Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * SuperH MSIOF SPI Master Interface
  3 *
  4 * Copyright (c) 2009 Magnus Damm
 
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 *
 10 */
 11
 12#include <linux/bitmap.h>
 13#include <linux/clk.h>
 14#include <linux/completion.h>
 15#include <linux/delay.h>
 
 
 16#include <linux/err.h>
 17#include <linux/gpio.h>
 18#include <linux/init.h>
 19#include <linux/interrupt.h>
 20#include <linux/io.h>
 21#include <linux/kernel.h>
 22#include <linux/module.h>
 
 
 23#include <linux/platform_device.h>
 24#include <linux/pm_runtime.h>
 
 25
 26#include <linux/spi/sh_msiof.h>
 27#include <linux/spi/spi.h>
 28#include <linux/spi/spi_bitbang.h>
 29
 30#include <asm/unaligned.h>
 31
 
 
 
 
 
 
 
 32struct sh_msiof_spi_priv {
 33	struct spi_bitbang bitbang; /* must be first for spi_bitbang.c */
 34	void __iomem *mapbase;
 35	struct clk *clk;
 36	struct platform_device *pdev;
 
 37	struct sh_msiof_spi_info *info;
 38	struct completion done;
 39	unsigned long flags;
 40	int tx_fifo_size;
 41	int rx_fifo_size;
 
 
 
 42};
 43
 44#define TMDR1	0x00
 45#define TMDR2	0x04
 46#define TMDR3	0x08
 47#define RMDR1	0x10
 48#define RMDR2	0x14
 49#define RMDR3	0x18
 50#define TSCR	0x20
 51#define RSCR	0x22
 52#define CTR	0x28
 53#define FCTR	0x30
 54#define STR	0x40
 55#define IER	0x44
 56#define TDR1	0x48
 57#define TDR2	0x4c
 58#define TFDR	0x50
 59#define RDR1	0x58
 60#define RDR2	0x5c
 61#define RFDR	0x60
 62
 63#define CTR_TSCKE (1 << 15)
 64#define CTR_TFSE  (1 << 14)
 65#define CTR_TXE   (1 << 9)
 66#define CTR_RXE   (1 << 8)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 67
 68#define STR_TEOF  (1 << 23)
 69#define STR_REOF  (1 << 7)
 70
 71static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
 72{
 73	switch (reg_offs) {
 74	case TSCR:
 75	case RSCR:
 76		return ioread16(p->mapbase + reg_offs);
 77	default:
 78		return ioread32(p->mapbase + reg_offs);
 79	}
 80}
 81
 82static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
 83			   u32 value)
 84{
 85	switch (reg_offs) {
 86	case TSCR:
 87	case RSCR:
 88		iowrite16(value, p->mapbase + reg_offs);
 89		break;
 90	default:
 91		iowrite32(value, p->mapbase + reg_offs);
 92		break;
 93	}
 94}
 95
 96static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
 97				    u32 clr, u32 set)
 98{
 99	u32 mask = clr | set;
100	u32 data;
101	int k;
102
103	data = sh_msiof_read(p, CTR);
104	data &= ~clr;
105	data |= set;
106	sh_msiof_write(p, CTR, data);
107
108	for (k = 100; k > 0; k--) {
109		if ((sh_msiof_read(p, CTR) & mask) == set)
110			break;
111
112		udelay(10);
113	}
114
115	return k > 0 ? 0 : -ETIMEDOUT;
116}
117
118static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
119{
120	struct sh_msiof_spi_priv *p = data;
121
122	/* just disable the interrupt and wake up */
123	sh_msiof_write(p, IER, 0);
124	complete(&p->done);
125
126	return IRQ_HANDLED;
127}
128
129static struct {
130	unsigned short div;
131	unsigned short scr;
132} const sh_msiof_spi_clk_table[] = {
133	{ 1, 0x0007 },
134	{ 2, 0x0000 },
135	{ 4, 0x0001 },
136	{ 8, 0x0002 },
137	{ 16, 0x0003 },
138	{ 32, 0x0004 },
139	{ 64, 0x1f00 },
140	{ 128, 0x1f01 },
141	{ 256, 0x1f02 },
142	{ 512, 0x1f03 },
143	{ 1024, 0x1f04 },
144};
145
146static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
147				      unsigned long parent_rate,
148				      unsigned long spi_hz)
149{
150	unsigned long div = 1024;
 
151	size_t k;
152
153	if (!WARN_ON(!spi_hz || !parent_rate))
154		div = parent_rate / spi_hz;
155
156	/* TODO: make more fine grained */
157
158	for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_clk_table); k++) {
159		if (sh_msiof_spi_clk_table[k].div >= div)
160			break;
161	}
162
163	k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_clk_table) - 1);
 
 
 
 
 
 
164
165	sh_msiof_write(p, TSCR, sh_msiof_spi_clk_table[k].scr);
166	sh_msiof_write(p, RSCR, sh_msiof_spi_clk_table[k].scr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167}
168
169static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
170				      u32 cpol, u32 cpha,
171				      u32 tx_hi_z, u32 lsb_first)
172{
173	u32 tmp;
174	int edge;
175
176	/*
177	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
178	 *    0    0         10     10    1    1
179	 *    0    1         10     10    0    0
180	 *    1    0         11     11    0    0
181	 *    1    1         11     11    1    1
182	 */
183	sh_msiof_write(p, FCTR, 0);
184	sh_msiof_write(p, TMDR1, 0xe2000005 | (lsb_first << 24));
185	sh_msiof_write(p, RMDR1, 0x22000005 | (lsb_first << 24));
 
 
 
 
 
 
 
186
187	tmp = 0xa0000000;
188	tmp |= cpol << 30; /* TSCKIZ */
189	tmp |= cpol << 28; /* RSCKIZ */
190
191	edge = cpol ^ !cpha;
192
193	tmp |= edge << 27; /* TEDG */
194	tmp |= edge << 26; /* REDG */
195	tmp |= (tx_hi_z ? 2 : 0) << 22; /* TXDIZ */
196	sh_msiof_write(p, CTR, tmp);
197}
198
199static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
200				       const void *tx_buf, void *rx_buf,
201				       u32 bits, u32 words)
202{
203	u32 dr2 = ((bits - 1) << 24) | ((words - 1) << 16);
204
205	if (tx_buf)
206		sh_msiof_write(p, TMDR2, dr2);
207	else
208		sh_msiof_write(p, TMDR2, dr2 | 1);
209
210	if (rx_buf)
211		sh_msiof_write(p, RMDR2, dr2);
212
213	sh_msiof_write(p, IER, STR_TEOF | STR_REOF);
214}
215
216static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
217{
218	sh_msiof_write(p, STR, sh_msiof_read(p, STR));
219}
220
221static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
222				      const void *tx_buf, int words, int fs)
223{
224	const u8 *buf_8 = tx_buf;
225	int k;
226
227	for (k = 0; k < words; k++)
228		sh_msiof_write(p, TFDR, buf_8[k] << fs);
229}
230
231static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
232				       const void *tx_buf, int words, int fs)
233{
234	const u16 *buf_16 = tx_buf;
235	int k;
236
237	for (k = 0; k < words; k++)
238		sh_msiof_write(p, TFDR, buf_16[k] << fs);
239}
240
241static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
242					const void *tx_buf, int words, int fs)
243{
244	const u16 *buf_16 = tx_buf;
245	int k;
246
247	for (k = 0; k < words; k++)
248		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
249}
250
251static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
252				       const void *tx_buf, int words, int fs)
253{
254	const u32 *buf_32 = tx_buf;
255	int k;
256
257	for (k = 0; k < words; k++)
258		sh_msiof_write(p, TFDR, buf_32[k] << fs);
259}
260
261static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
262					const void *tx_buf, int words, int fs)
263{
264	const u32 *buf_32 = tx_buf;
265	int k;
266
267	for (k = 0; k < words; k++)
268		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
269}
270
271static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
272					const void *tx_buf, int words, int fs)
273{
274	const u32 *buf_32 = tx_buf;
275	int k;
276
277	for (k = 0; k < words; k++)
278		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
279}
280
281static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
282					 const void *tx_buf, int words, int fs)
283{
284	const u32 *buf_32 = tx_buf;
285	int k;
286
287	for (k = 0; k < words; k++)
288		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
289}
290
291static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
292				     void *rx_buf, int words, int fs)
293{
294	u8 *buf_8 = rx_buf;
295	int k;
296
297	for (k = 0; k < words; k++)
298		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
299}
300
301static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
302				      void *rx_buf, int words, int fs)
303{
304	u16 *buf_16 = rx_buf;
305	int k;
306
307	for (k = 0; k < words; k++)
308		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
309}
310
311static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
312				       void *rx_buf, int words, int fs)
313{
314	u16 *buf_16 = rx_buf;
315	int k;
316
317	for (k = 0; k < words; k++)
318		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
319}
320
321static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
322				      void *rx_buf, int words, int fs)
323{
324	u32 *buf_32 = rx_buf;
325	int k;
326
327	for (k = 0; k < words; k++)
328		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
329}
330
331static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
332				       void *rx_buf, int words, int fs)
333{
334	u32 *buf_32 = rx_buf;
335	int k;
336
337	for (k = 0; k < words; k++)
338		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
339}
340
341static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
342				       void *rx_buf, int words, int fs)
343{
344	u32 *buf_32 = rx_buf;
345	int k;
346
347	for (k = 0; k < words; k++)
348		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
349}
350
351static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
352				       void *rx_buf, int words, int fs)
353{
354	u32 *buf_32 = rx_buf;
355	int k;
356
357	for (k = 0; k < words; k++)
358		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
359}
360
361static int sh_msiof_spi_bits(struct spi_device *spi, struct spi_transfer *t)
362{
363	int bits;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
364
365	bits = t ? t->bits_per_word : 0;
366	if (!bits)
367		bits = spi->bits_per_word;
368	return bits;
369}
370
371static unsigned long sh_msiof_spi_hz(struct spi_device *spi,
372				     struct spi_transfer *t)
373{
374	unsigned long hz;
 
375
376	hz = t ? t->speed_hz : 0;
377	if (!hz)
378		hz = spi->max_speed_hz;
379	return hz;
 
 
 
380}
381
382static int sh_msiof_spi_setup_transfer(struct spi_device *spi,
383				       struct spi_transfer *t)
384{
385	int bits;
386
387	/* noting to check hz values against since parent clock is disabled */
 
 
 
 
 
388
389	bits = sh_msiof_spi_bits(spi, t);
390	if (bits < 8)
391		return -EINVAL;
392	if (bits > 32)
393		return -EINVAL;
394
395	return spi_bitbang_setup_transfer(spi, t);
396}
397
398static void sh_msiof_spi_chipselect(struct spi_device *spi, int is_on)
399{
400	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
401	int value;
402
403	/* chip select is active low unless SPI_CS_HIGH is set */
404	if (spi->mode & SPI_CS_HIGH)
405		value = (is_on == BITBANG_CS_ACTIVE) ? 1 : 0;
406	else
407		value = (is_on == BITBANG_CS_ACTIVE) ? 0 : 1;
408
409	if (is_on == BITBANG_CS_ACTIVE) {
410		if (!test_and_set_bit(0, &p->flags)) {
411			pm_runtime_get_sync(&p->pdev->dev);
412			clk_enable(p->clk);
413		}
414
415		/* Configure pins before asserting CS */
416		sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
417					  !!(spi->mode & SPI_CPHA),
418					  !!(spi->mode & SPI_3WIRE),
419					  !!(spi->mode & SPI_LSB_FIRST));
420	}
 
 
421
422	/* use spi->controller data for CS (same strategy as spi_gpio) */
423	gpio_set_value((unsigned)spi->controller_data, value);
424
425	if (is_on == BITBANG_CS_INACTIVE) {
426		if (test_and_clear_bit(0, &p->flags)) {
427			clk_disable(p->clk);
428			pm_runtime_put(&p->pdev->dev);
429		}
430	}
431}
432
433static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
434				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
435						  const void *, int, int),
436				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
437						  void *, int, int),
438				  const void *tx_buf, void *rx_buf,
439				  int words, int bits)
440{
441	int fifo_shift;
442	int ret;
443
444	/* limit maximum word transfer to rx/tx fifo size */
445	if (tx_buf)
446		words = min_t(int, words, p->tx_fifo_size);
447	if (rx_buf)
448		words = min_t(int, words, p->rx_fifo_size);
449
450	/* the fifo contents need shifting */
451	fifo_shift = 32 - bits;
452
 
 
 
453	/* setup msiof transfer mode registers */
454	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
 
455
456	/* write tx fifo */
457	if (tx_buf)
458		tx_fifo(p, tx_buf, words, fifo_shift);
459
460	/* setup clock and rx/tx signals */
461	ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
462	if (rx_buf)
463		ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
464	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
465
466	/* start by setting frame bit */
467	INIT_COMPLETION(p->done);
468	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
469	if (ret) {
470		dev_err(&p->pdev->dev, "failed to start hardware\n");
471		goto err;
472	}
473
474	/* wait for tx fifo to be emptied / rx fifo to be filled */
475	wait_for_completion(&p->done);
 
 
 
 
476
477	/* read rx fifo */
478	if (rx_buf)
479		rx_fifo(p, rx_buf, words, fifo_shift);
480
481	/* clear status bits */
482	sh_msiof_reset_str(p);
483
484	/* shut down frame, tx/tx and clock signals */
485	ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
486	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
487	if (rx_buf)
488		ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
489	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
490	if (ret) {
491		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
492		goto err;
493	}
494
495	return words;
496
497 err:
 
 
 
498	sh_msiof_write(p, IER, 0);
499	return ret;
500}
501
502static int sh_msiof_spi_txrx(struct spi_device *spi, struct spi_transfer *t)
503{
504	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
505	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
506	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
507	int bits;
508	int bytes_per_word;
509	int bytes_done;
510	int words;
 
 
511	int n;
512	bool swab;
 
513
514	bits = sh_msiof_spi_bits(spi, t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
515
516	if (bits <= 8 && t->len > 15 && !(t->len & 3)) {
 
 
 
 
 
 
 
 
 
 
 
 
517		bits = 32;
518		swab = true;
519	} else {
520		swab = false;
521	}
522
523	/* setup bytes per word and fifo read/write functions */
524	if (bits <= 8) {
525		bytes_per_word = 1;
526		tx_fifo = sh_msiof_spi_write_fifo_8;
527		rx_fifo = sh_msiof_spi_read_fifo_8;
528	} else if (bits <= 16) {
529		bytes_per_word = 2;
530		if ((unsigned long)t->tx_buf & 0x01)
531			tx_fifo = sh_msiof_spi_write_fifo_16u;
532		else
533			tx_fifo = sh_msiof_spi_write_fifo_16;
534
535		if ((unsigned long)t->rx_buf & 0x01)
536			rx_fifo = sh_msiof_spi_read_fifo_16u;
537		else
538			rx_fifo = sh_msiof_spi_read_fifo_16;
539	} else if (swab) {
540		bytes_per_word = 4;
541		if ((unsigned long)t->tx_buf & 0x03)
542			tx_fifo = sh_msiof_spi_write_fifo_s32u;
543		else
544			tx_fifo = sh_msiof_spi_write_fifo_s32;
545
546		if ((unsigned long)t->rx_buf & 0x03)
547			rx_fifo = sh_msiof_spi_read_fifo_s32u;
548		else
549			rx_fifo = sh_msiof_spi_read_fifo_s32;
550	} else {
551		bytes_per_word = 4;
552		if ((unsigned long)t->tx_buf & 0x03)
553			tx_fifo = sh_msiof_spi_write_fifo_32u;
554		else
555			tx_fifo = sh_msiof_spi_write_fifo_32;
556
557		if ((unsigned long)t->rx_buf & 0x03)
558			rx_fifo = sh_msiof_spi_read_fifo_32u;
559		else
560			rx_fifo = sh_msiof_spi_read_fifo_32;
561	}
562
563	/* setup clocks (clock already enabled in chipselect()) */
564	sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk),
565				  sh_msiof_spi_hz(spi, t));
566
567	/* transfer in fifo sized chunks */
568	words = t->len / bytes_per_word;
569	bytes_done = 0;
570
571	while (bytes_done < t->len) {
572		void *rx_buf = t->rx_buf ? t->rx_buf + bytes_done : NULL;
573		const void *tx_buf = t->tx_buf ? t->tx_buf + bytes_done : NULL;
574		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo,
575					   tx_buf,
576					   rx_buf,
577					   words, bits);
578		if (n < 0)
579			break;
580
581		bytes_done += n * bytes_per_word;
 
 
 
582		words -= n;
583	}
584
585	return bytes_done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586}
587
588static u32 sh_msiof_spi_txrx_word(struct spi_device *spi, unsigned nsecs,
589				  u32 word, u8 bits)
590{
591	BUG(); /* unused but needed by bitbang code */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
592	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
593}
594
595static int sh_msiof_spi_probe(struct platform_device *pdev)
596{
597	struct resource	*r;
598	struct spi_master *master;
 
599	struct sh_msiof_spi_priv *p;
600	char clk_name[16];
601	int i;
602	int ret;
603
604	master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
605	if (master == NULL) {
606		dev_err(&pdev->dev, "failed to allocate spi master\n");
607		ret = -ENOMEM;
608		goto err0;
609	}
610
611	p = spi_master_get_devdata(master);
612
613	platform_set_drvdata(pdev, p);
614	p->info = pdev->dev.platform_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
615	init_completion(&p->done);
616
617	snprintf(clk_name, sizeof(clk_name), "msiof%d", pdev->id);
618	p->clk = clk_get(&pdev->dev, clk_name);
619	if (IS_ERR(p->clk)) {
620		dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
621		ret = PTR_ERR(p->clk);
622		goto err1;
623	}
624
625	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
626	i = platform_get_irq(pdev, 0);
627	if (!r || i < 0) {
628		dev_err(&pdev->dev, "cannot get platform resources\n");
629		ret = -ENOENT;
630		goto err2;
631	}
632	p->mapbase = ioremap_nocache(r->start, resource_size(r));
633	if (!p->mapbase) {
634		dev_err(&pdev->dev, "unable to ioremap\n");
635		ret = -ENXIO;
636		goto err2;
 
637	}
638
639	ret = request_irq(i, sh_msiof_spi_irq, 0,
640			  dev_name(&pdev->dev), p);
641	if (ret) {
642		dev_err(&pdev->dev, "unable to request irq\n");
643		goto err3;
644	}
645
646	p->pdev = pdev;
647	pm_runtime_enable(&pdev->dev);
648
649	/* The standard version of MSIOF use 64 word FIFOs */
650	p->tx_fifo_size = 64;
651	p->rx_fifo_size = 64;
652
653	/* Platform data may override FIFO sizes */
 
 
654	if (p->info->tx_fifo_override)
655		p->tx_fifo_size = p->info->tx_fifo_override;
656	if (p->info->rx_fifo_override)
657		p->rx_fifo_size = p->info->rx_fifo_override;
658
659	/* init master and bitbang code */
660	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
661	master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
662	master->flags = 0;
663	master->bus_num = pdev->id;
 
664	master->num_chipselect = p->info->num_chipselect;
665	master->setup = spi_bitbang_setup;
666	master->cleanup = spi_bitbang_cleanup;
667
668	p->bitbang.master = master;
669	p->bitbang.chipselect = sh_msiof_spi_chipselect;
670	p->bitbang.setup_transfer = sh_msiof_spi_setup_transfer;
671	p->bitbang.txrx_bufs = sh_msiof_spi_txrx;
672	p->bitbang.txrx_word[SPI_MODE_0] = sh_msiof_spi_txrx_word;
673	p->bitbang.txrx_word[SPI_MODE_1] = sh_msiof_spi_txrx_word;
674	p->bitbang.txrx_word[SPI_MODE_2] = sh_msiof_spi_txrx_word;
675	p->bitbang.txrx_word[SPI_MODE_3] = sh_msiof_spi_txrx_word;
 
 
 
 
676
677	ret = spi_bitbang_start(&p->bitbang);
678	if (ret == 0)
679		return 0;
680
681	pm_runtime_disable(&pdev->dev);
682 err3:
683	iounmap(p->mapbase);
684 err2:
685	clk_put(p->clk);
 
686 err1:
687	spi_master_put(master);
688 err0:
689	return ret;
690}
691
692static int sh_msiof_spi_remove(struct platform_device *pdev)
693{
694	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
695	int ret;
696
697	ret = spi_bitbang_stop(&p->bitbang);
698	if (!ret) {
699		pm_runtime_disable(&pdev->dev);
700		free_irq(platform_get_irq(pdev, 0), p);
701		iounmap(p->mapbase);
702		clk_put(p->clk);
703		spi_master_put(p->bitbang.master);
704	}
705	return ret;
706}
707
708static int sh_msiof_spi_runtime_nop(struct device *dev)
709{
710	/* Runtime PM callback shared between ->runtime_suspend()
711	 * and ->runtime_resume(). Simply returns success.
712	 *
713	 * This driver re-initializes all registers after
714	 * pm_runtime_get_sync() anyway so there is no need
715	 * to save and restore registers here.
716	 */
717	return 0;
718}
719
720static struct dev_pm_ops sh_msiof_spi_dev_pm_ops = {
721	.runtime_suspend = sh_msiof_spi_runtime_nop,
722	.runtime_resume = sh_msiof_spi_runtime_nop,
723};
 
724
725static struct platform_driver sh_msiof_spi_drv = {
726	.probe		= sh_msiof_spi_probe,
727	.remove		= sh_msiof_spi_remove,
 
728	.driver		= {
729		.name		= "spi_sh_msiof",
730		.owner		= THIS_MODULE,
731		.pm		= &sh_msiof_spi_dev_pm_ops,
732	},
733};
734module_platform_driver(sh_msiof_spi_drv);
735
736MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
737MODULE_AUTHOR("Magnus Damm");
738MODULE_LICENSE("GPL v2");
739MODULE_ALIAS("platform:spi_sh_msiof");
v4.6
   1/*
   2 * SuperH MSIOF SPI Master Interface
   3 *
   4 * Copyright (c) 2009 Magnus Damm
   5 * Copyright (C) 2014 Glider bvba
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 */
  12
  13#include <linux/bitmap.h>
  14#include <linux/clk.h>
  15#include <linux/completion.h>
  16#include <linux/delay.h>
  17#include <linux/dma-mapping.h>
  18#include <linux/dmaengine.h>
  19#include <linux/err.h>
  20#include <linux/gpio.h>
 
  21#include <linux/interrupt.h>
  22#include <linux/io.h>
  23#include <linux/kernel.h>
  24#include <linux/module.h>
  25#include <linux/of.h>
  26#include <linux/of_device.h>
  27#include <linux/platform_device.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/sh_dma.h>
  30
  31#include <linux/spi/sh_msiof.h>
  32#include <linux/spi/spi.h>
 
  33
  34#include <asm/unaligned.h>
  35
  36
  37struct sh_msiof_chipdata {
  38	u16 tx_fifo_size;
  39	u16 rx_fifo_size;
  40	u16 master_flags;
  41};
  42
  43struct sh_msiof_spi_priv {
  44	struct spi_master *master;
  45	void __iomem *mapbase;
  46	struct clk *clk;
  47	struct platform_device *pdev;
  48	const struct sh_msiof_chipdata *chipdata;
  49	struct sh_msiof_spi_info *info;
  50	struct completion done;
  51	unsigned int tx_fifo_size;
  52	unsigned int rx_fifo_size;
  53	void *tx_dma_page;
  54	void *rx_dma_page;
  55	dma_addr_t tx_dma_addr;
  56	dma_addr_t rx_dma_addr;
  57};
  58
  59#define TMDR1	0x00	/* Transmit Mode Register 1 */
  60#define TMDR2	0x04	/* Transmit Mode Register 2 */
  61#define TMDR3	0x08	/* Transmit Mode Register 3 */
  62#define RMDR1	0x10	/* Receive Mode Register 1 */
  63#define RMDR2	0x14	/* Receive Mode Register 2 */
  64#define RMDR3	0x18	/* Receive Mode Register 3 */
  65#define TSCR	0x20	/* Transmit Clock Select Register */
  66#define RSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
  67#define CTR	0x28	/* Control Register */
  68#define FCTR	0x30	/* FIFO Control Register */
  69#define STR	0x40	/* Status Register */
  70#define IER	0x44	/* Interrupt Enable Register */
  71#define TDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
  72#define TDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
  73#define TFDR	0x50	/* Transmit FIFO Data Register */
  74#define RDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
  75#define RDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
  76#define RFDR	0x60	/* Receive FIFO Data Register */
  77
  78/* TMDR1 and RMDR1 */
  79#define MDR1_TRMD	 0x80000000 /* Transfer Mode (1 = Master mode) */
  80#define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
  81#define MDR1_SYNCMD_SPI	 0x20000000 /*   Level mode/SPI */
  82#define MDR1_SYNCMD_LR	 0x30000000 /*   L/R mode */
  83#define MDR1_SYNCAC_SHIFT	 25 /* Sync Polarity (1 = Active-low) */
  84#define MDR1_BITLSB_SHIFT	 24 /* MSB/LSB First (1 = LSB first) */
  85#define MDR1_DTDL_SHIFT		 20 /* Data Pin Bit Delay for MSIOF_SYNC */
  86#define MDR1_SYNCDL_SHIFT	 16 /* Frame Sync Signal Timing Delay */
  87#define MDR1_FLD_MASK	 0x0000000c /* Frame Sync Signal Interval (0-3) */
  88#define MDR1_FLD_SHIFT		  2
  89#define MDR1_XXSTP	 0x00000001 /* Transmission/Reception Stop on FIFO */
  90/* TMDR1 */
  91#define TMDR1_PCON	 0x40000000 /* Transfer Signal Connection */
  92
  93/* TMDR2 and RMDR2 */
  94#define MDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
  95#define MDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
  96#define MDR2_GRPMASK1	0x00000001 /* Group Output Mask 1 (SH, A1) */
  97
  98/* TSCR and RSCR */
  99#define SCR_BRPS_MASK	    0x1f00 /* Prescaler Setting (1-32) */
 100#define SCR_BRPS(i)	(((i) - 1) << 8)
 101#define SCR_BRDV_MASK	    0x0007 /* Baud Rate Generator's Division Ratio */
 102#define SCR_BRDV_DIV_2	    0x0000
 103#define SCR_BRDV_DIV_4	    0x0001
 104#define SCR_BRDV_DIV_8	    0x0002
 105#define SCR_BRDV_DIV_16	    0x0003
 106#define SCR_BRDV_DIV_32	    0x0004
 107#define SCR_BRDV_DIV_1	    0x0007
 108
 109/* CTR */
 110#define CTR_TSCKIZ_MASK	0xc0000000 /* Transmit Clock I/O Polarity Select */
 111#define CTR_TSCKIZ_SCK	0x80000000 /*   Disable SCK when TX disabled */
 112#define CTR_TSCKIZ_POL_SHIFT	30 /*   Transmit Clock Polarity */
 113#define CTR_RSCKIZ_MASK	0x30000000 /* Receive Clock Polarity Select */
 114#define CTR_RSCKIZ_SCK	0x20000000 /*   Must match CTR_TSCKIZ_SCK */
 115#define CTR_RSCKIZ_POL_SHIFT	28 /*   Receive Clock Polarity */
 116#define CTR_TEDG_SHIFT		27 /* Transmit Timing (1 = falling edge) */
 117#define CTR_REDG_SHIFT		26 /* Receive Timing (1 = falling edge) */
 118#define CTR_TXDIZ_MASK	0x00c00000 /* Pin Output When TX is Disabled */
 119#define CTR_TXDIZ_LOW	0x00000000 /*   0 */
 120#define CTR_TXDIZ_HIGH	0x00400000 /*   1 */
 121#define CTR_TXDIZ_HIZ	0x00800000 /*   High-impedance */
 122#define CTR_TSCKE	0x00008000 /* Transmit Serial Clock Output Enable */
 123#define CTR_TFSE	0x00004000 /* Transmit Frame Sync Signal Output Enable */
 124#define CTR_TXE		0x00000200 /* Transmit Enable */
 125#define CTR_RXE		0x00000100 /* Receive Enable */
 126
 127/* FCTR */
 128#define FCTR_TFWM_MASK	0xe0000000 /* Transmit FIFO Watermark */
 129#define FCTR_TFWM_64	0x00000000 /*  Transfer Request when 64 empty stages */
 130#define FCTR_TFWM_32	0x20000000 /*  Transfer Request when 32 empty stages */
 131#define FCTR_TFWM_24	0x40000000 /*  Transfer Request when 24 empty stages */
 132#define FCTR_TFWM_16	0x60000000 /*  Transfer Request when 16 empty stages */
 133#define FCTR_TFWM_12	0x80000000 /*  Transfer Request when 12 empty stages */
 134#define FCTR_TFWM_8	0xa0000000 /*  Transfer Request when 8 empty stages */
 135#define FCTR_TFWM_4	0xc0000000 /*  Transfer Request when 4 empty stages */
 136#define FCTR_TFWM_1	0xe0000000 /*  Transfer Request when 1 empty stage */
 137#define FCTR_TFUA_MASK	0x07f00000 /* Transmit FIFO Usable Area */
 138#define FCTR_TFUA_SHIFT		20
 139#define FCTR_TFUA(i)	((i) << FCTR_TFUA_SHIFT)
 140#define FCTR_RFWM_MASK	0x0000e000 /* Receive FIFO Watermark */
 141#define FCTR_RFWM_1	0x00000000 /*  Transfer Request when 1 valid stages */
 142#define FCTR_RFWM_4	0x00002000 /*  Transfer Request when 4 valid stages */
 143#define FCTR_RFWM_8	0x00004000 /*  Transfer Request when 8 valid stages */
 144#define FCTR_RFWM_16	0x00006000 /*  Transfer Request when 16 valid stages */
 145#define FCTR_RFWM_32	0x00008000 /*  Transfer Request when 32 valid stages */
 146#define FCTR_RFWM_64	0x0000a000 /*  Transfer Request when 64 valid stages */
 147#define FCTR_RFWM_128	0x0000c000 /*  Transfer Request when 128 valid stages */
 148#define FCTR_RFWM_256	0x0000e000 /*  Transfer Request when 256 valid stages */
 149#define FCTR_RFUA_MASK	0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
 150#define FCTR_RFUA_SHIFT		 4
 151#define FCTR_RFUA(i)	((i) << FCTR_RFUA_SHIFT)
 152
 153/* STR */
 154#define STR_TFEMP	0x20000000 /* Transmit FIFO Empty */
 155#define STR_TDREQ	0x10000000 /* Transmit Data Transfer Request */
 156#define STR_TEOF	0x00800000 /* Frame Transmission End */
 157#define STR_TFSERR	0x00200000 /* Transmit Frame Synchronization Error */
 158#define STR_TFOVF	0x00100000 /* Transmit FIFO Overflow */
 159#define STR_TFUDF	0x00080000 /* Transmit FIFO Underflow */
 160#define STR_RFFUL	0x00002000 /* Receive FIFO Full */
 161#define STR_RDREQ	0x00001000 /* Receive Data Transfer Request */
 162#define STR_REOF	0x00000080 /* Frame Reception End */
 163#define STR_RFSERR	0x00000020 /* Receive Frame Synchronization Error */
 164#define STR_RFUDF	0x00000010 /* Receive FIFO Underflow */
 165#define STR_RFOVF	0x00000008 /* Receive FIFO Overflow */
 166
 167/* IER */
 168#define IER_TDMAE	0x80000000 /* Transmit Data DMA Transfer Req. Enable */
 169#define IER_TFEMPE	0x20000000 /* Transmit FIFO Empty Enable */
 170#define IER_TDREQE	0x10000000 /* Transmit Data Transfer Request Enable */
 171#define IER_TEOFE	0x00800000 /* Frame Transmission End Enable */
 172#define IER_TFSERRE	0x00200000 /* Transmit Frame Sync Error Enable */
 173#define IER_TFOVFE	0x00100000 /* Transmit FIFO Overflow Enable */
 174#define IER_TFUDFE	0x00080000 /* Transmit FIFO Underflow Enable */
 175#define IER_RDMAE	0x00008000 /* Receive Data DMA Transfer Req. Enable */
 176#define IER_RFFULE	0x00002000 /* Receive FIFO Full Enable */
 177#define IER_RDREQE	0x00001000 /* Receive Data Transfer Request Enable */
 178#define IER_REOFE	0x00000080 /* Frame Reception End Enable */
 179#define IER_RFSERRE	0x00000020 /* Receive Frame Sync Error Enable */
 180#define IER_RFUDFE	0x00000010 /* Receive FIFO Underflow Enable */
 181#define IER_RFOVFE	0x00000008 /* Receive FIFO Overflow Enable */
 182
 
 
 183
 184static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
 185{
 186	switch (reg_offs) {
 187	case TSCR:
 188	case RSCR:
 189		return ioread16(p->mapbase + reg_offs);
 190	default:
 191		return ioread32(p->mapbase + reg_offs);
 192	}
 193}
 194
 195static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
 196			   u32 value)
 197{
 198	switch (reg_offs) {
 199	case TSCR:
 200	case RSCR:
 201		iowrite16(value, p->mapbase + reg_offs);
 202		break;
 203	default:
 204		iowrite32(value, p->mapbase + reg_offs);
 205		break;
 206	}
 207}
 208
 209static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
 210				    u32 clr, u32 set)
 211{
 212	u32 mask = clr | set;
 213	u32 data;
 214	int k;
 215
 216	data = sh_msiof_read(p, CTR);
 217	data &= ~clr;
 218	data |= set;
 219	sh_msiof_write(p, CTR, data);
 220
 221	for (k = 100; k > 0; k--) {
 222		if ((sh_msiof_read(p, CTR) & mask) == set)
 223			break;
 224
 225		udelay(10);
 226	}
 227
 228	return k > 0 ? 0 : -ETIMEDOUT;
 229}
 230
 231static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
 232{
 233	struct sh_msiof_spi_priv *p = data;
 234
 235	/* just disable the interrupt and wake up */
 236	sh_msiof_write(p, IER, 0);
 237	complete(&p->done);
 238
 239	return IRQ_HANDLED;
 240}
 241
 242static struct {
 243	unsigned short div;
 244	unsigned short brdv;
 245} const sh_msiof_spi_div_table[] = {
 246	{ 1,	SCR_BRDV_DIV_1 },
 247	{ 2,	SCR_BRDV_DIV_2 },
 248	{ 4,	SCR_BRDV_DIV_4 },
 249	{ 8,	SCR_BRDV_DIV_8 },
 250	{ 16,	SCR_BRDV_DIV_16 },
 251	{ 32,	SCR_BRDV_DIV_32 },
 
 
 
 
 
 252};
 253
 254static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
 255				      unsigned long parent_rate, u32 spi_hz)
 
 256{
 257	unsigned long div = 1024;
 258	u32 brps, scr;
 259	size_t k;
 260
 261	if (!WARN_ON(!spi_hz || !parent_rate))
 262		div = DIV_ROUND_UP(parent_rate, spi_hz);
 263
 264	for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
 265		brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
 266		if (brps <= 32) /* max of brdv is 32 */
 
 267			break;
 268	}
 269
 270	k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
 271
 272	scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
 273	sh_msiof_write(p, TSCR, scr);
 274	if (!(p->chipdata->master_flags & SPI_MASTER_MUST_TX))
 275		sh_msiof_write(p, RSCR, scr);
 276}
 277
 278static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
 279{
 280	/*
 281	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
 282	 * b'000		: 0
 283	 * b'001		: 100
 284	 * b'010		: 200
 285	 * b'011 (SYNCDL only)	: 300
 286	 * b'101		: 50
 287	 * b'110		: 150
 288	 */
 289	if (dtdl_or_syncdl % 100)
 290		return dtdl_or_syncdl / 100 + 5;
 291	else
 292		return dtdl_or_syncdl / 100;
 293}
 294
 295static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
 296{
 297	u32 val;
 298
 299	if (!p->info)
 300		return 0;
 301
 302	/* check if DTDL and SYNCDL is allowed value */
 303	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
 304		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
 305		return 0;
 306	}
 307
 308	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
 309	if ((p->info->dtdl + p->info->syncdl) % 100) {
 310		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
 311		return 0;
 312	}
 313
 314	val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
 315	val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
 316
 317	return val;
 318}
 319
 320static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
 321				      u32 cpol, u32 cpha,
 322				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
 323{
 324	u32 tmp;
 325	int edge;
 326
 327	/*
 328	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
 329	 *    0    0         10     10    1    1
 330	 *    0    1         10     10    0    0
 331	 *    1    0         11     11    0    0
 332	 *    1    1         11     11    1    1
 333	 */
 334	tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
 335	tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
 336	tmp |= lsb_first << MDR1_BITLSB_SHIFT;
 337	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
 338	sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
 339	if (p->chipdata->master_flags & SPI_MASTER_MUST_TX) {
 340		/* These bits are reserved if RX needs TX */
 341		tmp &= ~0x0000ffff;
 342	}
 343	sh_msiof_write(p, RMDR1, tmp);
 344
 345	tmp = 0;
 346	tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
 347	tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
 348
 349	edge = cpol ^ !cpha;
 350
 351	tmp |= edge << CTR_TEDG_SHIFT;
 352	tmp |= edge << CTR_REDG_SHIFT;
 353	tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
 354	sh_msiof_write(p, CTR, tmp);
 355}
 356
 357static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
 358				       const void *tx_buf, void *rx_buf,
 359				       u32 bits, u32 words)
 360{
 361	u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
 362
 363	if (tx_buf || (p->chipdata->master_flags & SPI_MASTER_MUST_TX))
 364		sh_msiof_write(p, TMDR2, dr2);
 365	else
 366		sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
 367
 368	if (rx_buf)
 369		sh_msiof_write(p, RMDR2, dr2);
 
 
 370}
 371
 372static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
 373{
 374	sh_msiof_write(p, STR, sh_msiof_read(p, STR));
 375}
 376
 377static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
 378				      const void *tx_buf, int words, int fs)
 379{
 380	const u8 *buf_8 = tx_buf;
 381	int k;
 382
 383	for (k = 0; k < words; k++)
 384		sh_msiof_write(p, TFDR, buf_8[k] << fs);
 385}
 386
 387static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
 388				       const void *tx_buf, int words, int fs)
 389{
 390	const u16 *buf_16 = tx_buf;
 391	int k;
 392
 393	for (k = 0; k < words; k++)
 394		sh_msiof_write(p, TFDR, buf_16[k] << fs);
 395}
 396
 397static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
 398					const void *tx_buf, int words, int fs)
 399{
 400	const u16 *buf_16 = tx_buf;
 401	int k;
 402
 403	for (k = 0; k < words; k++)
 404		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
 405}
 406
 407static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
 408				       const void *tx_buf, int words, int fs)
 409{
 410	const u32 *buf_32 = tx_buf;
 411	int k;
 412
 413	for (k = 0; k < words; k++)
 414		sh_msiof_write(p, TFDR, buf_32[k] << fs);
 415}
 416
 417static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
 418					const void *tx_buf, int words, int fs)
 419{
 420	const u32 *buf_32 = tx_buf;
 421	int k;
 422
 423	for (k = 0; k < words; k++)
 424		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
 425}
 426
 427static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
 428					const void *tx_buf, int words, int fs)
 429{
 430	const u32 *buf_32 = tx_buf;
 431	int k;
 432
 433	for (k = 0; k < words; k++)
 434		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
 435}
 436
 437static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
 438					 const void *tx_buf, int words, int fs)
 439{
 440	const u32 *buf_32 = tx_buf;
 441	int k;
 442
 443	for (k = 0; k < words; k++)
 444		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
 445}
 446
 447static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
 448				     void *rx_buf, int words, int fs)
 449{
 450	u8 *buf_8 = rx_buf;
 451	int k;
 452
 453	for (k = 0; k < words; k++)
 454		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
 455}
 456
 457static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
 458				      void *rx_buf, int words, int fs)
 459{
 460	u16 *buf_16 = rx_buf;
 461	int k;
 462
 463	for (k = 0; k < words; k++)
 464		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
 465}
 466
 467static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
 468				       void *rx_buf, int words, int fs)
 469{
 470	u16 *buf_16 = rx_buf;
 471	int k;
 472
 473	for (k = 0; k < words; k++)
 474		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
 475}
 476
 477static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
 478				      void *rx_buf, int words, int fs)
 479{
 480	u32 *buf_32 = rx_buf;
 481	int k;
 482
 483	for (k = 0; k < words; k++)
 484		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
 485}
 486
 487static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
 488				       void *rx_buf, int words, int fs)
 489{
 490	u32 *buf_32 = rx_buf;
 491	int k;
 492
 493	for (k = 0; k < words; k++)
 494		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
 495}
 496
 497static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
 498				       void *rx_buf, int words, int fs)
 499{
 500	u32 *buf_32 = rx_buf;
 501	int k;
 502
 503	for (k = 0; k < words; k++)
 504		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
 505}
 506
 507static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
 508				       void *rx_buf, int words, int fs)
 509{
 510	u32 *buf_32 = rx_buf;
 511	int k;
 512
 513	for (k = 0; k < words; k++)
 514		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
 515}
 516
 517static int sh_msiof_spi_setup(struct spi_device *spi)
 518{
 519	struct device_node	*np = spi->master->dev.of_node;
 520	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
 521
 522	pm_runtime_get_sync(&p->pdev->dev);
 523
 524	if (!np) {
 525		/*
 526		 * Use spi->controller_data for CS (same strategy as spi_gpio),
 527		 * if any. otherwise let HW control CS
 528		 */
 529		spi->cs_gpio = (uintptr_t)spi->controller_data;
 530	}
 531
 532	/* Configure pins before deasserting CS */
 533	sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
 534				  !!(spi->mode & SPI_CPHA),
 535				  !!(spi->mode & SPI_3WIRE),
 536				  !!(spi->mode & SPI_LSB_FIRST),
 537				  !!(spi->mode & SPI_CS_HIGH));
 538
 539	if (spi->cs_gpio >= 0)
 540		gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
 541
 542
 543	pm_runtime_put(&p->pdev->dev);
 544
 545	return 0;
 546}
 547
 548static int sh_msiof_prepare_message(struct spi_master *master,
 549				    struct spi_message *msg)
 550{
 551	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
 552	const struct spi_device *spi = msg->spi;
 553
 554	/* Configure pins before asserting CS */
 555	sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
 556				  !!(spi->mode & SPI_CPHA),
 557				  !!(spi->mode & SPI_3WIRE),
 558				  !!(spi->mode & SPI_LSB_FIRST),
 559				  !!(spi->mode & SPI_CS_HIGH));
 560	return 0;
 561}
 562
 563static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
 
 564{
 565	int ret;
 566
 567	/* setup clock and rx/tx signals */
 568	ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
 569	if (rx_buf && !ret)
 570		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
 571	if (!ret)
 572		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
 573
 574	/* start by setting frame bit */
 575	if (!ret)
 576		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
 
 
 577
 578	return ret;
 579}
 580
 581static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
 582{
 583	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 584
 585	/* shut down frame, rx/tx and clock signals */
 586	ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
 587	if (!ret)
 588		ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
 589	if (rx_buf && !ret)
 590		ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
 591	if (!ret)
 592		ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
 593
 594	return ret;
 
 
 
 
 
 
 
 
 595}
 596
 597static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
 598				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
 599						  const void *, int, int),
 600				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
 601						  void *, int, int),
 602				  const void *tx_buf, void *rx_buf,
 603				  int words, int bits)
 604{
 605	int fifo_shift;
 606	int ret;
 607
 608	/* limit maximum word transfer to rx/tx fifo size */
 609	if (tx_buf)
 610		words = min_t(int, words, p->tx_fifo_size);
 611	if (rx_buf)
 612		words = min_t(int, words, p->rx_fifo_size);
 613
 614	/* the fifo contents need shifting */
 615	fifo_shift = 32 - bits;
 616
 617	/* default FIFO watermarks for PIO */
 618	sh_msiof_write(p, FCTR, 0);
 619
 620	/* setup msiof transfer mode registers */
 621	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
 622	sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
 623
 624	/* write tx fifo */
 625	if (tx_buf)
 626		tx_fifo(p, tx_buf, words, fifo_shift);
 627
 628	reinit_completion(&p->done);
 
 
 
 
 629
 630	ret = sh_msiof_spi_start(p, rx_buf);
 
 
 631	if (ret) {
 632		dev_err(&p->pdev->dev, "failed to start hardware\n");
 633		goto stop_ier;
 634	}
 635
 636	/* wait for tx fifo to be emptied / rx fifo to be filled */
 637	if (!wait_for_completion_timeout(&p->done, HZ)) {
 638		dev_err(&p->pdev->dev, "PIO timeout\n");
 639		ret = -ETIMEDOUT;
 640		goto stop_reset;
 641	}
 642
 643	/* read rx fifo */
 644	if (rx_buf)
 645		rx_fifo(p, rx_buf, words, fifo_shift);
 646
 647	/* clear status bits */
 648	sh_msiof_reset_str(p);
 649
 650	ret = sh_msiof_spi_stop(p, rx_buf);
 
 
 
 
 
 651	if (ret) {
 652		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
 653		return ret;
 654	}
 655
 656	return words;
 657
 658stop_reset:
 659	sh_msiof_reset_str(p);
 660	sh_msiof_spi_stop(p, rx_buf);
 661stop_ier:
 662	sh_msiof_write(p, IER, 0);
 663	return ret;
 664}
 665
 666static void sh_msiof_dma_complete(void *arg)
 667{
 668	struct sh_msiof_spi_priv *p = arg;
 669
 670	sh_msiof_write(p, IER, 0);
 671	complete(&p->done);
 672}
 673
 674static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
 675			     void *rx, unsigned int len)
 676{
 677	u32 ier_bits = 0;
 678	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
 679	dma_cookie_t cookie;
 680	int ret;
 681
 682	/* First prepare and submit the DMA request(s), as this may fail */
 683	if (rx) {
 684		ier_bits |= IER_RDREQE | IER_RDMAE;
 685		desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
 686					p->rx_dma_addr, len, DMA_FROM_DEVICE,
 687					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 688		if (!desc_rx)
 689			return -EAGAIN;
 690
 691		desc_rx->callback = sh_msiof_dma_complete;
 692		desc_rx->callback_param = p;
 693		cookie = dmaengine_submit(desc_rx);
 694		if (dma_submit_error(cookie))
 695			return cookie;
 696	}
 697
 698	if (tx) {
 699		ier_bits |= IER_TDREQE | IER_TDMAE;
 700		dma_sync_single_for_device(p->master->dma_tx->device->dev,
 701					   p->tx_dma_addr, len, DMA_TO_DEVICE);
 702		desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
 703					p->tx_dma_addr, len, DMA_TO_DEVICE,
 704					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 705		if (!desc_tx) {
 706			ret = -EAGAIN;
 707			goto no_dma_tx;
 708		}
 709
 710		if (rx) {
 711			/* No callback */
 712			desc_tx->callback = NULL;
 713		} else {
 714			desc_tx->callback = sh_msiof_dma_complete;
 715			desc_tx->callback_param = p;
 716		}
 717		cookie = dmaengine_submit(desc_tx);
 718		if (dma_submit_error(cookie)) {
 719			ret = cookie;
 720			goto no_dma_tx;
 721		}
 722	}
 723
 724	/* 1 stage FIFO watermarks for DMA */
 725	sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
 726
 727	/* setup msiof transfer mode registers (32-bit words) */
 728	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
 729
 730	sh_msiof_write(p, IER, ier_bits);
 731
 732	reinit_completion(&p->done);
 733
 734	/* Now start DMA */
 735	if (rx)
 736		dma_async_issue_pending(p->master->dma_rx);
 737	if (tx)
 738		dma_async_issue_pending(p->master->dma_tx);
 739
 740	ret = sh_msiof_spi_start(p, rx);
 741	if (ret) {
 742		dev_err(&p->pdev->dev, "failed to start hardware\n");
 743		goto stop_dma;
 744	}
 745
 746	/* wait for tx fifo to be emptied / rx fifo to be filled */
 747	if (!wait_for_completion_timeout(&p->done, HZ)) {
 748		dev_err(&p->pdev->dev, "DMA timeout\n");
 749		ret = -ETIMEDOUT;
 750		goto stop_reset;
 751	}
 752
 753	/* clear status bits */
 754	sh_msiof_reset_str(p);
 755
 756	ret = sh_msiof_spi_stop(p, rx);
 757	if (ret) {
 758		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
 759		return ret;
 760	}
 761
 762	if (rx)
 763		dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
 764					p->rx_dma_addr, len,
 765					DMA_FROM_DEVICE);
 766
 767	return 0;
 768
 769stop_reset:
 770	sh_msiof_reset_str(p);
 771	sh_msiof_spi_stop(p, rx);
 772stop_dma:
 773	if (tx)
 774		dmaengine_terminate_all(p->master->dma_tx);
 775no_dma_tx:
 776	if (rx)
 777		dmaengine_terminate_all(p->master->dma_rx);
 778	sh_msiof_write(p, IER, 0);
 779	return ret;
 780}
 781
 782static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
 783{
 784	/* src or dst can be unaligned, but not both */
 785	if ((unsigned long)src & 3) {
 786		while (words--) {
 787			*dst++ = swab32(get_unaligned(src));
 788			src++;
 789		}
 790	} else if ((unsigned long)dst & 3) {
 791		while (words--) {
 792			put_unaligned(swab32(*src++), dst);
 793			dst++;
 794		}
 795	} else {
 796		while (words--)
 797			*dst++ = swab32(*src++);
 798	}
 799}
 800
 801static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
 802{
 803	/* src or dst can be unaligned, but not both */
 804	if ((unsigned long)src & 3) {
 805		while (words--) {
 806			*dst++ = swahw32(get_unaligned(src));
 807			src++;
 808		}
 809	} else if ((unsigned long)dst & 3) {
 810		while (words--) {
 811			put_unaligned(swahw32(*src++), dst);
 812			dst++;
 813		}
 814	} else {
 815		while (words--)
 816			*dst++ = swahw32(*src++);
 817	}
 818}
 819
 820static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
 821{
 822	memcpy(dst, src, words * 4);
 823}
 824
 825static int sh_msiof_transfer_one(struct spi_master *master,
 826				 struct spi_device *spi,
 827				 struct spi_transfer *t)
 828{
 829	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
 830	void (*copy32)(u32 *, const u32 *, unsigned int);
 831	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
 832	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
 833	const void *tx_buf = t->tx_buf;
 834	void *rx_buf = t->rx_buf;
 835	unsigned int len = t->len;
 836	unsigned int bits = t->bits_per_word;
 837	unsigned int bytes_per_word;
 838	unsigned int words;
 839	int n;
 840	bool swab;
 841	int ret;
 842
 843	/* setup clocks (clock already enabled in chipselect()) */
 844	sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
 845
 846	while (master->dma_tx && len > 15) {
 847		/*
 848		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
 849		 *  words, with byte resp. word swapping.
 850		 */
 851		unsigned int l = 0;
 852
 853		if (tx_buf)
 854			l = min(len, p->tx_fifo_size * 4);
 855		if (rx_buf)
 856			l = min(len, p->rx_fifo_size * 4);
 857
 858		if (bits <= 8) {
 859			if (l & 3)
 860				break;
 861			copy32 = copy_bswap32;
 862		} else if (bits <= 16) {
 863			if (l & 1)
 864				break;
 865			copy32 = copy_wswap32;
 866		} else {
 867			copy32 = copy_plain32;
 868		}
 869
 870		if (tx_buf)
 871			copy32(p->tx_dma_page, tx_buf, l / 4);
 872
 873		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
 874		if (ret == -EAGAIN) {
 875			pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
 876				     dev_driver_string(&p->pdev->dev),
 877				     dev_name(&p->pdev->dev));
 878			break;
 879		}
 880		if (ret)
 881			return ret;
 882
 883		if (rx_buf) {
 884			copy32(rx_buf, p->rx_dma_page, l / 4);
 885			rx_buf += l;
 886		}
 887		if (tx_buf)
 888			tx_buf += l;
 889
 890		len -= l;
 891		if (!len)
 892			return 0;
 893	}
 894
 895	if (bits <= 8 && len > 15 && !(len & 3)) {
 896		bits = 32;
 897		swab = true;
 898	} else {
 899		swab = false;
 900	}
 901
 902	/* setup bytes per word and fifo read/write functions */
 903	if (bits <= 8) {
 904		bytes_per_word = 1;
 905		tx_fifo = sh_msiof_spi_write_fifo_8;
 906		rx_fifo = sh_msiof_spi_read_fifo_8;
 907	} else if (bits <= 16) {
 908		bytes_per_word = 2;
 909		if ((unsigned long)tx_buf & 0x01)
 910			tx_fifo = sh_msiof_spi_write_fifo_16u;
 911		else
 912			tx_fifo = sh_msiof_spi_write_fifo_16;
 913
 914		if ((unsigned long)rx_buf & 0x01)
 915			rx_fifo = sh_msiof_spi_read_fifo_16u;
 916		else
 917			rx_fifo = sh_msiof_spi_read_fifo_16;
 918	} else if (swab) {
 919		bytes_per_word = 4;
 920		if ((unsigned long)tx_buf & 0x03)
 921			tx_fifo = sh_msiof_spi_write_fifo_s32u;
 922		else
 923			tx_fifo = sh_msiof_spi_write_fifo_s32;
 924
 925		if ((unsigned long)rx_buf & 0x03)
 926			rx_fifo = sh_msiof_spi_read_fifo_s32u;
 927		else
 928			rx_fifo = sh_msiof_spi_read_fifo_s32;
 929	} else {
 930		bytes_per_word = 4;
 931		if ((unsigned long)tx_buf & 0x03)
 932			tx_fifo = sh_msiof_spi_write_fifo_32u;
 933		else
 934			tx_fifo = sh_msiof_spi_write_fifo_32;
 935
 936		if ((unsigned long)rx_buf & 0x03)
 937			rx_fifo = sh_msiof_spi_read_fifo_32u;
 938		else
 939			rx_fifo = sh_msiof_spi_read_fifo_32;
 940	}
 941
 
 
 
 
 942	/* transfer in fifo sized chunks */
 943	words = len / bytes_per_word;
 
 944
 945	while (words > 0) {
 946		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
 
 
 
 
 947					   words, bits);
 948		if (n < 0)
 949			return n;
 950
 951		if (tx_buf)
 952			tx_buf += n * bytes_per_word;
 953		if (rx_buf)
 954			rx_buf += n * bytes_per_word;
 955		words -= n;
 956	}
 957
 958	return 0;
 959}
 960
 961static const struct sh_msiof_chipdata sh_data = {
 962	.tx_fifo_size = 64,
 963	.rx_fifo_size = 64,
 964	.master_flags = 0,
 965};
 966
 967static const struct sh_msiof_chipdata r8a779x_data = {
 968	.tx_fifo_size = 64,
 969	.rx_fifo_size = 64,
 970	.master_flags = SPI_MASTER_MUST_TX,
 971};
 972
 973static const struct of_device_id sh_msiof_match[] = {
 974	{ .compatible = "renesas,sh-msiof",        .data = &sh_data },
 975	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
 976	{ .compatible = "renesas,msiof-r8a7790",   .data = &r8a779x_data },
 977	{ .compatible = "renesas,msiof-r8a7791",   .data = &r8a779x_data },
 978	{ .compatible = "renesas,msiof-r8a7792",   .data = &r8a779x_data },
 979	{ .compatible = "renesas,msiof-r8a7793",   .data = &r8a779x_data },
 980	{ .compatible = "renesas,msiof-r8a7794",   .data = &r8a779x_data },
 981	{},
 982};
 983MODULE_DEVICE_TABLE(of, sh_msiof_match);
 984
 985#ifdef CONFIG_OF
 986static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
 987{
 988	struct sh_msiof_spi_info *info;
 989	struct device_node *np = dev->of_node;
 990	u32 num_cs = 1;
 991
 992	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
 993	if (!info)
 994		return NULL;
 995
 996	/* Parse the MSIOF properties */
 997	of_property_read_u32(np, "num-cs", &num_cs);
 998	of_property_read_u32(np, "renesas,tx-fifo-size",
 999					&info->tx_fifo_override);
1000	of_property_read_u32(np, "renesas,rx-fifo-size",
1001					&info->rx_fifo_override);
1002	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1003	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1004
1005	info->num_chipselect = num_cs;
1006
1007	return info;
1008}
1009#else
1010static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1011{
1012	return NULL;
1013}
1014#endif
1015
1016static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1017	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1018{
1019	dma_cap_mask_t mask;
1020	struct dma_chan *chan;
1021	struct dma_slave_config cfg;
1022	int ret;
1023
1024	dma_cap_zero(mask);
1025	dma_cap_set(DMA_SLAVE, mask);
1026
1027	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1028				(void *)(unsigned long)id, dev,
1029				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1030	if (!chan) {
1031		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1032		return NULL;
1033	}
1034
1035	memset(&cfg, 0, sizeof(cfg));
1036	cfg.direction = dir;
1037	if (dir == DMA_MEM_TO_DEV) {
1038		cfg.dst_addr = port_addr;
1039		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1040	} else {
1041		cfg.src_addr = port_addr;
1042		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1043	}
1044
1045	ret = dmaengine_slave_config(chan, &cfg);
1046	if (ret) {
1047		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1048		dma_release_channel(chan);
1049		return NULL;
1050	}
1051
1052	return chan;
1053}
1054
1055static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
 
1056{
1057	struct platform_device *pdev = p->pdev;
1058	struct device *dev = &pdev->dev;
1059	const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1060	unsigned int dma_tx_id, dma_rx_id;
1061	const struct resource *res;
1062	struct spi_master *master;
1063	struct device *tx_dev, *rx_dev;
1064
1065	if (dev->of_node) {
1066		/* In the OF case we will get the slave IDs from the DT */
1067		dma_tx_id = 0;
1068		dma_rx_id = 0;
1069	} else if (info && info->dma_tx_id && info->dma_rx_id) {
1070		dma_tx_id = info->dma_tx_id;
1071		dma_rx_id = info->dma_rx_id;
1072	} else {
1073		/* The driver assumes no error */
1074		return 0;
1075	}
1076
1077	/* The DMA engine uses the second register set, if present */
1078	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1079	if (!res)
1080		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1081
1082	master = p->master;
1083	master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1084						   dma_tx_id,
1085						   res->start + TFDR);
1086	if (!master->dma_tx)
1087		return -ENODEV;
1088
1089	master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1090						   dma_rx_id,
1091						   res->start + RFDR);
1092	if (!master->dma_rx)
1093		goto free_tx_chan;
1094
1095	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1096	if (!p->tx_dma_page)
1097		goto free_rx_chan;
1098
1099	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1100	if (!p->rx_dma_page)
1101		goto free_tx_page;
1102
1103	tx_dev = master->dma_tx->device->dev;
1104	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1105					DMA_TO_DEVICE);
1106	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1107		goto free_rx_page;
1108
1109	rx_dev = master->dma_rx->device->dev;
1110	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1111					DMA_FROM_DEVICE);
1112	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1113		goto unmap_tx_page;
1114
1115	dev_info(dev, "DMA available");
1116	return 0;
1117
1118unmap_tx_page:
1119	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1120free_rx_page:
1121	free_page((unsigned long)p->rx_dma_page);
1122free_tx_page:
1123	free_page((unsigned long)p->tx_dma_page);
1124free_rx_chan:
1125	dma_release_channel(master->dma_rx);
1126free_tx_chan:
1127	dma_release_channel(master->dma_tx);
1128	master->dma_tx = NULL;
1129	return -ENODEV;
1130}
1131
1132static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1133{
1134	struct spi_master *master = p->master;
1135	struct device *dev;
1136
1137	if (!master->dma_tx)
1138		return;
1139
1140	dev = &p->pdev->dev;
1141	dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1142			 PAGE_SIZE, DMA_FROM_DEVICE);
1143	dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1144			 PAGE_SIZE, DMA_TO_DEVICE);
1145	free_page((unsigned long)p->rx_dma_page);
1146	free_page((unsigned long)p->tx_dma_page);
1147	dma_release_channel(master->dma_rx);
1148	dma_release_channel(master->dma_tx);
1149}
1150
1151static int sh_msiof_spi_probe(struct platform_device *pdev)
1152{
1153	struct resource	*r;
1154	struct spi_master *master;
1155	const struct of_device_id *of_id;
1156	struct sh_msiof_spi_priv *p;
 
1157	int i;
1158	int ret;
1159
1160	master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
1161	if (master == NULL) {
1162		dev_err(&pdev->dev, "failed to allocate spi master\n");
1163		return -ENOMEM;
 
1164	}
1165
1166	p = spi_master_get_devdata(master);
1167
1168	platform_set_drvdata(pdev, p);
1169	p->master = master;
1170
1171	of_id = of_match_device(sh_msiof_match, &pdev->dev);
1172	if (of_id) {
1173		p->chipdata = of_id->data;
1174		p->info = sh_msiof_spi_parse_dt(&pdev->dev);
1175	} else {
1176		p->chipdata = (const void *)pdev->id_entry->driver_data;
1177		p->info = dev_get_platdata(&pdev->dev);
1178	}
1179
1180	if (!p->info) {
1181		dev_err(&pdev->dev, "failed to obtain device info\n");
1182		ret = -ENXIO;
1183		goto err1;
1184	}
1185
1186	init_completion(&p->done);
1187
1188	p->clk = devm_clk_get(&pdev->dev, NULL);
 
1189	if (IS_ERR(p->clk)) {
1190		dev_err(&pdev->dev, "cannot get clock\n");
1191		ret = PTR_ERR(p->clk);
1192		goto err1;
1193	}
1194
 
1195	i = platform_get_irq(pdev, 0);
1196	if (i < 0) {
1197		dev_err(&pdev->dev, "cannot get platform IRQ\n");
1198		ret = -ENOENT;
1199		goto err1;
1200	}
1201
1202	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1203	p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1204	if (IS_ERR(p->mapbase)) {
1205		ret = PTR_ERR(p->mapbase);
1206		goto err1;
1207	}
1208
1209	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1210			       dev_name(&pdev->dev), p);
1211	if (ret) {
1212		dev_err(&pdev->dev, "unable to request irq\n");
1213		goto err1;
1214	}
1215
1216	p->pdev = pdev;
1217	pm_runtime_enable(&pdev->dev);
1218
 
 
 
 
1219	/* Platform data may override FIFO sizes */
1220	p->tx_fifo_size = p->chipdata->tx_fifo_size;
1221	p->rx_fifo_size = p->chipdata->rx_fifo_size;
1222	if (p->info->tx_fifo_override)
1223		p->tx_fifo_size = p->info->tx_fifo_override;
1224	if (p->info->rx_fifo_override)
1225		p->rx_fifo_size = p->info->rx_fifo_override;
1226
1227	/* init master code */
1228	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1229	master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1230	master->flags = p->chipdata->master_flags;
1231	master->bus_num = pdev->id;
1232	master->dev.of_node = pdev->dev.of_node;
1233	master->num_chipselect = p->info->num_chipselect;
1234	master->setup = sh_msiof_spi_setup;
1235	master->prepare_message = sh_msiof_prepare_message;
1236	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1237	master->auto_runtime_pm = true;
1238	master->transfer_one = sh_msiof_transfer_one;
1239
1240	ret = sh_msiof_request_dma(p);
1241	if (ret < 0)
1242		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1243
1244	ret = devm_spi_register_master(&pdev->dev, master);
1245	if (ret < 0) {
1246		dev_err(&pdev->dev, "spi_register_master error.\n");
1247		goto err2;
1248	}
1249
1250	return 0;
 
 
1251
 
 
 
1252 err2:
1253	sh_msiof_release_dma(p);
1254	pm_runtime_disable(&pdev->dev);
1255 err1:
1256	spi_master_put(master);
 
1257	return ret;
1258}
1259
1260static int sh_msiof_spi_remove(struct platform_device *pdev)
1261{
1262	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
 
1263
1264	sh_msiof_release_dma(p);
1265	pm_runtime_disable(&pdev->dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1266	return 0;
1267}
1268
1269static const struct platform_device_id spi_driver_ids[] = {
1270	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1271	{},
1272};
1273MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1274
1275static struct platform_driver sh_msiof_spi_drv = {
1276	.probe		= sh_msiof_spi_probe,
1277	.remove		= sh_msiof_spi_remove,
1278	.id_table	= spi_driver_ids,
1279	.driver		= {
1280		.name		= "spi_sh_msiof",
1281		.of_match_table = of_match_ptr(sh_msiof_match),
 
1282	},
1283};
1284module_platform_driver(sh_msiof_spi_drv);
1285
1286MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1287MODULE_AUTHOR("Magnus Damm");
1288MODULE_LICENSE("GPL v2");
1289MODULE_ALIAS("platform:spi_sh_msiof");