Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * RTC subsystem, interface functions
  3 *
  4 * Copyright (C) 2005 Tower Technologies
  5 * Author: Alessandro Zummo <a.zummo@towertech.it>
  6 *
  7 * based on arch/arm/common/rtctime.c
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12*/
 13
 14#include <linux/rtc.h>
 15#include <linux/sched.h>
 16#include <linux/module.h>
 17#include <linux/log2.h>
 18#include <linux/workqueue.h>
 19
 20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
 21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
 22
 23static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 24{
 25	int err;
 26	if (!rtc->ops)
 27		err = -ENODEV;
 28	else if (!rtc->ops->read_time)
 29		err = -EINVAL;
 30	else {
 31		memset(tm, 0, sizeof(struct rtc_time));
 32		err = rtc->ops->read_time(rtc->dev.parent, tm);
 
 
 
 
 
 
 
 
 
 33	}
 34	return err;
 35}
 36
 37int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 38{
 39	int err;
 40
 41	err = mutex_lock_interruptible(&rtc->ops_lock);
 42	if (err)
 43		return err;
 44
 45	err = __rtc_read_time(rtc, tm);
 46	mutex_unlock(&rtc->ops_lock);
 47	return err;
 48}
 49EXPORT_SYMBOL_GPL(rtc_read_time);
 50
 51int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 52{
 53	int err;
 54
 55	err = rtc_valid_tm(tm);
 56	if (err != 0)
 57		return err;
 58
 59	err = mutex_lock_interruptible(&rtc->ops_lock);
 60	if (err)
 61		return err;
 62
 63	if (!rtc->ops)
 64		err = -ENODEV;
 65	else if (rtc->ops->set_time)
 66		err = rtc->ops->set_time(rtc->dev.parent, tm);
 67	else if (rtc->ops->set_mmss) {
 68		unsigned long secs;
 69		err = rtc_tm_to_time(tm, &secs);
 70		if (err == 0)
 71			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
 
 
 72	} else
 73		err = -EINVAL;
 74
 
 75	mutex_unlock(&rtc->ops_lock);
 76	/* A timer might have just expired */
 77	schedule_work(&rtc->irqwork);
 78	return err;
 79}
 80EXPORT_SYMBOL_GPL(rtc_set_time);
 81
 82int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
 83{
 84	int err;
 85
 86	err = mutex_lock_interruptible(&rtc->ops_lock);
 87	if (err)
 88		return err;
 89
 90	if (!rtc->ops)
 91		err = -ENODEV;
 92	else if (rtc->ops->set_mmss)
 93		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
 94	else if (rtc->ops->read_time && rtc->ops->set_time) {
 95		struct rtc_time new, old;
 96
 97		err = rtc->ops->read_time(rtc->dev.parent, &old);
 98		if (err == 0) {
 99			rtc_time_to_tm(secs, &new);
100
101			/*
102			 * avoid writing when we're going to change the day of
103			 * the month. We will retry in the next minute. This
104			 * basically means that if the RTC must not drift
105			 * by more than 1 minute in 11 minutes.
106			 */
107			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
108				(new.tm_hour == 23 && new.tm_min == 59)))
109				err = rtc->ops->set_time(rtc->dev.parent,
110						&new);
111		}
112	}
113	else
114		err = -EINVAL;
115
116	mutex_unlock(&rtc->ops_lock);
117	/* A timer might have just expired */
118	schedule_work(&rtc->irqwork);
119
120	return err;
121}
122EXPORT_SYMBOL_GPL(rtc_set_mmss);
123
124static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
125{
126	int err;
127
128	err = mutex_lock_interruptible(&rtc->ops_lock);
129	if (err)
130		return err;
131
132	if (rtc->ops == NULL)
133		err = -ENODEV;
134	else if (!rtc->ops->read_alarm)
135		err = -EINVAL;
136	else {
137		memset(alarm, 0, sizeof(struct rtc_wkalrm));
138		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
139	}
140
141	mutex_unlock(&rtc->ops_lock);
142	return err;
143}
144
145int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
146{
147	int err;
148	struct rtc_time before, now;
149	int first_time = 1;
150	unsigned long t_now, t_alm;
151	enum { none, day, month, year } missing = none;
152	unsigned days;
153
154	/* The lower level RTC driver may return -1 in some fields,
155	 * creating invalid alarm->time values, for reasons like:
156	 *
157	 *   - The hardware may not be capable of filling them in;
158	 *     many alarms match only on time-of-day fields, not
159	 *     day/month/year calendar data.
160	 *
161	 *   - Some hardware uses illegal values as "wildcard" match
162	 *     values, which non-Linux firmware (like a BIOS) may try
163	 *     to set up as e.g. "alarm 15 minutes after each hour".
164	 *     Linux uses only oneshot alarms.
165	 *
166	 * When we see that here, we deal with it by using values from
167	 * a current RTC timestamp for any missing (-1) values.  The
168	 * RTC driver prevents "periodic alarm" modes.
169	 *
170	 * But this can be racey, because some fields of the RTC timestamp
171	 * may have wrapped in the interval since we read the RTC alarm,
172	 * which would lead to us inserting inconsistent values in place
173	 * of the -1 fields.
174	 *
175	 * Reading the alarm and timestamp in the reverse sequence
176	 * would have the same race condition, and not solve the issue.
177	 *
178	 * So, we must first read the RTC timestamp,
179	 * then read the RTC alarm value,
180	 * and then read a second RTC timestamp.
181	 *
182	 * If any fields of the second timestamp have changed
183	 * when compared with the first timestamp, then we know
184	 * our timestamp may be inconsistent with that used by
185	 * the low-level rtc_read_alarm_internal() function.
186	 *
187	 * So, when the two timestamps disagree, we just loop and do
188	 * the process again to get a fully consistent set of values.
189	 *
190	 * This could all instead be done in the lower level driver,
191	 * but since more than one lower level RTC implementation needs it,
192	 * then it's probably best best to do it here instead of there..
193	 */
194
195	/* Get the "before" timestamp */
196	err = rtc_read_time(rtc, &before);
197	if (err < 0)
198		return err;
199	do {
200		if (!first_time)
201			memcpy(&before, &now, sizeof(struct rtc_time));
202		first_time = 0;
203
204		/* get the RTC alarm values, which may be incomplete */
205		err = rtc_read_alarm_internal(rtc, alarm);
206		if (err)
207			return err;
208
209		/* full-function RTCs won't have such missing fields */
210		if (rtc_valid_tm(&alarm->time) == 0)
211			return 0;
212
213		/* get the "after" timestamp, to detect wrapped fields */
214		err = rtc_read_time(rtc, &now);
215		if (err < 0)
216			return err;
217
218		/* note that tm_sec is a "don't care" value here: */
219	} while (   before.tm_min   != now.tm_min
220		 || before.tm_hour  != now.tm_hour
221		 || before.tm_mon   != now.tm_mon
222		 || before.tm_year  != now.tm_year);
223
224	/* Fill in the missing alarm fields using the timestamp; we
225	 * know there's at least one since alarm->time is invalid.
226	 */
227	if (alarm->time.tm_sec == -1)
228		alarm->time.tm_sec = now.tm_sec;
229	if (alarm->time.tm_min == -1)
230		alarm->time.tm_min = now.tm_min;
231	if (alarm->time.tm_hour == -1)
232		alarm->time.tm_hour = now.tm_hour;
233
234	/* For simplicity, only support date rollover for now */
235	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
236		alarm->time.tm_mday = now.tm_mday;
237		missing = day;
238	}
239	if ((unsigned)alarm->time.tm_mon >= 12) {
240		alarm->time.tm_mon = now.tm_mon;
241		if (missing == none)
242			missing = month;
243	}
244	if (alarm->time.tm_year == -1) {
245		alarm->time.tm_year = now.tm_year;
246		if (missing == none)
247			missing = year;
248	}
249
250	/* with luck, no rollover is needed */
251	rtc_tm_to_time(&now, &t_now);
252	rtc_tm_to_time(&alarm->time, &t_alm);
253	if (t_now < t_alm)
254		goto done;
255
256	switch (missing) {
257
258	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
259	 * that will trigger at 5am will do so at 5am Tuesday, which
260	 * could also be in the next month or year.  This is a common
261	 * case, especially for PCs.
262	 */
263	case day:
264		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
265		t_alm += 24 * 60 * 60;
266		rtc_time_to_tm(t_alm, &alarm->time);
267		break;
268
269	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
270	 * be next month.  An alarm matching on the 30th, 29th, or 28th
271	 * may end up in the month after that!  Many newer PCs support
272	 * this type of alarm.
273	 */
274	case month:
275		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
276		do {
277			if (alarm->time.tm_mon < 11)
278				alarm->time.tm_mon++;
279			else {
280				alarm->time.tm_mon = 0;
281				alarm->time.tm_year++;
282			}
283			days = rtc_month_days(alarm->time.tm_mon,
284					alarm->time.tm_year);
285		} while (days < alarm->time.tm_mday);
286		break;
287
288	/* Year rollover ... easy except for leap years! */
289	case year:
290		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
291		do {
292			alarm->time.tm_year++;
293		} while (rtc_valid_tm(&alarm->time) != 0);
 
294		break;
295
296	default:
297		dev_warn(&rtc->dev, "alarm rollover not handled\n");
298	}
299
300done:
301	return 0;
 
 
 
 
 
 
 
 
 
302}
303
304int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
305{
306	int err;
307
308	err = mutex_lock_interruptible(&rtc->ops_lock);
309	if (err)
310		return err;
311	if (rtc->ops == NULL)
312		err = -ENODEV;
313	else if (!rtc->ops->read_alarm)
314		err = -EINVAL;
315	else {
316		memset(alarm, 0, sizeof(struct rtc_wkalrm));
317		alarm->enabled = rtc->aie_timer.enabled;
318		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
319	}
320	mutex_unlock(&rtc->ops_lock);
321
322	return err;
323}
324EXPORT_SYMBOL_GPL(rtc_read_alarm);
325
326static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
327{
328	struct rtc_time tm;
329	long now, scheduled;
330	int err;
331
332	err = rtc_valid_tm(&alarm->time);
333	if (err)
334		return err;
335	rtc_tm_to_time(&alarm->time, &scheduled);
336
337	/* Make sure we're not setting alarms in the past */
338	err = __rtc_read_time(rtc, &tm);
339	rtc_tm_to_time(&tm, &now);
 
 
340	if (scheduled <= now)
341		return -ETIME;
342	/*
343	 * XXX - We just checked to make sure the alarm time is not
344	 * in the past, but there is still a race window where if
345	 * the is alarm set for the next second and the second ticks
346	 * over right here, before we set the alarm.
347	 */
348
349	if (!rtc->ops)
350		err = -ENODEV;
351	else if (!rtc->ops->set_alarm)
352		err = -EINVAL;
353	else
354		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
355
356	return err;
357}
358
359int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
360{
361	int err;
362
363	err = rtc_valid_tm(&alarm->time);
364	if (err != 0)
365		return err;
366
367	err = mutex_lock_interruptible(&rtc->ops_lock);
368	if (err)
369		return err;
370	if (rtc->aie_timer.enabled) {
371		rtc_timer_remove(rtc, &rtc->aie_timer);
372	}
373	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
374	rtc->aie_timer.period = ktime_set(0, 0);
375	if (alarm->enabled) {
376		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
377	}
378	mutex_unlock(&rtc->ops_lock);
379	return err;
380}
381EXPORT_SYMBOL_GPL(rtc_set_alarm);
382
383/* Called once per device from rtc_device_register */
384int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
385{
386	int err;
387	struct rtc_time now;
388
389	err = rtc_valid_tm(&alarm->time);
390	if (err != 0)
391		return err;
392
393	err = rtc_read_time(rtc, &now);
394	if (err)
395		return err;
396
397	err = mutex_lock_interruptible(&rtc->ops_lock);
398	if (err)
399		return err;
400
401	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
402	rtc->aie_timer.period = ktime_set(0, 0);
403
404	/* Alarm has to be enabled & in the futrure for us to enqueue it */
405	if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
406			 rtc->aie_timer.node.expires.tv64)) {
407
408		rtc->aie_timer.enabled = 1;
409		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
410	}
411	mutex_unlock(&rtc->ops_lock);
412	return err;
413}
414EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
415
416
417
418int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
419{
420	int err = mutex_lock_interruptible(&rtc->ops_lock);
421	if (err)
422		return err;
423
424	if (rtc->aie_timer.enabled != enabled) {
425		if (enabled)
426			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
427		else
428			rtc_timer_remove(rtc, &rtc->aie_timer);
429	}
430
431	if (err)
432		/* nothing */;
433	else if (!rtc->ops)
434		err = -ENODEV;
435	else if (!rtc->ops->alarm_irq_enable)
436		err = -EINVAL;
437	else
438		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
439
440	mutex_unlock(&rtc->ops_lock);
441	return err;
442}
443EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
444
445int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
446{
447	int err = mutex_lock_interruptible(&rtc->ops_lock);
448	if (err)
449		return err;
450
451#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
452	if (enabled == 0 && rtc->uie_irq_active) {
453		mutex_unlock(&rtc->ops_lock);
454		return rtc_dev_update_irq_enable_emul(rtc, 0);
455	}
456#endif
457	/* make sure we're changing state */
458	if (rtc->uie_rtctimer.enabled == enabled)
459		goto out;
460
461	if (rtc->uie_unsupported) {
462		err = -EINVAL;
463		goto out;
464	}
465
466	if (enabled) {
467		struct rtc_time tm;
468		ktime_t now, onesec;
469
470		__rtc_read_time(rtc, &tm);
471		onesec = ktime_set(1, 0);
472		now = rtc_tm_to_ktime(tm);
473		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
474		rtc->uie_rtctimer.period = ktime_set(1, 0);
475		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
476	} else
477		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
478
479out:
480	mutex_unlock(&rtc->ops_lock);
481#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
482	/*
483	 * Enable emulation if the driver did not provide
484	 * the update_irq_enable function pointer or if returned
485	 * -EINVAL to signal that it has been configured without
486	 * interrupts or that are not available at the moment.
487	 */
488	if (err == -EINVAL)
489		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
490#endif
491	return err;
492
493}
494EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
495
496
497/**
498 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
499 * @rtc: pointer to the rtc device
500 *
501 * This function is called when an AIE, UIE or PIE mode interrupt
502 * has occurred (or been emulated).
503 *
504 * Triggers the registered irq_task function callback.
505 */
506void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
507{
508	unsigned long flags;
509
510	/* mark one irq of the appropriate mode */
511	spin_lock_irqsave(&rtc->irq_lock, flags);
512	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
513	spin_unlock_irqrestore(&rtc->irq_lock, flags);
514
515	/* call the task func */
516	spin_lock_irqsave(&rtc->irq_task_lock, flags);
517	if (rtc->irq_task)
518		rtc->irq_task->func(rtc->irq_task->private_data);
519	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
520
521	wake_up_interruptible(&rtc->irq_queue);
522	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
523}
524
525
526/**
527 * rtc_aie_update_irq - AIE mode rtctimer hook
528 * @private: pointer to the rtc_device
529 *
530 * This functions is called when the aie_timer expires.
531 */
532void rtc_aie_update_irq(void *private)
533{
534	struct rtc_device *rtc = (struct rtc_device *)private;
535	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
536}
537
538
539/**
540 * rtc_uie_update_irq - UIE mode rtctimer hook
541 * @private: pointer to the rtc_device
542 *
543 * This functions is called when the uie_timer expires.
544 */
545void rtc_uie_update_irq(void *private)
546{
547	struct rtc_device *rtc = (struct rtc_device *)private;
548	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
549}
550
551
552/**
553 * rtc_pie_update_irq - PIE mode hrtimer hook
554 * @timer: pointer to the pie mode hrtimer
555 *
556 * This function is used to emulate PIE mode interrupts
557 * using an hrtimer. This function is called when the periodic
558 * hrtimer expires.
559 */
560enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
561{
562	struct rtc_device *rtc;
563	ktime_t period;
564	int count;
565	rtc = container_of(timer, struct rtc_device, pie_timer);
566
567	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
568	count = hrtimer_forward_now(timer, period);
569
570	rtc_handle_legacy_irq(rtc, count, RTC_PF);
571
572	return HRTIMER_RESTART;
573}
574
575/**
576 * rtc_update_irq - Triggered when a RTC interrupt occurs.
577 * @rtc: the rtc device
578 * @num: how many irqs are being reported (usually one)
579 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
580 * Context: any
581 */
582void rtc_update_irq(struct rtc_device *rtc,
583		unsigned long num, unsigned long events)
584{
 
 
 
 
585	schedule_work(&rtc->irqwork);
586}
587EXPORT_SYMBOL_GPL(rtc_update_irq);
588
589static int __rtc_match(struct device *dev, void *data)
590{
591	char *name = (char *)data;
592
593	if (strcmp(dev_name(dev), name) == 0)
594		return 1;
595	return 0;
596}
597
598struct rtc_device *rtc_class_open(char *name)
599{
600	struct device *dev;
601	struct rtc_device *rtc = NULL;
602
603	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
604	if (dev)
605		rtc = to_rtc_device(dev);
606
607	if (rtc) {
608		if (!try_module_get(rtc->owner)) {
609			put_device(dev);
610			rtc = NULL;
611		}
612	}
613
614	return rtc;
615}
616EXPORT_SYMBOL_GPL(rtc_class_open);
617
618void rtc_class_close(struct rtc_device *rtc)
619{
620	module_put(rtc->owner);
621	put_device(&rtc->dev);
622}
623EXPORT_SYMBOL_GPL(rtc_class_close);
624
625int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
626{
627	int retval = -EBUSY;
628
629	if (task == NULL || task->func == NULL)
630		return -EINVAL;
631
632	/* Cannot register while the char dev is in use */
633	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
634		return -EBUSY;
635
636	spin_lock_irq(&rtc->irq_task_lock);
637	if (rtc->irq_task == NULL) {
638		rtc->irq_task = task;
639		retval = 0;
640	}
641	spin_unlock_irq(&rtc->irq_task_lock);
642
643	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
644
645	return retval;
646}
647EXPORT_SYMBOL_GPL(rtc_irq_register);
648
649void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
650{
651	spin_lock_irq(&rtc->irq_task_lock);
652	if (rtc->irq_task == task)
653		rtc->irq_task = NULL;
654	spin_unlock_irq(&rtc->irq_task_lock);
655}
656EXPORT_SYMBOL_GPL(rtc_irq_unregister);
657
658static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
659{
660	/*
661	 * We always cancel the timer here first, because otherwise
662	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
663	 * when we manage to start the timer before the callback
664	 * returns HRTIMER_RESTART.
665	 *
666	 * We cannot use hrtimer_cancel() here as a running callback
667	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
668	 * would spin forever.
669	 */
670	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
671		return -1;
672
673	if (enabled) {
674		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
675
676		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
677	}
678	return 0;
679}
680
681/**
682 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
683 * @rtc: the rtc device
684 * @task: currently registered with rtc_irq_register()
685 * @enabled: true to enable periodic IRQs
686 * Context: any
687 *
688 * Note that rtc_irq_set_freq() should previously have been used to
689 * specify the desired frequency of periodic IRQ task->func() callbacks.
690 */
691int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
692{
693	int err = 0;
694	unsigned long flags;
695
696retry:
697	spin_lock_irqsave(&rtc->irq_task_lock, flags);
698	if (rtc->irq_task != NULL && task == NULL)
699		err = -EBUSY;
700	if (rtc->irq_task != task)
701		err = -EACCES;
702	if (!err) {
703		if (rtc_update_hrtimer(rtc, enabled) < 0) {
704			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
705			cpu_relax();
706			goto retry;
707		}
708		rtc->pie_enabled = enabled;
709	}
710	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
711	return err;
712}
713EXPORT_SYMBOL_GPL(rtc_irq_set_state);
714
715/**
716 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
717 * @rtc: the rtc device
718 * @task: currently registered with rtc_irq_register()
719 * @freq: positive frequency with which task->func() will be called
720 * Context: any
721 *
722 * Note that rtc_irq_set_state() is used to enable or disable the
723 * periodic IRQs.
724 */
725int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
726{
727	int err = 0;
728	unsigned long flags;
729
730	if (freq <= 0 || freq > RTC_MAX_FREQ)
731		return -EINVAL;
732retry:
733	spin_lock_irqsave(&rtc->irq_task_lock, flags);
734	if (rtc->irq_task != NULL && task == NULL)
735		err = -EBUSY;
736	if (rtc->irq_task != task)
737		err = -EACCES;
738	if (!err) {
739		rtc->irq_freq = freq;
740		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
741			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
742			cpu_relax();
743			goto retry;
744		}
745	}
746	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
747	return err;
748}
749EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
750
751/**
752 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
753 * @rtc rtc device
754 * @timer timer being added.
755 *
756 * Enqueues a timer onto the rtc devices timerqueue and sets
757 * the next alarm event appropriately.
758 *
759 * Sets the enabled bit on the added timer.
760 *
761 * Must hold ops_lock for proper serialization of timerqueue
762 */
763static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
764{
765	timer->enabled = 1;
766	timerqueue_add(&rtc->timerqueue, &timer->node);
767	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
768		struct rtc_wkalrm alarm;
769		int err;
770		alarm.time = rtc_ktime_to_tm(timer->node.expires);
771		alarm.enabled = 1;
772		err = __rtc_set_alarm(rtc, &alarm);
773		if (err == -ETIME)
 
774			schedule_work(&rtc->irqwork);
775		else if (err) {
776			timerqueue_del(&rtc->timerqueue, &timer->node);
777			timer->enabled = 0;
778			return err;
779		}
780	}
781	return 0;
782}
783
784static void rtc_alarm_disable(struct rtc_device *rtc)
785{
786	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
787		return;
788
789	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
790}
791
792/**
793 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
794 * @rtc rtc device
795 * @timer timer being removed.
796 *
797 * Removes a timer onto the rtc devices timerqueue and sets
798 * the next alarm event appropriately.
799 *
800 * Clears the enabled bit on the removed timer.
801 *
802 * Must hold ops_lock for proper serialization of timerqueue
803 */
804static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
805{
806	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
807	timerqueue_del(&rtc->timerqueue, &timer->node);
808	timer->enabled = 0;
809	if (next == &timer->node) {
810		struct rtc_wkalrm alarm;
811		int err;
812		next = timerqueue_getnext(&rtc->timerqueue);
813		if (!next) {
814			rtc_alarm_disable(rtc);
815			return;
816		}
817		alarm.time = rtc_ktime_to_tm(next->expires);
818		alarm.enabled = 1;
819		err = __rtc_set_alarm(rtc, &alarm);
820		if (err == -ETIME)
 
821			schedule_work(&rtc->irqwork);
 
822	}
823}
824
825/**
826 * rtc_timer_do_work - Expires rtc timers
827 * @rtc rtc device
828 * @timer timer being removed.
829 *
830 * Expires rtc timers. Reprograms next alarm event if needed.
831 * Called via worktask.
832 *
833 * Serializes access to timerqueue via ops_lock mutex
834 */
835void rtc_timer_do_work(struct work_struct *work)
836{
837	struct rtc_timer *timer;
838	struct timerqueue_node *next;
839	ktime_t now;
840	struct rtc_time tm;
841
842	struct rtc_device *rtc =
843		container_of(work, struct rtc_device, irqwork);
844
845	mutex_lock(&rtc->ops_lock);
846again:
847	__rtc_read_time(rtc, &tm);
848	now = rtc_tm_to_ktime(tm);
849	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
850		if (next->expires.tv64 > now.tv64)
851			break;
852
853		/* expire timer */
854		timer = container_of(next, struct rtc_timer, node);
855		timerqueue_del(&rtc->timerqueue, &timer->node);
856		timer->enabled = 0;
857		if (timer->task.func)
858			timer->task.func(timer->task.private_data);
859
860		/* Re-add/fwd periodic timers */
861		if (ktime_to_ns(timer->period)) {
862			timer->node.expires = ktime_add(timer->node.expires,
863							timer->period);
864			timer->enabled = 1;
865			timerqueue_add(&rtc->timerqueue, &timer->node);
866		}
867	}
868
869	/* Set next alarm */
870	if (next) {
871		struct rtc_wkalrm alarm;
872		int err;
 
 
873		alarm.time = rtc_ktime_to_tm(next->expires);
874		alarm.enabled = 1;
 
875		err = __rtc_set_alarm(rtc, &alarm);
876		if (err == -ETIME)
877			goto again;
 
 
 
 
 
 
 
 
 
 
878	} else
879		rtc_alarm_disable(rtc);
880
 
881	mutex_unlock(&rtc->ops_lock);
882}
883
884
885/* rtc_timer_init - Initializes an rtc_timer
886 * @timer: timer to be intiialized
887 * @f: function pointer to be called when timer fires
888 * @data: private data passed to function pointer
889 *
890 * Kernel interface to initializing an rtc_timer.
891 */
892void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
893{
894	timerqueue_init(&timer->node);
895	timer->enabled = 0;
896	timer->task.func = f;
897	timer->task.private_data = data;
898}
899
900/* rtc_timer_start - Sets an rtc_timer to fire in the future
901 * @ rtc: rtc device to be used
902 * @ timer: timer being set
903 * @ expires: time at which to expire the timer
904 * @ period: period that the timer will recur
905 *
906 * Kernel interface to set an rtc_timer
907 */
908int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
909			ktime_t expires, ktime_t period)
910{
911	int ret = 0;
912	mutex_lock(&rtc->ops_lock);
913	if (timer->enabled)
914		rtc_timer_remove(rtc, timer);
915
916	timer->node.expires = expires;
917	timer->period = period;
918
919	ret = rtc_timer_enqueue(rtc, timer);
920
921	mutex_unlock(&rtc->ops_lock);
922	return ret;
923}
924
925/* rtc_timer_cancel - Stops an rtc_timer
926 * @ rtc: rtc device to be used
927 * @ timer: timer being set
928 *
929 * Kernel interface to cancel an rtc_timer
930 */
931int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
932{
933	int ret = 0;
934	mutex_lock(&rtc->ops_lock);
935	if (timer->enabled)
936		rtc_timer_remove(rtc, timer);
937	mutex_unlock(&rtc->ops_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
938	return ret;
939}
940
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
941
v4.6
  1/*
  2 * RTC subsystem, interface functions
  3 *
  4 * Copyright (C) 2005 Tower Technologies
  5 * Author: Alessandro Zummo <a.zummo@towertech.it>
  6 *
  7 * based on arch/arm/common/rtctime.c
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12*/
 13
 14#include <linux/rtc.h>
 15#include <linux/sched.h>
 16#include <linux/module.h>
 17#include <linux/log2.h>
 18#include <linux/workqueue.h>
 19
 20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
 21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
 22
 23static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 24{
 25	int err;
 26	if (!rtc->ops)
 27		err = -ENODEV;
 28	else if (!rtc->ops->read_time)
 29		err = -EINVAL;
 30	else {
 31		memset(tm, 0, sizeof(struct rtc_time));
 32		err = rtc->ops->read_time(rtc->dev.parent, tm);
 33		if (err < 0) {
 34			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
 35				err);
 36			return err;
 37		}
 38
 39		err = rtc_valid_tm(tm);
 40		if (err < 0)
 41			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
 42	}
 43	return err;
 44}
 45
 46int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 47{
 48	int err;
 49
 50	err = mutex_lock_interruptible(&rtc->ops_lock);
 51	if (err)
 52		return err;
 53
 54	err = __rtc_read_time(rtc, tm);
 55	mutex_unlock(&rtc->ops_lock);
 56	return err;
 57}
 58EXPORT_SYMBOL_GPL(rtc_read_time);
 59
 60int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 61{
 62	int err;
 63
 64	err = rtc_valid_tm(tm);
 65	if (err != 0)
 66		return err;
 67
 68	err = mutex_lock_interruptible(&rtc->ops_lock);
 69	if (err)
 70		return err;
 71
 72	if (!rtc->ops)
 73		err = -ENODEV;
 74	else if (rtc->ops->set_time)
 75		err = rtc->ops->set_time(rtc->dev.parent, tm);
 76	else if (rtc->ops->set_mmss64) {
 77		time64_t secs64 = rtc_tm_to_time64(tm);
 78
 79		err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
 80	} else if (rtc->ops->set_mmss) {
 81		time64_t secs64 = rtc_tm_to_time64(tm);
 82		err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
 83	} else
 84		err = -EINVAL;
 85
 86	pm_stay_awake(rtc->dev.parent);
 87	mutex_unlock(&rtc->ops_lock);
 88	/* A timer might have just expired */
 89	schedule_work(&rtc->irqwork);
 90	return err;
 91}
 92EXPORT_SYMBOL_GPL(rtc_set_time);
 93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 94static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 95{
 96	int err;
 97
 98	err = mutex_lock_interruptible(&rtc->ops_lock);
 99	if (err)
100		return err;
101
102	if (rtc->ops == NULL)
103		err = -ENODEV;
104	else if (!rtc->ops->read_alarm)
105		err = -EINVAL;
106	else {
107		memset(alarm, 0, sizeof(struct rtc_wkalrm));
108		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
109	}
110
111	mutex_unlock(&rtc->ops_lock);
112	return err;
113}
114
115int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
116{
117	int err;
118	struct rtc_time before, now;
119	int first_time = 1;
120	time64_t t_now, t_alm;
121	enum { none, day, month, year } missing = none;
122	unsigned days;
123
124	/* The lower level RTC driver may return -1 in some fields,
125	 * creating invalid alarm->time values, for reasons like:
126	 *
127	 *   - The hardware may not be capable of filling them in;
128	 *     many alarms match only on time-of-day fields, not
129	 *     day/month/year calendar data.
130	 *
131	 *   - Some hardware uses illegal values as "wildcard" match
132	 *     values, which non-Linux firmware (like a BIOS) may try
133	 *     to set up as e.g. "alarm 15 minutes after each hour".
134	 *     Linux uses only oneshot alarms.
135	 *
136	 * When we see that here, we deal with it by using values from
137	 * a current RTC timestamp for any missing (-1) values.  The
138	 * RTC driver prevents "periodic alarm" modes.
139	 *
140	 * But this can be racey, because some fields of the RTC timestamp
141	 * may have wrapped in the interval since we read the RTC alarm,
142	 * which would lead to us inserting inconsistent values in place
143	 * of the -1 fields.
144	 *
145	 * Reading the alarm and timestamp in the reverse sequence
146	 * would have the same race condition, and not solve the issue.
147	 *
148	 * So, we must first read the RTC timestamp,
149	 * then read the RTC alarm value,
150	 * and then read a second RTC timestamp.
151	 *
152	 * If any fields of the second timestamp have changed
153	 * when compared with the first timestamp, then we know
154	 * our timestamp may be inconsistent with that used by
155	 * the low-level rtc_read_alarm_internal() function.
156	 *
157	 * So, when the two timestamps disagree, we just loop and do
158	 * the process again to get a fully consistent set of values.
159	 *
160	 * This could all instead be done in the lower level driver,
161	 * but since more than one lower level RTC implementation needs it,
162	 * then it's probably best best to do it here instead of there..
163	 */
164
165	/* Get the "before" timestamp */
166	err = rtc_read_time(rtc, &before);
167	if (err < 0)
168		return err;
169	do {
170		if (!first_time)
171			memcpy(&before, &now, sizeof(struct rtc_time));
172		first_time = 0;
173
174		/* get the RTC alarm values, which may be incomplete */
175		err = rtc_read_alarm_internal(rtc, alarm);
176		if (err)
177			return err;
178
179		/* full-function RTCs won't have such missing fields */
180		if (rtc_valid_tm(&alarm->time) == 0)
181			return 0;
182
183		/* get the "after" timestamp, to detect wrapped fields */
184		err = rtc_read_time(rtc, &now);
185		if (err < 0)
186			return err;
187
188		/* note that tm_sec is a "don't care" value here: */
189	} while (   before.tm_min   != now.tm_min
190		 || before.tm_hour  != now.tm_hour
191		 || before.tm_mon   != now.tm_mon
192		 || before.tm_year  != now.tm_year);
193
194	/* Fill in the missing alarm fields using the timestamp; we
195	 * know there's at least one since alarm->time is invalid.
196	 */
197	if (alarm->time.tm_sec == -1)
198		alarm->time.tm_sec = now.tm_sec;
199	if (alarm->time.tm_min == -1)
200		alarm->time.tm_min = now.tm_min;
201	if (alarm->time.tm_hour == -1)
202		alarm->time.tm_hour = now.tm_hour;
203
204	/* For simplicity, only support date rollover for now */
205	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
206		alarm->time.tm_mday = now.tm_mday;
207		missing = day;
208	}
209	if ((unsigned)alarm->time.tm_mon >= 12) {
210		alarm->time.tm_mon = now.tm_mon;
211		if (missing == none)
212			missing = month;
213	}
214	if (alarm->time.tm_year == -1) {
215		alarm->time.tm_year = now.tm_year;
216		if (missing == none)
217			missing = year;
218	}
219
220	/* with luck, no rollover is needed */
221	t_now = rtc_tm_to_time64(&now);
222	t_alm = rtc_tm_to_time64(&alarm->time);
223	if (t_now < t_alm)
224		goto done;
225
226	switch (missing) {
227
228	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
229	 * that will trigger at 5am will do so at 5am Tuesday, which
230	 * could also be in the next month or year.  This is a common
231	 * case, especially for PCs.
232	 */
233	case day:
234		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
235		t_alm += 24 * 60 * 60;
236		rtc_time64_to_tm(t_alm, &alarm->time);
237		break;
238
239	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
240	 * be next month.  An alarm matching on the 30th, 29th, or 28th
241	 * may end up in the month after that!  Many newer PCs support
242	 * this type of alarm.
243	 */
244	case month:
245		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
246		do {
247			if (alarm->time.tm_mon < 11)
248				alarm->time.tm_mon++;
249			else {
250				alarm->time.tm_mon = 0;
251				alarm->time.tm_year++;
252			}
253			days = rtc_month_days(alarm->time.tm_mon,
254					alarm->time.tm_year);
255		} while (days < alarm->time.tm_mday);
256		break;
257
258	/* Year rollover ... easy except for leap years! */
259	case year:
260		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
261		do {
262			alarm->time.tm_year++;
263		} while (!is_leap_year(alarm->time.tm_year + 1900)
264			&& rtc_valid_tm(&alarm->time) != 0);
265		break;
266
267	default:
268		dev_warn(&rtc->dev, "alarm rollover not handled\n");
269	}
270
271done:
272	err = rtc_valid_tm(&alarm->time);
273
274	if (err) {
275		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
276			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
277			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
278			alarm->time.tm_sec);
279	}
280
281	return err;
282}
283
284int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
285{
286	int err;
287
288	err = mutex_lock_interruptible(&rtc->ops_lock);
289	if (err)
290		return err;
291	if (rtc->ops == NULL)
292		err = -ENODEV;
293	else if (!rtc->ops->read_alarm)
294		err = -EINVAL;
295	else {
296		memset(alarm, 0, sizeof(struct rtc_wkalrm));
297		alarm->enabled = rtc->aie_timer.enabled;
298		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
299	}
300	mutex_unlock(&rtc->ops_lock);
301
302	return err;
303}
304EXPORT_SYMBOL_GPL(rtc_read_alarm);
305
306static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
307{
308	struct rtc_time tm;
309	time64_t now, scheduled;
310	int err;
311
312	err = rtc_valid_tm(&alarm->time);
313	if (err)
314		return err;
315	scheduled = rtc_tm_to_time64(&alarm->time);
316
317	/* Make sure we're not setting alarms in the past */
318	err = __rtc_read_time(rtc, &tm);
319	if (err)
320		return err;
321	now = rtc_tm_to_time64(&tm);
322	if (scheduled <= now)
323		return -ETIME;
324	/*
325	 * XXX - We just checked to make sure the alarm time is not
326	 * in the past, but there is still a race window where if
327	 * the is alarm set for the next second and the second ticks
328	 * over right here, before we set the alarm.
329	 */
330
331	if (!rtc->ops)
332		err = -ENODEV;
333	else if (!rtc->ops->set_alarm)
334		err = -EINVAL;
335	else
336		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
337
338	return err;
339}
340
341int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
342{
343	int err;
344
345	err = rtc_valid_tm(&alarm->time);
346	if (err != 0)
347		return err;
348
349	err = mutex_lock_interruptible(&rtc->ops_lock);
350	if (err)
351		return err;
352	if (rtc->aie_timer.enabled)
353		rtc_timer_remove(rtc, &rtc->aie_timer);
354
355	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
356	rtc->aie_timer.period = ktime_set(0, 0);
357	if (alarm->enabled)
358		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
359
360	mutex_unlock(&rtc->ops_lock);
361	return err;
362}
363EXPORT_SYMBOL_GPL(rtc_set_alarm);
364
365/* Called once per device from rtc_device_register */
366int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
367{
368	int err;
369	struct rtc_time now;
370
371	err = rtc_valid_tm(&alarm->time);
372	if (err != 0)
373		return err;
374
375	err = rtc_read_time(rtc, &now);
376	if (err)
377		return err;
378
379	err = mutex_lock_interruptible(&rtc->ops_lock);
380	if (err)
381		return err;
382
383	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
384	rtc->aie_timer.period = ktime_set(0, 0);
385
386	/* Alarm has to be enabled & in the futrure for us to enqueue it */
387	if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
388			 rtc->aie_timer.node.expires.tv64)) {
389
390		rtc->aie_timer.enabled = 1;
391		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
392	}
393	mutex_unlock(&rtc->ops_lock);
394	return err;
395}
396EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
397
398
399
400int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
401{
402	int err = mutex_lock_interruptible(&rtc->ops_lock);
403	if (err)
404		return err;
405
406	if (rtc->aie_timer.enabled != enabled) {
407		if (enabled)
408			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
409		else
410			rtc_timer_remove(rtc, &rtc->aie_timer);
411	}
412
413	if (err)
414		/* nothing */;
415	else if (!rtc->ops)
416		err = -ENODEV;
417	else if (!rtc->ops->alarm_irq_enable)
418		err = -EINVAL;
419	else
420		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
421
422	mutex_unlock(&rtc->ops_lock);
423	return err;
424}
425EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
426
427int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
428{
429	int err = mutex_lock_interruptible(&rtc->ops_lock);
430	if (err)
431		return err;
432
433#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
434	if (enabled == 0 && rtc->uie_irq_active) {
435		mutex_unlock(&rtc->ops_lock);
436		return rtc_dev_update_irq_enable_emul(rtc, 0);
437	}
438#endif
439	/* make sure we're changing state */
440	if (rtc->uie_rtctimer.enabled == enabled)
441		goto out;
442
443	if (rtc->uie_unsupported) {
444		err = -EINVAL;
445		goto out;
446	}
447
448	if (enabled) {
449		struct rtc_time tm;
450		ktime_t now, onesec;
451
452		__rtc_read_time(rtc, &tm);
453		onesec = ktime_set(1, 0);
454		now = rtc_tm_to_ktime(tm);
455		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
456		rtc->uie_rtctimer.period = ktime_set(1, 0);
457		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
458	} else
459		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
460
461out:
462	mutex_unlock(&rtc->ops_lock);
463#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
464	/*
465	 * Enable emulation if the driver did not provide
466	 * the update_irq_enable function pointer or if returned
467	 * -EINVAL to signal that it has been configured without
468	 * interrupts or that are not available at the moment.
469	 */
470	if (err == -EINVAL)
471		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
472#endif
473	return err;
474
475}
476EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
477
478
479/**
480 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
481 * @rtc: pointer to the rtc device
482 *
483 * This function is called when an AIE, UIE or PIE mode interrupt
484 * has occurred (or been emulated).
485 *
486 * Triggers the registered irq_task function callback.
487 */
488void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
489{
490	unsigned long flags;
491
492	/* mark one irq of the appropriate mode */
493	spin_lock_irqsave(&rtc->irq_lock, flags);
494	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
495	spin_unlock_irqrestore(&rtc->irq_lock, flags);
496
497	/* call the task func */
498	spin_lock_irqsave(&rtc->irq_task_lock, flags);
499	if (rtc->irq_task)
500		rtc->irq_task->func(rtc->irq_task->private_data);
501	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
502
503	wake_up_interruptible(&rtc->irq_queue);
504	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
505}
506
507
508/**
509 * rtc_aie_update_irq - AIE mode rtctimer hook
510 * @private: pointer to the rtc_device
511 *
512 * This functions is called when the aie_timer expires.
513 */
514void rtc_aie_update_irq(void *private)
515{
516	struct rtc_device *rtc = (struct rtc_device *)private;
517	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
518}
519
520
521/**
522 * rtc_uie_update_irq - UIE mode rtctimer hook
523 * @private: pointer to the rtc_device
524 *
525 * This functions is called when the uie_timer expires.
526 */
527void rtc_uie_update_irq(void *private)
528{
529	struct rtc_device *rtc = (struct rtc_device *)private;
530	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
531}
532
533
534/**
535 * rtc_pie_update_irq - PIE mode hrtimer hook
536 * @timer: pointer to the pie mode hrtimer
537 *
538 * This function is used to emulate PIE mode interrupts
539 * using an hrtimer. This function is called when the periodic
540 * hrtimer expires.
541 */
542enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
543{
544	struct rtc_device *rtc;
545	ktime_t period;
546	int count;
547	rtc = container_of(timer, struct rtc_device, pie_timer);
548
549	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
550	count = hrtimer_forward_now(timer, period);
551
552	rtc_handle_legacy_irq(rtc, count, RTC_PF);
553
554	return HRTIMER_RESTART;
555}
556
557/**
558 * rtc_update_irq - Triggered when a RTC interrupt occurs.
559 * @rtc: the rtc device
560 * @num: how many irqs are being reported (usually one)
561 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
562 * Context: any
563 */
564void rtc_update_irq(struct rtc_device *rtc,
565		unsigned long num, unsigned long events)
566{
567	if (IS_ERR_OR_NULL(rtc))
568		return;
569
570	pm_stay_awake(rtc->dev.parent);
571	schedule_work(&rtc->irqwork);
572}
573EXPORT_SYMBOL_GPL(rtc_update_irq);
574
575static int __rtc_match(struct device *dev, const void *data)
576{
577	const char *name = data;
578
579	if (strcmp(dev_name(dev), name) == 0)
580		return 1;
581	return 0;
582}
583
584struct rtc_device *rtc_class_open(const char *name)
585{
586	struct device *dev;
587	struct rtc_device *rtc = NULL;
588
589	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
590	if (dev)
591		rtc = to_rtc_device(dev);
592
593	if (rtc) {
594		if (!try_module_get(rtc->owner)) {
595			put_device(dev);
596			rtc = NULL;
597		}
598	}
599
600	return rtc;
601}
602EXPORT_SYMBOL_GPL(rtc_class_open);
603
604void rtc_class_close(struct rtc_device *rtc)
605{
606	module_put(rtc->owner);
607	put_device(&rtc->dev);
608}
609EXPORT_SYMBOL_GPL(rtc_class_close);
610
611int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
612{
613	int retval = -EBUSY;
614
615	if (task == NULL || task->func == NULL)
616		return -EINVAL;
617
618	/* Cannot register while the char dev is in use */
619	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
620		return -EBUSY;
621
622	spin_lock_irq(&rtc->irq_task_lock);
623	if (rtc->irq_task == NULL) {
624		rtc->irq_task = task;
625		retval = 0;
626	}
627	spin_unlock_irq(&rtc->irq_task_lock);
628
629	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
630
631	return retval;
632}
633EXPORT_SYMBOL_GPL(rtc_irq_register);
634
635void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
636{
637	spin_lock_irq(&rtc->irq_task_lock);
638	if (rtc->irq_task == task)
639		rtc->irq_task = NULL;
640	spin_unlock_irq(&rtc->irq_task_lock);
641}
642EXPORT_SYMBOL_GPL(rtc_irq_unregister);
643
644static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
645{
646	/*
647	 * We always cancel the timer here first, because otherwise
648	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
649	 * when we manage to start the timer before the callback
650	 * returns HRTIMER_RESTART.
651	 *
652	 * We cannot use hrtimer_cancel() here as a running callback
653	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
654	 * would spin forever.
655	 */
656	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
657		return -1;
658
659	if (enabled) {
660		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
661
662		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
663	}
664	return 0;
665}
666
667/**
668 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
669 * @rtc: the rtc device
670 * @task: currently registered with rtc_irq_register()
671 * @enabled: true to enable periodic IRQs
672 * Context: any
673 *
674 * Note that rtc_irq_set_freq() should previously have been used to
675 * specify the desired frequency of periodic IRQ task->func() callbacks.
676 */
677int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
678{
679	int err = 0;
680	unsigned long flags;
681
682retry:
683	spin_lock_irqsave(&rtc->irq_task_lock, flags);
684	if (rtc->irq_task != NULL && task == NULL)
685		err = -EBUSY;
686	else if (rtc->irq_task != task)
687		err = -EACCES;
688	else {
689		if (rtc_update_hrtimer(rtc, enabled) < 0) {
690			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
691			cpu_relax();
692			goto retry;
693		}
694		rtc->pie_enabled = enabled;
695	}
696	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
697	return err;
698}
699EXPORT_SYMBOL_GPL(rtc_irq_set_state);
700
701/**
702 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
703 * @rtc: the rtc device
704 * @task: currently registered with rtc_irq_register()
705 * @freq: positive frequency with which task->func() will be called
706 * Context: any
707 *
708 * Note that rtc_irq_set_state() is used to enable or disable the
709 * periodic IRQs.
710 */
711int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
712{
713	int err = 0;
714	unsigned long flags;
715
716	if (freq <= 0 || freq > RTC_MAX_FREQ)
717		return -EINVAL;
718retry:
719	spin_lock_irqsave(&rtc->irq_task_lock, flags);
720	if (rtc->irq_task != NULL && task == NULL)
721		err = -EBUSY;
722	else if (rtc->irq_task != task)
723		err = -EACCES;
724	else {
725		rtc->irq_freq = freq;
726		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
727			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
728			cpu_relax();
729			goto retry;
730		}
731	}
732	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
733	return err;
734}
735EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
736
737/**
738 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
739 * @rtc rtc device
740 * @timer timer being added.
741 *
742 * Enqueues a timer onto the rtc devices timerqueue and sets
743 * the next alarm event appropriately.
744 *
745 * Sets the enabled bit on the added timer.
746 *
747 * Must hold ops_lock for proper serialization of timerqueue
748 */
749static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
750{
751	timer->enabled = 1;
752	timerqueue_add(&rtc->timerqueue, &timer->node);
753	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
754		struct rtc_wkalrm alarm;
755		int err;
756		alarm.time = rtc_ktime_to_tm(timer->node.expires);
757		alarm.enabled = 1;
758		err = __rtc_set_alarm(rtc, &alarm);
759		if (err == -ETIME) {
760			pm_stay_awake(rtc->dev.parent);
761			schedule_work(&rtc->irqwork);
762		} else if (err) {
763			timerqueue_del(&rtc->timerqueue, &timer->node);
764			timer->enabled = 0;
765			return err;
766		}
767	}
768	return 0;
769}
770
771static void rtc_alarm_disable(struct rtc_device *rtc)
772{
773	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
774		return;
775
776	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
777}
778
779/**
780 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
781 * @rtc rtc device
782 * @timer timer being removed.
783 *
784 * Removes a timer onto the rtc devices timerqueue and sets
785 * the next alarm event appropriately.
786 *
787 * Clears the enabled bit on the removed timer.
788 *
789 * Must hold ops_lock for proper serialization of timerqueue
790 */
791static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
792{
793	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
794	timerqueue_del(&rtc->timerqueue, &timer->node);
795	timer->enabled = 0;
796	if (next == &timer->node) {
797		struct rtc_wkalrm alarm;
798		int err;
799		next = timerqueue_getnext(&rtc->timerqueue);
800		if (!next) {
801			rtc_alarm_disable(rtc);
802			return;
803		}
804		alarm.time = rtc_ktime_to_tm(next->expires);
805		alarm.enabled = 1;
806		err = __rtc_set_alarm(rtc, &alarm);
807		if (err == -ETIME) {
808			pm_stay_awake(rtc->dev.parent);
809			schedule_work(&rtc->irqwork);
810		}
811	}
812}
813
814/**
815 * rtc_timer_do_work - Expires rtc timers
816 * @rtc rtc device
817 * @timer timer being removed.
818 *
819 * Expires rtc timers. Reprograms next alarm event if needed.
820 * Called via worktask.
821 *
822 * Serializes access to timerqueue via ops_lock mutex
823 */
824void rtc_timer_do_work(struct work_struct *work)
825{
826	struct rtc_timer *timer;
827	struct timerqueue_node *next;
828	ktime_t now;
829	struct rtc_time tm;
830
831	struct rtc_device *rtc =
832		container_of(work, struct rtc_device, irqwork);
833
834	mutex_lock(&rtc->ops_lock);
835again:
836	__rtc_read_time(rtc, &tm);
837	now = rtc_tm_to_ktime(tm);
838	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
839		if (next->expires.tv64 > now.tv64)
840			break;
841
842		/* expire timer */
843		timer = container_of(next, struct rtc_timer, node);
844		timerqueue_del(&rtc->timerqueue, &timer->node);
845		timer->enabled = 0;
846		if (timer->task.func)
847			timer->task.func(timer->task.private_data);
848
849		/* Re-add/fwd periodic timers */
850		if (ktime_to_ns(timer->period)) {
851			timer->node.expires = ktime_add(timer->node.expires,
852							timer->period);
853			timer->enabled = 1;
854			timerqueue_add(&rtc->timerqueue, &timer->node);
855		}
856	}
857
858	/* Set next alarm */
859	if (next) {
860		struct rtc_wkalrm alarm;
861		int err;
862		int retry = 3;
863
864		alarm.time = rtc_ktime_to_tm(next->expires);
865		alarm.enabled = 1;
866reprogram:
867		err = __rtc_set_alarm(rtc, &alarm);
868		if (err == -ETIME)
869			goto again;
870		else if (err) {
871			if (retry-- > 0)
872				goto reprogram;
873
874			timer = container_of(next, struct rtc_timer, node);
875			timerqueue_del(&rtc->timerqueue, &timer->node);
876			timer->enabled = 0;
877			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
878			goto again;
879		}
880	} else
881		rtc_alarm_disable(rtc);
882
883	pm_relax(rtc->dev.parent);
884	mutex_unlock(&rtc->ops_lock);
885}
886
887
888/* rtc_timer_init - Initializes an rtc_timer
889 * @timer: timer to be intiialized
890 * @f: function pointer to be called when timer fires
891 * @data: private data passed to function pointer
892 *
893 * Kernel interface to initializing an rtc_timer.
894 */
895void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
896{
897	timerqueue_init(&timer->node);
898	timer->enabled = 0;
899	timer->task.func = f;
900	timer->task.private_data = data;
901}
902
903/* rtc_timer_start - Sets an rtc_timer to fire in the future
904 * @ rtc: rtc device to be used
905 * @ timer: timer being set
906 * @ expires: time at which to expire the timer
907 * @ period: period that the timer will recur
908 *
909 * Kernel interface to set an rtc_timer
910 */
911int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
912			ktime_t expires, ktime_t period)
913{
914	int ret = 0;
915	mutex_lock(&rtc->ops_lock);
916	if (timer->enabled)
917		rtc_timer_remove(rtc, timer);
918
919	timer->node.expires = expires;
920	timer->period = period;
921
922	ret = rtc_timer_enqueue(rtc, timer);
923
924	mutex_unlock(&rtc->ops_lock);
925	return ret;
926}
927
928/* rtc_timer_cancel - Stops an rtc_timer
929 * @ rtc: rtc device to be used
930 * @ timer: timer being set
931 *
932 * Kernel interface to cancel an rtc_timer
933 */
934void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
935{
 
936	mutex_lock(&rtc->ops_lock);
937	if (timer->enabled)
938		rtc_timer_remove(rtc, timer);
939	mutex_unlock(&rtc->ops_lock);
940}
941
942/**
943 * rtc_read_offset - Read the amount of rtc offset in parts per billion
944 * @ rtc: rtc device to be used
945 * @ offset: the offset in parts per billion
946 *
947 * see below for details.
948 *
949 * Kernel interface to read rtc clock offset
950 * Returns 0 on success, or a negative number on error.
951 * If read_offset() is not implemented for the rtc, return -EINVAL
952 */
953int rtc_read_offset(struct rtc_device *rtc, long *offset)
954{
955	int ret;
956
957	if (!rtc->ops)
958		return -ENODEV;
959
960	if (!rtc->ops->read_offset)
961		return -EINVAL;
962
963	mutex_lock(&rtc->ops_lock);
964	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
965	mutex_unlock(&rtc->ops_lock);
966	return ret;
967}
968
969/**
970 * rtc_set_offset - Adjusts the duration of the average second
971 * @ rtc: rtc device to be used
972 * @ offset: the offset in parts per billion
973 *
974 * Some rtc's allow an adjustment to the average duration of a second
975 * to compensate for differences in the actual clock rate due to temperature,
976 * the crystal, capacitor, etc.
977 *
978 * Kernel interface to adjust an rtc clock offset.
979 * Return 0 on success, or a negative number on error.
980 * If the rtc offset is not setable (or not implemented), return -EINVAL
981 */
982int rtc_set_offset(struct rtc_device *rtc, long offset)
983{
984	int ret;
985
986	if (!rtc->ops)
987		return -ENODEV;
988
989	if (!rtc->ops->set_offset)
990		return -EINVAL;
991
992	mutex_lock(&rtc->ops_lock);
993	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
994	mutex_unlock(&rtc->ops_lock);
995	return ret;
996}