Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * SuperH MSIOF SPI Master Interface
  3 *
  4 * Copyright (c) 2009 Magnus Damm
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 *
 10 */
 11
 12#include <linux/bitmap.h>
 13#include <linux/clk.h>
 14#include <linux/completion.h>
 15#include <linux/delay.h>
 16#include <linux/err.h>
 17#include <linux/gpio.h>
 18#include <linux/init.h>
 19#include <linux/interrupt.h>
 20#include <linux/io.h>
 21#include <linux/kernel.h>
 22#include <linux/module.h>
 
 
 23#include <linux/platform_device.h>
 24#include <linux/pm_runtime.h>
 25
 26#include <linux/spi/sh_msiof.h>
 27#include <linux/spi/spi.h>
 28#include <linux/spi/spi_bitbang.h>
 29
 30#include <asm/unaligned.h>
 31
 
 
 
 
 
 
 
 32struct sh_msiof_spi_priv {
 33	struct spi_bitbang bitbang; /* must be first for spi_bitbang.c */
 34	void __iomem *mapbase;
 35	struct clk *clk;
 36	struct platform_device *pdev;
 
 37	struct sh_msiof_spi_info *info;
 38	struct completion done;
 39	unsigned long flags;
 40	int tx_fifo_size;
 41	int rx_fifo_size;
 42};
 43
 44#define TMDR1	0x00
 45#define TMDR2	0x04
 46#define TMDR3	0x08
 47#define RMDR1	0x10
 48#define RMDR2	0x14
 49#define RMDR3	0x18
 50#define TSCR	0x20
 51#define RSCR	0x22
 52#define CTR	0x28
 53#define FCTR	0x30
 54#define STR	0x40
 55#define IER	0x44
 56#define TDR1	0x48
 57#define TDR2	0x4c
 58#define TFDR	0x50
 59#define RDR1	0x58
 60#define RDR2	0x5c
 61#define RFDR	0x60
 62
 63#define CTR_TSCKE (1 << 15)
 64#define CTR_TFSE  (1 << 14)
 65#define CTR_TXE   (1 << 9)
 66#define CTR_RXE   (1 << 8)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 67
 68#define STR_TEOF  (1 << 23)
 69#define STR_REOF  (1 << 7)
 70
 71static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
 72{
 73	switch (reg_offs) {
 74	case TSCR:
 75	case RSCR:
 76		return ioread16(p->mapbase + reg_offs);
 77	default:
 78		return ioread32(p->mapbase + reg_offs);
 79	}
 80}
 81
 82static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
 83			   u32 value)
 84{
 85	switch (reg_offs) {
 86	case TSCR:
 87	case RSCR:
 88		iowrite16(value, p->mapbase + reg_offs);
 89		break;
 90	default:
 91		iowrite32(value, p->mapbase + reg_offs);
 92		break;
 93	}
 94}
 95
 96static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
 97				    u32 clr, u32 set)
 98{
 99	u32 mask = clr | set;
100	u32 data;
101	int k;
102
103	data = sh_msiof_read(p, CTR);
104	data &= ~clr;
105	data |= set;
106	sh_msiof_write(p, CTR, data);
107
108	for (k = 100; k > 0; k--) {
109		if ((sh_msiof_read(p, CTR) & mask) == set)
110			break;
111
112		udelay(10);
113	}
114
115	return k > 0 ? 0 : -ETIMEDOUT;
116}
117
118static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
119{
120	struct sh_msiof_spi_priv *p = data;
121
122	/* just disable the interrupt and wake up */
123	sh_msiof_write(p, IER, 0);
124	complete(&p->done);
125
126	return IRQ_HANDLED;
127}
128
129static struct {
130	unsigned short div;
131	unsigned short scr;
132} const sh_msiof_spi_clk_table[] = {
133	{ 1, 0x0007 },
134	{ 2, 0x0000 },
135	{ 4, 0x0001 },
136	{ 8, 0x0002 },
137	{ 16, 0x0003 },
138	{ 32, 0x0004 },
139	{ 64, 0x1f00 },
140	{ 128, 0x1f01 },
141	{ 256, 0x1f02 },
142	{ 512, 0x1f03 },
143	{ 1024, 0x1f04 },
144};
145
146static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
147				      unsigned long parent_rate,
148				      unsigned long spi_hz)
149{
150	unsigned long div = 1024;
151	size_t k;
152
153	if (!WARN_ON(!spi_hz || !parent_rate))
154		div = parent_rate / spi_hz;
155
156	/* TODO: make more fine grained */
157
158	for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_clk_table); k++) {
159		if (sh_msiof_spi_clk_table[k].div >= div)
160			break;
161	}
162
163	k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_clk_table) - 1);
164
165	sh_msiof_write(p, TSCR, sh_msiof_spi_clk_table[k].scr);
166	sh_msiof_write(p, RSCR, sh_msiof_spi_clk_table[k].scr);
 
167}
168
169static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
170				      u32 cpol, u32 cpha,
171				      u32 tx_hi_z, u32 lsb_first)
172{
173	u32 tmp;
174	int edge;
175
176	/*
177	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
178	 *    0    0         10     10    1    1
179	 *    0    1         10     10    0    0
180	 *    1    0         11     11    0    0
181	 *    1    1         11     11    1    1
182	 */
183	sh_msiof_write(p, FCTR, 0);
184	sh_msiof_write(p, TMDR1, 0xe2000005 | (lsb_first << 24));
185	sh_msiof_write(p, RMDR1, 0x22000005 | (lsb_first << 24));
186
187	tmp = 0xa0000000;
188	tmp |= cpol << 30; /* TSCKIZ */
189	tmp |= cpol << 28; /* RSCKIZ */
 
 
 
 
 
 
 
 
 
 
190
191	edge = cpol ^ !cpha;
192
193	tmp |= edge << 27; /* TEDG */
194	tmp |= edge << 26; /* REDG */
195	tmp |= (tx_hi_z ? 2 : 0) << 22; /* TXDIZ */
196	sh_msiof_write(p, CTR, tmp);
197}
198
199static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
200				       const void *tx_buf, void *rx_buf,
201				       u32 bits, u32 words)
202{
203	u32 dr2 = ((bits - 1) << 24) | ((words - 1) << 16);
204
205	if (tx_buf)
206		sh_msiof_write(p, TMDR2, dr2);
207	else
208		sh_msiof_write(p, TMDR2, dr2 | 1);
209
210	if (rx_buf)
211		sh_msiof_write(p, RMDR2, dr2);
212
213	sh_msiof_write(p, IER, STR_TEOF | STR_REOF);
214}
215
216static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
217{
218	sh_msiof_write(p, STR, sh_msiof_read(p, STR));
219}
220
221static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
222				      const void *tx_buf, int words, int fs)
223{
224	const u8 *buf_8 = tx_buf;
225	int k;
226
227	for (k = 0; k < words; k++)
228		sh_msiof_write(p, TFDR, buf_8[k] << fs);
229}
230
231static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
232				       const void *tx_buf, int words, int fs)
233{
234	const u16 *buf_16 = tx_buf;
235	int k;
236
237	for (k = 0; k < words; k++)
238		sh_msiof_write(p, TFDR, buf_16[k] << fs);
239}
240
241static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
242					const void *tx_buf, int words, int fs)
243{
244	const u16 *buf_16 = tx_buf;
245	int k;
246
247	for (k = 0; k < words; k++)
248		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
249}
250
251static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
252				       const void *tx_buf, int words, int fs)
253{
254	const u32 *buf_32 = tx_buf;
255	int k;
256
257	for (k = 0; k < words; k++)
258		sh_msiof_write(p, TFDR, buf_32[k] << fs);
259}
260
261static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
262					const void *tx_buf, int words, int fs)
263{
264	const u32 *buf_32 = tx_buf;
265	int k;
266
267	for (k = 0; k < words; k++)
268		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
269}
270
271static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
272					const void *tx_buf, int words, int fs)
273{
274	const u32 *buf_32 = tx_buf;
275	int k;
276
277	for (k = 0; k < words; k++)
278		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
279}
280
281static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
282					 const void *tx_buf, int words, int fs)
283{
284	const u32 *buf_32 = tx_buf;
285	int k;
286
287	for (k = 0; k < words; k++)
288		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
289}
290
291static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
292				     void *rx_buf, int words, int fs)
293{
294	u8 *buf_8 = rx_buf;
295	int k;
296
297	for (k = 0; k < words; k++)
298		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
299}
300
301static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
302				      void *rx_buf, int words, int fs)
303{
304	u16 *buf_16 = rx_buf;
305	int k;
306
307	for (k = 0; k < words; k++)
308		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
309}
310
311static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
312				       void *rx_buf, int words, int fs)
313{
314	u16 *buf_16 = rx_buf;
315	int k;
316
317	for (k = 0; k < words; k++)
318		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
319}
320
321static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
322				      void *rx_buf, int words, int fs)
323{
324	u32 *buf_32 = rx_buf;
325	int k;
326
327	for (k = 0; k < words; k++)
328		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
329}
330
331static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
332				       void *rx_buf, int words, int fs)
333{
334	u32 *buf_32 = rx_buf;
335	int k;
336
337	for (k = 0; k < words; k++)
338		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
339}
340
341static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
342				       void *rx_buf, int words, int fs)
343{
344	u32 *buf_32 = rx_buf;
345	int k;
346
347	for (k = 0; k < words; k++)
348		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
349}
350
351static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
352				       void *rx_buf, int words, int fs)
353{
354	u32 *buf_32 = rx_buf;
355	int k;
356
357	for (k = 0; k < words; k++)
358		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
359}
360
361static int sh_msiof_spi_bits(struct spi_device *spi, struct spi_transfer *t)
362{
363	int bits;
364
365	bits = t ? t->bits_per_word : 0;
366	if (!bits)
367		bits = spi->bits_per_word;
368	return bits;
369}
370
371static unsigned long sh_msiof_spi_hz(struct spi_device *spi,
372				     struct spi_transfer *t)
373{
374	unsigned long hz;
375
376	hz = t ? t->speed_hz : 0;
377	if (!hz)
378		hz = spi->max_speed_hz;
379	return hz;
380}
381
382static int sh_msiof_spi_setup_transfer(struct spi_device *spi,
383				       struct spi_transfer *t)
384{
385	int bits;
386
387	/* noting to check hz values against since parent clock is disabled */
 
 
 
 
 
 
 
 
 
 
 
 
 
388
389	bits = sh_msiof_spi_bits(spi, t);
390	if (bits < 8)
391		return -EINVAL;
392	if (bits > 32)
393		return -EINVAL;
394
395	return spi_bitbang_setup_transfer(spi, t);
396}
397
398static void sh_msiof_spi_chipselect(struct spi_device *spi, int is_on)
 
399{
400	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
401	int value;
402
403	/* chip select is active low unless SPI_CS_HIGH is set */
404	if (spi->mode & SPI_CS_HIGH)
405		value = (is_on == BITBANG_CS_ACTIVE) ? 1 : 0;
406	else
407		value = (is_on == BITBANG_CS_ACTIVE) ? 0 : 1;
408
409	if (is_on == BITBANG_CS_ACTIVE) {
410		if (!test_and_set_bit(0, &p->flags)) {
411			pm_runtime_get_sync(&p->pdev->dev);
412			clk_enable(p->clk);
413		}
414
415		/* Configure pins before asserting CS */
416		sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
417					  !!(spi->mode & SPI_CPHA),
418					  !!(spi->mode & SPI_3WIRE),
419					  !!(spi->mode & SPI_LSB_FIRST));
420	}
421
422	/* use spi->controller data for CS (same strategy as spi_gpio) */
423	gpio_set_value((unsigned)spi->controller_data, value);
424
425	if (is_on == BITBANG_CS_INACTIVE) {
426		if (test_and_clear_bit(0, &p->flags)) {
427			clk_disable(p->clk);
428			pm_runtime_put(&p->pdev->dev);
429		}
430	}
431}
432
433static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
434				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
435						  const void *, int, int),
436				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
437						  void *, int, int),
438				  const void *tx_buf, void *rx_buf,
439				  int words, int bits)
440{
441	int fifo_shift;
442	int ret;
443
444	/* limit maximum word transfer to rx/tx fifo size */
445	if (tx_buf)
446		words = min_t(int, words, p->tx_fifo_size);
447	if (rx_buf)
448		words = min_t(int, words, p->rx_fifo_size);
449
450	/* the fifo contents need shifting */
451	fifo_shift = 32 - bits;
452
453	/* setup msiof transfer mode registers */
454	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
455
456	/* write tx fifo */
457	if (tx_buf)
458		tx_fifo(p, tx_buf, words, fifo_shift);
459
460	/* setup clock and rx/tx signals */
461	ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
462	if (rx_buf)
463		ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
464	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
465
466	/* start by setting frame bit */
467	INIT_COMPLETION(p->done);
468	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
469	if (ret) {
470		dev_err(&p->pdev->dev, "failed to start hardware\n");
471		goto err;
472	}
473
474	/* wait for tx fifo to be emptied / rx fifo to be filled */
475	wait_for_completion(&p->done);
476
477	/* read rx fifo */
478	if (rx_buf)
479		rx_fifo(p, rx_buf, words, fifo_shift);
480
481	/* clear status bits */
482	sh_msiof_reset_str(p);
483
484	/* shut down frame, tx/tx and clock signals */
485	ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
486	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
487	if (rx_buf)
488		ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
489	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
490	if (ret) {
491		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
492		goto err;
493	}
494
495	return words;
496
497 err:
498	sh_msiof_write(p, IER, 0);
499	return ret;
500}
501
502static int sh_msiof_spi_txrx(struct spi_device *spi, struct spi_transfer *t)
 
 
503{
504	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
505	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
506	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
507	int bits;
508	int bytes_per_word;
509	int bytes_done;
510	int words;
511	int n;
512	bool swab;
513
514	bits = sh_msiof_spi_bits(spi, t);
515
516	if (bits <= 8 && t->len > 15 && !(t->len & 3)) {
517		bits = 32;
518		swab = true;
519	} else {
520		swab = false;
521	}
522
523	/* setup bytes per word and fifo read/write functions */
524	if (bits <= 8) {
525		bytes_per_word = 1;
526		tx_fifo = sh_msiof_spi_write_fifo_8;
527		rx_fifo = sh_msiof_spi_read_fifo_8;
528	} else if (bits <= 16) {
529		bytes_per_word = 2;
530		if ((unsigned long)t->tx_buf & 0x01)
531			tx_fifo = sh_msiof_spi_write_fifo_16u;
532		else
533			tx_fifo = sh_msiof_spi_write_fifo_16;
534
535		if ((unsigned long)t->rx_buf & 0x01)
536			rx_fifo = sh_msiof_spi_read_fifo_16u;
537		else
538			rx_fifo = sh_msiof_spi_read_fifo_16;
539	} else if (swab) {
540		bytes_per_word = 4;
541		if ((unsigned long)t->tx_buf & 0x03)
542			tx_fifo = sh_msiof_spi_write_fifo_s32u;
543		else
544			tx_fifo = sh_msiof_spi_write_fifo_s32;
545
546		if ((unsigned long)t->rx_buf & 0x03)
547			rx_fifo = sh_msiof_spi_read_fifo_s32u;
548		else
549			rx_fifo = sh_msiof_spi_read_fifo_s32;
550	} else {
551		bytes_per_word = 4;
552		if ((unsigned long)t->tx_buf & 0x03)
553			tx_fifo = sh_msiof_spi_write_fifo_32u;
554		else
555			tx_fifo = sh_msiof_spi_write_fifo_32;
556
557		if ((unsigned long)t->rx_buf & 0x03)
558			rx_fifo = sh_msiof_spi_read_fifo_32u;
559		else
560			rx_fifo = sh_msiof_spi_read_fifo_32;
561	}
562
563	/* setup clocks (clock already enabled in chipselect()) */
564	sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk),
565				  sh_msiof_spi_hz(spi, t));
566
567	/* transfer in fifo sized chunks */
568	words = t->len / bytes_per_word;
569	bytes_done = 0;
570
571	while (bytes_done < t->len) {
572		void *rx_buf = t->rx_buf ? t->rx_buf + bytes_done : NULL;
573		const void *tx_buf = t->tx_buf ? t->tx_buf + bytes_done : NULL;
574		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo,
575					   tx_buf,
576					   rx_buf,
577					   words, bits);
578		if (n < 0)
579			break;
580
581		bytes_done += n * bytes_per_word;
582		words -= n;
583	}
584
585	return bytes_done;
586}
587
588static u32 sh_msiof_spi_txrx_word(struct spi_device *spi, unsigned nsecs,
589				  u32 word, u8 bits)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
590{
591	BUG(); /* unused but needed by bitbang code */
592	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
593}
 
594
595static int sh_msiof_spi_probe(struct platform_device *pdev)
596{
597	struct resource	*r;
598	struct spi_master *master;
 
599	struct sh_msiof_spi_priv *p;
600	char clk_name[16];
601	int i;
602	int ret;
603
604	master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
605	if (master == NULL) {
606		dev_err(&pdev->dev, "failed to allocate spi master\n");
607		ret = -ENOMEM;
608		goto err0;
609	}
610
611	p = spi_master_get_devdata(master);
612
613	platform_set_drvdata(pdev, p);
614	p->info = pdev->dev.platform_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
615	init_completion(&p->done);
616
617	snprintf(clk_name, sizeof(clk_name), "msiof%d", pdev->id);
618	p->clk = clk_get(&pdev->dev, clk_name);
619	if (IS_ERR(p->clk)) {
620		dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
621		ret = PTR_ERR(p->clk);
622		goto err1;
623	}
624
625	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
626	i = platform_get_irq(pdev, 0);
627	if (!r || i < 0) {
628		dev_err(&pdev->dev, "cannot get platform resources\n");
629		ret = -ENOENT;
630		goto err2;
631	}
632	p->mapbase = ioremap_nocache(r->start, resource_size(r));
633	if (!p->mapbase) {
634		dev_err(&pdev->dev, "unable to ioremap\n");
635		ret = -ENXIO;
636		goto err2;
 
637	}
638
639	ret = request_irq(i, sh_msiof_spi_irq, 0,
640			  dev_name(&pdev->dev), p);
641	if (ret) {
642		dev_err(&pdev->dev, "unable to request irq\n");
643		goto err3;
644	}
645
646	p->pdev = pdev;
647	pm_runtime_enable(&pdev->dev);
648
649	/* The standard version of MSIOF use 64 word FIFOs */
650	p->tx_fifo_size = 64;
651	p->rx_fifo_size = 64;
652
653	/* Platform data may override FIFO sizes */
 
 
654	if (p->info->tx_fifo_override)
655		p->tx_fifo_size = p->info->tx_fifo_override;
656	if (p->info->rx_fifo_override)
657		p->rx_fifo_size = p->info->rx_fifo_override;
658
659	/* init master and bitbang code */
660	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
661	master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
662	master->flags = 0;
663	master->bus_num = pdev->id;
 
664	master->num_chipselect = p->info->num_chipselect;
665	master->setup = spi_bitbang_setup;
666	master->cleanup = spi_bitbang_cleanup;
 
 
 
 
 
 
 
 
 
667
668	p->bitbang.master = master;
669	p->bitbang.chipselect = sh_msiof_spi_chipselect;
670	p->bitbang.setup_transfer = sh_msiof_spi_setup_transfer;
671	p->bitbang.txrx_bufs = sh_msiof_spi_txrx;
672	p->bitbang.txrx_word[SPI_MODE_0] = sh_msiof_spi_txrx_word;
673	p->bitbang.txrx_word[SPI_MODE_1] = sh_msiof_spi_txrx_word;
674	p->bitbang.txrx_word[SPI_MODE_2] = sh_msiof_spi_txrx_word;
675	p->bitbang.txrx_word[SPI_MODE_3] = sh_msiof_spi_txrx_word;
676
677	ret = spi_bitbang_start(&p->bitbang);
678	if (ret == 0)
679		return 0;
680
681	pm_runtime_disable(&pdev->dev);
682 err3:
683	iounmap(p->mapbase);
684 err2:
685	clk_put(p->clk);
686 err1:
687	spi_master_put(master);
688 err0:
689	return ret;
690}
691
692static int sh_msiof_spi_remove(struct platform_device *pdev)
693{
694	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
695	int ret;
696
697	ret = spi_bitbang_stop(&p->bitbang);
698	if (!ret) {
699		pm_runtime_disable(&pdev->dev);
700		free_irq(platform_get_irq(pdev, 0), p);
701		iounmap(p->mapbase);
702		clk_put(p->clk);
703		spi_master_put(p->bitbang.master);
704	}
705	return ret;
706}
707
708static int sh_msiof_spi_runtime_nop(struct device *dev)
709{
710	/* Runtime PM callback shared between ->runtime_suspend()
711	 * and ->runtime_resume(). Simply returns success.
712	 *
713	 * This driver re-initializes all registers after
714	 * pm_runtime_get_sync() anyway so there is no need
715	 * to save and restore registers here.
716	 */
717	return 0;
718}
719
720static struct dev_pm_ops sh_msiof_spi_dev_pm_ops = {
721	.runtime_suspend = sh_msiof_spi_runtime_nop,
722	.runtime_resume = sh_msiof_spi_runtime_nop,
 
 
723};
 
724
725static struct platform_driver sh_msiof_spi_drv = {
726	.probe		= sh_msiof_spi_probe,
727	.remove		= sh_msiof_spi_remove,
 
728	.driver		= {
729		.name		= "spi_sh_msiof",
730		.owner		= THIS_MODULE,
731		.pm		= &sh_msiof_spi_dev_pm_ops,
732	},
733};
734module_platform_driver(sh_msiof_spi_drv);
735
736MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
737MODULE_AUTHOR("Magnus Damm");
738MODULE_LICENSE("GPL v2");
739MODULE_ALIAS("platform:spi_sh_msiof");
v3.15
  1/*
  2 * SuperH MSIOF SPI Master Interface
  3 *
  4 * Copyright (c) 2009 Magnus Damm
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 *
 10 */
 11
 12#include <linux/bitmap.h>
 13#include <linux/clk.h>
 14#include <linux/completion.h>
 15#include <linux/delay.h>
 16#include <linux/err.h>
 17#include <linux/gpio.h>
 
 18#include <linux/interrupt.h>
 19#include <linux/io.h>
 20#include <linux/kernel.h>
 21#include <linux/module.h>
 22#include <linux/of.h>
 23#include <linux/of_device.h>
 24#include <linux/platform_device.h>
 25#include <linux/pm_runtime.h>
 26
 27#include <linux/spi/sh_msiof.h>
 28#include <linux/spi/spi.h>
 
 29
 30#include <asm/unaligned.h>
 31
 32
 33struct sh_msiof_chipdata {
 34	u16 tx_fifo_size;
 35	u16 rx_fifo_size;
 36	u16 master_flags;
 37};
 38
 39struct sh_msiof_spi_priv {
 
 40	void __iomem *mapbase;
 41	struct clk *clk;
 42	struct platform_device *pdev;
 43	const struct sh_msiof_chipdata *chipdata;
 44	struct sh_msiof_spi_info *info;
 45	struct completion done;
 
 46	int tx_fifo_size;
 47	int rx_fifo_size;
 48};
 49
 50#define TMDR1	0x00	/* Transmit Mode Register 1 */
 51#define TMDR2	0x04	/* Transmit Mode Register 2 */
 52#define TMDR3	0x08	/* Transmit Mode Register 3 */
 53#define RMDR1	0x10	/* Receive Mode Register 1 */
 54#define RMDR2	0x14	/* Receive Mode Register 2 */
 55#define RMDR3	0x18	/* Receive Mode Register 3 */
 56#define TSCR	0x20	/* Transmit Clock Select Register */
 57#define RSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
 58#define CTR	0x28	/* Control Register */
 59#define FCTR	0x30	/* FIFO Control Register */
 60#define STR	0x40	/* Status Register */
 61#define IER	0x44	/* Interrupt Enable Register */
 62#define TDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
 63#define TDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
 64#define TFDR	0x50	/* Transmit FIFO Data Register */
 65#define RDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
 66#define RDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
 67#define RFDR	0x60	/* Receive FIFO Data Register */
 68
 69/* TMDR1 and RMDR1 */
 70#define MDR1_TRMD	 0x80000000 /* Transfer Mode (1 = Master mode) */
 71#define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
 72#define MDR1_SYNCMD_SPI	 0x20000000 /*   Level mode/SPI */
 73#define MDR1_SYNCMD_LR	 0x30000000 /*   L/R mode */
 74#define MDR1_SYNCAC_SHIFT	 25 /* Sync Polarity (1 = Active-low) */
 75#define MDR1_BITLSB_SHIFT	 24 /* MSB/LSB First (1 = LSB first) */
 76#define MDR1_FLD_MASK	 0x000000c0 /* Frame Sync Signal Interval (0-3) */
 77#define MDR1_FLD_SHIFT		  2
 78#define MDR1_XXSTP	 0x00000001 /* Transmission/Reception Stop on FIFO */
 79/* TMDR1 */
 80#define TMDR1_PCON	 0x40000000 /* Transfer Signal Connection */
 81
 82/* TMDR2 and RMDR2 */
 83#define MDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
 84#define MDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
 85#define MDR2_GRPMASK1	0x00000001 /* Group Output Mask 1 (SH, A1) */
 86
 87/* TSCR and RSCR */
 88#define SCR_BRPS_MASK	    0x1f00 /* Prescaler Setting (1-32) */
 89#define SCR_BRPS(i)	(((i) - 1) << 8)
 90#define SCR_BRDV_MASK	    0x0007 /* Baud Rate Generator's Division Ratio */
 91#define SCR_BRDV_DIV_2	    0x0000
 92#define SCR_BRDV_DIV_4	    0x0001
 93#define SCR_BRDV_DIV_8	    0x0002
 94#define SCR_BRDV_DIV_16	    0x0003
 95#define SCR_BRDV_DIV_32	    0x0004
 96#define SCR_BRDV_DIV_1	    0x0007
 97
 98/* CTR */
 99#define CTR_TSCKIZ_MASK	0xc0000000 /* Transmit Clock I/O Polarity Select */
100#define CTR_TSCKIZ_SCK	0x80000000 /*   Disable SCK when TX disabled */
101#define CTR_TSCKIZ_POL_SHIFT	30 /*   Transmit Clock Polarity */
102#define CTR_RSCKIZ_MASK	0x30000000 /* Receive Clock Polarity Select */
103#define CTR_RSCKIZ_SCK	0x20000000 /*   Must match CTR_TSCKIZ_SCK */
104#define CTR_RSCKIZ_POL_SHIFT	28 /*   Receive Clock Polarity */
105#define CTR_TEDG_SHIFT		27 /* Transmit Timing (1 = falling edge) */
106#define CTR_REDG_SHIFT		26 /* Receive Timing (1 = falling edge) */
107#define CTR_TXDIZ_MASK	0x00c00000 /* Pin Output When TX is Disabled */
108#define CTR_TXDIZ_LOW	0x00000000 /*   0 */
109#define CTR_TXDIZ_HIGH	0x00400000 /*   1 */
110#define CTR_TXDIZ_HIZ	0x00800000 /*   High-impedance */
111#define CTR_TSCKE	0x00008000 /* Transmit Serial Clock Output Enable */
112#define CTR_TFSE	0x00004000 /* Transmit Frame Sync Signal Output Enable */
113#define CTR_TXE		0x00000200 /* Transmit Enable */
114#define CTR_RXE		0x00000100 /* Receive Enable */
115
116/* STR and IER */
117#define STR_TEOF	0x00800000 /* Frame Transmission End */
118#define STR_REOF	0x00000080 /* Frame Reception End */
119
 
 
120
121static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
122{
123	switch (reg_offs) {
124	case TSCR:
125	case RSCR:
126		return ioread16(p->mapbase + reg_offs);
127	default:
128		return ioread32(p->mapbase + reg_offs);
129	}
130}
131
132static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
133			   u32 value)
134{
135	switch (reg_offs) {
136	case TSCR:
137	case RSCR:
138		iowrite16(value, p->mapbase + reg_offs);
139		break;
140	default:
141		iowrite32(value, p->mapbase + reg_offs);
142		break;
143	}
144}
145
146static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
147				    u32 clr, u32 set)
148{
149	u32 mask = clr | set;
150	u32 data;
151	int k;
152
153	data = sh_msiof_read(p, CTR);
154	data &= ~clr;
155	data |= set;
156	sh_msiof_write(p, CTR, data);
157
158	for (k = 100; k > 0; k--) {
159		if ((sh_msiof_read(p, CTR) & mask) == set)
160			break;
161
162		udelay(10);
163	}
164
165	return k > 0 ? 0 : -ETIMEDOUT;
166}
167
168static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
169{
170	struct sh_msiof_spi_priv *p = data;
171
172	/* just disable the interrupt and wake up */
173	sh_msiof_write(p, IER, 0);
174	complete(&p->done);
175
176	return IRQ_HANDLED;
177}
178
179static struct {
180	unsigned short div;
181	unsigned short scr;
182} const sh_msiof_spi_clk_table[] = {
183	{ 1,	SCR_BRPS( 1) | SCR_BRDV_DIV_1 },
184	{ 2,	SCR_BRPS( 1) | SCR_BRDV_DIV_2 },
185	{ 4,	SCR_BRPS( 1) | SCR_BRDV_DIV_4 },
186	{ 8,	SCR_BRPS( 1) | SCR_BRDV_DIV_8 },
187	{ 16,	SCR_BRPS( 1) | SCR_BRDV_DIV_16 },
188	{ 32,	SCR_BRPS( 1) | SCR_BRDV_DIV_32 },
189	{ 64,	SCR_BRPS(32) | SCR_BRDV_DIV_2 },
190	{ 128,	SCR_BRPS(32) | SCR_BRDV_DIV_4 },
191	{ 256,	SCR_BRPS(32) | SCR_BRDV_DIV_8 },
192	{ 512,	SCR_BRPS(32) | SCR_BRDV_DIV_16 },
193	{ 1024,	SCR_BRPS(32) | SCR_BRDV_DIV_32 },
194};
195
196static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
197				      unsigned long parent_rate, u32 spi_hz)
 
198{
199	unsigned long div = 1024;
200	size_t k;
201
202	if (!WARN_ON(!spi_hz || !parent_rate))
203		div = DIV_ROUND_UP(parent_rate, spi_hz);
204
205	/* TODO: make more fine grained */
206
207	for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_clk_table); k++) {
208		if (sh_msiof_spi_clk_table[k].div >= div)
209			break;
210	}
211
212	k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_clk_table) - 1);
213
214	sh_msiof_write(p, TSCR, sh_msiof_spi_clk_table[k].scr);
215	if (!(p->chipdata->master_flags & SPI_MASTER_MUST_TX))
216		sh_msiof_write(p, RSCR, sh_msiof_spi_clk_table[k].scr);
217}
218
219static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
220				      u32 cpol, u32 cpha,
221				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
222{
223	u32 tmp;
224	int edge;
225
226	/*
227	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
228	 *    0    0         10     10    1    1
229	 *    0    1         10     10    0    0
230	 *    1    0         11     11    0    0
231	 *    1    1         11     11    1    1
232	 */
233	sh_msiof_write(p, FCTR, 0);
 
 
234
235	tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
236	tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
237	tmp |= lsb_first << MDR1_BITLSB_SHIFT;
238	sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
239	if (p->chipdata->master_flags & SPI_MASTER_MUST_TX) {
240		/* These bits are reserved if RX needs TX */
241		tmp &= ~0x0000ffff;
242	}
243	sh_msiof_write(p, RMDR1, tmp);
244
245	tmp = 0;
246	tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
247	tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
248
249	edge = cpol ^ !cpha;
250
251	tmp |= edge << CTR_TEDG_SHIFT;
252	tmp |= edge << CTR_REDG_SHIFT;
253	tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
254	sh_msiof_write(p, CTR, tmp);
255}
256
257static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
258				       const void *tx_buf, void *rx_buf,
259				       u32 bits, u32 words)
260{
261	u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
262
263	if (tx_buf || (p->chipdata->master_flags & SPI_MASTER_MUST_TX))
264		sh_msiof_write(p, TMDR2, dr2);
265	else
266		sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
267
268	if (rx_buf)
269		sh_msiof_write(p, RMDR2, dr2);
270
271	sh_msiof_write(p, IER, STR_TEOF | STR_REOF);
272}
273
274static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
275{
276	sh_msiof_write(p, STR, sh_msiof_read(p, STR));
277}
278
279static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
280				      const void *tx_buf, int words, int fs)
281{
282	const u8 *buf_8 = tx_buf;
283	int k;
284
285	for (k = 0; k < words; k++)
286		sh_msiof_write(p, TFDR, buf_8[k] << fs);
287}
288
289static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
290				       const void *tx_buf, int words, int fs)
291{
292	const u16 *buf_16 = tx_buf;
293	int k;
294
295	for (k = 0; k < words; k++)
296		sh_msiof_write(p, TFDR, buf_16[k] << fs);
297}
298
299static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
300					const void *tx_buf, int words, int fs)
301{
302	const u16 *buf_16 = tx_buf;
303	int k;
304
305	for (k = 0; k < words; k++)
306		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
307}
308
309static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
310				       const void *tx_buf, int words, int fs)
311{
312	const u32 *buf_32 = tx_buf;
313	int k;
314
315	for (k = 0; k < words; k++)
316		sh_msiof_write(p, TFDR, buf_32[k] << fs);
317}
318
319static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
320					const void *tx_buf, int words, int fs)
321{
322	const u32 *buf_32 = tx_buf;
323	int k;
324
325	for (k = 0; k < words; k++)
326		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
327}
328
329static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
330					const void *tx_buf, int words, int fs)
331{
332	const u32 *buf_32 = tx_buf;
333	int k;
334
335	for (k = 0; k < words; k++)
336		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
337}
338
339static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
340					 const void *tx_buf, int words, int fs)
341{
342	const u32 *buf_32 = tx_buf;
343	int k;
344
345	for (k = 0; k < words; k++)
346		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
347}
348
349static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
350				     void *rx_buf, int words, int fs)
351{
352	u8 *buf_8 = rx_buf;
353	int k;
354
355	for (k = 0; k < words; k++)
356		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
357}
358
359static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
360				      void *rx_buf, int words, int fs)
361{
362	u16 *buf_16 = rx_buf;
363	int k;
364
365	for (k = 0; k < words; k++)
366		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
367}
368
369static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
370				       void *rx_buf, int words, int fs)
371{
372	u16 *buf_16 = rx_buf;
373	int k;
374
375	for (k = 0; k < words; k++)
376		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
377}
378
379static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
380				      void *rx_buf, int words, int fs)
381{
382	u32 *buf_32 = rx_buf;
383	int k;
384
385	for (k = 0; k < words; k++)
386		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
387}
388
389static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
390				       void *rx_buf, int words, int fs)
391{
392	u32 *buf_32 = rx_buf;
393	int k;
394
395	for (k = 0; k < words; k++)
396		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
397}
398
399static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
400				       void *rx_buf, int words, int fs)
401{
402	u32 *buf_32 = rx_buf;
403	int k;
404
405	for (k = 0; k < words; k++)
406		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
407}
408
409static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
410				       void *rx_buf, int words, int fs)
411{
412	u32 *buf_32 = rx_buf;
413	int k;
414
415	for (k = 0; k < words; k++)
416		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
417}
418
419static int sh_msiof_spi_setup(struct spi_device *spi)
 
 
 
 
 
 
 
 
 
 
 
420{
421	struct device_node	*np = spi->master->dev.of_node;
422	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
 
 
 
 
 
 
 
 
 
 
423
424	if (!np) {
425		/*
426		 * Use spi->controller_data for CS (same strategy as spi_gpio),
427		 * if any. otherwise let HW control CS
428		 */
429		spi->cs_gpio = (uintptr_t)spi->controller_data;
430	}
431
432	/* Configure pins before deasserting CS */
433	sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
434				  !!(spi->mode & SPI_CPHA),
435				  !!(spi->mode & SPI_3WIRE),
436				  !!(spi->mode & SPI_LSB_FIRST),
437				  !!(spi->mode & SPI_CS_HIGH));
438
439	if (spi->cs_gpio >= 0)
440		gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
 
 
 
441
442	return 0;
443}
444
445static int sh_msiof_prepare_message(struct spi_master *master,
446				    struct spi_message *msg)
447{
448	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
449	const struct spi_device *spi = msg->spi;
450
451	/* Configure pins before asserting CS */
452	sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
453				  !!(spi->mode & SPI_CPHA),
454				  !!(spi->mode & SPI_3WIRE),
455				  !!(spi->mode & SPI_LSB_FIRST),
456				  !!(spi->mode & SPI_CS_HIGH));
457	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
458}
459
460static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
461				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
462						  const void *, int, int),
463				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
464						  void *, int, int),
465				  const void *tx_buf, void *rx_buf,
466				  int words, int bits)
467{
468	int fifo_shift;
469	int ret;
470
471	/* limit maximum word transfer to rx/tx fifo size */
472	if (tx_buf)
473		words = min_t(int, words, p->tx_fifo_size);
474	if (rx_buf)
475		words = min_t(int, words, p->rx_fifo_size);
476
477	/* the fifo contents need shifting */
478	fifo_shift = 32 - bits;
479
480	/* setup msiof transfer mode registers */
481	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
482
483	/* write tx fifo */
484	if (tx_buf)
485		tx_fifo(p, tx_buf, words, fifo_shift);
486
487	/* setup clock and rx/tx signals */
488	ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
489	if (rx_buf)
490		ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
491	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
492
493	/* start by setting frame bit */
494	reinit_completion(&p->done);
495	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
496	if (ret) {
497		dev_err(&p->pdev->dev, "failed to start hardware\n");
498		goto err;
499	}
500
501	/* wait for tx fifo to be emptied / rx fifo to be filled */
502	wait_for_completion(&p->done);
503
504	/* read rx fifo */
505	if (rx_buf)
506		rx_fifo(p, rx_buf, words, fifo_shift);
507
508	/* clear status bits */
509	sh_msiof_reset_str(p);
510
511	/* shut down frame, rx/tx and clock signals */
512	ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
513	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
514	if (rx_buf)
515		ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
516	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
517	if (ret) {
518		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
519		goto err;
520	}
521
522	return words;
523
524 err:
525	sh_msiof_write(p, IER, 0);
526	return ret;
527}
528
529static int sh_msiof_transfer_one(struct spi_master *master,
530				 struct spi_device *spi,
531				 struct spi_transfer *t)
532{
533	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
534	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
535	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
536	int bits;
537	int bytes_per_word;
538	int bytes_done;
539	int words;
540	int n;
541	bool swab;
542
543	bits = t->bits_per_word;
544
545	if (bits <= 8 && t->len > 15 && !(t->len & 3)) {
546		bits = 32;
547		swab = true;
548	} else {
549		swab = false;
550	}
551
552	/* setup bytes per word and fifo read/write functions */
553	if (bits <= 8) {
554		bytes_per_word = 1;
555		tx_fifo = sh_msiof_spi_write_fifo_8;
556		rx_fifo = sh_msiof_spi_read_fifo_8;
557	} else if (bits <= 16) {
558		bytes_per_word = 2;
559		if ((unsigned long)t->tx_buf & 0x01)
560			tx_fifo = sh_msiof_spi_write_fifo_16u;
561		else
562			tx_fifo = sh_msiof_spi_write_fifo_16;
563
564		if ((unsigned long)t->rx_buf & 0x01)
565			rx_fifo = sh_msiof_spi_read_fifo_16u;
566		else
567			rx_fifo = sh_msiof_spi_read_fifo_16;
568	} else if (swab) {
569		bytes_per_word = 4;
570		if ((unsigned long)t->tx_buf & 0x03)
571			tx_fifo = sh_msiof_spi_write_fifo_s32u;
572		else
573			tx_fifo = sh_msiof_spi_write_fifo_s32;
574
575		if ((unsigned long)t->rx_buf & 0x03)
576			rx_fifo = sh_msiof_spi_read_fifo_s32u;
577		else
578			rx_fifo = sh_msiof_spi_read_fifo_s32;
579	} else {
580		bytes_per_word = 4;
581		if ((unsigned long)t->tx_buf & 0x03)
582			tx_fifo = sh_msiof_spi_write_fifo_32u;
583		else
584			tx_fifo = sh_msiof_spi_write_fifo_32;
585
586		if ((unsigned long)t->rx_buf & 0x03)
587			rx_fifo = sh_msiof_spi_read_fifo_32u;
588		else
589			rx_fifo = sh_msiof_spi_read_fifo_32;
590	}
591
592	/* setup clocks (clock already enabled in chipselect()) */
593	sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
 
594
595	/* transfer in fifo sized chunks */
596	words = t->len / bytes_per_word;
597	bytes_done = 0;
598
599	while (bytes_done < t->len) {
600		void *rx_buf = t->rx_buf ? t->rx_buf + bytes_done : NULL;
601		const void *tx_buf = t->tx_buf ? t->tx_buf + bytes_done : NULL;
602		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo,
603					   tx_buf,
604					   rx_buf,
605					   words, bits);
606		if (n < 0)
607			break;
608
609		bytes_done += n * bytes_per_word;
610		words -= n;
611	}
612
613	return 0;
614}
615
616static const struct sh_msiof_chipdata sh_data = {
617	.tx_fifo_size = 64,
618	.rx_fifo_size = 64,
619	.master_flags = 0,
620};
621
622static const struct sh_msiof_chipdata r8a779x_data = {
623	.tx_fifo_size = 64,
624	.rx_fifo_size = 256,
625	.master_flags = SPI_MASTER_MUST_TX,
626};
627
628static const struct of_device_id sh_msiof_match[] = {
629	{ .compatible = "renesas,sh-msiof",        .data = &sh_data },
630	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
631	{ .compatible = "renesas,msiof-r8a7790",   .data = &r8a779x_data },
632	{ .compatible = "renesas,msiof-r8a7791",   .data = &r8a779x_data },
633	{},
634};
635MODULE_DEVICE_TABLE(of, sh_msiof_match);
636
637#ifdef CONFIG_OF
638static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
639{
640	struct sh_msiof_spi_info *info;
641	struct device_node *np = dev->of_node;
642	u32 num_cs = 1;
643
644	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
645	if (!info) {
646		dev_err(dev, "failed to allocate setup data\n");
647		return NULL;
648	}
649
650	/* Parse the MSIOF properties */
651	of_property_read_u32(np, "num-cs", &num_cs);
652	of_property_read_u32(np, "renesas,tx-fifo-size",
653					&info->tx_fifo_override);
654	of_property_read_u32(np, "renesas,rx-fifo-size",
655					&info->rx_fifo_override);
656
657	info->num_chipselect = num_cs;
658
659	return info;
660}
661#else
662static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
663{
664	return NULL;
665}
666#endif
667
668static int sh_msiof_spi_probe(struct platform_device *pdev)
669{
670	struct resource	*r;
671	struct spi_master *master;
672	const struct of_device_id *of_id;
673	struct sh_msiof_spi_priv *p;
 
674	int i;
675	int ret;
676
677	master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
678	if (master == NULL) {
679		dev_err(&pdev->dev, "failed to allocate spi master\n");
680		return -ENOMEM;
 
681	}
682
683	p = spi_master_get_devdata(master);
684
685	platform_set_drvdata(pdev, p);
686
687	of_id = of_match_device(sh_msiof_match, &pdev->dev);
688	if (of_id) {
689		p->chipdata = of_id->data;
690		p->info = sh_msiof_spi_parse_dt(&pdev->dev);
691	} else {
692		p->chipdata = (const void *)pdev->id_entry->driver_data;
693		p->info = dev_get_platdata(&pdev->dev);
694	}
695
696	if (!p->info) {
697		dev_err(&pdev->dev, "failed to obtain device info\n");
698		ret = -ENXIO;
699		goto err1;
700	}
701
702	init_completion(&p->done);
703
704	p->clk = devm_clk_get(&pdev->dev, NULL);
 
705	if (IS_ERR(p->clk)) {
706		dev_err(&pdev->dev, "cannot get clock\n");
707		ret = PTR_ERR(p->clk);
708		goto err1;
709	}
710
 
711	i = platform_get_irq(pdev, 0);
712	if (i < 0) {
713		dev_err(&pdev->dev, "cannot get platform IRQ\n");
714		ret = -ENOENT;
715		goto err1;
716	}
717
718	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
719	p->mapbase = devm_ioremap_resource(&pdev->dev, r);
720	if (IS_ERR(p->mapbase)) {
721		ret = PTR_ERR(p->mapbase);
722		goto err1;
723	}
724
725	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
726			       dev_name(&pdev->dev), p);
727	if (ret) {
728		dev_err(&pdev->dev, "unable to request irq\n");
729		goto err1;
730	}
731
732	p->pdev = pdev;
733	pm_runtime_enable(&pdev->dev);
734
 
 
 
 
735	/* Platform data may override FIFO sizes */
736	p->tx_fifo_size = p->chipdata->tx_fifo_size;
737	p->rx_fifo_size = p->chipdata->rx_fifo_size;
738	if (p->info->tx_fifo_override)
739		p->tx_fifo_size = p->info->tx_fifo_override;
740	if (p->info->rx_fifo_override)
741		p->rx_fifo_size = p->info->rx_fifo_override;
742
743	/* init master code */
744	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
745	master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
746	master->flags = p->chipdata->master_flags;
747	master->bus_num = pdev->id;
748	master->dev.of_node = pdev->dev.of_node;
749	master->num_chipselect = p->info->num_chipselect;
750	master->setup = sh_msiof_spi_setup;
751	master->prepare_message = sh_msiof_prepare_message;
752	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
753	master->auto_runtime_pm = true;
754	master->transfer_one = sh_msiof_transfer_one;
755
756	ret = devm_spi_register_master(&pdev->dev, master);
757	if (ret < 0) {
758		dev_err(&pdev->dev, "spi_register_master error.\n");
759		goto err2;
760	}
761
762	return 0;
 
 
 
 
 
 
 
 
 
 
 
763
 
 
 
764 err2:
765	pm_runtime_disable(&pdev->dev);
766 err1:
767	spi_master_put(master);
 
768	return ret;
769}
770
771static int sh_msiof_spi_remove(struct platform_device *pdev)
772{
773	pm_runtime_disable(&pdev->dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
774	return 0;
775}
776
777static struct platform_device_id spi_driver_ids[] = {
778	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
779	{ "spi_r8a7790_msiof",	(kernel_ulong_t)&r8a779x_data },
780	{ "spi_r8a7791_msiof",	(kernel_ulong_t)&r8a779x_data },
781	{},
782};
783MODULE_DEVICE_TABLE(platform, spi_driver_ids);
784
785static struct platform_driver sh_msiof_spi_drv = {
786	.probe		= sh_msiof_spi_probe,
787	.remove		= sh_msiof_spi_remove,
788	.id_table	= spi_driver_ids,
789	.driver		= {
790		.name		= "spi_sh_msiof",
791		.owner		= THIS_MODULE,
792		.of_match_table = of_match_ptr(sh_msiof_match),
793	},
794};
795module_platform_driver(sh_msiof_spi_drv);
796
797MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
798MODULE_AUTHOR("Magnus Damm");
799MODULE_LICENSE("GPL v2");
800MODULE_ALIAS("platform:spi_sh_msiof");