Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
  3 *
  4 * The code contained herein is licensed under the GNU General Public
  5 * License. You may obtain a copy of the GNU General Public License
  6 * Version 2 or later at the following locations:
  7 *
  8 * http://www.opensource.org/licenses/gpl-license.html
  9 * http://www.gnu.org/copyleft/gpl.html
 10 */
 11
 12#include <linux/io.h>
 13#include <linux/rtc.h>
 14#include <linux/module.h>
 15#include <linux/slab.h>
 16#include <linux/interrupt.h>
 17#include <linux/platform_device.h>
 18#include <linux/clk.h>
 19
 20#include <mach/hardware.h>
 21
 22#define RTC_INPUT_CLK_32768HZ	(0x00 << 5)
 23#define RTC_INPUT_CLK_32000HZ	(0x01 << 5)
 24#define RTC_INPUT_CLK_38400HZ	(0x02 << 5)
 25
 26#define RTC_SW_BIT      (1 << 0)
 27#define RTC_ALM_BIT     (1 << 2)
 28#define RTC_1HZ_BIT     (1 << 4)
 29#define RTC_2HZ_BIT     (1 << 7)
 30#define RTC_SAM0_BIT    (1 << 8)
 31#define RTC_SAM1_BIT    (1 << 9)
 32#define RTC_SAM2_BIT    (1 << 10)
 33#define RTC_SAM3_BIT    (1 << 11)
 34#define RTC_SAM4_BIT    (1 << 12)
 35#define RTC_SAM5_BIT    (1 << 13)
 36#define RTC_SAM6_BIT    (1 << 14)
 37#define RTC_SAM7_BIT    (1 << 15)
 38#define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
 39			 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
 40			 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
 41
 42#define RTC_ENABLE_BIT  (1 << 7)
 43
 44#define MAX_PIE_NUM     9
 45#define MAX_PIE_FREQ    512
 46static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
 47	{ 2,		RTC_2HZ_BIT },
 48	{ 4,		RTC_SAM0_BIT },
 49	{ 8,		RTC_SAM1_BIT },
 50	{ 16,		RTC_SAM2_BIT },
 51	{ 32,		RTC_SAM3_BIT },
 52	{ 64,		RTC_SAM4_BIT },
 53	{ 128,		RTC_SAM5_BIT },
 54	{ 256,		RTC_SAM6_BIT },
 55	{ MAX_PIE_FREQ,	RTC_SAM7_BIT },
 56};
 57
 58#define MXC_RTC_TIME	0
 59#define MXC_RTC_ALARM	1
 60
 61#define RTC_HOURMIN	0x00	/*  32bit rtc hour/min counter reg */
 62#define RTC_SECOND	0x04	/*  32bit rtc seconds counter reg */
 63#define RTC_ALRM_HM	0x08	/*  32bit rtc alarm hour/min reg */
 64#define RTC_ALRM_SEC	0x0C	/*  32bit rtc alarm seconds reg */
 65#define RTC_RTCCTL	0x10	/*  32bit rtc control reg */
 66#define RTC_RTCISR	0x14	/*  32bit rtc interrupt status reg */
 67#define RTC_RTCIENR	0x18	/*  32bit rtc interrupt enable reg */
 68#define RTC_STPWCH	0x1C	/*  32bit rtc stopwatch min reg */
 69#define RTC_DAYR	0x20	/*  32bit rtc days counter reg */
 70#define RTC_DAYALARM	0x24	/*  32bit rtc day alarm reg */
 71#define RTC_TEST1	0x28	/*  32bit rtc test reg 1 */
 72#define RTC_TEST2	0x2C	/*  32bit rtc test reg 2 */
 73#define RTC_TEST3	0x30	/*  32bit rtc test reg 3 */
 74
 
 
 
 
 
 75struct rtc_plat_data {
 76	struct rtc_device *rtc;
 77	void __iomem *ioaddr;
 78	int irq;
 79	struct clk *clk;
 
 80	struct rtc_time g_rtc_alarm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 81};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 82
 83/*
 84 * This function is used to obtain the RTC time or the alarm value in
 85 * second.
 86 */
 87static u32 get_alarm_or_time(struct device *dev, int time_alarm)
 88{
 89	struct platform_device *pdev = to_platform_device(dev);
 90	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 91	void __iomem *ioaddr = pdata->ioaddr;
 92	u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
 93
 94	switch (time_alarm) {
 95	case MXC_RTC_TIME:
 96		day = readw(ioaddr + RTC_DAYR);
 97		hr_min = readw(ioaddr + RTC_HOURMIN);
 98		sec = readw(ioaddr + RTC_SECOND);
 99		break;
100	case MXC_RTC_ALARM:
101		day = readw(ioaddr + RTC_DAYALARM);
102		hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
103		sec = readw(ioaddr + RTC_ALRM_SEC);
104		break;
105	}
106
107	hr = hr_min >> 8;
108	min = hr_min & 0xff;
109
110	return (((day * 24 + hr) * 60) + min) * 60 + sec;
111}
112
113/*
114 * This function sets the RTC alarm value or the time value.
115 */
116static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time)
117{
118	u32 day, hr, min, sec, temp;
119	struct platform_device *pdev = to_platform_device(dev);
120	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
121	void __iomem *ioaddr = pdata->ioaddr;
122
123	day = time / 86400;
124	time -= day * 86400;
125
126	/* time is within a day now */
127	hr = time / 3600;
128	time -= hr * 3600;
129
130	/* time is within an hour now */
131	min = time / 60;
132	sec = time - min * 60;
133
134	temp = (hr << 8) + min;
135
136	switch (time_alarm) {
137	case MXC_RTC_TIME:
138		writew(day, ioaddr + RTC_DAYR);
139		writew(sec, ioaddr + RTC_SECOND);
140		writew(temp, ioaddr + RTC_HOURMIN);
141		break;
142	case MXC_RTC_ALARM:
143		writew(day, ioaddr + RTC_DAYALARM);
144		writew(sec, ioaddr + RTC_ALRM_SEC);
145		writew(temp, ioaddr + RTC_ALRM_HM);
146		break;
147	}
148}
149
150/*
151 * This function updates the RTC alarm registers and then clears all the
152 * interrupt status bits.
153 */
154static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
155{
156	struct rtc_time alarm_tm, now_tm;
157	unsigned long now, time;
158	struct platform_device *pdev = to_platform_device(dev);
159	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
160	void __iomem *ioaddr = pdata->ioaddr;
161
162	now = get_alarm_or_time(dev, MXC_RTC_TIME);
163	rtc_time_to_tm(now, &now_tm);
164	alarm_tm.tm_year = now_tm.tm_year;
165	alarm_tm.tm_mon = now_tm.tm_mon;
166	alarm_tm.tm_mday = now_tm.tm_mday;
167	alarm_tm.tm_hour = alrm->tm_hour;
168	alarm_tm.tm_min = alrm->tm_min;
169	alarm_tm.tm_sec = alrm->tm_sec;
170	rtc_tm_to_time(&alarm_tm, &time);
171
172	/* clear all the interrupt status bits */
173	writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
174	set_alarm_or_time(dev, MXC_RTC_ALARM, time);
175
176	return 0;
177}
178
179static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
180				unsigned int enabled)
181{
182	struct platform_device *pdev = to_platform_device(dev);
183	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
184	void __iomem *ioaddr = pdata->ioaddr;
185	u32 reg;
186
187	spin_lock_irq(&pdata->rtc->irq_lock);
188	reg = readw(ioaddr + RTC_RTCIENR);
189
190	if (enabled)
191		reg |= bit;
192	else
193		reg &= ~bit;
194
195	writew(reg, ioaddr + RTC_RTCIENR);
196	spin_unlock_irq(&pdata->rtc->irq_lock);
197}
198
199/* This function is the RTC interrupt service routine. */
200static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
201{
202	struct platform_device *pdev = dev_id;
203	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
204	void __iomem *ioaddr = pdata->ioaddr;
205	unsigned long flags;
206	u32 status;
207	u32 events = 0;
208
209	spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
210	status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
211	/* clear interrupt sources */
212	writew(status, ioaddr + RTC_RTCISR);
213
214	/* update irq data & counter */
215	if (status & RTC_ALM_BIT) {
216		events |= (RTC_AF | RTC_IRQF);
217		/* RTC alarm should be one-shot */
218		mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
219	}
220
221	if (status & RTC_1HZ_BIT)
222		events |= (RTC_UF | RTC_IRQF);
223
224	if (status & PIT_ALL_ON)
225		events |= (RTC_PF | RTC_IRQF);
226
227	rtc_update_irq(pdata->rtc, 1, events);
228	spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
229
230	return IRQ_HANDLED;
231}
232
233/*
234 * Clear all interrupts and release the IRQ
235 */
236static void mxc_rtc_release(struct device *dev)
237{
238	struct platform_device *pdev = to_platform_device(dev);
239	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
240	void __iomem *ioaddr = pdata->ioaddr;
241
242	spin_lock_irq(&pdata->rtc->irq_lock);
243
244	/* Disable all rtc interrupts */
245	writew(0, ioaddr + RTC_RTCIENR);
246
247	/* Clear all interrupt status */
248	writew(0xffffffff, ioaddr + RTC_RTCISR);
249
250	spin_unlock_irq(&pdata->rtc->irq_lock);
251}
252
253static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
254{
255	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
256	return 0;
257}
258
259/*
260 * This function reads the current RTC time into tm in Gregorian date.
261 */
262static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
263{
264	u32 val;
265
266	/* Avoid roll-over from reading the different registers */
267	do {
268		val = get_alarm_or_time(dev, MXC_RTC_TIME);
269	} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
270
271	rtc_time_to_tm(val, tm);
272
273	return 0;
274}
275
276/*
277 * This function sets the internal RTC time based on tm in Gregorian date.
278 */
279static int mxc_rtc_set_mmss(struct device *dev, unsigned long time)
280{
 
 
 
281	/*
282	 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
283	 */
284	if (cpu_is_mx1()) {
285		struct rtc_time tm;
286
287		rtc_time_to_tm(time, &tm);
288		tm.tm_year = 70;
289		rtc_tm_to_time(&tm, &time);
290	}
291
292	/* Avoid roll-over from reading the different registers */
293	do {
294		set_alarm_or_time(dev, MXC_RTC_TIME, time);
295	} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
296
297	return 0;
298}
299
300/*
301 * This function reads the current alarm value into the passed in 'alrm'
302 * argument. It updates the alrm's pending field value based on the whether
303 * an alarm interrupt occurs or not.
304 */
305static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
306{
307	struct platform_device *pdev = to_platform_device(dev);
308	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
309	void __iomem *ioaddr = pdata->ioaddr;
310
311	rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
312	alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
313
314	return 0;
315}
316
317/*
318 * This function sets the RTC alarm based on passed in alrm.
319 */
320static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
321{
322	struct platform_device *pdev = to_platform_device(dev);
323	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
324	int ret;
325
326	ret = rtc_update_alarm(dev, &alrm->time);
327	if (ret)
328		return ret;
329
330	memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
331	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
332
333	return 0;
334}
335
336/* RTC layer */
337static struct rtc_class_ops mxc_rtc_ops = {
338	.release		= mxc_rtc_release,
339	.read_time		= mxc_rtc_read_time,
340	.set_mmss		= mxc_rtc_set_mmss,
341	.read_alarm		= mxc_rtc_read_alarm,
342	.set_alarm		= mxc_rtc_set_alarm,
343	.alarm_irq_enable	= mxc_rtc_alarm_irq_enable,
344};
345
346static int __init mxc_rtc_probe(struct platform_device *pdev)
347{
348	struct resource *res;
349	struct rtc_device *rtc;
350	struct rtc_plat_data *pdata = NULL;
351	u32 reg;
352	unsigned long rate;
353	int ret;
354
355	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
356	if (!res)
357		return -ENODEV;
358
359	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
360	if (!pdata)
361		return -ENOMEM;
362
363	if (!devm_request_mem_region(&pdev->dev, res->start,
364				     resource_size(res), pdev->name))
365		return -EBUSY;
366
367	pdata->ioaddr = devm_ioremap(&pdev->dev, res->start,
368				     resource_size(res));
369
370	pdata->clk = clk_get(&pdev->dev, "rtc");
371	if (IS_ERR(pdata->clk)) {
372		dev_err(&pdev->dev, "unable to get clock!\n");
373		ret = PTR_ERR(pdata->clk);
374		goto exit_free_pdata;
 
 
 
375	}
376
377	clk_enable(pdata->clk);
378	rate = clk_get_rate(pdata->clk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
379
380	if (rate == 32768)
381		reg = RTC_INPUT_CLK_32768HZ;
382	else if (rate == 32000)
383		reg = RTC_INPUT_CLK_32000HZ;
384	else if (rate == 38400)
385		reg = RTC_INPUT_CLK_38400HZ;
386	else {
387		dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
388		ret = -EINVAL;
389		goto exit_put_clk;
390	}
391
392	reg |= RTC_ENABLE_BIT;
393	writew(reg, (pdata->ioaddr + RTC_RTCCTL));
394	if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
395		dev_err(&pdev->dev, "hardware module can't be enabled!\n");
396		ret = -EIO;
397		goto exit_put_clk;
398	}
399
400	platform_set_drvdata(pdev, pdata);
401
402	/* Configure and enable the RTC */
403	pdata->irq = platform_get_irq(pdev, 0);
404
405	if (pdata->irq >= 0 &&
406	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
407			     IRQF_SHARED, pdev->name, pdev) < 0) {
408		dev_warn(&pdev->dev, "interrupt not available.\n");
409		pdata->irq = -1;
410	}
411
412	if (pdata->irq >=0)
413		device_init_wakeup(&pdev->dev, 1);
414
415	rtc = rtc_device_register(pdev->name, &pdev->dev, &mxc_rtc_ops,
416				  THIS_MODULE);
417	if (IS_ERR(rtc)) {
418		ret = PTR_ERR(rtc);
419		goto exit_clr_drvdata;
420	}
421
422	pdata->rtc = rtc;
423
424	return 0;
425
426exit_clr_drvdata:
427	platform_set_drvdata(pdev, NULL);
428exit_put_clk:
429	clk_disable(pdata->clk);
430	clk_put(pdata->clk);
431
432exit_free_pdata:
433
434	return ret;
435}
436
437static int __exit mxc_rtc_remove(struct platform_device *pdev)
438{
439	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
440
441	rtc_device_unregister(pdata->rtc);
442
443	clk_disable(pdata->clk);
444	clk_put(pdata->clk);
445	platform_set_drvdata(pdev, NULL);
446
447	return 0;
448}
449
450#ifdef CONFIG_PM
451static int mxc_rtc_suspend(struct device *dev)
452{
453	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
454
455	if (device_may_wakeup(dev))
456		enable_irq_wake(pdata->irq);
457
458	return 0;
459}
460
461static int mxc_rtc_resume(struct device *dev)
462{
463	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
464
465	if (device_may_wakeup(dev))
466		disable_irq_wake(pdata->irq);
467
468	return 0;
469}
470
471static struct dev_pm_ops mxc_rtc_pm_ops = {
472	.suspend	= mxc_rtc_suspend,
473	.resume		= mxc_rtc_resume,
474};
475#endif
476
 
 
477static struct platform_driver mxc_rtc_driver = {
478	.driver = {
479		   .name	= "mxc_rtc",
480#ifdef CONFIG_PM
481		   .pm		= &mxc_rtc_pm_ops,
482#endif
483		   .owner	= THIS_MODULE,
484	},
485	.remove		= __exit_p(mxc_rtc_remove),
 
 
486};
487
488static int __init mxc_rtc_init(void)
489{
490	return platform_driver_probe(&mxc_rtc_driver, mxc_rtc_probe);
491}
492
493static void __exit mxc_rtc_exit(void)
494{
495	platform_driver_unregister(&mxc_rtc_driver);
496}
497
498module_init(mxc_rtc_init);
499module_exit(mxc_rtc_exit);
500
501MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
502MODULE_DESCRIPTION("RTC driver for Freescale MXC");
503MODULE_LICENSE("GPL");
504
v4.6
  1/*
  2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
  3 *
  4 * The code contained herein is licensed under the GNU General Public
  5 * License. You may obtain a copy of the GNU General Public License
  6 * Version 2 or later at the following locations:
  7 *
  8 * http://www.opensource.org/licenses/gpl-license.html
  9 * http://www.gnu.org/copyleft/gpl.html
 10 */
 11
 12#include <linux/io.h>
 13#include <linux/rtc.h>
 14#include <linux/module.h>
 15#include <linux/slab.h>
 16#include <linux/interrupt.h>
 17#include <linux/platform_device.h>
 18#include <linux/clk.h>
 19#include <linux/of.h>
 20#include <linux/of_device.h>
 21
 22#define RTC_INPUT_CLK_32768HZ	(0x00 << 5)
 23#define RTC_INPUT_CLK_32000HZ	(0x01 << 5)
 24#define RTC_INPUT_CLK_38400HZ	(0x02 << 5)
 25
 26#define RTC_SW_BIT      (1 << 0)
 27#define RTC_ALM_BIT     (1 << 2)
 28#define RTC_1HZ_BIT     (1 << 4)
 29#define RTC_2HZ_BIT     (1 << 7)
 30#define RTC_SAM0_BIT    (1 << 8)
 31#define RTC_SAM1_BIT    (1 << 9)
 32#define RTC_SAM2_BIT    (1 << 10)
 33#define RTC_SAM3_BIT    (1 << 11)
 34#define RTC_SAM4_BIT    (1 << 12)
 35#define RTC_SAM5_BIT    (1 << 13)
 36#define RTC_SAM6_BIT    (1 << 14)
 37#define RTC_SAM7_BIT    (1 << 15)
 38#define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
 39			 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
 40			 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
 41
 42#define RTC_ENABLE_BIT  (1 << 7)
 43
 44#define MAX_PIE_NUM     9
 45#define MAX_PIE_FREQ    512
 46static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
 47	{ 2,		RTC_2HZ_BIT },
 48	{ 4,		RTC_SAM0_BIT },
 49	{ 8,		RTC_SAM1_BIT },
 50	{ 16,		RTC_SAM2_BIT },
 51	{ 32,		RTC_SAM3_BIT },
 52	{ 64,		RTC_SAM4_BIT },
 53	{ 128,		RTC_SAM5_BIT },
 54	{ 256,		RTC_SAM6_BIT },
 55	{ MAX_PIE_FREQ,	RTC_SAM7_BIT },
 56};
 57
 58#define MXC_RTC_TIME	0
 59#define MXC_RTC_ALARM	1
 60
 61#define RTC_HOURMIN	0x00	/*  32bit rtc hour/min counter reg */
 62#define RTC_SECOND	0x04	/*  32bit rtc seconds counter reg */
 63#define RTC_ALRM_HM	0x08	/*  32bit rtc alarm hour/min reg */
 64#define RTC_ALRM_SEC	0x0C	/*  32bit rtc alarm seconds reg */
 65#define RTC_RTCCTL	0x10	/*  32bit rtc control reg */
 66#define RTC_RTCISR	0x14	/*  32bit rtc interrupt status reg */
 67#define RTC_RTCIENR	0x18	/*  32bit rtc interrupt enable reg */
 68#define RTC_STPWCH	0x1C	/*  32bit rtc stopwatch min reg */
 69#define RTC_DAYR	0x20	/*  32bit rtc days counter reg */
 70#define RTC_DAYALARM	0x24	/*  32bit rtc day alarm reg */
 71#define RTC_TEST1	0x28	/*  32bit rtc test reg 1 */
 72#define RTC_TEST2	0x2C	/*  32bit rtc test reg 2 */
 73#define RTC_TEST3	0x30	/*  32bit rtc test reg 3 */
 74
 75enum imx_rtc_type {
 76	IMX1_RTC,
 77	IMX21_RTC,
 78};
 79
 80struct rtc_plat_data {
 81	struct rtc_device *rtc;
 82	void __iomem *ioaddr;
 83	int irq;
 84	struct clk *clk_ref;
 85	struct clk *clk_ipg;
 86	struct rtc_time g_rtc_alarm;
 87	enum imx_rtc_type devtype;
 88};
 89
 90static const struct platform_device_id imx_rtc_devtype[] = {
 91	{
 92		.name = "imx1-rtc",
 93		.driver_data = IMX1_RTC,
 94	}, {
 95		.name = "imx21-rtc",
 96		.driver_data = IMX21_RTC,
 97	}, {
 98		/* sentinel */
 99	}
100};
101MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
102
103#ifdef CONFIG_OF
104static const struct of_device_id imx_rtc_dt_ids[] = {
105	{ .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
106	{ .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
107	{}
108};
109MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
110#endif
111
112static inline int is_imx1_rtc(struct rtc_plat_data *data)
113{
114	return data->devtype == IMX1_RTC;
115}
116
117/*
118 * This function is used to obtain the RTC time or the alarm value in
119 * second.
120 */
121static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
122{
123	struct platform_device *pdev = to_platform_device(dev);
124	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
125	void __iomem *ioaddr = pdata->ioaddr;
126	u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
127
128	switch (time_alarm) {
129	case MXC_RTC_TIME:
130		day = readw(ioaddr + RTC_DAYR);
131		hr_min = readw(ioaddr + RTC_HOURMIN);
132		sec = readw(ioaddr + RTC_SECOND);
133		break;
134	case MXC_RTC_ALARM:
135		day = readw(ioaddr + RTC_DAYALARM);
136		hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
137		sec = readw(ioaddr + RTC_ALRM_SEC);
138		break;
139	}
140
141	hr = hr_min >> 8;
142	min = hr_min & 0xff;
143
144	return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
145}
146
147/*
148 * This function sets the RTC alarm value or the time value.
149 */
150static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
151{
152	u32 tod, day, hr, min, sec, temp;
153	struct platform_device *pdev = to_platform_device(dev);
154	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
155	void __iomem *ioaddr = pdata->ioaddr;
156
157	day = div_s64_rem(time, 86400, &tod);
 
158
159	/* time is within a day now */
160	hr = tod / 3600;
161	tod -= hr * 3600;
162
163	/* time is within an hour now */
164	min = tod / 60;
165	sec = tod - min * 60;
166
167	temp = (hr << 8) + min;
168
169	switch (time_alarm) {
170	case MXC_RTC_TIME:
171		writew(day, ioaddr + RTC_DAYR);
172		writew(sec, ioaddr + RTC_SECOND);
173		writew(temp, ioaddr + RTC_HOURMIN);
174		break;
175	case MXC_RTC_ALARM:
176		writew(day, ioaddr + RTC_DAYALARM);
177		writew(sec, ioaddr + RTC_ALRM_SEC);
178		writew(temp, ioaddr + RTC_ALRM_HM);
179		break;
180	}
181}
182
183/*
184 * This function updates the RTC alarm registers and then clears all the
185 * interrupt status bits.
186 */
187static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
188{
189	time64_t time;
 
190	struct platform_device *pdev = to_platform_device(dev);
191	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
192	void __iomem *ioaddr = pdata->ioaddr;
193
194	time = rtc_tm_to_time64(alrm);
 
 
 
 
 
 
 
 
195
196	/* clear all the interrupt status bits */
197	writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
198	set_alarm_or_time(dev, MXC_RTC_ALARM, time);
 
 
199}
200
201static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
202				unsigned int enabled)
203{
204	struct platform_device *pdev = to_platform_device(dev);
205	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
206	void __iomem *ioaddr = pdata->ioaddr;
207	u32 reg;
208
209	spin_lock_irq(&pdata->rtc->irq_lock);
210	reg = readw(ioaddr + RTC_RTCIENR);
211
212	if (enabled)
213		reg |= bit;
214	else
215		reg &= ~bit;
216
217	writew(reg, ioaddr + RTC_RTCIENR);
218	spin_unlock_irq(&pdata->rtc->irq_lock);
219}
220
221/* This function is the RTC interrupt service routine. */
222static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
223{
224	struct platform_device *pdev = dev_id;
225	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
226	void __iomem *ioaddr = pdata->ioaddr;
227	unsigned long flags;
228	u32 status;
229	u32 events = 0;
230
231	spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
232	status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
233	/* clear interrupt sources */
234	writew(status, ioaddr + RTC_RTCISR);
235
236	/* update irq data & counter */
237	if (status & RTC_ALM_BIT) {
238		events |= (RTC_AF | RTC_IRQF);
239		/* RTC alarm should be one-shot */
240		mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
241	}
242
243	if (status & RTC_1HZ_BIT)
244		events |= (RTC_UF | RTC_IRQF);
245
246	if (status & PIT_ALL_ON)
247		events |= (RTC_PF | RTC_IRQF);
248
249	rtc_update_irq(pdata->rtc, 1, events);
250	spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
251
252	return IRQ_HANDLED;
253}
254
255/*
256 * Clear all interrupts and release the IRQ
257 */
258static void mxc_rtc_release(struct device *dev)
259{
260	struct platform_device *pdev = to_platform_device(dev);
261	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
262	void __iomem *ioaddr = pdata->ioaddr;
263
264	spin_lock_irq(&pdata->rtc->irq_lock);
265
266	/* Disable all rtc interrupts */
267	writew(0, ioaddr + RTC_RTCIENR);
268
269	/* Clear all interrupt status */
270	writew(0xffffffff, ioaddr + RTC_RTCISR);
271
272	spin_unlock_irq(&pdata->rtc->irq_lock);
273}
274
275static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
276{
277	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
278	return 0;
279}
280
281/*
282 * This function reads the current RTC time into tm in Gregorian date.
283 */
284static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
285{
286	time64_t val;
287
288	/* Avoid roll-over from reading the different registers */
289	do {
290		val = get_alarm_or_time(dev, MXC_RTC_TIME);
291	} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
292
293	rtc_time64_to_tm(val, tm);
294
295	return 0;
296}
297
298/*
299 * This function sets the internal RTC time based on tm in Gregorian date.
300 */
301static int mxc_rtc_set_mmss(struct device *dev, time64_t time)
302{
303	struct platform_device *pdev = to_platform_device(dev);
304	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
305
306	/*
307	 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
308	 */
309	if (is_imx1_rtc(pdata)) {
310		struct rtc_time tm;
311
312		rtc_time64_to_tm(time, &tm);
313		tm.tm_year = 70;
314		time = rtc_tm_to_time64(&tm);
315	}
316
317	/* Avoid roll-over from reading the different registers */
318	do {
319		set_alarm_or_time(dev, MXC_RTC_TIME, time);
320	} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
321
322	return 0;
323}
324
325/*
326 * This function reads the current alarm value into the passed in 'alrm'
327 * argument. It updates the alrm's pending field value based on the whether
328 * an alarm interrupt occurs or not.
329 */
330static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
331{
332	struct platform_device *pdev = to_platform_device(dev);
333	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
334	void __iomem *ioaddr = pdata->ioaddr;
335
336	rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
337	alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
338
339	return 0;
340}
341
342/*
343 * This function sets the RTC alarm based on passed in alrm.
344 */
345static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
346{
347	struct platform_device *pdev = to_platform_device(dev);
348	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 
349
350	rtc_update_alarm(dev, &alrm->time);
 
 
351
352	memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
353	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
354
355	return 0;
356}
357
358/* RTC layer */
359static struct rtc_class_ops mxc_rtc_ops = {
360	.release		= mxc_rtc_release,
361	.read_time		= mxc_rtc_read_time,
362	.set_mmss64		= mxc_rtc_set_mmss,
363	.read_alarm		= mxc_rtc_read_alarm,
364	.set_alarm		= mxc_rtc_set_alarm,
365	.alarm_irq_enable	= mxc_rtc_alarm_irq_enable,
366};
367
368static int mxc_rtc_probe(struct platform_device *pdev)
369{
370	struct resource *res;
371	struct rtc_device *rtc;
372	struct rtc_plat_data *pdata = NULL;
373	u32 reg;
374	unsigned long rate;
375	int ret;
376	const struct of_device_id *of_id;
 
 
 
377
378	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
379	if (!pdata)
380		return -ENOMEM;
381
382	of_id = of_match_device(imx_rtc_dt_ids, &pdev->dev);
383	if (of_id)
384		pdata->devtype = (enum imx_rtc_type)of_id->data;
385	else
386		pdata->devtype = pdev->id_entry->driver_data;
387
388	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
389	pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
390	if (IS_ERR(pdata->ioaddr))
391		return PTR_ERR(pdata->ioaddr);
392
393	pdata->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
394	if (IS_ERR(pdata->clk_ipg)) {
395		dev_err(&pdev->dev, "unable to get ipg clock!\n");
396		return PTR_ERR(pdata->clk_ipg);
397	}
398
399	ret = clk_prepare_enable(pdata->clk_ipg);
400	if (ret)
401		return ret;
402
403	pdata->clk_ref = devm_clk_get(&pdev->dev, "ref");
404	if (IS_ERR(pdata->clk_ref)) {
405		dev_err(&pdev->dev, "unable to get ref clock!\n");
406		ret = PTR_ERR(pdata->clk_ref);
407		goto exit_put_clk_ipg;
408	}
409
410	ret = clk_prepare_enable(pdata->clk_ref);
411	if (ret)
412		goto exit_put_clk_ipg;
413
414	rate = clk_get_rate(pdata->clk_ref);
415
416	if (rate == 32768)
417		reg = RTC_INPUT_CLK_32768HZ;
418	else if (rate == 32000)
419		reg = RTC_INPUT_CLK_32000HZ;
420	else if (rate == 38400)
421		reg = RTC_INPUT_CLK_38400HZ;
422	else {
423		dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
424		ret = -EINVAL;
425		goto exit_put_clk_ref;
426	}
427
428	reg |= RTC_ENABLE_BIT;
429	writew(reg, (pdata->ioaddr + RTC_RTCCTL));
430	if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
431		dev_err(&pdev->dev, "hardware module can't be enabled!\n");
432		ret = -EIO;
433		goto exit_put_clk_ref;
434	}
435
436	platform_set_drvdata(pdev, pdata);
437
438	/* Configure and enable the RTC */
439	pdata->irq = platform_get_irq(pdev, 0);
440
441	if (pdata->irq >= 0 &&
442	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
443			     IRQF_SHARED, pdev->name, pdev) < 0) {
444		dev_warn(&pdev->dev, "interrupt not available.\n");
445		pdata->irq = -1;
446	}
447
448	if (pdata->irq >= 0)
449		device_init_wakeup(&pdev->dev, 1);
450
451	rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops,
452				  THIS_MODULE);
453	if (IS_ERR(rtc)) {
454		ret = PTR_ERR(rtc);
455		goto exit_put_clk_ref;
456	}
457
458	pdata->rtc = rtc;
459
460	return 0;
461
462exit_put_clk_ref:
463	clk_disable_unprepare(pdata->clk_ref);
464exit_put_clk_ipg:
465	clk_disable_unprepare(pdata->clk_ipg);
 
 
 
466
467	return ret;
468}
469
470static int mxc_rtc_remove(struct platform_device *pdev)
471{
472	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
473
474	clk_disable_unprepare(pdata->clk_ref);
475	clk_disable_unprepare(pdata->clk_ipg);
 
 
 
476
477	return 0;
478}
479
480#ifdef CONFIG_PM_SLEEP
481static int mxc_rtc_suspend(struct device *dev)
482{
483	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
484
485	if (device_may_wakeup(dev))
486		enable_irq_wake(pdata->irq);
487
488	return 0;
489}
490
491static int mxc_rtc_resume(struct device *dev)
492{
493	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
494
495	if (device_may_wakeup(dev))
496		disable_irq_wake(pdata->irq);
497
498	return 0;
499}
 
 
 
 
 
500#endif
501
502static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume);
503
504static struct platform_driver mxc_rtc_driver = {
505	.driver = {
506		   .name	= "mxc_rtc",
507		   .of_match_table = of_match_ptr(imx_rtc_dt_ids),
508		   .pm		= &mxc_rtc_pm_ops,
 
 
509	},
510	.id_table = imx_rtc_devtype,
511	.probe = mxc_rtc_probe,
512	.remove = mxc_rtc_remove,
513};
514
515module_platform_driver(mxc_rtc_driver)
 
 
 
 
 
 
 
 
 
 
 
516
517MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
518MODULE_DESCRIPTION("RTC driver for Freescale MXC");
519MODULE_LICENSE("GPL");
520