Loading...
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
5 *
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9
10/*
11 * Handle hardware traps and faults.
12 */
13#include <linux/spinlock.h>
14#include <linux/kprobes.h>
15#include <linux/kdebug.h>
16#include <linux/nmi.h>
17#include <linux/delay.h>
18#include <linux/hardirq.h>
19#include <linux/slab.h>
20#include <linux/export.h>
21
22#if defined(CONFIG_EDAC)
23#include <linux/edac.h>
24#endif
25
26#include <linux/atomic.h>
27#include <asm/traps.h>
28#include <asm/mach_traps.h>
29#include <asm/nmi.h>
30#include <asm/x86_init.h>
31
32struct nmi_desc {
33 spinlock_t lock;
34 struct list_head head;
35};
36
37static struct nmi_desc nmi_desc[NMI_MAX] =
38{
39 {
40 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
41 .head = LIST_HEAD_INIT(nmi_desc[0].head),
42 },
43 {
44 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
45 .head = LIST_HEAD_INIT(nmi_desc[1].head),
46 },
47 {
48 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
49 .head = LIST_HEAD_INIT(nmi_desc[2].head),
50 },
51 {
52 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
53 .head = LIST_HEAD_INIT(nmi_desc[3].head),
54 },
55
56};
57
58struct nmi_stats {
59 unsigned int normal;
60 unsigned int unknown;
61 unsigned int external;
62 unsigned int swallow;
63};
64
65static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
66
67static int ignore_nmis;
68
69int unknown_nmi_panic;
70/*
71 * Prevent NMI reason port (0x61) being accessed simultaneously, can
72 * only be used in NMI handler.
73 */
74static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
75
76static int __init setup_unknown_nmi_panic(char *str)
77{
78 unknown_nmi_panic = 1;
79 return 1;
80}
81__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
82
83#define nmi_to_desc(type) (&nmi_desc[type])
84
85static int __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
86{
87 struct nmi_desc *desc = nmi_to_desc(type);
88 struct nmiaction *a;
89 int handled=0;
90
91 rcu_read_lock();
92
93 /*
94 * NMIs are edge-triggered, which means if you have enough
95 * of them concurrently, you can lose some because only one
96 * can be latched at any given time. Walk the whole list
97 * to handle those situations.
98 */
99 list_for_each_entry_rcu(a, &desc->head, list)
100 handled += a->handler(type, regs);
101
102 rcu_read_unlock();
103
104 /* return total number of NMI events handled */
105 return handled;
106}
107
108int __register_nmi_handler(unsigned int type, struct nmiaction *action)
109{
110 struct nmi_desc *desc = nmi_to_desc(type);
111 unsigned long flags;
112
113 if (!action->handler)
114 return -EINVAL;
115
116 spin_lock_irqsave(&desc->lock, flags);
117
118 /*
119 * most handlers of type NMI_UNKNOWN never return because
120 * they just assume the NMI is theirs. Just a sanity check
121 * to manage expectations
122 */
123 WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
124 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
125 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
126
127 /*
128 * some handlers need to be executed first otherwise a fake
129 * event confuses some handlers (kdump uses this flag)
130 */
131 if (action->flags & NMI_FLAG_FIRST)
132 list_add_rcu(&action->list, &desc->head);
133 else
134 list_add_tail_rcu(&action->list, &desc->head);
135
136 spin_unlock_irqrestore(&desc->lock, flags);
137 return 0;
138}
139EXPORT_SYMBOL(__register_nmi_handler);
140
141void unregister_nmi_handler(unsigned int type, const char *name)
142{
143 struct nmi_desc *desc = nmi_to_desc(type);
144 struct nmiaction *n;
145 unsigned long flags;
146
147 spin_lock_irqsave(&desc->lock, flags);
148
149 list_for_each_entry_rcu(n, &desc->head, list) {
150 /*
151 * the name passed in to describe the nmi handler
152 * is used as the lookup key
153 */
154 if (!strcmp(n->name, name)) {
155 WARN(in_nmi(),
156 "Trying to free NMI (%s) from NMI context!\n", n->name);
157 list_del_rcu(&n->list);
158 break;
159 }
160 }
161
162 spin_unlock_irqrestore(&desc->lock, flags);
163 synchronize_rcu();
164}
165EXPORT_SYMBOL_GPL(unregister_nmi_handler);
166
167static __kprobes void
168pci_serr_error(unsigned char reason, struct pt_regs *regs)
169{
170 /* check to see if anyone registered against these types of errors */
171 if (nmi_handle(NMI_SERR, regs, false))
172 return;
173
174 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
175 reason, smp_processor_id());
176
177 /*
178 * On some machines, PCI SERR line is used to report memory
179 * errors. EDAC makes use of it.
180 */
181#if defined(CONFIG_EDAC)
182 if (edac_handler_set()) {
183 edac_atomic_assert_error();
184 return;
185 }
186#endif
187
188 if (panic_on_unrecovered_nmi)
189 panic("NMI: Not continuing");
190
191 pr_emerg("Dazed and confused, but trying to continue\n");
192
193 /* Clear and disable the PCI SERR error line. */
194 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
195 outb(reason, NMI_REASON_PORT);
196}
197
198static __kprobes void
199io_check_error(unsigned char reason, struct pt_regs *regs)
200{
201 unsigned long i;
202
203 /* check to see if anyone registered against these types of errors */
204 if (nmi_handle(NMI_IO_CHECK, regs, false))
205 return;
206
207 pr_emerg(
208 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
209 reason, smp_processor_id());
210 show_regs(regs);
211
212 if (panic_on_io_nmi)
213 panic("NMI IOCK error: Not continuing");
214
215 /* Re-enable the IOCK line, wait for a few seconds */
216 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
217 outb(reason, NMI_REASON_PORT);
218
219 i = 20000;
220 while (--i) {
221 touch_nmi_watchdog();
222 udelay(100);
223 }
224
225 reason &= ~NMI_REASON_CLEAR_IOCHK;
226 outb(reason, NMI_REASON_PORT);
227}
228
229static __kprobes void
230unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
231{
232 int handled;
233
234 /*
235 * Use 'false' as back-to-back NMIs are dealt with one level up.
236 * Of course this makes having multiple 'unknown' handlers useless
237 * as only the first one is ever run (unless it can actually determine
238 * if it caused the NMI)
239 */
240 handled = nmi_handle(NMI_UNKNOWN, regs, false);
241 if (handled) {
242 __this_cpu_add(nmi_stats.unknown, handled);
243 return;
244 }
245
246 __this_cpu_add(nmi_stats.unknown, 1);
247
248 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
249 reason, smp_processor_id());
250
251 pr_emerg("Do you have a strange power saving mode enabled?\n");
252 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
253 panic("NMI: Not continuing");
254
255 pr_emerg("Dazed and confused, but trying to continue\n");
256}
257
258static DEFINE_PER_CPU(bool, swallow_nmi);
259static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
260
261static __kprobes void default_do_nmi(struct pt_regs *regs)
262{
263 unsigned char reason = 0;
264 int handled;
265 bool b2b = false;
266
267 /*
268 * CPU-specific NMI must be processed before non-CPU-specific
269 * NMI, otherwise we may lose it, because the CPU-specific
270 * NMI can not be detected/processed on other CPUs.
271 */
272
273 /*
274 * Back-to-back NMIs are interesting because they can either
275 * be two NMI or more than two NMIs (any thing over two is dropped
276 * due to NMI being edge-triggered). If this is the second half
277 * of the back-to-back NMI, assume we dropped things and process
278 * more handlers. Otherwise reset the 'swallow' NMI behaviour
279 */
280 if (regs->ip == __this_cpu_read(last_nmi_rip))
281 b2b = true;
282 else
283 __this_cpu_write(swallow_nmi, false);
284
285 __this_cpu_write(last_nmi_rip, regs->ip);
286
287 handled = nmi_handle(NMI_LOCAL, regs, b2b);
288 __this_cpu_add(nmi_stats.normal, handled);
289 if (handled) {
290 /*
291 * There are cases when a NMI handler handles multiple
292 * events in the current NMI. One of these events may
293 * be queued for in the next NMI. Because the event is
294 * already handled, the next NMI will result in an unknown
295 * NMI. Instead lets flag this for a potential NMI to
296 * swallow.
297 */
298 if (handled > 1)
299 __this_cpu_write(swallow_nmi, true);
300 return;
301 }
302
303 /* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
304 raw_spin_lock(&nmi_reason_lock);
305 reason = x86_platform.get_nmi_reason();
306
307 if (reason & NMI_REASON_MASK) {
308 if (reason & NMI_REASON_SERR)
309 pci_serr_error(reason, regs);
310 else if (reason & NMI_REASON_IOCHK)
311 io_check_error(reason, regs);
312#ifdef CONFIG_X86_32
313 /*
314 * Reassert NMI in case it became active
315 * meanwhile as it's edge-triggered:
316 */
317 reassert_nmi();
318#endif
319 __this_cpu_add(nmi_stats.external, 1);
320 raw_spin_unlock(&nmi_reason_lock);
321 return;
322 }
323 raw_spin_unlock(&nmi_reason_lock);
324
325 /*
326 * Only one NMI can be latched at a time. To handle
327 * this we may process multiple nmi handlers at once to
328 * cover the case where an NMI is dropped. The downside
329 * to this approach is we may process an NMI prematurely,
330 * while its real NMI is sitting latched. This will cause
331 * an unknown NMI on the next run of the NMI processing.
332 *
333 * We tried to flag that condition above, by setting the
334 * swallow_nmi flag when we process more than one event.
335 * This condition is also only present on the second half
336 * of a back-to-back NMI, so we flag that condition too.
337 *
338 * If both are true, we assume we already processed this
339 * NMI previously and we swallow it. Otherwise we reset
340 * the logic.
341 *
342 * There are scenarios where we may accidentally swallow
343 * a 'real' unknown NMI. For example, while processing
344 * a perf NMI another perf NMI comes in along with a
345 * 'real' unknown NMI. These two NMIs get combined into
346 * one (as descibed above). When the next NMI gets
347 * processed, it will be flagged by perf as handled, but
348 * noone will know that there was a 'real' unknown NMI sent
349 * also. As a result it gets swallowed. Or if the first
350 * perf NMI returns two events handled then the second
351 * NMI will get eaten by the logic below, again losing a
352 * 'real' unknown NMI. But this is the best we can do
353 * for now.
354 */
355 if (b2b && __this_cpu_read(swallow_nmi))
356 __this_cpu_add(nmi_stats.swallow, 1);
357 else
358 unknown_nmi_error(reason, regs);
359}
360
361/*
362 * NMIs can hit breakpoints which will cause it to lose its
363 * NMI context with the CPU when the breakpoint does an iret.
364 */
365#ifdef CONFIG_X86_32
366/*
367 * For i386, NMIs use the same stack as the kernel, and we can
368 * add a workaround to the iret problem in C. Simply have 3 states
369 * the NMI can be in.
370 *
371 * 1) not running
372 * 2) executing
373 * 3) latched
374 *
375 * When no NMI is in progress, it is in the "not running" state.
376 * When an NMI comes in, it goes into the "executing" state.
377 * Normally, if another NMI is triggered, it does not interrupt
378 * the running NMI and the HW will simply latch it so that when
379 * the first NMI finishes, it will restart the second NMI.
380 * (Note, the latch is binary, thus multiple NMIs triggering,
381 * when one is running, are ignored. Only one NMI is restarted.)
382 *
383 * If an NMI hits a breakpoint that executes an iret, another
384 * NMI can preempt it. We do not want to allow this new NMI
385 * to run, but we want to execute it when the first one finishes.
386 * We set the state to "latched", and the first NMI will perform
387 * an cmpxchg on the state, and if it doesn't successfully
388 * reset the state to "not running" it will restart the next
389 * NMI.
390 */
391enum nmi_states {
392 NMI_NOT_RUNNING,
393 NMI_EXECUTING,
394 NMI_LATCHED,
395};
396static DEFINE_PER_CPU(enum nmi_states, nmi_state);
397
398#define nmi_nesting_preprocess(regs) \
399 do { \
400 if (__get_cpu_var(nmi_state) != NMI_NOT_RUNNING) { \
401 __get_cpu_var(nmi_state) = NMI_LATCHED; \
402 return; \
403 } \
404 nmi_restart: \
405 __get_cpu_var(nmi_state) = NMI_EXECUTING; \
406 } while (0)
407
408#define nmi_nesting_postprocess() \
409 do { \
410 if (cmpxchg(&__get_cpu_var(nmi_state), \
411 NMI_EXECUTING, NMI_NOT_RUNNING) != NMI_EXECUTING) \
412 goto nmi_restart; \
413 } while (0)
414#else /* x86_64 */
415/*
416 * In x86_64 things are a bit more difficult. This has the same problem
417 * where an NMI hitting a breakpoint that calls iret will remove the
418 * NMI context, allowing a nested NMI to enter. What makes this more
419 * difficult is that both NMIs and breakpoints have their own stack.
420 * When a new NMI or breakpoint is executed, the stack is set to a fixed
421 * point. If an NMI is nested, it will have its stack set at that same
422 * fixed address that the first NMI had, and will start corrupting the
423 * stack. This is handled in entry_64.S, but the same problem exists with
424 * the breakpoint stack.
425 *
426 * If a breakpoint is being processed, and the debug stack is being used,
427 * if an NMI comes in and also hits a breakpoint, the stack pointer
428 * will be set to the same fixed address as the breakpoint that was
429 * interrupted, causing that stack to be corrupted. To handle this case,
430 * check if the stack that was interrupted is the debug stack, and if
431 * so, change the IDT so that new breakpoints will use the current stack
432 * and not switch to the fixed address. On return of the NMI, switch back
433 * to the original IDT.
434 */
435static DEFINE_PER_CPU(int, update_debug_stack);
436
437static inline void nmi_nesting_preprocess(struct pt_regs *regs)
438{
439 /*
440 * If we interrupted a breakpoint, it is possible that
441 * the nmi handler will have breakpoints too. We need to
442 * change the IDT such that breakpoints that happen here
443 * continue to use the NMI stack.
444 */
445 if (unlikely(is_debug_stack(regs->sp))) {
446 debug_stack_set_zero();
447 this_cpu_write(update_debug_stack, 1);
448 }
449}
450
451static inline void nmi_nesting_postprocess(void)
452{
453 if (unlikely(this_cpu_read(update_debug_stack))) {
454 debug_stack_reset();
455 this_cpu_write(update_debug_stack, 0);
456 }
457}
458#endif
459
460dotraplinkage notrace __kprobes void
461do_nmi(struct pt_regs *regs, long error_code)
462{
463 nmi_nesting_preprocess(regs);
464
465 nmi_enter();
466
467 inc_irq_stat(__nmi_count);
468
469 if (!ignore_nmis)
470 default_do_nmi(regs);
471
472 nmi_exit();
473
474 /* On i386, may loop back to preprocess */
475 nmi_nesting_postprocess();
476}
477
478void stop_nmi(void)
479{
480 ignore_nmis++;
481}
482
483void restart_nmi(void)
484{
485 ignore_nmis--;
486}
487
488/* reset the back-to-back NMI logic */
489void local_touch_nmi(void)
490{
491 __this_cpu_write(last_nmi_rip, 0);
492}
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
5 *
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9
10/*
11 * Handle hardware traps and faults.
12 */
13#include <linux/spinlock.h>
14#include <linux/kprobes.h>
15#include <linux/kdebug.h>
16#include <linux/nmi.h>
17#include <linux/debugfs.h>
18#include <linux/delay.h>
19#include <linux/hardirq.h>
20#include <linux/slab.h>
21#include <linux/export.h>
22
23#if defined(CONFIG_EDAC)
24#include <linux/edac.h>
25#endif
26
27#include <linux/atomic.h>
28#include <asm/traps.h>
29#include <asm/mach_traps.h>
30#include <asm/nmi.h>
31#include <asm/x86_init.h>
32#include <asm/reboot.h>
33#include <asm/cache.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/nmi.h>
37
38struct nmi_desc {
39 spinlock_t lock;
40 struct list_head head;
41};
42
43static struct nmi_desc nmi_desc[NMI_MAX] =
44{
45 {
46 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
47 .head = LIST_HEAD_INIT(nmi_desc[0].head),
48 },
49 {
50 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
51 .head = LIST_HEAD_INIT(nmi_desc[1].head),
52 },
53 {
54 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
55 .head = LIST_HEAD_INIT(nmi_desc[2].head),
56 },
57 {
58 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
59 .head = LIST_HEAD_INIT(nmi_desc[3].head),
60 },
61
62};
63
64struct nmi_stats {
65 unsigned int normal;
66 unsigned int unknown;
67 unsigned int external;
68 unsigned int swallow;
69};
70
71static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
72
73static int ignore_nmis __read_mostly;
74
75int unknown_nmi_panic;
76/*
77 * Prevent NMI reason port (0x61) being accessed simultaneously, can
78 * only be used in NMI handler.
79 */
80static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
81
82static int __init setup_unknown_nmi_panic(char *str)
83{
84 unknown_nmi_panic = 1;
85 return 1;
86}
87__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
88
89#define nmi_to_desc(type) (&nmi_desc[type])
90
91static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
92
93static int __init nmi_warning_debugfs(void)
94{
95 debugfs_create_u64("nmi_longest_ns", 0644,
96 arch_debugfs_dir, &nmi_longest_ns);
97 return 0;
98}
99fs_initcall(nmi_warning_debugfs);
100
101static void nmi_max_handler(struct irq_work *w)
102{
103 struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
104 int remainder_ns, decimal_msecs;
105 u64 whole_msecs = ACCESS_ONCE(a->max_duration);
106
107 remainder_ns = do_div(whole_msecs, (1000 * 1000));
108 decimal_msecs = remainder_ns / 1000;
109
110 printk_ratelimited(KERN_INFO
111 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
112 a->handler, whole_msecs, decimal_msecs);
113}
114
115static int nmi_handle(unsigned int type, struct pt_regs *regs)
116{
117 struct nmi_desc *desc = nmi_to_desc(type);
118 struct nmiaction *a;
119 int handled=0;
120
121 rcu_read_lock();
122
123 /*
124 * NMIs are edge-triggered, which means if you have enough
125 * of them concurrently, you can lose some because only one
126 * can be latched at any given time. Walk the whole list
127 * to handle those situations.
128 */
129 list_for_each_entry_rcu(a, &desc->head, list) {
130 int thishandled;
131 u64 delta;
132
133 delta = sched_clock();
134 thishandled = a->handler(type, regs);
135 handled += thishandled;
136 delta = sched_clock() - delta;
137 trace_nmi_handler(a->handler, (int)delta, thishandled);
138
139 if (delta < nmi_longest_ns || delta < a->max_duration)
140 continue;
141
142 a->max_duration = delta;
143 irq_work_queue(&a->irq_work);
144 }
145
146 rcu_read_unlock();
147
148 /* return total number of NMI events handled */
149 return handled;
150}
151NOKPROBE_SYMBOL(nmi_handle);
152
153int __register_nmi_handler(unsigned int type, struct nmiaction *action)
154{
155 struct nmi_desc *desc = nmi_to_desc(type);
156 unsigned long flags;
157
158 if (!action->handler)
159 return -EINVAL;
160
161 init_irq_work(&action->irq_work, nmi_max_handler);
162
163 spin_lock_irqsave(&desc->lock, flags);
164
165 /*
166 * most handlers of type NMI_UNKNOWN never return because
167 * they just assume the NMI is theirs. Just a sanity check
168 * to manage expectations
169 */
170 WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
171 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
172 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
173
174 /*
175 * some handlers need to be executed first otherwise a fake
176 * event confuses some handlers (kdump uses this flag)
177 */
178 if (action->flags & NMI_FLAG_FIRST)
179 list_add_rcu(&action->list, &desc->head);
180 else
181 list_add_tail_rcu(&action->list, &desc->head);
182
183 spin_unlock_irqrestore(&desc->lock, flags);
184 return 0;
185}
186EXPORT_SYMBOL(__register_nmi_handler);
187
188void unregister_nmi_handler(unsigned int type, const char *name)
189{
190 struct nmi_desc *desc = nmi_to_desc(type);
191 struct nmiaction *n;
192 unsigned long flags;
193
194 spin_lock_irqsave(&desc->lock, flags);
195
196 list_for_each_entry_rcu(n, &desc->head, list) {
197 /*
198 * the name passed in to describe the nmi handler
199 * is used as the lookup key
200 */
201 if (!strcmp(n->name, name)) {
202 WARN(in_nmi(),
203 "Trying to free NMI (%s) from NMI context!\n", n->name);
204 list_del_rcu(&n->list);
205 break;
206 }
207 }
208
209 spin_unlock_irqrestore(&desc->lock, flags);
210 synchronize_rcu();
211}
212EXPORT_SYMBOL_GPL(unregister_nmi_handler);
213
214static void
215pci_serr_error(unsigned char reason, struct pt_regs *regs)
216{
217 /* check to see if anyone registered against these types of errors */
218 if (nmi_handle(NMI_SERR, regs))
219 return;
220
221 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
222 reason, smp_processor_id());
223
224 /*
225 * On some machines, PCI SERR line is used to report memory
226 * errors. EDAC makes use of it.
227 */
228#if defined(CONFIG_EDAC)
229 if (edac_handler_set()) {
230 edac_atomic_assert_error();
231 return;
232 }
233#endif
234
235 if (panic_on_unrecovered_nmi)
236 nmi_panic(regs, "NMI: Not continuing");
237
238 pr_emerg("Dazed and confused, but trying to continue\n");
239
240 /* Clear and disable the PCI SERR error line. */
241 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
242 outb(reason, NMI_REASON_PORT);
243}
244NOKPROBE_SYMBOL(pci_serr_error);
245
246static void
247io_check_error(unsigned char reason, struct pt_regs *regs)
248{
249 unsigned long i;
250
251 /* check to see if anyone registered against these types of errors */
252 if (nmi_handle(NMI_IO_CHECK, regs))
253 return;
254
255 pr_emerg(
256 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
257 reason, smp_processor_id());
258 show_regs(regs);
259
260 if (panic_on_io_nmi) {
261 nmi_panic(regs, "NMI IOCK error: Not continuing");
262
263 /*
264 * If we end up here, it means we have received an NMI while
265 * processing panic(). Simply return without delaying and
266 * re-enabling NMIs.
267 */
268 return;
269 }
270
271 /* Re-enable the IOCK line, wait for a few seconds */
272 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
273 outb(reason, NMI_REASON_PORT);
274
275 i = 20000;
276 while (--i) {
277 touch_nmi_watchdog();
278 udelay(100);
279 }
280
281 reason &= ~NMI_REASON_CLEAR_IOCHK;
282 outb(reason, NMI_REASON_PORT);
283}
284NOKPROBE_SYMBOL(io_check_error);
285
286static void
287unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
288{
289 int handled;
290
291 /*
292 * Use 'false' as back-to-back NMIs are dealt with one level up.
293 * Of course this makes having multiple 'unknown' handlers useless
294 * as only the first one is ever run (unless it can actually determine
295 * if it caused the NMI)
296 */
297 handled = nmi_handle(NMI_UNKNOWN, regs);
298 if (handled) {
299 __this_cpu_add(nmi_stats.unknown, handled);
300 return;
301 }
302
303 __this_cpu_add(nmi_stats.unknown, 1);
304
305 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
306 reason, smp_processor_id());
307
308 pr_emerg("Do you have a strange power saving mode enabled?\n");
309 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
310 nmi_panic(regs, "NMI: Not continuing");
311
312 pr_emerg("Dazed and confused, but trying to continue\n");
313}
314NOKPROBE_SYMBOL(unknown_nmi_error);
315
316static DEFINE_PER_CPU(bool, swallow_nmi);
317static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
318
319static void default_do_nmi(struct pt_regs *regs)
320{
321 unsigned char reason = 0;
322 int handled;
323 bool b2b = false;
324
325 /*
326 * CPU-specific NMI must be processed before non-CPU-specific
327 * NMI, otherwise we may lose it, because the CPU-specific
328 * NMI can not be detected/processed on other CPUs.
329 */
330
331 /*
332 * Back-to-back NMIs are interesting because they can either
333 * be two NMI or more than two NMIs (any thing over two is dropped
334 * due to NMI being edge-triggered). If this is the second half
335 * of the back-to-back NMI, assume we dropped things and process
336 * more handlers. Otherwise reset the 'swallow' NMI behaviour
337 */
338 if (regs->ip == __this_cpu_read(last_nmi_rip))
339 b2b = true;
340 else
341 __this_cpu_write(swallow_nmi, false);
342
343 __this_cpu_write(last_nmi_rip, regs->ip);
344
345 handled = nmi_handle(NMI_LOCAL, regs);
346 __this_cpu_add(nmi_stats.normal, handled);
347 if (handled) {
348 /*
349 * There are cases when a NMI handler handles multiple
350 * events in the current NMI. One of these events may
351 * be queued for in the next NMI. Because the event is
352 * already handled, the next NMI will result in an unknown
353 * NMI. Instead lets flag this for a potential NMI to
354 * swallow.
355 */
356 if (handled > 1)
357 __this_cpu_write(swallow_nmi, true);
358 return;
359 }
360
361 /*
362 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
363 *
364 * Another CPU may be processing panic routines while holding
365 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
366 * and if so, call its callback directly. If there is no CPU preparing
367 * crash dump, we simply loop here.
368 */
369 while (!raw_spin_trylock(&nmi_reason_lock)) {
370 run_crash_ipi_callback(regs);
371 cpu_relax();
372 }
373
374 reason = x86_platform.get_nmi_reason();
375
376 if (reason & NMI_REASON_MASK) {
377 if (reason & NMI_REASON_SERR)
378 pci_serr_error(reason, regs);
379 else if (reason & NMI_REASON_IOCHK)
380 io_check_error(reason, regs);
381#ifdef CONFIG_X86_32
382 /*
383 * Reassert NMI in case it became active
384 * meanwhile as it's edge-triggered:
385 */
386 reassert_nmi();
387#endif
388 __this_cpu_add(nmi_stats.external, 1);
389 raw_spin_unlock(&nmi_reason_lock);
390 return;
391 }
392 raw_spin_unlock(&nmi_reason_lock);
393
394 /*
395 * Only one NMI can be latched at a time. To handle
396 * this we may process multiple nmi handlers at once to
397 * cover the case where an NMI is dropped. The downside
398 * to this approach is we may process an NMI prematurely,
399 * while its real NMI is sitting latched. This will cause
400 * an unknown NMI on the next run of the NMI processing.
401 *
402 * We tried to flag that condition above, by setting the
403 * swallow_nmi flag when we process more than one event.
404 * This condition is also only present on the second half
405 * of a back-to-back NMI, so we flag that condition too.
406 *
407 * If both are true, we assume we already processed this
408 * NMI previously and we swallow it. Otherwise we reset
409 * the logic.
410 *
411 * There are scenarios where we may accidentally swallow
412 * a 'real' unknown NMI. For example, while processing
413 * a perf NMI another perf NMI comes in along with a
414 * 'real' unknown NMI. These two NMIs get combined into
415 * one (as descibed above). When the next NMI gets
416 * processed, it will be flagged by perf as handled, but
417 * noone will know that there was a 'real' unknown NMI sent
418 * also. As a result it gets swallowed. Or if the first
419 * perf NMI returns two events handled then the second
420 * NMI will get eaten by the logic below, again losing a
421 * 'real' unknown NMI. But this is the best we can do
422 * for now.
423 */
424 if (b2b && __this_cpu_read(swallow_nmi))
425 __this_cpu_add(nmi_stats.swallow, 1);
426 else
427 unknown_nmi_error(reason, regs);
428}
429NOKPROBE_SYMBOL(default_do_nmi);
430
431/*
432 * NMIs can page fault or hit breakpoints which will cause it to lose
433 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
434 *
435 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
436 * NMI processing. On x86_64, the asm glue protects us from nested NMIs
437 * if the outer NMI came from kernel mode, but we can still nest if the
438 * outer NMI came from user mode.
439 *
440 * To handle these nested NMIs, we have three states:
441 *
442 * 1) not running
443 * 2) executing
444 * 3) latched
445 *
446 * When no NMI is in progress, it is in the "not running" state.
447 * When an NMI comes in, it goes into the "executing" state.
448 * Normally, if another NMI is triggered, it does not interrupt
449 * the running NMI and the HW will simply latch it so that when
450 * the first NMI finishes, it will restart the second NMI.
451 * (Note, the latch is binary, thus multiple NMIs triggering,
452 * when one is running, are ignored. Only one NMI is restarted.)
453 *
454 * If an NMI executes an iret, another NMI can preempt it. We do not
455 * want to allow this new NMI to run, but we want to execute it when the
456 * first one finishes. We set the state to "latched", and the exit of
457 * the first NMI will perform a dec_return, if the result is zero
458 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
459 * dec_return would have set the state to NMI_EXECUTING (what we want it
460 * to be when we are running). In this case, we simply jump back to
461 * rerun the NMI handler again, and restart the 'latched' NMI.
462 *
463 * No trap (breakpoint or page fault) should be hit before nmi_restart,
464 * thus there is no race between the first check of state for NOT_RUNNING
465 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
466 * at this point.
467 *
468 * In case the NMI takes a page fault, we need to save off the CR2
469 * because the NMI could have preempted another page fault and corrupt
470 * the CR2 that is about to be read. As nested NMIs must be restarted
471 * and they can not take breakpoints or page faults, the update of the
472 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
473 * Otherwise, there would be a race of another nested NMI coming in
474 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
475 */
476enum nmi_states {
477 NMI_NOT_RUNNING = 0,
478 NMI_EXECUTING,
479 NMI_LATCHED,
480};
481static DEFINE_PER_CPU(enum nmi_states, nmi_state);
482static DEFINE_PER_CPU(unsigned long, nmi_cr2);
483
484#ifdef CONFIG_X86_64
485/*
486 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without
487 * some care, the inner breakpoint will clobber the outer breakpoint's
488 * stack.
489 *
490 * If a breakpoint is being processed, and the debug stack is being
491 * used, if an NMI comes in and also hits a breakpoint, the stack
492 * pointer will be set to the same fixed address as the breakpoint that
493 * was interrupted, causing that stack to be corrupted. To handle this
494 * case, check if the stack that was interrupted is the debug stack, and
495 * if so, change the IDT so that new breakpoints will use the current
496 * stack and not switch to the fixed address. On return of the NMI,
497 * switch back to the original IDT.
498 */
499static DEFINE_PER_CPU(int, update_debug_stack);
500#endif
501
502dotraplinkage notrace void
503do_nmi(struct pt_regs *regs, long error_code)
504{
505 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
506 this_cpu_write(nmi_state, NMI_LATCHED);
507 return;
508 }
509 this_cpu_write(nmi_state, NMI_EXECUTING);
510 this_cpu_write(nmi_cr2, read_cr2());
511nmi_restart:
512
513#ifdef CONFIG_X86_64
514 /*
515 * If we interrupted a breakpoint, it is possible that
516 * the nmi handler will have breakpoints too. We need to
517 * change the IDT such that breakpoints that happen here
518 * continue to use the NMI stack.
519 */
520 if (unlikely(is_debug_stack(regs->sp))) {
521 debug_stack_set_zero();
522 this_cpu_write(update_debug_stack, 1);
523 }
524#endif
525
526 nmi_enter();
527
528 inc_irq_stat(__nmi_count);
529
530 if (!ignore_nmis)
531 default_do_nmi(regs);
532
533 nmi_exit();
534
535#ifdef CONFIG_X86_64
536 if (unlikely(this_cpu_read(update_debug_stack))) {
537 debug_stack_reset();
538 this_cpu_write(update_debug_stack, 0);
539 }
540#endif
541
542 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
543 write_cr2(this_cpu_read(nmi_cr2));
544 if (this_cpu_dec_return(nmi_state))
545 goto nmi_restart;
546}
547NOKPROBE_SYMBOL(do_nmi);
548
549void stop_nmi(void)
550{
551 ignore_nmis++;
552}
553
554void restart_nmi(void)
555{
556 ignore_nmis--;
557}
558
559/* reset the back-to-back NMI logic */
560void local_touch_nmi(void)
561{
562 __this_cpu_write(last_nmi_rip, 0);
563}
564EXPORT_SYMBOL_GPL(local_touch_nmi);