);
 856	if (!async)
 857		return -ENOMEM;
 858
 859	async->inode = inode;
 860	async->rw = rw;
 861	async->bio = bio;
 862	async->mirror_num = mirror_num;
 863	async->submit_bio_start = submit_bio_start;
 864	async->submit_bio_done = submit_bio_done;
 865
 866	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
 867			run_one_async_done, run_one_async_free);
 
 868
 
 869	async->bio_flags = bio_flags;
 870	async->bio_offset = bio_offset;
 871
 872	async->error = 0;
 873
 874	atomic_inc(&fs_info->nr_async_submits);
 875
 876	if (rw & REQ_SYNC)
 877		btrfs_set_work_high_priority(&async->work);
 878
 879	btrfs_queue_work(fs_info->workers, &async->work);
 880
 881	while (atomic_read(&fs_info->async_submit_draining) &&
 882	      atomic_read(&fs_info->nr_async_submits)) {
 883		wait_event(fs_info->async_submit_wait,
 884			   (atomic_read(&fs_info->nr_async_submits) == 0));
 885	}
 886
 887	return 0;
 888}
 889
 890static int btree_csum_one_bio(struct bio *bio)
 891{
 892	struct bio_vec *bvec;
 
 893	struct btrfs_root *root;
 894	int i, ret = 0;
 895
 896	bio_for_each_segment_all(bvec, bio, i) {
 
 897		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 898		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
 899		if (ret)
 900			break;
 
 
 901	}
 902
 903	return ret;
 904}
 905
 906static int __btree_submit_bio_start(struct inode *inode, int rw,
 907				    struct bio *bio, int mirror_num,
 908				    unsigned long bio_flags,
 909				    u64 bio_offset)
 910{
 911	/*
 912	 * when we're called for a write, we're already in the async
 913	 * submission context.  Just jump into btrfs_map_bio
 914	 */
 915	return btree_csum_one_bio(bio);
 916}
 917
 918static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
 919				 int mirror_num, unsigned long bio_flags,
 920				 u64 bio_offset)
 921{
 922	int ret;
 923
 924	/*
 925	 * when we're called for a write, we're already in the async
 926	 * submission context.  Just jump into btrfs_map_bio
 927	 */
 928	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
 929	if (ret) {
 930		bio->bi_error = ret;
 931		bio_endio(bio);
 932	}
 933	return ret;
 934}
 935
 936static int check_async_write(struct inode *inode, unsigned long bio_flags)
 937{
 938	if (bio_flags & EXTENT_BIO_TREE_LOG)
 939		return 0;
 940#ifdef CONFIG_X86
 941	if (static_cpu_has(X86_FEATURE_XMM4_2))
 942		return 0;
 943#endif
 944	return 1;
 945}
 946
 947static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
 948				 int mirror_num, unsigned long bio_flags,
 949				 u64 bio_offset)
 950{
 951	int async = check_async_write(inode, bio_flags);
 952	int ret;
 953
 954	if (!(rw & REQ_WRITE)) {
 
 955		/*
 956		 * called for a read, do the setup so that checksum validation
 957		 * can happen in the async kernel threads
 958		 */
 959		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
 960					  bio, BTRFS_WQ_ENDIO_METADATA);
 961		if (ret)
 962			goto out_w_error;
 963		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 964				    mirror_num, 0);
 965	} else if (!async) {
 966		ret = btree_csum_one_bio(bio);
 967		if (ret)
 968			goto out_w_error;
 969		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 970				    mirror_num, 0);
 971	} else {
 972		/*
 973		 * kthread helpers are used to submit writes so that
 974		 * checksumming can happen in parallel across all CPUs
 975		 */
 976		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
 977					  inode, rw, bio, mirror_num, 0,
 978					  bio_offset,
 979					  __btree_submit_bio_start,
 980					  __btree_submit_bio_done);
 981	}
 982
 983	if (ret)
 984		goto out_w_error;
 985	return 0;
 986
 987out_w_error:
 988	bio->bi_error = ret;
 989	bio_endio(bio);
 990	return ret;
 
 991}
 992
 993#ifdef CONFIG_MIGRATION
 994static int btree_migratepage(struct address_space *mapping,
 995			struct page *newpage, struct page *page,
 996			enum migrate_mode mode)
 997{
 998	/*
 999	 * we can't safely write a btree page from here,
1000	 * we haven't done the locking hook
1001	 */
1002	if (PageDirty(page))
1003		return -EAGAIN;
1004	/*
1005	 * Buffers may be managed in a filesystem specific way.
1006	 * We must have no buffers or drop them.
1007	 */
1008	if (page_has_private(page) &&
1009	    !try_to_release_page(page, GFP_KERNEL))
1010		return -EAGAIN;
1011	return migrate_page(mapping, newpage, page, mode);
1012}
1013#endif
1014
1015
1016static int btree_writepages(struct address_space *mapping,
1017			    struct writeback_control *wbc)
1018{
1019	struct btrfs_fs_info *fs_info;
1020	int ret;
1021
1022	if (wbc->sync_mode == WB_SYNC_NONE) {
 
 
 
1023
1024		if (wbc->for_kupdate)
1025			return 0;
1026
1027		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1028		/* this is a bit racy, but that's ok */
1029		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1030					     BTRFS_DIRTY_METADATA_THRESH);
1031		if (ret < 0)
1032			return 0;
1033	}
1034	return btree_write_cache_pages(mapping, wbc);
1035}
1036
1037static int btree_readpage(struct file *file, struct page *page)
1038{
1039	struct extent_io_tree *tree;
1040	tree = &BTRFS_I(page->mapping->host)->io_tree;
1041	return extent_read_full_page(tree, page, btree_get_extent, 0);
1042}
1043
1044static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1045{
1046	if (PageWriteback(page) || PageDirty(page))
1047		return 0;
 
 
 
 
 
 
1048
1049	return try_release_extent_buffer(page);
1050}
1051
1052static void btree_invalidatepage(struct page *page, unsigned int offset,
1053				 unsigned int length)
1054{
1055	struct extent_io_tree *tree;
1056	tree = &BTRFS_I(page->mapping->host)->io_tree;
1057	extent_invalidatepage(tree, page, offset);
1058	btree_releasepage(page, GFP_NOFS);
1059	if (PagePrivate(page)) {
1060		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1061			   "page private not zero on page %llu",
1062			   (unsigned long long)page_offset(page));
1063		ClearPagePrivate(page);
1064		set_page_private(page, 0);
1065		put_page(page);
1066	}
1067}
1068
1069static int btree_set_page_dirty(struct page *page)
1070{
1071#ifdef DEBUG
1072	struct extent_buffer *eb;
1073
1074	BUG_ON(!PagePrivate(page));
1075	eb = (struct extent_buffer *)page->private;
1076	BUG_ON(!eb);
1077	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1078	BUG_ON(!atomic_read(&eb->refs));
1079	btrfs_assert_tree_locked(eb);
1080#endif
1081	return __set_page_dirty_nobuffers(page);
1082}
1083
1084static const struct address_space_operations btree_aops = {
1085	.readpage	= btree_readpage,
1086	.writepages	= btree_writepages,
1087	.releasepage	= btree_releasepage,
1088	.invalidatepage = btree_invalidatepage,
1089#ifdef CONFIG_MIGRATION
1090	.migratepage	= btree_migratepage,
1091#endif
1092	.set_page_dirty = btree_set_page_dirty,
1093};
1094
1095void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
 
1096{
1097	struct extent_buffer *buf = NULL;
1098	struct inode *btree_inode = root->fs_info->btree_inode;
 
1099
1100	buf = btrfs_find_create_tree_block(root, bytenr);
1101	if (!buf)
1102		return;
1103	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1104				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1105	free_extent_buffer(buf);
 
1106}
1107
1108int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1109			 int mirror_num, struct extent_buffer **eb)
1110{
1111	struct extent_buffer *buf = NULL;
1112	struct inode *btree_inode = root->fs_info->btree_inode;
1113	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1114	int ret;
1115
1116	buf = btrfs_find_create_tree_block(root, bytenr);
1117	if (!buf)
1118		return 0;
1119
1120	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1121
1122	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1123				       btree_get_extent, mirror_num);
1124	if (ret) {
1125		free_extent_buffer(buf);
1126		return ret;
1127	}
1128
1129	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1130		free_extent_buffer(buf);
1131		return -EIO;
1132	} else if (extent_buffer_uptodate(buf)) {
1133		*eb = buf;
1134	} else {
1135		free_extent_buffer(buf);
1136	}
1137	return 0;
1138}
1139
1140struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1141					    u64 bytenr)
1142{
1143	return find_extent_buffer(fs_info, bytenr);
 
 
 
 
1144}
1145
1146struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1147						 u64 bytenr)
1148{
1149	if (btrfs_test_is_dummy_root(root))
1150		return alloc_test_extent_buffer(root->fs_info, bytenr);
1151	return alloc_extent_buffer(root->fs_info, bytenr);
 
 
 
1152}
1153
1154
1155int btrfs_write_tree_block(struct extent_buffer *buf)
1156{
1157	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1158					buf->start + buf->len - 1);
1159}
1160
1161int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1162{
1163	return filemap_fdatawait_range(buf->pages[0]->mapping,
1164				       buf->start, buf->start + buf->len - 1);
1165}
1166
1167struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1168				      u64 parent_transid)
1169{
1170	struct extent_buffer *buf = NULL;
1171	int ret;
1172
1173	buf = btrfs_find_create_tree_block(root, bytenr);
1174	if (!buf)
1175		return ERR_PTR(-ENOMEM);
1176
1177	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1178	if (ret) {
1179		free_extent_buffer(buf);
1180		return ERR_PTR(ret);
1181	}
1182	return buf;
1183
1184}
1185
1186void clean_tree_block(struct btrfs_trans_handle *trans,
1187		      struct btrfs_fs_info *fs_info,
1188		      struct extent_buffer *buf)
1189{
1190	if (btrfs_header_generation(buf) ==
1191	    fs_info->running_transaction->transid) {
1192		btrfs_assert_tree_locked(buf);
1193
1194		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1195			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1196					     -buf->len,
1197					     fs_info->dirty_metadata_batch);
1198			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1199			btrfs_set_lock_blocking(buf);
1200			clear_extent_buffer_dirty(buf);
 
 
 
 
 
 
1201		}
1202	}
1203}
1204
1205static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1206{
1207	struct btrfs_subvolume_writers *writers;
1208	int ret;
1209
1210	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1211	if (!writers)
1212		return ERR_PTR(-ENOMEM);
1213
1214	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1215	if (ret < 0) {
1216		kfree(writers);
1217		return ERR_PTR(ret);
1218	}
1219
1220	init_waitqueue_head(&writers->wait);
1221	return writers;
1222}
1223
1224static void
1225btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1226{
1227	percpu_counter_destroy(&writers->counter);
1228	kfree(writers);
1229}
1230
1231static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1232			 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
 
1233			 u64 objectid)
1234{
1235	root->node = NULL;
1236	root->commit_root = NULL;
1237	root->sectorsize = sectorsize;
1238	root->nodesize = nodesize;
 
1239	root->stripesize = stripesize;
1240	root->state = 0;
 
 
 
1241	root->orphan_cleanup_state = 0;
1242
1243	root->objectid = objectid;
1244	root->last_trans = 0;
1245	root->highest_objectid = 0;
1246	root->nr_delalloc_inodes = 0;
1247	root->nr_ordered_extents = 0;
1248	root->name = NULL;
1249	root->inode_tree = RB_ROOT;
1250	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1251	root->block_rsv = NULL;
1252	root->orphan_block_rsv = NULL;
1253
1254	INIT_LIST_HEAD(&root->dirty_list);
1255	INIT_LIST_HEAD(&root->root_list);
1256	INIT_LIST_HEAD(&root->delalloc_inodes);
1257	INIT_LIST_HEAD(&root->delalloc_root);
1258	INIT_LIST_HEAD(&root->ordered_extents);
1259	INIT_LIST_HEAD(&root->ordered_root);
1260	INIT_LIST_HEAD(&root->logged_list[0]);
1261	INIT_LIST_HEAD(&root->logged_list[1]);
1262	spin_lock_init(&root->orphan_lock);
1263	spin_lock_init(&root->inode_lock);
1264	spin_lock_init(&root->delalloc_lock);
1265	spin_lock_init(&root->ordered_extent_lock);
1266	spin_lock_init(&root->accounting_lock);
1267	spin_lock_init(&root->log_extents_lock[0]);
1268	spin_lock_init(&root->log_extents_lock[1]);
1269	mutex_init(&root->objectid_mutex);
1270	mutex_init(&root->log_mutex);
1271	mutex_init(&root->ordered_extent_mutex);
1272	mutex_init(&root->delalloc_mutex);
1273	init_waitqueue_head(&root->log_writer_wait);
1274	init_waitqueue_head(&root->log_commit_wait[0]);
1275	init_waitqueue_head(&root->log_commit_wait[1]);
1276	INIT_LIST_HEAD(&root->log_ctxs[0]);
1277	INIT_LIST_HEAD(&root->log_ctxs[1]);
1278	atomic_set(&root->log_commit[0], 0);
1279	atomic_set(&root->log_commit[1], 0);
1280	atomic_set(&root->log_writers, 0);
1281	atomic_set(&root->log_batch, 0);
1282	atomic_set(&root->orphan_inodes, 0);
1283	atomic_set(&root->refs, 1);
1284	atomic_set(&root->will_be_snapshoted, 0);
1285	atomic_set(&root->qgroup_meta_rsv, 0);
1286	root->log_transid = 0;
1287	root->log_transid_committed = -1;
1288	root->last_log_commit = 0;
1289	if (fs_info)
1290		extent_io_tree_init(&root->dirty_log_pages,
1291				     fs_info->btree_inode->i_mapping);
1292
1293	memset(&root->root_key, 0, sizeof(root->root_key));
1294	memset(&root->root_item, 0, sizeof(root->root_item));
1295	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1296	if (fs_info)
1297		root->defrag_trans_start = fs_info->generation;
1298	else
1299		root->defrag_trans_start = 0;
1300	root->root_key.objectid = objectid;
1301	root->anon_dev = 0;
1302
1303	spin_lock_init(&root->root_item_lock);
1304}
1305
1306static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1307		gfp_t flags)
 
 
1308{
1309	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1310	if (root)
1311		root->fs_info = fs_info;
1312	return root;
1313}
1314
1315#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1316/* Should only be used by the testing infrastructure */
1317struct btrfs_root *btrfs_alloc_dummy_root(void)
1318{
1319	struct btrfs_root *root;
 
 
 
 
1320
1321	root = btrfs_alloc_root(NULL, GFP_KERNEL);
1322	if (!root)
1323		return ERR_PTR(-ENOMEM);
1324	__setup_root(4096, 4096, 4096, root, NULL, 1);
1325	set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1326	root->alloc_bytenr = 0;
1327
1328	return root;
 
 
 
 
1329}
1330#endif
1331
1332struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1333				     struct btrfs_fs_info *fs_info,
1334				     u64 objectid)
1335{
1336	struct extent_buffer *leaf;
1337	struct btrfs_root *tree_root = fs_info->tree_root;
1338	struct btrfs_root *root;
1339	struct btrfs_key key;
1340	int ret = 0;
1341	uuid_le uuid;
1342
1343	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1344	if (!root)
1345		return ERR_PTR(-ENOMEM);
1346
1347	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1348		tree_root->stripesize, root, fs_info, objectid);
1349	root->root_key.objectid = objectid;
1350	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1351	root->root_key.offset = 0;
1352
1353	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1354	if (IS_ERR(leaf)) {
1355		ret = PTR_ERR(leaf);
1356		leaf = NULL;
1357		goto fail;
1358	}
1359
1360	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1361	btrfs_set_header_bytenr(leaf, leaf->start);
1362	btrfs_set_header_generation(leaf, trans->transid);
1363	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1364	btrfs_set_header_owner(leaf, objectid);
1365	root->node = leaf;
1366
1367	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1368			    BTRFS_FSID_SIZE);
1369	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1370			    btrfs_header_chunk_tree_uuid(leaf),
1371			    BTRFS_UUID_SIZE);
1372	btrfs_mark_buffer_dirty(leaf);
1373
1374	root->commit_root = btrfs_root_node(root);
1375	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1376
1377	root->root_item.flags = 0;
1378	root->root_item.byte_limit = 0;
1379	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1380	btrfs_set_root_generation(&root->root_item, trans->transid);
1381	btrfs_set_root_level(&root->root_item, 0);
1382	btrfs_set_root_refs(&root->root_item, 1);
1383	btrfs_set_root_used(&root->root_item, leaf->len);
1384	btrfs_set_root_last_snapshot(&root->root_item, 0);
1385	btrfs_set_root_dirid(&root->root_item, 0);
1386	uuid_le_gen(&uuid);
1387	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1388	root->root_item.drop_level = 0;
1389
1390	key.objectid = objectid;
1391	key.type = BTRFS_ROOT_ITEM_KEY;
1392	key.offset = 0;
1393	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1394	if (ret)
1395		goto fail;
1396
1397	btrfs_tree_unlock(leaf);
1398
1399	return root;
1400
1401fail:
1402	if (leaf) {
1403		btrfs_tree_unlock(leaf);
1404		free_extent_buffer(root->commit_root);
1405		free_extent_buffer(leaf);
1406	}
1407	kfree(root);
1408
1409	return ERR_PTR(ret);
1410}
1411
1412static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1413					 struct btrfs_fs_info *fs_info)
1414{
1415	struct btrfs_root *root;
1416	struct btrfs_root *tree_root = fs_info->tree_root;
1417	struct extent_buffer *leaf;
1418
1419	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1420	if (!root)
1421		return ERR_PTR(-ENOMEM);
1422
1423	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1424		     tree_root->stripesize, root, fs_info,
1425		     BTRFS_TREE_LOG_OBJECTID);
1426
1427	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1428	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1429	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1430
1431	/*
1432	 * DON'T set REF_COWS for log trees
1433	 *
1434	 * log trees do not get reference counted because they go away
1435	 * before a real commit is actually done.  They do store pointers
1436	 * to file data extents, and those reference counts still get
1437	 * updated (along with back refs to the log tree).
1438	 */
 
1439
1440	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1441			NULL, 0, 0, 0);
 
1442	if (IS_ERR(leaf)) {
1443		kfree(root);
1444		return ERR_CAST(leaf);
1445	}
1446
1447	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1448	btrfs_set_header_bytenr(leaf, leaf->start);
1449	btrfs_set_header_generation(leaf, trans->transid);
1450	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1451	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1452	root->node = leaf;
1453
1454	write_extent_buffer(root->node, root->fs_info->fsid,
1455			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
 
1456	btrfs_mark_buffer_dirty(root->node);
1457	btrfs_tree_unlock(root->node);
1458	return root;
1459}
1460
1461int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1462			     struct btrfs_fs_info *fs_info)
1463{
1464	struct btrfs_root *log_root;
1465
1466	log_root = alloc_log_tree(trans, fs_info);
1467	if (IS_ERR(log_root))
1468		return PTR_ERR(log_root);
1469	WARN_ON(fs_info->log_root_tree);
1470	fs_info->log_root_tree = log_root;
1471	return 0;
1472}
1473
1474int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1475		       struct btrfs_root *root)
1476{
1477	struct btrfs_root *log_root;
1478	struct btrfs_inode_item *inode_item;
1479
1480	log_root = alloc_log_tree(trans, root->fs_info);
1481	if (IS_ERR(log_root))
1482		return PTR_ERR(log_root);
1483
1484	log_root->last_trans = trans->transid;
1485	log_root->root_key.offset = root->root_key.objectid;
1486
1487	inode_item = &log_root->root_item.inode;
1488	btrfs_set_stack_inode_generation(inode_item, 1);
1489	btrfs_set_stack_inode_size(inode_item, 3);
1490	btrfs_set_stack_inode_nlink(inode_item, 1);
1491	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1492	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1493
1494	btrfs_set_root_node(&log_root->root_item, log_root->node);
1495
1496	WARN_ON(root->log_root);
1497	root->log_root = log_root;
1498	root->log_transid = 0;
1499	root->log_transid_committed = -1;
1500	root->last_log_commit = 0;
1501	return 0;
1502}
1503
1504static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1505					       struct btrfs_key *key)
1506{
1507	struct btrfs_root *root;
1508	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1509	struct btrfs_path *path;
 
1510	u64 generation;
1511	int ret;
 
1512
1513	path = btrfs_alloc_path();
1514	if (!path)
1515		return ERR_PTR(-ENOMEM);
1516
1517	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1518	if (!root) {
1519		ret = -ENOMEM;
1520		goto alloc_fail;
 
 
 
1521	}
1522
1523	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1524		tree_root->stripesize, root, fs_info, key->objectid);
 
1525
1526	ret = btrfs_find_root(tree_root, key, path,
1527			      &root->root_item, &root->root_key);
 
 
 
 
 
 
 
 
 
 
 
 
1528	if (ret) {
 
1529		if (ret > 0)
1530			ret = -ENOENT;
1531		goto find_fail;
1532	}
1533
1534	generation = btrfs_root_generation(&root->root_item);
 
1535	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1536				     generation);
1537	if (IS_ERR(root->node)) {
1538		ret = PTR_ERR(root->node);
1539		goto find_fail;
1540	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1541		ret = -EIO;
1542		free_extent_buffer(root->node);
1543		goto find_fail;
1544	}
1545	root->commit_root = btrfs_root_node(root);
 
1546out:
1547	btrfs_free_path(path);
1548	return root;
1549
1550find_fail:
1551	kfree(root);
1552alloc_fail:
1553	root = ERR_PTR(ret);
1554	goto out;
1555}
1556
1557struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1558				      struct btrfs_key *location)
1559{
1560	struct btrfs_root *root;
1561
1562	root = btrfs_read_tree_root(tree_root, location);
1563	if (IS_ERR(root))
1564		return root;
1565
1566	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1567		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1568		btrfs_check_and_init_root_item(&root->root_item);
1569	}
1570
1571	return root;
1572}
1573
1574int btrfs_init_fs_root(struct btrfs_root *root)
1575{
1576	int ret;
1577	struct btrfs_subvolume_writers *writers;
1578
1579	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1580	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1581					GFP_NOFS);
1582	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1583		ret = -ENOMEM;
1584		goto fail;
1585	}
1586
1587	writers = btrfs_alloc_subvolume_writers();
1588	if (IS_ERR(writers)) {
1589		ret = PTR_ERR(writers);
1590		goto fail;
1591	}
1592	root->subv_writers = writers;
1593
1594	btrfs_init_free_ino_ctl(root);
1595	spin_lock_init(&root->ino_cache_lock);
1596	init_waitqueue_head(&root->ino_cache_wait);
1597
1598	ret = get_anon_bdev(&root->anon_dev);
1599	if (ret)
1600		goto free_writers;
1601
1602	mutex_lock(&root->objectid_mutex);
1603	ret = btrfs_find_highest_objectid(root,
1604					&root->highest_objectid);
1605	if (ret) {
1606		mutex_unlock(&root->objectid_mutex);
1607		goto free_root_dev;
1608	}
1609
1610	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1611
1612	mutex_unlock(&root->objectid_mutex);
1613
1614	return 0;
1615
1616free_root_dev:
1617	free_anon_bdev(root->anon_dev);
1618free_writers:
1619	btrfs_free_subvolume_writers(root->subv_writers);
1620fail:
1621	kfree(root->free_ino_ctl);
1622	kfree(root->free_ino_pinned);
1623	return ret;
1624}
1625
1626static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1627					       u64 root_id)
1628{
1629	struct btrfs_root *root;
1630
1631	spin_lock(&fs_info->fs_roots_radix_lock);
1632	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1633				 (unsigned long)root_id);
1634	spin_unlock(&fs_info->fs_roots_radix_lock);
1635	return root;
1636}
1637
1638int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1639			 struct btrfs_root *root)
1640{
1641	int ret;
1642
1643	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1644	if (ret)
1645		return ret;
1646
1647	spin_lock(&fs_info->fs_roots_radix_lock);
1648	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1649				(unsigned long)root->root_key.objectid,
1650				root);
1651	if (ret == 0)
1652		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1653	spin_unlock(&fs_info->fs_roots_radix_lock);
1654	radix_tree_preload_end();
1655
1656	return ret;
1657}
1658
1659struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1660				     struct btrfs_key *location,
1661				     bool check_ref)
1662{
1663	struct btrfs_root *root;
1664	struct btrfs_path *path;
1665	struct btrfs_key key;
1666	int ret;
1667
1668	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1669		return fs_info->tree_root;
1670	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1671		return fs_info->extent_root;
1672	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1673		return fs_info->chunk_root;
1674	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1675		return fs_info->dev_root;
1676	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1677		return fs_info->csum_root;
1678	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1679		return fs_info->quota_root ? fs_info->quota_root :
1680					     ERR_PTR(-ENOENT);
1681	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1682		return fs_info->uuid_root ? fs_info->uuid_root :
1683					    ERR_PTR(-ENOENT);
1684	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1685		return fs_info->free_space_root ? fs_info->free_space_root :
1686						  ERR_PTR(-ENOENT);
1687again:
1688	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1689	if (root) {
1690		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1691			return ERR_PTR(-ENOENT);
 
1692		return root;
1693	}
1694
1695	root = btrfs_read_fs_root(fs_info->tree_root, location);
1696	if (IS_ERR(root))
1697		return root;
1698
1699	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1700		ret = -ENOENT;
 
 
 
1701		goto fail;
1702	}
1703
1704	ret = btrfs_init_fs_root(root);
 
 
 
 
 
1705	if (ret)
1706		goto fail;
1707
1708	path = btrfs_alloc_path();
1709	if (!path) {
1710		ret = -ENOMEM;
1711		goto fail;
1712	}
1713	key.objectid = BTRFS_ORPHAN_OBJECTID;
1714	key.type = BTRFS_ORPHAN_ITEM_KEY;
1715	key.offset = location->objectid;
1716
1717	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1718	btrfs_free_path(path);
1719	if (ret < 0)
1720		goto fail;
1721	if (ret == 0)
1722		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
 
 
 
 
1723
1724	ret = btrfs_insert_fs_root(fs_info, root);
 
 
 
 
 
 
 
 
1725	if (ret) {
1726		if (ret == -EEXIST) {
1727			free_fs_root(root);
1728			goto again;
1729		}
1730		goto fail;
1731	}
 
 
 
 
1732	return root;
1733fail:
1734	free_fs_root(root);
1735	return ERR_PTR(ret);
1736}
1737
1738static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1739{
1740	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1741	int ret = 0;
1742	struct btrfs_device *device;
1743	struct backing_dev_info *bdi;
1744
1745	rcu_read_lock();
1746	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1747		if (!device->bdev)
1748			continue;
1749		bdi = blk_get_backing_dev_info(device->bdev);
1750		if (bdi_congested(bdi, bdi_bits)) {
1751			ret = 1;
1752			break;
1753		}
1754	}
1755	rcu_read_unlock();
1756	return ret;
1757}
1758
 
 
 
 
1759static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1760{
1761	int err;
1762
1763	err = bdi_setup_and_register(bdi, "btrfs");
 
1764	if (err)
1765		return err;
1766
1767	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1768	bdi->congested_fn	= btrfs_congested_fn;
1769	bdi->congested_data	= info;
1770	bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1771	return 0;
1772}
1773
1774/*
1775 * called by the kthread helper functions to finally call the bio end_io
1776 * functions.  This is where read checksum verification actually happens
1777 */
1778static void end_workqueue_fn(struct btrfs_work *work)
1779{
1780	struct bio *bio;
1781	struct btrfs_end_io_wq *end_io_wq;
 
 
1782
1783	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1784	bio = end_io_wq->bio;
 
1785
1786	bio->bi_error = end_io_wq->error;
1787	bio->bi_private = end_io_wq->private;
1788	bio->bi_end_io = end_io_wq->end_io;
1789	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1790	bio_endio(bio);
1791}
1792
1793static int cleaner_kthread(void *arg)
1794{
1795	struct btrfs_root *root = arg;
1796	int again;
1797	struct btrfs_trans_handle *trans;
1798
1799	do {
1800		again = 0;
1801
1802		/* Make the cleaner go to sleep early. */
1803		if (btrfs_need_cleaner_sleep(root))
1804			goto sleep;
1805
1806		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1807			goto sleep;
1808
1809		/*
1810		 * Avoid the problem that we change the status of the fs
1811		 * during the above check and trylock.
1812		 */
1813		if (btrfs_need_cleaner_sleep(root)) {
1814			mutex_unlock(&root->fs_info->cleaner_mutex);
1815			goto sleep;
1816		}
1817
1818		mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1819		btrfs_run_delayed_iputs(root);
1820		mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1821
1822		again = btrfs_clean_one_deleted_snapshot(root);
1823		mutex_unlock(&root->fs_info->cleaner_mutex);
1824
1825		/*
1826		 * The defragger has dealt with the R/O remount and umount,
1827		 * needn't do anything special here.
1828		 */
1829		btrfs_run_defrag_inodes(root->fs_info);
1830
1831		/*
1832		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1833		 * with relocation (btrfs_relocate_chunk) and relocation
1834		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1835		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1836		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1837		 * unused block groups.
1838		 */
1839		btrfs_delete_unused_bgs(root->fs_info);
1840sleep:
1841		if (!again) {
1842			set_current_state(TASK_INTERRUPTIBLE);
1843			if (!kthread_should_stop())
1844				schedule();
1845			__set_current_state(TASK_RUNNING);
1846		}
1847	} while (!kthread_should_stop());
1848
1849	/*
1850	 * Transaction kthread is stopped before us and wakes us up.
1851	 * However we might have started a new transaction and COWed some
1852	 * tree blocks when deleting unused block groups for example. So
1853	 * make sure we commit the transaction we started to have a clean
1854	 * shutdown when evicting the btree inode - if it has dirty pages
1855	 * when we do the final iput() on it, eviction will trigger a
1856	 * writeback for it which will fail with null pointer dereferences
1857	 * since work queues and other resources were already released and
1858	 * destroyed by the time the iput/eviction/writeback is made.
1859	 */
1860	trans = btrfs_attach_transaction(root);
1861	if (IS_ERR(trans)) {
1862		if (PTR_ERR(trans) != -ENOENT)
1863			btrfs_err(root->fs_info,
1864				  "cleaner transaction attach returned %ld",
1865				  PTR_ERR(trans));
1866	} else {
1867		int ret;
1868
1869		ret = btrfs_commit_transaction(trans, root);
1870		if (ret)
1871			btrfs_err(root->fs_info,
1872				  "cleaner open transaction commit returned %d",
1873				  ret);
1874	}
1875
1876	return 0;
1877}
1878
1879static int transaction_kthread(void *arg)
1880{
1881	struct btrfs_root *root = arg;
1882	struct btrfs_trans_handle *trans;
1883	struct btrfs_transaction *cur;
1884	u64 transid;
1885	unsigned long now;
1886	unsigned long delay;
1887	bool cannot_commit;
1888
1889	do {
1890		cannot_commit = false;
1891		delay = HZ * root->fs_info->commit_interval;
 
1892		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1893
1894		spin_lock(&root->fs_info->trans_lock);
1895		cur = root->fs_info->running_transaction;
1896		if (!cur) {
1897			spin_unlock(&root->fs_info->trans_lock);
1898			goto sleep;
1899		}
1900
1901		now = get_seconds();
1902		if (cur->state < TRANS_STATE_BLOCKED &&
1903		    (now < cur->start_time ||
1904		     now - cur->start_time < root->fs_info->commit_interval)) {
1905			spin_unlock(&root->fs_info->trans_lock);
1906			delay = HZ * 5;
1907			goto sleep;
1908		}
1909		transid = cur->transid;
1910		spin_unlock(&root->fs_info->trans_lock);
1911
1912		/* If the file system is aborted, this will always fail. */
1913		trans = btrfs_attach_transaction(root);
1914		if (IS_ERR(trans)) {
1915			if (PTR_ERR(trans) != -ENOENT)
1916				cannot_commit = true;
1917			goto sleep;
1918		}
1919		if (transid == trans->transid) {
1920			btrfs_commit_transaction(trans, root);
1921		} else {
1922			btrfs_end_transaction(trans, root);
1923		}
1924sleep:
1925		wake_up_process(root->fs_info->cleaner_kthread);
1926		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1927
1928		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1929				      &root->fs_info->fs_state)))
1930			btrfs_cleanup_transaction(root);
1931		set_current_state(TASK_INTERRUPTIBLE);
1932		if (!kthread_should_stop() &&
1933				(!btrfs_transaction_blocked(root->fs_info) ||
1934				 cannot_commit))
1935			schedule_timeout(delay);
1936		__set_current_state(TASK_RUNNING);
1937	} while (!kthread_should_stop());
1938	return 0;
1939}
1940
1941/*
1942 * this will find the highest generation in the array of
1943 * root backups.  The index of the highest array is returned,
1944 * or -1 if we can't find anything.
1945 *
1946 * We check to make sure the array is valid by comparing the
1947 * generation of the latest  root in the array with the generation
1948 * in the super block.  If they don't match we pitch it.
1949 */
1950static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1951{
1952	u64 cur;
1953	int newest_index = -1;
1954	struct btrfs_root_backup *root_backup;
1955	int i;
1956
1957	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1958		root_backup = info->super_copy->super_roots + i;
1959		cur = btrfs_backup_tree_root_gen(root_backup);
1960		if (cur == newest_gen)
1961			newest_index = i;
1962	}
1963
1964	/* check to see if we actually wrapped around */
1965	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1966		root_backup = info->super_copy->super_roots;
1967		cur = btrfs_backup_tree_root_gen(root_backup);
1968		if (cur == newest_gen)
1969			newest_index = 0;
1970	}
1971	return newest_index;
1972}
1973
1974
1975/*
1976 * find the oldest backup so we know where to store new entries
1977 * in the backup array.  This will set the backup_root_index
1978 * field in the fs_info struct
1979 */
1980static void find_oldest_super_backup(struct btrfs_fs_info *info,
1981				     u64 newest_gen)
1982{
1983	int newest_index = -1;
1984
1985	newest_index = find_newest_super_backup(info, newest_gen);
1986	/* if there was garbage in there, just move along */
1987	if (newest_index == -1) {
1988		info->backup_root_index = 0;
1989	} else {
1990		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1991	}
1992}
1993
1994/*
1995 * copy all the root pointers into the super backup array.
1996 * this will bump the backup pointer by one when it is
1997 * done
1998 */
1999static void backup_super_roots(struct btrfs_fs_info *info)
2000{
2001	int next_backup;
2002	struct btrfs_root_backup *root_backup;
2003	int last_backup;
2004
2005	next_backup = info->backup_root_index;
2006	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2007		BTRFS_NUM_BACKUP_ROOTS;
2008
2009	/*
2010	 * just overwrite the last backup if we're at the same generation
2011	 * this happens only at umount
2012	 */
2013	root_backup = info->super_for_commit->super_roots + last_backup;
2014	if (btrfs_backup_tree_root_gen(root_backup) ==
2015	    btrfs_header_generation(info->tree_root->node))
2016		next_backup = last_backup;
2017
2018	root_backup = info->super_for_commit->super_roots + next_backup;
2019
2020	/*
2021	 * make sure all of our padding and empty slots get zero filled
2022	 * regardless of which ones we use today
2023	 */
2024	memset(root_backup, 0, sizeof(*root_backup));
2025
2026	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2027
2028	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2029	btrfs_set_backup_tree_root_gen(root_backup,
2030			       btrfs_header_generation(info->tree_root->node));
2031
2032	btrfs_set_backup_tree_root_level(root_backup,
2033			       btrfs_header_level(info->tree_root->node));
2034
2035	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2036	btrfs_set_backup_chunk_root_gen(root_backup,
2037			       btrfs_header_generation(info->chunk_root->node));
2038	btrfs_set_backup_chunk_root_level(root_backup,
2039			       btrfs_header_level(info->chunk_root->node));
2040
2041	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2042	btrfs_set_backup_extent_root_gen(root_backup,
2043			       btrfs_header_generation(info->extent_root->node));
2044	btrfs_set_backup_extent_root_level(root_backup,
2045			       btrfs_header_level(info->extent_root->node));
2046
2047	/*
2048	 * we might commit during log recovery, which happens before we set
2049	 * the fs_root.  Make sure it is valid before we fill it in.
2050	 */
2051	if (info->fs_root && info->fs_root->node) {
2052		btrfs_set_backup_fs_root(root_backup,
2053					 info->fs_root->node->start);
2054		btrfs_set_backup_fs_root_gen(root_backup,
2055			       btrfs_header_generation(info->fs_root->node));
2056		btrfs_set_backup_fs_root_level(root_backup,
2057			       btrfs_header_level(info->fs_root->node));
2058	}
2059
2060	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2061	btrfs_set_backup_dev_root_gen(root_backup,
2062			       btrfs_header_generation(info->dev_root->node));
2063	btrfs_set_backup_dev_root_level(root_backup,
2064				       btrfs_header_level(info->dev_root->node));
2065
2066	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2067	btrfs_set_backup_csum_root_gen(root_backup,
2068			       btrfs_header_generation(info->csum_root->node));
2069	btrfs_set_backup_csum_root_level(root_backup,
2070			       btrfs_header_level(info->csum_root->node));
2071
2072	btrfs_set_backup_total_bytes(root_backup,
2073			     btrfs_super_total_bytes(info->super_copy));
2074	btrfs_set_backup_bytes_used(root_backup,
2075			     btrfs_super_bytes_used(info->super_copy));
2076	btrfs_set_backup_num_devices(root_backup,
2077			     btrfs_super_num_devices(info->super_copy));
2078
2079	/*
2080	 * if we don't copy this out to the super_copy, it won't get remembered
2081	 * for the next commit
2082	 */
2083	memcpy(&info->super_copy->super_roots,
2084	       &info->super_for_commit->super_roots,
2085	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2086}
2087
2088/*
2089 * this copies info out of the root backup array and back into
2090 * the in-memory super block.  It is meant to help iterate through
2091 * the array, so you send it the number of backups you've already
2092 * tried and the last backup index you used.
2093 *
2094 * this returns -1 when it has tried all the backups
2095 */
2096static noinline int next_root_backup(struct btrfs_fs_info *info,
2097				     struct btrfs_super_block *super,
2098				     int *num_backups_tried, int *backup_index)
2099{
2100	struct btrfs_root_backup *root_backup;
2101	int newest = *backup_index;
2102
2103	if (*num_backups_tried == 0) {
2104		u64 gen = btrfs_super_generation(super);
2105
2106		newest = find_newest_super_backup(info, gen);
2107		if (newest == -1)
2108			return -1;
2109
2110		*backup_index = newest;
2111		*num_backups_tried = 1;
2112	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2113		/* we've tried all the backups, all done */
2114		return -1;
2115	} else {
2116		/* jump to the next oldest backup */
2117		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2118			BTRFS_NUM_BACKUP_ROOTS;
2119		*backup_index = newest;
2120		*num_backups_tried += 1;
2121	}
2122	root_backup = super->super_roots + newest;
2123
2124	btrfs_set_super_generation(super,
2125				   btrfs_backup_tree_root_gen(root_backup));
2126	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2127	btrfs_set_super_root_level(super,
2128				   btrfs_backup_tree_root_level(root_backup));
2129	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2130
2131	/*
2132	 * fixme: the total bytes and num_devices need to match or we should
2133	 * need a fsck
2134	 */
2135	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2136	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2137	return 0;
2138}
2139
2140/* helper to cleanup workers */
2141static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2142{
2143	btrfs_destroy_workqueue(fs_info->fixup_workers);
2144	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2145	btrfs_destroy_workqueue(fs_info->workers);
2146	btrfs_destroy_workqueue(fs_info->endio_workers);
2147	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2148	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2149	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2150	btrfs_destroy_workqueue(fs_info->rmw_workers);
2151	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2152	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2153	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2154	btrfs_destroy_workqueue(fs_info->submit_workers);
2155	btrfs_destroy_workqueue(fs_info->delayed_workers);
2156	btrfs_destroy_workqueue(fs_info->caching_workers);
2157	btrfs_destroy_workqueue(fs_info->readahead_workers);
2158	btrfs_destroy_workqueue(fs_info->flush_workers);
2159	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2160	btrfs_destroy_workqueue(fs_info->extent_workers);
2161}
2162
2163static void free_root_extent_buffers(struct btrfs_root *root)
2164{
2165	if (root) {
2166		free_extent_buffer(root->node);
2167		free_extent_buffer(root->commit_root);
2168		root->node = NULL;
2169		root->commit_root = NULL;
2170	}
2171}
2172
2173/* helper to cleanup tree roots */
2174static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2175{
2176	free_root_extent_buffers(info->tree_root);
2177
2178	free_root_extent_buffers(info->dev_root);
2179	free_root_extent_buffers(info->extent_root);
2180	free_root_extent_buffers(info->csum_root);
2181	free_root_extent_buffers(info->quota_root);
2182	free_root_extent_buffers(info->uuid_root);
2183	if (chunk_root)
2184		free_root_extent_buffers(info->chunk_root);
2185	free_root_extent_buffers(info->free_space_root);
2186}
2187
2188void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2189{
2190	int ret;
2191	struct btrfs_root *gang[8];
2192	int i;
2193
2194	while (!list_empty(&fs_info->dead_roots)) {
2195		gang[0] = list_entry(fs_info->dead_roots.next,
2196				     struct btrfs_root, root_list);
2197		list_del(&gang[0]->root_list);
2198
2199		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2200			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2201		} else {
2202			free_extent_buffer(gang[0]->node);
2203			free_extent_buffer(gang[0]->commit_root);
2204			btrfs_put_fs_root(gang[0]);
2205		}
2206	}
2207
2208	while (1) {
2209		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2210					     (void **)gang, 0,
2211					     ARRAY_SIZE(gang));
2212		if (!ret)
2213			break;
2214		for (i = 0; i < ret; i++)
2215			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2216	}
2217
2218	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2219		btrfs_free_log_root_tree(NULL, fs_info);
2220		btrfs_destroy_pinned_extent(fs_info->tree_root,
2221					    fs_info->pinned_extents);
2222	}
2223}
2224
2225static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2226{
2227	mutex_init(&fs_info->scrub_lock);
2228	atomic_set(&fs_info->scrubs_running, 0);
2229	atomic_set(&fs_info->scrub_pause_req, 0);
2230	atomic_set(&fs_info->scrubs_paused, 0);
2231	atomic_set(&fs_info->scrub_cancel_req, 0);
2232	init_waitqueue_head(&fs_info->scrub_pause_wait);
2233	fs_info->scrub_workers_refcnt = 0;
2234}
2235
2236static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2237{
2238	spin_lock_init(&fs_info->balance_lock);
2239	mutex_init(&fs_info->balance_mutex);
2240	atomic_set(&fs_info->balance_running, 0);
2241	atomic_set(&fs_info->balance_pause_req, 0);
2242	atomic_set(&fs_info->balance_cancel_req, 0);
2243	fs_info->balance_ctl = NULL;
2244	init_waitqueue_head(&fs_info->balance_wait_q);
2245}
2246
2247static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2248				   struct btrfs_root *tree_root)
2249{
2250	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2251	set_nlink(fs_info->btree_inode, 1);
2252	/*
2253	 * we set the i_size on the btree inode to the max possible int.
2254	 * the real end of the address space is determined by all of
2255	 * the devices in the system
2256	 */
2257	fs_info->btree_inode->i_size = OFFSET_MAX;
2258	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2259
2260	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2261	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2262			     fs_info->btree_inode->i_mapping);
2263	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2264	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2265
2266	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2267
2268	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2269	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2270	       sizeof(struct btrfs_key));
2271	set_bit(BTRFS_INODE_DUMMY,
2272		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2273	btrfs_insert_inode_hash(fs_info->btree_inode);
2274}
2275
2276static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2277{
2278	fs_info->dev_replace.lock_owner = 0;
2279	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2280	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2281	rwlock_init(&fs_info->dev_replace.lock);
2282	atomic_set(&fs_info->dev_replace.read_locks, 0);
2283	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2284	init_waitqueue_head(&fs_info->replace_wait);
2285	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2286}
2287
2288static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2289{
2290	spin_lock_init(&fs_info->qgroup_lock);
2291	mutex_init(&fs_info->qgroup_ioctl_lock);
2292	fs_info->qgroup_tree = RB_ROOT;
2293	fs_info->qgroup_op_tree = RB_ROOT;
2294	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2295	fs_info->qgroup_seq = 1;
2296	fs_info->quota_enabled = 0;
2297	fs_info->pending_quota_state = 0;
2298	fs_info->qgroup_ulist = NULL;
2299	mutex_init(&fs_info->qgroup_rescan_lock);
2300}
2301
2302static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2303		struct btrfs_fs_devices *fs_devices)
2304{
2305	int max_active = fs_info->thread_pool_size;
2306	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2307
2308	fs_info->workers =
2309		btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2310				      max_active, 16);
2311
2312	fs_info->delalloc_workers =
2313		btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2314
2315	fs_info->flush_workers =
2316		btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2317
2318	fs_info->caching_workers =
2319		btrfs_alloc_workqueue("cache", flags, max_active, 0);
2320
2321	/*
2322	 * a higher idle thresh on the submit workers makes it much more
2323	 * likely that bios will be send down in a sane order to the
2324	 * devices
2325	 */
2326	fs_info->submit_workers =
2327		btrfs_alloc_workqueue("submit", flags,
2328				      min_t(u64, fs_devices->num_devices,
2329					    max_active), 64);
2330
2331	fs_info->fixup_workers =
2332		btrfs_alloc_workqueue("fixup", flags, 1, 0);
2333
2334	/*
2335	 * endios are largely parallel and should have a very
2336	 * low idle thresh
2337	 */
2338	fs_info->endio_workers =
2339		btrfs_alloc_workqueue("endio", flags, max_active, 4);
2340	fs_info->endio_meta_workers =
2341		btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2342	fs_info->endio_meta_write_workers =
2343		btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2344	fs_info->endio_raid56_workers =
2345		btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2346	fs_info->endio_repair_workers =
2347		btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2348	fs_info->rmw_workers =
2349		btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2350	fs_info->endio_write_workers =
2351		btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2352	fs_info->endio_freespace_worker =
2353		btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2354	fs_info->delayed_workers =
2355		btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2356	fs_info->readahead_workers =
2357		btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2358	fs_info->qgroup_rescan_workers =
2359		btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2360	fs_info->extent_workers =
2361		btrfs_alloc_workqueue("extent-refs", flags,
2362				      min_t(u64, fs_devices->num_devices,
2363					    max_active), 8);
2364
2365	if (!(fs_info->workers && fs_info->delalloc_workers &&
2366	      fs_info->submit_workers && fs_info->flush_workers &&
2367	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2368	      fs_info->endio_meta_write_workers &&
2369	      fs_info->endio_repair_workers &&
2370	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2371	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2372	      fs_info->caching_workers && fs_info->readahead_workers &&
2373	      fs_info->fixup_workers && fs_info->delayed_workers &&
2374	      fs_info->extent_workers &&
2375	      fs_info->qgroup_rescan_workers)) {
2376		return -ENOMEM;
2377	}
2378
2379	return 0;
2380}
2381
2382static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2383			    struct btrfs_fs_devices *fs_devices)
2384{
2385	int ret;
2386	struct btrfs_root *tree_root = fs_info->tree_root;
2387	struct btrfs_root *log_tree_root;
2388	struct btrfs_super_block *disk_super = fs_info->super_copy;
2389	u64 bytenr = btrfs_super_log_root(disk_super);
2390
2391	if (fs_devices->rw_devices == 0) {
2392		btrfs_warn(fs_info, "log replay required on RO media");
2393		return -EIO;
2394	}
2395
2396	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2397	if (!log_tree_root)
2398		return -ENOMEM;
2399
2400	__setup_root(tree_root->nodesize, tree_root->sectorsize,
2401			tree_root->stripesize, log_tree_root, fs_info,
2402			BTRFS_TREE_LOG_OBJECTID);
2403
2404	log_tree_root->node = read_tree_block(tree_root, bytenr,
2405			fs_info->generation + 1);
2406	if (IS_ERR(log_tree_root->node)) {
2407		btrfs_warn(fs_info, "failed to read log tree");
2408		ret = PTR_ERR(log_tree_root->node);
2409		kfree(log_tree_root);
2410		return ret;
2411	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2412		btrfs_err(fs_info, "failed to read log tree");
2413		free_extent_buffer(log_tree_root->node);
2414		kfree(log_tree_root);
2415		return -EIO;
2416	}
2417	/* returns with log_tree_root freed on success */
2418	ret = btrfs_recover_log_trees(log_tree_root);
2419	if (ret) {
2420		btrfs_std_error(tree_root->fs_info, ret,
2421			    "Failed to recover log tree");
2422		free_extent_buffer(log_tree_root->node);
2423		kfree(log_tree_root);
2424		return ret;
2425	}
2426
2427	if (fs_info->sb->s_flags & MS_RDONLY) {
2428		ret = btrfs_commit_super(tree_root);
2429		if (ret)
2430			return ret;
2431	}
2432
2433	return 0;
2434}
2435
2436static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2437			    struct btrfs_root *tree_root)
2438{
2439	struct btrfs_root *root;
2440	struct btrfs_key location;
2441	int ret;
2442
2443	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2444	location.type = BTRFS_ROOT_ITEM_KEY;
2445	location.offset = 0;
2446
2447	root = btrfs_read_tree_root(tree_root, &location);
2448	if (IS_ERR(root))
2449		return PTR_ERR(root);
2450	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2451	fs_info->extent_root = root;
2452
2453	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2454	root = btrfs_read_tree_root(tree_root, &location);
2455	if (IS_ERR(root))
2456		return PTR_ERR(root);
2457	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2458	fs_info->dev_root = root;
2459	btrfs_init_devices_late(fs_info);
2460
2461	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2462	root = btrfs_read_tree_root(tree_root, &location);
2463	if (IS_ERR(root))
2464		return PTR_ERR(root);
2465	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2466	fs_info->csum_root = root;
2467
2468	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2469	root = btrfs_read_tree_root(tree_root, &location);
2470	if (!IS_ERR(root)) {
2471		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2472		fs_info->quota_enabled = 1;
2473		fs_info->pending_quota_state = 1;
2474		fs_info->quota_root = root;
2475	}
2476
2477	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2478	root = btrfs_read_tree_root(tree_root, &location);
2479	if (IS_ERR(root)) {
2480		ret = PTR_ERR(root);
2481		if (ret != -ENOENT)
2482			return ret;
2483	} else {
2484		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2485		fs_info->uuid_root = root;
2486	}
2487
2488	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2489		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2490		root = btrfs_read_tree_root(tree_root, &location);
2491		if (IS_ERR(root))
2492			return PTR_ERR(root);
2493		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2494		fs_info->free_space_root = root;
2495	}
2496
2497	return 0;
2498}
2499
2500int open_ctree(struct super_block *sb,
2501	       struct btrfs_fs_devices *fs_devices,
2502	       char *options)
2503{
2504	u32 sectorsize;
2505	u32 nodesize;
 
 
2506	u32 stripesize;
2507	u64 generation;
2508	u64 features;
2509	struct btrfs_key location;
2510	struct buffer_head *bh;
2511	struct btrfs_super_block *disk_super;
2512	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2513	struct btrfs_root *tree_root;
 
 
2514	struct btrfs_root *chunk_root;
 
 
2515	int ret;
2516	int err = -EINVAL;
2517	int num_backups_tried = 0;
2518	int backup_index = 0;
2519	int max_active;
2520
2521	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2522	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2523	if (!tree_root || !chunk_root) {
 
 
 
 
 
2524		err = -ENOMEM;
2525		goto fail;
2526	}
2527
2528	ret = init_srcu_struct(&fs_info->subvol_srcu);
2529	if (ret) {
2530		err = ret;
2531		goto fail;
2532	}
2533
2534	ret = setup_bdi(fs_info, &fs_info->bdi);
2535	if (ret) {
2536		err = ret;
2537		goto fail_srcu;
2538	}
2539
2540	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2541	if (ret) {
2542		err = ret;
2543		goto fail_bdi;
2544	}
2545	fs_info->dirty_metadata_batch = PAGE_SIZE *
2546					(1 + ilog2(nr_cpu_ids));
2547
2548	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2549	if (ret) {
2550		err = ret;
2551		goto fail_dirty_metadata_bytes;
2552	}
2553
2554	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2555	if (ret) {
2556		err = ret;
2557		goto fail_delalloc_bytes;
2558	}
2559
2560	fs_info->btree_inode = new_inode(sb);
2561	if (!fs_info->btree_inode) {
2562		err = -ENOMEM;
2563		goto fail_bio_counter;
2564	}
2565
2566	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2567
2568	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2569	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2570	INIT_LIST_HEAD(&fs_info->trans_list);
2571	INIT_LIST_HEAD(&fs_info->dead_roots);
2572	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2573	INIT_LIST_HEAD(&fs_info->delalloc_roots);
 
 
2574	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2575	spin_lock_init(&fs_info->delalloc_root_lock);
2576	spin_lock_init(&fs_info->trans_lock);
 
2577	spin_lock_init(&fs_info->fs_roots_radix_lock);
2578	spin_lock_init(&fs_info->delayed_iput_lock);
2579	spin_lock_init(&fs_info->defrag_inodes_lock);
2580	spin_lock_init(&fs_info->free_chunk_lock);
2581	spin_lock_init(&fs_info->tree_mod_seq_lock);
2582	spin_lock_init(&fs_info->super_lock);
2583	spin_lock_init(&fs_info->qgroup_op_lock);
2584	spin_lock_init(&fs_info->buffer_lock);
2585	spin_lock_init(&fs_info->unused_bgs_lock);
2586	rwlock_init(&fs_info->tree_mod_log_lock);
2587	mutex_init(&fs_info->unused_bg_unpin_mutex);
2588	mutex_init(&fs_info->delete_unused_bgs_mutex);
2589	mutex_init(&fs_info->reloc_mutex);
2590	mutex_init(&fs_info->delalloc_root_mutex);
2591	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2592	seqlock_init(&fs_info->profiles_lock);
2593
 
2594	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2595	INIT_LIST_HEAD(&fs_info->space_info);
2596	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2597	INIT_LIST_HEAD(&fs_info->unused_bgs);
2598	btrfs_mapping_init(&fs_info->mapping_tree);
2599	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2600			     BTRFS_BLOCK_RSV_GLOBAL);
2601	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2602			     BTRFS_BLOCK_RSV_DELALLOC);
2603	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2604	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2605	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2606	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2607			     BTRFS_BLOCK_RSV_DELOPS);
2608	atomic_set(&fs_info->nr_async_submits, 0);
2609	atomic_set(&fs_info->async_delalloc_pages, 0);
2610	atomic_set(&fs_info->async_submit_draining, 0);
2611	atomic_set(&fs_info->nr_async_bios, 0);
2612	atomic_set(&fs_info->defrag_running, 0);
2613	atomic_set(&fs_info->qgroup_op_seq, 0);
2614	atomic_set(&fs_info->reada_works_cnt, 0);
2615	atomic64_set(&fs_info->tree_mod_seq, 0);
2616	fs_info->sb = sb;
2617	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2618	fs_info->metadata_ratio = 0;
2619	fs_info->defrag_inodes = RB_ROOT;
 
2620	fs_info->free_chunk_space = 0;
2621	fs_info->tree_mod_log = RB_ROOT;
2622	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2623	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2624	/* readahead state */
2625	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2626	spin_lock_init(&fs_info->reada_lock);
2627
2628	fs_info->thread_pool_size = min_t(unsigned long,
2629					  num_online_cpus() + 2, 8);
2630
2631	INIT_LIST_HEAD(&fs_info->ordered_roots);
2632	spin_lock_init(&fs_info->ordered_root_lock);
2633	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2634					GFP_KERNEL);
2635	if (!fs_info->delayed_root) {
2636		err = -ENOMEM;
2637		goto fail_iput;
2638	}
2639	btrfs_init_delayed_root(fs_info->delayed_root);
2640
2641	btrfs_init_scrub(fs_info);
 
 
 
 
 
 
 
2642#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2643	fs_info->check_integrity_print_mask = 0;
2644#endif
2645	btrfs_init_balance(fs_info);
2646	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
 
 
 
 
 
 
2647
2648	sb->s_blocksize = 4096;
2649	sb->s_blocksize_bits = blksize_bits(4096);
2650	sb->s_bdi = &fs_info->bdi;
2651
2652	btrfs_init_btree_inode(fs_info, tree_root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2653
2654	spin_lock_init(&fs_info->block_group_cache_lock);
2655	fs_info->block_group_cache_tree = RB_ROOT;
2656	fs_info->first_logical_byte = (u64)-1;
2657
2658	extent_io_tree_init(&fs_info->freed_extents[0],
2659			     fs_info->btree_inode->i_mapping);
2660	extent_io_tree_init(&fs_info->freed_extents[1],
2661			     fs_info->btree_inode->i_mapping);
2662	fs_info->pinned_extents = &fs_info->freed_extents[0];
2663	fs_info->do_barriers = 1;
2664
2665
2666	mutex_init(&fs_info->ordered_operations_mutex);
2667	mutex_init(&fs_info->tree_log_mutex);
2668	mutex_init(&fs_info->chunk_mutex);
2669	mutex_init(&fs_info->transaction_kthread_mutex);
2670	mutex_init(&fs_info->cleaner_mutex);
2671	mutex_init(&fs_info->volume_mutex);
2672	mutex_init(&fs_info->ro_block_group_mutex);
2673	init_rwsem(&fs_info->commit_root_sem);
2674	init_rwsem(&fs_info->cleanup_work_sem);
2675	init_rwsem(&fs_info->subvol_sem);
2676	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2677
2678	btrfs_init_dev_replace_locks(fs_info);
2679	btrfs_init_qgroup(fs_info);
2680
2681	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2682	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2683
2684	init_waitqueue_head(&fs_info->transaction_throttle);
2685	init_waitqueue_head(&fs_info->transaction_wait);
2686	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2687	init_waitqueue_head(&fs_info->async_submit_wait);
2688
2689	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2690
2691	ret = btrfs_alloc_stripe_hash_table(fs_info);
2692	if (ret) {
2693		err = ret;
2694		goto fail_alloc;
2695	}
2696
2697	__setup_root(4096, 4096, 4096, tree_root,
2698		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2699
2700	invalidate_bdev(fs_devices->latest_bdev);
2701
2702	/*
2703	 * Read super block and check the signature bytes only
2704	 */
2705	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2706	if (IS_ERR(bh)) {
2707		err = PTR_ERR(bh);
2708		goto fail_alloc;
2709	}
2710
2711	/*
2712	 * We want to check superblock checksum, the type is stored inside.
2713	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2714	 */
2715	if (btrfs_check_super_csum(bh->b_data)) {
2716		printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2717		err = -EINVAL;
2718		brelse(bh);
2719		goto fail_alloc;
2720	}
2721
2722	/*
2723	 * super_copy is zeroed at allocation time and we never touch the
2724	 * following bytes up to INFO_SIZE, the checksum is calculated from
2725	 * the whole block of INFO_SIZE
2726	 */
2727	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2728	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2729	       sizeof(*fs_info->super_for_commit));
2730	brelse(bh);
2731
2732	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2733
2734	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2735	if (ret) {
2736		printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2737		err = -EINVAL;
2738		goto fail_alloc;
2739	}
2740
2741	disk_super = fs_info->super_copy;
2742	if (!btrfs_super_root(disk_super))
2743		goto fail_alloc;
2744
2745	/* check FS state, whether FS is broken. */
2746	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2747		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
 
 
 
 
 
 
2748
2749	/*
2750	 * run through our array of backup supers and setup
2751	 * our ring pointer to the oldest one
2752	 */
2753	generation = btrfs_super_generation(disk_super);
2754	find_oldest_super_backup(fs_info, generation);
2755
2756	/*
2757	 * In the long term, we'll store the compression type in the super
2758	 * block, and it'll be used for per file compression control.
2759	 */
2760	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2761
2762	ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2763	if (ret) {
2764		err = ret;
2765		goto fail_alloc;
2766	}
2767
2768	features = btrfs_super_incompat_flags(disk_super) &
2769		~BTRFS_FEATURE_INCOMPAT_SUPP;
2770	if (features) {
2771		printk(KERN_ERR "BTRFS: couldn't mount because of "
2772		       "unsupported optional features (%Lx).\n",
2773		       features);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2774		err = -EINVAL;
2775		goto fail_alloc;
2776	}
2777
2778	features = btrfs_super_incompat_flags(disk_super);
2779	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2780	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2781		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2782
2783	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2784		printk(KERN_INFO "BTRFS: has skinny extents\n");
2785
2786	/*
2787	 * flag our filesystem as having big metadata blocks if
2788	 * they are bigger than the page size
2789	 */
2790	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2791		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2792			printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2793		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2794	}
2795
2796	nodesize = btrfs_super_nodesize(disk_super);
 
2797	sectorsize = btrfs_super_sectorsize(disk_super);
2798	stripesize = btrfs_super_stripesize(disk_super);
2799	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2800	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2801
2802	/*
2803	 * mixed block groups end up with duplicate but slightly offset
2804	 * extent buffers for the same range.  It leads to corruptions
2805	 */
2806	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2807	    (sectorsize != nodesize)) {
2808		printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2809				"are not allowed for mixed block groups on %s\n",
2810				sb->s_id);
2811		goto fail_alloc;
2812	}
2813
2814	/*
2815	 * Needn't use the lock because there is no other task which will
2816	 * update the flag.
2817	 */
2818	btrfs_set_super_incompat_flags(disk_super, features);
2819
2820	features = btrfs_super_compat_ro_flags(disk_super) &
2821		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2822	if (!(sb->s_flags & MS_RDONLY) && features) {
2823		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2824		       "unsupported option features (%Lx).\n",
2825		       features);
2826		err = -EINVAL;
2827		goto fail_alloc;
2828	}
2829
2830	max_active = fs_info->thread_pool_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2831
2832	ret = btrfs_init_workqueues(fs_info, fs_devices);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2833	if (ret) {
2834		err = ret;
2835		goto fail_sb_buffer;
2836	}
2837
2838	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2839	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2840				    SZ_4M / PAGE_SIZE);
2841
2842	tree_root->nodesize = nodesize;
 
2843	tree_root->sectorsize = sectorsize;
2844	tree_root->stripesize = stripesize;
2845
2846	sb->s_blocksize = sectorsize;
2847	sb->s_blocksize_bits = blksize_bits(sectorsize);
2848
 
 
 
 
 
 
 
 
 
 
 
 
2849	mutex_lock(&fs_info->chunk_mutex);
2850	ret = btrfs_read_sys_array(tree_root);
2851	mutex_unlock(&fs_info->chunk_mutex);
2852	if (ret) {
2853		printk(KERN_ERR "BTRFS: failed to read the system "
2854		       "array on %s\n", sb->s_id);
2855		goto fail_sb_buffer;
2856	}
2857
 
 
2858	generation = btrfs_super_chunk_root_generation(disk_super);
2859
2860	__setup_root(nodesize, sectorsize, stripesize, chunk_root,
2861		     fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2862
2863	chunk_root->node = read_tree_block(chunk_root,
2864					   btrfs_super_chunk_root(disk_super),
2865					   generation);
2866	if (IS_ERR(chunk_root->node) ||
2867	    !extent_buffer_uptodate(chunk_root->node)) {
2868		printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2869		       sb->s_id);
2870		if (!IS_ERR(chunk_root->node))
2871			free_extent_buffer(chunk_root->node);
2872		chunk_root->node = NULL;
2873		goto fail_tree_roots;
2874	}
2875	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2876	chunk_root->commit_root = btrfs_root_node(chunk_root);
2877
2878	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2879	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
 
2880
2881	ret = btrfs_read_chunk_tree(chunk_root);
2882	if (ret) {
2883		printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2884		       sb->s_id);
2885		goto fail_tree_roots;
2886	}
2887
2888	/*
2889	 * keep the device that is marked to be the target device for the
2890	 * dev_replace procedure
2891	 */
2892	btrfs_close_extra_devices(fs_devices, 0);
2893
2894	if (!fs_devices->latest_bdev) {
2895		printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2896		       sb->s_id);
2897		goto fail_tree_roots;
2898	}
2899
2900retry_root_backup:
 
 
2901	generation = btrfs_super_generation(disk_super);
2902
2903	tree_root->node = read_tree_block(tree_root,
2904					  btrfs_super_root(disk_super),
2905					  generation);
2906	if (IS_ERR(tree_root->node) ||
2907	    !extent_buffer_uptodate(tree_root->node)) {
2908		printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2909		       sb->s_id);
2910		if (!IS_ERR(tree_root->node))
2911			free_extent_buffer(tree_root->node);
2912		tree_root->node = NULL;
2913		goto recovery_tree_root;
2914	}
2915
2916	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2917	tree_root->commit_root = btrfs_root_node(tree_root);
2918	btrfs_set_root_refs(&tree_root->root_item, 1);
2919
2920	mutex_lock(&tree_root->objectid_mutex);
2921	ret = btrfs_find_highest_objectid(tree_root,
2922					&tree_root->highest_objectid);
2923	if (ret) {
2924		mutex_unlock(&tree_root->objectid_mutex);
2925		goto recovery_tree_root;
2926	}
2927
2928	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2929
2930	mutex_unlock(&tree_root->objectid_mutex);
 
 
2931
2932	ret = btrfs_read_roots(fs_info, tree_root);
 
2933	if (ret)
2934		goto recovery_tree_root;
 
2935
2936	fs_info->generation = generation;
2937	fs_info->last_trans_committed = generation;
2938
2939	ret = btrfs_recover_balance(fs_info);
2940	if (ret) {
2941		printk(KERN_ERR "BTRFS: failed to recover balance\n");
2942		goto fail_block_groups;
2943	}
2944
2945	ret = btrfs_init_dev_stats(fs_info);
2946	if (ret) {
2947		printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2948		       ret);
2949		goto fail_block_groups;
2950	}
2951
2952	ret = btrfs_init_dev_replace(fs_info);
2953	if (ret) {
2954		pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2955		goto fail_block_groups;
2956	}
2957
2958	btrfs_close_extra_devices(fs_devices, 1);
2959
2960	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2961	if (ret) {
2962		pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2963		goto fail_block_groups;
2964	}
2965
2966	ret = btrfs_sysfs_add_device(fs_devices);
2967	if (ret) {
2968		pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2969		goto fail_fsdev_sysfs;
2970	}
2971
2972	ret = btrfs_sysfs_add_mounted(fs_info);
2973	if (ret) {
2974		pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2975		goto fail_fsdev_sysfs;
2976	}
2977
2978	ret = btrfs_init_space_info(fs_info);
2979	if (ret) {
2980		printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2981		goto fail_sysfs;
2982	}
2983
2984	ret = btrfs_read_block_groups(fs_info->extent_root);
2985	if (ret) {
2986		printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2987		goto fail_sysfs;
2988	}
2989	fs_info->num_tolerated_disk_barrier_failures =
2990		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2991	if (fs_info->fs_devices->missing_devices >
2992	     fs_info->num_tolerated_disk_barrier_failures &&
2993	    !(sb->s_flags & MS_RDONLY)) {
2994		pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2995			fs_info->fs_devices->missing_devices,
2996			fs_info->num_tolerated_disk_barrier_failures);
2997		goto fail_sysfs;
2998	}
2999
3000	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3001					       "btrfs-cleaner");
3002	if (IS_ERR(fs_info->cleaner_kthread))
3003		goto fail_sysfs;
3004
3005	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3006						   tree_root,
3007						   "btrfs-transaction");
3008	if (IS_ERR(fs_info->transaction_kthread))
3009		goto fail_cleaner;
3010
3011	if (!btrfs_test_opt(tree_root, SSD) &&
3012	    !btrfs_test_opt(tree_root, NOSSD) &&
3013	    !fs_info->fs_devices->rotating) {
3014		printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
3015		       "mode\n");
3016		btrfs_set_opt(fs_info->mount_opt, SSD);
3017	}
3018
3019	/*
3020	 * Mount does not set all options immediatelly, we can do it now and do
3021	 * not have to wait for transaction commit
3022	 */
3023	btrfs_apply_pending_changes(fs_info);
3024
3025#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3026	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3027		ret = btrfsic_mount(tree_root, fs_devices,
3028				    btrfs_test_opt(tree_root,
3029					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3030				    1 : 0,
3031				    fs_info->check_integrity_print_mask);
3032		if (ret)
3033			printk(KERN_WARNING "BTRFS: failed to initialize"
3034			       " integrity check module %s\n", sb->s_id);
3035	}
3036#endif
3037	ret = btrfs_read_qgroup_config(fs_info);
3038	if (ret)
3039		goto fail_trans_kthread;
3040
3041	/* do not make disk changes in broken FS or nologreplay is given */
3042	if (btrfs_super_log_root(disk_super) != 0 &&
3043	    !btrfs_test_opt(tree_root, NOLOGREPLAY)) {
3044		ret = btrfs_replay_log(fs_info, fs_devices);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3045		if (ret) {
3046			err = ret;
3047			goto fail_qgroup;
 
 
 
 
 
 
 
 
 
3048		}
3049	}
3050
3051	ret = btrfs_find_orphan_roots(tree_root);
3052	if (ret)
3053		goto fail_qgroup;
3054
3055	if (!(sb->s_flags & MS_RDONLY)) {
3056		ret = btrfs_cleanup_fs_roots(fs_info);
3057		if (ret)
3058			goto fail_qgroup;
3059
3060		mutex_lock(&fs_info->cleaner_mutex);
3061		ret = btrfs_recover_relocation(tree_root);
3062		mutex_unlock(&fs_info->cleaner_mutex);
3063		if (ret < 0) {
3064			printk(KERN_WARNING
3065			       "BTRFS: failed to recover relocation\n");
3066			err = -EINVAL;
3067			goto fail_qgroup;
3068		}
3069	}
3070
3071	location.objectid = BTRFS_FS_TREE_OBJECTID;
3072	location.type = BTRFS_ROOT_ITEM_KEY;
3073	location.offset = 0;
3074
3075	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
 
 
3076	if (IS_ERR(fs_info->fs_root)) {
3077		err = PTR_ERR(fs_info->fs_root);
3078		goto fail_qgroup;
3079	}
3080
3081	if (sb->s_flags & MS_RDONLY)
3082		return 0;
3083
3084	if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3085	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3086		pr_info("BTRFS: creating free space tree\n");
3087		ret = btrfs_create_free_space_tree(fs_info);
3088		if (ret) {
3089			pr_warn("BTRFS: failed to create free space tree %d\n",
3090				ret);
3091			close_ctree(tree_root);
3092			return ret;
3093		}
3094	}
3095
3096	down_read(&fs_info->cleanup_work_sem);
3097	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3098	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3099		up_read(&fs_info->cleanup_work_sem);
3100		close_ctree(tree_root);
3101		return ret;
3102	}
3103	up_read(&fs_info->cleanup_work_sem);
3104
3105	ret = btrfs_resume_balance_async(fs_info);
3106	if (ret) {
3107		printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3108		close_ctree(tree_root);
3109		return ret;
3110	}
3111
3112	ret = btrfs_resume_dev_replace_async(fs_info);
3113	if (ret) {
3114		pr_warn("BTRFS: failed to resume dev_replace\n");
3115		close_ctree(tree_root);
3116		return ret;
3117	}
3118
3119	btrfs_qgroup_rescan_resume(fs_info);
3120
3121	if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3122	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3123		pr_info("BTRFS: clearing free space tree\n");
3124		ret = btrfs_clear_free_space_tree(fs_info);
3125		if (ret) {
3126			pr_warn("BTRFS: failed to clear free space tree %d\n",
3127				ret);
3128			close_ctree(tree_root);
3129			return ret;
3130		}
3131	}
3132
3133	if (!fs_info->uuid_root) {
3134		pr_info("BTRFS: creating UUID tree\n");
3135		ret = btrfs_create_uuid_tree(fs_info);
3136		if (ret) {
3137			pr_warn("BTRFS: failed to create the UUID tree %d\n",
3138				ret);
3139			close_ctree(tree_root);
3140			return ret;
3141		}
3142	} else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3143		   fs_info->generation !=
3144				btrfs_super_uuid_tree_generation(disk_super)) {
3145		pr_info("BTRFS: checking UUID tree\n");
3146		ret = btrfs_check_uuid_tree(fs_info);
3147		if (ret) {
3148			pr_warn("BTRFS: failed to check the UUID tree %d\n",
3149				ret);
3150			close_ctree(tree_root);
3151			return ret;
3152		}
3153	} else {
3154		fs_info->update_uuid_tree_gen = 1;
3155	}
3156
3157	fs_info->open = 1;
3158
3159	/*
3160	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3161	 * no need to keep the flag
3162	 */
3163	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3164
3165	return 0;
3166
3167fail_qgroup:
3168	btrfs_free_qgroup_config(fs_info);
3169fail_trans_kthread:
3170	kthread_stop(fs_info->transaction_kthread);
3171	btrfs_cleanup_transaction(fs_info->tree_root);
3172	btrfs_free_fs_roots(fs_info);
3173fail_cleaner:
3174	kthread_stop(fs_info->cleaner_kthread);
3175
3176	/*
3177	 * make sure we're done with the btree inode before we stop our
3178	 * kthreads
3179	 */
3180	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3181
3182fail_sysfs:
3183	btrfs_sysfs_remove_mounted(fs_info);
3184
3185fail_fsdev_sysfs:
3186	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3187
3188fail_block_groups:
3189	btrfs_put_block_group_cache(fs_info);
3190	btrfs_free_block_groups(fs_info);
3191
3192fail_tree_roots:
3193	free_root_pointers(fs_info, 1);
3194	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3195
3196fail_sb_buffer:
3197	btrfs_stop_all_workers(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
3198fail_alloc:
3199fail_iput:
3200	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3201
 
3202	iput(fs_info->btree_inode);
3203fail_bio_counter:
3204	percpu_counter_destroy(&fs_info->bio_counter);
3205fail_delalloc_bytes:
3206	percpu_counter_destroy(&fs_info->delalloc_bytes);
3207fail_dirty_metadata_bytes:
3208	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3209fail_bdi:
3210	bdi_destroy(&fs_info->bdi);
3211fail_srcu:
3212	cleanup_srcu_struct(&fs_info->subvol_srcu);
3213fail:
3214	btrfs_free_stripe_hash_table(fs_info);
3215	btrfs_close_devices(fs_info->fs_devices);
3216	return err;
3217
3218recovery_tree_root:
3219	if (!btrfs_test_opt(tree_root, USEBACKUPROOT))
3220		goto fail_tree_roots;
3221
3222	free_root_pointers(fs_info, 0);
3223
3224	/* don't use the log in recovery mode, it won't be valid */
3225	btrfs_set_super_log_root(disk_super, 0);
3226
3227	/* we can't trust the free space cache either */
3228	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3229
3230	ret = next_root_backup(fs_info, fs_info->super_copy,
3231			       &num_backups_tried, &backup_index);
3232	if (ret == -1)
3233		goto fail_block_groups;
3234	goto retry_root_backup;
3235}
3236
3237static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3238{
3239	if (uptodate) {
3240		set_buffer_uptodate(bh);
3241	} else {
3242		struct btrfs_device *device = (struct btrfs_device *)
3243			bh->b_private;
3244
3245		btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3246				"lost page write due to IO error on %s",
3247					  rcu_str_deref(device->name));
3248		/* note, we dont' set_buffer_write_io_error because we have
3249		 * our own ways of dealing with the IO errors
3250		 */
3251		clear_buffer_uptodate(bh);
3252		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3253	}
3254	unlock_buffer(bh);
3255	put_bh(bh);
3256}
3257
3258int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3259			struct buffer_head **bh_ret)
3260{
3261	struct buffer_head *bh;
3262	struct btrfs_super_block *super;
3263	u64 bytenr;
3264
3265	bytenr = btrfs_sb_offset(copy_num);
3266	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3267		return -EINVAL;
3268
3269	bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3270	/*
3271	 * If we fail to read from the underlying devices, as of now
3272	 * the best option we have is to mark it EIO.
3273	 */
3274	if (!bh)
3275		return -EIO;
3276
3277	super = (struct btrfs_super_block *)bh->b_data;
3278	if (btrfs_super_bytenr(super) != bytenr ||
3279		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3280		brelse(bh);
3281		return -EINVAL;
3282	}
3283
3284	*bh_ret = bh;
3285	return 0;
3286}
3287
3288
3289struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3290{
3291	struct buffer_head *bh;
3292	struct buffer_head *latest = NULL;
3293	struct btrfs_super_block *super;
3294	int i;
3295	u64 transid = 0;
3296	int ret = -EINVAL;
3297
3298	/* we would like to check all the supers, but that would make
3299	 * a btrfs mount succeed after a mkfs from a different FS.
3300	 * So, we need to add a special mount option to scan for
3301	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3302	 */
3303	for (i = 0; i < 1; i++) {
3304		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3305		if (ret)
 
 
 
3306			continue;
3307
3308		super = (struct btrfs_super_block *)bh->b_data;
 
 
 
 
 
 
3309
3310		if (!latest || btrfs_super_generation(super) > transid) {
3311			brelse(latest);
3312			latest = bh;
3313			transid = btrfs_super_generation(super);
3314		} else {
3315			brelse(bh);
3316		}
3317	}
3318
3319	if (!latest)
3320		return ERR_PTR(ret);
3321
3322	return latest;
3323}
3324
3325/*
3326 * this should be called twice, once with wait == 0 and
3327 * once with wait == 1.  When wait == 0 is done, all the buffer heads
3328 * we write are pinned.
3329 *
3330 * They are released when wait == 1 is done.
3331 * max_mirrors must be the same for both runs, and it indicates how
3332 * many supers on this one device should be written.
3333 *
3334 * max_mirrors == 0 means to write them all.
3335 */
3336static int write_dev_supers(struct btrfs_device *device,
3337			    struct btrfs_super_block *sb,
3338			    int do_barriers, int wait, int max_mirrors)
3339{
3340	struct buffer_head *bh;
3341	int i;
3342	int ret;
3343	int errors = 0;
3344	u32 crc;
3345	u64 bytenr;
3346
3347	if (max_mirrors == 0)
3348		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3349
3350	for (i = 0; i < max_mirrors; i++) {
3351		bytenr = btrfs_sb_offset(i);
3352		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3353		    device->commit_total_bytes)
3354			break;
3355
3356		if (wait) {
3357			bh = __find_get_block(device->bdev, bytenr / 4096,
3358					      BTRFS_SUPER_INFO_SIZE);
3359			if (!bh) {
3360				errors++;
3361				continue;
3362			}
3363			wait_on_buffer(bh);
3364			if (!buffer_uptodate(bh))
3365				errors++;
3366
3367			/* drop our reference */
3368			brelse(bh);
3369
3370			/* drop the reference from the wait == 0 run */
3371			brelse(bh);
3372			continue;
3373		} else {
3374			btrfs_set_super_bytenr(sb, bytenr);
3375
3376			crc = ~(u32)0;
3377			crc = btrfs_csum_data((char *)sb +
3378					      BTRFS_CSUM_SIZE, crc,
3379					      BTRFS_SUPER_INFO_SIZE -
3380					      BTRFS_CSUM_SIZE);
3381			btrfs_csum_final(crc, sb->csum);
3382
3383			/*
3384			 * one reference for us, and we leave it for the
3385			 * caller
3386			 */
3387			bh = __getblk(device->bdev, bytenr / 4096,
3388				      BTRFS_SUPER_INFO_SIZE);
3389			if (!bh) {
3390				btrfs_err(device->dev_root->fs_info,
3391				    "couldn't get super buffer head for bytenr %llu",
3392				    bytenr);
3393				errors++;
3394				continue;
3395			}
3396
3397			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3398
3399			/* one reference for submit_bh */
3400			get_bh(bh);
3401
3402			set_buffer_uptodate(bh);
3403			lock_buffer(bh);
3404			bh->b_end_io = btrfs_end_buffer_write_sync;
3405			bh->b_private = device;
3406		}
3407
3408		/*
3409		 * we fua the first super.  The others we allow
3410		 * to go down lazy.
3411		 */
3412		if (i == 0)
3413			ret = btrfsic_submit_bh(WRITE_FUA, bh);
3414		else
3415			ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3416		if (ret)
3417			errors++;
3418	}
3419	return errors < i ? 0 : -1;
3420}
3421
3422/*
3423 * endio for the write_dev_flush, this will wake anyone waiting
3424 * for the barrier when it is done
3425 */
3426static void btrfs_end_empty_barrier(struct bio *bio)
3427{
 
 
 
 
 
3428	if (bio->bi_private)
3429		complete(bio->bi_private);
3430	bio_put(bio);
3431}
3432
3433/*
3434 * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3435 * sent down.  With wait == 1, it waits for the previous flush.
3436 *
3437 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3438 * capable
3439 */
3440static int write_dev_flush(struct btrfs_device *device, int wait)
3441{
3442	struct bio *bio;
3443	int ret = 0;
3444
3445	if (device->nobarriers)
3446		return 0;
3447
3448	if (wait) {
3449		bio = device->flush_bio;
3450		if (!bio)
3451			return 0;
3452
3453		wait_for_completion(&device->flush_wait);
3454
3455		if (bio->bi_error) {
3456			ret = bio->bi_error;
3457			btrfs_dev_stat_inc_and_print(device,
3458				BTRFS_DEV_STAT_FLUSH_ERRS);
 
 
 
 
 
 
3459		}
3460
3461		/* drop the reference from the wait == 0 run */
3462		bio_put(bio);
3463		device->flush_bio = NULL;
3464
3465		return ret;
3466	}
3467
3468	/*
3469	 * one reference for us, and we leave it for the
3470	 * caller
3471	 */
3472	device->flush_bio = NULL;
3473	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3474	if (!bio)
3475		return -ENOMEM;
3476
3477	bio->bi_end_io = btrfs_end_empty_barrier;
3478	bio->bi_bdev = device->bdev;
3479	init_completion(&device->flush_wait);
3480	bio->bi_private = &device->flush_wait;
3481	device->flush_bio = bio;
3482
3483	bio_get(bio);
3484	btrfsic_submit_bio(WRITE_FLUSH, bio);
3485
3486	return 0;
3487}
3488
3489/*
3490 * send an empty flush down to each device in parallel,
3491 * then wait for them
3492 */
3493static int barrier_all_devices(struct btrfs_fs_info *info)
3494{
3495	struct list_head *head;
3496	struct btrfs_device *dev;
3497	int errors_send = 0;
3498	int errors_wait = 0;
3499	int ret;
3500
3501	/* send down all the barriers */
3502	head = &info->fs_devices->devices;
3503	list_for_each_entry_rcu(dev, head, dev_list) {
3504		if (dev->missing)
3505			continue;
3506		if (!dev->bdev) {
3507			errors_send++;
3508			continue;
3509		}
3510		if (!dev->in_fs_metadata || !dev->writeable)
3511			continue;
3512
3513		ret = write_dev_flush(dev, 0);
3514		if (ret)
3515			errors_send++;
3516	}
3517
3518	/* wait for all the barriers */
3519	list_for_each_entry_rcu(dev, head, dev_list) {
3520		if (dev->missing)
3521			continue;
3522		if (!dev->bdev) {
3523			errors_wait++;
3524			continue;
3525		}
3526		if (!dev->in_fs_metadata || !dev->writeable)
3527			continue;
3528
3529		ret = write_dev_flush(dev, 1);
3530		if (ret)
3531			errors_wait++;
3532	}
3533	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3534	    errors_wait > info->num_tolerated_disk_barrier_failures)
3535		return -EIO;
3536	return 0;
3537}
3538
3539int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3540{
3541	int raid_type;
3542	int min_tolerated = INT_MAX;
3543
3544	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3545	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3546		min_tolerated = min(min_tolerated,
3547				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3548				    tolerated_failures);
3549
3550	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3551		if (raid_type == BTRFS_RAID_SINGLE)
3552			continue;
3553		if (!(flags & btrfs_raid_group[raid_type]))
3554			continue;
3555		min_tolerated = min(min_tolerated,
3556				    btrfs_raid_array[raid_type].
3557				    tolerated_failures);
3558	}
3559
3560	if (min_tolerated == INT_MAX) {
3561		pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3562		min_tolerated = 0;
3563	}
3564
3565	return min_tolerated;
3566}
3567
3568int btrfs_calc_num_tolerated_disk_barrier_failures(
3569	struct btrfs_fs_info *fs_info)
3570{
3571	struct btrfs_ioctl_space_info space;
3572	struct btrfs_space_info *sinfo;
3573	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3574		       BTRFS_BLOCK_GROUP_SYSTEM,
3575		       BTRFS_BLOCK_GROUP_METADATA,
3576		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3577	int i;
3578	int c;
3579	int num_tolerated_disk_barrier_failures =
3580		(int)fs_info->fs_devices->num_devices;
3581
3582	for (i = 0; i < ARRAY_SIZE(types); i++) {
3583		struct btrfs_space_info *tmp;
3584
3585		sinfo = NULL;
3586		rcu_read_lock();
3587		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3588			if (tmp->flags == types[i]) {
3589				sinfo = tmp;
3590				break;
3591			}
3592		}
3593		rcu_read_unlock();
3594
3595		if (!sinfo)
3596			continue;
3597
3598		down_read(&sinfo->groups_sem);
3599		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3600			u64 flags;
3601
3602			if (list_empty(&sinfo->block_groups[c]))
3603				continue;
3604
3605			btrfs_get_block_group_info(&sinfo->block_groups[c],
3606						   &space);
3607			if (space.total_bytes == 0 || space.used_bytes == 0)
3608				continue;
3609			flags = space.flags;
3610
3611			num_tolerated_disk_barrier_failures = min(
3612				num_tolerated_disk_barrier_failures,
3613				btrfs_get_num_tolerated_disk_barrier_failures(
3614					flags));
3615		}
3616		up_read(&sinfo->groups_sem);
3617	}
3618
3619	return num_tolerated_disk_barrier_failures;
3620}
3621
3622static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3623{
3624	struct list_head *head;
3625	struct btrfs_device *dev;
3626	struct btrfs_super_block *sb;
3627	struct btrfs_dev_item *dev_item;
3628	int ret;
3629	int do_barriers;
3630	int max_errors;
3631	int total_errors = 0;
3632	u64 flags;
3633
 
3634	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3635	backup_super_roots(root->fs_info);
3636
3637	sb = root->fs_info->super_for_commit;
3638	dev_item = &sb->dev_item;
3639
3640	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3641	head = &root->fs_info->fs_devices->devices;
3642	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3643
3644	if (do_barriers) {
3645		ret = barrier_all_devices(root->fs_info);
3646		if (ret) {
3647			mutex_unlock(
3648				&root->fs_info->fs_devices->device_list_mutex);
3649			btrfs_std_error(root->fs_info, ret,
3650				    "errors while submitting device barriers.");
3651			return ret;
3652		}
3653	}
3654
3655	list_for_each_entry_rcu(dev, head, dev_list) {
3656		if (!dev->bdev) {
3657			total_errors++;
3658			continue;
3659		}
3660		if (!dev->in_fs_metadata || !dev->writeable)
3661			continue;
3662
3663		btrfs_set_stack_device_generation(dev_item, 0);
3664		btrfs_set_stack_device_type(dev_item, dev->type);
3665		btrfs_set_stack_device_id(dev_item, dev->devid);
3666		btrfs_set_stack_device_total_bytes(dev_item,
3667						   dev->commit_total_bytes);
3668		btrfs_set_stack_device_bytes_used(dev_item,
3669						  dev->commit_bytes_used);
3670		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3671		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3672		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3673		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3674		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3675
3676		flags = btrfs_super_flags(sb);
3677		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3678
3679		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3680		if (ret)
3681			total_errors++;
3682	}
3683	if (total_errors > max_errors) {
3684		btrfs_err(root->fs_info, "%d errors while writing supers",
3685		       total_errors);
3686		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3687
3688		/* FUA is masked off if unsupported and can't be the reason */
3689		btrfs_std_error(root->fs_info, -EIO,
3690			    "%d errors while writing supers", total_errors);
3691		return -EIO;
3692	}
3693
3694	total_errors = 0;
3695	list_for_each_entry_rcu(dev, head, dev_list) {
3696		if (!dev->bdev)
3697			continue;
3698		if (!dev->in_fs_metadata || !dev->writeable)
3699			continue;
3700
3701		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3702		if (ret)
3703			total_errors++;
3704	}
3705	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3706	if (total_errors > max_errors) {
3707		btrfs_std_error(root->fs_info, -EIO,
3708			    "%d errors while writing supers", total_errors);
3709		return -EIO;
3710	}
3711	return 0;
3712}
3713
3714int write_ctree_super(struct btrfs_trans_handle *trans,
3715		      struct btrfs_root *root, int max_mirrors)
3716{
3717	return write_all_supers(root, max_mirrors);
 
 
 
3718}
3719
3720/* Drop a fs root from the radix tree and free it. */
3721void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3722				  struct btrfs_root *root)
3723{
3724	spin_lock(&fs_info->fs_roots_radix_lock);
3725	radix_tree_delete(&fs_info->fs_roots_radix,
3726			  (unsigned long)root->root_key.objectid);
3727	spin_unlock(&fs_info->fs_roots_radix_lock);
3728
3729	if (btrfs_root_refs(&root->root_item) == 0)
3730		synchronize_srcu(&fs_info->subvol_srcu);
3731
3732	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3733		btrfs_free_log(NULL, root);
3734
3735	if (root->free_ino_pinned)
3736		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3737	if (root->free_ino_ctl)
3738		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3739	free_fs_root(root);
3740}
3741
3742static void free_fs_root(struct btrfs_root *root)
3743{
3744	iput(root->ino_cache_inode);
3745	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3746	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3747	root->orphan_block_rsv = NULL;
3748	if (root->anon_dev)
3749		free_anon_bdev(root->anon_dev);
3750	if (root->subv_writers)
3751		btrfs_free_subvolume_writers(root->subv_writers);
3752	free_extent_buffer(root->node);
3753	free_extent_buffer(root->commit_root);
3754	kfree(root->free_ino_ctl);
3755	kfree(root->free_ino_pinned);
3756	kfree(root->name);
3757	btrfs_put_fs_root(root);
3758}
3759
3760void btrfs_free_fs_root(struct btrfs_root *root)
3761{
3762	free_fs_root(root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3763}
3764
3765int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3766{
3767	u64 root_objectid = 0;
3768	struct btrfs_root *gang[8];
3769	int i = 0;
3770	int err = 0;
3771	unsigned int ret = 0;
3772	int index;
3773
3774	while (1) {
3775		index = srcu_read_lock(&fs_info->subvol_srcu);
3776		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3777					     (void **)gang, root_objectid,
3778					     ARRAY_SIZE(gang));
3779		if (!ret) {
3780			srcu_read_unlock(&fs_info->subvol_srcu, index);
3781			break;
3782		}
3783		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3784
3785		for (i = 0; i < ret; i++) {
3786			/* Avoid to grab roots in dead_roots */
3787			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3788				gang[i] = NULL;
3789				continue;
3790			}
3791			/* grab all the search result for later use */
3792			gang[i] = btrfs_grab_fs_root(gang[i]);
3793		}
3794		srcu_read_unlock(&fs_info->subvol_srcu, index);
3795
3796		for (i = 0; i < ret; i++) {
3797			if (!gang[i])
3798				continue;
3799			root_objectid = gang[i]->root_key.objectid;
3800			err = btrfs_orphan_cleanup(gang[i]);
3801			if (err)
3802				break;
3803			btrfs_put_fs_root(gang[i]);
3804		}
3805		root_objectid++;
3806	}
3807
3808	/* release the uncleaned roots due to error */
3809	for (; i < ret; i++) {
3810		if (gang[i])
3811			btrfs_put_fs_root(gang[i]);
3812	}
3813	return err;
3814}
3815
3816int btrfs_commit_super(struct btrfs_root *root)
3817{
3818	struct btrfs_trans_handle *trans;
 
3819
3820	mutex_lock(&root->fs_info->cleaner_mutex);
3821	btrfs_run_delayed_iputs(root);
 
3822	mutex_unlock(&root->fs_info->cleaner_mutex);
3823	wake_up_process(root->fs_info->cleaner_kthread);
3824
3825	/* wait until ongoing cleanup work done */
3826	down_write(&root->fs_info->cleanup_work_sem);
3827	up_write(&root->fs_info->cleanup_work_sem);
3828
3829	trans = btrfs_join_transaction(root);
3830	if (IS_ERR(trans))
3831		return PTR_ERR(trans);
3832	return btrfs_commit_transaction(trans, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3833}
3834
3835void close_ctree(struct btrfs_root *root)
3836{
3837	struct btrfs_fs_info *fs_info = root->fs_info;
3838	int ret;
3839
3840	fs_info->closing = 1;
3841	smp_mb();
3842
3843	/* wait for the qgroup rescan worker to stop */
3844	btrfs_qgroup_wait_for_completion(fs_info);
3845
3846	/* wait for the uuid_scan task to finish */
3847	down(&fs_info->uuid_tree_rescan_sem);
3848	/* avoid complains from lockdep et al., set sem back to initial state */
3849	up(&fs_info->uuid_tree_rescan_sem);
3850
3851	/* pause restriper - we want to resume on mount */
3852	btrfs_pause_balance(fs_info);
3853
3854	btrfs_dev_replace_suspend_for_unmount(fs_info);
3855
3856	btrfs_scrub_cancel(fs_info);
3857
3858	/* wait for any defraggers to finish */
3859	wait_event(fs_info->transaction_wait,
3860		   (atomic_read(&fs_info->defrag_running) == 0));
3861
3862	/* clear out the rbtree of defraggable inodes */
3863	btrfs_cleanup_defrag_inodes(fs_info);
3864
3865	cancel_work_sync(&fs_info->async_reclaim_work);
3866
 
 
 
 
 
 
 
 
 
 
 
 
 
3867	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3868		/*
3869		 * If the cleaner thread is stopped and there are
3870		 * block groups queued for removal, the deletion will be
3871		 * skipped when we quit the cleaner thread.
3872		 */
3873		btrfs_delete_unused_bgs(root->fs_info);
3874
3875		ret = btrfs_commit_super(root);
 
3876		if (ret)
3877			btrfs_err(fs_info, "commit super ret %d", ret);
3878	}
3879
3880	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3881		btrfs_error_commit_super(root);
3882
3883	kthread_stop(fs_info->transaction_kthread);
3884	kthread_stop(fs_info->cleaner_kthread);
3885
3886	fs_info->closing = 2;
3887	smp_mb();
3888
3889	btrfs_free_qgroup_config(fs_info);
3890
3891	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3892		btrfs_info(fs_info, "at unmount delalloc count %lld",
3893		       percpu_counter_sum(&fs_info->delalloc_bytes));
3894	}
3895
3896	btrfs_sysfs_remove_mounted(fs_info);
3897	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3898
3899	btrfs_free_fs_roots(fs_info);
3900
3901	btrfs_put_block_group_cache(fs_info);
 
 
 
 
 
 
3902
3903	btrfs_free_block_groups(fs_info);
3904
3905	/*
3906	 * we must make sure there is not any read request to
3907	 * submit after we stopping all workers.
3908	 */
3909	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3910	btrfs_stop_all_workers(fs_info);
3911
3912	fs_info->open = 0;
3913	free_root_pointers(fs_info, 1);
3914
3915	iput(fs_info->btree_inode);
 
 
 
 
 
 
 
 
 
 
 
 
3916
3917#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3918	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3919		btrfsic_unmount(root, fs_info->fs_devices);
3920#endif
3921
3922	btrfs_close_devices(fs_info->fs_devices);
3923	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3924
3925	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3926	percpu_counter_destroy(&fs_info->delalloc_bytes);
3927	percpu_counter_destroy(&fs_info->bio_counter);
3928	bdi_destroy(&fs_info->bdi);
3929	cleanup_srcu_struct(&fs_info->subvol_srcu);
3930
3931	btrfs_free_stripe_hash_table(fs_info);
3932
3933	__btrfs_free_block_rsv(root->orphan_block_rsv);
3934	root->orphan_block_rsv = NULL;
3935
3936	lock_chunks(root);
3937	while (!list_empty(&fs_info->pinned_chunks)) {
3938		struct extent_map *em;
3939
3940		em = list_first_entry(&fs_info->pinned_chunks,
3941				      struct extent_map, list);
3942		list_del_init(&em->list);
3943		free_extent_map(em);
3944	}
3945	unlock_chunks(root);
3946}
3947
3948int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3949			  int atomic)
3950{
3951	int ret;
3952	struct inode *btree_inode = buf->pages[0]->mapping->host;
3953
3954	ret = extent_buffer_uptodate(buf);
3955	if (!ret)
3956		return ret;
3957
3958	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3959				    parent_transid, atomic);
3960	if (ret == -EAGAIN)
3961		return ret;
3962	return !ret;
3963}
3964
 
 
 
 
 
3965void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3966{
3967	struct btrfs_root *root;
3968	u64 transid = btrfs_header_generation(buf);
3969	int was_dirty;
3970
3971#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3972	/*
3973	 * This is a fast path so only do this check if we have sanity tests
3974	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3975	 * outside of the sanity tests.
3976	 */
3977	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3978		return;
3979#endif
3980	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3981	btrfs_assert_tree_locked(buf);
3982	if (transid != root->fs_info->generation)
3983		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3984		       "found %llu running %llu\n",
3985			buf->start, transid, root->fs_info->generation);
 
 
 
 
3986	was_dirty = set_extent_buffer_dirty(buf);
3987	if (!was_dirty)
3988		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3989				     buf->len,
3990				     root->fs_info->dirty_metadata_batch);
3991#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3992	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3993		btrfs_print_leaf(root, buf);
3994		ASSERT(0);
3995	}
3996#endif
3997}
3998
3999static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4000					int flush_delayed)
4001{
4002	/*
4003	 * looks as though older kernels can get into trouble with
4004	 * this code, they end up stuck in balance_dirty_pages forever
4005	 */
4006	int ret;
 
4007
4008	if (current->flags & PF_MEMALLOC)
4009		return;
4010
4011	if (flush_delayed)
4012		btrfs_balance_delayed_items(root);
 
4013
4014	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4015				     BTRFS_DIRTY_METADATA_THRESH);
4016	if (ret > 0) {
4017		balance_dirty_pages_ratelimited(
4018				   root->fs_info->btree_inode->i_mapping);
4019	}
 
4020}
4021
4022void btrfs_btree_balance_dirty(struct btrfs_root *root)
4023{
4024	__btrfs_btree_balance_dirty(root, 1);
4025}
 
 
 
 
 
 
 
 
 
4026
4027void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4028{
4029	__btrfs_btree_balance_dirty(root, 0);
 
 
4030}
4031
4032int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4033{
4034	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4035	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4036}
4037
4038static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4039			      int read_only)
4040{
4041	struct btrfs_super_block *sb = fs_info->super_copy;
4042	u64 nodesize = btrfs_super_nodesize(sb);
4043	u64 sectorsize = btrfs_super_sectorsize(sb);
4044	int ret = 0;
4045
4046	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4047		printk(KERN_ERR "BTRFS: no valid FS found\n");
4048		ret = -EINVAL;
4049	}
4050	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4051		printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4052				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4053	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4054		printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4055				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4056		ret = -EINVAL;
4057	}
4058	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4059		printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4060				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4061		ret = -EINVAL;
4062	}
4063	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4064		printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4065				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4066		ret = -EINVAL;
4067	}
4068
4069	/*
4070	 * Check sectorsize and nodesize first, other check will need it.
4071	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4072	 */
4073	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4074	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4075		printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4076		ret = -EINVAL;
 
 
 
4077	}
4078	/* Only PAGE SIZE is supported yet */
4079	if (sectorsize != PAGE_SIZE) {
4080		printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4081				sectorsize, PAGE_SIZE);
4082		ret = -EINVAL;
4083	}
4084	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4085	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4086		printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4087		ret = -EINVAL;
4088	}
4089	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4090		printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4091				le32_to_cpu(sb->__unused_leafsize),
4092				nodesize);
4093		ret = -EINVAL;
4094	}
4095
4096	/* Root alignment check */
4097	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4098		printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4099				btrfs_super_root(sb));
4100		ret = -EINVAL;
4101	}
4102	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4103		printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4104				btrfs_super_chunk_root(sb));
4105		ret = -EINVAL;
4106	}
4107	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4108		printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4109				btrfs_super_log_root(sb));
4110		ret = -EINVAL;
4111	}
4112
4113	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4114		printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4115				fs_info->fsid, sb->dev_item.fsid);
4116		ret = -EINVAL;
4117	}
4118
4119	/*
4120	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4121	 * done later
4122	 */
4123	if (btrfs_super_num_devices(sb) > (1UL << 31))
4124		printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4125				btrfs_super_num_devices(sb));
4126	if (btrfs_super_num_devices(sb) == 0) {
4127		printk(KERN_ERR "BTRFS: number of devices is 0\n");
4128		ret = -EINVAL;
4129	}
 
 
4130
4131	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4132		printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4133				btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4134		ret = -EINVAL;
 
 
4135	}
4136
4137	/*
4138	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4139	 * and one chunk
4140	 */
4141	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4142		printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4143				btrfs_super_sys_array_size(sb),
4144				BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4145		ret = -EINVAL;
4146	}
4147	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4148			+ sizeof(struct btrfs_chunk)) {
4149		printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4150				btrfs_super_sys_array_size(sb),
4151				sizeof(struct btrfs_disk_key)
4152				+ sizeof(struct btrfs_chunk));
4153		ret = -EINVAL;
4154	}
4155
4156	/*
4157	 * The generation is a global counter, we'll trust it more than the others
4158	 * but it's still possible that it's the one that's wrong.
4159	 */
4160	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4161		printk(KERN_WARNING
4162			"BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4163			btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4164	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4165	    && btrfs_super_cache_generation(sb) != (u64)-1)
4166		printk(KERN_WARNING
4167			"BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4168			btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4169
4170	return ret;
4171}
4172
4173static void btrfs_error_commit_super(struct btrfs_root *root)
4174{
 
 
4175	mutex_lock(&root->fs_info->cleaner_mutex);
4176	btrfs_run_delayed_iputs(root);
4177	mutex_unlock(&root->fs_info->cleaner_mutex);
4178
4179	down_write(&root->fs_info->cleanup_work_sem);
4180	up_write(&root->fs_info->cleanup_work_sem);
4181
4182	/* cleanup FS via transaction */
4183	btrfs_cleanup_transaction(root);
 
 
 
 
4184}
4185
4186static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4187{
4188	struct btrfs_ordered_extent *ordered;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4189
4190	spin_lock(&root->ordered_extent_lock);
4191	/*
4192	 * This will just short circuit the ordered completion stuff which will
4193	 * make sure the ordered extent gets properly cleaned up.
4194	 */
4195	list_for_each_entry(ordered, &root->ordered_extents,
4196			    root_extent_list)
4197		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4198	spin_unlock(&root->ordered_extent_lock);
4199}
4200
4201static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4202{
4203	struct btrfs_root *root;
4204	struct list_head splice;
 
 
4205
4206	INIT_LIST_HEAD(&splice);
4207
4208	spin_lock(&fs_info->ordered_root_lock);
4209	list_splice_init(&fs_info->ordered_roots, &splice);
 
4210	while (!list_empty(&splice)) {
4211		root = list_first_entry(&splice, struct btrfs_root,
4212					ordered_root);
4213		list_move_tail(&root->ordered_root,
4214			       &fs_info->ordered_roots);
 
 
 
 
 
 
 
 
4215
4216		spin_unlock(&fs_info->ordered_root_lock);
4217		btrfs_destroy_ordered_extents(root);
4218
4219		cond_resched();
4220		spin_lock(&fs_info->ordered_root_lock);
4221	}
4222	spin_unlock(&fs_info->ordered_root_lock);
 
4223}
4224
4225static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4226				      struct btrfs_root *root)
4227{
4228	struct rb_node *node;
4229	struct btrfs_delayed_ref_root *delayed_refs;
4230	struct btrfs_delayed_ref_node *ref;
4231	int ret = 0;
4232
4233	delayed_refs = &trans->delayed_refs;
4234
4235	spin_lock(&delayed_refs->lock);
4236	if (atomic_read(&delayed_refs->num_entries) == 0) {
4237		spin_unlock(&delayed_refs->lock);
4238		btrfs_info(root->fs_info, "delayed_refs has NO entry");
4239		return ret;
4240	}
4241
4242	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4243		struct btrfs_delayed_ref_head *head;
4244		struct btrfs_delayed_ref_node *tmp;
4245		bool pin_bytes = false;
4246
4247		head = rb_entry(node, struct btrfs_delayed_ref_head,
4248				href_node);
4249		if (!mutex_trylock(&head->mutex)) {
4250			atomic_inc(&head->node.refs);
4251			spin_unlock(&delayed_refs->lock);
4252
4253			mutex_lock(&head->mutex);
4254			mutex_unlock(&head->mutex);
4255			btrfs_put_delayed_ref(&head->node);
4256			spin_lock(&delayed_refs->lock);
4257			continue;
4258		}
4259		spin_lock(&head->lock);
4260		list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4261						 list) {
4262			ref->in_tree = 0;
4263			list_del(&ref->list);
4264			atomic_dec(&delayed_refs->num_entries);
4265			btrfs_put_delayed_ref(ref);
4266		}
4267		if (head->must_insert_reserved)
4268			pin_bytes = true;
4269		btrfs_free_delayed_extent_op(head->extent_op);
4270		delayed_refs->num_heads--;
4271		if (head->processing == 0)
4272			delayed_refs->num_heads_ready--;
4273		atomic_dec(&delayed_refs->num_entries);
4274		head->node.in_tree = 0;
4275		rb_erase(&head->href_node, &delayed_refs->href_root);
4276		spin_unlock(&head->lock);
4277		spin_unlock(&delayed_refs->lock);
4278		mutex_unlock(&head->mutex);
4279
4280		if (pin_bytes)
4281			btrfs_pin_extent(root, head->node.bytenr,
4282					 head->node.num_bytes, 1);
4283		btrfs_put_delayed_ref(&head->node);
4284		cond_resched();
4285		spin_lock(&delayed_refs->lock);
4286	}
4287
4288	spin_unlock(&delayed_refs->lock);
4289
4290	return ret;
4291}
4292
4293static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4294{
4295	struct btrfs_inode *btrfs_inode;
4296	struct list_head splice;
4297
4298	INIT_LIST_HEAD(&splice);
4299
4300	spin_lock(&root->delalloc_lock);
4301	list_splice_init(&root->delalloc_inodes, &splice);
4302
4303	while (!list_empty(&splice)) {
4304		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4305					       delalloc_inodes);
 
4306
4307		list_del_init(&btrfs_inode->delalloc_inodes);
4308		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4309			  &btrfs_inode->runtime_flags);
4310		spin_unlock(&root->delalloc_lock);
4311
4312		btrfs_invalidate_inodes(btrfs_inode->root);
4313
4314		spin_lock(&root->delalloc_lock);
4315	}
4316
4317	spin_unlock(&root->delalloc_lock);
4318}
4319
4320static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4321{
4322	struct btrfs_root *root;
4323	struct list_head splice;
4324
4325	INIT_LIST_HEAD(&splice);
4326
4327	spin_lock(&fs_info->delalloc_root_lock);
4328	list_splice_init(&fs_info->delalloc_roots, &splice);
 
4329	while (!list_empty(&splice)) {
4330		root = list_first_entry(&splice, struct btrfs_root,
4331					 delalloc_root);
4332		list_del_init(&root->delalloc_root);
4333		root = btrfs_grab_fs_root(root);
4334		BUG_ON(!root);
4335		spin_unlock(&fs_info->delalloc_root_lock);
4336
4337		btrfs_destroy_delalloc_inodes(root);
4338		btrfs_put_fs_root(root);
4339
4340		spin_lock(&fs_info->delalloc_root_lock);
4341	}
4342	spin_unlock(&fs_info->delalloc_root_lock);
 
4343}
4344
4345static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4346					struct extent_io_tree *dirty_pages,
4347					int mark)
4348{
4349	int ret;
 
 
4350	struct extent_buffer *eb;
4351	u64 start = 0;
4352	u64 end;
 
 
4353
4354	while (1) {
4355		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4356					    mark, NULL);
4357		if (ret)
4358			break;
4359
4360		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4361		while (start <= end) {
4362			eb = btrfs_find_tree_block(root->fs_info, start);
4363			start += root->nodesize;
4364			if (!eb)
 
4365				continue;
4366			wait_on_extent_buffer_writeback(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4367
4368			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4369					       &eb->bflags))
4370				clear_extent_buffer_dirty(eb);
4371			free_extent_buffer_stale(eb);
4372		}
4373	}
4374
4375	return ret;
4376}
4377
4378static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4379				       struct extent_io_tree *pinned_extents)
4380{
4381	struct extent_io_tree *unpin;
4382	u64 start;
4383	u64 end;
4384	int ret;
4385	bool loop = true;
4386
4387	unpin = pinned_extents;
4388again:
4389	while (1) {
4390		ret = find_first_extent_bit(unpin, 0, &start, &end,
4391					    EXTENT_DIRTY, NULL);
4392		if (ret)
4393			break;
4394
 
 
 
 
 
 
4395		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4396		btrfs_error_unpin_extent_range(root, start, end);
4397		cond_resched();
4398	}
4399
4400	if (loop) {
4401		if (unpin == &root->fs_info->freed_extents[0])
4402			unpin = &root->fs_info->freed_extents[1];
4403		else
4404			unpin = &root->fs_info->freed_extents[0];
4405		loop = false;
4406		goto again;
4407	}
4408
4409	return 0;
4410}
4411
4412void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4413				   struct btrfs_root *root)
4414{
4415	btrfs_destroy_delayed_refs(cur_trans, root);
 
 
4416
4417	cur_trans->state = TRANS_STATE_COMMIT_START;
 
 
4418	wake_up(&root->fs_info->transaction_blocked_wait);
4419
4420	cur_trans->state = TRANS_STATE_UNBLOCKED;
4421	wake_up(&root->fs_info->transaction_wait);
4422
 
 
 
4423	btrfs_destroy_delayed_inodes(root);
4424	btrfs_assert_delayed_root_empty(root);
4425
 
 
4426	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4427				     EXTENT_DIRTY);
4428	btrfs_destroy_pinned_extent(root,
4429				    root->fs_info->pinned_extents);
4430
4431	cur_trans->state =TRANS_STATE_COMPLETED;
4432	wake_up(&cur_trans->commit_wait);
4433
4434	/*
4435	memset(cur_trans, 0, sizeof(*cur_trans));
4436	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4437	*/
4438}
4439
4440static int btrfs_cleanup_transaction(struct btrfs_root *root)
4441{
4442	struct btrfs_transaction *t;
 
4443
4444	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4445
4446	spin_lock(&root->fs_info->trans_lock);
4447	while (!list_empty(&root->fs_info->trans_list)) {
4448		t = list_first_entry(&root->fs_info->trans_list,
4449				     struct btrfs_transaction, list);
4450		if (t->state >= TRANS_STATE_COMMIT_START) {
4451			atomic_inc(&t->use_count);
4452			spin_unlock(&root->fs_info->trans_lock);
4453			btrfs_wait_for_commit(root, t->transid);
4454			btrfs_put_transaction(t);
4455			spin_lock(&root->fs_info->trans_lock);
4456			continue;
4457		}
4458		if (t == root->fs_info->running_transaction) {
4459			t->state = TRANS_STATE_COMMIT_DOING;
4460			spin_unlock(&root->fs_info->trans_lock);
4461			/*
4462			 * We wait for 0 num_writers since we don't hold a trans
4463			 * handle open currently for this transaction.
4464			 */
4465			wait_event(t->writer_wait,
4466				   atomic_read(&t->num_writers) == 0);
4467		} else {
4468			spin_unlock(&root->fs_info->trans_lock);
4469		}
4470		btrfs_cleanup_one_transaction(t, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4471
4472		spin_lock(&root->fs_info->trans_lock);
4473		if (t == root->fs_info->running_transaction)
4474			root->fs_info->running_transaction = NULL;
4475		list_del_init(&t->list);
4476		spin_unlock(&root->fs_info->trans_lock);
4477
4478		btrfs_put_transaction(t);
4479		trace_btrfs_transaction_commit(root);
4480		spin_lock(&root->fs_info->trans_lock);
 
 
 
 
 
 
 
4481	}
 
 
 
4482	spin_unlock(&root->fs_info->trans_lock);
4483	btrfs_destroy_all_ordered_extents(root->fs_info);
4484	btrfs_destroy_delayed_inodes(root);
4485	btrfs_assert_delayed_root_empty(root);
4486	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4487	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4488	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4489
4490	return 0;
4491}
4492
4493static const struct extent_io_ops btree_extent_io_ops = {
 
4494	.readpage_end_io_hook = btree_readpage_end_io_hook,
4495	.readpage_io_failed_hook = btree_io_failed_hook,
4496	.submit_bio_hook = btree_submit_bio_hook,
4497	/* note we're sharing with inode.c for the merge bio hook */
4498	.merge_bio_hook = btrfs_merge_bio_hook,
4499};