Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/scatterlist.h>
  22#include <linux/swap.h>
  23#include <linux/radix-tree.h>
  24#include <linux/writeback.h>
  25#include <linux/buffer_head.h>
  26#include <linux/workqueue.h>
  27#include <linux/kthread.h>
  28#include <linux/freezer.h>
  29#include <linux/crc32c.h>
  30#include <linux/slab.h>
  31#include <linux/migrate.h>
  32#include <linux/ratelimit.h>
 
 
 
 
  33#include <asm/unaligned.h>
  34#include "compat.h"
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "print-tree.h"
  41#include "async-thread.h"
  42#include "locking.h"
  43#include "tree-log.h"
  44#include "free-space-cache.h"
 
  45#include "inode-map.h"
  46#include "check-integrity.h"
  47#include "rcu-string.h"
 
 
 
 
 
 
 
  48
  49static struct extent_io_ops btree_extent_io_ops;
 
 
 
 
 
 
 
 
 
 
 
  50static void end_workqueue_fn(struct btrfs_work *work);
  51static void free_fs_root(struct btrfs_root *root);
  52static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  53				    int read_only);
  54static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
  55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  57				      struct btrfs_root *root);
  58static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  60static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  61					struct extent_io_tree *dirty_pages,
  62					int mark);
  63static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  64				       struct extent_io_tree *pinned_extents);
 
 
  65
  66/*
  67 * end_io_wq structs are used to do processing in task context when an IO is
  68 * complete.  This is used during reads to verify checksums, and it is used
  69 * by writes to insert metadata for new file extents after IO is complete.
  70 */
  71struct end_io_wq {
  72	struct bio *bio;
  73	bio_end_io_t *end_io;
  74	void *private;
  75	struct btrfs_fs_info *info;
  76	int error;
  77	int metadata;
  78	struct list_head list;
  79	struct btrfs_work work;
  80};
  81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  82/*
  83 * async submit bios are used to offload expensive checksumming
  84 * onto the worker threads.  They checksum file and metadata bios
  85 * just before they are sent down the IO stack.
  86 */
  87struct async_submit_bio {
  88	struct inode *inode;
 
  89	struct bio *bio;
  90	struct list_head list;
  91	extent_submit_bio_hook_t *submit_bio_start;
  92	extent_submit_bio_hook_t *submit_bio_done;
  93	int rw;
  94	int mirror_num;
  95	unsigned long bio_flags;
  96	/*
  97	 * bio_offset is optional, can be used if the pages in the bio
  98	 * can't tell us where in the file the bio should go
  99	 */
 100	u64 bio_offset;
 101	struct btrfs_work work;
 102	int error;
 103};
 104
 105/*
 106 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 107 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 108 * the level the eb occupies in the tree.
 109 *
 110 * Different roots are used for different purposes and may nest inside each
 111 * other and they require separate keysets.  As lockdep keys should be
 112 * static, assign keysets according to the purpose of the root as indicated
 113 * by btrfs_root->objectid.  This ensures that all special purpose roots
 114 * have separate keysets.
 115 *
 116 * Lock-nesting across peer nodes is always done with the immediate parent
 117 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 118 * subclass to avoid triggering lockdep warning in such cases.
 119 *
 120 * The key is set by the readpage_end_io_hook after the buffer has passed
 121 * csum validation but before the pages are unlocked.  It is also set by
 122 * btrfs_init_new_buffer on freshly allocated blocks.
 123 *
 124 * We also add a check to make sure the highest level of the tree is the
 125 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 126 * needs update as well.
 127 */
 128#ifdef CONFIG_DEBUG_LOCK_ALLOC
 129# if BTRFS_MAX_LEVEL != 8
 130#  error
 131# endif
 132
 133static struct btrfs_lockdep_keyset {
 134	u64			id;		/* root objectid */
 135	const char		*name_stem;	/* lock name stem */
 136	char			names[BTRFS_MAX_LEVEL + 1][20];
 137	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
 138} btrfs_lockdep_keysets[] = {
 139	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
 140	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
 141	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
 142	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
 143	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
 144	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
 145	{ .id = BTRFS_ORPHAN_OBJECTID,		.name_stem = "orphan"	},
 146	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
 147	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
 148	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
 
 
 149	{ .id = 0,				.name_stem = "tree"	},
 150};
 151
 152void __init btrfs_init_lockdep(void)
 153{
 154	int i, j;
 155
 156	/* initialize lockdep class names */
 157	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 158		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 159
 160		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 161			snprintf(ks->names[j], sizeof(ks->names[j]),
 162				 "btrfs-%s-%02d", ks->name_stem, j);
 163	}
 164}
 165
 166void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 167				    int level)
 168{
 169	struct btrfs_lockdep_keyset *ks;
 170
 171	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 172
 173	/* find the matching keyset, id 0 is the default entry */
 174	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 175		if (ks->id == objectid)
 176			break;
 177
 178	lockdep_set_class_and_name(&eb->lock,
 179				   &ks->keys[level], ks->names[level]);
 180}
 181
 182#endif
 183
 184/*
 185 * extents on the btree inode are pretty simple, there's one extent
 186 * that covers the entire device
 187 */
 188static struct extent_map *btree_get_extent(struct inode *inode,
 189		struct page *page, size_t pg_offset, u64 start, u64 len,
 190		int create)
 191{
 192	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 
 193	struct extent_map *em;
 194	int ret;
 195
 196	read_lock(&em_tree->lock);
 197	em = lookup_extent_mapping(em_tree, start, len);
 198	if (em) {
 199		em->bdev =
 200			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 201		read_unlock(&em_tree->lock);
 202		goto out;
 203	}
 204	read_unlock(&em_tree->lock);
 205
 206	em = alloc_extent_map();
 207	if (!em) {
 208		em = ERR_PTR(-ENOMEM);
 209		goto out;
 210	}
 211	em->start = 0;
 212	em->len = (u64)-1;
 213	em->block_len = (u64)-1;
 214	em->block_start = 0;
 215	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 216
 217	write_lock(&em_tree->lock);
 218	ret = add_extent_mapping(em_tree, em);
 219	if (ret == -EEXIST) {
 220		u64 failed_start = em->start;
 221		u64 failed_len = em->len;
 222
 223		free_extent_map(em);
 224		em = lookup_extent_mapping(em_tree, start, len);
 225		if (em) {
 226			ret = 0;
 227		} else {
 228			em = lookup_extent_mapping(em_tree, failed_start,
 229						   failed_len);
 230			ret = -EIO;
 231		}
 232	} else if (ret) {
 233		free_extent_map(em);
 234		em = NULL;
 235	}
 236	write_unlock(&em_tree->lock);
 237
 238	if (ret)
 239		em = ERR_PTR(ret);
 240out:
 241	return em;
 242}
 243
 244u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
 245{
 246	return crc32c(seed, data, len);
 247}
 248
 249void btrfs_csum_final(u32 crc, char *result)
 250{
 251	put_unaligned_le32(~crc, result);
 252}
 253
 254/*
 255 * compute the csum for a btree block, and either verify it or write it
 256 * into the csum field of the block.
 257 */
 258static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
 
 259			   int verify)
 260{
 261	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
 262	char *result = NULL;
 263	unsigned long len;
 264	unsigned long cur_len;
 265	unsigned long offset = BTRFS_CSUM_SIZE;
 266	char *kaddr;
 267	unsigned long map_start;
 268	unsigned long map_len;
 269	int err;
 270	u32 crc = ~(u32)0;
 271	unsigned long inline_result;
 272
 273	len = buf->len - offset;
 274	while (len > 0) {
 275		err = map_private_extent_buffer(buf, offset, 32,
 276					&kaddr, &map_start, &map_len);
 277		if (err)
 278			return 1;
 279		cur_len = min(len, map_len - (offset - map_start));
 280		crc = btrfs_csum_data(root, kaddr + offset - map_start,
 281				      crc, cur_len);
 282		len -= cur_len;
 283		offset += cur_len;
 284	}
 285	if (csum_size > sizeof(inline_result)) {
 286		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
 287		if (!result)
 288			return 1;
 289	} else {
 290		result = (char *)&inline_result;
 291	}
 292
 293	btrfs_csum_final(crc, result);
 294
 295	if (verify) {
 296		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 297			u32 val;
 298			u32 found = 0;
 299			memcpy(&found, result, csum_size);
 300
 301			read_extent_buffer(buf, &val, 0, csum_size);
 302			printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
 303				       "failed on %llu wanted %X found %X "
 304				       "level %d\n",
 305				       root->fs_info->sb->s_id,
 306				       (unsigned long long)buf->start, val, found,
 307				       btrfs_header_level(buf));
 308			if (result != (char *)&inline_result)
 309				kfree(result);
 310			return 1;
 311		}
 312	} else {
 313		write_extent_buffer(buf, result, 0, csum_size);
 314	}
 315	if (result != (char *)&inline_result)
 316		kfree(result);
 317	return 0;
 318}
 319
 320/*
 321 * we can't consider a given block up to date unless the transid of the
 322 * block matches the transid in the parent node's pointer.  This is how we
 323 * detect blocks that either didn't get written at all or got written
 324 * in the wrong place.
 325 */
 326static int verify_parent_transid(struct extent_io_tree *io_tree,
 327				 struct extent_buffer *eb, u64 parent_transid,
 328				 int atomic)
 329{
 330	struct extent_state *cached_state = NULL;
 331	int ret;
 
 332
 333	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 334		return 0;
 335
 336	if (atomic)
 337		return -EAGAIN;
 338
 
 
 
 
 
 339	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 340			 0, &cached_state);
 341	if (extent_buffer_uptodate(eb) &&
 342	    btrfs_header_generation(eb) == parent_transid) {
 343		ret = 0;
 344		goto out;
 345	}
 346	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
 347		       "found %llu\n",
 348		       (unsigned long long)eb->start,
 349		       (unsigned long long)parent_transid,
 350		       (unsigned long long)btrfs_header_generation(eb));
 351	ret = 1;
 352	clear_extent_buffer_uptodate(eb);
 
 
 
 
 
 
 
 
 
 
 353out:
 354	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 355			     &cached_state, GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 356	return ret;
 357}
 358
 359/*
 360 * helper to read a given tree block, doing retries as required when
 361 * the checksums don't match and we have alternate mirrors to try.
 
 
 
 
 362 */
 363static int btree_read_extent_buffer_pages(struct btrfs_root *root,
 364					  struct extent_buffer *eb,
 365					  u64 start, u64 parent_transid)
 
 366{
 367	struct extent_io_tree *io_tree;
 368	int failed = 0;
 369	int ret;
 370	int num_copies = 0;
 371	int mirror_num = 0;
 372	int failed_mirror = 0;
 373
 374	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 375	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
 376	while (1) {
 377		ret = read_extent_buffer_pages(io_tree, eb, start,
 378					       WAIT_COMPLETE,
 379					       btree_get_extent, mirror_num);
 380		if (!ret && !verify_parent_transid(io_tree, eb,
 381						   parent_transid, 0))
 382			break;
 
 
 
 
 
 
 383
 384		/*
 385		 * This buffer's crc is fine, but its contents are corrupted, so
 386		 * there is no reason to read the other copies, they won't be
 387		 * any less wrong.
 388		 */
 389		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
 
 390			break;
 391
 392		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
 393					      eb->start, eb->len);
 394		if (num_copies == 1)
 395			break;
 396
 397		if (!failed_mirror) {
 398			failed = 1;
 399			failed_mirror = eb->read_mirror;
 400		}
 401
 402		mirror_num++;
 403		if (mirror_num == failed_mirror)
 404			mirror_num++;
 405
 406		if (mirror_num > num_copies)
 407			break;
 408	}
 409
 410	if (failed && !ret)
 411		repair_eb_io_failure(root, eb, failed_mirror);
 412
 413	return ret;
 414}
 415
 416/*
 417 * checksum a dirty tree block before IO.  This has extra checks to make sure
 418 * we only fill in the checksum field in the first page of a multi-page block
 419 */
 420
 421static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
 422{
 423	struct extent_io_tree *tree;
 424	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
 425	u64 found_start;
 426	struct extent_buffer *eb;
 427
 428	tree = &BTRFS_I(page->mapping->host)->io_tree;
 429
 430	eb = (struct extent_buffer *)page->private;
 431	if (page != eb->pages[0])
 432		return 0;
 
 433	found_start = btrfs_header_bytenr(eb);
 434	if (found_start != start) {
 435		WARN_ON(1);
 436		return 0;
 437	}
 438	if (eb->pages[0] != page) {
 439		WARN_ON(1);
 440		return 0;
 441	}
 442	if (!PageUptodate(page)) {
 443		WARN_ON(1);
 444		return 0;
 445	}
 446	csum_tree_block(root, eb, 0);
 447	return 0;
 448}
 449
 450static int check_tree_block_fsid(struct btrfs_root *root,
 451				 struct extent_buffer *eb)
 452{
 453	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
 454	u8 fsid[BTRFS_UUID_SIZE];
 455	int ret = 1;
 456
 457	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
 458			   BTRFS_FSID_SIZE);
 459	while (fs_devices) {
 460		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 461			ret = 0;
 462			break;
 463		}
 464		fs_devices = fs_devices->seed;
 465	}
 466	return ret;
 467}
 468
 469#define CORRUPT(reason, eb, root, slot)				\
 470	printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu,"	\
 471	       "root=%llu, slot=%d\n", reason,			\
 472	       (unsigned long long)btrfs_header_bytenr(eb),	\
 473	       (unsigned long long)root->objectid, slot)
 474
 475static noinline int check_leaf(struct btrfs_root *root,
 476			       struct extent_buffer *leaf)
 477{
 478	struct btrfs_key key;
 479	struct btrfs_key leaf_key;
 480	u32 nritems = btrfs_header_nritems(leaf);
 481	int slot;
 482
 483	if (nritems == 0)
 484		return 0;
 485
 486	/* Check the 0 item */
 487	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
 488	    BTRFS_LEAF_DATA_SIZE(root)) {
 489		CORRUPT("invalid item offset size pair", leaf, root, 0);
 490		return -EIO;
 491	}
 492
 493	/*
 494	 * Check to make sure each items keys are in the correct order and their
 495	 * offsets make sense.  We only have to loop through nritems-1 because
 496	 * we check the current slot against the next slot, which verifies the
 497	 * next slot's offset+size makes sense and that the current's slot
 498	 * offset is correct.
 499	 */
 500	for (slot = 0; slot < nritems - 1; slot++) {
 501		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
 502		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
 503
 504		/* Make sure the keys are in the right order */
 505		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
 506			CORRUPT("bad key order", leaf, root, slot);
 507			return -EIO;
 508		}
 509
 510		/*
 511		 * Make sure the offset and ends are right, remember that the
 512		 * item data starts at the end of the leaf and grows towards the
 513		 * front.
 514		 */
 515		if (btrfs_item_offset_nr(leaf, slot) !=
 516			btrfs_item_end_nr(leaf, slot + 1)) {
 517			CORRUPT("slot offset bad", leaf, root, slot);
 518			return -EIO;
 519		}
 520
 521		/*
 522		 * Check to make sure that we don't point outside of the leaf,
 523		 * just incase all the items are consistent to eachother, but
 524		 * all point outside of the leaf.
 525		 */
 526		if (btrfs_item_end_nr(leaf, slot) >
 527		    BTRFS_LEAF_DATA_SIZE(root)) {
 528			CORRUPT("slot end outside of leaf", leaf, root, slot);
 529			return -EIO;
 530		}
 531	}
 532
 533	return 0;
 534}
 535
 536struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
 537				       struct page *page, int max_walk)
 538{
 539	struct extent_buffer *eb;
 540	u64 start = page_offset(page);
 541	u64 target = start;
 542	u64 min_start;
 543
 544	if (start < max_walk)
 545		min_start = 0;
 546	else
 547		min_start = start - max_walk;
 548
 549	while (start >= min_start) {
 550		eb = find_extent_buffer(tree, start, 0);
 551		if (eb) {
 552			/*
 553			 * we found an extent buffer and it contains our page
 554			 * horray!
 555			 */
 556			if (eb->start <= target &&
 557			    eb->start + eb->len > target)
 558				return eb;
 559
 560			/* we found an extent buffer that wasn't for us */
 561			free_extent_buffer(eb);
 562			return NULL;
 563		}
 564		if (start == 0)
 565			break;
 566		start -= PAGE_CACHE_SIZE;
 567	}
 568	return NULL;
 569}
 570
 571static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
 572			       struct extent_state *state, int mirror)
 573{
 574	struct extent_io_tree *tree;
 575	u64 found_start;
 576	int found_level;
 577	struct extent_buffer *eb;
 578	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 
 579	int ret = 0;
 580	int reads_done;
 581
 582	if (!page->private)
 583		goto out;
 584
 585	tree = &BTRFS_I(page->mapping->host)->io_tree;
 586	eb = (struct extent_buffer *)page->private;
 587
 588	/* the pending IO might have been the only thing that kept this buffer
 589	 * in memory.  Make sure we have a ref for all this other checks
 590	 */
 591	extent_buffer_get(eb);
 592
 593	reads_done = atomic_dec_and_test(&eb->io_pages);
 594	if (!reads_done)
 595		goto err;
 596
 597	eb->read_mirror = mirror;
 598	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
 599		ret = -EIO;
 600		goto err;
 601	}
 602
 603	found_start = btrfs_header_bytenr(eb);
 604	if (found_start != eb->start) {
 605		printk_ratelimited(KERN_INFO "btrfs bad tree block start "
 606			       "%llu %llu\n",
 607			       (unsigned long long)found_start,
 608			       (unsigned long long)eb->start);
 609		ret = -EIO;
 610		goto err;
 611	}
 612	if (check_tree_block_fsid(root, eb)) {
 613		printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
 614			       (unsigned long long)eb->start);
 615		ret = -EIO;
 616		goto err;
 617	}
 618	found_level = btrfs_header_level(eb);
 
 
 
 
 
 
 619
 620	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 621				       eb, found_level);
 622
 623	ret = csum_tree_block(root, eb, 1);
 624	if (ret) {
 625		ret = -EIO;
 626		goto err;
 627	}
 628
 629	/*
 630	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 631	 * that we don't try and read the other copies of this block, just
 632	 * return -EIO.
 633	 */
 634	if (found_level == 0 && check_leaf(root, eb)) {
 635		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 636		ret = -EIO;
 637	}
 638
 
 
 
 639	if (!ret)
 640		set_extent_buffer_uptodate(eb);
 641err:
 642	if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
 643		clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
 644		btree_readahead_hook(root, eb, eb->start, ret);
 645	}
 646
 647	if (ret)
 
 
 
 
 
 
 648		clear_extent_buffer_uptodate(eb);
 
 649	free_extent_buffer(eb);
 650out:
 651	return ret;
 652}
 653
 654static int btree_io_failed_hook(struct page *page, int failed_mirror)
 655{
 656	struct extent_buffer *eb;
 657	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 658
 659	eb = (struct extent_buffer *)page->private;
 660	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
 661	eb->read_mirror = failed_mirror;
 
 662	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 663		btree_readahead_hook(root, eb, eb->start, -EIO);
 664	return -EIO;	/* we fixed nothing */
 665}
 666
 667static void end_workqueue_bio(struct bio *bio, int err)
 668{
 669	struct end_io_wq *end_io_wq = bio->bi_private;
 670	struct btrfs_fs_info *fs_info;
 
 
 671
 672	fs_info = end_io_wq->info;
 673	end_io_wq->error = err;
 674	end_io_wq->work.func = end_workqueue_fn;
 675	end_io_wq->work.flags = 0;
 676
 677	if (bio->bi_rw & REQ_WRITE) {
 678		if (end_io_wq->metadata == 1)
 679			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
 680					   &end_io_wq->work);
 681		else if (end_io_wq->metadata == 2)
 682			btrfs_queue_worker(&fs_info->endio_freespace_worker,
 683					   &end_io_wq->work);
 684		else
 685			btrfs_queue_worker(&fs_info->endio_write_workers,
 686					   &end_io_wq->work);
 
 
 687	} else {
 688		if (end_io_wq->metadata)
 689			btrfs_queue_worker(&fs_info->endio_meta_workers,
 690					   &end_io_wq->work);
 691		else
 692			btrfs_queue_worker(&fs_info->endio_workers,
 693					   &end_io_wq->work);
 
 
 
 
 
 
 
 
 694	}
 
 
 
 695}
 696
 697/*
 698 * For the metadata arg you want
 699 *
 700 * 0 - if data
 701 * 1 - if normal metadta
 702 * 2 - if writing to the free space cache area
 703 */
 704int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 705			int metadata)
 706{
 707	struct end_io_wq *end_io_wq;
 708	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
 
 709	if (!end_io_wq)
 710		return -ENOMEM;
 711
 712	end_io_wq->private = bio->bi_private;
 713	end_io_wq->end_io = bio->bi_end_io;
 714	end_io_wq->info = info;
 715	end_io_wq->error = 0;
 716	end_io_wq->bio = bio;
 717	end_io_wq->metadata = metadata;
 718
 719	bio->bi_private = end_io_wq;
 720	bio->bi_end_io = end_workqueue_bio;
 721	return 0;
 722}
 723
 724unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
 725{
 726	unsigned long limit = min_t(unsigned long,
 727				    info->workers.max_workers,
 728				    info->fs_devices->open_devices);
 729	return 256 * limit;
 730}
 731
 732static void run_one_async_start(struct btrfs_work *work)
 733{
 734	struct async_submit_bio *async;
 735	int ret;
 736
 737	async = container_of(work, struct  async_submit_bio, work);
 738	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
 739				      async->mirror_num, async->bio_flags,
 740				      async->bio_offset);
 741	if (ret)
 742		async->error = ret;
 743}
 744
 745static void run_one_async_done(struct btrfs_work *work)
 746{
 747	struct btrfs_fs_info *fs_info;
 748	struct async_submit_bio *async;
 749	int limit;
 750
 751	async = container_of(work, struct  async_submit_bio, work);
 752	fs_info = BTRFS_I(async->inode)->root->fs_info;
 753
 754	limit = btrfs_async_submit_limit(fs_info);
 755	limit = limit * 2 / 3;
 756
 757	atomic_dec(&fs_info->nr_async_submits);
 758
 759	if (atomic_read(&fs_info->nr_async_submits) < limit &&
 760	    waitqueue_active(&fs_info->async_submit_wait))
 761		wake_up(&fs_info->async_submit_wait);
 762
 763	/* If an error occured we just want to clean up the bio and move on */
 764	if (async->error) {
 765		bio_endio(async->bio, async->error);
 766		return;
 767	}
 768
 769	async->submit_bio_done(async->inode, async->rw, async->bio,
 770			       async->mirror_num, async->bio_flags,
 771			       async->bio_offset);
 772}
 773
 774static void run_one_async_free(struct btrfs_work *work)
 775{
 776	struct async_submit_bio *async;
 777
 778	async = container_of(work, struct  async_submit_bio, work);
 779	kfree(async);
 780}
 781
 782int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
 783			int rw, struct bio *bio, int mirror_num,
 784			unsigned long bio_flags,
 785			u64 bio_offset,
 786			extent_submit_bio_hook_t *submit_bio_start,
 787			extent_submit_bio_hook_t *submit_bio_done)
 788{
 789	struct async_submit_bio *async;
 790
 791	async = kmalloc(sizeof(*async), GFP_NOFS);
 792	if (!async)
 793		return -ENOMEM;
 794
 795	async->inode = inode;
 796	async->rw = rw;
 797	async->bio = bio;
 798	async->mirror_num = mirror_num;
 799	async->submit_bio_start = submit_bio_start;
 800	async->submit_bio_done = submit_bio_done;
 801
 802	async->work.func = run_one_async_start;
 803	async->work.ordered_func = run_one_async_done;
 804	async->work.ordered_free = run_one_async_free;
 805
 806	async->work.flags = 0;
 807	async->bio_flags = bio_flags;
 808	async->bio_offset = bio_offset;
 809
 810	async->error = 0;
 811
 812	atomic_inc(&fs_info->nr_async_submits);
 813
 814	if (rw & REQ_SYNC)
 815		btrfs_set_work_high_prio(&async->work);
 816
 817	btrfs_queue_worker(&fs_info->workers, &async->work);
 818
 819	while (atomic_read(&fs_info->async_submit_draining) &&
 820	      atomic_read(&fs_info->nr_async_submits)) {
 821		wait_event(fs_info->async_submit_wait,
 822			   (atomic_read(&fs_info->nr_async_submits) == 0));
 823	}
 824
 
 825	return 0;
 826}
 827
 828static int btree_csum_one_bio(struct bio *bio)
 829{
 830	struct bio_vec *bvec = bio->bi_io_vec;
 831	int bio_index = 0;
 832	struct btrfs_root *root;
 833	int ret = 0;
 834
 835	WARN_ON(bio->bi_vcnt <= 0);
 836	while (bio_index < bio->bi_vcnt) {
 837		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 838		ret = csum_dirty_buffer(root, bvec->bv_page);
 839		if (ret)
 840			break;
 841		bio_index++;
 842		bvec++;
 843	}
 844	return ret;
 
 845}
 846
 847static int __btree_submit_bio_start(struct inode *inode, int rw,
 848				    struct bio *bio, int mirror_num,
 849				    unsigned long bio_flags,
 850				    u64 bio_offset)
 851{
 852	/*
 853	 * when we're called for a write, we're already in the async
 854	 * submission context.  Just jump into btrfs_map_bio
 855	 */
 856	return btree_csum_one_bio(bio);
 857}
 858
 859static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
 860				 int mirror_num, unsigned long bio_flags,
 861				 u64 bio_offset)
 862{
 
 
 
 863	/*
 864	 * when we're called for a write, we're already in the async
 865	 * submission context.  Just jump into btrfs_map_bio
 866	 */
 867	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
 
 
 
 
 
 868}
 869
 870static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
 871				 int mirror_num, unsigned long bio_flags,
 872				 u64 bio_offset)
 873{
 874	int ret;
 
 
 
 
 
 
 
 875
 876	if (!(rw & REQ_WRITE)) {
 
 
 
 
 
 
 
 877
 
 878		/*
 879		 * called for a read, do the setup so that checksum validation
 880		 * can happen in the async kernel threads
 881		 */
 882		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
 883					  bio, 1);
 884		if (ret)
 885			return ret;
 886		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 887				     mirror_num, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 888	}
 889
 890	/*
 891	 * kthread helpers are used to submit writes so that checksumming
 892	 * can happen in parallel across all CPUs
 893	 */
 894	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
 895				   inode, rw, bio, mirror_num, 0,
 896				   bio_offset,
 897				   __btree_submit_bio_start,
 898				   __btree_submit_bio_done);
 899}
 900
 901#ifdef CONFIG_MIGRATION
 902static int btree_migratepage(struct address_space *mapping,
 903			struct page *newpage, struct page *page,
 904			enum migrate_mode mode)
 905{
 906	/*
 907	 * we can't safely write a btree page from here,
 908	 * we haven't done the locking hook
 909	 */
 910	if (PageDirty(page))
 911		return -EAGAIN;
 912	/*
 913	 * Buffers may be managed in a filesystem specific way.
 914	 * We must have no buffers or drop them.
 915	 */
 916	if (page_has_private(page) &&
 917	    !try_to_release_page(page, GFP_KERNEL))
 918		return -EAGAIN;
 919	return migrate_page(mapping, newpage, page, mode);
 920}
 921#endif
 922
 923
 924static int btree_writepages(struct address_space *mapping,
 925			    struct writeback_control *wbc)
 926{
 927	struct extent_io_tree *tree;
 928	tree = &BTRFS_I(mapping->host)->io_tree;
 
 929	if (wbc->sync_mode == WB_SYNC_NONE) {
 930		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
 931		u64 num_dirty;
 932		unsigned long thresh = 32 * 1024 * 1024;
 933
 934		if (wbc->for_kupdate)
 935			return 0;
 936
 
 937		/* this is a bit racy, but that's ok */
 938		num_dirty = root->fs_info->dirty_metadata_bytes;
 939		if (num_dirty < thresh)
 
 940			return 0;
 941	}
 942	return btree_write_cache_pages(mapping, wbc);
 943}
 944
 945static int btree_readpage(struct file *file, struct page *page)
 946{
 947	struct extent_io_tree *tree;
 948	tree = &BTRFS_I(page->mapping->host)->io_tree;
 949	return extent_read_full_page(tree, page, btree_get_extent, 0);
 950}
 951
 952static int btree_releasepage(struct page *page, gfp_t gfp_flags)
 953{
 954	if (PageWriteback(page) || PageDirty(page))
 955		return 0;
 956	/*
 957	 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
 958	 * slab allocation from alloc_extent_state down the callchain where
 959	 * it'd hit a BUG_ON as those flags are not allowed.
 960	 */
 961	gfp_flags &= ~GFP_SLAB_BUG_MASK;
 962
 963	return try_release_extent_buffer(page, gfp_flags);
 964}
 965
 966static void btree_invalidatepage(struct page *page, unsigned long offset)
 
 967{
 968	struct extent_io_tree *tree;
 969	tree = &BTRFS_I(page->mapping->host)->io_tree;
 970	extent_invalidatepage(tree, page, offset);
 971	btree_releasepage(page, GFP_NOFS);
 972	if (PagePrivate(page)) {
 973		printk(KERN_WARNING "btrfs warning page private not zero "
 974		       "on page %llu\n", (unsigned long long)page_offset(page));
 
 975		ClearPagePrivate(page);
 976		set_page_private(page, 0);
 977		page_cache_release(page);
 978	}
 979}
 980
 981static int btree_set_page_dirty(struct page *page)
 982{
 
 983	struct extent_buffer *eb;
 984
 985	BUG_ON(!PagePrivate(page));
 986	eb = (struct extent_buffer *)page->private;
 987	BUG_ON(!eb);
 988	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 989	BUG_ON(!atomic_read(&eb->refs));
 990	btrfs_assert_tree_locked(eb);
 
 991	return __set_page_dirty_nobuffers(page);
 992}
 993
 994static const struct address_space_operations btree_aops = {
 995	.readpage	= btree_readpage,
 996	.writepages	= btree_writepages,
 997	.releasepage	= btree_releasepage,
 998	.invalidatepage = btree_invalidatepage,
 999#ifdef CONFIG_MIGRATION
1000	.migratepage	= btree_migratepage,
1001#endif
1002	.set_page_dirty = btree_set_page_dirty,
1003};
1004
1005int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1006			 u64 parent_transid)
1007{
1008	struct extent_buffer *buf = NULL;
1009	struct inode *btree_inode = root->fs_info->btree_inode;
1010	int ret = 0;
1011
1012	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1013	if (!buf)
1014		return 0;
1015	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1016				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1017	free_extent_buffer(buf);
1018	return ret;
1019}
1020
1021int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1022			 int mirror_num, struct extent_buffer **eb)
1023{
1024	struct extent_buffer *buf = NULL;
1025	struct inode *btree_inode = root->fs_info->btree_inode;
1026	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1027	int ret;
1028
1029	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1030	if (!buf)
1031		return 0;
1032
1033	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1034
1035	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1036				       btree_get_extent, mirror_num);
1037	if (ret) {
1038		free_extent_buffer(buf);
1039		return ret;
1040	}
1041
1042	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1043		free_extent_buffer(buf);
1044		return -EIO;
1045	} else if (extent_buffer_uptodate(buf)) {
1046		*eb = buf;
1047	} else {
1048		free_extent_buffer(buf);
1049	}
1050	return 0;
1051}
1052
1053struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1054					    u64 bytenr, u32 blocksize)
1055{
1056	struct inode *btree_inode = root->fs_info->btree_inode;
1057	struct extent_buffer *eb;
1058	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1059				bytenr, blocksize);
1060	return eb;
1061}
1062
1063struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1064						 u64 bytenr, u32 blocksize)
1065{
1066	struct inode *btree_inode = root->fs_info->btree_inode;
1067	struct extent_buffer *eb;
1068
1069	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1070				 bytenr, blocksize);
1071	return eb;
1072}
1073
1074
1075int btrfs_write_tree_block(struct extent_buffer *buf)
1076{
1077	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1078					buf->start + buf->len - 1);
1079}
1080
1081int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1082{
1083	return filemap_fdatawait_range(buf->pages[0]->mapping,
1084				       buf->start, buf->start + buf->len - 1);
1085}
1086
1087struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1088				      u32 blocksize, u64 parent_transid)
 
 
 
 
 
 
 
 
 
1089{
1090	struct extent_buffer *buf = NULL;
1091	int ret;
1092
1093	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1094	if (!buf)
1095		return NULL;
1096
1097	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
 
 
 
 
 
1098	return buf;
1099
1100}
1101
1102void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1103		      struct extent_buffer *buf)
1104{
1105	if (btrfs_header_generation(buf) ==
1106	    root->fs_info->running_transaction->transid) {
1107		btrfs_assert_tree_locked(buf);
1108
1109		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1110			spin_lock(&root->fs_info->delalloc_lock);
1111			if (root->fs_info->dirty_metadata_bytes >= buf->len)
1112				root->fs_info->dirty_metadata_bytes -= buf->len;
1113			else {
1114				spin_unlock(&root->fs_info->delalloc_lock);
1115				btrfs_panic(root->fs_info, -EOVERFLOW,
1116					  "Can't clear %lu bytes from "
1117					  " dirty_mdatadata_bytes (%lu)",
1118					  buf->len,
1119					  root->fs_info->dirty_metadata_bytes);
1120			}
1121			spin_unlock(&root->fs_info->delalloc_lock);
1122		}
 
 
 
 
 
 
 
1123
1124		/* ugh, clear_extent_buffer_dirty needs to lock the page */
1125		btrfs_set_lock_blocking(buf);
1126		clear_extent_buffer_dirty(buf);
 
 
 
 
 
1127	}
 
 
 
1128}
1129
1130static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1131			 u32 stripesize, struct btrfs_root *root,
1132			 struct btrfs_fs_info *fs_info,
 
 
 
 
 
1133			 u64 objectid)
1134{
 
1135	root->node = NULL;
1136	root->commit_root = NULL;
1137	root->sectorsize = sectorsize;
1138	root->nodesize = nodesize;
1139	root->leafsize = leafsize;
1140	root->stripesize = stripesize;
1141	root->ref_cows = 0;
1142	root->track_dirty = 0;
1143	root->in_radix = 0;
1144	root->orphan_item_inserted = 0;
1145	root->orphan_cleanup_state = 0;
1146
1147	root->objectid = objectid;
1148	root->last_trans = 0;
1149	root->highest_objectid = 0;
 
 
1150	root->name = NULL;
1151	root->inode_tree = RB_ROOT;
1152	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1153	root->block_rsv = NULL;
1154	root->orphan_block_rsv = NULL;
1155
1156	INIT_LIST_HEAD(&root->dirty_list);
1157	INIT_LIST_HEAD(&root->root_list);
 
 
 
 
 
 
1158	spin_lock_init(&root->orphan_lock);
1159	spin_lock_init(&root->inode_lock);
 
 
1160	spin_lock_init(&root->accounting_lock);
 
 
 
1161	mutex_init(&root->objectid_mutex);
1162	mutex_init(&root->log_mutex);
 
 
1163	init_waitqueue_head(&root->log_writer_wait);
1164	init_waitqueue_head(&root->log_commit_wait[0]);
1165	init_waitqueue_head(&root->log_commit_wait[1]);
 
 
1166	atomic_set(&root->log_commit[0], 0);
1167	atomic_set(&root->log_commit[1], 0);
1168	atomic_set(&root->log_writers, 0);
 
1169	atomic_set(&root->orphan_inodes, 0);
1170	root->log_batch = 0;
 
1171	root->log_transid = 0;
 
1172	root->last_log_commit = 0;
1173	extent_io_tree_init(&root->dirty_log_pages,
1174			     fs_info->btree_inode->i_mapping);
1175
1176	memset(&root->root_key, 0, sizeof(root->root_key));
1177	memset(&root->root_item, 0, sizeof(root->root_item));
1178	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1179	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1180	root->defrag_trans_start = fs_info->generation;
1181	init_completion(&root->kobj_unregister);
1182	root->defrag_running = 0;
1183	root->root_key.objectid = objectid;
1184	root->anon_dev = 0;
 
 
1185}
1186
1187static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1188					    struct btrfs_fs_info *fs_info,
1189					    u64 objectid,
1190					    struct btrfs_root *root)
1191{
1192	int ret;
1193	u32 blocksize;
1194	u64 generation;
 
 
1195
1196	__setup_root(tree_root->nodesize, tree_root->leafsize,
1197		     tree_root->sectorsize, tree_root->stripesize,
1198		     root, fs_info, objectid);
1199	ret = btrfs_find_last_root(tree_root, objectid,
1200				   &root->root_item, &root->root_key);
1201	if (ret > 0)
1202		return -ENOENT;
1203	else if (ret < 0)
1204		return ret;
1205
1206	generation = btrfs_root_generation(&root->root_item);
1207	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1208	root->commit_root = NULL;
1209	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1210				     blocksize, generation);
1211	if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1212		free_extent_buffer(root->node);
1213		root->node = NULL;
1214		return -EIO;
1215	}
1216	root->commit_root = btrfs_root_node(root);
1217	return 0;
1218}
 
1219
1220static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
 
 
1221{
1222	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1223	if (root)
1224		root->fs_info = fs_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1225	return root;
 
 
 
 
 
 
 
 
 
 
1226}
1227
1228static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1229					 struct btrfs_fs_info *fs_info)
1230{
1231	struct btrfs_root *root;
1232	struct btrfs_root *tree_root = fs_info->tree_root;
1233	struct extent_buffer *leaf;
1234
1235	root = btrfs_alloc_root(fs_info);
1236	if (!root)
1237		return ERR_PTR(-ENOMEM);
1238
1239	__setup_root(tree_root->nodesize, tree_root->leafsize,
1240		     tree_root->sectorsize, tree_root->stripesize,
1241		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1242
1243	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1244	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1245	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
 
1246	/*
 
 
1247	 * log trees do not get reference counted because they go away
1248	 * before a real commit is actually done.  They do store pointers
1249	 * to file data extents, and those reference counts still get
1250	 * updated (along with back refs to the log tree).
1251	 */
1252	root->ref_cows = 0;
1253
1254	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1255				      BTRFS_TREE_LOG_OBJECTID, NULL,
1256				      0, 0, 0);
1257	if (IS_ERR(leaf)) {
1258		kfree(root);
1259		return ERR_CAST(leaf);
1260	}
1261
1262	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1263	btrfs_set_header_bytenr(leaf, leaf->start);
1264	btrfs_set_header_generation(leaf, trans->transid);
1265	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1266	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1267	root->node = leaf;
1268
1269	write_extent_buffer(root->node, root->fs_info->fsid,
1270			    (unsigned long)btrfs_header_fsid(root->node),
1271			    BTRFS_FSID_SIZE);
1272	btrfs_mark_buffer_dirty(root->node);
1273	btrfs_tree_unlock(root->node);
1274	return root;
1275}
1276
1277int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1278			     struct btrfs_fs_info *fs_info)
1279{
1280	struct btrfs_root *log_root;
1281
1282	log_root = alloc_log_tree(trans, fs_info);
1283	if (IS_ERR(log_root))
1284		return PTR_ERR(log_root);
1285	WARN_ON(fs_info->log_root_tree);
1286	fs_info->log_root_tree = log_root;
1287	return 0;
1288}
1289
1290int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1291		       struct btrfs_root *root)
1292{
 
1293	struct btrfs_root *log_root;
1294	struct btrfs_inode_item *inode_item;
1295
1296	log_root = alloc_log_tree(trans, root->fs_info);
1297	if (IS_ERR(log_root))
1298		return PTR_ERR(log_root);
1299
1300	log_root->last_trans = trans->transid;
1301	log_root->root_key.offset = root->root_key.objectid;
1302
1303	inode_item = &log_root->root_item.inode;
1304	inode_item->generation = cpu_to_le64(1);
1305	inode_item->size = cpu_to_le64(3);
1306	inode_item->nlink = cpu_to_le32(1);
1307	inode_item->nbytes = cpu_to_le64(root->leafsize);
1308	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
 
1309
1310	btrfs_set_root_node(&log_root->root_item, log_root->node);
1311
1312	WARN_ON(root->log_root);
1313	root->log_root = log_root;
1314	root->log_transid = 0;
 
1315	root->last_log_commit = 0;
1316	return 0;
1317}
1318
1319struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1320					       struct btrfs_key *location)
1321{
1322	struct btrfs_root *root;
1323	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1324	struct btrfs_path *path;
1325	struct extent_buffer *l;
1326	u64 generation;
1327	u32 blocksize;
1328	int ret = 0;
1329
1330	root = btrfs_alloc_root(fs_info);
1331	if (!root)
1332		return ERR_PTR(-ENOMEM);
1333	if (location->offset == (u64)-1) {
1334		ret = find_and_setup_root(tree_root, fs_info,
1335					  location->objectid, root);
1336		if (ret) {
1337			kfree(root);
1338			return ERR_PTR(ret);
1339		}
1340		goto out;
1341	}
1342
1343	__setup_root(tree_root->nodesize, tree_root->leafsize,
1344		     tree_root->sectorsize, tree_root->stripesize,
1345		     root, fs_info, location->objectid);
1346
1347	path = btrfs_alloc_path();
1348	if (!path) {
1349		kfree(root);
1350		return ERR_PTR(-ENOMEM);
1351	}
1352	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1353	if (ret == 0) {
1354		l = path->nodes[0];
1355		read_extent_buffer(l, &root->root_item,
1356				btrfs_item_ptr_offset(l, path->slots[0]),
1357				sizeof(root->root_item));
1358		memcpy(&root->root_key, location, sizeof(*location));
1359	}
1360	btrfs_free_path(path);
1361	if (ret) {
1362		kfree(root);
1363		if (ret > 0)
1364			ret = -ENOENT;
1365		return ERR_PTR(ret);
1366	}
1367
1368	generation = btrfs_root_generation(&root->root_item);
1369	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1370	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1371				     blocksize, generation);
 
 
 
 
 
 
 
 
 
1372	root->commit_root = btrfs_root_node(root);
1373	BUG_ON(!root->node); /* -ENOMEM */
1374out:
1375	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1376		root->ref_cows = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377		btrfs_check_and_init_root_item(&root->root_item);
1378	}
1379
1380	return root;
1381}
1382
1383struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1384					      struct btrfs_key *location)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385{
1386	struct btrfs_root *root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1387	int ret;
1388
1389	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1390		return fs_info->tree_root;
1391	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1392		return fs_info->extent_root;
1393	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1394		return fs_info->chunk_root;
1395	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1396		return fs_info->dev_root;
1397	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1398		return fs_info->csum_root;
 
 
 
 
 
 
 
 
 
1399again:
1400	spin_lock(&fs_info->fs_roots_radix_lock);
1401	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1402				 (unsigned long)location->objectid);
1403	spin_unlock(&fs_info->fs_roots_radix_lock);
1404	if (root)
1405		return root;
 
1406
1407	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1408	if (IS_ERR(root))
1409		return root;
1410
1411	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1412	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1413					GFP_NOFS);
1414	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1415		ret = -ENOMEM;
1416		goto fail;
1417	}
1418
1419	btrfs_init_free_ino_ctl(root);
1420	mutex_init(&root->fs_commit_mutex);
1421	spin_lock_init(&root->cache_lock);
1422	init_waitqueue_head(&root->cache_wait);
1423
1424	ret = get_anon_bdev(&root->anon_dev);
1425	if (ret)
1426		goto fail;
1427
1428	if (btrfs_root_refs(&root->root_item) == 0) {
1429		ret = -ENOENT;
 
1430		goto fail;
1431	}
 
 
 
1432
1433	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
 
1434	if (ret < 0)
1435		goto fail;
1436	if (ret == 0)
1437		root->orphan_item_inserted = 1;
1438
1439	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1440	if (ret)
1441		goto fail;
1442
1443	spin_lock(&fs_info->fs_roots_radix_lock);
1444	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1445				(unsigned long)root->root_key.objectid,
1446				root);
1447	if (ret == 0)
1448		root->in_radix = 1;
1449
1450	spin_unlock(&fs_info->fs_roots_radix_lock);
1451	radix_tree_preload_end();
1452	if (ret) {
1453		if (ret == -EEXIST) {
1454			free_fs_root(root);
1455			goto again;
1456		}
1457		goto fail;
1458	}
1459
1460	ret = btrfs_find_dead_roots(fs_info->tree_root,
1461				    root->root_key.objectid);
1462	WARN_ON(ret);
1463	return root;
1464fail:
1465	free_fs_root(root);
1466	return ERR_PTR(ret);
1467}
1468
1469static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1470{
1471	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1472	int ret = 0;
1473	struct btrfs_device *device;
1474	struct backing_dev_info *bdi;
1475
1476	rcu_read_lock();
1477	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1478		if (!device->bdev)
1479			continue;
1480		bdi = blk_get_backing_dev_info(device->bdev);
1481		if (bdi && bdi_congested(bdi, bdi_bits)) {
1482			ret = 1;
1483			break;
1484		}
1485	}
1486	rcu_read_unlock();
1487	return ret;
1488}
1489
1490/*
1491 * If this fails, caller must call bdi_destroy() to get rid of the
1492 * bdi again.
1493 */
1494static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1495{
1496	int err;
1497
1498	bdi->capabilities = BDI_CAP_MAP_COPY;
1499	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1500	if (err)
1501		return err;
1502
1503	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1504	bdi->congested_fn	= btrfs_congested_fn;
1505	bdi->congested_data	= info;
1506	return 0;
1507}
1508
1509/*
1510 * called by the kthread helper functions to finally call the bio end_io
1511 * functions.  This is where read checksum verification actually happens
1512 */
1513static void end_workqueue_fn(struct btrfs_work *work)
1514{
1515	struct bio *bio;
1516	struct end_io_wq *end_io_wq;
1517	struct btrfs_fs_info *fs_info;
1518	int error;
1519
1520	end_io_wq = container_of(work, struct end_io_wq, work);
1521	bio = end_io_wq->bio;
1522	fs_info = end_io_wq->info;
1523
1524	error = end_io_wq->error;
1525	bio->bi_private = end_io_wq->private;
1526	bio->bi_end_io = end_io_wq->end_io;
1527	kfree(end_io_wq);
1528	bio_endio(bio, error);
1529}
1530
1531static int cleaner_kthread(void *arg)
1532{
1533	struct btrfs_root *root = arg;
 
 
 
1534
1535	do {
1536		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537
1538		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1539		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1540			btrfs_run_delayed_iputs(root);
1541			btrfs_clean_old_snapshots(root);
1542			mutex_unlock(&root->fs_info->cleaner_mutex);
1543			btrfs_run_defrag_inodes(root->fs_info);
 
1544		}
1545
1546		if (!try_to_freeze()) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1547			set_current_state(TASK_INTERRUPTIBLE);
1548			if (!kthread_should_stop())
1549				schedule();
1550			__set_current_state(TASK_RUNNING);
1551		}
1552	} while (!kthread_should_stop());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1553	return 0;
1554}
1555
1556static int transaction_kthread(void *arg)
1557{
1558	struct btrfs_root *root = arg;
 
1559	struct btrfs_trans_handle *trans;
1560	struct btrfs_transaction *cur;
1561	u64 transid;
1562	unsigned long now;
1563	unsigned long delay;
1564	bool cannot_commit;
1565
1566	do {
1567		cannot_commit = false;
1568		delay = HZ * 30;
1569		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1570		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1571
1572		spin_lock(&root->fs_info->trans_lock);
1573		cur = root->fs_info->running_transaction;
1574		if (!cur) {
1575			spin_unlock(&root->fs_info->trans_lock);
1576			goto sleep;
1577		}
1578
1579		now = get_seconds();
1580		if (!cur->blocked &&
1581		    (now < cur->start_time || now - cur->start_time < 30)) {
1582			spin_unlock(&root->fs_info->trans_lock);
 
 
1583			delay = HZ * 5;
1584			goto sleep;
1585		}
1586		transid = cur->transid;
1587		spin_unlock(&root->fs_info->trans_lock);
1588
1589		/* If the file system is aborted, this will always fail. */
1590		trans = btrfs_join_transaction(root);
1591		if (IS_ERR(trans)) {
1592			cannot_commit = true;
 
1593			goto sleep;
1594		}
1595		if (transid == trans->transid) {
1596			btrfs_commit_transaction(trans, root);
1597		} else {
1598			btrfs_end_transaction(trans, root);
1599		}
1600sleep:
1601		wake_up_process(root->fs_info->cleaner_kthread);
1602		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1603
1604		if (!try_to_freeze()) {
1605			set_current_state(TASK_INTERRUPTIBLE);
1606			if (!kthread_should_stop() &&
1607			    (!btrfs_transaction_blocked(root->fs_info) ||
1608			     cannot_commit))
1609				schedule_timeout(delay);
1610			__set_current_state(TASK_RUNNING);
1611		}
1612	} while (!kthread_should_stop());
1613	return 0;
1614}
1615
1616/*
1617 * this will find the highest generation in the array of
1618 * root backups.  The index of the highest array is returned,
1619 * or -1 if we can't find anything.
1620 *
1621 * We check to make sure the array is valid by comparing the
1622 * generation of the latest  root in the array with the generation
1623 * in the super block.  If they don't match we pitch it.
1624 */
1625static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1626{
1627	u64 cur;
1628	int newest_index = -1;
1629	struct btrfs_root_backup *root_backup;
1630	int i;
1631
1632	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1633		root_backup = info->super_copy->super_roots + i;
1634		cur = btrfs_backup_tree_root_gen(root_backup);
1635		if (cur == newest_gen)
1636			newest_index = i;
1637	}
1638
1639	/* check to see if we actually wrapped around */
1640	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1641		root_backup = info->super_copy->super_roots;
1642		cur = btrfs_backup_tree_root_gen(root_backup);
1643		if (cur == newest_gen)
1644			newest_index = 0;
1645	}
1646	return newest_index;
1647}
1648
1649
1650/*
1651 * find the oldest backup so we know where to store new entries
1652 * in the backup array.  This will set the backup_root_index
1653 * field in the fs_info struct
1654 */
1655static void find_oldest_super_backup(struct btrfs_fs_info *info,
1656				     u64 newest_gen)
1657{
1658	int newest_index = -1;
1659
1660	newest_index = find_newest_super_backup(info, newest_gen);
1661	/* if there was garbage in there, just move along */
1662	if (newest_index == -1) {
1663		info->backup_root_index = 0;
1664	} else {
1665		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1666	}
1667}
1668
1669/*
1670 * copy all the root pointers into the super backup array.
1671 * this will bump the backup pointer by one when it is
1672 * done
1673 */
1674static void backup_super_roots(struct btrfs_fs_info *info)
1675{
1676	int next_backup;
1677	struct btrfs_root_backup *root_backup;
1678	int last_backup;
1679
1680	next_backup = info->backup_root_index;
1681	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1682		BTRFS_NUM_BACKUP_ROOTS;
1683
1684	/*
1685	 * just overwrite the last backup if we're at the same generation
1686	 * this happens only at umount
1687	 */
1688	root_backup = info->super_for_commit->super_roots + last_backup;
1689	if (btrfs_backup_tree_root_gen(root_backup) ==
1690	    btrfs_header_generation(info->tree_root->node))
1691		next_backup = last_backup;
1692
1693	root_backup = info->super_for_commit->super_roots + next_backup;
1694
1695	/*
1696	 * make sure all of our padding and empty slots get zero filled
1697	 * regardless of which ones we use today
1698	 */
1699	memset(root_backup, 0, sizeof(*root_backup));
1700
1701	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1702
1703	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1704	btrfs_set_backup_tree_root_gen(root_backup,
1705			       btrfs_header_generation(info->tree_root->node));
1706
1707	btrfs_set_backup_tree_root_level(root_backup,
1708			       btrfs_header_level(info->tree_root->node));
1709
1710	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1711	btrfs_set_backup_chunk_root_gen(root_backup,
1712			       btrfs_header_generation(info->chunk_root->node));
1713	btrfs_set_backup_chunk_root_level(root_backup,
1714			       btrfs_header_level(info->chunk_root->node));
1715
1716	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1717	btrfs_set_backup_extent_root_gen(root_backup,
1718			       btrfs_header_generation(info->extent_root->node));
1719	btrfs_set_backup_extent_root_level(root_backup,
1720			       btrfs_header_level(info->extent_root->node));
1721
1722	/*
1723	 * we might commit during log recovery, which happens before we set
1724	 * the fs_root.  Make sure it is valid before we fill it in.
1725	 */
1726	if (info->fs_root && info->fs_root->node) {
1727		btrfs_set_backup_fs_root(root_backup,
1728					 info->fs_root->node->start);
1729		btrfs_set_backup_fs_root_gen(root_backup,
1730			       btrfs_header_generation(info->fs_root->node));
1731		btrfs_set_backup_fs_root_level(root_backup,
1732			       btrfs_header_level(info->fs_root->node));
1733	}
1734
1735	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1736	btrfs_set_backup_dev_root_gen(root_backup,
1737			       btrfs_header_generation(info->dev_root->node));
1738	btrfs_set_backup_dev_root_level(root_backup,
1739				       btrfs_header_level(info->dev_root->node));
1740
1741	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1742	btrfs_set_backup_csum_root_gen(root_backup,
1743			       btrfs_header_generation(info->csum_root->node));
1744	btrfs_set_backup_csum_root_level(root_backup,
1745			       btrfs_header_level(info->csum_root->node));
1746
1747	btrfs_set_backup_total_bytes(root_backup,
1748			     btrfs_super_total_bytes(info->super_copy));
1749	btrfs_set_backup_bytes_used(root_backup,
1750			     btrfs_super_bytes_used(info->super_copy));
1751	btrfs_set_backup_num_devices(root_backup,
1752			     btrfs_super_num_devices(info->super_copy));
1753
1754	/*
1755	 * if we don't copy this out to the super_copy, it won't get remembered
1756	 * for the next commit
1757	 */
1758	memcpy(&info->super_copy->super_roots,
1759	       &info->super_for_commit->super_roots,
1760	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1761}
1762
1763/*
1764 * this copies info out of the root backup array and back into
1765 * the in-memory super block.  It is meant to help iterate through
1766 * the array, so you send it the number of backups you've already
1767 * tried and the last backup index you used.
1768 *
1769 * this returns -1 when it has tried all the backups
1770 */
1771static noinline int next_root_backup(struct btrfs_fs_info *info,
1772				     struct btrfs_super_block *super,
1773				     int *num_backups_tried, int *backup_index)
1774{
1775	struct btrfs_root_backup *root_backup;
1776	int newest = *backup_index;
1777
1778	if (*num_backups_tried == 0) {
1779		u64 gen = btrfs_super_generation(super);
1780
1781		newest = find_newest_super_backup(info, gen);
1782		if (newest == -1)
1783			return -1;
1784
1785		*backup_index = newest;
1786		*num_backups_tried = 1;
1787	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1788		/* we've tried all the backups, all done */
1789		return -1;
1790	} else {
1791		/* jump to the next oldest backup */
1792		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1793			BTRFS_NUM_BACKUP_ROOTS;
1794		*backup_index = newest;
1795		*num_backups_tried += 1;
1796	}
1797	root_backup = super->super_roots + newest;
1798
1799	btrfs_set_super_generation(super,
1800				   btrfs_backup_tree_root_gen(root_backup));
1801	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1802	btrfs_set_super_root_level(super,
1803				   btrfs_backup_tree_root_level(root_backup));
1804	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1805
1806	/*
1807	 * fixme: the total bytes and num_devices need to match or we should
1808	 * need a fsck
1809	 */
1810	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1811	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1812	return 0;
1813}
1814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815/* helper to cleanup tree roots */
1816static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1817{
1818	free_extent_buffer(info->tree_root->node);
1819	free_extent_buffer(info->tree_root->commit_root);
1820	free_extent_buffer(info->dev_root->node);
1821	free_extent_buffer(info->dev_root->commit_root);
1822	free_extent_buffer(info->extent_root->node);
1823	free_extent_buffer(info->extent_root->commit_root);
1824	free_extent_buffer(info->csum_root->node);
1825	free_extent_buffer(info->csum_root->commit_root);
1826
1827	info->tree_root->node = NULL;
1828	info->tree_root->commit_root = NULL;
1829	info->dev_root->node = NULL;
1830	info->dev_root->commit_root = NULL;
1831	info->extent_root->node = NULL;
1832	info->extent_root->commit_root = NULL;
1833	info->csum_root->node = NULL;
1834	info->csum_root->commit_root = NULL;
1835
1836	if (chunk_root) {
1837		free_extent_buffer(info->chunk_root->node);
1838		free_extent_buffer(info->chunk_root->commit_root);
1839		info->chunk_root->node = NULL;
1840		info->chunk_root->commit_root = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1841	}
1842}
1843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1844
1845int open_ctree(struct super_block *sb,
1846	       struct btrfs_fs_devices *fs_devices,
1847	       char *options)
1848{
1849	u32 sectorsize;
1850	u32 nodesize;
1851	u32 leafsize;
1852	u32 blocksize;
1853	u32 stripesize;
1854	u64 generation;
1855	u64 features;
1856	struct btrfs_key location;
1857	struct buffer_head *bh;
1858	struct btrfs_super_block *disk_super;
1859	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1860	struct btrfs_root *tree_root;
1861	struct btrfs_root *extent_root;
1862	struct btrfs_root *csum_root;
1863	struct btrfs_root *chunk_root;
1864	struct btrfs_root *dev_root;
1865	struct btrfs_root *log_tree_root;
1866	int ret;
1867	int err = -EINVAL;
1868	int num_backups_tried = 0;
1869	int backup_index = 0;
 
 
1870
1871	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1872	extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1873	csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1874	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1875	dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1876
1877	if (!tree_root || !extent_root || !csum_root ||
1878	    !chunk_root || !dev_root) {
1879		err = -ENOMEM;
1880		goto fail;
1881	}
1882
1883	ret = init_srcu_struct(&fs_info->subvol_srcu);
1884	if (ret) {
1885		err = ret;
1886		goto fail;
1887	}
1888
1889	ret = setup_bdi(fs_info, &fs_info->bdi);
1890	if (ret) {
1891		err = ret;
1892		goto fail_srcu;
1893	}
 
 
1894
1895	fs_info->btree_inode = new_inode(sb);
1896	if (!fs_info->btree_inode) {
1897		err = -ENOMEM;
1898		goto fail_bdi;
1899	}
1900
1901	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
 
 
 
 
1902
1903	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
 
1904	INIT_LIST_HEAD(&fs_info->trans_list);
1905	INIT_LIST_HEAD(&fs_info->dead_roots);
1906	INIT_LIST_HEAD(&fs_info->delayed_iputs);
1907	INIT_LIST_HEAD(&fs_info->hashers);
1908	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1909	INIT_LIST_HEAD(&fs_info->ordered_operations);
1910	INIT_LIST_HEAD(&fs_info->caching_block_groups);
1911	spin_lock_init(&fs_info->delalloc_lock);
 
 
1912	spin_lock_init(&fs_info->trans_lock);
1913	spin_lock_init(&fs_info->ref_cache_lock);
1914	spin_lock_init(&fs_info->fs_roots_radix_lock);
1915	spin_lock_init(&fs_info->delayed_iput_lock);
1916	spin_lock_init(&fs_info->defrag_inodes_lock);
1917	spin_lock_init(&fs_info->free_chunk_lock);
1918	spin_lock_init(&fs_info->tree_mod_seq_lock);
 
 
 
 
1919	rwlock_init(&fs_info->tree_mod_log_lock);
 
 
1920	mutex_init(&fs_info->reloc_mutex);
 
 
 
1921
1922	init_completion(&fs_info->kobj_unregister);
1923	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1924	INIT_LIST_HEAD(&fs_info->space_info);
1925	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
 
1926	btrfs_mapping_init(&fs_info->mapping_tree);
1927	btrfs_init_block_rsv(&fs_info->global_block_rsv);
1928	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1929	btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1930	btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1931	btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1932	btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1933	atomic_set(&fs_info->nr_async_submits, 0);
1934	atomic_set(&fs_info->async_delalloc_pages, 0);
1935	atomic_set(&fs_info->async_submit_draining, 0);
1936	atomic_set(&fs_info->nr_async_bios, 0);
1937	atomic_set(&fs_info->defrag_running, 0);
1938	atomic_set(&fs_info->tree_mod_seq, 0);
 
 
1939	fs_info->sb = sb;
1940	fs_info->max_inline = 8192 * 1024;
1941	fs_info->metadata_ratio = 0;
1942	fs_info->defrag_inodes = RB_ROOT;
1943	fs_info->trans_no_join = 0;
1944	fs_info->free_chunk_space = 0;
1945	fs_info->tree_mod_log = RB_ROOT;
1946
 
1947	/* readahead state */
1948	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1949	spin_lock_init(&fs_info->reada_lock);
 
1950
1951	fs_info->thread_pool_size = min_t(unsigned long,
1952					  num_online_cpus() + 2, 8);
1953
1954	INIT_LIST_HEAD(&fs_info->ordered_extents);
1955	spin_lock_init(&fs_info->ordered_extent_lock);
 
 
 
 
 
 
 
 
1956	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1957					GFP_NOFS);
1958	if (!fs_info->delayed_root) {
1959		err = -ENOMEM;
1960		goto fail_iput;
1961	}
1962	btrfs_init_delayed_root(fs_info->delayed_root);
1963
1964	mutex_init(&fs_info->scrub_lock);
1965	atomic_set(&fs_info->scrubs_running, 0);
1966	atomic_set(&fs_info->scrub_pause_req, 0);
1967	atomic_set(&fs_info->scrubs_paused, 0);
1968	atomic_set(&fs_info->scrub_cancel_req, 0);
1969	init_waitqueue_head(&fs_info->scrub_pause_wait);
1970	init_rwsem(&fs_info->scrub_super_lock);
1971	fs_info->scrub_workers_refcnt = 0;
1972#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1973	fs_info->check_integrity_print_mask = 0;
1974#endif
 
 
1975
1976	spin_lock_init(&fs_info->balance_lock);
1977	mutex_init(&fs_info->balance_mutex);
1978	atomic_set(&fs_info->balance_running, 0);
1979	atomic_set(&fs_info->balance_pause_req, 0);
1980	atomic_set(&fs_info->balance_cancel_req, 0);
1981	fs_info->balance_ctl = NULL;
1982	init_waitqueue_head(&fs_info->balance_wait_q);
1983
1984	sb->s_blocksize = 4096;
1985	sb->s_blocksize_bits = blksize_bits(4096);
1986	sb->s_bdi = &fs_info->bdi;
1987
1988	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1989	set_nlink(fs_info->btree_inode, 1);
1990	/*
1991	 * we set the i_size on the btree inode to the max possible int.
1992	 * the real end of the address space is determined by all of
1993	 * the devices in the system
1994	 */
1995	fs_info->btree_inode->i_size = OFFSET_MAX;
1996	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1997	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1998
1999	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2000	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2001			     fs_info->btree_inode->i_mapping);
2002	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2003	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2004
2005	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2006
2007	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2008	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2009	       sizeof(struct btrfs_key));
2010	set_bit(BTRFS_INODE_DUMMY,
2011		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2012	insert_inode_hash(fs_info->btree_inode);
2013
2014	spin_lock_init(&fs_info->block_group_cache_lock);
2015	fs_info->block_group_cache_tree = RB_ROOT;
 
2016
2017	extent_io_tree_init(&fs_info->freed_extents[0],
2018			     fs_info->btree_inode->i_mapping);
2019	extent_io_tree_init(&fs_info->freed_extents[1],
2020			     fs_info->btree_inode->i_mapping);
2021	fs_info->pinned_extents = &fs_info->freed_extents[0];
2022	fs_info->do_barriers = 1;
2023
2024
2025	mutex_init(&fs_info->ordered_operations_mutex);
2026	mutex_init(&fs_info->tree_log_mutex);
2027	mutex_init(&fs_info->chunk_mutex);
2028	mutex_init(&fs_info->transaction_kthread_mutex);
2029	mutex_init(&fs_info->cleaner_mutex);
2030	mutex_init(&fs_info->volume_mutex);
2031	init_rwsem(&fs_info->extent_commit_sem);
 
2032	init_rwsem(&fs_info->cleanup_work_sem);
2033	init_rwsem(&fs_info->subvol_sem);
 
 
 
 
2034
2035	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2036	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2037
2038	init_waitqueue_head(&fs_info->transaction_throttle);
2039	init_waitqueue_head(&fs_info->transaction_wait);
2040	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2041	init_waitqueue_head(&fs_info->async_submit_wait);
2042
2043	__setup_root(4096, 4096, 4096, 4096, tree_root,
2044		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
 
 
 
 
 
 
 
 
 
 
 
 
2045
2046	invalidate_bdev(fs_devices->latest_bdev);
 
 
 
 
2047	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2048	if (!bh) {
 
 
 
 
 
 
 
 
 
 
2049		err = -EINVAL;
 
2050		goto fail_alloc;
2051	}
2052
 
 
 
 
 
2053	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2054	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2055	       sizeof(*fs_info->super_for_commit));
2056	brelse(bh);
2057
2058	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2059
 
 
 
 
 
 
 
2060	disk_super = fs_info->super_copy;
2061	if (!btrfs_super_root(disk_super))
2062		goto fail_alloc;
2063
2064	/* check FS state, whether FS is broken. */
2065	fs_info->fs_state |= btrfs_super_flags(disk_super);
2066
2067	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2068	if (ret) {
2069		printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2070		err = ret;
2071		goto fail_alloc;
2072	}
2073
2074	/*
2075	 * run through our array of backup supers and setup
2076	 * our ring pointer to the oldest one
2077	 */
2078	generation = btrfs_super_generation(disk_super);
2079	find_oldest_super_backup(fs_info, generation);
2080
2081	/*
2082	 * In the long term, we'll store the compression type in the super
2083	 * block, and it'll be used for per file compression control.
2084	 */
2085	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2086
2087	ret = btrfs_parse_options(tree_root, options);
2088	if (ret) {
2089		err = ret;
2090		goto fail_alloc;
2091	}
2092
2093	features = btrfs_super_incompat_flags(disk_super) &
2094		~BTRFS_FEATURE_INCOMPAT_SUPP;
2095	if (features) {
2096		printk(KERN_ERR "BTRFS: couldn't mount because of "
2097		       "unsupported optional features (%Lx).\n",
2098		       (unsigned long long)features);
2099		err = -EINVAL;
2100		goto fail_alloc;
2101	}
2102
2103	if (btrfs_super_leafsize(disk_super) !=
2104	    btrfs_super_nodesize(disk_super)) {
2105		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2106		       "blocksizes don't match.  node %d leaf %d\n",
2107		       btrfs_super_nodesize(disk_super),
2108		       btrfs_super_leafsize(disk_super));
2109		err = -EINVAL;
2110		goto fail_alloc;
2111	}
2112	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2113		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2114		       "blocksize (%d) was too large\n",
2115		       btrfs_super_leafsize(disk_super));
2116		err = -EINVAL;
2117		goto fail_alloc;
2118	}
2119
2120	features = btrfs_super_incompat_flags(disk_super);
2121	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2122	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2123		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
 
 
 
 
 
2124
2125	/*
2126	 * flag our filesystem as having big metadata blocks if
2127	 * they are bigger than the page size
2128	 */
2129	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2130		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2131			printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
 
2132		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2133	}
2134
2135	nodesize = btrfs_super_nodesize(disk_super);
2136	leafsize = btrfs_super_leafsize(disk_super);
2137	sectorsize = btrfs_super_sectorsize(disk_super);
2138	stripesize = btrfs_super_stripesize(disk_super);
 
 
 
 
 
 
 
2139
2140	/*
2141	 * mixed block groups end up with duplicate but slightly offset
2142	 * extent buffers for the same range.  It leads to corruptions
2143	 */
2144	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2145	    (sectorsize != leafsize)) {
2146		printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2147				"are not allowed for mixed block groups on %s\n",
2148				sb->s_id);
2149		goto fail_alloc;
2150	}
2151
 
 
 
 
2152	btrfs_set_super_incompat_flags(disk_super, features);
2153
2154	features = btrfs_super_compat_ro_flags(disk_super) &
2155		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2156	if (!(sb->s_flags & MS_RDONLY) && features) {
2157		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2158		       "unsupported option features (%Lx).\n",
2159		       (unsigned long long)features);
2160		err = -EINVAL;
2161		goto fail_alloc;
2162	}
2163
2164	btrfs_init_workers(&fs_info->generic_worker,
2165			   "genwork", 1, NULL);
2166
2167	btrfs_init_workers(&fs_info->workers, "worker",
2168			   fs_info->thread_pool_size,
2169			   &fs_info->generic_worker);
2170
2171	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2172			   fs_info->thread_pool_size,
2173			   &fs_info->generic_worker);
2174
2175	btrfs_init_workers(&fs_info->submit_workers, "submit",
2176			   min_t(u64, fs_devices->num_devices,
2177			   fs_info->thread_pool_size),
2178			   &fs_info->generic_worker);
2179
2180	btrfs_init_workers(&fs_info->caching_workers, "cache",
2181			   2, &fs_info->generic_worker);
2182
2183	/* a higher idle thresh on the submit workers makes it much more
2184	 * likely that bios will be send down in a sane order to the
2185	 * devices
2186	 */
2187	fs_info->submit_workers.idle_thresh = 64;
2188
2189	fs_info->workers.idle_thresh = 16;
2190	fs_info->workers.ordered = 1;
2191
2192	fs_info->delalloc_workers.idle_thresh = 2;
2193	fs_info->delalloc_workers.ordered = 1;
2194
2195	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2196			   &fs_info->generic_worker);
2197	btrfs_init_workers(&fs_info->endio_workers, "endio",
2198			   fs_info->thread_pool_size,
2199			   &fs_info->generic_worker);
2200	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2201			   fs_info->thread_pool_size,
2202			   &fs_info->generic_worker);
2203	btrfs_init_workers(&fs_info->endio_meta_write_workers,
2204			   "endio-meta-write", fs_info->thread_pool_size,
2205			   &fs_info->generic_worker);
2206	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2207			   fs_info->thread_pool_size,
2208			   &fs_info->generic_worker);
2209	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2210			   1, &fs_info->generic_worker);
2211	btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2212			   fs_info->thread_pool_size,
2213			   &fs_info->generic_worker);
2214	btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2215			   fs_info->thread_pool_size,
2216			   &fs_info->generic_worker);
2217
2218	/*
2219	 * endios are largely parallel and should have a very
2220	 * low idle thresh
2221	 */
2222	fs_info->endio_workers.idle_thresh = 4;
2223	fs_info->endio_meta_workers.idle_thresh = 4;
2224
2225	fs_info->endio_write_workers.idle_thresh = 2;
2226	fs_info->endio_meta_write_workers.idle_thresh = 2;
2227	fs_info->readahead_workers.idle_thresh = 2;
2228
2229	/*
2230	 * btrfs_start_workers can really only fail because of ENOMEM so just
2231	 * return -ENOMEM if any of these fail.
2232	 */
2233	ret = btrfs_start_workers(&fs_info->workers);
2234	ret |= btrfs_start_workers(&fs_info->generic_worker);
2235	ret |= btrfs_start_workers(&fs_info->submit_workers);
2236	ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2237	ret |= btrfs_start_workers(&fs_info->fixup_workers);
2238	ret |= btrfs_start_workers(&fs_info->endio_workers);
2239	ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2240	ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2241	ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2242	ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2243	ret |= btrfs_start_workers(&fs_info->delayed_workers);
2244	ret |= btrfs_start_workers(&fs_info->caching_workers);
2245	ret |= btrfs_start_workers(&fs_info->readahead_workers);
2246	if (ret) {
2247		ret = -ENOMEM;
2248		goto fail_sb_buffer;
2249	}
2250
2251	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2252	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2253				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2254
2255	tree_root->nodesize = nodesize;
2256	tree_root->leafsize = leafsize;
2257	tree_root->sectorsize = sectorsize;
2258	tree_root->stripesize = stripesize;
2259
2260	sb->s_blocksize = sectorsize;
2261	sb->s_blocksize_bits = blksize_bits(sectorsize);
2262
2263	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2264		    sizeof(disk_super->magic))) {
2265		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2266		goto fail_sb_buffer;
2267	}
2268
2269	if (sectorsize != PAGE_SIZE) {
2270		printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2271		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2272		goto fail_sb_buffer;
2273	}
2274
2275	mutex_lock(&fs_info->chunk_mutex);
2276	ret = btrfs_read_sys_array(tree_root);
2277	mutex_unlock(&fs_info->chunk_mutex);
2278	if (ret) {
2279		printk(KERN_WARNING "btrfs: failed to read the system "
2280		       "array on %s\n", sb->s_id);
2281		goto fail_sb_buffer;
2282	}
2283
2284	blocksize = btrfs_level_size(tree_root,
2285				     btrfs_super_chunk_root_level(disk_super));
2286	generation = btrfs_super_chunk_root_generation(disk_super);
 
2287
2288	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2289		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2290
2291	chunk_root->node = read_tree_block(chunk_root,
2292					   btrfs_super_chunk_root(disk_super),
2293					   blocksize, generation);
2294	BUG_ON(!chunk_root->node); /* -ENOMEM */
2295	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2296		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2297		       sb->s_id);
 
 
2298		goto fail_tree_roots;
2299	}
2300	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2301	chunk_root->commit_root = btrfs_root_node(chunk_root);
2302
2303	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2304	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2305	   BTRFS_UUID_SIZE);
2306
2307	ret = btrfs_read_chunk_tree(chunk_root);
2308	if (ret) {
2309		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2310		       sb->s_id);
2311		goto fail_tree_roots;
2312	}
2313
2314	btrfs_close_extra_devices(fs_devices);
 
 
 
 
2315
2316	if (!fs_devices->latest_bdev) {
2317		printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2318		       sb->s_id);
2319		goto fail_tree_roots;
2320	}
2321
2322retry_root_backup:
2323	blocksize = btrfs_level_size(tree_root,
2324				     btrfs_super_root_level(disk_super));
2325	generation = btrfs_super_generation(disk_super);
 
2326
2327	tree_root->node = read_tree_block(tree_root,
2328					  btrfs_super_root(disk_super),
2329					  blocksize, generation);
2330	if (!tree_root->node ||
2331	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2332		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2333		       sb->s_id);
2334
 
2335		goto recovery_tree_root;
2336	}
2337
2338	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2339	tree_root->commit_root = btrfs_root_node(tree_root);
 
2340
2341	ret = find_and_setup_root(tree_root, fs_info,
2342				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2343	if (ret)
 
 
2344		goto recovery_tree_root;
2345	extent_root->track_dirty = 1;
2346
2347	ret = find_and_setup_root(tree_root, fs_info,
2348				  BTRFS_DEV_TREE_OBJECTID, dev_root);
2349	if (ret)
2350		goto recovery_tree_root;
2351	dev_root->track_dirty = 1;
2352
2353	ret = find_and_setup_root(tree_root, fs_info,
2354				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
2355	if (ret)
2356		goto recovery_tree_root;
2357	csum_root->track_dirty = 1;
2358
2359	fs_info->generation = generation;
2360	fs_info->last_trans_committed = generation;
2361
2362	ret = btrfs_recover_balance(fs_info);
2363	if (ret) {
2364		printk(KERN_WARNING "btrfs: failed to recover balance\n");
2365		goto fail_block_groups;
2366	}
2367
2368	ret = btrfs_init_dev_stats(fs_info);
2369	if (ret) {
2370		printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2371		       ret);
2372		goto fail_block_groups;
2373	}
2374
2375	ret = btrfs_init_space_info(fs_info);
2376	if (ret) {
2377		printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2378		goto fail_block_groups;
2379	}
2380
2381	ret = btrfs_read_block_groups(extent_root);
 
 
2382	if (ret) {
2383		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
 
2384		goto fail_block_groups;
2385	}
2386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2387	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2388					       "btrfs-cleaner");
2389	if (IS_ERR(fs_info->cleaner_kthread))
2390		goto fail_block_groups;
2391
2392	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2393						   tree_root,
2394						   "btrfs-transaction");
2395	if (IS_ERR(fs_info->transaction_kthread))
2396		goto fail_cleaner;
2397
2398	if (!btrfs_test_opt(tree_root, SSD) &&
2399	    !btrfs_test_opt(tree_root, NOSSD) &&
2400	    !fs_info->fs_devices->rotating) {
2401		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2402		       "mode\n");
2403		btrfs_set_opt(fs_info->mount_opt, SSD);
2404	}
2405
 
 
 
 
 
 
2406#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2407	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2408		ret = btrfsic_mount(tree_root, fs_devices,
2409				    btrfs_test_opt(tree_root,
2410					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2411				    1 : 0,
2412				    fs_info->check_integrity_print_mask);
2413		if (ret)
2414			printk(KERN_WARNING "btrfs: failed to initialize"
2415			       " integrity check module %s\n", sb->s_id);
 
2416	}
2417#endif
 
 
 
2418
2419	/* do not make disk changes in broken FS */
2420	if (btrfs_super_log_root(disk_super) != 0 &&
2421	    !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2422		u64 bytenr = btrfs_super_log_root(disk_super);
2423
2424		if (fs_devices->rw_devices == 0) {
2425			printk(KERN_WARNING "Btrfs log replay required "
2426			       "on RO media\n");
2427			err = -EIO;
2428			goto fail_trans_kthread;
2429		}
2430		blocksize =
2431		     btrfs_level_size(tree_root,
2432				      btrfs_super_log_root_level(disk_super));
2433
2434		log_tree_root = btrfs_alloc_root(fs_info);
2435		if (!log_tree_root) {
2436			err = -ENOMEM;
2437			goto fail_trans_kthread;
2438		}
2439
2440		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2441			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2442
2443		log_tree_root->node = read_tree_block(tree_root, bytenr,
2444						      blocksize,
2445						      generation + 1);
2446		/* returns with log_tree_root freed on success */
2447		ret = btrfs_recover_log_trees(log_tree_root);
2448		if (ret) {
2449			btrfs_error(tree_root->fs_info, ret,
2450				    "Failed to recover log tree");
2451			free_extent_buffer(log_tree_root->node);
2452			kfree(log_tree_root);
2453			goto fail_trans_kthread;
2454		}
2455
2456		if (sb->s_flags & MS_RDONLY) {
2457			ret = btrfs_commit_super(tree_root);
2458			if (ret)
2459				goto fail_trans_kthread;
2460		}
2461	}
2462
2463	ret = btrfs_find_orphan_roots(tree_root);
2464	if (ret)
2465		goto fail_trans_kthread;
2466
2467	if (!(sb->s_flags & MS_RDONLY)) {
2468		ret = btrfs_cleanup_fs_roots(fs_info);
2469		if (ret) {
2470			}
2471
 
2472		ret = btrfs_recover_relocation(tree_root);
 
2473		if (ret < 0) {
2474			printk(KERN_WARNING
2475			       "btrfs: failed to recover relocation\n");
2476			err = -EINVAL;
2477			goto fail_trans_kthread;
2478		}
2479	}
2480
2481	location.objectid = BTRFS_FS_TREE_OBJECTID;
2482	location.type = BTRFS_ROOT_ITEM_KEY;
2483	location.offset = (u64)-1;
2484
2485	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2486	if (!fs_info->fs_root)
2487		goto fail_trans_kthread;
2488	if (IS_ERR(fs_info->fs_root)) {
2489		err = PTR_ERR(fs_info->fs_root);
2490		goto fail_trans_kthread;
 
2491	}
2492
2493	if (sb->s_flags & MS_RDONLY)
2494		return 0;
2495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2496	down_read(&fs_info->cleanup_work_sem);
2497	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2498	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2499		up_read(&fs_info->cleanup_work_sem);
2500		close_ctree(tree_root);
2501		return ret;
2502	}
2503	up_read(&fs_info->cleanup_work_sem);
2504
2505	ret = btrfs_resume_balance_async(fs_info);
2506	if (ret) {
2507		printk(KERN_WARNING "btrfs: failed to resume balance\n");
2508		close_ctree(tree_root);
2509		return ret;
2510	}
2511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2512	return 0;
2513
 
 
2514fail_trans_kthread:
2515	kthread_stop(fs_info->transaction_kthread);
 
 
2516fail_cleaner:
2517	kthread_stop(fs_info->cleaner_kthread);
2518
2519	/*
2520	 * make sure we're done with the btree inode before we stop our
2521	 * kthreads
2522	 */
2523	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2524	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
 
 
 
 
 
2525
2526fail_block_groups:
2527	btrfs_free_block_groups(fs_info);
2528
2529fail_tree_roots:
2530	free_root_pointers(fs_info, 1);
 
2531
2532fail_sb_buffer:
2533	btrfs_stop_workers(&fs_info->generic_worker);
2534	btrfs_stop_workers(&fs_info->readahead_workers);
2535	btrfs_stop_workers(&fs_info->fixup_workers);
2536	btrfs_stop_workers(&fs_info->delalloc_workers);
2537	btrfs_stop_workers(&fs_info->workers);
2538	btrfs_stop_workers(&fs_info->endio_workers);
2539	btrfs_stop_workers(&fs_info->endio_meta_workers);
2540	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2541	btrfs_stop_workers(&fs_info->endio_write_workers);
2542	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2543	btrfs_stop_workers(&fs_info->submit_workers);
2544	btrfs_stop_workers(&fs_info->delayed_workers);
2545	btrfs_stop_workers(&fs_info->caching_workers);
2546fail_alloc:
2547fail_iput:
2548	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2549
2550	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2551	iput(fs_info->btree_inode);
2552fail_bdi:
2553	bdi_destroy(&fs_info->bdi);
 
 
 
 
2554fail_srcu:
2555	cleanup_srcu_struct(&fs_info->subvol_srcu);
2556fail:
 
2557	btrfs_close_devices(fs_info->fs_devices);
2558	return err;
2559
2560recovery_tree_root:
2561	if (!btrfs_test_opt(tree_root, RECOVERY))
2562		goto fail_tree_roots;
2563
2564	free_root_pointers(fs_info, 0);
2565
2566	/* don't use the log in recovery mode, it won't be valid */
2567	btrfs_set_super_log_root(disk_super, 0);
2568
2569	/* we can't trust the free space cache either */
2570	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2571
2572	ret = next_root_backup(fs_info, fs_info->super_copy,
2573			       &num_backups_tried, &backup_index);
2574	if (ret == -1)
2575		goto fail_block_groups;
2576	goto retry_root_backup;
2577}
 
2578
2579static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2580{
2581	if (uptodate) {
2582		set_buffer_uptodate(bh);
2583	} else {
2584		struct btrfs_device *device = (struct btrfs_device *)
2585			bh->b_private;
2586
2587		printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2588					  "I/O error on %s\n",
2589					  rcu_str_deref(device->name));
2590		/* note, we dont' set_buffer_write_io_error because we have
2591		 * our own ways of dealing with the IO errors
2592		 */
2593		clear_buffer_uptodate(bh);
2594		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2595	}
2596	unlock_buffer(bh);
2597	put_bh(bh);
2598}
2599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2600struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2601{
2602	struct buffer_head *bh;
2603	struct buffer_head *latest = NULL;
2604	struct btrfs_super_block *super;
2605	int i;
2606	u64 transid = 0;
2607	u64 bytenr;
2608
2609	/* we would like to check all the supers, but that would make
2610	 * a btrfs mount succeed after a mkfs from a different FS.
2611	 * So, we need to add a special mount option to scan for
2612	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2613	 */
2614	for (i = 0; i < 1; i++) {
2615		bytenr = btrfs_sb_offset(i);
2616		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2617			break;
2618		bh = __bread(bdev, bytenr / 4096, 4096);
2619		if (!bh)
2620			continue;
2621
2622		super = (struct btrfs_super_block *)bh->b_data;
2623		if (btrfs_super_bytenr(super) != bytenr ||
2624		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2625			    sizeof(super->magic))) {
2626			brelse(bh);
2627			continue;
2628		}
2629
2630		if (!latest || btrfs_super_generation(super) > transid) {
2631			brelse(latest);
2632			latest = bh;
2633			transid = btrfs_super_generation(super);
2634		} else {
2635			brelse(bh);
2636		}
2637	}
 
 
 
 
2638	return latest;
2639}
2640
2641/*
2642 * this should be called twice, once with wait == 0 and
2643 * once with wait == 1.  When wait == 0 is done, all the buffer heads
2644 * we write are pinned.
2645 *
2646 * They are released when wait == 1 is done.
2647 * max_mirrors must be the same for both runs, and it indicates how
2648 * many supers on this one device should be written.
2649 *
2650 * max_mirrors == 0 means to write them all.
2651 */
2652static int write_dev_supers(struct btrfs_device *device,
2653			    struct btrfs_super_block *sb,
2654			    int do_barriers, int wait, int max_mirrors)
2655{
2656	struct buffer_head *bh;
2657	int i;
2658	int ret;
2659	int errors = 0;
2660	u32 crc;
2661	u64 bytenr;
 
2662
2663	if (max_mirrors == 0)
2664		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2665
2666	for (i = 0; i < max_mirrors; i++) {
2667		bytenr = btrfs_sb_offset(i);
2668		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
 
2669			break;
2670
2671		if (wait) {
2672			bh = __find_get_block(device->bdev, bytenr / 4096,
2673					      BTRFS_SUPER_INFO_SIZE);
2674			BUG_ON(!bh);
2675			wait_on_buffer(bh);
2676			if (!buffer_uptodate(bh))
2677				errors++;
2678
2679			/* drop our reference */
2680			brelse(bh);
2681
2682			/* drop the reference from the wait == 0 run */
2683			brelse(bh);
 
 
 
 
 
 
 
 
 
 
 
2684			continue;
2685		} else {
2686			btrfs_set_super_bytenr(sb, bytenr);
2687
2688			crc = ~(u32)0;
2689			crc = btrfs_csum_data(NULL, (char *)sb +
2690					      BTRFS_CSUM_SIZE, crc,
2691					      BTRFS_SUPER_INFO_SIZE -
2692					      BTRFS_CSUM_SIZE);
2693			btrfs_csum_final(crc, sb->csum);
2694
2695			/*
2696			 * one reference for us, and we leave it for the
2697			 * caller
2698			 */
2699			bh = __getblk(device->bdev, bytenr / 4096,
2700				      BTRFS_SUPER_INFO_SIZE);
2701			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2702
2703			/* one reference for submit_bh */
2704			get_bh(bh);
2705
2706			set_buffer_uptodate(bh);
2707			lock_buffer(bh);
2708			bh->b_end_io = btrfs_end_buffer_write_sync;
2709			bh->b_private = device;
2710		}
2711
2712		/*
2713		 * we fua the first super.  The others we allow
2714		 * to go down lazy.
2715		 */
2716		ret = btrfsic_submit_bh(WRITE_FUA, bh);
 
 
 
2717		if (ret)
2718			errors++;
2719	}
2720	return errors < i ? 0 : -1;
2721}
2722
2723/*
2724 * endio for the write_dev_flush, this will wake anyone waiting
2725 * for the barrier when it is done
2726 */
2727static void btrfs_end_empty_barrier(struct bio *bio, int err)
2728{
2729	if (err) {
2730		if (err == -EOPNOTSUPP)
2731			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2732		clear_bit(BIO_UPTODATE, &bio->bi_flags);
2733	}
2734	if (bio->bi_private)
2735		complete(bio->bi_private);
2736	bio_put(bio);
2737}
2738
2739/*
2740 * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2741 * sent down.  With wait == 1, it waits for the previous flush.
2742 *
2743 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2744 * capable
2745 */
2746static int write_dev_flush(struct btrfs_device *device, int wait)
2747{
2748	struct bio *bio;
2749	int ret = 0;
2750
2751	if (device->nobarriers)
2752		return 0;
2753
2754	if (wait) {
2755		bio = device->flush_bio;
2756		if (!bio)
2757			return 0;
2758
2759		wait_for_completion(&device->flush_wait);
 
 
 
 
2760
2761		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2762			printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2763				      rcu_str_deref(device->name));
2764			device->nobarriers = 1;
2765		}
2766		if (!bio_flagged(bio, BIO_UPTODATE)) {
2767			ret = -EIO;
2768			if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2769				btrfs_dev_stat_inc_and_print(device,
2770					BTRFS_DEV_STAT_FLUSH_ERRS);
 
 
 
 
2771		}
2772
2773		/* drop the reference from the wait == 0 run */
2774		bio_put(bio);
2775		device->flush_bio = NULL;
2776
2777		return ret;
 
2778	}
2779
2780	/*
2781	 * one reference for us, and we leave it for the
2782	 * caller
2783	 */
2784	device->flush_bio = NULL;
2785	bio = bio_alloc(GFP_NOFS, 0);
2786	if (!bio)
2787		return -ENOMEM;
2788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2789	bio->bi_end_io = btrfs_end_empty_barrier;
2790	bio->bi_bdev = device->bdev;
 
2791	init_completion(&device->flush_wait);
2792	bio->bi_private = &device->flush_wait;
2793	device->flush_bio = bio;
2794
2795	bio_get(bio);
2796	btrfsic_submit_bio(WRITE_FLUSH, bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2797
 
 
 
 
 
 
 
2798	return 0;
2799}
2800
2801/*
2802 * send an empty flush down to each device in parallel,
2803 * then wait for them
2804 */
2805static int barrier_all_devices(struct btrfs_fs_info *info)
2806{
2807	struct list_head *head;
2808	struct btrfs_device *dev;
2809	int errors = 0;
2810	int ret;
2811
 
2812	/* send down all the barriers */
2813	head = &info->fs_devices->devices;
2814	list_for_each_entry_rcu(dev, head, dev_list) {
2815		if (!dev->bdev) {
2816			errors++;
2817			continue;
2818		}
2819		if (!dev->in_fs_metadata || !dev->writeable)
 
 
2820			continue;
2821
2822		ret = write_dev_flush(dev, 0);
2823		if (ret)
2824			errors++;
2825	}
2826
2827	/* wait for all the barriers */
2828	list_for_each_entry_rcu(dev, head, dev_list) {
 
 
2829		if (!dev->bdev) {
2830			errors++;
2831			continue;
2832		}
2833		if (!dev->in_fs_metadata || !dev->writeable)
 
2834			continue;
2835
2836		ret = write_dev_flush(dev, 1);
2837		if (ret)
2838			errors++;
 
 
 
 
 
 
 
 
 
 
 
 
 
2839	}
2840	if (errors)
2841		return -EIO;
2842	return 0;
2843}
2844
2845int write_all_supers(struct btrfs_root *root, int max_mirrors)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2846{
2847	struct list_head *head;
2848	struct btrfs_device *dev;
2849	struct btrfs_super_block *sb;
2850	struct btrfs_dev_item *dev_item;
2851	int ret;
2852	int do_barriers;
2853	int max_errors;
2854	int total_errors = 0;
2855	u64 flags;
2856
2857	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2858	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2859	backup_super_roots(root->fs_info);
 
 
 
 
 
 
2860
2861	sb = root->fs_info->super_for_commit;
2862	dev_item = &sb->dev_item;
2863
2864	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2865	head = &root->fs_info->fs_devices->devices;
 
2866
2867	if (do_barriers)
2868		barrier_all_devices(root->fs_info);
 
 
 
 
 
 
 
 
2869
2870	list_for_each_entry_rcu(dev, head, dev_list) {
2871		if (!dev->bdev) {
2872			total_errors++;
2873			continue;
2874		}
2875		if (!dev->in_fs_metadata || !dev->writeable)
 
2876			continue;
2877
2878		btrfs_set_stack_device_generation(dev_item, 0);
2879		btrfs_set_stack_device_type(dev_item, dev->type);
2880		btrfs_set_stack_device_id(dev_item, dev->devid);
2881		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2882		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
 
 
2883		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2884		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2885		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2886		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2887		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2888
2889		flags = btrfs_super_flags(sb);
2890		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2891
2892		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2893		if (ret)
2894			total_errors++;
2895	}
2896	if (total_errors > max_errors) {
2897		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2898		       total_errors);
2899
2900		/* This shouldn't happen. FUA is masked off if unsupported */
2901		BUG();
 
 
 
 
2902	}
2903
2904	total_errors = 0;
2905	list_for_each_entry_rcu(dev, head, dev_list) {
2906		if (!dev->bdev)
2907			continue;
2908		if (!dev->in_fs_metadata || !dev->writeable)
 
2909			continue;
2910
2911		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2912		if (ret)
2913			total_errors++;
2914	}
2915	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2916	if (total_errors > max_errors) {
2917		btrfs_error(root->fs_info, -EIO,
2918			    "%d errors while writing supers", total_errors);
 
2919		return -EIO;
2920	}
2921	return 0;
2922}
2923
2924int write_ctree_super(struct btrfs_trans_handle *trans,
2925		      struct btrfs_root *root, int max_mirrors)
2926{
2927	int ret;
2928
2929	ret = write_all_supers(root, max_mirrors);
2930	return ret;
2931}
2932
2933void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2934{
2935	spin_lock(&fs_info->fs_roots_radix_lock);
2936	radix_tree_delete(&fs_info->fs_roots_radix,
2937			  (unsigned long)root->root_key.objectid);
2938	spin_unlock(&fs_info->fs_roots_radix_lock);
2939
2940	if (btrfs_root_refs(&root->root_item) == 0)
2941		synchronize_srcu(&fs_info->subvol_srcu);
2942
2943	__btrfs_remove_free_space_cache(root->free_ino_pinned);
2944	__btrfs_remove_free_space_cache(root->free_ino_ctl);
 
 
 
 
 
 
 
 
 
 
 
 
2945	free_fs_root(root);
2946}
2947
2948static void free_fs_root(struct btrfs_root *root)
2949{
2950	iput(root->cache_inode);
2951	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
 
 
2952	if (root->anon_dev)
2953		free_anon_bdev(root->anon_dev);
 
 
2954	free_extent_buffer(root->node);
2955	free_extent_buffer(root->commit_root);
2956	kfree(root->free_ino_ctl);
2957	kfree(root->free_ino_pinned);
2958	kfree(root->name);
2959	kfree(root);
2960}
2961
2962static void del_fs_roots(struct btrfs_fs_info *fs_info)
2963{
2964	int ret;
2965	struct btrfs_root *gang[8];
2966	int i;
2967
2968	while (!list_empty(&fs_info->dead_roots)) {
2969		gang[0] = list_entry(fs_info->dead_roots.next,
2970				     struct btrfs_root, root_list);
2971		list_del(&gang[0]->root_list);
2972
2973		if (gang[0]->in_radix) {
2974			btrfs_free_fs_root(fs_info, gang[0]);
2975		} else {
2976			free_extent_buffer(gang[0]->node);
2977			free_extent_buffer(gang[0]->commit_root);
2978			kfree(gang[0]);
2979		}
2980	}
2981
2982	while (1) {
2983		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2984					     (void **)gang, 0,
2985					     ARRAY_SIZE(gang));
2986		if (!ret)
2987			break;
2988		for (i = 0; i < ret; i++)
2989			btrfs_free_fs_root(fs_info, gang[i]);
2990	}
2991}
2992
2993int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2994{
2995	u64 root_objectid = 0;
2996	struct btrfs_root *gang[8];
2997	int i;
2998	int ret;
 
 
2999
3000	while (1) {
 
3001		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3002					     (void **)gang, root_objectid,
3003					     ARRAY_SIZE(gang));
3004		if (!ret)
 
3005			break;
3006
3007		root_objectid = gang[ret - 1]->root_key.objectid + 1;
 
3008		for (i = 0; i < ret; i++) {
3009			int err;
 
 
 
 
 
 
 
 
3010
 
 
 
3011			root_objectid = gang[i]->root_key.objectid;
3012			err = btrfs_orphan_cleanup(gang[i]);
3013			if (err)
3014				return err;
 
3015		}
3016		root_objectid++;
3017	}
3018	return 0;
 
 
 
 
 
 
3019}
3020
3021int btrfs_commit_super(struct btrfs_root *root)
3022{
 
3023	struct btrfs_trans_handle *trans;
3024	int ret;
3025
3026	mutex_lock(&root->fs_info->cleaner_mutex);
3027	btrfs_run_delayed_iputs(root);
3028	btrfs_clean_old_snapshots(root);
3029	mutex_unlock(&root->fs_info->cleaner_mutex);
3030
3031	/* wait until ongoing cleanup work done */
3032	down_write(&root->fs_info->cleanup_work_sem);
3033	up_write(&root->fs_info->cleanup_work_sem);
3034
3035	trans = btrfs_join_transaction(root);
3036	if (IS_ERR(trans))
3037		return PTR_ERR(trans);
3038	ret = btrfs_commit_transaction(trans, root);
3039	if (ret)
3040		return ret;
3041	/* run commit again to drop the original snapshot */
3042	trans = btrfs_join_transaction(root);
3043	if (IS_ERR(trans))
3044		return PTR_ERR(trans);
3045	ret = btrfs_commit_transaction(trans, root);
3046	if (ret)
3047		return ret;
3048	ret = btrfs_write_and_wait_transaction(NULL, root);
3049	if (ret) {
3050		btrfs_error(root->fs_info, ret,
3051			    "Failed to sync btree inode to disk.");
3052		return ret;
3053	}
3054
3055	ret = write_ctree_super(NULL, root, 0);
3056	return ret;
3057}
3058
3059int close_ctree(struct btrfs_root *root)
3060{
3061	struct btrfs_fs_info *fs_info = root->fs_info;
3062	int ret;
3063
3064	fs_info->closing = 1;
3065	smp_mb();
 
 
 
 
 
 
 
3066
3067	/* pause restriper - we want to resume on mount */
3068	btrfs_pause_balance(root->fs_info);
3069
3070	btrfs_scrub_cancel(root);
 
 
3071
3072	/* wait for any defraggers to finish */
3073	wait_event(fs_info->transaction_wait,
3074		   (atomic_read(&fs_info->defrag_running) == 0));
3075
3076	/* clear out the rbtree of defraggable inodes */
3077	btrfs_run_defrag_inodes(fs_info);
3078
3079	/*
3080	 * Here come 2 situations when btrfs is broken to flip readonly:
3081	 *
3082	 * 1. when btrfs flips readonly somewhere else before
3083	 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3084	 * and btrfs will skip to write sb directly to keep
3085	 * ERROR state on disk.
3086	 *
3087	 * 2. when btrfs flips readonly just in btrfs_commit_super,
3088	 * and in such case, btrfs cannot write sb via btrfs_commit_super,
3089	 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3090	 * btrfs will cleanup all FS resources first and write sb then.
3091	 */
3092	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3093		ret = btrfs_commit_super(root);
3094		if (ret)
3095			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3096	}
3097
3098	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3099		ret = btrfs_error_commit_super(root);
 
 
 
 
 
 
 
3100		if (ret)
3101			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3102	}
3103
3104	btrfs_put_block_group_cache(fs_info);
 
 
3105
3106	kthread_stop(fs_info->transaction_kthread);
3107	kthread_stop(fs_info->cleaner_kthread);
3108
3109	fs_info->closing = 2;
3110	smp_mb();
 
 
3111
3112	if (fs_info->delalloc_bytes) {
3113		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3114		       (unsigned long long)fs_info->delalloc_bytes);
3115	}
3116	if (fs_info->total_ref_cache_size) {
3117		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3118		       (unsigned long long)fs_info->total_ref_cache_size);
3119	}
3120
3121	free_extent_buffer(fs_info->extent_root->node);
3122	free_extent_buffer(fs_info->extent_root->commit_root);
3123	free_extent_buffer(fs_info->tree_root->node);
3124	free_extent_buffer(fs_info->tree_root->commit_root);
3125	free_extent_buffer(fs_info->chunk_root->node);
3126	free_extent_buffer(fs_info->chunk_root->commit_root);
3127	free_extent_buffer(fs_info->dev_root->node);
3128	free_extent_buffer(fs_info->dev_root->commit_root);
3129	free_extent_buffer(fs_info->csum_root->node);
3130	free_extent_buffer(fs_info->csum_root->commit_root);
3131
3132	btrfs_free_block_groups(fs_info);
3133
3134	del_fs_roots(fs_info);
 
3135
3136	iput(fs_info->btree_inode);
3137
3138	btrfs_stop_workers(&fs_info->generic_worker);
3139	btrfs_stop_workers(&fs_info->fixup_workers);
3140	btrfs_stop_workers(&fs_info->delalloc_workers);
3141	btrfs_stop_workers(&fs_info->workers);
3142	btrfs_stop_workers(&fs_info->endio_workers);
3143	btrfs_stop_workers(&fs_info->endio_meta_workers);
3144	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3145	btrfs_stop_workers(&fs_info->endio_write_workers);
3146	btrfs_stop_workers(&fs_info->endio_freespace_worker);
3147	btrfs_stop_workers(&fs_info->submit_workers);
3148	btrfs_stop_workers(&fs_info->delayed_workers);
3149	btrfs_stop_workers(&fs_info->caching_workers);
3150	btrfs_stop_workers(&fs_info->readahead_workers);
3151
3152#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3153	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3154		btrfsic_unmount(root, fs_info->fs_devices);
3155#endif
3156
3157	btrfs_close_devices(fs_info->fs_devices);
3158	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3159
3160	bdi_destroy(&fs_info->bdi);
 
 
3161	cleanup_srcu_struct(&fs_info->subvol_srcu);
3162
3163	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
3164}
3165
3166int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3167			  int atomic)
3168{
3169	int ret;
3170	struct inode *btree_inode = buf->pages[0]->mapping->host;
3171
3172	ret = extent_buffer_uptodate(buf);
3173	if (!ret)
3174		return ret;
3175
3176	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3177				    parent_transid, atomic);
3178	if (ret == -EAGAIN)
3179		return ret;
3180	return !ret;
3181}
3182
3183int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3184{
3185	return set_extent_buffer_uptodate(buf);
3186}
3187
3188void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3189{
3190	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
 
3191	u64 transid = btrfs_header_generation(buf);
3192	int was_dirty;
3193
 
 
 
 
 
 
 
 
 
 
 
3194	btrfs_assert_tree_locked(buf);
3195	if (transid != root->fs_info->generation) {
3196		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3197		       "found %llu running %llu\n",
3198			(unsigned long long)buf->start,
3199			(unsigned long long)transid,
3200			(unsigned long long)root->fs_info->generation);
3201		WARN_ON(1);
3202	}
3203	was_dirty = set_extent_buffer_dirty(buf);
3204	if (!was_dirty) {
3205		spin_lock(&root->fs_info->delalloc_lock);
3206		root->fs_info->dirty_metadata_bytes += buf->len;
3207		spin_unlock(&root->fs_info->delalloc_lock);
 
 
 
 
 
 
 
 
 
 
3208	}
 
3209}
3210
3211void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
 
3212{
3213	/*
3214	 * looks as though older kernels can get into trouble with
3215	 * this code, they end up stuck in balance_dirty_pages forever
3216	 */
3217	u64 num_dirty;
3218	unsigned long thresh = 32 * 1024 * 1024;
3219
3220	if (current->flags & PF_MEMALLOC)
3221		return;
3222
3223	btrfs_balance_delayed_items(root);
 
3224
3225	num_dirty = root->fs_info->dirty_metadata_bytes;
3226
3227	if (num_dirty > thresh) {
3228		balance_dirty_pages_ratelimited_nr(
3229				   root->fs_info->btree_inode->i_mapping, 1);
3230	}
3231	return;
3232}
3233
3234void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3235{
3236	/*
3237	 * looks as though older kernels can get into trouble with
3238	 * this code, they end up stuck in balance_dirty_pages forever
3239	 */
3240	u64 num_dirty;
3241	unsigned long thresh = 32 * 1024 * 1024;
3242
3243	if (current->flags & PF_MEMALLOC)
3244		return;
3245
3246	num_dirty = root->fs_info->dirty_metadata_bytes;
3247
3248	if (num_dirty > thresh) {
3249		balance_dirty_pages_ratelimited_nr(
3250				   root->fs_info->btree_inode->i_mapping, 1);
3251	}
3252	return;
3253}
3254
3255int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
 
3256{
3257	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3258	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
 
 
 
3259}
3260
3261static int btree_lock_page_hook(struct page *page, void *data,
3262				void (*flush_fn)(void *))
3263{
3264	struct inode *inode = page->mapping->host;
3265	struct btrfs_root *root = BTRFS_I(inode)->root;
3266	struct extent_buffer *eb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3267
3268	/*
3269	 * We culled this eb but the page is still hanging out on the mapping,
3270	 * carry on.
3271	 */
3272	if (!PagePrivate(page))
3273		goto out;
3274
3275	eb = (struct extent_buffer *)page->private;
3276	if (!eb) {
3277		WARN_ON(1);
3278		goto out;
3279	}
3280	if (page != eb->pages[0])
3281		goto out;
3282
3283	if (!btrfs_try_tree_write_lock(eb)) {
3284		flush_fn(data);
3285		btrfs_tree_lock(eb);
3286	}
3287	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3288
3289	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3290		spin_lock(&root->fs_info->delalloc_lock);
3291		if (root->fs_info->dirty_metadata_bytes >= eb->len)
3292			root->fs_info->dirty_metadata_bytes -= eb->len;
3293		else
3294			WARN_ON(1);
3295		spin_unlock(&root->fs_info->delalloc_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3296	}
3297
3298	btrfs_tree_unlock(eb);
3299out:
3300	if (!trylock_page(page)) {
3301		flush_fn(data);
3302		lock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3303	}
3304	return 0;
3305}
3306
3307static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3308			      int read_only)
3309{
3310	if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3311		printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3312		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
3313	}
3314
3315	if (read_only)
3316		return 0;
3317
3318	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3319		printk(KERN_WARNING "warning: mount fs with errors, "
3320		       "running btrfsck is recommended\n");
3321	}
 
 
 
 
 
 
 
 
3322
3323	return 0;
3324}
3325
3326int btrfs_error_commit_super(struct btrfs_root *root)
3327{
3328	int ret;
3329
3330	mutex_lock(&root->fs_info->cleaner_mutex);
3331	btrfs_run_delayed_iputs(root);
3332	mutex_unlock(&root->fs_info->cleaner_mutex);
3333
3334	down_write(&root->fs_info->cleanup_work_sem);
3335	up_write(&root->fs_info->cleanup_work_sem);
3336
3337	/* cleanup FS via transaction */
3338	btrfs_cleanup_transaction(root);
3339
3340	ret = write_ctree_super(NULL, root, 0);
 
 
3341
3342	return ret;
 
3343}
3344
3345static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3346{
3347	struct btrfs_inode *btrfs_inode;
3348	struct list_head splice;
3349
3350	INIT_LIST_HEAD(&splice);
3351
3352	mutex_lock(&root->fs_info->ordered_operations_mutex);
3353	spin_lock(&root->fs_info->ordered_extent_lock);
3354
3355	list_splice_init(&root->fs_info->ordered_operations, &splice);
3356	while (!list_empty(&splice)) {
3357		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3358					 ordered_operations);
3359
3360		list_del_init(&btrfs_inode->ordered_operations);
3361
3362		btrfs_invalidate_inodes(btrfs_inode->root);
3363	}
3364
3365	spin_unlock(&root->fs_info->ordered_extent_lock);
3366	mutex_unlock(&root->fs_info->ordered_operations_mutex);
 
 
 
 
 
 
 
3367}
3368
3369static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3370{
 
3371	struct list_head splice;
3372	struct btrfs_ordered_extent *ordered;
3373	struct inode *inode;
3374
3375	INIT_LIST_HEAD(&splice);
3376
3377	spin_lock(&root->fs_info->ordered_extent_lock);
3378
3379	list_splice_init(&root->fs_info->ordered_extents, &splice);
3380	while (!list_empty(&splice)) {
3381		ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3382				     root_extent_list);
 
 
3383
3384		list_del_init(&ordered->root_extent_list);
3385		atomic_inc(&ordered->refs);
3386
3387		/* the inode may be getting freed (in sys_unlink path). */
3388		inode = igrab(ordered->inode);
3389
3390		spin_unlock(&root->fs_info->ordered_extent_lock);
3391		if (inode)
3392			iput(inode);
3393
3394		atomic_set(&ordered->refs, 1);
3395		btrfs_put_ordered_extent(ordered);
3396
3397		spin_lock(&root->fs_info->ordered_extent_lock);
 
3398	}
3399
3400	spin_unlock(&root->fs_info->ordered_extent_lock);
3401}
3402
3403int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3404			       struct btrfs_root *root)
3405{
3406	struct rb_node *node;
3407	struct btrfs_delayed_ref_root *delayed_refs;
3408	struct btrfs_delayed_ref_node *ref;
3409	int ret = 0;
3410
3411	delayed_refs = &trans->delayed_refs;
3412
3413	spin_lock(&delayed_refs->lock);
3414	if (delayed_refs->num_entries == 0) {
3415		spin_unlock(&delayed_refs->lock);
3416		printk(KERN_INFO "delayed_refs has NO entry\n");
3417		return ret;
3418	}
3419
3420	while ((node = rb_first(&delayed_refs->root)) != NULL) {
3421		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3422
3423		atomic_set(&ref->refs, 1);
3424		if (btrfs_delayed_ref_is_head(ref)) {
3425			struct btrfs_delayed_ref_head *head;
3426
3427			head = btrfs_delayed_node_to_head(ref);
3428			if (!mutex_trylock(&head->mutex)) {
3429				atomic_inc(&ref->refs);
3430				spin_unlock(&delayed_refs->lock);
3431
3432				/* Need to wait for the delayed ref to run */
3433				mutex_lock(&head->mutex);
3434				mutex_unlock(&head->mutex);
3435				btrfs_put_delayed_ref(ref);
3436
3437				spin_lock(&delayed_refs->lock);
3438				continue;
3439			}
3440
3441			kfree(head->extent_op);
3442			delayed_refs->num_heads--;
3443			if (list_empty(&head->cluster))
3444				delayed_refs->num_heads_ready--;
3445			list_del_init(&head->cluster);
3446		}
3447		ref->in_tree = 0;
3448		rb_erase(&ref->rb_node, &delayed_refs->root);
3449		delayed_refs->num_entries--;
3450
 
 
 
 
 
 
 
 
3451		spin_unlock(&delayed_refs->lock);
3452		btrfs_put_delayed_ref(ref);
3453
 
 
 
 
3454		cond_resched();
3455		spin_lock(&delayed_refs->lock);
3456	}
3457
3458	spin_unlock(&delayed_refs->lock);
3459
3460	return ret;
3461}
3462
3463static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3464{
3465	struct btrfs_pending_snapshot *snapshot;
3466	struct list_head splice;
3467
3468	INIT_LIST_HEAD(&splice);
3469
3470	list_splice_init(&t->pending_snapshots, &splice);
 
3471
3472	while (!list_empty(&splice)) {
3473		snapshot = list_entry(splice.next,
3474				      struct btrfs_pending_snapshot,
3475				      list);
 
 
3476
3477		list_del_init(&snapshot->list);
3478
3479		kfree(snapshot);
 
 
 
 
 
 
 
3480	}
 
3481}
3482
3483static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3484{
3485	struct btrfs_inode *btrfs_inode;
3486	struct list_head splice;
3487
3488	INIT_LIST_HEAD(&splice);
3489
3490	spin_lock(&root->fs_info->delalloc_lock);
3491	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3492
3493	while (!list_empty(&splice)) {
3494		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3495				    delalloc_inodes);
 
 
 
3496
3497		list_del_init(&btrfs_inode->delalloc_inodes);
 
3498
3499		btrfs_invalidate_inodes(btrfs_inode->root);
3500	}
3501
3502	spin_unlock(&root->fs_info->delalloc_lock);
3503}
3504
3505static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3506					struct extent_io_tree *dirty_pages,
3507					int mark)
3508{
3509	int ret;
3510	struct page *page;
3511	struct inode *btree_inode = root->fs_info->btree_inode;
3512	struct extent_buffer *eb;
3513	u64 start = 0;
3514	u64 end;
3515	u64 offset;
3516	unsigned long index;
3517
3518	while (1) {
3519		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3520					    mark);
3521		if (ret)
3522			break;
3523
3524		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3525		while (start <= end) {
3526			index = start >> PAGE_CACHE_SHIFT;
3527			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3528			page = find_get_page(btree_inode->i_mapping, index);
3529			if (!page)
3530				continue;
3531			offset = page_offset(page);
3532
3533			spin_lock(&dirty_pages->buffer_lock);
3534			eb = radix_tree_lookup(
3535			     &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3536					       offset >> PAGE_CACHE_SHIFT);
3537			spin_unlock(&dirty_pages->buffer_lock);
3538			if (eb)
3539				ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3540							 &eb->bflags);
3541			if (PageWriteback(page))
3542				end_page_writeback(page);
3543
3544			lock_page(page);
3545			if (PageDirty(page)) {
3546				clear_page_dirty_for_io(page);
3547				spin_lock_irq(&page->mapping->tree_lock);
3548				radix_tree_tag_clear(&page->mapping->page_tree,
3549							page_index(page),
3550							PAGECACHE_TAG_DIRTY);
3551				spin_unlock_irq(&page->mapping->tree_lock);
3552			}
3553
3554			unlock_page(page);
3555			page_cache_release(page);
 
 
3556		}
3557	}
3558
3559	return ret;
3560}
3561
3562static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3563				       struct extent_io_tree *pinned_extents)
3564{
3565	struct extent_io_tree *unpin;
3566	u64 start;
3567	u64 end;
3568	int ret;
3569	bool loop = true;
3570
3571	unpin = pinned_extents;
3572again:
3573	while (1) {
3574		ret = find_first_extent_bit(unpin, 0, &start, &end,
3575					    EXTENT_DIRTY);
3576		if (ret)
3577			break;
3578
3579		/* opt_discard */
3580		if (btrfs_test_opt(root, DISCARD))
3581			ret = btrfs_error_discard_extent(root, start,
3582							 end + 1 - start,
3583							 NULL);
3584
3585		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3586		btrfs_error_unpin_extent_range(root, start, end);
3587		cond_resched();
3588	}
3589
3590	if (loop) {
3591		if (unpin == &root->fs_info->freed_extents[0])
3592			unpin = &root->fs_info->freed_extents[1];
3593		else
3594			unpin = &root->fs_info->freed_extents[0];
3595		loop = false;
3596		goto again;
3597	}
3598
3599	return 0;
3600}
3601
3602void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3603				   struct btrfs_root *root)
3604{
3605	btrfs_destroy_delayed_refs(cur_trans, root);
3606	btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3607				cur_trans->dirty_pages.dirty_bytes);
3608
3609	/* FIXME: cleanup wait for commit */
3610	cur_trans->in_commit = 1;
3611	cur_trans->blocked = 1;
3612	wake_up(&root->fs_info->transaction_blocked_wait);
3613
3614	cur_trans->blocked = 0;
3615	wake_up(&root->fs_info->transaction_wait);
3616
3617	cur_trans->commit_done = 1;
3618	wake_up(&cur_trans->commit_wait);
 
 
 
 
 
 
 
3619
3620	btrfs_destroy_delayed_inodes(root);
3621	btrfs_assert_delayed_root_empty(root);
 
 
3622
3623	btrfs_destroy_pending_snapshots(cur_trans);
 
 
 
 
 
 
 
 
 
 
 
3624
3625	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3626				     EXTENT_DIRTY);
3627	btrfs_destroy_pinned_extent(root,
3628				    root->fs_info->pinned_extents);
 
 
 
 
 
 
3629
3630	/*
3631	memset(cur_trans, 0, sizeof(*cur_trans));
3632	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3633	*/
 
 
 
 
 
 
 
 
 
 
 
3634}
3635
3636int btrfs_cleanup_transaction(struct btrfs_root *root)
 
3637{
3638	struct btrfs_transaction *t;
3639	LIST_HEAD(list);
3640
3641	mutex_lock(&root->fs_info->transaction_kthread_mutex);
3642
3643	spin_lock(&root->fs_info->trans_lock);
3644	list_splice_init(&root->fs_info->trans_list, &list);
3645	root->fs_info->trans_no_join = 1;
3646	spin_unlock(&root->fs_info->trans_lock);
3647
3648	while (!list_empty(&list)) {
3649		t = list_entry(list.next, struct btrfs_transaction, list);
3650		if (!t)
3651			break;
3652
3653		btrfs_destroy_ordered_operations(root);
3654
3655		btrfs_destroy_ordered_extents(root);
3656
3657		btrfs_destroy_delayed_refs(t, root);
 
3658
3659		btrfs_block_rsv_release(root,
3660					&root->fs_info->trans_block_rsv,
3661					t->dirty_pages.dirty_bytes);
3662
3663		/* FIXME: cleanup wait for commit */
3664		t->in_commit = 1;
3665		t->blocked = 1;
3666		if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3667			wake_up(&root->fs_info->transaction_blocked_wait);
3668
3669		t->blocked = 0;
3670		if (waitqueue_active(&root->fs_info->transaction_wait))
3671			wake_up(&root->fs_info->transaction_wait);
3672
3673		t->commit_done = 1;
3674		if (waitqueue_active(&t->commit_wait))
3675			wake_up(&t->commit_wait);
3676
3677		btrfs_destroy_delayed_inodes(root);
3678		btrfs_assert_delayed_root_empty(root);
3679
3680		btrfs_destroy_pending_snapshots(t);
3681
3682		btrfs_destroy_delalloc_inodes(root);
 
 
3683
3684		spin_lock(&root->fs_info->trans_lock);
3685		root->fs_info->running_transaction = NULL;
3686		spin_unlock(&root->fs_info->trans_lock);
3687
3688		btrfs_destroy_marked_extents(root, &t->dirty_pages,
3689					     EXTENT_DIRTY);
3690
3691		btrfs_destroy_pinned_extent(root,
3692					    root->fs_info->pinned_extents);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3693
3694		atomic_set(&t->use_count, 0);
 
 
3695		list_del_init(&t->list);
3696		memset(t, 0, sizeof(*t));
3697		kmem_cache_free(btrfs_transaction_cachep, t);
3698	}
3699
3700	spin_lock(&root->fs_info->trans_lock);
3701	root->fs_info->trans_no_join = 0;
3702	spin_unlock(&root->fs_info->trans_lock);
3703	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
 
 
 
 
 
 
 
3704
3705	return 0;
3706}
3707
3708static struct extent_io_ops btree_extent_io_ops = {
3709	.write_cache_pages_lock_hook = btree_lock_page_hook,
3710	.readpage_end_io_hook = btree_readpage_end_io_hook,
3711	.readpage_io_failed_hook = btree_io_failed_hook,
 
 
 
 
3712	.submit_bio_hook = btree_submit_bio_hook,
 
3713	/* note we're sharing with inode.c for the merge bio hook */
3714	.merge_bio_hook = btrfs_merge_bio_hook,
 
 
 
 
 
3715};
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/blkdev.h>
   8#include <linux/scatterlist.h>
   9#include <linux/swap.h>
  10#include <linux/radix-tree.h>
  11#include <linux/writeback.h>
  12#include <linux/buffer_head.h>
  13#include <linux/workqueue.h>
  14#include <linux/kthread.h>
 
 
  15#include <linux/slab.h>
  16#include <linux/migrate.h>
  17#include <linux/ratelimit.h>
  18#include <linux/uuid.h>
  19#include <linux/semaphore.h>
  20#include <linux/error-injection.h>
  21#include <linux/crc32c.h>
  22#include <asm/unaligned.h>
 
  23#include "ctree.h"
  24#include "disk-io.h"
  25#include "transaction.h"
  26#include "btrfs_inode.h"
  27#include "volumes.h"
  28#include "print-tree.h"
 
  29#include "locking.h"
  30#include "tree-log.h"
  31#include "free-space-cache.h"
  32#include "free-space-tree.h"
  33#include "inode-map.h"
  34#include "check-integrity.h"
  35#include "rcu-string.h"
  36#include "dev-replace.h"
  37#include "raid56.h"
  38#include "sysfs.h"
  39#include "qgroup.h"
  40#include "compression.h"
  41#include "tree-checker.h"
  42#include "ref-verify.h"
  43
  44#ifdef CONFIG_X86
  45#include <asm/cpufeature.h>
  46#endif
  47
  48#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
  49				 BTRFS_HEADER_FLAG_RELOC |\
  50				 BTRFS_SUPER_FLAG_ERROR |\
  51				 BTRFS_SUPER_FLAG_SEEDING |\
  52				 BTRFS_SUPER_FLAG_METADUMP |\
  53				 BTRFS_SUPER_FLAG_METADUMP_V2)
  54
  55static const struct extent_io_ops btree_extent_io_ops;
  56static void end_workqueue_fn(struct btrfs_work *work);
  57static void free_fs_root(struct btrfs_root *root);
  58static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
 
 
  59static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  60static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  61				      struct btrfs_fs_info *fs_info);
 
  62static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  63static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  64					struct extent_io_tree *dirty_pages,
  65					int mark);
  66static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  67				       struct extent_io_tree *pinned_extents);
  68static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  69static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  70
  71/*
  72 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  73 * is complete.  This is used during reads to verify checksums, and it is used
  74 * by writes to insert metadata for new file extents after IO is complete.
  75 */
  76struct btrfs_end_io_wq {
  77	struct bio *bio;
  78	bio_end_io_t *end_io;
  79	void *private;
  80	struct btrfs_fs_info *info;
  81	blk_status_t status;
  82	enum btrfs_wq_endio_type metadata;
 
  83	struct btrfs_work work;
  84};
  85
  86static struct kmem_cache *btrfs_end_io_wq_cache;
  87
  88int __init btrfs_end_io_wq_init(void)
  89{
  90	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  91					sizeof(struct btrfs_end_io_wq),
  92					0,
  93					SLAB_MEM_SPREAD,
  94					NULL);
  95	if (!btrfs_end_io_wq_cache)
  96		return -ENOMEM;
  97	return 0;
  98}
  99
 100void __cold btrfs_end_io_wq_exit(void)
 101{
 102	kmem_cache_destroy(btrfs_end_io_wq_cache);
 103}
 104
 105/*
 106 * async submit bios are used to offload expensive checksumming
 107 * onto the worker threads.  They checksum file and metadata bios
 108 * just before they are sent down the IO stack.
 109 */
 110struct async_submit_bio {
 111	void *private_data;
 112	struct btrfs_fs_info *fs_info;
 113	struct bio *bio;
 114	extent_submit_bio_start_t *submit_bio_start;
 115	extent_submit_bio_done_t *submit_bio_done;
 
 
 116	int mirror_num;
 117	unsigned long bio_flags;
 118	/*
 119	 * bio_offset is optional, can be used if the pages in the bio
 120	 * can't tell us where in the file the bio should go
 121	 */
 122	u64 bio_offset;
 123	struct btrfs_work work;
 124	blk_status_t status;
 125};
 126
 127/*
 128 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 129 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 130 * the level the eb occupies in the tree.
 131 *
 132 * Different roots are used for different purposes and may nest inside each
 133 * other and they require separate keysets.  As lockdep keys should be
 134 * static, assign keysets according to the purpose of the root as indicated
 135 * by btrfs_root->objectid.  This ensures that all special purpose roots
 136 * have separate keysets.
 137 *
 138 * Lock-nesting across peer nodes is always done with the immediate parent
 139 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 140 * subclass to avoid triggering lockdep warning in such cases.
 141 *
 142 * The key is set by the readpage_end_io_hook after the buffer has passed
 143 * csum validation but before the pages are unlocked.  It is also set by
 144 * btrfs_init_new_buffer on freshly allocated blocks.
 145 *
 146 * We also add a check to make sure the highest level of the tree is the
 147 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 148 * needs update as well.
 149 */
 150#ifdef CONFIG_DEBUG_LOCK_ALLOC
 151# if BTRFS_MAX_LEVEL != 8
 152#  error
 153# endif
 154
 155static struct btrfs_lockdep_keyset {
 156	u64			id;		/* root objectid */
 157	const char		*name_stem;	/* lock name stem */
 158	char			names[BTRFS_MAX_LEVEL + 1][20];
 159	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
 160} btrfs_lockdep_keysets[] = {
 161	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
 162	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
 163	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
 164	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
 165	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
 166	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
 167	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
 168	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
 169	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
 170	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
 171	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
 172	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
 173	{ .id = 0,				.name_stem = "tree"	},
 174};
 175
 176void __init btrfs_init_lockdep(void)
 177{
 178	int i, j;
 179
 180	/* initialize lockdep class names */
 181	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 182		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 183
 184		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 185			snprintf(ks->names[j], sizeof(ks->names[j]),
 186				 "btrfs-%s-%02d", ks->name_stem, j);
 187	}
 188}
 189
 190void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 191				    int level)
 192{
 193	struct btrfs_lockdep_keyset *ks;
 194
 195	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 196
 197	/* find the matching keyset, id 0 is the default entry */
 198	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 199		if (ks->id == objectid)
 200			break;
 201
 202	lockdep_set_class_and_name(&eb->lock,
 203				   &ks->keys[level], ks->names[level]);
 204}
 205
 206#endif
 207
 208/*
 209 * extents on the btree inode are pretty simple, there's one extent
 210 * that covers the entire device
 211 */
 212struct extent_map *btree_get_extent(struct btrfs_inode *inode,
 213		struct page *page, size_t pg_offset, u64 start, u64 len,
 214		int create)
 215{
 216	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
 217	struct extent_map_tree *em_tree = &inode->extent_tree;
 218	struct extent_map *em;
 219	int ret;
 220
 221	read_lock(&em_tree->lock);
 222	em = lookup_extent_mapping(em_tree, start, len);
 223	if (em) {
 224		em->bdev = fs_info->fs_devices->latest_bdev;
 
 225		read_unlock(&em_tree->lock);
 226		goto out;
 227	}
 228	read_unlock(&em_tree->lock);
 229
 230	em = alloc_extent_map();
 231	if (!em) {
 232		em = ERR_PTR(-ENOMEM);
 233		goto out;
 234	}
 235	em->start = 0;
 236	em->len = (u64)-1;
 237	em->block_len = (u64)-1;
 238	em->block_start = 0;
 239	em->bdev = fs_info->fs_devices->latest_bdev;
 240
 241	write_lock(&em_tree->lock);
 242	ret = add_extent_mapping(em_tree, em, 0);
 243	if (ret == -EEXIST) {
 
 
 
 244		free_extent_map(em);
 245		em = lookup_extent_mapping(em_tree, start, len);
 246		if (!em)
 247			em = ERR_PTR(-EIO);
 
 
 
 
 
 248	} else if (ret) {
 249		free_extent_map(em);
 250		em = ERR_PTR(ret);
 251	}
 252	write_unlock(&em_tree->lock);
 253
 
 
 254out:
 255	return em;
 256}
 257
 258u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
 259{
 260	return crc32c(seed, data, len);
 261}
 262
 263void btrfs_csum_final(u32 crc, u8 *result)
 264{
 265	put_unaligned_le32(~crc, result);
 266}
 267
 268/*
 269 * compute the csum for a btree block, and either verify it or write it
 270 * into the csum field of the block.
 271 */
 272static int csum_tree_block(struct btrfs_fs_info *fs_info,
 273			   struct extent_buffer *buf,
 274			   int verify)
 275{
 276	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 277	char result[BTRFS_CSUM_SIZE];
 278	unsigned long len;
 279	unsigned long cur_len;
 280	unsigned long offset = BTRFS_CSUM_SIZE;
 281	char *kaddr;
 282	unsigned long map_start;
 283	unsigned long map_len;
 284	int err;
 285	u32 crc = ~(u32)0;
 
 286
 287	len = buf->len - offset;
 288	while (len > 0) {
 289		err = map_private_extent_buffer(buf, offset, 32,
 290					&kaddr, &map_start, &map_len);
 291		if (err)
 292			return err;
 293		cur_len = min(len, map_len - (offset - map_start));
 294		crc = btrfs_csum_data(kaddr + offset - map_start,
 295				      crc, cur_len);
 296		len -= cur_len;
 297		offset += cur_len;
 298	}
 299	memset(result, 0, BTRFS_CSUM_SIZE);
 
 
 
 
 
 
 300
 301	btrfs_csum_final(crc, result);
 302
 303	if (verify) {
 304		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 305			u32 val;
 306			u32 found = 0;
 307			memcpy(&found, result, csum_size);
 308
 309			read_extent_buffer(buf, &val, 0, csum_size);
 310			btrfs_warn_rl(fs_info,
 311				"%s checksum verify failed on %llu wanted %X found %X level %d",
 312				fs_info->sb->s_id, buf->start,
 313				val, found, btrfs_header_level(buf));
 314			return -EUCLEAN;
 
 
 
 
 315		}
 316	} else {
 317		write_extent_buffer(buf, result, 0, csum_size);
 318	}
 319
 
 320	return 0;
 321}
 322
 323/*
 324 * we can't consider a given block up to date unless the transid of the
 325 * block matches the transid in the parent node's pointer.  This is how we
 326 * detect blocks that either didn't get written at all or got written
 327 * in the wrong place.
 328 */
 329static int verify_parent_transid(struct extent_io_tree *io_tree,
 330				 struct extent_buffer *eb, u64 parent_transid,
 331				 int atomic)
 332{
 333	struct extent_state *cached_state = NULL;
 334	int ret;
 335	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
 336
 337	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 338		return 0;
 339
 340	if (atomic)
 341		return -EAGAIN;
 342
 343	if (need_lock) {
 344		btrfs_tree_read_lock(eb);
 345		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 346	}
 347
 348	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 349			 &cached_state);
 350	if (extent_buffer_uptodate(eb) &&
 351	    btrfs_header_generation(eb) == parent_transid) {
 352		ret = 0;
 353		goto out;
 354	}
 355	btrfs_err_rl(eb->fs_info,
 356		"parent transid verify failed on %llu wanted %llu found %llu",
 357			eb->start,
 358			parent_transid, btrfs_header_generation(eb));
 
 359	ret = 1;
 360
 361	/*
 362	 * Things reading via commit roots that don't have normal protection,
 363	 * like send, can have a really old block in cache that may point at a
 364	 * block that has been freed and re-allocated.  So don't clear uptodate
 365	 * if we find an eb that is under IO (dirty/writeback) because we could
 366	 * end up reading in the stale data and then writing it back out and
 367	 * making everybody very sad.
 368	 */
 369	if (!extent_buffer_under_io(eb))
 370		clear_extent_buffer_uptodate(eb);
 371out:
 372	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 373			     &cached_state);
 374	if (need_lock)
 375		btrfs_tree_read_unlock_blocking(eb);
 376	return ret;
 377}
 378
 379/*
 380 * Return 0 if the superblock checksum type matches the checksum value of that
 381 * algorithm. Pass the raw disk superblock data.
 382 */
 383static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 384				  char *raw_disk_sb)
 385{
 386	struct btrfs_super_block *disk_sb =
 387		(struct btrfs_super_block *)raw_disk_sb;
 388	u16 csum_type = btrfs_super_csum_type(disk_sb);
 389	int ret = 0;
 390
 391	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
 392		u32 crc = ~(u32)0;
 393		char result[sizeof(crc)];
 394
 395		/*
 396		 * The super_block structure does not span the whole
 397		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
 398		 * is filled with zeros and is included in the checksum.
 399		 */
 400		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
 401				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
 402		btrfs_csum_final(crc, result);
 403
 404		if (memcmp(raw_disk_sb, result, sizeof(result)))
 405			ret = 1;
 406	}
 407
 408	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
 409		btrfs_err(fs_info, "unsupported checksum algorithm %u",
 410				csum_type);
 411		ret = 1;
 412	}
 413
 414	return ret;
 415}
 416
 417static int verify_level_key(struct btrfs_fs_info *fs_info,
 418			    struct extent_buffer *eb, int level,
 419			    struct btrfs_key *first_key)
 420{
 421	int found_level;
 422	struct btrfs_key found_key;
 423	int ret;
 424
 425	found_level = btrfs_header_level(eb);
 426	if (found_level != level) {
 427#ifdef CONFIG_BTRFS_DEBUG
 428		WARN_ON(1);
 429		btrfs_err(fs_info,
 430"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
 431			  eb->start, level, found_level);
 432#endif
 433		return -EIO;
 434	}
 435
 436	if (!first_key)
 437		return 0;
 438
 439	/*
 440	 * For live tree block (new tree blocks in current transaction),
 441	 * we need proper lock context to avoid race, which is impossible here.
 442	 * So we only checks tree blocks which is read from disk, whose
 443	 * generation <= fs_info->last_trans_committed.
 444	 */
 445	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
 446		return 0;
 447	if (found_level)
 448		btrfs_node_key_to_cpu(eb, &found_key, 0);
 449	else
 450		btrfs_item_key_to_cpu(eb, &found_key, 0);
 451	ret = btrfs_comp_cpu_keys(first_key, &found_key);
 452
 453#ifdef CONFIG_BTRFS_DEBUG
 454	if (ret) {
 455		WARN_ON(1);
 456		btrfs_err(fs_info,
 457"tree first key mismatch detected, bytenr=%llu key expected=(%llu, %u, %llu) has=(%llu, %u, %llu)",
 458			  eb->start, first_key->objectid, first_key->type,
 459			  first_key->offset, found_key.objectid,
 460			  found_key.type, found_key.offset);
 461	}
 462#endif
 463	return ret;
 464}
 465
 466/*
 467 * helper to read a given tree block, doing retries as required when
 468 * the checksums don't match and we have alternate mirrors to try.
 469 *
 470 * @parent_transid:	expected transid, skip check if 0
 471 * @level:		expected level, mandatory check
 472 * @first_key:		expected key of first slot, skip check if NULL
 473 */
 474static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
 475					  struct extent_buffer *eb,
 476					  u64 parent_transid, int level,
 477					  struct btrfs_key *first_key)
 478{
 479	struct extent_io_tree *io_tree;
 480	int failed = 0;
 481	int ret;
 482	int num_copies = 0;
 483	int mirror_num = 0;
 484	int failed_mirror = 0;
 485
 486	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 487	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
 488	while (1) {
 489		ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
 490					       mirror_num);
 491		if (!ret) {
 492			if (verify_parent_transid(io_tree, eb,
 493						   parent_transid, 0))
 494				ret = -EIO;
 495			else if (verify_level_key(fs_info, eb, level,
 496						  first_key))
 497				ret = -EUCLEAN;
 498			else
 499				break;
 500		}
 501
 502		/*
 503		 * This buffer's crc is fine, but its contents are corrupted, so
 504		 * there is no reason to read the other copies, they won't be
 505		 * any less wrong.
 506		 */
 507		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) ||
 508		    ret == -EUCLEAN)
 509			break;
 510
 511		num_copies = btrfs_num_copies(fs_info,
 512					      eb->start, eb->len);
 513		if (num_copies == 1)
 514			break;
 515
 516		if (!failed_mirror) {
 517			failed = 1;
 518			failed_mirror = eb->read_mirror;
 519		}
 520
 521		mirror_num++;
 522		if (mirror_num == failed_mirror)
 523			mirror_num++;
 524
 525		if (mirror_num > num_copies)
 526			break;
 527	}
 528
 529	if (failed && !ret && failed_mirror)
 530		repair_eb_io_failure(fs_info, eb, failed_mirror);
 531
 532	return ret;
 533}
 534
 535/*
 536 * checksum a dirty tree block before IO.  This has extra checks to make sure
 537 * we only fill in the checksum field in the first page of a multi-page block
 538 */
 539
 540static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
 541{
 542	u64 start = page_offset(page);
 
 543	u64 found_start;
 544	struct extent_buffer *eb;
 545
 
 
 546	eb = (struct extent_buffer *)page->private;
 547	if (page != eb->pages[0])
 548		return 0;
 549
 550	found_start = btrfs_header_bytenr(eb);
 551	/*
 552	 * Please do not consolidate these warnings into a single if.
 553	 * It is useful to know what went wrong.
 554	 */
 555	if (WARN_ON(found_start != start))
 556		return -EUCLEAN;
 557	if (WARN_ON(!PageUptodate(page)))
 558		return -EUCLEAN;
 559
 560	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
 561			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
 562
 563	return csum_tree_block(fs_info, eb, 0);
 
 564}
 565
 566static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
 567				 struct extent_buffer *eb)
 568{
 569	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 570	u8 fsid[BTRFS_FSID_SIZE];
 571	int ret = 1;
 572
 573	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
 
 574	while (fs_devices) {
 575		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 576			ret = 0;
 577			break;
 578		}
 579		fs_devices = fs_devices->seed;
 580	}
 581	return ret;
 582}
 583
 584static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 585				      u64 phy_offset, struct page *page,
 586				      u64 start, u64 end, int mirror)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 587{
 
 588	u64 found_start;
 589	int found_level;
 590	struct extent_buffer *eb;
 591	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 592	struct btrfs_fs_info *fs_info = root->fs_info;
 593	int ret = 0;
 594	int reads_done;
 595
 596	if (!page->private)
 597		goto out;
 598
 
 599	eb = (struct extent_buffer *)page->private;
 600
 601	/* the pending IO might have been the only thing that kept this buffer
 602	 * in memory.  Make sure we have a ref for all this other checks
 603	 */
 604	extent_buffer_get(eb);
 605
 606	reads_done = atomic_dec_and_test(&eb->io_pages);
 607	if (!reads_done)
 608		goto err;
 609
 610	eb->read_mirror = mirror;
 611	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 612		ret = -EIO;
 613		goto err;
 614	}
 615
 616	found_start = btrfs_header_bytenr(eb);
 617	if (found_start != eb->start) {
 618		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
 619			     found_start, eb->start);
 
 
 620		ret = -EIO;
 621		goto err;
 622	}
 623	if (check_tree_block_fsid(fs_info, eb)) {
 624		btrfs_err_rl(fs_info, "bad fsid on block %llu",
 625			     eb->start);
 626		ret = -EIO;
 627		goto err;
 628	}
 629	found_level = btrfs_header_level(eb);
 630	if (found_level >= BTRFS_MAX_LEVEL) {
 631		btrfs_err(fs_info, "bad tree block level %d",
 632			  (int)btrfs_header_level(eb));
 633		ret = -EIO;
 634		goto err;
 635	}
 636
 637	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 638				       eb, found_level);
 639
 640	ret = csum_tree_block(fs_info, eb, 1);
 641	if (ret)
 
 642		goto err;
 
 643
 644	/*
 645	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 646	 * that we don't try and read the other copies of this block, just
 647	 * return -EIO.
 648	 */
 649	if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
 650		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 651		ret = -EIO;
 652	}
 653
 654	if (found_level > 0 && btrfs_check_node(fs_info, eb))
 655		ret = -EIO;
 656
 657	if (!ret)
 658		set_extent_buffer_uptodate(eb);
 659err:
 660	if (reads_done &&
 661	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 662		btree_readahead_hook(eb, ret);
 
 663
 664	if (ret) {
 665		/*
 666		 * our io error hook is going to dec the io pages
 667		 * again, we have to make sure it has something
 668		 * to decrement
 669		 */
 670		atomic_inc(&eb->io_pages);
 671		clear_extent_buffer_uptodate(eb);
 672	}
 673	free_extent_buffer(eb);
 674out:
 675	return ret;
 676}
 677
 678static int btree_io_failed_hook(struct page *page, int failed_mirror)
 679{
 680	struct extent_buffer *eb;
 
 681
 682	eb = (struct extent_buffer *)page->private;
 683	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
 684	eb->read_mirror = failed_mirror;
 685	atomic_dec(&eb->io_pages);
 686	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 687		btree_readahead_hook(eb, -EIO);
 688	return -EIO;	/* we fixed nothing */
 689}
 690
 691static void end_workqueue_bio(struct bio *bio)
 692{
 693	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 694	struct btrfs_fs_info *fs_info;
 695	struct btrfs_workqueue *wq;
 696	btrfs_work_func_t func;
 697
 698	fs_info = end_io_wq->info;
 699	end_io_wq->status = bio->bi_status;
 700
 701	if (bio_op(bio) == REQ_OP_WRITE) {
 702		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
 703			wq = fs_info->endio_meta_write_workers;
 704			func = btrfs_endio_meta_write_helper;
 705		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
 706			wq = fs_info->endio_freespace_worker;
 707			func = btrfs_freespace_write_helper;
 708		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 709			wq = fs_info->endio_raid56_workers;
 710			func = btrfs_endio_raid56_helper;
 711		} else {
 712			wq = fs_info->endio_write_workers;
 713			func = btrfs_endio_write_helper;
 714		}
 715	} else {
 716		if (unlikely(end_io_wq->metadata ==
 717			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
 718			wq = fs_info->endio_repair_workers;
 719			func = btrfs_endio_repair_helper;
 720		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 721			wq = fs_info->endio_raid56_workers;
 722			func = btrfs_endio_raid56_helper;
 723		} else if (end_io_wq->metadata) {
 724			wq = fs_info->endio_meta_workers;
 725			func = btrfs_endio_meta_helper;
 726		} else {
 727			wq = fs_info->endio_workers;
 728			func = btrfs_endio_helper;
 729		}
 730	}
 731
 732	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
 733	btrfs_queue_work(wq, &end_io_wq->work);
 734}
 735
 736blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 737			enum btrfs_wq_endio_type metadata)
 
 
 
 
 
 
 
 738{
 739	struct btrfs_end_io_wq *end_io_wq;
 740
 741	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 742	if (!end_io_wq)
 743		return BLK_STS_RESOURCE;
 744
 745	end_io_wq->private = bio->bi_private;
 746	end_io_wq->end_io = bio->bi_end_io;
 747	end_io_wq->info = info;
 748	end_io_wq->status = 0;
 749	end_io_wq->bio = bio;
 750	end_io_wq->metadata = metadata;
 751
 752	bio->bi_private = end_io_wq;
 753	bio->bi_end_io = end_workqueue_bio;
 754	return 0;
 755}
 756
 
 
 
 
 
 
 
 
 757static void run_one_async_start(struct btrfs_work *work)
 758{
 759	struct async_submit_bio *async;
 760	blk_status_t ret;
 761
 762	async = container_of(work, struct  async_submit_bio, work);
 763	ret = async->submit_bio_start(async->private_data, async->bio,
 
 764				      async->bio_offset);
 765	if (ret)
 766		async->status = ret;
 767}
 768
 769static void run_one_async_done(struct btrfs_work *work)
 770{
 
 771	struct async_submit_bio *async;
 
 772
 773	async = container_of(work, struct  async_submit_bio, work);
 
 
 
 
 
 
 774
 775	/* If an error occurred we just want to clean up the bio and move on */
 776	if (async->status) {
 777		async->bio->bi_status = async->status;
 778		bio_endio(async->bio);
 
 
 
 779		return;
 780	}
 781
 782	async->submit_bio_done(async->private_data, async->bio, async->mirror_num);
 
 
 783}
 784
 785static void run_one_async_free(struct btrfs_work *work)
 786{
 787	struct async_submit_bio *async;
 788
 789	async = container_of(work, struct  async_submit_bio, work);
 790	kfree(async);
 791}
 792
 793blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
 794				 int mirror_num, unsigned long bio_flags,
 795				 u64 bio_offset, void *private_data,
 796				 extent_submit_bio_start_t *submit_bio_start,
 797				 extent_submit_bio_done_t *submit_bio_done)
 
 798{
 799	struct async_submit_bio *async;
 800
 801	async = kmalloc(sizeof(*async), GFP_NOFS);
 802	if (!async)
 803		return BLK_STS_RESOURCE;
 804
 805	async->private_data = private_data;
 806	async->fs_info = fs_info;
 807	async->bio = bio;
 808	async->mirror_num = mirror_num;
 809	async->submit_bio_start = submit_bio_start;
 810	async->submit_bio_done = submit_bio_done;
 811
 812	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
 813			run_one_async_done, run_one_async_free);
 
 814
 
 815	async->bio_flags = bio_flags;
 816	async->bio_offset = bio_offset;
 817
 818	async->status = 0;
 
 
 
 
 
 819
 820	if (op_is_sync(bio->bi_opf))
 821		btrfs_set_work_high_priority(&async->work);
 
 
 
 
 
 822
 823	btrfs_queue_work(fs_info->workers, &async->work);
 824	return 0;
 825}
 826
 827static blk_status_t btree_csum_one_bio(struct bio *bio)
 828{
 829	struct bio_vec *bvec;
 
 830	struct btrfs_root *root;
 831	int i, ret = 0;
 832
 833	ASSERT(!bio_flagged(bio, BIO_CLONED));
 834	bio_for_each_segment_all(bvec, bio, i) {
 835		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 836		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
 837		if (ret)
 838			break;
 
 
 839	}
 840
 841	return errno_to_blk_status(ret);
 842}
 843
 844static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
 845					     u64 bio_offset)
 
 
 846{
 847	/*
 848	 * when we're called for a write, we're already in the async
 849	 * submission context.  Just jump into btrfs_map_bio
 850	 */
 851	return btree_csum_one_bio(bio);
 852}
 853
 854static blk_status_t btree_submit_bio_done(void *private_data, struct bio *bio,
 855					    int mirror_num)
 
 856{
 857	struct inode *inode = private_data;
 858	blk_status_t ret;
 859
 860	/*
 861	 * when we're called for a write, we're already in the async
 862	 * submission context.  Just jump into btrfs_map_bio
 863	 */
 864	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
 865	if (ret) {
 866		bio->bi_status = ret;
 867		bio_endio(bio);
 868	}
 869	return ret;
 870}
 871
 872static int check_async_write(struct btrfs_inode *bi)
 
 
 873{
 874	if (atomic_read(&bi->sync_writers))
 875		return 0;
 876#ifdef CONFIG_X86
 877	if (static_cpu_has(X86_FEATURE_XMM4_2))
 878		return 0;
 879#endif
 880	return 1;
 881}
 882
 883static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
 884					  int mirror_num, unsigned long bio_flags,
 885					  u64 bio_offset)
 886{
 887	struct inode *inode = private_data;
 888	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 889	int async = check_async_write(BTRFS_I(inode));
 890	blk_status_t ret;
 891
 892	if (bio_op(bio) != REQ_OP_WRITE) {
 893		/*
 894		 * called for a read, do the setup so that checksum validation
 895		 * can happen in the async kernel threads
 896		 */
 897		ret = btrfs_bio_wq_end_io(fs_info, bio,
 898					  BTRFS_WQ_ENDIO_METADATA);
 899		if (ret)
 900			goto out_w_error;
 901		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
 902	} else if (!async) {
 903		ret = btree_csum_one_bio(bio);
 904		if (ret)
 905			goto out_w_error;
 906		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
 907	} else {
 908		/*
 909		 * kthread helpers are used to submit writes so that
 910		 * checksumming can happen in parallel across all CPUs
 911		 */
 912		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
 913					  bio_offset, private_data,
 914					  btree_submit_bio_start,
 915					  btree_submit_bio_done);
 916	}
 917
 918	if (ret)
 919		goto out_w_error;
 920	return 0;
 921
 922out_w_error:
 923	bio->bi_status = ret;
 924	bio_endio(bio);
 925	return ret;
 
 926}
 927
 928#ifdef CONFIG_MIGRATION
 929static int btree_migratepage(struct address_space *mapping,
 930			struct page *newpage, struct page *page,
 931			enum migrate_mode mode)
 932{
 933	/*
 934	 * we can't safely write a btree page from here,
 935	 * we haven't done the locking hook
 936	 */
 937	if (PageDirty(page))
 938		return -EAGAIN;
 939	/*
 940	 * Buffers may be managed in a filesystem specific way.
 941	 * We must have no buffers or drop them.
 942	 */
 943	if (page_has_private(page) &&
 944	    !try_to_release_page(page, GFP_KERNEL))
 945		return -EAGAIN;
 946	return migrate_page(mapping, newpage, page, mode);
 947}
 948#endif
 949
 950
 951static int btree_writepages(struct address_space *mapping,
 952			    struct writeback_control *wbc)
 953{
 954	struct btrfs_fs_info *fs_info;
 955	int ret;
 956
 957	if (wbc->sync_mode == WB_SYNC_NONE) {
 
 
 
 958
 959		if (wbc->for_kupdate)
 960			return 0;
 961
 962		fs_info = BTRFS_I(mapping->host)->root->fs_info;
 963		/* this is a bit racy, but that's ok */
 964		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 965					     BTRFS_DIRTY_METADATA_THRESH);
 966		if (ret < 0)
 967			return 0;
 968	}
 969	return btree_write_cache_pages(mapping, wbc);
 970}
 971
 972static int btree_readpage(struct file *file, struct page *page)
 973{
 974	struct extent_io_tree *tree;
 975	tree = &BTRFS_I(page->mapping->host)->io_tree;
 976	return extent_read_full_page(tree, page, btree_get_extent, 0);
 977}
 978
 979static int btree_releasepage(struct page *page, gfp_t gfp_flags)
 980{
 981	if (PageWriteback(page) || PageDirty(page))
 982		return 0;
 
 
 
 
 
 
 983
 984	return try_release_extent_buffer(page);
 985}
 986
 987static void btree_invalidatepage(struct page *page, unsigned int offset,
 988				 unsigned int length)
 989{
 990	struct extent_io_tree *tree;
 991	tree = &BTRFS_I(page->mapping->host)->io_tree;
 992	extent_invalidatepage(tree, page, offset);
 993	btree_releasepage(page, GFP_NOFS);
 994	if (PagePrivate(page)) {
 995		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
 996			   "page private not zero on page %llu",
 997			   (unsigned long long)page_offset(page));
 998		ClearPagePrivate(page);
 999		set_page_private(page, 0);
1000		put_page(page);
1001	}
1002}
1003
1004static int btree_set_page_dirty(struct page *page)
1005{
1006#ifdef DEBUG
1007	struct extent_buffer *eb;
1008
1009	BUG_ON(!PagePrivate(page));
1010	eb = (struct extent_buffer *)page->private;
1011	BUG_ON(!eb);
1012	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1013	BUG_ON(!atomic_read(&eb->refs));
1014	btrfs_assert_tree_locked(eb);
1015#endif
1016	return __set_page_dirty_nobuffers(page);
1017}
1018
1019static const struct address_space_operations btree_aops = {
1020	.readpage	= btree_readpage,
1021	.writepages	= btree_writepages,
1022	.releasepage	= btree_releasepage,
1023	.invalidatepage = btree_invalidatepage,
1024#ifdef CONFIG_MIGRATION
1025	.migratepage	= btree_migratepage,
1026#endif
1027	.set_page_dirty = btree_set_page_dirty,
1028};
1029
1030void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
 
1031{
1032	struct extent_buffer *buf = NULL;
1033	struct inode *btree_inode = fs_info->btree_inode;
 
1034
1035	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1036	if (IS_ERR(buf))
1037		return;
1038	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1039				 buf, WAIT_NONE, 0);
1040	free_extent_buffer(buf);
 
1041}
1042
1043int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1044			 int mirror_num, struct extent_buffer **eb)
1045{
1046	struct extent_buffer *buf = NULL;
1047	struct inode *btree_inode = fs_info->btree_inode;
1048	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1049	int ret;
1050
1051	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1052	if (IS_ERR(buf))
1053		return 0;
1054
1055	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1056
1057	ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1058				       mirror_num);
1059	if (ret) {
1060		free_extent_buffer(buf);
1061		return ret;
1062	}
1063
1064	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1065		free_extent_buffer(buf);
1066		return -EIO;
1067	} else if (extent_buffer_uptodate(buf)) {
1068		*eb = buf;
1069	} else {
1070		free_extent_buffer(buf);
1071	}
1072	return 0;
1073}
1074
1075struct extent_buffer *btrfs_find_create_tree_block(
1076						struct btrfs_fs_info *fs_info,
1077						u64 bytenr)
1078{
1079	if (btrfs_is_testing(fs_info))
1080		return alloc_test_extent_buffer(fs_info, bytenr);
1081	return alloc_extent_buffer(fs_info, bytenr);
 
 
 
 
 
 
 
 
 
 
 
 
1082}
1083
1084
1085int btrfs_write_tree_block(struct extent_buffer *buf)
1086{
1087	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1088					buf->start + buf->len - 1);
1089}
1090
1091void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1092{
1093	filemap_fdatawait_range(buf->pages[0]->mapping,
1094			        buf->start, buf->start + buf->len - 1);
1095}
1096
1097/*
1098 * Read tree block at logical address @bytenr and do variant basic but critical
1099 * verification.
1100 *
1101 * @parent_transid:	expected transid of this tree block, skip check if 0
1102 * @level:		expected level, mandatory check
1103 * @first_key:		expected key in slot 0, skip check if NULL
1104 */
1105struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1106				      u64 parent_transid, int level,
1107				      struct btrfs_key *first_key)
1108{
1109	struct extent_buffer *buf = NULL;
1110	int ret;
1111
1112	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1113	if (IS_ERR(buf))
1114		return buf;
1115
1116	ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1117					     level, first_key);
1118	if (ret) {
1119		free_extent_buffer(buf);
1120		return ERR_PTR(ret);
1121	}
1122	return buf;
1123
1124}
1125
1126void clean_tree_block(struct btrfs_fs_info *fs_info,
1127		      struct extent_buffer *buf)
1128{
1129	if (btrfs_header_generation(buf) ==
1130	    fs_info->running_transaction->transid) {
1131		btrfs_assert_tree_locked(buf);
1132
1133		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1134			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1135						 -buf->len,
1136						 fs_info->dirty_metadata_batch);
1137			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1138			btrfs_set_lock_blocking(buf);
1139			clear_extent_buffer_dirty(buf);
 
 
 
 
 
 
1140		}
1141	}
1142}
1143
1144static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1145{
1146	struct btrfs_subvolume_writers *writers;
1147	int ret;
1148
1149	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1150	if (!writers)
1151		return ERR_PTR(-ENOMEM);
1152
1153	ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1154	if (ret < 0) {
1155		kfree(writers);
1156		return ERR_PTR(ret);
1157	}
1158
1159	init_waitqueue_head(&writers->wait);
1160	return writers;
1161}
1162
1163static void
1164btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1165{
1166	percpu_counter_destroy(&writers->counter);
1167	kfree(writers);
1168}
1169
1170static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1171			 u64 objectid)
1172{
1173	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1174	root->node = NULL;
1175	root->commit_root = NULL;
1176	root->state = 0;
 
 
 
 
 
 
 
1177	root->orphan_cleanup_state = 0;
1178
1179	root->objectid = objectid;
1180	root->last_trans = 0;
1181	root->highest_objectid = 0;
1182	root->nr_delalloc_inodes = 0;
1183	root->nr_ordered_extents = 0;
1184	root->name = NULL;
1185	root->inode_tree = RB_ROOT;
1186	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1187	root->block_rsv = NULL;
1188	root->orphan_block_rsv = NULL;
1189
1190	INIT_LIST_HEAD(&root->dirty_list);
1191	INIT_LIST_HEAD(&root->root_list);
1192	INIT_LIST_HEAD(&root->delalloc_inodes);
1193	INIT_LIST_HEAD(&root->delalloc_root);
1194	INIT_LIST_HEAD(&root->ordered_extents);
1195	INIT_LIST_HEAD(&root->ordered_root);
1196	INIT_LIST_HEAD(&root->logged_list[0]);
1197	INIT_LIST_HEAD(&root->logged_list[1]);
1198	spin_lock_init(&root->orphan_lock);
1199	spin_lock_init(&root->inode_lock);
1200	spin_lock_init(&root->delalloc_lock);
1201	spin_lock_init(&root->ordered_extent_lock);
1202	spin_lock_init(&root->accounting_lock);
1203	spin_lock_init(&root->log_extents_lock[0]);
1204	spin_lock_init(&root->log_extents_lock[1]);
1205	spin_lock_init(&root->qgroup_meta_rsv_lock);
1206	mutex_init(&root->objectid_mutex);
1207	mutex_init(&root->log_mutex);
1208	mutex_init(&root->ordered_extent_mutex);
1209	mutex_init(&root->delalloc_mutex);
1210	init_waitqueue_head(&root->log_writer_wait);
1211	init_waitqueue_head(&root->log_commit_wait[0]);
1212	init_waitqueue_head(&root->log_commit_wait[1]);
1213	INIT_LIST_HEAD(&root->log_ctxs[0]);
1214	INIT_LIST_HEAD(&root->log_ctxs[1]);
1215	atomic_set(&root->log_commit[0], 0);
1216	atomic_set(&root->log_commit[1], 0);
1217	atomic_set(&root->log_writers, 0);
1218	atomic_set(&root->log_batch, 0);
1219	atomic_set(&root->orphan_inodes, 0);
1220	refcount_set(&root->refs, 1);
1221	atomic_set(&root->will_be_snapshotted, 0);
1222	root->log_transid = 0;
1223	root->log_transid_committed = -1;
1224	root->last_log_commit = 0;
1225	if (!dummy)
1226		extent_io_tree_init(&root->dirty_log_pages, NULL);
1227
1228	memset(&root->root_key, 0, sizeof(root->root_key));
1229	memset(&root->root_item, 0, sizeof(root->root_item));
1230	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1231	if (!dummy)
1232		root->defrag_trans_start = fs_info->generation;
1233	else
1234		root->defrag_trans_start = 0;
1235	root->root_key.objectid = objectid;
1236	root->anon_dev = 0;
1237
1238	spin_lock_init(&root->root_item_lock);
1239}
1240
1241static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1242		gfp_t flags)
 
 
1243{
1244	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1245	if (root)
1246		root->fs_info = fs_info;
1247	return root;
1248}
1249
1250#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1251/* Should only be used by the testing infrastructure */
1252struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1253{
1254	struct btrfs_root *root;
 
 
 
 
1255
1256	if (!fs_info)
1257		return ERR_PTR(-EINVAL);
1258
1259	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1260	if (!root)
1261		return ERR_PTR(-ENOMEM);
1262
1263	/* We don't use the stripesize in selftest, set it as sectorsize */
1264	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1265	root->alloc_bytenr = 0;
1266
1267	return root;
1268}
1269#endif
1270
1271struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1272				     struct btrfs_fs_info *fs_info,
1273				     u64 objectid)
1274{
1275	struct extent_buffer *leaf;
1276	struct btrfs_root *tree_root = fs_info->tree_root;
1277	struct btrfs_root *root;
1278	struct btrfs_key key;
1279	int ret = 0;
1280	uuid_le uuid = NULL_UUID_LE;
1281
1282	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1283	if (!root)
1284		return ERR_PTR(-ENOMEM);
1285
1286	__setup_root(root, fs_info, objectid);
1287	root->root_key.objectid = objectid;
1288	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1289	root->root_key.offset = 0;
1290
1291	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1292	if (IS_ERR(leaf)) {
1293		ret = PTR_ERR(leaf);
1294		leaf = NULL;
1295		goto fail;
1296	}
1297
1298	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1299	btrfs_set_header_bytenr(leaf, leaf->start);
1300	btrfs_set_header_generation(leaf, trans->transid);
1301	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1302	btrfs_set_header_owner(leaf, objectid);
1303	root->node = leaf;
1304
1305	write_extent_buffer_fsid(leaf, fs_info->fsid);
1306	write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1307	btrfs_mark_buffer_dirty(leaf);
1308
1309	root->commit_root = btrfs_root_node(root);
1310	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1311
1312	root->root_item.flags = 0;
1313	root->root_item.byte_limit = 0;
1314	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1315	btrfs_set_root_generation(&root->root_item, trans->transid);
1316	btrfs_set_root_level(&root->root_item, 0);
1317	btrfs_set_root_refs(&root->root_item, 1);
1318	btrfs_set_root_used(&root->root_item, leaf->len);
1319	btrfs_set_root_last_snapshot(&root->root_item, 0);
1320	btrfs_set_root_dirid(&root->root_item, 0);
1321	if (is_fstree(objectid))
1322		uuid_le_gen(&uuid);
1323	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1324	root->root_item.drop_level = 0;
1325
1326	key.objectid = objectid;
1327	key.type = BTRFS_ROOT_ITEM_KEY;
1328	key.offset = 0;
1329	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1330	if (ret)
1331		goto fail;
1332
1333	btrfs_tree_unlock(leaf);
1334
1335	return root;
1336
1337fail:
1338	if (leaf) {
1339		btrfs_tree_unlock(leaf);
1340		free_extent_buffer(root->commit_root);
1341		free_extent_buffer(leaf);
1342	}
1343	kfree(root);
1344
1345	return ERR_PTR(ret);
1346}
1347
1348static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1349					 struct btrfs_fs_info *fs_info)
1350{
1351	struct btrfs_root *root;
 
1352	struct extent_buffer *leaf;
1353
1354	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1355	if (!root)
1356		return ERR_PTR(-ENOMEM);
1357
1358	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
 
 
1359
1360	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1361	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1362	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1363
1364	/*
1365	 * DON'T set REF_COWS for log trees
1366	 *
1367	 * log trees do not get reference counted because they go away
1368	 * before a real commit is actually done.  They do store pointers
1369	 * to file data extents, and those reference counts still get
1370	 * updated (along with back refs to the log tree).
1371	 */
 
1372
1373	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1374			NULL, 0, 0, 0);
 
1375	if (IS_ERR(leaf)) {
1376		kfree(root);
1377		return ERR_CAST(leaf);
1378	}
1379
1380	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1381	btrfs_set_header_bytenr(leaf, leaf->start);
1382	btrfs_set_header_generation(leaf, trans->transid);
1383	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1384	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1385	root->node = leaf;
1386
1387	write_extent_buffer_fsid(root->node, fs_info->fsid);
 
 
1388	btrfs_mark_buffer_dirty(root->node);
1389	btrfs_tree_unlock(root->node);
1390	return root;
1391}
1392
1393int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1394			     struct btrfs_fs_info *fs_info)
1395{
1396	struct btrfs_root *log_root;
1397
1398	log_root = alloc_log_tree(trans, fs_info);
1399	if (IS_ERR(log_root))
1400		return PTR_ERR(log_root);
1401	WARN_ON(fs_info->log_root_tree);
1402	fs_info->log_root_tree = log_root;
1403	return 0;
1404}
1405
1406int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1407		       struct btrfs_root *root)
1408{
1409	struct btrfs_fs_info *fs_info = root->fs_info;
1410	struct btrfs_root *log_root;
1411	struct btrfs_inode_item *inode_item;
1412
1413	log_root = alloc_log_tree(trans, fs_info);
1414	if (IS_ERR(log_root))
1415		return PTR_ERR(log_root);
1416
1417	log_root->last_trans = trans->transid;
1418	log_root->root_key.offset = root->root_key.objectid;
1419
1420	inode_item = &log_root->root_item.inode;
1421	btrfs_set_stack_inode_generation(inode_item, 1);
1422	btrfs_set_stack_inode_size(inode_item, 3);
1423	btrfs_set_stack_inode_nlink(inode_item, 1);
1424	btrfs_set_stack_inode_nbytes(inode_item,
1425				     fs_info->nodesize);
1426	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1427
1428	btrfs_set_root_node(&log_root->root_item, log_root->node);
1429
1430	WARN_ON(root->log_root);
1431	root->log_root = log_root;
1432	root->log_transid = 0;
1433	root->log_transid_committed = -1;
1434	root->last_log_commit = 0;
1435	return 0;
1436}
1437
1438static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1439					       struct btrfs_key *key)
1440{
1441	struct btrfs_root *root;
1442	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1443	struct btrfs_path *path;
 
1444	u64 generation;
1445	int ret;
1446	int level;
1447
1448	path = btrfs_alloc_path();
1449	if (!path)
1450		return ERR_PTR(-ENOMEM);
1451
1452	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1453	if (!root) {
1454		ret = -ENOMEM;
1455		goto alloc_fail;
 
 
 
1456	}
1457
1458	__setup_root(root, fs_info, key->objectid);
 
 
1459
1460	ret = btrfs_find_root(tree_root, key, path,
1461			      &root->root_item, &root->root_key);
 
 
 
 
 
 
 
 
 
 
 
 
1462	if (ret) {
 
1463		if (ret > 0)
1464			ret = -ENOENT;
1465		goto find_fail;
1466	}
1467
1468	generation = btrfs_root_generation(&root->root_item);
1469	level = btrfs_root_level(&root->root_item);
1470	root->node = read_tree_block(fs_info,
1471				     btrfs_root_bytenr(&root->root_item),
1472				     generation, level, NULL);
1473	if (IS_ERR(root->node)) {
1474		ret = PTR_ERR(root->node);
1475		goto find_fail;
1476	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1477		ret = -EIO;
1478		free_extent_buffer(root->node);
1479		goto find_fail;
1480	}
1481	root->commit_root = btrfs_root_node(root);
 
1482out:
1483	btrfs_free_path(path);
1484	return root;
1485
1486find_fail:
1487	kfree(root);
1488alloc_fail:
1489	root = ERR_PTR(ret);
1490	goto out;
1491}
1492
1493struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1494				      struct btrfs_key *location)
1495{
1496	struct btrfs_root *root;
1497
1498	root = btrfs_read_tree_root(tree_root, location);
1499	if (IS_ERR(root))
1500		return root;
1501
1502	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1503		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1504		btrfs_check_and_init_root_item(&root->root_item);
1505	}
1506
1507	return root;
1508}
1509
1510int btrfs_init_fs_root(struct btrfs_root *root)
1511{
1512	int ret;
1513	struct btrfs_subvolume_writers *writers;
1514
1515	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1516	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1517					GFP_NOFS);
1518	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1519		ret = -ENOMEM;
1520		goto fail;
1521	}
1522
1523	writers = btrfs_alloc_subvolume_writers();
1524	if (IS_ERR(writers)) {
1525		ret = PTR_ERR(writers);
1526		goto fail;
1527	}
1528	root->subv_writers = writers;
1529
1530	btrfs_init_free_ino_ctl(root);
1531	spin_lock_init(&root->ino_cache_lock);
1532	init_waitqueue_head(&root->ino_cache_wait);
1533
1534	ret = get_anon_bdev(&root->anon_dev);
1535	if (ret)
1536		goto fail;
1537
1538	mutex_lock(&root->objectid_mutex);
1539	ret = btrfs_find_highest_objectid(root,
1540					&root->highest_objectid);
1541	if (ret) {
1542		mutex_unlock(&root->objectid_mutex);
1543		goto fail;
1544	}
1545
1546	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1547
1548	mutex_unlock(&root->objectid_mutex);
1549
1550	return 0;
1551fail:
1552	/* the caller is responsible to call free_fs_root */
1553	return ret;
1554}
1555
1556struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1557					u64 root_id)
1558{
1559	struct btrfs_root *root;
1560
1561	spin_lock(&fs_info->fs_roots_radix_lock);
1562	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1563				 (unsigned long)root_id);
1564	spin_unlock(&fs_info->fs_roots_radix_lock);
1565	return root;
1566}
1567
1568int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1569			 struct btrfs_root *root)
1570{
1571	int ret;
1572
1573	ret = radix_tree_preload(GFP_NOFS);
1574	if (ret)
1575		return ret;
1576
1577	spin_lock(&fs_info->fs_roots_radix_lock);
1578	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1579				(unsigned long)root->root_key.objectid,
1580				root);
1581	if (ret == 0)
1582		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1583	spin_unlock(&fs_info->fs_roots_radix_lock);
1584	radix_tree_preload_end();
1585
1586	return ret;
1587}
1588
1589struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1590				     struct btrfs_key *location,
1591				     bool check_ref)
1592{
1593	struct btrfs_root *root;
1594	struct btrfs_path *path;
1595	struct btrfs_key key;
1596	int ret;
1597
1598	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1599		return fs_info->tree_root;
1600	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1601		return fs_info->extent_root;
1602	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1603		return fs_info->chunk_root;
1604	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1605		return fs_info->dev_root;
1606	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1607		return fs_info->csum_root;
1608	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1609		return fs_info->quota_root ? fs_info->quota_root :
1610					     ERR_PTR(-ENOENT);
1611	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1612		return fs_info->uuid_root ? fs_info->uuid_root :
1613					    ERR_PTR(-ENOENT);
1614	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1615		return fs_info->free_space_root ? fs_info->free_space_root :
1616						  ERR_PTR(-ENOENT);
1617again:
1618	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1619	if (root) {
1620		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1621			return ERR_PTR(-ENOENT);
 
1622		return root;
1623	}
1624
1625	root = btrfs_read_fs_root(fs_info->tree_root, location);
1626	if (IS_ERR(root))
1627		return root;
1628
1629	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1630		ret = -ENOENT;
 
 
 
1631		goto fail;
1632	}
1633
1634	ret = btrfs_init_fs_root(root);
 
 
 
 
 
1635	if (ret)
1636		goto fail;
1637
1638	path = btrfs_alloc_path();
1639	if (!path) {
1640		ret = -ENOMEM;
1641		goto fail;
1642	}
1643	key.objectid = BTRFS_ORPHAN_OBJECTID;
1644	key.type = BTRFS_ORPHAN_ITEM_KEY;
1645	key.offset = location->objectid;
1646
1647	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1648	btrfs_free_path(path);
1649	if (ret < 0)
1650		goto fail;
1651	if (ret == 0)
1652		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1653
1654	ret = btrfs_insert_fs_root(fs_info, root);
 
 
 
 
 
 
 
 
 
 
 
 
1655	if (ret) {
1656		if (ret == -EEXIST) {
1657			free_fs_root(root);
1658			goto again;
1659		}
1660		goto fail;
1661	}
 
 
 
 
1662	return root;
1663fail:
1664	free_fs_root(root);
1665	return ERR_PTR(ret);
1666}
1667
1668static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1669{
1670	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1671	int ret = 0;
1672	struct btrfs_device *device;
1673	struct backing_dev_info *bdi;
1674
1675	rcu_read_lock();
1676	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1677		if (!device->bdev)
1678			continue;
1679		bdi = device->bdev->bd_bdi;
1680		if (bdi_congested(bdi, bdi_bits)) {
1681			ret = 1;
1682			break;
1683		}
1684	}
1685	rcu_read_unlock();
1686	return ret;
1687}
1688
1689/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1690 * called by the kthread helper functions to finally call the bio end_io
1691 * functions.  This is where read checksum verification actually happens
1692 */
1693static void end_workqueue_fn(struct btrfs_work *work)
1694{
1695	struct bio *bio;
1696	struct btrfs_end_io_wq *end_io_wq;
 
 
1697
1698	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1699	bio = end_io_wq->bio;
 
1700
1701	bio->bi_status = end_io_wq->status;
1702	bio->bi_private = end_io_wq->private;
1703	bio->bi_end_io = end_io_wq->end_io;
1704	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1705	bio_endio(bio);
1706}
1707
1708static int cleaner_kthread(void *arg)
1709{
1710	struct btrfs_root *root = arg;
1711	struct btrfs_fs_info *fs_info = root->fs_info;
1712	int again;
1713	struct btrfs_trans_handle *trans;
1714
1715	do {
1716		again = 0;
1717
1718		/* Make the cleaner go to sleep early. */
1719		if (btrfs_need_cleaner_sleep(fs_info))
1720			goto sleep;
1721
1722		/*
1723		 * Do not do anything if we might cause open_ctree() to block
1724		 * before we have finished mounting the filesystem.
1725		 */
1726		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1727			goto sleep;
1728
1729		if (!mutex_trylock(&fs_info->cleaner_mutex))
1730			goto sleep;
1731
1732		/*
1733		 * Avoid the problem that we change the status of the fs
1734		 * during the above check and trylock.
1735		 */
1736		if (btrfs_need_cleaner_sleep(fs_info)) {
1737			mutex_unlock(&fs_info->cleaner_mutex);
1738			goto sleep;
1739		}
1740
1741		mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1742		btrfs_run_delayed_iputs(fs_info);
1743		mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1744
1745		again = btrfs_clean_one_deleted_snapshot(root);
1746		mutex_unlock(&fs_info->cleaner_mutex);
1747
1748		/*
1749		 * The defragger has dealt with the R/O remount and umount,
1750		 * needn't do anything special here.
1751		 */
1752		btrfs_run_defrag_inodes(fs_info);
1753
1754		/*
1755		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1756		 * with relocation (btrfs_relocate_chunk) and relocation
1757		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1758		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1759		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1760		 * unused block groups.
1761		 */
1762		btrfs_delete_unused_bgs(fs_info);
1763sleep:
1764		if (!again) {
1765			set_current_state(TASK_INTERRUPTIBLE);
1766			if (!kthread_should_stop())
1767				schedule();
1768			__set_current_state(TASK_RUNNING);
1769		}
1770	} while (!kthread_should_stop());
1771
1772	/*
1773	 * Transaction kthread is stopped before us and wakes us up.
1774	 * However we might have started a new transaction and COWed some
1775	 * tree blocks when deleting unused block groups for example. So
1776	 * make sure we commit the transaction we started to have a clean
1777	 * shutdown when evicting the btree inode - if it has dirty pages
1778	 * when we do the final iput() on it, eviction will trigger a
1779	 * writeback for it which will fail with null pointer dereferences
1780	 * since work queues and other resources were already released and
1781	 * destroyed by the time the iput/eviction/writeback is made.
1782	 */
1783	trans = btrfs_attach_transaction(root);
1784	if (IS_ERR(trans)) {
1785		if (PTR_ERR(trans) != -ENOENT)
1786			btrfs_err(fs_info,
1787				  "cleaner transaction attach returned %ld",
1788				  PTR_ERR(trans));
1789	} else {
1790		int ret;
1791
1792		ret = btrfs_commit_transaction(trans);
1793		if (ret)
1794			btrfs_err(fs_info,
1795				  "cleaner open transaction commit returned %d",
1796				  ret);
1797	}
1798
1799	return 0;
1800}
1801
1802static int transaction_kthread(void *arg)
1803{
1804	struct btrfs_root *root = arg;
1805	struct btrfs_fs_info *fs_info = root->fs_info;
1806	struct btrfs_trans_handle *trans;
1807	struct btrfs_transaction *cur;
1808	u64 transid;
1809	unsigned long now;
1810	unsigned long delay;
1811	bool cannot_commit;
1812
1813	do {
1814		cannot_commit = false;
1815		delay = HZ * fs_info->commit_interval;
1816		mutex_lock(&fs_info->transaction_kthread_mutex);
 
1817
1818		spin_lock(&fs_info->trans_lock);
1819		cur = fs_info->running_transaction;
1820		if (!cur) {
1821			spin_unlock(&fs_info->trans_lock);
1822			goto sleep;
1823		}
1824
1825		now = get_seconds();
1826		if (cur->state < TRANS_STATE_BLOCKED &&
1827		    !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1828		    (now < cur->start_time ||
1829		     now - cur->start_time < fs_info->commit_interval)) {
1830			spin_unlock(&fs_info->trans_lock);
1831			delay = HZ * 5;
1832			goto sleep;
1833		}
1834		transid = cur->transid;
1835		spin_unlock(&fs_info->trans_lock);
1836
1837		/* If the file system is aborted, this will always fail. */
1838		trans = btrfs_attach_transaction(root);
1839		if (IS_ERR(trans)) {
1840			if (PTR_ERR(trans) != -ENOENT)
1841				cannot_commit = true;
1842			goto sleep;
1843		}
1844		if (transid == trans->transid) {
1845			btrfs_commit_transaction(trans);
1846		} else {
1847			btrfs_end_transaction(trans);
1848		}
1849sleep:
1850		wake_up_process(fs_info->cleaner_kthread);
1851		mutex_unlock(&fs_info->transaction_kthread_mutex);
1852
1853		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1854				      &fs_info->fs_state)))
1855			btrfs_cleanup_transaction(fs_info);
1856		if (!kthread_should_stop() &&
1857				(!btrfs_transaction_blocked(fs_info) ||
1858				 cannot_commit))
1859			schedule_timeout_interruptible(delay);
 
1860	} while (!kthread_should_stop());
1861	return 0;
1862}
1863
1864/*
1865 * this will find the highest generation in the array of
1866 * root backups.  The index of the highest array is returned,
1867 * or -1 if we can't find anything.
1868 *
1869 * We check to make sure the array is valid by comparing the
1870 * generation of the latest  root in the array with the generation
1871 * in the super block.  If they don't match we pitch it.
1872 */
1873static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1874{
1875	u64 cur;
1876	int newest_index = -1;
1877	struct btrfs_root_backup *root_backup;
1878	int i;
1879
1880	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1881		root_backup = info->super_copy->super_roots + i;
1882		cur = btrfs_backup_tree_root_gen(root_backup);
1883		if (cur == newest_gen)
1884			newest_index = i;
1885	}
1886
1887	/* check to see if we actually wrapped around */
1888	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1889		root_backup = info->super_copy->super_roots;
1890		cur = btrfs_backup_tree_root_gen(root_backup);
1891		if (cur == newest_gen)
1892			newest_index = 0;
1893	}
1894	return newest_index;
1895}
1896
1897
1898/*
1899 * find the oldest backup so we know where to store new entries
1900 * in the backup array.  This will set the backup_root_index
1901 * field in the fs_info struct
1902 */
1903static void find_oldest_super_backup(struct btrfs_fs_info *info,
1904				     u64 newest_gen)
1905{
1906	int newest_index = -1;
1907
1908	newest_index = find_newest_super_backup(info, newest_gen);
1909	/* if there was garbage in there, just move along */
1910	if (newest_index == -1) {
1911		info->backup_root_index = 0;
1912	} else {
1913		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1914	}
1915}
1916
1917/*
1918 * copy all the root pointers into the super backup array.
1919 * this will bump the backup pointer by one when it is
1920 * done
1921 */
1922static void backup_super_roots(struct btrfs_fs_info *info)
1923{
1924	int next_backup;
1925	struct btrfs_root_backup *root_backup;
1926	int last_backup;
1927
1928	next_backup = info->backup_root_index;
1929	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1930		BTRFS_NUM_BACKUP_ROOTS;
1931
1932	/*
1933	 * just overwrite the last backup if we're at the same generation
1934	 * this happens only at umount
1935	 */
1936	root_backup = info->super_for_commit->super_roots + last_backup;
1937	if (btrfs_backup_tree_root_gen(root_backup) ==
1938	    btrfs_header_generation(info->tree_root->node))
1939		next_backup = last_backup;
1940
1941	root_backup = info->super_for_commit->super_roots + next_backup;
1942
1943	/*
1944	 * make sure all of our padding and empty slots get zero filled
1945	 * regardless of which ones we use today
1946	 */
1947	memset(root_backup, 0, sizeof(*root_backup));
1948
1949	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1950
1951	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1952	btrfs_set_backup_tree_root_gen(root_backup,
1953			       btrfs_header_generation(info->tree_root->node));
1954
1955	btrfs_set_backup_tree_root_level(root_backup,
1956			       btrfs_header_level(info->tree_root->node));
1957
1958	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1959	btrfs_set_backup_chunk_root_gen(root_backup,
1960			       btrfs_header_generation(info->chunk_root->node));
1961	btrfs_set_backup_chunk_root_level(root_backup,
1962			       btrfs_header_level(info->chunk_root->node));
1963
1964	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1965	btrfs_set_backup_extent_root_gen(root_backup,
1966			       btrfs_header_generation(info->extent_root->node));
1967	btrfs_set_backup_extent_root_level(root_backup,
1968			       btrfs_header_level(info->extent_root->node));
1969
1970	/*
1971	 * we might commit during log recovery, which happens before we set
1972	 * the fs_root.  Make sure it is valid before we fill it in.
1973	 */
1974	if (info->fs_root && info->fs_root->node) {
1975		btrfs_set_backup_fs_root(root_backup,
1976					 info->fs_root->node->start);
1977		btrfs_set_backup_fs_root_gen(root_backup,
1978			       btrfs_header_generation(info->fs_root->node));
1979		btrfs_set_backup_fs_root_level(root_backup,
1980			       btrfs_header_level(info->fs_root->node));
1981	}
1982
1983	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1984	btrfs_set_backup_dev_root_gen(root_backup,
1985			       btrfs_header_generation(info->dev_root->node));
1986	btrfs_set_backup_dev_root_level(root_backup,
1987				       btrfs_header_level(info->dev_root->node));
1988
1989	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1990	btrfs_set_backup_csum_root_gen(root_backup,
1991			       btrfs_header_generation(info->csum_root->node));
1992	btrfs_set_backup_csum_root_level(root_backup,
1993			       btrfs_header_level(info->csum_root->node));
1994
1995	btrfs_set_backup_total_bytes(root_backup,
1996			     btrfs_super_total_bytes(info->super_copy));
1997	btrfs_set_backup_bytes_used(root_backup,
1998			     btrfs_super_bytes_used(info->super_copy));
1999	btrfs_set_backup_num_devices(root_backup,
2000			     btrfs_super_num_devices(info->super_copy));
2001
2002	/*
2003	 * if we don't copy this out to the super_copy, it won't get remembered
2004	 * for the next commit
2005	 */
2006	memcpy(&info->super_copy->super_roots,
2007	       &info->super_for_commit->super_roots,
2008	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2009}
2010
2011/*
2012 * this copies info out of the root backup array and back into
2013 * the in-memory super block.  It is meant to help iterate through
2014 * the array, so you send it the number of backups you've already
2015 * tried and the last backup index you used.
2016 *
2017 * this returns -1 when it has tried all the backups
2018 */
2019static noinline int next_root_backup(struct btrfs_fs_info *info,
2020				     struct btrfs_super_block *super,
2021				     int *num_backups_tried, int *backup_index)
2022{
2023	struct btrfs_root_backup *root_backup;
2024	int newest = *backup_index;
2025
2026	if (*num_backups_tried == 0) {
2027		u64 gen = btrfs_super_generation(super);
2028
2029		newest = find_newest_super_backup(info, gen);
2030		if (newest == -1)
2031			return -1;
2032
2033		*backup_index = newest;
2034		*num_backups_tried = 1;
2035	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2036		/* we've tried all the backups, all done */
2037		return -1;
2038	} else {
2039		/* jump to the next oldest backup */
2040		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2041			BTRFS_NUM_BACKUP_ROOTS;
2042		*backup_index = newest;
2043		*num_backups_tried += 1;
2044	}
2045	root_backup = super->super_roots + newest;
2046
2047	btrfs_set_super_generation(super,
2048				   btrfs_backup_tree_root_gen(root_backup));
2049	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2050	btrfs_set_super_root_level(super,
2051				   btrfs_backup_tree_root_level(root_backup));
2052	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2053
2054	/*
2055	 * fixme: the total bytes and num_devices need to match or we should
2056	 * need a fsck
2057	 */
2058	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2059	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2060	return 0;
2061}
2062
2063/* helper to cleanup workers */
2064static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2065{
2066	btrfs_destroy_workqueue(fs_info->fixup_workers);
2067	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2068	btrfs_destroy_workqueue(fs_info->workers);
2069	btrfs_destroy_workqueue(fs_info->endio_workers);
2070	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2071	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2072	btrfs_destroy_workqueue(fs_info->rmw_workers);
2073	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2074	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2075	btrfs_destroy_workqueue(fs_info->submit_workers);
2076	btrfs_destroy_workqueue(fs_info->delayed_workers);
2077	btrfs_destroy_workqueue(fs_info->caching_workers);
2078	btrfs_destroy_workqueue(fs_info->readahead_workers);
2079	btrfs_destroy_workqueue(fs_info->flush_workers);
2080	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2081	btrfs_destroy_workqueue(fs_info->extent_workers);
2082	/*
2083	 * Now that all other work queues are destroyed, we can safely destroy
2084	 * the queues used for metadata I/O, since tasks from those other work
2085	 * queues can do metadata I/O operations.
2086	 */
2087	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2088	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2089}
2090
2091static void free_root_extent_buffers(struct btrfs_root *root)
2092{
2093	if (root) {
2094		free_extent_buffer(root->node);
2095		free_extent_buffer(root->commit_root);
2096		root->node = NULL;
2097		root->commit_root = NULL;
2098	}
2099}
2100
2101/* helper to cleanup tree roots */
2102static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2103{
2104	free_root_extent_buffers(info->tree_root);
2105
2106	free_root_extent_buffers(info->dev_root);
2107	free_root_extent_buffers(info->extent_root);
2108	free_root_extent_buffers(info->csum_root);
2109	free_root_extent_buffers(info->quota_root);
2110	free_root_extent_buffers(info->uuid_root);
2111	if (chunk_root)
2112		free_root_extent_buffers(info->chunk_root);
2113	free_root_extent_buffers(info->free_space_root);
2114}
2115
2116void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2117{
2118	int ret;
2119	struct btrfs_root *gang[8];
2120	int i;
2121
2122	while (!list_empty(&fs_info->dead_roots)) {
2123		gang[0] = list_entry(fs_info->dead_roots.next,
2124				     struct btrfs_root, root_list);
2125		list_del(&gang[0]->root_list);
2126
2127		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2128			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2129		} else {
2130			free_extent_buffer(gang[0]->node);
2131			free_extent_buffer(gang[0]->commit_root);
2132			btrfs_put_fs_root(gang[0]);
2133		}
2134	}
2135
2136	while (1) {
2137		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2138					     (void **)gang, 0,
2139					     ARRAY_SIZE(gang));
2140		if (!ret)
2141			break;
2142		for (i = 0; i < ret; i++)
2143			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2144	}
2145
2146	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2147		btrfs_free_log_root_tree(NULL, fs_info);
2148		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2149	}
2150}
2151
2152static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2153{
2154	mutex_init(&fs_info->scrub_lock);
2155	atomic_set(&fs_info->scrubs_running, 0);
2156	atomic_set(&fs_info->scrub_pause_req, 0);
2157	atomic_set(&fs_info->scrubs_paused, 0);
2158	atomic_set(&fs_info->scrub_cancel_req, 0);
2159	init_waitqueue_head(&fs_info->scrub_pause_wait);
2160	fs_info->scrub_workers_refcnt = 0;
2161}
2162
2163static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2164{
2165	spin_lock_init(&fs_info->balance_lock);
2166	mutex_init(&fs_info->balance_mutex);
2167	atomic_set(&fs_info->balance_running, 0);
2168	atomic_set(&fs_info->balance_pause_req, 0);
2169	atomic_set(&fs_info->balance_cancel_req, 0);
2170	fs_info->balance_ctl = NULL;
2171	init_waitqueue_head(&fs_info->balance_wait_q);
2172}
2173
2174static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2175{
2176	struct inode *inode = fs_info->btree_inode;
2177
2178	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2179	set_nlink(inode, 1);
2180	/*
2181	 * we set the i_size on the btree inode to the max possible int.
2182	 * the real end of the address space is determined by all of
2183	 * the devices in the system
2184	 */
2185	inode->i_size = OFFSET_MAX;
2186	inode->i_mapping->a_ops = &btree_aops;
2187
2188	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2189	extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2190	BTRFS_I(inode)->io_tree.track_uptodate = 0;
2191	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2192
2193	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2194
2195	BTRFS_I(inode)->root = fs_info->tree_root;
2196	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2197	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2198	btrfs_insert_inode_hash(inode);
2199}
2200
2201static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2202{
2203	fs_info->dev_replace.lock_owner = 0;
2204	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2205	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2206	rwlock_init(&fs_info->dev_replace.lock);
2207	atomic_set(&fs_info->dev_replace.read_locks, 0);
2208	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2209	init_waitqueue_head(&fs_info->replace_wait);
2210	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2211}
2212
2213static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2214{
2215	spin_lock_init(&fs_info->qgroup_lock);
2216	mutex_init(&fs_info->qgroup_ioctl_lock);
2217	fs_info->qgroup_tree = RB_ROOT;
2218	fs_info->qgroup_op_tree = RB_ROOT;
2219	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2220	fs_info->qgroup_seq = 1;
2221	fs_info->qgroup_ulist = NULL;
2222	fs_info->qgroup_rescan_running = false;
2223	mutex_init(&fs_info->qgroup_rescan_lock);
2224}
2225
2226static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2227		struct btrfs_fs_devices *fs_devices)
2228{
2229	u32 max_active = fs_info->thread_pool_size;
2230	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2231
2232	fs_info->workers =
2233		btrfs_alloc_workqueue(fs_info, "worker",
2234				      flags | WQ_HIGHPRI, max_active, 16);
2235
2236	fs_info->delalloc_workers =
2237		btrfs_alloc_workqueue(fs_info, "delalloc",
2238				      flags, max_active, 2);
2239
2240	fs_info->flush_workers =
2241		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2242				      flags, max_active, 0);
2243
2244	fs_info->caching_workers =
2245		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2246
2247	/*
2248	 * a higher idle thresh on the submit workers makes it much more
2249	 * likely that bios will be send down in a sane order to the
2250	 * devices
2251	 */
2252	fs_info->submit_workers =
2253		btrfs_alloc_workqueue(fs_info, "submit", flags,
2254				      min_t(u64, fs_devices->num_devices,
2255					    max_active), 64);
2256
2257	fs_info->fixup_workers =
2258		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2259
2260	/*
2261	 * endios are largely parallel and should have a very
2262	 * low idle thresh
2263	 */
2264	fs_info->endio_workers =
2265		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2266	fs_info->endio_meta_workers =
2267		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2268				      max_active, 4);
2269	fs_info->endio_meta_write_workers =
2270		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2271				      max_active, 2);
2272	fs_info->endio_raid56_workers =
2273		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2274				      max_active, 4);
2275	fs_info->endio_repair_workers =
2276		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2277	fs_info->rmw_workers =
2278		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2279	fs_info->endio_write_workers =
2280		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2281				      max_active, 2);
2282	fs_info->endio_freespace_worker =
2283		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2284				      max_active, 0);
2285	fs_info->delayed_workers =
2286		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2287				      max_active, 0);
2288	fs_info->readahead_workers =
2289		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2290				      max_active, 2);
2291	fs_info->qgroup_rescan_workers =
2292		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2293	fs_info->extent_workers =
2294		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2295				      min_t(u64, fs_devices->num_devices,
2296					    max_active), 8);
2297
2298	if (!(fs_info->workers && fs_info->delalloc_workers &&
2299	      fs_info->submit_workers && fs_info->flush_workers &&
2300	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2301	      fs_info->endio_meta_write_workers &&
2302	      fs_info->endio_repair_workers &&
2303	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2304	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2305	      fs_info->caching_workers && fs_info->readahead_workers &&
2306	      fs_info->fixup_workers && fs_info->delayed_workers &&
2307	      fs_info->extent_workers &&
2308	      fs_info->qgroup_rescan_workers)) {
2309		return -ENOMEM;
2310	}
2311
2312	return 0;
2313}
2314
2315static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2316			    struct btrfs_fs_devices *fs_devices)
2317{
2318	int ret;
2319	struct btrfs_root *log_tree_root;
2320	struct btrfs_super_block *disk_super = fs_info->super_copy;
2321	u64 bytenr = btrfs_super_log_root(disk_super);
2322	int level = btrfs_super_log_root_level(disk_super);
2323
2324	if (fs_devices->rw_devices == 0) {
2325		btrfs_warn(fs_info, "log replay required on RO media");
2326		return -EIO;
2327	}
2328
2329	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2330	if (!log_tree_root)
2331		return -ENOMEM;
2332
2333	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2334
2335	log_tree_root->node = read_tree_block(fs_info, bytenr,
2336					      fs_info->generation + 1,
2337					      level, NULL);
2338	if (IS_ERR(log_tree_root->node)) {
2339		btrfs_warn(fs_info, "failed to read log tree");
2340		ret = PTR_ERR(log_tree_root->node);
2341		kfree(log_tree_root);
2342		return ret;
2343	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2344		btrfs_err(fs_info, "failed to read log tree");
2345		free_extent_buffer(log_tree_root->node);
2346		kfree(log_tree_root);
2347		return -EIO;
2348	}
2349	/* returns with log_tree_root freed on success */
2350	ret = btrfs_recover_log_trees(log_tree_root);
2351	if (ret) {
2352		btrfs_handle_fs_error(fs_info, ret,
2353				      "Failed to recover log tree");
2354		free_extent_buffer(log_tree_root->node);
2355		kfree(log_tree_root);
2356		return ret;
2357	}
2358
2359	if (sb_rdonly(fs_info->sb)) {
2360		ret = btrfs_commit_super(fs_info);
2361		if (ret)
2362			return ret;
2363	}
2364
2365	return 0;
2366}
2367
2368static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2369{
2370	struct btrfs_root *tree_root = fs_info->tree_root;
2371	struct btrfs_root *root;
2372	struct btrfs_key location;
2373	int ret;
2374
2375	BUG_ON(!fs_info->tree_root);
2376
2377	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2378	location.type = BTRFS_ROOT_ITEM_KEY;
2379	location.offset = 0;
2380
2381	root = btrfs_read_tree_root(tree_root, &location);
2382	if (IS_ERR(root)) {
2383		ret = PTR_ERR(root);
2384		goto out;
2385	}
2386	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2387	fs_info->extent_root = root;
2388
2389	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2390	root = btrfs_read_tree_root(tree_root, &location);
2391	if (IS_ERR(root)) {
2392		ret = PTR_ERR(root);
2393		goto out;
2394	}
2395	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2396	fs_info->dev_root = root;
2397	btrfs_init_devices_late(fs_info);
2398
2399	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2400	root = btrfs_read_tree_root(tree_root, &location);
2401	if (IS_ERR(root)) {
2402		ret = PTR_ERR(root);
2403		goto out;
2404	}
2405	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2406	fs_info->csum_root = root;
2407
2408	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2409	root = btrfs_read_tree_root(tree_root, &location);
2410	if (!IS_ERR(root)) {
2411		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2412		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2413		fs_info->quota_root = root;
2414	}
2415
2416	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2417	root = btrfs_read_tree_root(tree_root, &location);
2418	if (IS_ERR(root)) {
2419		ret = PTR_ERR(root);
2420		if (ret != -ENOENT)
2421			goto out;
2422	} else {
2423		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2424		fs_info->uuid_root = root;
2425	}
2426
2427	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2428		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2429		root = btrfs_read_tree_root(tree_root, &location);
2430		if (IS_ERR(root)) {
2431			ret = PTR_ERR(root);
2432			goto out;
2433		}
2434		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2435		fs_info->free_space_root = root;
2436	}
2437
2438	return 0;
2439out:
2440	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2441		   location.objectid, ret);
2442	return ret;
2443}
2444
2445int open_ctree(struct super_block *sb,
2446	       struct btrfs_fs_devices *fs_devices,
2447	       char *options)
2448{
2449	u32 sectorsize;
2450	u32 nodesize;
 
 
2451	u32 stripesize;
2452	u64 generation;
2453	u64 features;
2454	struct btrfs_key location;
2455	struct buffer_head *bh;
2456	struct btrfs_super_block *disk_super;
2457	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2458	struct btrfs_root *tree_root;
 
 
2459	struct btrfs_root *chunk_root;
 
 
2460	int ret;
2461	int err = -EINVAL;
2462	int num_backups_tried = 0;
2463	int backup_index = 0;
2464	int clear_free_space_tree = 0;
2465	int level;
2466
2467	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2468	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2469	if (!tree_root || !chunk_root) {
 
 
 
 
 
2470		err = -ENOMEM;
2471		goto fail;
2472	}
2473
2474	ret = init_srcu_struct(&fs_info->subvol_srcu);
2475	if (ret) {
2476		err = ret;
2477		goto fail;
2478	}
2479
2480	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2481	if (ret) {
2482		err = ret;
2483		goto fail_srcu;
2484	}
2485	fs_info->dirty_metadata_batch = PAGE_SIZE *
2486					(1 + ilog2(nr_cpu_ids));
2487
2488	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2489	if (ret) {
2490		err = ret;
2491		goto fail_dirty_metadata_bytes;
2492	}
2493
2494	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2495	if (ret) {
2496		err = ret;
2497		goto fail_delalloc_bytes;
2498	}
2499
2500	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2501	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2502	INIT_LIST_HEAD(&fs_info->trans_list);
2503	INIT_LIST_HEAD(&fs_info->dead_roots);
2504	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2505	INIT_LIST_HEAD(&fs_info->delalloc_roots);
 
 
2506	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2507	INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2508	spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2509	spin_lock_init(&fs_info->delalloc_root_lock);
2510	spin_lock_init(&fs_info->trans_lock);
 
2511	spin_lock_init(&fs_info->fs_roots_radix_lock);
2512	spin_lock_init(&fs_info->delayed_iput_lock);
2513	spin_lock_init(&fs_info->defrag_inodes_lock);
 
2514	spin_lock_init(&fs_info->tree_mod_seq_lock);
2515	spin_lock_init(&fs_info->super_lock);
2516	spin_lock_init(&fs_info->qgroup_op_lock);
2517	spin_lock_init(&fs_info->buffer_lock);
2518	spin_lock_init(&fs_info->unused_bgs_lock);
2519	rwlock_init(&fs_info->tree_mod_log_lock);
2520	mutex_init(&fs_info->unused_bg_unpin_mutex);
2521	mutex_init(&fs_info->delete_unused_bgs_mutex);
2522	mutex_init(&fs_info->reloc_mutex);
2523	mutex_init(&fs_info->delalloc_root_mutex);
2524	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2525	seqlock_init(&fs_info->profiles_lock);
2526
 
2527	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2528	INIT_LIST_HEAD(&fs_info->space_info);
2529	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2530	INIT_LIST_HEAD(&fs_info->unused_bgs);
2531	btrfs_mapping_init(&fs_info->mapping_tree);
2532	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2533			     BTRFS_BLOCK_RSV_GLOBAL);
2534	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2535	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2536	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2537	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2538			     BTRFS_BLOCK_RSV_DELOPS);
2539	atomic_set(&fs_info->async_delalloc_pages, 0);
 
 
2540	atomic_set(&fs_info->defrag_running, 0);
2541	atomic_set(&fs_info->qgroup_op_seq, 0);
2542	atomic_set(&fs_info->reada_works_cnt, 0);
2543	atomic64_set(&fs_info->tree_mod_seq, 0);
2544	fs_info->sb = sb;
2545	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2546	fs_info->metadata_ratio = 0;
2547	fs_info->defrag_inodes = RB_ROOT;
2548	atomic64_set(&fs_info->free_chunk_space, 0);
 
2549	fs_info->tree_mod_log = RB_ROOT;
2550	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2551	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2552	/* readahead state */
2553	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2554	spin_lock_init(&fs_info->reada_lock);
2555	btrfs_init_ref_verify(fs_info);
2556
2557	fs_info->thread_pool_size = min_t(unsigned long,
2558					  num_online_cpus() + 2, 8);
2559
2560	INIT_LIST_HEAD(&fs_info->ordered_roots);
2561	spin_lock_init(&fs_info->ordered_root_lock);
2562
2563	fs_info->btree_inode = new_inode(sb);
2564	if (!fs_info->btree_inode) {
2565		err = -ENOMEM;
2566		goto fail_bio_counter;
2567	}
2568	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2569
2570	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2571					GFP_KERNEL);
2572	if (!fs_info->delayed_root) {
2573		err = -ENOMEM;
2574		goto fail_iput;
2575	}
2576	btrfs_init_delayed_root(fs_info->delayed_root);
2577
2578	btrfs_init_scrub(fs_info);
 
 
 
 
 
 
 
2579#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2580	fs_info->check_integrity_print_mask = 0;
2581#endif
2582	btrfs_init_balance(fs_info);
2583	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2584
2585	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2586	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
 
 
 
 
 
 
 
 
 
2587
2588	btrfs_init_btree_inode(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2589
2590	spin_lock_init(&fs_info->block_group_cache_lock);
2591	fs_info->block_group_cache_tree = RB_ROOT;
2592	fs_info->first_logical_byte = (u64)-1;
2593
2594	extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2595	extent_io_tree_init(&fs_info->freed_extents[1], NULL);
 
 
2596	fs_info->pinned_extents = &fs_info->freed_extents[0];
2597	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
 
2598
2599	mutex_init(&fs_info->ordered_operations_mutex);
2600	mutex_init(&fs_info->tree_log_mutex);
2601	mutex_init(&fs_info->chunk_mutex);
2602	mutex_init(&fs_info->transaction_kthread_mutex);
2603	mutex_init(&fs_info->cleaner_mutex);
2604	mutex_init(&fs_info->volume_mutex);
2605	mutex_init(&fs_info->ro_block_group_mutex);
2606	init_rwsem(&fs_info->commit_root_sem);
2607	init_rwsem(&fs_info->cleanup_work_sem);
2608	init_rwsem(&fs_info->subvol_sem);
2609	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2610
2611	btrfs_init_dev_replace_locks(fs_info);
2612	btrfs_init_qgroup(fs_info);
2613
2614	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2615	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2616
2617	init_waitqueue_head(&fs_info->transaction_throttle);
2618	init_waitqueue_head(&fs_info->transaction_wait);
2619	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2620	init_waitqueue_head(&fs_info->async_submit_wait);
2621
2622	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2623
2624	/* Usable values until the real ones are cached from the superblock */
2625	fs_info->nodesize = 4096;
2626	fs_info->sectorsize = 4096;
2627	fs_info->stripesize = 4096;
2628
2629	ret = btrfs_alloc_stripe_hash_table(fs_info);
2630	if (ret) {
2631		err = ret;
2632		goto fail_alloc;
2633	}
2634
2635	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2636
2637	invalidate_bdev(fs_devices->latest_bdev);
2638
2639	/*
2640	 * Read super block and check the signature bytes only
2641	 */
2642	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2643	if (IS_ERR(bh)) {
2644		err = PTR_ERR(bh);
2645		goto fail_alloc;
2646	}
2647
2648	/*
2649	 * We want to check superblock checksum, the type is stored inside.
2650	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2651	 */
2652	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2653		btrfs_err(fs_info, "superblock checksum mismatch");
2654		err = -EINVAL;
2655		brelse(bh);
2656		goto fail_alloc;
2657	}
2658
2659	/*
2660	 * super_copy is zeroed at allocation time and we never touch the
2661	 * following bytes up to INFO_SIZE, the checksum is calculated from
2662	 * the whole block of INFO_SIZE
2663	 */
2664	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2665	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2666	       sizeof(*fs_info->super_for_commit));
2667	brelse(bh);
2668
2669	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2670
2671	ret = btrfs_check_super_valid(fs_info);
2672	if (ret) {
2673		btrfs_err(fs_info, "superblock contains fatal errors");
2674		err = -EINVAL;
2675		goto fail_alloc;
2676	}
2677
2678	disk_super = fs_info->super_copy;
2679	if (!btrfs_super_root(disk_super))
2680		goto fail_alloc;
2681
2682	/* check FS state, whether FS is broken. */
2683	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2684		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
 
 
 
 
 
 
2685
2686	/*
2687	 * run through our array of backup supers and setup
2688	 * our ring pointer to the oldest one
2689	 */
2690	generation = btrfs_super_generation(disk_super);
2691	find_oldest_super_backup(fs_info, generation);
2692
2693	/*
2694	 * In the long term, we'll store the compression type in the super
2695	 * block, and it'll be used for per file compression control.
2696	 */
2697	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2698
2699	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2700	if (ret) {
2701		err = ret;
2702		goto fail_alloc;
2703	}
2704
2705	features = btrfs_super_incompat_flags(disk_super) &
2706		~BTRFS_FEATURE_INCOMPAT_SUPP;
2707	if (features) {
2708		btrfs_err(fs_info,
2709		    "cannot mount because of unsupported optional features (%llx)",
2710		    features);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2711		err = -EINVAL;
2712		goto fail_alloc;
2713	}
2714
2715	features = btrfs_super_incompat_flags(disk_super);
2716	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2717	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2718		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2719	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2720		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2721
2722	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2723		btrfs_info(fs_info, "has skinny extents");
2724
2725	/*
2726	 * flag our filesystem as having big metadata blocks if
2727	 * they are bigger than the page size
2728	 */
2729	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2730		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2731			btrfs_info(fs_info,
2732				"flagging fs with big metadata feature");
2733		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2734	}
2735
2736	nodesize = btrfs_super_nodesize(disk_super);
 
2737	sectorsize = btrfs_super_sectorsize(disk_super);
2738	stripesize = sectorsize;
2739	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2740	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2741
2742	/* Cache block sizes */
2743	fs_info->nodesize = nodesize;
2744	fs_info->sectorsize = sectorsize;
2745	fs_info->stripesize = stripesize;
2746
2747	/*
2748	 * mixed block groups end up with duplicate but slightly offset
2749	 * extent buffers for the same range.  It leads to corruptions
2750	 */
2751	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2752	    (sectorsize != nodesize)) {
2753		btrfs_err(fs_info,
2754"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2755			nodesize, sectorsize);
2756		goto fail_alloc;
2757	}
2758
2759	/*
2760	 * Needn't use the lock because there is no other task which will
2761	 * update the flag.
2762	 */
2763	btrfs_set_super_incompat_flags(disk_super, features);
2764
2765	features = btrfs_super_compat_ro_flags(disk_super) &
2766		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2767	if (!sb_rdonly(sb) && features) {
2768		btrfs_err(fs_info,
2769	"cannot mount read-write because of unsupported optional features (%llx)",
2770		       features);
2771		err = -EINVAL;
2772		goto fail_alloc;
2773	}
2774
2775	ret = btrfs_init_workqueues(fs_info, fs_devices);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2776	if (ret) {
2777		err = ret;
2778		goto fail_sb_buffer;
2779	}
2780
2781	sb->s_bdi->congested_fn = btrfs_congested_fn;
2782	sb->s_bdi->congested_data = fs_info;
2783	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2784	sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2785	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2786	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
 
 
2787
2788	sb->s_blocksize = sectorsize;
2789	sb->s_blocksize_bits = blksize_bits(sectorsize);
2790	memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
 
 
 
 
 
 
 
 
 
 
 
2791
2792	mutex_lock(&fs_info->chunk_mutex);
2793	ret = btrfs_read_sys_array(fs_info);
2794	mutex_unlock(&fs_info->chunk_mutex);
2795	if (ret) {
2796		btrfs_err(fs_info, "failed to read the system array: %d", ret);
 
2797		goto fail_sb_buffer;
2798	}
2799
 
 
2800	generation = btrfs_super_chunk_root_generation(disk_super);
2801	level = btrfs_super_chunk_root_level(disk_super);
2802
2803	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
 
2804
2805	chunk_root->node = read_tree_block(fs_info,
2806					   btrfs_super_chunk_root(disk_super),
2807					   generation, level, NULL);
2808	if (IS_ERR(chunk_root->node) ||
2809	    !extent_buffer_uptodate(chunk_root->node)) {
2810		btrfs_err(fs_info, "failed to read chunk root");
2811		if (!IS_ERR(chunk_root->node))
2812			free_extent_buffer(chunk_root->node);
2813		chunk_root->node = NULL;
2814		goto fail_tree_roots;
2815	}
2816	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2817	chunk_root->commit_root = btrfs_root_node(chunk_root);
2818
2819	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2820	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
 
2821
2822	ret = btrfs_read_chunk_tree(fs_info);
2823	if (ret) {
2824		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
 
2825		goto fail_tree_roots;
2826	}
2827
2828	/*
2829	 * Keep the devid that is marked to be the target device for the
2830	 * device replace procedure
2831	 */
2832	btrfs_free_extra_devids(fs_devices, 0);
2833
2834	if (!fs_devices->latest_bdev) {
2835		btrfs_err(fs_info, "failed to read devices");
 
2836		goto fail_tree_roots;
2837	}
2838
2839retry_root_backup:
 
 
2840	generation = btrfs_super_generation(disk_super);
2841	level = btrfs_super_root_level(disk_super);
2842
2843	tree_root->node = read_tree_block(fs_info,
2844					  btrfs_super_root(disk_super),
2845					  generation, level, NULL);
2846	if (IS_ERR(tree_root->node) ||
2847	    !extent_buffer_uptodate(tree_root->node)) {
2848		btrfs_warn(fs_info, "failed to read tree root");
2849		if (!IS_ERR(tree_root->node))
2850			free_extent_buffer(tree_root->node);
2851		tree_root->node = NULL;
2852		goto recovery_tree_root;
2853	}
2854
2855	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2856	tree_root->commit_root = btrfs_root_node(tree_root);
2857	btrfs_set_root_refs(&tree_root->root_item, 1);
2858
2859	mutex_lock(&tree_root->objectid_mutex);
2860	ret = btrfs_find_highest_objectid(tree_root,
2861					&tree_root->highest_objectid);
2862	if (ret) {
2863		mutex_unlock(&tree_root->objectid_mutex);
2864		goto recovery_tree_root;
2865	}
2866
2867	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2868
2869	mutex_unlock(&tree_root->objectid_mutex);
 
 
2870
2871	ret = btrfs_read_roots(fs_info);
 
2872	if (ret)
2873		goto recovery_tree_root;
 
2874
2875	fs_info->generation = generation;
2876	fs_info->last_trans_committed = generation;
2877
2878	ret = btrfs_recover_balance(fs_info);
2879	if (ret) {
2880		btrfs_err(fs_info, "failed to recover balance: %d", ret);
2881		goto fail_block_groups;
2882	}
2883
2884	ret = btrfs_init_dev_stats(fs_info);
2885	if (ret) {
2886		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
 
2887		goto fail_block_groups;
2888	}
2889
2890	ret = btrfs_init_dev_replace(fs_info);
2891	if (ret) {
2892		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2893		goto fail_block_groups;
2894	}
2895
2896	btrfs_free_extra_devids(fs_devices, 1);
2897
2898	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2899	if (ret) {
2900		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2901				ret);
2902		goto fail_block_groups;
2903	}
2904
2905	ret = btrfs_sysfs_add_device(fs_devices);
2906	if (ret) {
2907		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2908				ret);
2909		goto fail_fsdev_sysfs;
2910	}
2911
2912	ret = btrfs_sysfs_add_mounted(fs_info);
2913	if (ret) {
2914		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2915		goto fail_fsdev_sysfs;
2916	}
2917
2918	ret = btrfs_init_space_info(fs_info);
2919	if (ret) {
2920		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2921		goto fail_sysfs;
2922	}
2923
2924	ret = btrfs_read_block_groups(fs_info);
2925	if (ret) {
2926		btrfs_err(fs_info, "failed to read block groups: %d", ret);
2927		goto fail_sysfs;
2928	}
2929
2930	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
2931		btrfs_warn(fs_info,
2932		"writeable mount is not allowed due to too many missing devices");
2933		goto fail_sysfs;
2934	}
2935
2936	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2937					       "btrfs-cleaner");
2938	if (IS_ERR(fs_info->cleaner_kthread))
2939		goto fail_sysfs;
2940
2941	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2942						   tree_root,
2943						   "btrfs-transaction");
2944	if (IS_ERR(fs_info->transaction_kthread))
2945		goto fail_cleaner;
2946
2947	if (!btrfs_test_opt(fs_info, NOSSD) &&
 
2948	    !fs_info->fs_devices->rotating) {
2949		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
 
 
2950	}
2951
2952	/*
2953	 * Mount does not set all options immediately, we can do it now and do
2954	 * not have to wait for transaction commit
2955	 */
2956	btrfs_apply_pending_changes(fs_info);
2957
2958#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2959	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2960		ret = btrfsic_mount(fs_info, fs_devices,
2961				    btrfs_test_opt(fs_info,
2962					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2963				    1 : 0,
2964				    fs_info->check_integrity_print_mask);
2965		if (ret)
2966			btrfs_warn(fs_info,
2967				"failed to initialize integrity check module: %d",
2968				ret);
2969	}
2970#endif
2971	ret = btrfs_read_qgroup_config(fs_info);
2972	if (ret)
2973		goto fail_trans_kthread;
2974
2975	if (btrfs_build_ref_tree(fs_info))
2976		btrfs_err(fs_info, "couldn't build ref tree");
 
 
2977
2978	/* do not make disk changes in broken FS or nologreplay is given */
2979	if (btrfs_super_log_root(disk_super) != 0 &&
2980	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
2981		ret = btrfs_replay_log(fs_info, fs_devices);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2982		if (ret) {
2983			err = ret;
2984			goto fail_qgroup;
 
 
 
 
 
 
 
 
 
2985		}
2986	}
2987
2988	ret = btrfs_find_orphan_roots(fs_info);
2989	if (ret)
2990		goto fail_qgroup;
2991
2992	if (!sb_rdonly(sb)) {
2993		ret = btrfs_cleanup_fs_roots(fs_info);
2994		if (ret)
2995			goto fail_qgroup;
2996
2997		mutex_lock(&fs_info->cleaner_mutex);
2998		ret = btrfs_recover_relocation(tree_root);
2999		mutex_unlock(&fs_info->cleaner_mutex);
3000		if (ret < 0) {
3001			btrfs_warn(fs_info, "failed to recover relocation: %d",
3002					ret);
3003			err = -EINVAL;
3004			goto fail_qgroup;
3005		}
3006	}
3007
3008	location.objectid = BTRFS_FS_TREE_OBJECTID;
3009	location.type = BTRFS_ROOT_ITEM_KEY;
3010	location.offset = 0;
3011
3012	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
 
 
3013	if (IS_ERR(fs_info->fs_root)) {
3014		err = PTR_ERR(fs_info->fs_root);
3015		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3016		goto fail_qgroup;
3017	}
3018
3019	if (sb_rdonly(sb))
3020		return 0;
3021
3022	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3023	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3024		clear_free_space_tree = 1;
3025	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3026		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3027		btrfs_warn(fs_info, "free space tree is invalid");
3028		clear_free_space_tree = 1;
3029	}
3030
3031	if (clear_free_space_tree) {
3032		btrfs_info(fs_info, "clearing free space tree");
3033		ret = btrfs_clear_free_space_tree(fs_info);
3034		if (ret) {
3035			btrfs_warn(fs_info,
3036				   "failed to clear free space tree: %d", ret);
3037			close_ctree(fs_info);
3038			return ret;
3039		}
3040	}
3041
3042	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3043	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3044		btrfs_info(fs_info, "creating free space tree");
3045		ret = btrfs_create_free_space_tree(fs_info);
3046		if (ret) {
3047			btrfs_warn(fs_info,
3048				"failed to create free space tree: %d", ret);
3049			close_ctree(fs_info);
3050			return ret;
3051		}
3052	}
3053
3054	down_read(&fs_info->cleanup_work_sem);
3055	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3056	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3057		up_read(&fs_info->cleanup_work_sem);
3058		close_ctree(fs_info);
3059		return ret;
3060	}
3061	up_read(&fs_info->cleanup_work_sem);
3062
3063	ret = btrfs_resume_balance_async(fs_info);
3064	if (ret) {
3065		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3066		close_ctree(fs_info);
3067		return ret;
3068	}
3069
3070	ret = btrfs_resume_dev_replace_async(fs_info);
3071	if (ret) {
3072		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3073		close_ctree(fs_info);
3074		return ret;
3075	}
3076
3077	btrfs_qgroup_rescan_resume(fs_info);
3078
3079	if (!fs_info->uuid_root) {
3080		btrfs_info(fs_info, "creating UUID tree");
3081		ret = btrfs_create_uuid_tree(fs_info);
3082		if (ret) {
3083			btrfs_warn(fs_info,
3084				"failed to create the UUID tree: %d", ret);
3085			close_ctree(fs_info);
3086			return ret;
3087		}
3088	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3089		   fs_info->generation !=
3090				btrfs_super_uuid_tree_generation(disk_super)) {
3091		btrfs_info(fs_info, "checking UUID tree");
3092		ret = btrfs_check_uuid_tree(fs_info);
3093		if (ret) {
3094			btrfs_warn(fs_info,
3095				"failed to check the UUID tree: %d", ret);
3096			close_ctree(fs_info);
3097			return ret;
3098		}
3099	} else {
3100		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3101	}
3102	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3103
3104	/*
3105	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3106	 * no need to keep the flag
3107	 */
3108	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3109
3110	return 0;
3111
3112fail_qgroup:
3113	btrfs_free_qgroup_config(fs_info);
3114fail_trans_kthread:
3115	kthread_stop(fs_info->transaction_kthread);
3116	btrfs_cleanup_transaction(fs_info);
3117	btrfs_free_fs_roots(fs_info);
3118fail_cleaner:
3119	kthread_stop(fs_info->cleaner_kthread);
3120
3121	/*
3122	 * make sure we're done with the btree inode before we stop our
3123	 * kthreads
3124	 */
3125	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3126
3127fail_sysfs:
3128	btrfs_sysfs_remove_mounted(fs_info);
3129
3130fail_fsdev_sysfs:
3131	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3132
3133fail_block_groups:
3134	btrfs_put_block_group_cache(fs_info);
3135
3136fail_tree_roots:
3137	free_root_pointers(fs_info, 1);
3138	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3139
3140fail_sb_buffer:
3141	btrfs_stop_all_workers(fs_info);
3142	btrfs_free_block_groups(fs_info);
 
 
 
 
 
 
 
 
 
 
 
3143fail_alloc:
3144fail_iput:
3145	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3146
 
3147	iput(fs_info->btree_inode);
3148fail_bio_counter:
3149	percpu_counter_destroy(&fs_info->bio_counter);
3150fail_delalloc_bytes:
3151	percpu_counter_destroy(&fs_info->delalloc_bytes);
3152fail_dirty_metadata_bytes:
3153	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3154fail_srcu:
3155	cleanup_srcu_struct(&fs_info->subvol_srcu);
3156fail:
3157	btrfs_free_stripe_hash_table(fs_info);
3158	btrfs_close_devices(fs_info->fs_devices);
3159	return err;
3160
3161recovery_tree_root:
3162	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3163		goto fail_tree_roots;
3164
3165	free_root_pointers(fs_info, 0);
3166
3167	/* don't use the log in recovery mode, it won't be valid */
3168	btrfs_set_super_log_root(disk_super, 0);
3169
3170	/* we can't trust the free space cache either */
3171	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3172
3173	ret = next_root_backup(fs_info, fs_info->super_copy,
3174			       &num_backups_tried, &backup_index);
3175	if (ret == -1)
3176		goto fail_block_groups;
3177	goto retry_root_backup;
3178}
3179ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3180
3181static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3182{
3183	if (uptodate) {
3184		set_buffer_uptodate(bh);
3185	} else {
3186		struct btrfs_device *device = (struct btrfs_device *)
3187			bh->b_private;
3188
3189		btrfs_warn_rl_in_rcu(device->fs_info,
3190				"lost page write due to IO error on %s",
3191					  rcu_str_deref(device->name));
3192		/* note, we don't set_buffer_write_io_error because we have
3193		 * our own ways of dealing with the IO errors
3194		 */
3195		clear_buffer_uptodate(bh);
3196		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3197	}
3198	unlock_buffer(bh);
3199	put_bh(bh);
3200}
3201
3202int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3203			struct buffer_head **bh_ret)
3204{
3205	struct buffer_head *bh;
3206	struct btrfs_super_block *super;
3207	u64 bytenr;
3208
3209	bytenr = btrfs_sb_offset(copy_num);
3210	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3211		return -EINVAL;
3212
3213	bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3214	/*
3215	 * If we fail to read from the underlying devices, as of now
3216	 * the best option we have is to mark it EIO.
3217	 */
3218	if (!bh)
3219		return -EIO;
3220
3221	super = (struct btrfs_super_block *)bh->b_data;
3222	if (btrfs_super_bytenr(super) != bytenr ||
3223		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3224		brelse(bh);
3225		return -EINVAL;
3226	}
3227
3228	*bh_ret = bh;
3229	return 0;
3230}
3231
3232
3233struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3234{
3235	struct buffer_head *bh;
3236	struct buffer_head *latest = NULL;
3237	struct btrfs_super_block *super;
3238	int i;
3239	u64 transid = 0;
3240	int ret = -EINVAL;
3241
3242	/* we would like to check all the supers, but that would make
3243	 * a btrfs mount succeed after a mkfs from a different FS.
3244	 * So, we need to add a special mount option to scan for
3245	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3246	 */
3247	for (i = 0; i < 1; i++) {
3248		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3249		if (ret)
 
 
 
3250			continue;
3251
3252		super = (struct btrfs_super_block *)bh->b_data;
 
 
 
 
 
 
3253
3254		if (!latest || btrfs_super_generation(super) > transid) {
3255			brelse(latest);
3256			latest = bh;
3257			transid = btrfs_super_generation(super);
3258		} else {
3259			brelse(bh);
3260		}
3261	}
3262
3263	if (!latest)
3264		return ERR_PTR(ret);
3265
3266	return latest;
3267}
3268
3269/*
3270 * Write superblock @sb to the @device. Do not wait for completion, all the
3271 * buffer heads we write are pinned.
 
3272 *
3273 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3274 * the expected device size at commit time. Note that max_mirrors must be
3275 * same for write and wait phases.
3276 *
3277 * Return number of errors when buffer head is not found or submission fails.
3278 */
3279static int write_dev_supers(struct btrfs_device *device,
3280			    struct btrfs_super_block *sb, int max_mirrors)
 
3281{
3282	struct buffer_head *bh;
3283	int i;
3284	int ret;
3285	int errors = 0;
3286	u32 crc;
3287	u64 bytenr;
3288	int op_flags;
3289
3290	if (max_mirrors == 0)
3291		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3292
3293	for (i = 0; i < max_mirrors; i++) {
3294		bytenr = btrfs_sb_offset(i);
3295		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3296		    device->commit_total_bytes)
3297			break;
3298
3299		btrfs_set_super_bytenr(sb, bytenr);
 
 
 
 
 
 
 
 
 
3300
3301		crc = ~(u32)0;
3302		crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3303				      BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3304		btrfs_csum_final(crc, sb->csum);
3305
3306		/* One reference for us, and we leave it for the caller */
3307		bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3308			      BTRFS_SUPER_INFO_SIZE);
3309		if (!bh) {
3310			btrfs_err(device->fs_info,
3311			    "couldn't get super buffer head for bytenr %llu",
3312			    bytenr);
3313			errors++;
3314			continue;
3315		}
 
3316
3317		memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
 
 
 
 
 
3318
3319		/* one reference for submit_bh */
3320		get_bh(bh);
 
 
 
 
 
3321
3322		set_buffer_uptodate(bh);
3323		lock_buffer(bh);
3324		bh->b_end_io = btrfs_end_buffer_write_sync;
3325		bh->b_private = device;
 
 
 
 
3326
3327		/*
3328		 * we fua the first super.  The others we allow
3329		 * to go down lazy.
3330		 */
3331		op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3332		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3333			op_flags |= REQ_FUA;
3334		ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3335		if (ret)
3336			errors++;
3337	}
3338	return errors < i ? 0 : -1;
3339}
3340
3341/*
3342 * Wait for write completion of superblocks done by write_dev_supers,
3343 * @max_mirrors same for write and wait phases.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3344 *
3345 * Return number of errors when buffer head is not found or not marked up to
3346 * date.
3347 */
3348static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3349{
3350	struct buffer_head *bh;
3351	int i;
3352	int errors = 0;
3353	bool primary_failed = false;
3354	u64 bytenr;
3355
3356	if (max_mirrors == 0)
3357		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
 
 
3358
3359	for (i = 0; i < max_mirrors; i++) {
3360		bytenr = btrfs_sb_offset(i);
3361		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3362		    device->commit_total_bytes)
3363			break;
3364
3365		bh = __find_get_block(device->bdev,
3366				      bytenr / BTRFS_BDEV_BLOCKSIZE,
3367				      BTRFS_SUPER_INFO_SIZE);
3368		if (!bh) {
3369			errors++;
3370			if (i == 0)
3371				primary_failed = true;
3372			continue;
3373		}
3374		wait_on_buffer(bh);
3375		if (!buffer_uptodate(bh)) {
3376			errors++;
3377			if (i == 0)
3378				primary_failed = true;
3379		}
3380
3381		/* drop our reference */
3382		brelse(bh);
 
3383
3384		/* drop the reference from the writing run */
3385		brelse(bh);
3386	}
3387
3388	/* log error, force error return */
3389	if (primary_failed) {
3390		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3391			  device->devid);
3392		return -1;
3393	}
 
 
3394
3395	return errors < i ? 0 : -1;
3396}
3397
3398/*
3399 * endio for the write_dev_flush, this will wake anyone waiting
3400 * for the barrier when it is done
3401 */
3402static void btrfs_end_empty_barrier(struct bio *bio)
3403{
3404	complete(bio->bi_private);
3405}
3406
3407/*
3408 * Submit a flush request to the device if it supports it. Error handling is
3409 * done in the waiting counterpart.
3410 */
3411static void write_dev_flush(struct btrfs_device *device)
3412{
3413	struct request_queue *q = bdev_get_queue(device->bdev);
3414	struct bio *bio = device->flush_bio;
3415
3416	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3417		return;
3418
3419	bio_reset(bio);
3420	bio->bi_end_io = btrfs_end_empty_barrier;
3421	bio_set_dev(bio, device->bdev);
3422	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3423	init_completion(&device->flush_wait);
3424	bio->bi_private = &device->flush_wait;
 
3425
3426	btrfsic_submit_bio(bio);
3427	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3428}
3429
3430/*
3431 * If the flush bio has been submitted by write_dev_flush, wait for it.
3432 */
3433static blk_status_t wait_dev_flush(struct btrfs_device *device)
3434{
3435	struct bio *bio = device->flush_bio;
3436
3437	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3438		return BLK_STS_OK;
3439
3440	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3441	wait_for_completion_io(&device->flush_wait);
3442
3443	return bio->bi_status;
3444}
3445
3446static int check_barrier_error(struct btrfs_fs_info *fs_info)
3447{
3448	if (!btrfs_check_rw_degradable(fs_info, NULL))
3449		return -EIO;
3450	return 0;
3451}
3452
3453/*
3454 * send an empty flush down to each device in parallel,
3455 * then wait for them
3456 */
3457static int barrier_all_devices(struct btrfs_fs_info *info)
3458{
3459	struct list_head *head;
3460	struct btrfs_device *dev;
3461	int errors_wait = 0;
3462	blk_status_t ret;
3463
3464	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3465	/* send down all the barriers */
3466	head = &info->fs_devices->devices;
3467	list_for_each_entry(dev, head, dev_list) {
3468		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
 
3469			continue;
3470		if (!dev->bdev)
3471			continue;
3472		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3473		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3474			continue;
3475
3476		write_dev_flush(dev);
3477		dev->last_flush_error = BLK_STS_OK;
 
3478	}
3479
3480	/* wait for all the barriers */
3481	list_for_each_entry(dev, head, dev_list) {
3482		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3483			continue;
3484		if (!dev->bdev) {
3485			errors_wait++;
3486			continue;
3487		}
3488		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3489		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3490			continue;
3491
3492		ret = wait_dev_flush(dev);
3493		if (ret) {
3494			dev->last_flush_error = ret;
3495			btrfs_dev_stat_inc_and_print(dev,
3496					BTRFS_DEV_STAT_FLUSH_ERRS);
3497			errors_wait++;
3498		}
3499	}
3500
3501	if (errors_wait) {
3502		/*
3503		 * At some point we need the status of all disks
3504		 * to arrive at the volume status. So error checking
3505		 * is being pushed to a separate loop.
3506		 */
3507		return check_barrier_error(info);
3508	}
 
 
3509	return 0;
3510}
3511
3512int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3513{
3514	int raid_type;
3515	int min_tolerated = INT_MAX;
3516
3517	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3518	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3519		min_tolerated = min(min_tolerated,
3520				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3521				    tolerated_failures);
3522
3523	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3524		if (raid_type == BTRFS_RAID_SINGLE)
3525			continue;
3526		if (!(flags & btrfs_raid_group[raid_type]))
3527			continue;
3528		min_tolerated = min(min_tolerated,
3529				    btrfs_raid_array[raid_type].
3530				    tolerated_failures);
3531	}
3532
3533	if (min_tolerated == INT_MAX) {
3534		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3535		min_tolerated = 0;
3536	}
3537
3538	return min_tolerated;
3539}
3540
3541int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3542{
3543	struct list_head *head;
3544	struct btrfs_device *dev;
3545	struct btrfs_super_block *sb;
3546	struct btrfs_dev_item *dev_item;
3547	int ret;
3548	int do_barriers;
3549	int max_errors;
3550	int total_errors = 0;
3551	u64 flags;
3552
3553	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3554
3555	/*
3556	 * max_mirrors == 0 indicates we're from commit_transaction,
3557	 * not from fsync where the tree roots in fs_info have not
3558	 * been consistent on disk.
3559	 */
3560	if (max_mirrors == 0)
3561		backup_super_roots(fs_info);
3562
3563	sb = fs_info->super_for_commit;
3564	dev_item = &sb->dev_item;
3565
3566	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3567	head = &fs_info->fs_devices->devices;
3568	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3569
3570	if (do_barriers) {
3571		ret = barrier_all_devices(fs_info);
3572		if (ret) {
3573			mutex_unlock(
3574				&fs_info->fs_devices->device_list_mutex);
3575			btrfs_handle_fs_error(fs_info, ret,
3576					      "errors while submitting device barriers.");
3577			return ret;
3578		}
3579	}
3580
3581	list_for_each_entry(dev, head, dev_list) {
3582		if (!dev->bdev) {
3583			total_errors++;
3584			continue;
3585		}
3586		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3587		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3588			continue;
3589
3590		btrfs_set_stack_device_generation(dev_item, 0);
3591		btrfs_set_stack_device_type(dev_item, dev->type);
3592		btrfs_set_stack_device_id(dev_item, dev->devid);
3593		btrfs_set_stack_device_total_bytes(dev_item,
3594						   dev->commit_total_bytes);
3595		btrfs_set_stack_device_bytes_used(dev_item,
3596						  dev->commit_bytes_used);
3597		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3598		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3599		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3600		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3601		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3602
3603		flags = btrfs_super_flags(sb);
3604		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3605
3606		ret = write_dev_supers(dev, sb, max_mirrors);
3607		if (ret)
3608			total_errors++;
3609	}
3610	if (total_errors > max_errors) {
3611		btrfs_err(fs_info, "%d errors while writing supers",
3612			  total_errors);
3613		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3614
3615		/* FUA is masked off if unsupported and can't be the reason */
3616		btrfs_handle_fs_error(fs_info, -EIO,
3617				      "%d errors while writing supers",
3618				      total_errors);
3619		return -EIO;
3620	}
3621
3622	total_errors = 0;
3623	list_for_each_entry(dev, head, dev_list) {
3624		if (!dev->bdev)
3625			continue;
3626		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3627		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3628			continue;
3629
3630		ret = wait_dev_supers(dev, max_mirrors);
3631		if (ret)
3632			total_errors++;
3633	}
3634	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3635	if (total_errors > max_errors) {
3636		btrfs_handle_fs_error(fs_info, -EIO,
3637				      "%d errors while writing supers",
3638				      total_errors);
3639		return -EIO;
3640	}
3641	return 0;
3642}
3643
3644/* Drop a fs root from the radix tree and free it. */
3645void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3646				  struct btrfs_root *root)
 
 
 
 
 
 
 
3647{
3648	spin_lock(&fs_info->fs_roots_radix_lock);
3649	radix_tree_delete(&fs_info->fs_roots_radix,
3650			  (unsigned long)root->root_key.objectid);
3651	spin_unlock(&fs_info->fs_roots_radix_lock);
3652
3653	if (btrfs_root_refs(&root->root_item) == 0)
3654		synchronize_srcu(&fs_info->subvol_srcu);
3655
3656	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3657		btrfs_free_log(NULL, root);
3658		if (root->reloc_root) {
3659			free_extent_buffer(root->reloc_root->node);
3660			free_extent_buffer(root->reloc_root->commit_root);
3661			btrfs_put_fs_root(root->reloc_root);
3662			root->reloc_root = NULL;
3663		}
3664	}
3665
3666	if (root->free_ino_pinned)
3667		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3668	if (root->free_ino_ctl)
3669		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3670	free_fs_root(root);
3671}
3672
3673static void free_fs_root(struct btrfs_root *root)
3674{
3675	iput(root->ino_cache_inode);
3676	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3677	btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3678	root->orphan_block_rsv = NULL;
3679	if (root->anon_dev)
3680		free_anon_bdev(root->anon_dev);
3681	if (root->subv_writers)
3682		btrfs_free_subvolume_writers(root->subv_writers);
3683	free_extent_buffer(root->node);
3684	free_extent_buffer(root->commit_root);
3685	kfree(root->free_ino_ctl);
3686	kfree(root->free_ino_pinned);
3687	kfree(root->name);
3688	btrfs_put_fs_root(root);
3689}
3690
3691void btrfs_free_fs_root(struct btrfs_root *root)
3692{
3693	free_fs_root(root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3694}
3695
3696int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3697{
3698	u64 root_objectid = 0;
3699	struct btrfs_root *gang[8];
3700	int i = 0;
3701	int err = 0;
3702	unsigned int ret = 0;
3703	int index;
3704
3705	while (1) {
3706		index = srcu_read_lock(&fs_info->subvol_srcu);
3707		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3708					     (void **)gang, root_objectid,
3709					     ARRAY_SIZE(gang));
3710		if (!ret) {
3711			srcu_read_unlock(&fs_info->subvol_srcu, index);
3712			break;
3713		}
3714		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3715
3716		for (i = 0; i < ret; i++) {
3717			/* Avoid to grab roots in dead_roots */
3718			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3719				gang[i] = NULL;
3720				continue;
3721			}
3722			/* grab all the search result for later use */
3723			gang[i] = btrfs_grab_fs_root(gang[i]);
3724		}
3725		srcu_read_unlock(&fs_info->subvol_srcu, index);
3726
3727		for (i = 0; i < ret; i++) {
3728			if (!gang[i])
3729				continue;
3730			root_objectid = gang[i]->root_key.objectid;
3731			err = btrfs_orphan_cleanup(gang[i]);
3732			if (err)
3733				break;
3734			btrfs_put_fs_root(gang[i]);
3735		}
3736		root_objectid++;
3737	}
3738
3739	/* release the uncleaned roots due to error */
3740	for (; i < ret; i++) {
3741		if (gang[i])
3742			btrfs_put_fs_root(gang[i]);
3743	}
3744	return err;
3745}
3746
3747int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3748{
3749	struct btrfs_root *root = fs_info->tree_root;
3750	struct btrfs_trans_handle *trans;
 
3751
3752	mutex_lock(&fs_info->cleaner_mutex);
3753	btrfs_run_delayed_iputs(fs_info);
3754	mutex_unlock(&fs_info->cleaner_mutex);
3755	wake_up_process(fs_info->cleaner_kthread);
3756
3757	/* wait until ongoing cleanup work done */
3758	down_write(&fs_info->cleanup_work_sem);
3759	up_write(&fs_info->cleanup_work_sem);
3760
3761	trans = btrfs_join_transaction(root);
3762	if (IS_ERR(trans))
3763		return PTR_ERR(trans);
3764	return btrfs_commit_transaction(trans);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3765}
3766
3767void close_ctree(struct btrfs_fs_info *fs_info)
3768{
3769	struct btrfs_root *root = fs_info->tree_root;
3770	int ret;
3771
3772	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3773
3774	/* wait for the qgroup rescan worker to stop */
3775	btrfs_qgroup_wait_for_completion(fs_info, false);
3776
3777	/* wait for the uuid_scan task to finish */
3778	down(&fs_info->uuid_tree_rescan_sem);
3779	/* avoid complains from lockdep et al., set sem back to initial state */
3780	up(&fs_info->uuid_tree_rescan_sem);
3781
3782	/* pause restriper - we want to resume on mount */
3783	btrfs_pause_balance(fs_info);
3784
3785	btrfs_dev_replace_suspend_for_unmount(fs_info);
3786
3787	btrfs_scrub_cancel(fs_info);
3788
3789	/* wait for any defraggers to finish */
3790	wait_event(fs_info->transaction_wait,
3791		   (atomic_read(&fs_info->defrag_running) == 0));
3792
3793	/* clear out the rbtree of defraggable inodes */
3794	btrfs_cleanup_defrag_inodes(fs_info);
3795
3796	cancel_work_sync(&fs_info->async_reclaim_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3797
3798	if (!sb_rdonly(fs_info->sb)) {
3799		/*
3800		 * If the cleaner thread is stopped and there are
3801		 * block groups queued for removal, the deletion will be
3802		 * skipped when we quit the cleaner thread.
3803		 */
3804		btrfs_delete_unused_bgs(fs_info);
3805
3806		ret = btrfs_commit_super(fs_info);
3807		if (ret)
3808			btrfs_err(fs_info, "commit super ret %d", ret);
3809	}
3810
3811	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3812	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3813		btrfs_error_commit_super(fs_info);
3814
3815	kthread_stop(fs_info->transaction_kthread);
3816	kthread_stop(fs_info->cleaner_kthread);
3817
3818	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3819
3820	btrfs_free_qgroup_config(fs_info);
3821	ASSERT(list_empty(&fs_info->delalloc_roots));
3822
3823	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3824		btrfs_info(fs_info, "at unmount delalloc count %lld",
3825		       percpu_counter_sum(&fs_info->delalloc_bytes));
3826	}
3827
3828	btrfs_sysfs_remove_mounted(fs_info);
3829	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3830
3831	btrfs_free_fs_roots(fs_info);
3832
3833	btrfs_put_block_group_cache(fs_info);
3834
3835	/*
3836	 * we must make sure there is not any read request to
3837	 * submit after we stopping all workers.
3838	 */
3839	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3840	btrfs_stop_all_workers(fs_info);
 
3841
3842	btrfs_free_block_groups(fs_info);
3843
3844	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3845	free_root_pointers(fs_info, 1);
3846
3847	iput(fs_info->btree_inode);
3848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3849#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3850	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
3851		btrfsic_unmount(fs_info->fs_devices);
3852#endif
3853
3854	btrfs_close_devices(fs_info->fs_devices);
3855	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3856
3857	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3858	percpu_counter_destroy(&fs_info->delalloc_bytes);
3859	percpu_counter_destroy(&fs_info->bio_counter);
3860	cleanup_srcu_struct(&fs_info->subvol_srcu);
3861
3862	btrfs_free_stripe_hash_table(fs_info);
3863	btrfs_free_ref_cache(fs_info);
3864
3865	__btrfs_free_block_rsv(root->orphan_block_rsv);
3866	root->orphan_block_rsv = NULL;
3867
3868	while (!list_empty(&fs_info->pinned_chunks)) {
3869		struct extent_map *em;
3870
3871		em = list_first_entry(&fs_info->pinned_chunks,
3872				      struct extent_map, list);
3873		list_del_init(&em->list);
3874		free_extent_map(em);
3875	}
3876}
3877
3878int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3879			  int atomic)
3880{
3881	int ret;
3882	struct inode *btree_inode = buf->pages[0]->mapping->host;
3883
3884	ret = extent_buffer_uptodate(buf);
3885	if (!ret)
3886		return ret;
3887
3888	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3889				    parent_transid, atomic);
3890	if (ret == -EAGAIN)
3891		return ret;
3892	return !ret;
3893}
3894
 
 
 
 
 
3895void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3896{
3897	struct btrfs_fs_info *fs_info;
3898	struct btrfs_root *root;
3899	u64 transid = btrfs_header_generation(buf);
3900	int was_dirty;
3901
3902#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3903	/*
3904	 * This is a fast path so only do this check if we have sanity tests
3905	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3906	 * outside of the sanity tests.
3907	 */
3908	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3909		return;
3910#endif
3911	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3912	fs_info = root->fs_info;
3913	btrfs_assert_tree_locked(buf);
3914	if (transid != fs_info->generation)
3915		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
3916			buf->start, transid, fs_info->generation);
 
 
 
 
 
3917	was_dirty = set_extent_buffer_dirty(buf);
3918	if (!was_dirty)
3919		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3920					 buf->len,
3921					 fs_info->dirty_metadata_batch);
3922#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3923	/*
3924	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3925	 * but item data not updated.
3926	 * So here we should only check item pointers, not item data.
3927	 */
3928	if (btrfs_header_level(buf) == 0 &&
3929	    btrfs_check_leaf_relaxed(fs_info, buf)) {
3930		btrfs_print_leaf(buf);
3931		ASSERT(0);
3932	}
3933#endif
3934}
3935
3936static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
3937					int flush_delayed)
3938{
3939	/*
3940	 * looks as though older kernels can get into trouble with
3941	 * this code, they end up stuck in balance_dirty_pages forever
3942	 */
3943	int ret;
 
3944
3945	if (current->flags & PF_MEMALLOC)
3946		return;
3947
3948	if (flush_delayed)
3949		btrfs_balance_delayed_items(fs_info);
3950
3951	ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
3952				     BTRFS_DIRTY_METADATA_THRESH);
3953	if (ret > 0) {
3954		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
 
3955	}
 
3956}
3957
3958void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
3959{
3960	__btrfs_btree_balance_dirty(fs_info, 1);
3961}
 
 
 
 
 
 
 
 
 
3962
3963void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
3964{
3965	__btrfs_btree_balance_dirty(fs_info, 0);
 
 
3966}
3967
3968int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
3969		      struct btrfs_key *first_key)
3970{
3971	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3972	struct btrfs_fs_info *fs_info = root->fs_info;
3973
3974	return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
3975					      level, first_key);
3976}
3977
3978static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
 
3979{
3980	struct btrfs_super_block *sb = fs_info->super_copy;
3981	u64 nodesize = btrfs_super_nodesize(sb);
3982	u64 sectorsize = btrfs_super_sectorsize(sb);
3983	int ret = 0;
3984
3985	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
3986		btrfs_err(fs_info, "no valid FS found");
3987		ret = -EINVAL;
3988	}
3989	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
3990		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
3991				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
3992		ret = -EINVAL;
3993	}
3994	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3995		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
3996				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3997		ret = -EINVAL;
3998	}
3999	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4000		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4001				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4002		ret = -EINVAL;
4003	}
4004	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4005		btrfs_err(fs_info, "log_root level too big: %d >= %d",
4006				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4007		ret = -EINVAL;
4008	}
4009
4010	/*
4011	 * Check sectorsize and nodesize first, other check will need it.
4012	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4013	 */
4014	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4015	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4016		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4017		ret = -EINVAL;
 
 
 
4018	}
4019	/* Only PAGE SIZE is supported yet */
4020	if (sectorsize != PAGE_SIZE) {
4021		btrfs_err(fs_info,
4022			"sectorsize %llu not supported yet, only support %lu",
4023			sectorsize, PAGE_SIZE);
4024		ret = -EINVAL;
4025	}
4026	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4027	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4028		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4029		ret = -EINVAL;
4030	}
4031	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4032		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4033			  le32_to_cpu(sb->__unused_leafsize), nodesize);
4034		ret = -EINVAL;
4035	}
4036
4037	/* Root alignment check */
4038	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4039		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4040			   btrfs_super_root(sb));
4041		ret = -EINVAL;
4042	}
4043	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4044		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4045			   btrfs_super_chunk_root(sb));
4046		ret = -EINVAL;
4047	}
4048	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4049		btrfs_warn(fs_info, "log_root block unaligned: %llu",
4050			   btrfs_super_log_root(sb));
4051		ret = -EINVAL;
4052	}
4053
4054	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
4055		btrfs_err(fs_info,
4056			   "dev_item UUID does not match fsid: %pU != %pU",
4057			   fs_info->fsid, sb->dev_item.fsid);
4058		ret = -EINVAL;
4059	}
4060
4061	/*
4062	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4063	 * done later
4064	 */
4065	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4066		btrfs_err(fs_info, "bytes_used is too small %llu",
4067			  btrfs_super_bytes_used(sb));
4068		ret = -EINVAL;
4069	}
4070	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4071		btrfs_err(fs_info, "invalid stripesize %u",
4072			  btrfs_super_stripesize(sb));
4073		ret = -EINVAL;
4074	}
4075	if (btrfs_super_num_devices(sb) > (1UL << 31))
4076		btrfs_warn(fs_info, "suspicious number of devices: %llu",
4077			   btrfs_super_num_devices(sb));
4078	if (btrfs_super_num_devices(sb) == 0) {
4079		btrfs_err(fs_info, "number of devices is 0");
4080		ret = -EINVAL;
4081	}
4082
4083	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4084		btrfs_err(fs_info, "super offset mismatch %llu != %u",
4085			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4086		ret = -EINVAL;
4087	}
 
 
4088
4089	/*
4090	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4091	 * and one chunk
4092	 */
4093	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4094		btrfs_err(fs_info, "system chunk array too big %u > %u",
4095			  btrfs_super_sys_array_size(sb),
4096			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4097		ret = -EINVAL;
4098	}
4099	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4100			+ sizeof(struct btrfs_chunk)) {
4101		btrfs_err(fs_info, "system chunk array too small %u < %zu",
4102			  btrfs_super_sys_array_size(sb),
4103			  sizeof(struct btrfs_disk_key)
4104			  + sizeof(struct btrfs_chunk));
4105		ret = -EINVAL;
4106	}
4107
4108	/*
4109	 * The generation is a global counter, we'll trust it more than the others
4110	 * but it's still possible that it's the one that's wrong.
4111	 */
4112	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4113		btrfs_warn(fs_info,
4114			"suspicious: generation < chunk_root_generation: %llu < %llu",
4115			btrfs_super_generation(sb),
4116			btrfs_super_chunk_root_generation(sb));
4117	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4118	    && btrfs_super_cache_generation(sb) != (u64)-1)
4119		btrfs_warn(fs_info,
4120			"suspicious: generation < cache_generation: %llu < %llu",
4121			btrfs_super_generation(sb),
4122			btrfs_super_cache_generation(sb));
4123
4124	return ret;
4125}
4126
4127static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4128{
 
 
 
 
 
 
 
 
 
4129	/* cleanup FS via transaction */
4130	btrfs_cleanup_transaction(fs_info);
4131
4132	mutex_lock(&fs_info->cleaner_mutex);
4133	btrfs_run_delayed_iputs(fs_info);
4134	mutex_unlock(&fs_info->cleaner_mutex);
4135
4136	down_write(&fs_info->cleanup_work_sem);
4137	up_write(&fs_info->cleanup_work_sem);
4138}
4139
4140static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4141{
4142	struct btrfs_ordered_extent *ordered;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4143
4144	spin_lock(&root->ordered_extent_lock);
4145	/*
4146	 * This will just short circuit the ordered completion stuff which will
4147	 * make sure the ordered extent gets properly cleaned up.
4148	 */
4149	list_for_each_entry(ordered, &root->ordered_extents,
4150			    root_extent_list)
4151		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4152	spin_unlock(&root->ordered_extent_lock);
4153}
4154
4155static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4156{
4157	struct btrfs_root *root;
4158	struct list_head splice;
 
 
4159
4160	INIT_LIST_HEAD(&splice);
4161
4162	spin_lock(&fs_info->ordered_root_lock);
4163	list_splice_init(&fs_info->ordered_roots, &splice);
 
4164	while (!list_empty(&splice)) {
4165		root = list_first_entry(&splice, struct btrfs_root,
4166					ordered_root);
4167		list_move_tail(&root->ordered_root,
4168			       &fs_info->ordered_roots);
4169
4170		spin_unlock(&fs_info->ordered_root_lock);
4171		btrfs_destroy_ordered_extents(root);
 
 
 
 
 
 
 
 
 
 
4172
4173		cond_resched();
4174		spin_lock(&fs_info->ordered_root_lock);
4175	}
4176	spin_unlock(&fs_info->ordered_root_lock);
 
4177}
4178
4179static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4180				      struct btrfs_fs_info *fs_info)
4181{
4182	struct rb_node *node;
4183	struct btrfs_delayed_ref_root *delayed_refs;
4184	struct btrfs_delayed_ref_node *ref;
4185	int ret = 0;
4186
4187	delayed_refs = &trans->delayed_refs;
4188
4189	spin_lock(&delayed_refs->lock);
4190	if (atomic_read(&delayed_refs->num_entries) == 0) {
4191		spin_unlock(&delayed_refs->lock);
4192		btrfs_info(fs_info, "delayed_refs has NO entry");
4193		return ret;
4194	}
4195
4196	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4197		struct btrfs_delayed_ref_head *head;
4198		struct rb_node *n;
4199		bool pin_bytes = false;
4200
4201		head = rb_entry(node, struct btrfs_delayed_ref_head,
4202				href_node);
4203		if (!mutex_trylock(&head->mutex)) {
4204			refcount_inc(&head->refs);
4205			spin_unlock(&delayed_refs->lock);
4206
4207			mutex_lock(&head->mutex);
4208			mutex_unlock(&head->mutex);
4209			btrfs_put_delayed_ref_head(head);
4210			spin_lock(&delayed_refs->lock);
4211			continue;
4212		}
4213		spin_lock(&head->lock);
4214		while ((n = rb_first(&head->ref_tree)) != NULL) {
4215			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4216				       ref_node);
4217			ref->in_tree = 0;
4218			rb_erase(&ref->ref_node, &head->ref_tree);
4219			RB_CLEAR_NODE(&ref->ref_node);
4220			if (!list_empty(&ref->add_list))
4221				list_del(&ref->add_list);
4222			atomic_dec(&delayed_refs->num_entries);
4223			btrfs_put_delayed_ref(ref);
4224		}
4225		if (head->must_insert_reserved)
4226			pin_bytes = true;
4227		btrfs_free_delayed_extent_op(head->extent_op);
4228		delayed_refs->num_heads--;
4229		if (head->processing == 0)
4230			delayed_refs->num_heads_ready--;
4231		atomic_dec(&delayed_refs->num_entries);
4232		rb_erase(&head->href_node, &delayed_refs->href_root);
4233		RB_CLEAR_NODE(&head->href_node);
4234		spin_unlock(&head->lock);
4235		spin_unlock(&delayed_refs->lock);
4236		mutex_unlock(&head->mutex);
4237
4238		if (pin_bytes)
4239			btrfs_pin_extent(fs_info, head->bytenr,
4240					 head->num_bytes, 1);
4241		btrfs_put_delayed_ref_head(head);
4242		cond_resched();
4243		spin_lock(&delayed_refs->lock);
4244	}
4245
4246	spin_unlock(&delayed_refs->lock);
4247
4248	return ret;
4249}
4250
4251static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4252{
4253	struct btrfs_inode *btrfs_inode;
4254	struct list_head splice;
4255
4256	INIT_LIST_HEAD(&splice);
4257
4258	spin_lock(&root->delalloc_lock);
4259	list_splice_init(&root->delalloc_inodes, &splice);
4260
4261	while (!list_empty(&splice)) {
4262		struct inode *inode = NULL;
4263		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4264					       delalloc_inodes);
4265		__btrfs_del_delalloc_inode(root, btrfs_inode);
4266		spin_unlock(&root->delalloc_lock);
4267
4268		/*
4269		 * Make sure we get a live inode and that it'll not disappear
4270		 * meanwhile.
4271		 */
4272		inode = igrab(&btrfs_inode->vfs_inode);
4273		if (inode) {
4274			invalidate_inode_pages2(inode->i_mapping);
4275			iput(inode);
4276		}
4277		spin_lock(&root->delalloc_lock);
4278	}
4279	spin_unlock(&root->delalloc_lock);
4280}
4281
4282static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4283{
4284	struct btrfs_root *root;
4285	struct list_head splice;
4286
4287	INIT_LIST_HEAD(&splice);
4288
4289	spin_lock(&fs_info->delalloc_root_lock);
4290	list_splice_init(&fs_info->delalloc_roots, &splice);
 
4291	while (!list_empty(&splice)) {
4292		root = list_first_entry(&splice, struct btrfs_root,
4293					 delalloc_root);
4294		root = btrfs_grab_fs_root(root);
4295		BUG_ON(!root);
4296		spin_unlock(&fs_info->delalloc_root_lock);
4297
4298		btrfs_destroy_delalloc_inodes(root);
4299		btrfs_put_fs_root(root);
4300
4301		spin_lock(&fs_info->delalloc_root_lock);
4302	}
4303	spin_unlock(&fs_info->delalloc_root_lock);
 
4304}
4305
4306static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4307					struct extent_io_tree *dirty_pages,
4308					int mark)
4309{
4310	int ret;
 
 
4311	struct extent_buffer *eb;
4312	u64 start = 0;
4313	u64 end;
 
 
4314
4315	while (1) {
4316		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4317					    mark, NULL);
4318		if (ret)
4319			break;
4320
4321		clear_extent_bits(dirty_pages, start, end, mark);
4322		while (start <= end) {
4323			eb = find_extent_buffer(fs_info, start);
4324			start += fs_info->nodesize;
4325			if (!eb)
 
4326				continue;
4327			wait_on_extent_buffer_writeback(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4328
4329			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4330					       &eb->bflags))
4331				clear_extent_buffer_dirty(eb);
4332			free_extent_buffer_stale(eb);
4333		}
4334	}
4335
4336	return ret;
4337}
4338
4339static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4340				       struct extent_io_tree *pinned_extents)
4341{
4342	struct extent_io_tree *unpin;
4343	u64 start;
4344	u64 end;
4345	int ret;
4346	bool loop = true;
4347
4348	unpin = pinned_extents;
4349again:
4350	while (1) {
4351		ret = find_first_extent_bit(unpin, 0, &start, &end,
4352					    EXTENT_DIRTY, NULL);
4353		if (ret)
4354			break;
4355
4356		clear_extent_dirty(unpin, start, end);
4357		btrfs_error_unpin_extent_range(fs_info, start, end);
 
 
 
 
 
 
4358		cond_resched();
4359	}
4360
4361	if (loop) {
4362		if (unpin == &fs_info->freed_extents[0])
4363			unpin = &fs_info->freed_extents[1];
4364		else
4365			unpin = &fs_info->freed_extents[0];
4366		loop = false;
4367		goto again;
4368	}
4369
4370	return 0;
4371}
4372
4373static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
 
4374{
4375	struct inode *inode;
 
 
 
 
 
 
 
 
 
 
4376
4377	inode = cache->io_ctl.inode;
4378	if (inode) {
4379		invalidate_inode_pages2(inode->i_mapping);
4380		BTRFS_I(inode)->generation = 0;
4381		cache->io_ctl.inode = NULL;
4382		iput(inode);
4383	}
4384	btrfs_put_block_group(cache);
4385}
4386
4387void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4388			     struct btrfs_fs_info *fs_info)
4389{
4390	struct btrfs_block_group_cache *cache;
4391
4392	spin_lock(&cur_trans->dirty_bgs_lock);
4393	while (!list_empty(&cur_trans->dirty_bgs)) {
4394		cache = list_first_entry(&cur_trans->dirty_bgs,
4395					 struct btrfs_block_group_cache,
4396					 dirty_list);
4397
4398		if (!list_empty(&cache->io_list)) {
4399			spin_unlock(&cur_trans->dirty_bgs_lock);
4400			list_del_init(&cache->io_list);
4401			btrfs_cleanup_bg_io(cache);
4402			spin_lock(&cur_trans->dirty_bgs_lock);
4403		}
4404
4405		list_del_init(&cache->dirty_list);
4406		spin_lock(&cache->lock);
4407		cache->disk_cache_state = BTRFS_DC_ERROR;
4408		spin_unlock(&cache->lock);
4409
4410		spin_unlock(&cur_trans->dirty_bgs_lock);
4411		btrfs_put_block_group(cache);
4412		spin_lock(&cur_trans->dirty_bgs_lock);
4413	}
4414	spin_unlock(&cur_trans->dirty_bgs_lock);
4415
4416	/*
4417	 * Refer to the definition of io_bgs member for details why it's safe
4418	 * to use it without any locking
4419	 */
4420	while (!list_empty(&cur_trans->io_bgs)) {
4421		cache = list_first_entry(&cur_trans->io_bgs,
4422					 struct btrfs_block_group_cache,
4423					 io_list);
4424
4425		list_del_init(&cache->io_list);
4426		spin_lock(&cache->lock);
4427		cache->disk_cache_state = BTRFS_DC_ERROR;
4428		spin_unlock(&cache->lock);
4429		btrfs_cleanup_bg_io(cache);
4430	}
4431}
4432
4433void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4434				   struct btrfs_fs_info *fs_info)
4435{
4436	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4437	ASSERT(list_empty(&cur_trans->dirty_bgs));
4438	ASSERT(list_empty(&cur_trans->io_bgs));
 
4439
4440	btrfs_destroy_delayed_refs(cur_trans, fs_info);
 
 
 
 
 
 
 
 
4441
4442	cur_trans->state = TRANS_STATE_COMMIT_START;
4443	wake_up(&fs_info->transaction_blocked_wait);
 
4444
4445	cur_trans->state = TRANS_STATE_UNBLOCKED;
4446	wake_up(&fs_info->transaction_wait);
4447
4448	btrfs_destroy_delayed_inodes(fs_info);
4449	btrfs_assert_delayed_root_empty(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4450
4451	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4452				     EXTENT_DIRTY);
4453	btrfs_destroy_pinned_extent(fs_info,
4454				    fs_info->pinned_extents);
4455
4456	cur_trans->state =TRANS_STATE_COMPLETED;
4457	wake_up(&cur_trans->commit_wait);
4458}
4459
4460static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4461{
4462	struct btrfs_transaction *t;
4463
4464	mutex_lock(&fs_info->transaction_kthread_mutex);
 
4465
4466	spin_lock(&fs_info->trans_lock);
4467	while (!list_empty(&fs_info->trans_list)) {
4468		t = list_first_entry(&fs_info->trans_list,
4469				     struct btrfs_transaction, list);
4470		if (t->state >= TRANS_STATE_COMMIT_START) {
4471			refcount_inc(&t->use_count);
4472			spin_unlock(&fs_info->trans_lock);
4473			btrfs_wait_for_commit(fs_info, t->transid);
4474			btrfs_put_transaction(t);
4475			spin_lock(&fs_info->trans_lock);
4476			continue;
4477		}
4478		if (t == fs_info->running_transaction) {
4479			t->state = TRANS_STATE_COMMIT_DOING;
4480			spin_unlock(&fs_info->trans_lock);
4481			/*
4482			 * We wait for 0 num_writers since we don't hold a trans
4483			 * handle open currently for this transaction.
4484			 */
4485			wait_event(t->writer_wait,
4486				   atomic_read(&t->num_writers) == 0);
4487		} else {
4488			spin_unlock(&fs_info->trans_lock);
4489		}
4490		btrfs_cleanup_one_transaction(t, fs_info);
4491
4492		spin_lock(&fs_info->trans_lock);
4493		if (t == fs_info->running_transaction)
4494			fs_info->running_transaction = NULL;
4495		list_del_init(&t->list);
4496		spin_unlock(&fs_info->trans_lock);
 
 
4497
4498		btrfs_put_transaction(t);
4499		trace_btrfs_transaction_commit(fs_info->tree_root);
4500		spin_lock(&fs_info->trans_lock);
4501	}
4502	spin_unlock(&fs_info->trans_lock);
4503	btrfs_destroy_all_ordered_extents(fs_info);
4504	btrfs_destroy_delayed_inodes(fs_info);
4505	btrfs_assert_delayed_root_empty(fs_info);
4506	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4507	btrfs_destroy_all_delalloc_inodes(fs_info);
4508	mutex_unlock(&fs_info->transaction_kthread_mutex);
4509
4510	return 0;
4511}
4512
4513static struct btrfs_fs_info *btree_fs_info(void *private_data)
4514{
4515	struct inode *inode = private_data;
4516	return btrfs_sb(inode->i_sb);
4517}
4518
4519static const struct extent_io_ops btree_extent_io_ops = {
4520	/* mandatory callbacks */
4521	.submit_bio_hook = btree_submit_bio_hook,
4522	.readpage_end_io_hook = btree_readpage_end_io_hook,
4523	/* note we're sharing with inode.c for the merge bio hook */
4524	.merge_bio_hook = btrfs_merge_bio_hook,
4525	.readpage_io_failed_hook = btree_io_failed_hook,
4526	.set_range_writeback = btrfs_set_range_writeback,
4527	.tree_fs_info = btree_fs_info,
4528
4529	/* optional callbacks */
4530};