Loading...
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/blkdev.h>
21#include <linux/scatterlist.h>
22#include <linux/swap.h>
23#include <linux/radix-tree.h>
24#include <linux/writeback.h>
25#include <linux/buffer_head.h>
26#include <linux/workqueue.h>
27#include <linux/kthread.h>
28#include <linux/freezer.h>
29#include <linux/crc32c.h>
30#include <linux/slab.h>
31#include <linux/migrate.h>
32#include <linux/ratelimit.h>
33#include <asm/unaligned.h>
34#include "compat.h"
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39#include "volumes.h"
40#include "print-tree.h"
41#include "async-thread.h"
42#include "locking.h"
43#include "tree-log.h"
44#include "free-space-cache.h"
45#include "inode-map.h"
46#include "check-integrity.h"
47#include "rcu-string.h"
48
49static struct extent_io_ops btree_extent_io_ops;
50static void end_workqueue_fn(struct btrfs_work *work);
51static void free_fs_root(struct btrfs_root *root);
52static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
53 int read_only);
54static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_root *root);
58static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60static int btrfs_destroy_marked_extents(struct btrfs_root *root,
61 struct extent_io_tree *dirty_pages,
62 int mark);
63static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
64 struct extent_io_tree *pinned_extents);
65
66/*
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
71struct end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 int error;
77 int metadata;
78 struct list_head list;
79 struct btrfs_work work;
80};
81
82/*
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
86 */
87struct async_submit_bio {
88 struct inode *inode;
89 struct bio *bio;
90 struct list_head list;
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
93 int rw;
94 int mirror_num;
95 unsigned long bio_flags;
96 /*
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
99 */
100 u64 bio_offset;
101 struct btrfs_work work;
102 int error;
103};
104
105/*
106 * Lockdep class keys for extent_buffer->lock's in this root. For a given
107 * eb, the lockdep key is determined by the btrfs_root it belongs to and
108 * the level the eb occupies in the tree.
109 *
110 * Different roots are used for different purposes and may nest inside each
111 * other and they require separate keysets. As lockdep keys should be
112 * static, assign keysets according to the purpose of the root as indicated
113 * by btrfs_root->objectid. This ensures that all special purpose roots
114 * have separate keysets.
115 *
116 * Lock-nesting across peer nodes is always done with the immediate parent
117 * node locked thus preventing deadlock. As lockdep doesn't know this, use
118 * subclass to avoid triggering lockdep warning in such cases.
119 *
120 * The key is set by the readpage_end_io_hook after the buffer has passed
121 * csum validation but before the pages are unlocked. It is also set by
122 * btrfs_init_new_buffer on freshly allocated blocks.
123 *
124 * We also add a check to make sure the highest level of the tree is the
125 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
126 * needs update as well.
127 */
128#ifdef CONFIG_DEBUG_LOCK_ALLOC
129# if BTRFS_MAX_LEVEL != 8
130# error
131# endif
132
133static struct btrfs_lockdep_keyset {
134 u64 id; /* root objectid */
135 const char *name_stem; /* lock name stem */
136 char names[BTRFS_MAX_LEVEL + 1][20];
137 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
138} btrfs_lockdep_keysets[] = {
139 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
140 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
141 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
142 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
143 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
144 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
145 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
146 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
147 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
148 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
149 { .id = 0, .name_stem = "tree" },
150};
151
152void __init btrfs_init_lockdep(void)
153{
154 int i, j;
155
156 /* initialize lockdep class names */
157 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
158 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
159
160 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
161 snprintf(ks->names[j], sizeof(ks->names[j]),
162 "btrfs-%s-%02d", ks->name_stem, j);
163 }
164}
165
166void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
167 int level)
168{
169 struct btrfs_lockdep_keyset *ks;
170
171 BUG_ON(level >= ARRAY_SIZE(ks->keys));
172
173 /* find the matching keyset, id 0 is the default entry */
174 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
175 if (ks->id == objectid)
176 break;
177
178 lockdep_set_class_and_name(&eb->lock,
179 &ks->keys[level], ks->names[level]);
180}
181
182#endif
183
184/*
185 * extents on the btree inode are pretty simple, there's one extent
186 * that covers the entire device
187 */
188static struct extent_map *btree_get_extent(struct inode *inode,
189 struct page *page, size_t pg_offset, u64 start, u64 len,
190 int create)
191{
192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
193 struct extent_map *em;
194 int ret;
195
196 read_lock(&em_tree->lock);
197 em = lookup_extent_mapping(em_tree, start, len);
198 if (em) {
199 em->bdev =
200 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
201 read_unlock(&em_tree->lock);
202 goto out;
203 }
204 read_unlock(&em_tree->lock);
205
206 em = alloc_extent_map();
207 if (!em) {
208 em = ERR_PTR(-ENOMEM);
209 goto out;
210 }
211 em->start = 0;
212 em->len = (u64)-1;
213 em->block_len = (u64)-1;
214 em->block_start = 0;
215 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
216
217 write_lock(&em_tree->lock);
218 ret = add_extent_mapping(em_tree, em);
219 if (ret == -EEXIST) {
220 u64 failed_start = em->start;
221 u64 failed_len = em->len;
222
223 free_extent_map(em);
224 em = lookup_extent_mapping(em_tree, start, len);
225 if (em) {
226 ret = 0;
227 } else {
228 em = lookup_extent_mapping(em_tree, failed_start,
229 failed_len);
230 ret = -EIO;
231 }
232 } else if (ret) {
233 free_extent_map(em);
234 em = NULL;
235 }
236 write_unlock(&em_tree->lock);
237
238 if (ret)
239 em = ERR_PTR(ret);
240out:
241 return em;
242}
243
244u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
245{
246 return crc32c(seed, data, len);
247}
248
249void btrfs_csum_final(u32 crc, char *result)
250{
251 put_unaligned_le32(~crc, result);
252}
253
254/*
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
257 */
258static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 int verify)
260{
261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262 char *result = NULL;
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
270 u32 crc = ~(u32)0;
271 unsigned long inline_result;
272
273 len = buf->len - offset;
274 while (len > 0) {
275 err = map_private_extent_buffer(buf, offset, 32,
276 &kaddr, &map_start, &map_len);
277 if (err)
278 return 1;
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(root, kaddr + offset - map_start,
281 crc, cur_len);
282 len -= cur_len;
283 offset += cur_len;
284 }
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 if (!result)
288 return 1;
289 } else {
290 result = (char *)&inline_result;
291 }
292
293 btrfs_csum_final(crc, result);
294
295 if (verify) {
296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297 u32 val;
298 u32 found = 0;
299 memcpy(&found, result, csum_size);
300
301 read_extent_buffer(buf, &val, 0, csum_size);
302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 "failed on %llu wanted %X found %X "
304 "level %d\n",
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
309 kfree(result);
310 return 1;
311 }
312 } else {
313 write_extent_buffer(buf, result, 0, csum_size);
314 }
315 if (result != (char *)&inline_result)
316 kfree(result);
317 return 0;
318}
319
320/*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
326static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
329{
330 struct extent_state *cached_state = NULL;
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
336 if (atomic)
337 return -EAGAIN;
338
339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 0, &cached_state);
341 if (extent_buffer_uptodate(eb) &&
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 "found %llu\n",
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
351 ret = 1;
352 clear_extent_buffer_uptodate(eb);
353out:
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
356 return ret;
357}
358
359/*
360 * helper to read a given tree block, doing retries as required when
361 * the checksums don't match and we have alternate mirrors to try.
362 */
363static int btree_read_extent_buffer_pages(struct btrfs_root *root,
364 struct extent_buffer *eb,
365 u64 start, u64 parent_transid)
366{
367 struct extent_io_tree *io_tree;
368 int failed = 0;
369 int ret;
370 int num_copies = 0;
371 int mirror_num = 0;
372 int failed_mirror = 0;
373
374 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
375 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
376 while (1) {
377 ret = read_extent_buffer_pages(io_tree, eb, start,
378 WAIT_COMPLETE,
379 btree_get_extent, mirror_num);
380 if (!ret && !verify_parent_transid(io_tree, eb,
381 parent_transid, 0))
382 break;
383
384 /*
385 * This buffer's crc is fine, but its contents are corrupted, so
386 * there is no reason to read the other copies, they won't be
387 * any less wrong.
388 */
389 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
390 break;
391
392 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
393 eb->start, eb->len);
394 if (num_copies == 1)
395 break;
396
397 if (!failed_mirror) {
398 failed = 1;
399 failed_mirror = eb->read_mirror;
400 }
401
402 mirror_num++;
403 if (mirror_num == failed_mirror)
404 mirror_num++;
405
406 if (mirror_num > num_copies)
407 break;
408 }
409
410 if (failed && !ret)
411 repair_eb_io_failure(root, eb, failed_mirror);
412
413 return ret;
414}
415
416/*
417 * checksum a dirty tree block before IO. This has extra checks to make sure
418 * we only fill in the checksum field in the first page of a multi-page block
419 */
420
421static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
422{
423 struct extent_io_tree *tree;
424 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
425 u64 found_start;
426 struct extent_buffer *eb;
427
428 tree = &BTRFS_I(page->mapping->host)->io_tree;
429
430 eb = (struct extent_buffer *)page->private;
431 if (page != eb->pages[0])
432 return 0;
433 found_start = btrfs_header_bytenr(eb);
434 if (found_start != start) {
435 WARN_ON(1);
436 return 0;
437 }
438 if (eb->pages[0] != page) {
439 WARN_ON(1);
440 return 0;
441 }
442 if (!PageUptodate(page)) {
443 WARN_ON(1);
444 return 0;
445 }
446 csum_tree_block(root, eb, 0);
447 return 0;
448}
449
450static int check_tree_block_fsid(struct btrfs_root *root,
451 struct extent_buffer *eb)
452{
453 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
454 u8 fsid[BTRFS_UUID_SIZE];
455 int ret = 1;
456
457 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
458 BTRFS_FSID_SIZE);
459 while (fs_devices) {
460 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
461 ret = 0;
462 break;
463 }
464 fs_devices = fs_devices->seed;
465 }
466 return ret;
467}
468
469#define CORRUPT(reason, eb, root, slot) \
470 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
471 "root=%llu, slot=%d\n", reason, \
472 (unsigned long long)btrfs_header_bytenr(eb), \
473 (unsigned long long)root->objectid, slot)
474
475static noinline int check_leaf(struct btrfs_root *root,
476 struct extent_buffer *leaf)
477{
478 struct btrfs_key key;
479 struct btrfs_key leaf_key;
480 u32 nritems = btrfs_header_nritems(leaf);
481 int slot;
482
483 if (nritems == 0)
484 return 0;
485
486 /* Check the 0 item */
487 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
488 BTRFS_LEAF_DATA_SIZE(root)) {
489 CORRUPT("invalid item offset size pair", leaf, root, 0);
490 return -EIO;
491 }
492
493 /*
494 * Check to make sure each items keys are in the correct order and their
495 * offsets make sense. We only have to loop through nritems-1 because
496 * we check the current slot against the next slot, which verifies the
497 * next slot's offset+size makes sense and that the current's slot
498 * offset is correct.
499 */
500 for (slot = 0; slot < nritems - 1; slot++) {
501 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
502 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
503
504 /* Make sure the keys are in the right order */
505 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
506 CORRUPT("bad key order", leaf, root, slot);
507 return -EIO;
508 }
509
510 /*
511 * Make sure the offset and ends are right, remember that the
512 * item data starts at the end of the leaf and grows towards the
513 * front.
514 */
515 if (btrfs_item_offset_nr(leaf, slot) !=
516 btrfs_item_end_nr(leaf, slot + 1)) {
517 CORRUPT("slot offset bad", leaf, root, slot);
518 return -EIO;
519 }
520
521 /*
522 * Check to make sure that we don't point outside of the leaf,
523 * just incase all the items are consistent to eachother, but
524 * all point outside of the leaf.
525 */
526 if (btrfs_item_end_nr(leaf, slot) >
527 BTRFS_LEAF_DATA_SIZE(root)) {
528 CORRUPT("slot end outside of leaf", leaf, root, slot);
529 return -EIO;
530 }
531 }
532
533 return 0;
534}
535
536struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
537 struct page *page, int max_walk)
538{
539 struct extent_buffer *eb;
540 u64 start = page_offset(page);
541 u64 target = start;
542 u64 min_start;
543
544 if (start < max_walk)
545 min_start = 0;
546 else
547 min_start = start - max_walk;
548
549 while (start >= min_start) {
550 eb = find_extent_buffer(tree, start, 0);
551 if (eb) {
552 /*
553 * we found an extent buffer and it contains our page
554 * horray!
555 */
556 if (eb->start <= target &&
557 eb->start + eb->len > target)
558 return eb;
559
560 /* we found an extent buffer that wasn't for us */
561 free_extent_buffer(eb);
562 return NULL;
563 }
564 if (start == 0)
565 break;
566 start -= PAGE_CACHE_SIZE;
567 }
568 return NULL;
569}
570
571static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
572 struct extent_state *state, int mirror)
573{
574 struct extent_io_tree *tree;
575 u64 found_start;
576 int found_level;
577 struct extent_buffer *eb;
578 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
579 int ret = 0;
580 int reads_done;
581
582 if (!page->private)
583 goto out;
584
585 tree = &BTRFS_I(page->mapping->host)->io_tree;
586 eb = (struct extent_buffer *)page->private;
587
588 /* the pending IO might have been the only thing that kept this buffer
589 * in memory. Make sure we have a ref for all this other checks
590 */
591 extent_buffer_get(eb);
592
593 reads_done = atomic_dec_and_test(&eb->io_pages);
594 if (!reads_done)
595 goto err;
596
597 eb->read_mirror = mirror;
598 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
599 ret = -EIO;
600 goto err;
601 }
602
603 found_start = btrfs_header_bytenr(eb);
604 if (found_start != eb->start) {
605 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
606 "%llu %llu\n",
607 (unsigned long long)found_start,
608 (unsigned long long)eb->start);
609 ret = -EIO;
610 goto err;
611 }
612 if (check_tree_block_fsid(root, eb)) {
613 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
614 (unsigned long long)eb->start);
615 ret = -EIO;
616 goto err;
617 }
618 found_level = btrfs_header_level(eb);
619
620 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621 eb, found_level);
622
623 ret = csum_tree_block(root, eb, 1);
624 if (ret) {
625 ret = -EIO;
626 goto err;
627 }
628
629 /*
630 * If this is a leaf block and it is corrupt, set the corrupt bit so
631 * that we don't try and read the other copies of this block, just
632 * return -EIO.
633 */
634 if (found_level == 0 && check_leaf(root, eb)) {
635 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636 ret = -EIO;
637 }
638
639 if (!ret)
640 set_extent_buffer_uptodate(eb);
641err:
642 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
643 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
644 btree_readahead_hook(root, eb, eb->start, ret);
645 }
646
647 if (ret)
648 clear_extent_buffer_uptodate(eb);
649 free_extent_buffer(eb);
650out:
651 return ret;
652}
653
654static int btree_io_failed_hook(struct page *page, int failed_mirror)
655{
656 struct extent_buffer *eb;
657 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
658
659 eb = (struct extent_buffer *)page->private;
660 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
661 eb->read_mirror = failed_mirror;
662 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
663 btree_readahead_hook(root, eb, eb->start, -EIO);
664 return -EIO; /* we fixed nothing */
665}
666
667static void end_workqueue_bio(struct bio *bio, int err)
668{
669 struct end_io_wq *end_io_wq = bio->bi_private;
670 struct btrfs_fs_info *fs_info;
671
672 fs_info = end_io_wq->info;
673 end_io_wq->error = err;
674 end_io_wq->work.func = end_workqueue_fn;
675 end_io_wq->work.flags = 0;
676
677 if (bio->bi_rw & REQ_WRITE) {
678 if (end_io_wq->metadata == 1)
679 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
680 &end_io_wq->work);
681 else if (end_io_wq->metadata == 2)
682 btrfs_queue_worker(&fs_info->endio_freespace_worker,
683 &end_io_wq->work);
684 else
685 btrfs_queue_worker(&fs_info->endio_write_workers,
686 &end_io_wq->work);
687 } else {
688 if (end_io_wq->metadata)
689 btrfs_queue_worker(&fs_info->endio_meta_workers,
690 &end_io_wq->work);
691 else
692 btrfs_queue_worker(&fs_info->endio_workers,
693 &end_io_wq->work);
694 }
695}
696
697/*
698 * For the metadata arg you want
699 *
700 * 0 - if data
701 * 1 - if normal metadta
702 * 2 - if writing to the free space cache area
703 */
704int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
705 int metadata)
706{
707 struct end_io_wq *end_io_wq;
708 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
709 if (!end_io_wq)
710 return -ENOMEM;
711
712 end_io_wq->private = bio->bi_private;
713 end_io_wq->end_io = bio->bi_end_io;
714 end_io_wq->info = info;
715 end_io_wq->error = 0;
716 end_io_wq->bio = bio;
717 end_io_wq->metadata = metadata;
718
719 bio->bi_private = end_io_wq;
720 bio->bi_end_io = end_workqueue_bio;
721 return 0;
722}
723
724unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
725{
726 unsigned long limit = min_t(unsigned long,
727 info->workers.max_workers,
728 info->fs_devices->open_devices);
729 return 256 * limit;
730}
731
732static void run_one_async_start(struct btrfs_work *work)
733{
734 struct async_submit_bio *async;
735 int ret;
736
737 async = container_of(work, struct async_submit_bio, work);
738 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
739 async->mirror_num, async->bio_flags,
740 async->bio_offset);
741 if (ret)
742 async->error = ret;
743}
744
745static void run_one_async_done(struct btrfs_work *work)
746{
747 struct btrfs_fs_info *fs_info;
748 struct async_submit_bio *async;
749 int limit;
750
751 async = container_of(work, struct async_submit_bio, work);
752 fs_info = BTRFS_I(async->inode)->root->fs_info;
753
754 limit = btrfs_async_submit_limit(fs_info);
755 limit = limit * 2 / 3;
756
757 atomic_dec(&fs_info->nr_async_submits);
758
759 if (atomic_read(&fs_info->nr_async_submits) < limit &&
760 waitqueue_active(&fs_info->async_submit_wait))
761 wake_up(&fs_info->async_submit_wait);
762
763 /* If an error occured we just want to clean up the bio and move on */
764 if (async->error) {
765 bio_endio(async->bio, async->error);
766 return;
767 }
768
769 async->submit_bio_done(async->inode, async->rw, async->bio,
770 async->mirror_num, async->bio_flags,
771 async->bio_offset);
772}
773
774static void run_one_async_free(struct btrfs_work *work)
775{
776 struct async_submit_bio *async;
777
778 async = container_of(work, struct async_submit_bio, work);
779 kfree(async);
780}
781
782int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
783 int rw, struct bio *bio, int mirror_num,
784 unsigned long bio_flags,
785 u64 bio_offset,
786 extent_submit_bio_hook_t *submit_bio_start,
787 extent_submit_bio_hook_t *submit_bio_done)
788{
789 struct async_submit_bio *async;
790
791 async = kmalloc(sizeof(*async), GFP_NOFS);
792 if (!async)
793 return -ENOMEM;
794
795 async->inode = inode;
796 async->rw = rw;
797 async->bio = bio;
798 async->mirror_num = mirror_num;
799 async->submit_bio_start = submit_bio_start;
800 async->submit_bio_done = submit_bio_done;
801
802 async->work.func = run_one_async_start;
803 async->work.ordered_func = run_one_async_done;
804 async->work.ordered_free = run_one_async_free;
805
806 async->work.flags = 0;
807 async->bio_flags = bio_flags;
808 async->bio_offset = bio_offset;
809
810 async->error = 0;
811
812 atomic_inc(&fs_info->nr_async_submits);
813
814 if (rw & REQ_SYNC)
815 btrfs_set_work_high_prio(&async->work);
816
817 btrfs_queue_worker(&fs_info->workers, &async->work);
818
819 while (atomic_read(&fs_info->async_submit_draining) &&
820 atomic_read(&fs_info->nr_async_submits)) {
821 wait_event(fs_info->async_submit_wait,
822 (atomic_read(&fs_info->nr_async_submits) == 0));
823 }
824
825 return 0;
826}
827
828static int btree_csum_one_bio(struct bio *bio)
829{
830 struct bio_vec *bvec = bio->bi_io_vec;
831 int bio_index = 0;
832 struct btrfs_root *root;
833 int ret = 0;
834
835 WARN_ON(bio->bi_vcnt <= 0);
836 while (bio_index < bio->bi_vcnt) {
837 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
838 ret = csum_dirty_buffer(root, bvec->bv_page);
839 if (ret)
840 break;
841 bio_index++;
842 bvec++;
843 }
844 return ret;
845}
846
847static int __btree_submit_bio_start(struct inode *inode, int rw,
848 struct bio *bio, int mirror_num,
849 unsigned long bio_flags,
850 u64 bio_offset)
851{
852 /*
853 * when we're called for a write, we're already in the async
854 * submission context. Just jump into btrfs_map_bio
855 */
856 return btree_csum_one_bio(bio);
857}
858
859static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
860 int mirror_num, unsigned long bio_flags,
861 u64 bio_offset)
862{
863 /*
864 * when we're called for a write, we're already in the async
865 * submission context. Just jump into btrfs_map_bio
866 */
867 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
868}
869
870static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
871 int mirror_num, unsigned long bio_flags,
872 u64 bio_offset)
873{
874 int ret;
875
876 if (!(rw & REQ_WRITE)) {
877
878 /*
879 * called for a read, do the setup so that checksum validation
880 * can happen in the async kernel threads
881 */
882 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
883 bio, 1);
884 if (ret)
885 return ret;
886 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
887 mirror_num, 0);
888 }
889
890 /*
891 * kthread helpers are used to submit writes so that checksumming
892 * can happen in parallel across all CPUs
893 */
894 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
895 inode, rw, bio, mirror_num, 0,
896 bio_offset,
897 __btree_submit_bio_start,
898 __btree_submit_bio_done);
899}
900
901#ifdef CONFIG_MIGRATION
902static int btree_migratepage(struct address_space *mapping,
903 struct page *newpage, struct page *page,
904 enum migrate_mode mode)
905{
906 /*
907 * we can't safely write a btree page from here,
908 * we haven't done the locking hook
909 */
910 if (PageDirty(page))
911 return -EAGAIN;
912 /*
913 * Buffers may be managed in a filesystem specific way.
914 * We must have no buffers or drop them.
915 */
916 if (page_has_private(page) &&
917 !try_to_release_page(page, GFP_KERNEL))
918 return -EAGAIN;
919 return migrate_page(mapping, newpage, page, mode);
920}
921#endif
922
923
924static int btree_writepages(struct address_space *mapping,
925 struct writeback_control *wbc)
926{
927 struct extent_io_tree *tree;
928 tree = &BTRFS_I(mapping->host)->io_tree;
929 if (wbc->sync_mode == WB_SYNC_NONE) {
930 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
931 u64 num_dirty;
932 unsigned long thresh = 32 * 1024 * 1024;
933
934 if (wbc->for_kupdate)
935 return 0;
936
937 /* this is a bit racy, but that's ok */
938 num_dirty = root->fs_info->dirty_metadata_bytes;
939 if (num_dirty < thresh)
940 return 0;
941 }
942 return btree_write_cache_pages(mapping, wbc);
943}
944
945static int btree_readpage(struct file *file, struct page *page)
946{
947 struct extent_io_tree *tree;
948 tree = &BTRFS_I(page->mapping->host)->io_tree;
949 return extent_read_full_page(tree, page, btree_get_extent, 0);
950}
951
952static int btree_releasepage(struct page *page, gfp_t gfp_flags)
953{
954 if (PageWriteback(page) || PageDirty(page))
955 return 0;
956 /*
957 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
958 * slab allocation from alloc_extent_state down the callchain where
959 * it'd hit a BUG_ON as those flags are not allowed.
960 */
961 gfp_flags &= ~GFP_SLAB_BUG_MASK;
962
963 return try_release_extent_buffer(page, gfp_flags);
964}
965
966static void btree_invalidatepage(struct page *page, unsigned long offset)
967{
968 struct extent_io_tree *tree;
969 tree = &BTRFS_I(page->mapping->host)->io_tree;
970 extent_invalidatepage(tree, page, offset);
971 btree_releasepage(page, GFP_NOFS);
972 if (PagePrivate(page)) {
973 printk(KERN_WARNING "btrfs warning page private not zero "
974 "on page %llu\n", (unsigned long long)page_offset(page));
975 ClearPagePrivate(page);
976 set_page_private(page, 0);
977 page_cache_release(page);
978 }
979}
980
981static int btree_set_page_dirty(struct page *page)
982{
983 struct extent_buffer *eb;
984
985 BUG_ON(!PagePrivate(page));
986 eb = (struct extent_buffer *)page->private;
987 BUG_ON(!eb);
988 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
989 BUG_ON(!atomic_read(&eb->refs));
990 btrfs_assert_tree_locked(eb);
991 return __set_page_dirty_nobuffers(page);
992}
993
994static const struct address_space_operations btree_aops = {
995 .readpage = btree_readpage,
996 .writepages = btree_writepages,
997 .releasepage = btree_releasepage,
998 .invalidatepage = btree_invalidatepage,
999#ifdef CONFIG_MIGRATION
1000 .migratepage = btree_migratepage,
1001#endif
1002 .set_page_dirty = btree_set_page_dirty,
1003};
1004
1005int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1006 u64 parent_transid)
1007{
1008 struct extent_buffer *buf = NULL;
1009 struct inode *btree_inode = root->fs_info->btree_inode;
1010 int ret = 0;
1011
1012 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1013 if (!buf)
1014 return 0;
1015 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1016 buf, 0, WAIT_NONE, btree_get_extent, 0);
1017 free_extent_buffer(buf);
1018 return ret;
1019}
1020
1021int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1022 int mirror_num, struct extent_buffer **eb)
1023{
1024 struct extent_buffer *buf = NULL;
1025 struct inode *btree_inode = root->fs_info->btree_inode;
1026 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1027 int ret;
1028
1029 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1030 if (!buf)
1031 return 0;
1032
1033 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1034
1035 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1036 btree_get_extent, mirror_num);
1037 if (ret) {
1038 free_extent_buffer(buf);
1039 return ret;
1040 }
1041
1042 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1043 free_extent_buffer(buf);
1044 return -EIO;
1045 } else if (extent_buffer_uptodate(buf)) {
1046 *eb = buf;
1047 } else {
1048 free_extent_buffer(buf);
1049 }
1050 return 0;
1051}
1052
1053struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1054 u64 bytenr, u32 blocksize)
1055{
1056 struct inode *btree_inode = root->fs_info->btree_inode;
1057 struct extent_buffer *eb;
1058 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1059 bytenr, blocksize);
1060 return eb;
1061}
1062
1063struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1064 u64 bytenr, u32 blocksize)
1065{
1066 struct inode *btree_inode = root->fs_info->btree_inode;
1067 struct extent_buffer *eb;
1068
1069 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1070 bytenr, blocksize);
1071 return eb;
1072}
1073
1074
1075int btrfs_write_tree_block(struct extent_buffer *buf)
1076{
1077 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1078 buf->start + buf->len - 1);
1079}
1080
1081int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1082{
1083 return filemap_fdatawait_range(buf->pages[0]->mapping,
1084 buf->start, buf->start + buf->len - 1);
1085}
1086
1087struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1088 u32 blocksize, u64 parent_transid)
1089{
1090 struct extent_buffer *buf = NULL;
1091 int ret;
1092
1093 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1094 if (!buf)
1095 return NULL;
1096
1097 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1098 return buf;
1099
1100}
1101
1102void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1103 struct extent_buffer *buf)
1104{
1105 if (btrfs_header_generation(buf) ==
1106 root->fs_info->running_transaction->transid) {
1107 btrfs_assert_tree_locked(buf);
1108
1109 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1110 spin_lock(&root->fs_info->delalloc_lock);
1111 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1112 root->fs_info->dirty_metadata_bytes -= buf->len;
1113 else {
1114 spin_unlock(&root->fs_info->delalloc_lock);
1115 btrfs_panic(root->fs_info, -EOVERFLOW,
1116 "Can't clear %lu bytes from "
1117 " dirty_mdatadata_bytes (%lu)",
1118 buf->len,
1119 root->fs_info->dirty_metadata_bytes);
1120 }
1121 spin_unlock(&root->fs_info->delalloc_lock);
1122 }
1123
1124 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1125 btrfs_set_lock_blocking(buf);
1126 clear_extent_buffer_dirty(buf);
1127 }
1128}
1129
1130static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1131 u32 stripesize, struct btrfs_root *root,
1132 struct btrfs_fs_info *fs_info,
1133 u64 objectid)
1134{
1135 root->node = NULL;
1136 root->commit_root = NULL;
1137 root->sectorsize = sectorsize;
1138 root->nodesize = nodesize;
1139 root->leafsize = leafsize;
1140 root->stripesize = stripesize;
1141 root->ref_cows = 0;
1142 root->track_dirty = 0;
1143 root->in_radix = 0;
1144 root->orphan_item_inserted = 0;
1145 root->orphan_cleanup_state = 0;
1146
1147 root->objectid = objectid;
1148 root->last_trans = 0;
1149 root->highest_objectid = 0;
1150 root->name = NULL;
1151 root->inode_tree = RB_ROOT;
1152 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1153 root->block_rsv = NULL;
1154 root->orphan_block_rsv = NULL;
1155
1156 INIT_LIST_HEAD(&root->dirty_list);
1157 INIT_LIST_HEAD(&root->root_list);
1158 spin_lock_init(&root->orphan_lock);
1159 spin_lock_init(&root->inode_lock);
1160 spin_lock_init(&root->accounting_lock);
1161 mutex_init(&root->objectid_mutex);
1162 mutex_init(&root->log_mutex);
1163 init_waitqueue_head(&root->log_writer_wait);
1164 init_waitqueue_head(&root->log_commit_wait[0]);
1165 init_waitqueue_head(&root->log_commit_wait[1]);
1166 atomic_set(&root->log_commit[0], 0);
1167 atomic_set(&root->log_commit[1], 0);
1168 atomic_set(&root->log_writers, 0);
1169 atomic_set(&root->orphan_inodes, 0);
1170 root->log_batch = 0;
1171 root->log_transid = 0;
1172 root->last_log_commit = 0;
1173 extent_io_tree_init(&root->dirty_log_pages,
1174 fs_info->btree_inode->i_mapping);
1175
1176 memset(&root->root_key, 0, sizeof(root->root_key));
1177 memset(&root->root_item, 0, sizeof(root->root_item));
1178 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1179 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1180 root->defrag_trans_start = fs_info->generation;
1181 init_completion(&root->kobj_unregister);
1182 root->defrag_running = 0;
1183 root->root_key.objectid = objectid;
1184 root->anon_dev = 0;
1185}
1186
1187static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1188 struct btrfs_fs_info *fs_info,
1189 u64 objectid,
1190 struct btrfs_root *root)
1191{
1192 int ret;
1193 u32 blocksize;
1194 u64 generation;
1195
1196 __setup_root(tree_root->nodesize, tree_root->leafsize,
1197 tree_root->sectorsize, tree_root->stripesize,
1198 root, fs_info, objectid);
1199 ret = btrfs_find_last_root(tree_root, objectid,
1200 &root->root_item, &root->root_key);
1201 if (ret > 0)
1202 return -ENOENT;
1203 else if (ret < 0)
1204 return ret;
1205
1206 generation = btrfs_root_generation(&root->root_item);
1207 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1208 root->commit_root = NULL;
1209 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1210 blocksize, generation);
1211 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1212 free_extent_buffer(root->node);
1213 root->node = NULL;
1214 return -EIO;
1215 }
1216 root->commit_root = btrfs_root_node(root);
1217 return 0;
1218}
1219
1220static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1221{
1222 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1223 if (root)
1224 root->fs_info = fs_info;
1225 return root;
1226}
1227
1228static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1229 struct btrfs_fs_info *fs_info)
1230{
1231 struct btrfs_root *root;
1232 struct btrfs_root *tree_root = fs_info->tree_root;
1233 struct extent_buffer *leaf;
1234
1235 root = btrfs_alloc_root(fs_info);
1236 if (!root)
1237 return ERR_PTR(-ENOMEM);
1238
1239 __setup_root(tree_root->nodesize, tree_root->leafsize,
1240 tree_root->sectorsize, tree_root->stripesize,
1241 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1242
1243 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1244 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1245 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1246 /*
1247 * log trees do not get reference counted because they go away
1248 * before a real commit is actually done. They do store pointers
1249 * to file data extents, and those reference counts still get
1250 * updated (along with back refs to the log tree).
1251 */
1252 root->ref_cows = 0;
1253
1254 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1255 BTRFS_TREE_LOG_OBJECTID, NULL,
1256 0, 0, 0);
1257 if (IS_ERR(leaf)) {
1258 kfree(root);
1259 return ERR_CAST(leaf);
1260 }
1261
1262 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1263 btrfs_set_header_bytenr(leaf, leaf->start);
1264 btrfs_set_header_generation(leaf, trans->transid);
1265 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1266 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1267 root->node = leaf;
1268
1269 write_extent_buffer(root->node, root->fs_info->fsid,
1270 (unsigned long)btrfs_header_fsid(root->node),
1271 BTRFS_FSID_SIZE);
1272 btrfs_mark_buffer_dirty(root->node);
1273 btrfs_tree_unlock(root->node);
1274 return root;
1275}
1276
1277int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1278 struct btrfs_fs_info *fs_info)
1279{
1280 struct btrfs_root *log_root;
1281
1282 log_root = alloc_log_tree(trans, fs_info);
1283 if (IS_ERR(log_root))
1284 return PTR_ERR(log_root);
1285 WARN_ON(fs_info->log_root_tree);
1286 fs_info->log_root_tree = log_root;
1287 return 0;
1288}
1289
1290int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1291 struct btrfs_root *root)
1292{
1293 struct btrfs_root *log_root;
1294 struct btrfs_inode_item *inode_item;
1295
1296 log_root = alloc_log_tree(trans, root->fs_info);
1297 if (IS_ERR(log_root))
1298 return PTR_ERR(log_root);
1299
1300 log_root->last_trans = trans->transid;
1301 log_root->root_key.offset = root->root_key.objectid;
1302
1303 inode_item = &log_root->root_item.inode;
1304 inode_item->generation = cpu_to_le64(1);
1305 inode_item->size = cpu_to_le64(3);
1306 inode_item->nlink = cpu_to_le32(1);
1307 inode_item->nbytes = cpu_to_le64(root->leafsize);
1308 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1309
1310 btrfs_set_root_node(&log_root->root_item, log_root->node);
1311
1312 WARN_ON(root->log_root);
1313 root->log_root = log_root;
1314 root->log_transid = 0;
1315 root->last_log_commit = 0;
1316 return 0;
1317}
1318
1319struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1320 struct btrfs_key *location)
1321{
1322 struct btrfs_root *root;
1323 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1324 struct btrfs_path *path;
1325 struct extent_buffer *l;
1326 u64 generation;
1327 u32 blocksize;
1328 int ret = 0;
1329
1330 root = btrfs_alloc_root(fs_info);
1331 if (!root)
1332 return ERR_PTR(-ENOMEM);
1333 if (location->offset == (u64)-1) {
1334 ret = find_and_setup_root(tree_root, fs_info,
1335 location->objectid, root);
1336 if (ret) {
1337 kfree(root);
1338 return ERR_PTR(ret);
1339 }
1340 goto out;
1341 }
1342
1343 __setup_root(tree_root->nodesize, tree_root->leafsize,
1344 tree_root->sectorsize, tree_root->stripesize,
1345 root, fs_info, location->objectid);
1346
1347 path = btrfs_alloc_path();
1348 if (!path) {
1349 kfree(root);
1350 return ERR_PTR(-ENOMEM);
1351 }
1352 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1353 if (ret == 0) {
1354 l = path->nodes[0];
1355 read_extent_buffer(l, &root->root_item,
1356 btrfs_item_ptr_offset(l, path->slots[0]),
1357 sizeof(root->root_item));
1358 memcpy(&root->root_key, location, sizeof(*location));
1359 }
1360 btrfs_free_path(path);
1361 if (ret) {
1362 kfree(root);
1363 if (ret > 0)
1364 ret = -ENOENT;
1365 return ERR_PTR(ret);
1366 }
1367
1368 generation = btrfs_root_generation(&root->root_item);
1369 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1370 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1371 blocksize, generation);
1372 root->commit_root = btrfs_root_node(root);
1373 BUG_ON(!root->node); /* -ENOMEM */
1374out:
1375 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1376 root->ref_cows = 1;
1377 btrfs_check_and_init_root_item(&root->root_item);
1378 }
1379
1380 return root;
1381}
1382
1383struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1384 struct btrfs_key *location)
1385{
1386 struct btrfs_root *root;
1387 int ret;
1388
1389 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1390 return fs_info->tree_root;
1391 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1392 return fs_info->extent_root;
1393 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1394 return fs_info->chunk_root;
1395 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1396 return fs_info->dev_root;
1397 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1398 return fs_info->csum_root;
1399again:
1400 spin_lock(&fs_info->fs_roots_radix_lock);
1401 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1402 (unsigned long)location->objectid);
1403 spin_unlock(&fs_info->fs_roots_radix_lock);
1404 if (root)
1405 return root;
1406
1407 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1408 if (IS_ERR(root))
1409 return root;
1410
1411 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1412 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1413 GFP_NOFS);
1414 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1415 ret = -ENOMEM;
1416 goto fail;
1417 }
1418
1419 btrfs_init_free_ino_ctl(root);
1420 mutex_init(&root->fs_commit_mutex);
1421 spin_lock_init(&root->cache_lock);
1422 init_waitqueue_head(&root->cache_wait);
1423
1424 ret = get_anon_bdev(&root->anon_dev);
1425 if (ret)
1426 goto fail;
1427
1428 if (btrfs_root_refs(&root->root_item) == 0) {
1429 ret = -ENOENT;
1430 goto fail;
1431 }
1432
1433 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1434 if (ret < 0)
1435 goto fail;
1436 if (ret == 0)
1437 root->orphan_item_inserted = 1;
1438
1439 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1440 if (ret)
1441 goto fail;
1442
1443 spin_lock(&fs_info->fs_roots_radix_lock);
1444 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1445 (unsigned long)root->root_key.objectid,
1446 root);
1447 if (ret == 0)
1448 root->in_radix = 1;
1449
1450 spin_unlock(&fs_info->fs_roots_radix_lock);
1451 radix_tree_preload_end();
1452 if (ret) {
1453 if (ret == -EEXIST) {
1454 free_fs_root(root);
1455 goto again;
1456 }
1457 goto fail;
1458 }
1459
1460 ret = btrfs_find_dead_roots(fs_info->tree_root,
1461 root->root_key.objectid);
1462 WARN_ON(ret);
1463 return root;
1464fail:
1465 free_fs_root(root);
1466 return ERR_PTR(ret);
1467}
1468
1469static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1470{
1471 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1472 int ret = 0;
1473 struct btrfs_device *device;
1474 struct backing_dev_info *bdi;
1475
1476 rcu_read_lock();
1477 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1478 if (!device->bdev)
1479 continue;
1480 bdi = blk_get_backing_dev_info(device->bdev);
1481 if (bdi && bdi_congested(bdi, bdi_bits)) {
1482 ret = 1;
1483 break;
1484 }
1485 }
1486 rcu_read_unlock();
1487 return ret;
1488}
1489
1490/*
1491 * If this fails, caller must call bdi_destroy() to get rid of the
1492 * bdi again.
1493 */
1494static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1495{
1496 int err;
1497
1498 bdi->capabilities = BDI_CAP_MAP_COPY;
1499 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1500 if (err)
1501 return err;
1502
1503 bdi->ra_pages = default_backing_dev_info.ra_pages;
1504 bdi->congested_fn = btrfs_congested_fn;
1505 bdi->congested_data = info;
1506 return 0;
1507}
1508
1509/*
1510 * called by the kthread helper functions to finally call the bio end_io
1511 * functions. This is where read checksum verification actually happens
1512 */
1513static void end_workqueue_fn(struct btrfs_work *work)
1514{
1515 struct bio *bio;
1516 struct end_io_wq *end_io_wq;
1517 struct btrfs_fs_info *fs_info;
1518 int error;
1519
1520 end_io_wq = container_of(work, struct end_io_wq, work);
1521 bio = end_io_wq->bio;
1522 fs_info = end_io_wq->info;
1523
1524 error = end_io_wq->error;
1525 bio->bi_private = end_io_wq->private;
1526 bio->bi_end_io = end_io_wq->end_io;
1527 kfree(end_io_wq);
1528 bio_endio(bio, error);
1529}
1530
1531static int cleaner_kthread(void *arg)
1532{
1533 struct btrfs_root *root = arg;
1534
1535 do {
1536 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1537
1538 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1539 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1540 btrfs_run_delayed_iputs(root);
1541 btrfs_clean_old_snapshots(root);
1542 mutex_unlock(&root->fs_info->cleaner_mutex);
1543 btrfs_run_defrag_inodes(root->fs_info);
1544 }
1545
1546 if (!try_to_freeze()) {
1547 set_current_state(TASK_INTERRUPTIBLE);
1548 if (!kthread_should_stop())
1549 schedule();
1550 __set_current_state(TASK_RUNNING);
1551 }
1552 } while (!kthread_should_stop());
1553 return 0;
1554}
1555
1556static int transaction_kthread(void *arg)
1557{
1558 struct btrfs_root *root = arg;
1559 struct btrfs_trans_handle *trans;
1560 struct btrfs_transaction *cur;
1561 u64 transid;
1562 unsigned long now;
1563 unsigned long delay;
1564 bool cannot_commit;
1565
1566 do {
1567 cannot_commit = false;
1568 delay = HZ * 30;
1569 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1570 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1571
1572 spin_lock(&root->fs_info->trans_lock);
1573 cur = root->fs_info->running_transaction;
1574 if (!cur) {
1575 spin_unlock(&root->fs_info->trans_lock);
1576 goto sleep;
1577 }
1578
1579 now = get_seconds();
1580 if (!cur->blocked &&
1581 (now < cur->start_time || now - cur->start_time < 30)) {
1582 spin_unlock(&root->fs_info->trans_lock);
1583 delay = HZ * 5;
1584 goto sleep;
1585 }
1586 transid = cur->transid;
1587 spin_unlock(&root->fs_info->trans_lock);
1588
1589 /* If the file system is aborted, this will always fail. */
1590 trans = btrfs_join_transaction(root);
1591 if (IS_ERR(trans)) {
1592 cannot_commit = true;
1593 goto sleep;
1594 }
1595 if (transid == trans->transid) {
1596 btrfs_commit_transaction(trans, root);
1597 } else {
1598 btrfs_end_transaction(trans, root);
1599 }
1600sleep:
1601 wake_up_process(root->fs_info->cleaner_kthread);
1602 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1603
1604 if (!try_to_freeze()) {
1605 set_current_state(TASK_INTERRUPTIBLE);
1606 if (!kthread_should_stop() &&
1607 (!btrfs_transaction_blocked(root->fs_info) ||
1608 cannot_commit))
1609 schedule_timeout(delay);
1610 __set_current_state(TASK_RUNNING);
1611 }
1612 } while (!kthread_should_stop());
1613 return 0;
1614}
1615
1616/*
1617 * this will find the highest generation in the array of
1618 * root backups. The index of the highest array is returned,
1619 * or -1 if we can't find anything.
1620 *
1621 * We check to make sure the array is valid by comparing the
1622 * generation of the latest root in the array with the generation
1623 * in the super block. If they don't match we pitch it.
1624 */
1625static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1626{
1627 u64 cur;
1628 int newest_index = -1;
1629 struct btrfs_root_backup *root_backup;
1630 int i;
1631
1632 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1633 root_backup = info->super_copy->super_roots + i;
1634 cur = btrfs_backup_tree_root_gen(root_backup);
1635 if (cur == newest_gen)
1636 newest_index = i;
1637 }
1638
1639 /* check to see if we actually wrapped around */
1640 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1641 root_backup = info->super_copy->super_roots;
1642 cur = btrfs_backup_tree_root_gen(root_backup);
1643 if (cur == newest_gen)
1644 newest_index = 0;
1645 }
1646 return newest_index;
1647}
1648
1649
1650/*
1651 * find the oldest backup so we know where to store new entries
1652 * in the backup array. This will set the backup_root_index
1653 * field in the fs_info struct
1654 */
1655static void find_oldest_super_backup(struct btrfs_fs_info *info,
1656 u64 newest_gen)
1657{
1658 int newest_index = -1;
1659
1660 newest_index = find_newest_super_backup(info, newest_gen);
1661 /* if there was garbage in there, just move along */
1662 if (newest_index == -1) {
1663 info->backup_root_index = 0;
1664 } else {
1665 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1666 }
1667}
1668
1669/*
1670 * copy all the root pointers into the super backup array.
1671 * this will bump the backup pointer by one when it is
1672 * done
1673 */
1674static void backup_super_roots(struct btrfs_fs_info *info)
1675{
1676 int next_backup;
1677 struct btrfs_root_backup *root_backup;
1678 int last_backup;
1679
1680 next_backup = info->backup_root_index;
1681 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1682 BTRFS_NUM_BACKUP_ROOTS;
1683
1684 /*
1685 * just overwrite the last backup if we're at the same generation
1686 * this happens only at umount
1687 */
1688 root_backup = info->super_for_commit->super_roots + last_backup;
1689 if (btrfs_backup_tree_root_gen(root_backup) ==
1690 btrfs_header_generation(info->tree_root->node))
1691 next_backup = last_backup;
1692
1693 root_backup = info->super_for_commit->super_roots + next_backup;
1694
1695 /*
1696 * make sure all of our padding and empty slots get zero filled
1697 * regardless of which ones we use today
1698 */
1699 memset(root_backup, 0, sizeof(*root_backup));
1700
1701 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1702
1703 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1704 btrfs_set_backup_tree_root_gen(root_backup,
1705 btrfs_header_generation(info->tree_root->node));
1706
1707 btrfs_set_backup_tree_root_level(root_backup,
1708 btrfs_header_level(info->tree_root->node));
1709
1710 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1711 btrfs_set_backup_chunk_root_gen(root_backup,
1712 btrfs_header_generation(info->chunk_root->node));
1713 btrfs_set_backup_chunk_root_level(root_backup,
1714 btrfs_header_level(info->chunk_root->node));
1715
1716 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1717 btrfs_set_backup_extent_root_gen(root_backup,
1718 btrfs_header_generation(info->extent_root->node));
1719 btrfs_set_backup_extent_root_level(root_backup,
1720 btrfs_header_level(info->extent_root->node));
1721
1722 /*
1723 * we might commit during log recovery, which happens before we set
1724 * the fs_root. Make sure it is valid before we fill it in.
1725 */
1726 if (info->fs_root && info->fs_root->node) {
1727 btrfs_set_backup_fs_root(root_backup,
1728 info->fs_root->node->start);
1729 btrfs_set_backup_fs_root_gen(root_backup,
1730 btrfs_header_generation(info->fs_root->node));
1731 btrfs_set_backup_fs_root_level(root_backup,
1732 btrfs_header_level(info->fs_root->node));
1733 }
1734
1735 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1736 btrfs_set_backup_dev_root_gen(root_backup,
1737 btrfs_header_generation(info->dev_root->node));
1738 btrfs_set_backup_dev_root_level(root_backup,
1739 btrfs_header_level(info->dev_root->node));
1740
1741 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1742 btrfs_set_backup_csum_root_gen(root_backup,
1743 btrfs_header_generation(info->csum_root->node));
1744 btrfs_set_backup_csum_root_level(root_backup,
1745 btrfs_header_level(info->csum_root->node));
1746
1747 btrfs_set_backup_total_bytes(root_backup,
1748 btrfs_super_total_bytes(info->super_copy));
1749 btrfs_set_backup_bytes_used(root_backup,
1750 btrfs_super_bytes_used(info->super_copy));
1751 btrfs_set_backup_num_devices(root_backup,
1752 btrfs_super_num_devices(info->super_copy));
1753
1754 /*
1755 * if we don't copy this out to the super_copy, it won't get remembered
1756 * for the next commit
1757 */
1758 memcpy(&info->super_copy->super_roots,
1759 &info->super_for_commit->super_roots,
1760 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1761}
1762
1763/*
1764 * this copies info out of the root backup array and back into
1765 * the in-memory super block. It is meant to help iterate through
1766 * the array, so you send it the number of backups you've already
1767 * tried and the last backup index you used.
1768 *
1769 * this returns -1 when it has tried all the backups
1770 */
1771static noinline int next_root_backup(struct btrfs_fs_info *info,
1772 struct btrfs_super_block *super,
1773 int *num_backups_tried, int *backup_index)
1774{
1775 struct btrfs_root_backup *root_backup;
1776 int newest = *backup_index;
1777
1778 if (*num_backups_tried == 0) {
1779 u64 gen = btrfs_super_generation(super);
1780
1781 newest = find_newest_super_backup(info, gen);
1782 if (newest == -1)
1783 return -1;
1784
1785 *backup_index = newest;
1786 *num_backups_tried = 1;
1787 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1788 /* we've tried all the backups, all done */
1789 return -1;
1790 } else {
1791 /* jump to the next oldest backup */
1792 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1793 BTRFS_NUM_BACKUP_ROOTS;
1794 *backup_index = newest;
1795 *num_backups_tried += 1;
1796 }
1797 root_backup = super->super_roots + newest;
1798
1799 btrfs_set_super_generation(super,
1800 btrfs_backup_tree_root_gen(root_backup));
1801 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1802 btrfs_set_super_root_level(super,
1803 btrfs_backup_tree_root_level(root_backup));
1804 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1805
1806 /*
1807 * fixme: the total bytes and num_devices need to match or we should
1808 * need a fsck
1809 */
1810 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1811 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1812 return 0;
1813}
1814
1815/* helper to cleanup tree roots */
1816static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1817{
1818 free_extent_buffer(info->tree_root->node);
1819 free_extent_buffer(info->tree_root->commit_root);
1820 free_extent_buffer(info->dev_root->node);
1821 free_extent_buffer(info->dev_root->commit_root);
1822 free_extent_buffer(info->extent_root->node);
1823 free_extent_buffer(info->extent_root->commit_root);
1824 free_extent_buffer(info->csum_root->node);
1825 free_extent_buffer(info->csum_root->commit_root);
1826
1827 info->tree_root->node = NULL;
1828 info->tree_root->commit_root = NULL;
1829 info->dev_root->node = NULL;
1830 info->dev_root->commit_root = NULL;
1831 info->extent_root->node = NULL;
1832 info->extent_root->commit_root = NULL;
1833 info->csum_root->node = NULL;
1834 info->csum_root->commit_root = NULL;
1835
1836 if (chunk_root) {
1837 free_extent_buffer(info->chunk_root->node);
1838 free_extent_buffer(info->chunk_root->commit_root);
1839 info->chunk_root->node = NULL;
1840 info->chunk_root->commit_root = NULL;
1841 }
1842}
1843
1844
1845int open_ctree(struct super_block *sb,
1846 struct btrfs_fs_devices *fs_devices,
1847 char *options)
1848{
1849 u32 sectorsize;
1850 u32 nodesize;
1851 u32 leafsize;
1852 u32 blocksize;
1853 u32 stripesize;
1854 u64 generation;
1855 u64 features;
1856 struct btrfs_key location;
1857 struct buffer_head *bh;
1858 struct btrfs_super_block *disk_super;
1859 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1860 struct btrfs_root *tree_root;
1861 struct btrfs_root *extent_root;
1862 struct btrfs_root *csum_root;
1863 struct btrfs_root *chunk_root;
1864 struct btrfs_root *dev_root;
1865 struct btrfs_root *log_tree_root;
1866 int ret;
1867 int err = -EINVAL;
1868 int num_backups_tried = 0;
1869 int backup_index = 0;
1870
1871 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1872 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1873 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1874 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1875 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1876
1877 if (!tree_root || !extent_root || !csum_root ||
1878 !chunk_root || !dev_root) {
1879 err = -ENOMEM;
1880 goto fail;
1881 }
1882
1883 ret = init_srcu_struct(&fs_info->subvol_srcu);
1884 if (ret) {
1885 err = ret;
1886 goto fail;
1887 }
1888
1889 ret = setup_bdi(fs_info, &fs_info->bdi);
1890 if (ret) {
1891 err = ret;
1892 goto fail_srcu;
1893 }
1894
1895 fs_info->btree_inode = new_inode(sb);
1896 if (!fs_info->btree_inode) {
1897 err = -ENOMEM;
1898 goto fail_bdi;
1899 }
1900
1901 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1902
1903 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1904 INIT_LIST_HEAD(&fs_info->trans_list);
1905 INIT_LIST_HEAD(&fs_info->dead_roots);
1906 INIT_LIST_HEAD(&fs_info->delayed_iputs);
1907 INIT_LIST_HEAD(&fs_info->hashers);
1908 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1909 INIT_LIST_HEAD(&fs_info->ordered_operations);
1910 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1911 spin_lock_init(&fs_info->delalloc_lock);
1912 spin_lock_init(&fs_info->trans_lock);
1913 spin_lock_init(&fs_info->ref_cache_lock);
1914 spin_lock_init(&fs_info->fs_roots_radix_lock);
1915 spin_lock_init(&fs_info->delayed_iput_lock);
1916 spin_lock_init(&fs_info->defrag_inodes_lock);
1917 spin_lock_init(&fs_info->free_chunk_lock);
1918 spin_lock_init(&fs_info->tree_mod_seq_lock);
1919 rwlock_init(&fs_info->tree_mod_log_lock);
1920 mutex_init(&fs_info->reloc_mutex);
1921
1922 init_completion(&fs_info->kobj_unregister);
1923 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1924 INIT_LIST_HEAD(&fs_info->space_info);
1925 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
1926 btrfs_mapping_init(&fs_info->mapping_tree);
1927 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1928 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1929 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1930 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1931 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1932 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1933 atomic_set(&fs_info->nr_async_submits, 0);
1934 atomic_set(&fs_info->async_delalloc_pages, 0);
1935 atomic_set(&fs_info->async_submit_draining, 0);
1936 atomic_set(&fs_info->nr_async_bios, 0);
1937 atomic_set(&fs_info->defrag_running, 0);
1938 atomic_set(&fs_info->tree_mod_seq, 0);
1939 fs_info->sb = sb;
1940 fs_info->max_inline = 8192 * 1024;
1941 fs_info->metadata_ratio = 0;
1942 fs_info->defrag_inodes = RB_ROOT;
1943 fs_info->trans_no_join = 0;
1944 fs_info->free_chunk_space = 0;
1945 fs_info->tree_mod_log = RB_ROOT;
1946
1947 /* readahead state */
1948 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1949 spin_lock_init(&fs_info->reada_lock);
1950
1951 fs_info->thread_pool_size = min_t(unsigned long,
1952 num_online_cpus() + 2, 8);
1953
1954 INIT_LIST_HEAD(&fs_info->ordered_extents);
1955 spin_lock_init(&fs_info->ordered_extent_lock);
1956 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1957 GFP_NOFS);
1958 if (!fs_info->delayed_root) {
1959 err = -ENOMEM;
1960 goto fail_iput;
1961 }
1962 btrfs_init_delayed_root(fs_info->delayed_root);
1963
1964 mutex_init(&fs_info->scrub_lock);
1965 atomic_set(&fs_info->scrubs_running, 0);
1966 atomic_set(&fs_info->scrub_pause_req, 0);
1967 atomic_set(&fs_info->scrubs_paused, 0);
1968 atomic_set(&fs_info->scrub_cancel_req, 0);
1969 init_waitqueue_head(&fs_info->scrub_pause_wait);
1970 init_rwsem(&fs_info->scrub_super_lock);
1971 fs_info->scrub_workers_refcnt = 0;
1972#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1973 fs_info->check_integrity_print_mask = 0;
1974#endif
1975
1976 spin_lock_init(&fs_info->balance_lock);
1977 mutex_init(&fs_info->balance_mutex);
1978 atomic_set(&fs_info->balance_running, 0);
1979 atomic_set(&fs_info->balance_pause_req, 0);
1980 atomic_set(&fs_info->balance_cancel_req, 0);
1981 fs_info->balance_ctl = NULL;
1982 init_waitqueue_head(&fs_info->balance_wait_q);
1983
1984 sb->s_blocksize = 4096;
1985 sb->s_blocksize_bits = blksize_bits(4096);
1986 sb->s_bdi = &fs_info->bdi;
1987
1988 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1989 set_nlink(fs_info->btree_inode, 1);
1990 /*
1991 * we set the i_size on the btree inode to the max possible int.
1992 * the real end of the address space is determined by all of
1993 * the devices in the system
1994 */
1995 fs_info->btree_inode->i_size = OFFSET_MAX;
1996 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1997 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1998
1999 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2000 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2001 fs_info->btree_inode->i_mapping);
2002 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2003 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2004
2005 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2006
2007 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2008 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2009 sizeof(struct btrfs_key));
2010 set_bit(BTRFS_INODE_DUMMY,
2011 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2012 insert_inode_hash(fs_info->btree_inode);
2013
2014 spin_lock_init(&fs_info->block_group_cache_lock);
2015 fs_info->block_group_cache_tree = RB_ROOT;
2016
2017 extent_io_tree_init(&fs_info->freed_extents[0],
2018 fs_info->btree_inode->i_mapping);
2019 extent_io_tree_init(&fs_info->freed_extents[1],
2020 fs_info->btree_inode->i_mapping);
2021 fs_info->pinned_extents = &fs_info->freed_extents[0];
2022 fs_info->do_barriers = 1;
2023
2024
2025 mutex_init(&fs_info->ordered_operations_mutex);
2026 mutex_init(&fs_info->tree_log_mutex);
2027 mutex_init(&fs_info->chunk_mutex);
2028 mutex_init(&fs_info->transaction_kthread_mutex);
2029 mutex_init(&fs_info->cleaner_mutex);
2030 mutex_init(&fs_info->volume_mutex);
2031 init_rwsem(&fs_info->extent_commit_sem);
2032 init_rwsem(&fs_info->cleanup_work_sem);
2033 init_rwsem(&fs_info->subvol_sem);
2034
2035 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2036 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2037
2038 init_waitqueue_head(&fs_info->transaction_throttle);
2039 init_waitqueue_head(&fs_info->transaction_wait);
2040 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2041 init_waitqueue_head(&fs_info->async_submit_wait);
2042
2043 __setup_root(4096, 4096, 4096, 4096, tree_root,
2044 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2045
2046 invalidate_bdev(fs_devices->latest_bdev);
2047 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2048 if (!bh) {
2049 err = -EINVAL;
2050 goto fail_alloc;
2051 }
2052
2053 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2054 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2055 sizeof(*fs_info->super_for_commit));
2056 brelse(bh);
2057
2058 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2059
2060 disk_super = fs_info->super_copy;
2061 if (!btrfs_super_root(disk_super))
2062 goto fail_alloc;
2063
2064 /* check FS state, whether FS is broken. */
2065 fs_info->fs_state |= btrfs_super_flags(disk_super);
2066
2067 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2068 if (ret) {
2069 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2070 err = ret;
2071 goto fail_alloc;
2072 }
2073
2074 /*
2075 * run through our array of backup supers and setup
2076 * our ring pointer to the oldest one
2077 */
2078 generation = btrfs_super_generation(disk_super);
2079 find_oldest_super_backup(fs_info, generation);
2080
2081 /*
2082 * In the long term, we'll store the compression type in the super
2083 * block, and it'll be used for per file compression control.
2084 */
2085 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2086
2087 ret = btrfs_parse_options(tree_root, options);
2088 if (ret) {
2089 err = ret;
2090 goto fail_alloc;
2091 }
2092
2093 features = btrfs_super_incompat_flags(disk_super) &
2094 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2095 if (features) {
2096 printk(KERN_ERR "BTRFS: couldn't mount because of "
2097 "unsupported optional features (%Lx).\n",
2098 (unsigned long long)features);
2099 err = -EINVAL;
2100 goto fail_alloc;
2101 }
2102
2103 if (btrfs_super_leafsize(disk_super) !=
2104 btrfs_super_nodesize(disk_super)) {
2105 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2106 "blocksizes don't match. node %d leaf %d\n",
2107 btrfs_super_nodesize(disk_super),
2108 btrfs_super_leafsize(disk_super));
2109 err = -EINVAL;
2110 goto fail_alloc;
2111 }
2112 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2113 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2114 "blocksize (%d) was too large\n",
2115 btrfs_super_leafsize(disk_super));
2116 err = -EINVAL;
2117 goto fail_alloc;
2118 }
2119
2120 features = btrfs_super_incompat_flags(disk_super);
2121 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2122 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2123 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2124
2125 /*
2126 * flag our filesystem as having big metadata blocks if
2127 * they are bigger than the page size
2128 */
2129 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2130 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2131 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2132 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2133 }
2134
2135 nodesize = btrfs_super_nodesize(disk_super);
2136 leafsize = btrfs_super_leafsize(disk_super);
2137 sectorsize = btrfs_super_sectorsize(disk_super);
2138 stripesize = btrfs_super_stripesize(disk_super);
2139
2140 /*
2141 * mixed block groups end up with duplicate but slightly offset
2142 * extent buffers for the same range. It leads to corruptions
2143 */
2144 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2145 (sectorsize != leafsize)) {
2146 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2147 "are not allowed for mixed block groups on %s\n",
2148 sb->s_id);
2149 goto fail_alloc;
2150 }
2151
2152 btrfs_set_super_incompat_flags(disk_super, features);
2153
2154 features = btrfs_super_compat_ro_flags(disk_super) &
2155 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2156 if (!(sb->s_flags & MS_RDONLY) && features) {
2157 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2158 "unsupported option features (%Lx).\n",
2159 (unsigned long long)features);
2160 err = -EINVAL;
2161 goto fail_alloc;
2162 }
2163
2164 btrfs_init_workers(&fs_info->generic_worker,
2165 "genwork", 1, NULL);
2166
2167 btrfs_init_workers(&fs_info->workers, "worker",
2168 fs_info->thread_pool_size,
2169 &fs_info->generic_worker);
2170
2171 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2172 fs_info->thread_pool_size,
2173 &fs_info->generic_worker);
2174
2175 btrfs_init_workers(&fs_info->submit_workers, "submit",
2176 min_t(u64, fs_devices->num_devices,
2177 fs_info->thread_pool_size),
2178 &fs_info->generic_worker);
2179
2180 btrfs_init_workers(&fs_info->caching_workers, "cache",
2181 2, &fs_info->generic_worker);
2182
2183 /* a higher idle thresh on the submit workers makes it much more
2184 * likely that bios will be send down in a sane order to the
2185 * devices
2186 */
2187 fs_info->submit_workers.idle_thresh = 64;
2188
2189 fs_info->workers.idle_thresh = 16;
2190 fs_info->workers.ordered = 1;
2191
2192 fs_info->delalloc_workers.idle_thresh = 2;
2193 fs_info->delalloc_workers.ordered = 1;
2194
2195 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2196 &fs_info->generic_worker);
2197 btrfs_init_workers(&fs_info->endio_workers, "endio",
2198 fs_info->thread_pool_size,
2199 &fs_info->generic_worker);
2200 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2201 fs_info->thread_pool_size,
2202 &fs_info->generic_worker);
2203 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2204 "endio-meta-write", fs_info->thread_pool_size,
2205 &fs_info->generic_worker);
2206 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2207 fs_info->thread_pool_size,
2208 &fs_info->generic_worker);
2209 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2210 1, &fs_info->generic_worker);
2211 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2212 fs_info->thread_pool_size,
2213 &fs_info->generic_worker);
2214 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2215 fs_info->thread_pool_size,
2216 &fs_info->generic_worker);
2217
2218 /*
2219 * endios are largely parallel and should have a very
2220 * low idle thresh
2221 */
2222 fs_info->endio_workers.idle_thresh = 4;
2223 fs_info->endio_meta_workers.idle_thresh = 4;
2224
2225 fs_info->endio_write_workers.idle_thresh = 2;
2226 fs_info->endio_meta_write_workers.idle_thresh = 2;
2227 fs_info->readahead_workers.idle_thresh = 2;
2228
2229 /*
2230 * btrfs_start_workers can really only fail because of ENOMEM so just
2231 * return -ENOMEM if any of these fail.
2232 */
2233 ret = btrfs_start_workers(&fs_info->workers);
2234 ret |= btrfs_start_workers(&fs_info->generic_worker);
2235 ret |= btrfs_start_workers(&fs_info->submit_workers);
2236 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2237 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2238 ret |= btrfs_start_workers(&fs_info->endio_workers);
2239 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2240 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2241 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2242 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2243 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2244 ret |= btrfs_start_workers(&fs_info->caching_workers);
2245 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2246 if (ret) {
2247 ret = -ENOMEM;
2248 goto fail_sb_buffer;
2249 }
2250
2251 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2252 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2253 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2254
2255 tree_root->nodesize = nodesize;
2256 tree_root->leafsize = leafsize;
2257 tree_root->sectorsize = sectorsize;
2258 tree_root->stripesize = stripesize;
2259
2260 sb->s_blocksize = sectorsize;
2261 sb->s_blocksize_bits = blksize_bits(sectorsize);
2262
2263 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2264 sizeof(disk_super->magic))) {
2265 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2266 goto fail_sb_buffer;
2267 }
2268
2269 if (sectorsize != PAGE_SIZE) {
2270 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2271 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2272 goto fail_sb_buffer;
2273 }
2274
2275 mutex_lock(&fs_info->chunk_mutex);
2276 ret = btrfs_read_sys_array(tree_root);
2277 mutex_unlock(&fs_info->chunk_mutex);
2278 if (ret) {
2279 printk(KERN_WARNING "btrfs: failed to read the system "
2280 "array on %s\n", sb->s_id);
2281 goto fail_sb_buffer;
2282 }
2283
2284 blocksize = btrfs_level_size(tree_root,
2285 btrfs_super_chunk_root_level(disk_super));
2286 generation = btrfs_super_chunk_root_generation(disk_super);
2287
2288 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2289 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2290
2291 chunk_root->node = read_tree_block(chunk_root,
2292 btrfs_super_chunk_root(disk_super),
2293 blocksize, generation);
2294 BUG_ON(!chunk_root->node); /* -ENOMEM */
2295 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2296 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2297 sb->s_id);
2298 goto fail_tree_roots;
2299 }
2300 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2301 chunk_root->commit_root = btrfs_root_node(chunk_root);
2302
2303 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2304 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2305 BTRFS_UUID_SIZE);
2306
2307 ret = btrfs_read_chunk_tree(chunk_root);
2308 if (ret) {
2309 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2310 sb->s_id);
2311 goto fail_tree_roots;
2312 }
2313
2314 btrfs_close_extra_devices(fs_devices);
2315
2316 if (!fs_devices->latest_bdev) {
2317 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2318 sb->s_id);
2319 goto fail_tree_roots;
2320 }
2321
2322retry_root_backup:
2323 blocksize = btrfs_level_size(tree_root,
2324 btrfs_super_root_level(disk_super));
2325 generation = btrfs_super_generation(disk_super);
2326
2327 tree_root->node = read_tree_block(tree_root,
2328 btrfs_super_root(disk_super),
2329 blocksize, generation);
2330 if (!tree_root->node ||
2331 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2332 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2333 sb->s_id);
2334
2335 goto recovery_tree_root;
2336 }
2337
2338 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2339 tree_root->commit_root = btrfs_root_node(tree_root);
2340
2341 ret = find_and_setup_root(tree_root, fs_info,
2342 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2343 if (ret)
2344 goto recovery_tree_root;
2345 extent_root->track_dirty = 1;
2346
2347 ret = find_and_setup_root(tree_root, fs_info,
2348 BTRFS_DEV_TREE_OBJECTID, dev_root);
2349 if (ret)
2350 goto recovery_tree_root;
2351 dev_root->track_dirty = 1;
2352
2353 ret = find_and_setup_root(tree_root, fs_info,
2354 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2355 if (ret)
2356 goto recovery_tree_root;
2357 csum_root->track_dirty = 1;
2358
2359 fs_info->generation = generation;
2360 fs_info->last_trans_committed = generation;
2361
2362 ret = btrfs_recover_balance(fs_info);
2363 if (ret) {
2364 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2365 goto fail_block_groups;
2366 }
2367
2368 ret = btrfs_init_dev_stats(fs_info);
2369 if (ret) {
2370 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2371 ret);
2372 goto fail_block_groups;
2373 }
2374
2375 ret = btrfs_init_space_info(fs_info);
2376 if (ret) {
2377 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2378 goto fail_block_groups;
2379 }
2380
2381 ret = btrfs_read_block_groups(extent_root);
2382 if (ret) {
2383 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2384 goto fail_block_groups;
2385 }
2386
2387 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2388 "btrfs-cleaner");
2389 if (IS_ERR(fs_info->cleaner_kthread))
2390 goto fail_block_groups;
2391
2392 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2393 tree_root,
2394 "btrfs-transaction");
2395 if (IS_ERR(fs_info->transaction_kthread))
2396 goto fail_cleaner;
2397
2398 if (!btrfs_test_opt(tree_root, SSD) &&
2399 !btrfs_test_opt(tree_root, NOSSD) &&
2400 !fs_info->fs_devices->rotating) {
2401 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2402 "mode\n");
2403 btrfs_set_opt(fs_info->mount_opt, SSD);
2404 }
2405
2406#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2407 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2408 ret = btrfsic_mount(tree_root, fs_devices,
2409 btrfs_test_opt(tree_root,
2410 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2411 1 : 0,
2412 fs_info->check_integrity_print_mask);
2413 if (ret)
2414 printk(KERN_WARNING "btrfs: failed to initialize"
2415 " integrity check module %s\n", sb->s_id);
2416 }
2417#endif
2418
2419 /* do not make disk changes in broken FS */
2420 if (btrfs_super_log_root(disk_super) != 0 &&
2421 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2422 u64 bytenr = btrfs_super_log_root(disk_super);
2423
2424 if (fs_devices->rw_devices == 0) {
2425 printk(KERN_WARNING "Btrfs log replay required "
2426 "on RO media\n");
2427 err = -EIO;
2428 goto fail_trans_kthread;
2429 }
2430 blocksize =
2431 btrfs_level_size(tree_root,
2432 btrfs_super_log_root_level(disk_super));
2433
2434 log_tree_root = btrfs_alloc_root(fs_info);
2435 if (!log_tree_root) {
2436 err = -ENOMEM;
2437 goto fail_trans_kthread;
2438 }
2439
2440 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2441 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2442
2443 log_tree_root->node = read_tree_block(tree_root, bytenr,
2444 blocksize,
2445 generation + 1);
2446 /* returns with log_tree_root freed on success */
2447 ret = btrfs_recover_log_trees(log_tree_root);
2448 if (ret) {
2449 btrfs_error(tree_root->fs_info, ret,
2450 "Failed to recover log tree");
2451 free_extent_buffer(log_tree_root->node);
2452 kfree(log_tree_root);
2453 goto fail_trans_kthread;
2454 }
2455
2456 if (sb->s_flags & MS_RDONLY) {
2457 ret = btrfs_commit_super(tree_root);
2458 if (ret)
2459 goto fail_trans_kthread;
2460 }
2461 }
2462
2463 ret = btrfs_find_orphan_roots(tree_root);
2464 if (ret)
2465 goto fail_trans_kthread;
2466
2467 if (!(sb->s_flags & MS_RDONLY)) {
2468 ret = btrfs_cleanup_fs_roots(fs_info);
2469 if (ret) {
2470 }
2471
2472 ret = btrfs_recover_relocation(tree_root);
2473 if (ret < 0) {
2474 printk(KERN_WARNING
2475 "btrfs: failed to recover relocation\n");
2476 err = -EINVAL;
2477 goto fail_trans_kthread;
2478 }
2479 }
2480
2481 location.objectid = BTRFS_FS_TREE_OBJECTID;
2482 location.type = BTRFS_ROOT_ITEM_KEY;
2483 location.offset = (u64)-1;
2484
2485 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2486 if (!fs_info->fs_root)
2487 goto fail_trans_kthread;
2488 if (IS_ERR(fs_info->fs_root)) {
2489 err = PTR_ERR(fs_info->fs_root);
2490 goto fail_trans_kthread;
2491 }
2492
2493 if (sb->s_flags & MS_RDONLY)
2494 return 0;
2495
2496 down_read(&fs_info->cleanup_work_sem);
2497 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2498 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2499 up_read(&fs_info->cleanup_work_sem);
2500 close_ctree(tree_root);
2501 return ret;
2502 }
2503 up_read(&fs_info->cleanup_work_sem);
2504
2505 ret = btrfs_resume_balance_async(fs_info);
2506 if (ret) {
2507 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2508 close_ctree(tree_root);
2509 return ret;
2510 }
2511
2512 return 0;
2513
2514fail_trans_kthread:
2515 kthread_stop(fs_info->transaction_kthread);
2516fail_cleaner:
2517 kthread_stop(fs_info->cleaner_kthread);
2518
2519 /*
2520 * make sure we're done with the btree inode before we stop our
2521 * kthreads
2522 */
2523 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2524 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2525
2526fail_block_groups:
2527 btrfs_free_block_groups(fs_info);
2528
2529fail_tree_roots:
2530 free_root_pointers(fs_info, 1);
2531
2532fail_sb_buffer:
2533 btrfs_stop_workers(&fs_info->generic_worker);
2534 btrfs_stop_workers(&fs_info->readahead_workers);
2535 btrfs_stop_workers(&fs_info->fixup_workers);
2536 btrfs_stop_workers(&fs_info->delalloc_workers);
2537 btrfs_stop_workers(&fs_info->workers);
2538 btrfs_stop_workers(&fs_info->endio_workers);
2539 btrfs_stop_workers(&fs_info->endio_meta_workers);
2540 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2541 btrfs_stop_workers(&fs_info->endio_write_workers);
2542 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2543 btrfs_stop_workers(&fs_info->submit_workers);
2544 btrfs_stop_workers(&fs_info->delayed_workers);
2545 btrfs_stop_workers(&fs_info->caching_workers);
2546fail_alloc:
2547fail_iput:
2548 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2549
2550 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2551 iput(fs_info->btree_inode);
2552fail_bdi:
2553 bdi_destroy(&fs_info->bdi);
2554fail_srcu:
2555 cleanup_srcu_struct(&fs_info->subvol_srcu);
2556fail:
2557 btrfs_close_devices(fs_info->fs_devices);
2558 return err;
2559
2560recovery_tree_root:
2561 if (!btrfs_test_opt(tree_root, RECOVERY))
2562 goto fail_tree_roots;
2563
2564 free_root_pointers(fs_info, 0);
2565
2566 /* don't use the log in recovery mode, it won't be valid */
2567 btrfs_set_super_log_root(disk_super, 0);
2568
2569 /* we can't trust the free space cache either */
2570 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2571
2572 ret = next_root_backup(fs_info, fs_info->super_copy,
2573 &num_backups_tried, &backup_index);
2574 if (ret == -1)
2575 goto fail_block_groups;
2576 goto retry_root_backup;
2577}
2578
2579static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2580{
2581 if (uptodate) {
2582 set_buffer_uptodate(bh);
2583 } else {
2584 struct btrfs_device *device = (struct btrfs_device *)
2585 bh->b_private;
2586
2587 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2588 "I/O error on %s\n",
2589 rcu_str_deref(device->name));
2590 /* note, we dont' set_buffer_write_io_error because we have
2591 * our own ways of dealing with the IO errors
2592 */
2593 clear_buffer_uptodate(bh);
2594 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2595 }
2596 unlock_buffer(bh);
2597 put_bh(bh);
2598}
2599
2600struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2601{
2602 struct buffer_head *bh;
2603 struct buffer_head *latest = NULL;
2604 struct btrfs_super_block *super;
2605 int i;
2606 u64 transid = 0;
2607 u64 bytenr;
2608
2609 /* we would like to check all the supers, but that would make
2610 * a btrfs mount succeed after a mkfs from a different FS.
2611 * So, we need to add a special mount option to scan for
2612 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2613 */
2614 for (i = 0; i < 1; i++) {
2615 bytenr = btrfs_sb_offset(i);
2616 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2617 break;
2618 bh = __bread(bdev, bytenr / 4096, 4096);
2619 if (!bh)
2620 continue;
2621
2622 super = (struct btrfs_super_block *)bh->b_data;
2623 if (btrfs_super_bytenr(super) != bytenr ||
2624 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2625 sizeof(super->magic))) {
2626 brelse(bh);
2627 continue;
2628 }
2629
2630 if (!latest || btrfs_super_generation(super) > transid) {
2631 brelse(latest);
2632 latest = bh;
2633 transid = btrfs_super_generation(super);
2634 } else {
2635 brelse(bh);
2636 }
2637 }
2638 return latest;
2639}
2640
2641/*
2642 * this should be called twice, once with wait == 0 and
2643 * once with wait == 1. When wait == 0 is done, all the buffer heads
2644 * we write are pinned.
2645 *
2646 * They are released when wait == 1 is done.
2647 * max_mirrors must be the same for both runs, and it indicates how
2648 * many supers on this one device should be written.
2649 *
2650 * max_mirrors == 0 means to write them all.
2651 */
2652static int write_dev_supers(struct btrfs_device *device,
2653 struct btrfs_super_block *sb,
2654 int do_barriers, int wait, int max_mirrors)
2655{
2656 struct buffer_head *bh;
2657 int i;
2658 int ret;
2659 int errors = 0;
2660 u32 crc;
2661 u64 bytenr;
2662
2663 if (max_mirrors == 0)
2664 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2665
2666 for (i = 0; i < max_mirrors; i++) {
2667 bytenr = btrfs_sb_offset(i);
2668 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2669 break;
2670
2671 if (wait) {
2672 bh = __find_get_block(device->bdev, bytenr / 4096,
2673 BTRFS_SUPER_INFO_SIZE);
2674 BUG_ON(!bh);
2675 wait_on_buffer(bh);
2676 if (!buffer_uptodate(bh))
2677 errors++;
2678
2679 /* drop our reference */
2680 brelse(bh);
2681
2682 /* drop the reference from the wait == 0 run */
2683 brelse(bh);
2684 continue;
2685 } else {
2686 btrfs_set_super_bytenr(sb, bytenr);
2687
2688 crc = ~(u32)0;
2689 crc = btrfs_csum_data(NULL, (char *)sb +
2690 BTRFS_CSUM_SIZE, crc,
2691 BTRFS_SUPER_INFO_SIZE -
2692 BTRFS_CSUM_SIZE);
2693 btrfs_csum_final(crc, sb->csum);
2694
2695 /*
2696 * one reference for us, and we leave it for the
2697 * caller
2698 */
2699 bh = __getblk(device->bdev, bytenr / 4096,
2700 BTRFS_SUPER_INFO_SIZE);
2701 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2702
2703 /* one reference for submit_bh */
2704 get_bh(bh);
2705
2706 set_buffer_uptodate(bh);
2707 lock_buffer(bh);
2708 bh->b_end_io = btrfs_end_buffer_write_sync;
2709 bh->b_private = device;
2710 }
2711
2712 /*
2713 * we fua the first super. The others we allow
2714 * to go down lazy.
2715 */
2716 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2717 if (ret)
2718 errors++;
2719 }
2720 return errors < i ? 0 : -1;
2721}
2722
2723/*
2724 * endio for the write_dev_flush, this will wake anyone waiting
2725 * for the barrier when it is done
2726 */
2727static void btrfs_end_empty_barrier(struct bio *bio, int err)
2728{
2729 if (err) {
2730 if (err == -EOPNOTSUPP)
2731 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2732 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2733 }
2734 if (bio->bi_private)
2735 complete(bio->bi_private);
2736 bio_put(bio);
2737}
2738
2739/*
2740 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2741 * sent down. With wait == 1, it waits for the previous flush.
2742 *
2743 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2744 * capable
2745 */
2746static int write_dev_flush(struct btrfs_device *device, int wait)
2747{
2748 struct bio *bio;
2749 int ret = 0;
2750
2751 if (device->nobarriers)
2752 return 0;
2753
2754 if (wait) {
2755 bio = device->flush_bio;
2756 if (!bio)
2757 return 0;
2758
2759 wait_for_completion(&device->flush_wait);
2760
2761 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2762 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2763 rcu_str_deref(device->name));
2764 device->nobarriers = 1;
2765 }
2766 if (!bio_flagged(bio, BIO_UPTODATE)) {
2767 ret = -EIO;
2768 if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2769 btrfs_dev_stat_inc_and_print(device,
2770 BTRFS_DEV_STAT_FLUSH_ERRS);
2771 }
2772
2773 /* drop the reference from the wait == 0 run */
2774 bio_put(bio);
2775 device->flush_bio = NULL;
2776
2777 return ret;
2778 }
2779
2780 /*
2781 * one reference for us, and we leave it for the
2782 * caller
2783 */
2784 device->flush_bio = NULL;
2785 bio = bio_alloc(GFP_NOFS, 0);
2786 if (!bio)
2787 return -ENOMEM;
2788
2789 bio->bi_end_io = btrfs_end_empty_barrier;
2790 bio->bi_bdev = device->bdev;
2791 init_completion(&device->flush_wait);
2792 bio->bi_private = &device->flush_wait;
2793 device->flush_bio = bio;
2794
2795 bio_get(bio);
2796 btrfsic_submit_bio(WRITE_FLUSH, bio);
2797
2798 return 0;
2799}
2800
2801/*
2802 * send an empty flush down to each device in parallel,
2803 * then wait for them
2804 */
2805static int barrier_all_devices(struct btrfs_fs_info *info)
2806{
2807 struct list_head *head;
2808 struct btrfs_device *dev;
2809 int errors = 0;
2810 int ret;
2811
2812 /* send down all the barriers */
2813 head = &info->fs_devices->devices;
2814 list_for_each_entry_rcu(dev, head, dev_list) {
2815 if (!dev->bdev) {
2816 errors++;
2817 continue;
2818 }
2819 if (!dev->in_fs_metadata || !dev->writeable)
2820 continue;
2821
2822 ret = write_dev_flush(dev, 0);
2823 if (ret)
2824 errors++;
2825 }
2826
2827 /* wait for all the barriers */
2828 list_for_each_entry_rcu(dev, head, dev_list) {
2829 if (!dev->bdev) {
2830 errors++;
2831 continue;
2832 }
2833 if (!dev->in_fs_metadata || !dev->writeable)
2834 continue;
2835
2836 ret = write_dev_flush(dev, 1);
2837 if (ret)
2838 errors++;
2839 }
2840 if (errors)
2841 return -EIO;
2842 return 0;
2843}
2844
2845int write_all_supers(struct btrfs_root *root, int max_mirrors)
2846{
2847 struct list_head *head;
2848 struct btrfs_device *dev;
2849 struct btrfs_super_block *sb;
2850 struct btrfs_dev_item *dev_item;
2851 int ret;
2852 int do_barriers;
2853 int max_errors;
2854 int total_errors = 0;
2855 u64 flags;
2856
2857 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2858 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2859 backup_super_roots(root->fs_info);
2860
2861 sb = root->fs_info->super_for_commit;
2862 dev_item = &sb->dev_item;
2863
2864 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2865 head = &root->fs_info->fs_devices->devices;
2866
2867 if (do_barriers)
2868 barrier_all_devices(root->fs_info);
2869
2870 list_for_each_entry_rcu(dev, head, dev_list) {
2871 if (!dev->bdev) {
2872 total_errors++;
2873 continue;
2874 }
2875 if (!dev->in_fs_metadata || !dev->writeable)
2876 continue;
2877
2878 btrfs_set_stack_device_generation(dev_item, 0);
2879 btrfs_set_stack_device_type(dev_item, dev->type);
2880 btrfs_set_stack_device_id(dev_item, dev->devid);
2881 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2882 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2883 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2884 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2885 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2886 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2887 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2888
2889 flags = btrfs_super_flags(sb);
2890 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2891
2892 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2893 if (ret)
2894 total_errors++;
2895 }
2896 if (total_errors > max_errors) {
2897 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2898 total_errors);
2899
2900 /* This shouldn't happen. FUA is masked off if unsupported */
2901 BUG();
2902 }
2903
2904 total_errors = 0;
2905 list_for_each_entry_rcu(dev, head, dev_list) {
2906 if (!dev->bdev)
2907 continue;
2908 if (!dev->in_fs_metadata || !dev->writeable)
2909 continue;
2910
2911 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2912 if (ret)
2913 total_errors++;
2914 }
2915 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2916 if (total_errors > max_errors) {
2917 btrfs_error(root->fs_info, -EIO,
2918 "%d errors while writing supers", total_errors);
2919 return -EIO;
2920 }
2921 return 0;
2922}
2923
2924int write_ctree_super(struct btrfs_trans_handle *trans,
2925 struct btrfs_root *root, int max_mirrors)
2926{
2927 int ret;
2928
2929 ret = write_all_supers(root, max_mirrors);
2930 return ret;
2931}
2932
2933void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2934{
2935 spin_lock(&fs_info->fs_roots_radix_lock);
2936 radix_tree_delete(&fs_info->fs_roots_radix,
2937 (unsigned long)root->root_key.objectid);
2938 spin_unlock(&fs_info->fs_roots_radix_lock);
2939
2940 if (btrfs_root_refs(&root->root_item) == 0)
2941 synchronize_srcu(&fs_info->subvol_srcu);
2942
2943 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2944 __btrfs_remove_free_space_cache(root->free_ino_ctl);
2945 free_fs_root(root);
2946}
2947
2948static void free_fs_root(struct btrfs_root *root)
2949{
2950 iput(root->cache_inode);
2951 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2952 if (root->anon_dev)
2953 free_anon_bdev(root->anon_dev);
2954 free_extent_buffer(root->node);
2955 free_extent_buffer(root->commit_root);
2956 kfree(root->free_ino_ctl);
2957 kfree(root->free_ino_pinned);
2958 kfree(root->name);
2959 kfree(root);
2960}
2961
2962static void del_fs_roots(struct btrfs_fs_info *fs_info)
2963{
2964 int ret;
2965 struct btrfs_root *gang[8];
2966 int i;
2967
2968 while (!list_empty(&fs_info->dead_roots)) {
2969 gang[0] = list_entry(fs_info->dead_roots.next,
2970 struct btrfs_root, root_list);
2971 list_del(&gang[0]->root_list);
2972
2973 if (gang[0]->in_radix) {
2974 btrfs_free_fs_root(fs_info, gang[0]);
2975 } else {
2976 free_extent_buffer(gang[0]->node);
2977 free_extent_buffer(gang[0]->commit_root);
2978 kfree(gang[0]);
2979 }
2980 }
2981
2982 while (1) {
2983 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2984 (void **)gang, 0,
2985 ARRAY_SIZE(gang));
2986 if (!ret)
2987 break;
2988 for (i = 0; i < ret; i++)
2989 btrfs_free_fs_root(fs_info, gang[i]);
2990 }
2991}
2992
2993int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2994{
2995 u64 root_objectid = 0;
2996 struct btrfs_root *gang[8];
2997 int i;
2998 int ret;
2999
3000 while (1) {
3001 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3002 (void **)gang, root_objectid,
3003 ARRAY_SIZE(gang));
3004 if (!ret)
3005 break;
3006
3007 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3008 for (i = 0; i < ret; i++) {
3009 int err;
3010
3011 root_objectid = gang[i]->root_key.objectid;
3012 err = btrfs_orphan_cleanup(gang[i]);
3013 if (err)
3014 return err;
3015 }
3016 root_objectid++;
3017 }
3018 return 0;
3019}
3020
3021int btrfs_commit_super(struct btrfs_root *root)
3022{
3023 struct btrfs_trans_handle *trans;
3024 int ret;
3025
3026 mutex_lock(&root->fs_info->cleaner_mutex);
3027 btrfs_run_delayed_iputs(root);
3028 btrfs_clean_old_snapshots(root);
3029 mutex_unlock(&root->fs_info->cleaner_mutex);
3030
3031 /* wait until ongoing cleanup work done */
3032 down_write(&root->fs_info->cleanup_work_sem);
3033 up_write(&root->fs_info->cleanup_work_sem);
3034
3035 trans = btrfs_join_transaction(root);
3036 if (IS_ERR(trans))
3037 return PTR_ERR(trans);
3038 ret = btrfs_commit_transaction(trans, root);
3039 if (ret)
3040 return ret;
3041 /* run commit again to drop the original snapshot */
3042 trans = btrfs_join_transaction(root);
3043 if (IS_ERR(trans))
3044 return PTR_ERR(trans);
3045 ret = btrfs_commit_transaction(trans, root);
3046 if (ret)
3047 return ret;
3048 ret = btrfs_write_and_wait_transaction(NULL, root);
3049 if (ret) {
3050 btrfs_error(root->fs_info, ret,
3051 "Failed to sync btree inode to disk.");
3052 return ret;
3053 }
3054
3055 ret = write_ctree_super(NULL, root, 0);
3056 return ret;
3057}
3058
3059int close_ctree(struct btrfs_root *root)
3060{
3061 struct btrfs_fs_info *fs_info = root->fs_info;
3062 int ret;
3063
3064 fs_info->closing = 1;
3065 smp_mb();
3066
3067 /* pause restriper - we want to resume on mount */
3068 btrfs_pause_balance(root->fs_info);
3069
3070 btrfs_scrub_cancel(root);
3071
3072 /* wait for any defraggers to finish */
3073 wait_event(fs_info->transaction_wait,
3074 (atomic_read(&fs_info->defrag_running) == 0));
3075
3076 /* clear out the rbtree of defraggable inodes */
3077 btrfs_run_defrag_inodes(fs_info);
3078
3079 /*
3080 * Here come 2 situations when btrfs is broken to flip readonly:
3081 *
3082 * 1. when btrfs flips readonly somewhere else before
3083 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3084 * and btrfs will skip to write sb directly to keep
3085 * ERROR state on disk.
3086 *
3087 * 2. when btrfs flips readonly just in btrfs_commit_super,
3088 * and in such case, btrfs cannot write sb via btrfs_commit_super,
3089 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3090 * btrfs will cleanup all FS resources first and write sb then.
3091 */
3092 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3093 ret = btrfs_commit_super(root);
3094 if (ret)
3095 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3096 }
3097
3098 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3099 ret = btrfs_error_commit_super(root);
3100 if (ret)
3101 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3102 }
3103
3104 btrfs_put_block_group_cache(fs_info);
3105
3106 kthread_stop(fs_info->transaction_kthread);
3107 kthread_stop(fs_info->cleaner_kthread);
3108
3109 fs_info->closing = 2;
3110 smp_mb();
3111
3112 if (fs_info->delalloc_bytes) {
3113 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3114 (unsigned long long)fs_info->delalloc_bytes);
3115 }
3116 if (fs_info->total_ref_cache_size) {
3117 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3118 (unsigned long long)fs_info->total_ref_cache_size);
3119 }
3120
3121 free_extent_buffer(fs_info->extent_root->node);
3122 free_extent_buffer(fs_info->extent_root->commit_root);
3123 free_extent_buffer(fs_info->tree_root->node);
3124 free_extent_buffer(fs_info->tree_root->commit_root);
3125 free_extent_buffer(fs_info->chunk_root->node);
3126 free_extent_buffer(fs_info->chunk_root->commit_root);
3127 free_extent_buffer(fs_info->dev_root->node);
3128 free_extent_buffer(fs_info->dev_root->commit_root);
3129 free_extent_buffer(fs_info->csum_root->node);
3130 free_extent_buffer(fs_info->csum_root->commit_root);
3131
3132 btrfs_free_block_groups(fs_info);
3133
3134 del_fs_roots(fs_info);
3135
3136 iput(fs_info->btree_inode);
3137
3138 btrfs_stop_workers(&fs_info->generic_worker);
3139 btrfs_stop_workers(&fs_info->fixup_workers);
3140 btrfs_stop_workers(&fs_info->delalloc_workers);
3141 btrfs_stop_workers(&fs_info->workers);
3142 btrfs_stop_workers(&fs_info->endio_workers);
3143 btrfs_stop_workers(&fs_info->endio_meta_workers);
3144 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3145 btrfs_stop_workers(&fs_info->endio_write_workers);
3146 btrfs_stop_workers(&fs_info->endio_freespace_worker);
3147 btrfs_stop_workers(&fs_info->submit_workers);
3148 btrfs_stop_workers(&fs_info->delayed_workers);
3149 btrfs_stop_workers(&fs_info->caching_workers);
3150 btrfs_stop_workers(&fs_info->readahead_workers);
3151
3152#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3153 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3154 btrfsic_unmount(root, fs_info->fs_devices);
3155#endif
3156
3157 btrfs_close_devices(fs_info->fs_devices);
3158 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3159
3160 bdi_destroy(&fs_info->bdi);
3161 cleanup_srcu_struct(&fs_info->subvol_srcu);
3162
3163 return 0;
3164}
3165
3166int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3167 int atomic)
3168{
3169 int ret;
3170 struct inode *btree_inode = buf->pages[0]->mapping->host;
3171
3172 ret = extent_buffer_uptodate(buf);
3173 if (!ret)
3174 return ret;
3175
3176 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3177 parent_transid, atomic);
3178 if (ret == -EAGAIN)
3179 return ret;
3180 return !ret;
3181}
3182
3183int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3184{
3185 return set_extent_buffer_uptodate(buf);
3186}
3187
3188void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3189{
3190 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3191 u64 transid = btrfs_header_generation(buf);
3192 int was_dirty;
3193
3194 btrfs_assert_tree_locked(buf);
3195 if (transid != root->fs_info->generation) {
3196 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3197 "found %llu running %llu\n",
3198 (unsigned long long)buf->start,
3199 (unsigned long long)transid,
3200 (unsigned long long)root->fs_info->generation);
3201 WARN_ON(1);
3202 }
3203 was_dirty = set_extent_buffer_dirty(buf);
3204 if (!was_dirty) {
3205 spin_lock(&root->fs_info->delalloc_lock);
3206 root->fs_info->dirty_metadata_bytes += buf->len;
3207 spin_unlock(&root->fs_info->delalloc_lock);
3208 }
3209}
3210
3211void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3212{
3213 /*
3214 * looks as though older kernels can get into trouble with
3215 * this code, they end up stuck in balance_dirty_pages forever
3216 */
3217 u64 num_dirty;
3218 unsigned long thresh = 32 * 1024 * 1024;
3219
3220 if (current->flags & PF_MEMALLOC)
3221 return;
3222
3223 btrfs_balance_delayed_items(root);
3224
3225 num_dirty = root->fs_info->dirty_metadata_bytes;
3226
3227 if (num_dirty > thresh) {
3228 balance_dirty_pages_ratelimited_nr(
3229 root->fs_info->btree_inode->i_mapping, 1);
3230 }
3231 return;
3232}
3233
3234void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3235{
3236 /*
3237 * looks as though older kernels can get into trouble with
3238 * this code, they end up stuck in balance_dirty_pages forever
3239 */
3240 u64 num_dirty;
3241 unsigned long thresh = 32 * 1024 * 1024;
3242
3243 if (current->flags & PF_MEMALLOC)
3244 return;
3245
3246 num_dirty = root->fs_info->dirty_metadata_bytes;
3247
3248 if (num_dirty > thresh) {
3249 balance_dirty_pages_ratelimited_nr(
3250 root->fs_info->btree_inode->i_mapping, 1);
3251 }
3252 return;
3253}
3254
3255int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3256{
3257 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3258 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3259}
3260
3261static int btree_lock_page_hook(struct page *page, void *data,
3262 void (*flush_fn)(void *))
3263{
3264 struct inode *inode = page->mapping->host;
3265 struct btrfs_root *root = BTRFS_I(inode)->root;
3266 struct extent_buffer *eb;
3267
3268 /*
3269 * We culled this eb but the page is still hanging out on the mapping,
3270 * carry on.
3271 */
3272 if (!PagePrivate(page))
3273 goto out;
3274
3275 eb = (struct extent_buffer *)page->private;
3276 if (!eb) {
3277 WARN_ON(1);
3278 goto out;
3279 }
3280 if (page != eb->pages[0])
3281 goto out;
3282
3283 if (!btrfs_try_tree_write_lock(eb)) {
3284 flush_fn(data);
3285 btrfs_tree_lock(eb);
3286 }
3287 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3288
3289 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3290 spin_lock(&root->fs_info->delalloc_lock);
3291 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3292 root->fs_info->dirty_metadata_bytes -= eb->len;
3293 else
3294 WARN_ON(1);
3295 spin_unlock(&root->fs_info->delalloc_lock);
3296 }
3297
3298 btrfs_tree_unlock(eb);
3299out:
3300 if (!trylock_page(page)) {
3301 flush_fn(data);
3302 lock_page(page);
3303 }
3304 return 0;
3305}
3306
3307static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3308 int read_only)
3309{
3310 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3311 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3312 return -EINVAL;
3313 }
3314
3315 if (read_only)
3316 return 0;
3317
3318 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3319 printk(KERN_WARNING "warning: mount fs with errors, "
3320 "running btrfsck is recommended\n");
3321 }
3322
3323 return 0;
3324}
3325
3326int btrfs_error_commit_super(struct btrfs_root *root)
3327{
3328 int ret;
3329
3330 mutex_lock(&root->fs_info->cleaner_mutex);
3331 btrfs_run_delayed_iputs(root);
3332 mutex_unlock(&root->fs_info->cleaner_mutex);
3333
3334 down_write(&root->fs_info->cleanup_work_sem);
3335 up_write(&root->fs_info->cleanup_work_sem);
3336
3337 /* cleanup FS via transaction */
3338 btrfs_cleanup_transaction(root);
3339
3340 ret = write_ctree_super(NULL, root, 0);
3341
3342 return ret;
3343}
3344
3345static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3346{
3347 struct btrfs_inode *btrfs_inode;
3348 struct list_head splice;
3349
3350 INIT_LIST_HEAD(&splice);
3351
3352 mutex_lock(&root->fs_info->ordered_operations_mutex);
3353 spin_lock(&root->fs_info->ordered_extent_lock);
3354
3355 list_splice_init(&root->fs_info->ordered_operations, &splice);
3356 while (!list_empty(&splice)) {
3357 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3358 ordered_operations);
3359
3360 list_del_init(&btrfs_inode->ordered_operations);
3361
3362 btrfs_invalidate_inodes(btrfs_inode->root);
3363 }
3364
3365 spin_unlock(&root->fs_info->ordered_extent_lock);
3366 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3367}
3368
3369static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3370{
3371 struct list_head splice;
3372 struct btrfs_ordered_extent *ordered;
3373 struct inode *inode;
3374
3375 INIT_LIST_HEAD(&splice);
3376
3377 spin_lock(&root->fs_info->ordered_extent_lock);
3378
3379 list_splice_init(&root->fs_info->ordered_extents, &splice);
3380 while (!list_empty(&splice)) {
3381 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3382 root_extent_list);
3383
3384 list_del_init(&ordered->root_extent_list);
3385 atomic_inc(&ordered->refs);
3386
3387 /* the inode may be getting freed (in sys_unlink path). */
3388 inode = igrab(ordered->inode);
3389
3390 spin_unlock(&root->fs_info->ordered_extent_lock);
3391 if (inode)
3392 iput(inode);
3393
3394 atomic_set(&ordered->refs, 1);
3395 btrfs_put_ordered_extent(ordered);
3396
3397 spin_lock(&root->fs_info->ordered_extent_lock);
3398 }
3399
3400 spin_unlock(&root->fs_info->ordered_extent_lock);
3401}
3402
3403int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3404 struct btrfs_root *root)
3405{
3406 struct rb_node *node;
3407 struct btrfs_delayed_ref_root *delayed_refs;
3408 struct btrfs_delayed_ref_node *ref;
3409 int ret = 0;
3410
3411 delayed_refs = &trans->delayed_refs;
3412
3413 spin_lock(&delayed_refs->lock);
3414 if (delayed_refs->num_entries == 0) {
3415 spin_unlock(&delayed_refs->lock);
3416 printk(KERN_INFO "delayed_refs has NO entry\n");
3417 return ret;
3418 }
3419
3420 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3421 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3422
3423 atomic_set(&ref->refs, 1);
3424 if (btrfs_delayed_ref_is_head(ref)) {
3425 struct btrfs_delayed_ref_head *head;
3426
3427 head = btrfs_delayed_node_to_head(ref);
3428 if (!mutex_trylock(&head->mutex)) {
3429 atomic_inc(&ref->refs);
3430 spin_unlock(&delayed_refs->lock);
3431
3432 /* Need to wait for the delayed ref to run */
3433 mutex_lock(&head->mutex);
3434 mutex_unlock(&head->mutex);
3435 btrfs_put_delayed_ref(ref);
3436
3437 spin_lock(&delayed_refs->lock);
3438 continue;
3439 }
3440
3441 kfree(head->extent_op);
3442 delayed_refs->num_heads--;
3443 if (list_empty(&head->cluster))
3444 delayed_refs->num_heads_ready--;
3445 list_del_init(&head->cluster);
3446 }
3447 ref->in_tree = 0;
3448 rb_erase(&ref->rb_node, &delayed_refs->root);
3449 delayed_refs->num_entries--;
3450
3451 spin_unlock(&delayed_refs->lock);
3452 btrfs_put_delayed_ref(ref);
3453
3454 cond_resched();
3455 spin_lock(&delayed_refs->lock);
3456 }
3457
3458 spin_unlock(&delayed_refs->lock);
3459
3460 return ret;
3461}
3462
3463static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3464{
3465 struct btrfs_pending_snapshot *snapshot;
3466 struct list_head splice;
3467
3468 INIT_LIST_HEAD(&splice);
3469
3470 list_splice_init(&t->pending_snapshots, &splice);
3471
3472 while (!list_empty(&splice)) {
3473 snapshot = list_entry(splice.next,
3474 struct btrfs_pending_snapshot,
3475 list);
3476
3477 list_del_init(&snapshot->list);
3478
3479 kfree(snapshot);
3480 }
3481}
3482
3483static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3484{
3485 struct btrfs_inode *btrfs_inode;
3486 struct list_head splice;
3487
3488 INIT_LIST_HEAD(&splice);
3489
3490 spin_lock(&root->fs_info->delalloc_lock);
3491 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3492
3493 while (!list_empty(&splice)) {
3494 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3495 delalloc_inodes);
3496
3497 list_del_init(&btrfs_inode->delalloc_inodes);
3498
3499 btrfs_invalidate_inodes(btrfs_inode->root);
3500 }
3501
3502 spin_unlock(&root->fs_info->delalloc_lock);
3503}
3504
3505static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3506 struct extent_io_tree *dirty_pages,
3507 int mark)
3508{
3509 int ret;
3510 struct page *page;
3511 struct inode *btree_inode = root->fs_info->btree_inode;
3512 struct extent_buffer *eb;
3513 u64 start = 0;
3514 u64 end;
3515 u64 offset;
3516 unsigned long index;
3517
3518 while (1) {
3519 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3520 mark);
3521 if (ret)
3522 break;
3523
3524 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3525 while (start <= end) {
3526 index = start >> PAGE_CACHE_SHIFT;
3527 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3528 page = find_get_page(btree_inode->i_mapping, index);
3529 if (!page)
3530 continue;
3531 offset = page_offset(page);
3532
3533 spin_lock(&dirty_pages->buffer_lock);
3534 eb = radix_tree_lookup(
3535 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3536 offset >> PAGE_CACHE_SHIFT);
3537 spin_unlock(&dirty_pages->buffer_lock);
3538 if (eb)
3539 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3540 &eb->bflags);
3541 if (PageWriteback(page))
3542 end_page_writeback(page);
3543
3544 lock_page(page);
3545 if (PageDirty(page)) {
3546 clear_page_dirty_for_io(page);
3547 spin_lock_irq(&page->mapping->tree_lock);
3548 radix_tree_tag_clear(&page->mapping->page_tree,
3549 page_index(page),
3550 PAGECACHE_TAG_DIRTY);
3551 spin_unlock_irq(&page->mapping->tree_lock);
3552 }
3553
3554 unlock_page(page);
3555 page_cache_release(page);
3556 }
3557 }
3558
3559 return ret;
3560}
3561
3562static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3563 struct extent_io_tree *pinned_extents)
3564{
3565 struct extent_io_tree *unpin;
3566 u64 start;
3567 u64 end;
3568 int ret;
3569 bool loop = true;
3570
3571 unpin = pinned_extents;
3572again:
3573 while (1) {
3574 ret = find_first_extent_bit(unpin, 0, &start, &end,
3575 EXTENT_DIRTY);
3576 if (ret)
3577 break;
3578
3579 /* opt_discard */
3580 if (btrfs_test_opt(root, DISCARD))
3581 ret = btrfs_error_discard_extent(root, start,
3582 end + 1 - start,
3583 NULL);
3584
3585 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3586 btrfs_error_unpin_extent_range(root, start, end);
3587 cond_resched();
3588 }
3589
3590 if (loop) {
3591 if (unpin == &root->fs_info->freed_extents[0])
3592 unpin = &root->fs_info->freed_extents[1];
3593 else
3594 unpin = &root->fs_info->freed_extents[0];
3595 loop = false;
3596 goto again;
3597 }
3598
3599 return 0;
3600}
3601
3602void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3603 struct btrfs_root *root)
3604{
3605 btrfs_destroy_delayed_refs(cur_trans, root);
3606 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3607 cur_trans->dirty_pages.dirty_bytes);
3608
3609 /* FIXME: cleanup wait for commit */
3610 cur_trans->in_commit = 1;
3611 cur_trans->blocked = 1;
3612 wake_up(&root->fs_info->transaction_blocked_wait);
3613
3614 cur_trans->blocked = 0;
3615 wake_up(&root->fs_info->transaction_wait);
3616
3617 cur_trans->commit_done = 1;
3618 wake_up(&cur_trans->commit_wait);
3619
3620 btrfs_destroy_delayed_inodes(root);
3621 btrfs_assert_delayed_root_empty(root);
3622
3623 btrfs_destroy_pending_snapshots(cur_trans);
3624
3625 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3626 EXTENT_DIRTY);
3627 btrfs_destroy_pinned_extent(root,
3628 root->fs_info->pinned_extents);
3629
3630 /*
3631 memset(cur_trans, 0, sizeof(*cur_trans));
3632 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3633 */
3634}
3635
3636int btrfs_cleanup_transaction(struct btrfs_root *root)
3637{
3638 struct btrfs_transaction *t;
3639 LIST_HEAD(list);
3640
3641 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3642
3643 spin_lock(&root->fs_info->trans_lock);
3644 list_splice_init(&root->fs_info->trans_list, &list);
3645 root->fs_info->trans_no_join = 1;
3646 spin_unlock(&root->fs_info->trans_lock);
3647
3648 while (!list_empty(&list)) {
3649 t = list_entry(list.next, struct btrfs_transaction, list);
3650 if (!t)
3651 break;
3652
3653 btrfs_destroy_ordered_operations(root);
3654
3655 btrfs_destroy_ordered_extents(root);
3656
3657 btrfs_destroy_delayed_refs(t, root);
3658
3659 btrfs_block_rsv_release(root,
3660 &root->fs_info->trans_block_rsv,
3661 t->dirty_pages.dirty_bytes);
3662
3663 /* FIXME: cleanup wait for commit */
3664 t->in_commit = 1;
3665 t->blocked = 1;
3666 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3667 wake_up(&root->fs_info->transaction_blocked_wait);
3668
3669 t->blocked = 0;
3670 if (waitqueue_active(&root->fs_info->transaction_wait))
3671 wake_up(&root->fs_info->transaction_wait);
3672
3673 t->commit_done = 1;
3674 if (waitqueue_active(&t->commit_wait))
3675 wake_up(&t->commit_wait);
3676
3677 btrfs_destroy_delayed_inodes(root);
3678 btrfs_assert_delayed_root_empty(root);
3679
3680 btrfs_destroy_pending_snapshots(t);
3681
3682 btrfs_destroy_delalloc_inodes(root);
3683
3684 spin_lock(&root->fs_info->trans_lock);
3685 root->fs_info->running_transaction = NULL;
3686 spin_unlock(&root->fs_info->trans_lock);
3687
3688 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3689 EXTENT_DIRTY);
3690
3691 btrfs_destroy_pinned_extent(root,
3692 root->fs_info->pinned_extents);
3693
3694 atomic_set(&t->use_count, 0);
3695 list_del_init(&t->list);
3696 memset(t, 0, sizeof(*t));
3697 kmem_cache_free(btrfs_transaction_cachep, t);
3698 }
3699
3700 spin_lock(&root->fs_info->trans_lock);
3701 root->fs_info->trans_no_join = 0;
3702 spin_unlock(&root->fs_info->trans_lock);
3703 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3704
3705 return 0;
3706}
3707
3708static struct extent_io_ops btree_extent_io_ops = {
3709 .write_cache_pages_lock_hook = btree_lock_page_hook,
3710 .readpage_end_io_hook = btree_readpage_end_io_hook,
3711 .readpage_io_failed_hook = btree_io_failed_hook,
3712 .submit_bio_hook = btree_submit_bio_hook,
3713 /* note we're sharing with inode.c for the merge bio hook */
3714 .merge_bio_hook = btrfs_merge_bio_hook,
3715};
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/blkdev.h>
8#include <linux/scatterlist.h>
9#include <linux/swap.h>
10#include <linux/radix-tree.h>
11#include <linux/writeback.h>
12#include <linux/buffer_head.h>
13#include <linux/workqueue.h>
14#include <linux/kthread.h>
15#include <linux/slab.h>
16#include <linux/migrate.h>
17#include <linux/ratelimit.h>
18#include <linux/uuid.h>
19#include <linux/semaphore.h>
20#include <linux/error-injection.h>
21#include <linux/crc32c.h>
22#include <asm/unaligned.h>
23#include "ctree.h"
24#include "disk-io.h"
25#include "transaction.h"
26#include "btrfs_inode.h"
27#include "volumes.h"
28#include "print-tree.h"
29#include "locking.h"
30#include "tree-log.h"
31#include "free-space-cache.h"
32#include "free-space-tree.h"
33#include "inode-map.h"
34#include "check-integrity.h"
35#include "rcu-string.h"
36#include "dev-replace.h"
37#include "raid56.h"
38#include "sysfs.h"
39#include "qgroup.h"
40#include "compression.h"
41#include "tree-checker.h"
42#include "ref-verify.h"
43
44#ifdef CONFIG_X86
45#include <asm/cpufeature.h>
46#endif
47
48#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
49 BTRFS_HEADER_FLAG_RELOC |\
50 BTRFS_SUPER_FLAG_ERROR |\
51 BTRFS_SUPER_FLAG_SEEDING |\
52 BTRFS_SUPER_FLAG_METADUMP |\
53 BTRFS_SUPER_FLAG_METADUMP_V2)
54
55static const struct extent_io_ops btree_extent_io_ops;
56static void end_workqueue_fn(struct btrfs_work *work);
57static void free_fs_root(struct btrfs_root *root);
58static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
59static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
60static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
61 struct btrfs_fs_info *fs_info);
62static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
63static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
64 struct extent_io_tree *dirty_pages,
65 int mark);
66static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
67 struct extent_io_tree *pinned_extents);
68static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
69static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
70
71/*
72 * btrfs_end_io_wq structs are used to do processing in task context when an IO
73 * is complete. This is used during reads to verify checksums, and it is used
74 * by writes to insert metadata for new file extents after IO is complete.
75 */
76struct btrfs_end_io_wq {
77 struct bio *bio;
78 bio_end_io_t *end_io;
79 void *private;
80 struct btrfs_fs_info *info;
81 blk_status_t status;
82 enum btrfs_wq_endio_type metadata;
83 struct btrfs_work work;
84};
85
86static struct kmem_cache *btrfs_end_io_wq_cache;
87
88int __init btrfs_end_io_wq_init(void)
89{
90 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
91 sizeof(struct btrfs_end_io_wq),
92 0,
93 SLAB_MEM_SPREAD,
94 NULL);
95 if (!btrfs_end_io_wq_cache)
96 return -ENOMEM;
97 return 0;
98}
99
100void __cold btrfs_end_io_wq_exit(void)
101{
102 kmem_cache_destroy(btrfs_end_io_wq_cache);
103}
104
105/*
106 * async submit bios are used to offload expensive checksumming
107 * onto the worker threads. They checksum file and metadata bios
108 * just before they are sent down the IO stack.
109 */
110struct async_submit_bio {
111 void *private_data;
112 struct btrfs_fs_info *fs_info;
113 struct bio *bio;
114 extent_submit_bio_start_t *submit_bio_start;
115 extent_submit_bio_done_t *submit_bio_done;
116 int mirror_num;
117 unsigned long bio_flags;
118 /*
119 * bio_offset is optional, can be used if the pages in the bio
120 * can't tell us where in the file the bio should go
121 */
122 u64 bio_offset;
123 struct btrfs_work work;
124 blk_status_t status;
125};
126
127/*
128 * Lockdep class keys for extent_buffer->lock's in this root. For a given
129 * eb, the lockdep key is determined by the btrfs_root it belongs to and
130 * the level the eb occupies in the tree.
131 *
132 * Different roots are used for different purposes and may nest inside each
133 * other and they require separate keysets. As lockdep keys should be
134 * static, assign keysets according to the purpose of the root as indicated
135 * by btrfs_root->objectid. This ensures that all special purpose roots
136 * have separate keysets.
137 *
138 * Lock-nesting across peer nodes is always done with the immediate parent
139 * node locked thus preventing deadlock. As lockdep doesn't know this, use
140 * subclass to avoid triggering lockdep warning in such cases.
141 *
142 * The key is set by the readpage_end_io_hook after the buffer has passed
143 * csum validation but before the pages are unlocked. It is also set by
144 * btrfs_init_new_buffer on freshly allocated blocks.
145 *
146 * We also add a check to make sure the highest level of the tree is the
147 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
148 * needs update as well.
149 */
150#ifdef CONFIG_DEBUG_LOCK_ALLOC
151# if BTRFS_MAX_LEVEL != 8
152# error
153# endif
154
155static struct btrfs_lockdep_keyset {
156 u64 id; /* root objectid */
157 const char *name_stem; /* lock name stem */
158 char names[BTRFS_MAX_LEVEL + 1][20];
159 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
160} btrfs_lockdep_keysets[] = {
161 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
162 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
163 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
164 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
165 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
166 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
167 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
168 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
169 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
170 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
171 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
172 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
173 { .id = 0, .name_stem = "tree" },
174};
175
176void __init btrfs_init_lockdep(void)
177{
178 int i, j;
179
180 /* initialize lockdep class names */
181 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
182 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
183
184 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
185 snprintf(ks->names[j], sizeof(ks->names[j]),
186 "btrfs-%s-%02d", ks->name_stem, j);
187 }
188}
189
190void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
191 int level)
192{
193 struct btrfs_lockdep_keyset *ks;
194
195 BUG_ON(level >= ARRAY_SIZE(ks->keys));
196
197 /* find the matching keyset, id 0 is the default entry */
198 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
199 if (ks->id == objectid)
200 break;
201
202 lockdep_set_class_and_name(&eb->lock,
203 &ks->keys[level], ks->names[level]);
204}
205
206#endif
207
208/*
209 * extents on the btree inode are pretty simple, there's one extent
210 * that covers the entire device
211 */
212struct extent_map *btree_get_extent(struct btrfs_inode *inode,
213 struct page *page, size_t pg_offset, u64 start, u64 len,
214 int create)
215{
216 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
217 struct extent_map_tree *em_tree = &inode->extent_tree;
218 struct extent_map *em;
219 int ret;
220
221 read_lock(&em_tree->lock);
222 em = lookup_extent_mapping(em_tree, start, len);
223 if (em) {
224 em->bdev = fs_info->fs_devices->latest_bdev;
225 read_unlock(&em_tree->lock);
226 goto out;
227 }
228 read_unlock(&em_tree->lock);
229
230 em = alloc_extent_map();
231 if (!em) {
232 em = ERR_PTR(-ENOMEM);
233 goto out;
234 }
235 em->start = 0;
236 em->len = (u64)-1;
237 em->block_len = (u64)-1;
238 em->block_start = 0;
239 em->bdev = fs_info->fs_devices->latest_bdev;
240
241 write_lock(&em_tree->lock);
242 ret = add_extent_mapping(em_tree, em, 0);
243 if (ret == -EEXIST) {
244 free_extent_map(em);
245 em = lookup_extent_mapping(em_tree, start, len);
246 if (!em)
247 em = ERR_PTR(-EIO);
248 } else if (ret) {
249 free_extent_map(em);
250 em = ERR_PTR(ret);
251 }
252 write_unlock(&em_tree->lock);
253
254out:
255 return em;
256}
257
258u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
259{
260 return crc32c(seed, data, len);
261}
262
263void btrfs_csum_final(u32 crc, u8 *result)
264{
265 put_unaligned_le32(~crc, result);
266}
267
268/*
269 * compute the csum for a btree block, and either verify it or write it
270 * into the csum field of the block.
271 */
272static int csum_tree_block(struct btrfs_fs_info *fs_info,
273 struct extent_buffer *buf,
274 int verify)
275{
276 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
277 char result[BTRFS_CSUM_SIZE];
278 unsigned long len;
279 unsigned long cur_len;
280 unsigned long offset = BTRFS_CSUM_SIZE;
281 char *kaddr;
282 unsigned long map_start;
283 unsigned long map_len;
284 int err;
285 u32 crc = ~(u32)0;
286
287 len = buf->len - offset;
288 while (len > 0) {
289 err = map_private_extent_buffer(buf, offset, 32,
290 &kaddr, &map_start, &map_len);
291 if (err)
292 return err;
293 cur_len = min(len, map_len - (offset - map_start));
294 crc = btrfs_csum_data(kaddr + offset - map_start,
295 crc, cur_len);
296 len -= cur_len;
297 offset += cur_len;
298 }
299 memset(result, 0, BTRFS_CSUM_SIZE);
300
301 btrfs_csum_final(crc, result);
302
303 if (verify) {
304 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
305 u32 val;
306 u32 found = 0;
307 memcpy(&found, result, csum_size);
308
309 read_extent_buffer(buf, &val, 0, csum_size);
310 btrfs_warn_rl(fs_info,
311 "%s checksum verify failed on %llu wanted %X found %X level %d",
312 fs_info->sb->s_id, buf->start,
313 val, found, btrfs_header_level(buf));
314 return -EUCLEAN;
315 }
316 } else {
317 write_extent_buffer(buf, result, 0, csum_size);
318 }
319
320 return 0;
321}
322
323/*
324 * we can't consider a given block up to date unless the transid of the
325 * block matches the transid in the parent node's pointer. This is how we
326 * detect blocks that either didn't get written at all or got written
327 * in the wrong place.
328 */
329static int verify_parent_transid(struct extent_io_tree *io_tree,
330 struct extent_buffer *eb, u64 parent_transid,
331 int atomic)
332{
333 struct extent_state *cached_state = NULL;
334 int ret;
335 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
336
337 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
338 return 0;
339
340 if (atomic)
341 return -EAGAIN;
342
343 if (need_lock) {
344 btrfs_tree_read_lock(eb);
345 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
346 }
347
348 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
349 &cached_state);
350 if (extent_buffer_uptodate(eb) &&
351 btrfs_header_generation(eb) == parent_transid) {
352 ret = 0;
353 goto out;
354 }
355 btrfs_err_rl(eb->fs_info,
356 "parent transid verify failed on %llu wanted %llu found %llu",
357 eb->start,
358 parent_transid, btrfs_header_generation(eb));
359 ret = 1;
360
361 /*
362 * Things reading via commit roots that don't have normal protection,
363 * like send, can have a really old block in cache that may point at a
364 * block that has been freed and re-allocated. So don't clear uptodate
365 * if we find an eb that is under IO (dirty/writeback) because we could
366 * end up reading in the stale data and then writing it back out and
367 * making everybody very sad.
368 */
369 if (!extent_buffer_under_io(eb))
370 clear_extent_buffer_uptodate(eb);
371out:
372 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
373 &cached_state);
374 if (need_lock)
375 btrfs_tree_read_unlock_blocking(eb);
376 return ret;
377}
378
379/*
380 * Return 0 if the superblock checksum type matches the checksum value of that
381 * algorithm. Pass the raw disk superblock data.
382 */
383static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
384 char *raw_disk_sb)
385{
386 struct btrfs_super_block *disk_sb =
387 (struct btrfs_super_block *)raw_disk_sb;
388 u16 csum_type = btrfs_super_csum_type(disk_sb);
389 int ret = 0;
390
391 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
392 u32 crc = ~(u32)0;
393 char result[sizeof(crc)];
394
395 /*
396 * The super_block structure does not span the whole
397 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
398 * is filled with zeros and is included in the checksum.
399 */
400 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
401 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
402 btrfs_csum_final(crc, result);
403
404 if (memcmp(raw_disk_sb, result, sizeof(result)))
405 ret = 1;
406 }
407
408 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
409 btrfs_err(fs_info, "unsupported checksum algorithm %u",
410 csum_type);
411 ret = 1;
412 }
413
414 return ret;
415}
416
417static int verify_level_key(struct btrfs_fs_info *fs_info,
418 struct extent_buffer *eb, int level,
419 struct btrfs_key *first_key)
420{
421 int found_level;
422 struct btrfs_key found_key;
423 int ret;
424
425 found_level = btrfs_header_level(eb);
426 if (found_level != level) {
427#ifdef CONFIG_BTRFS_DEBUG
428 WARN_ON(1);
429 btrfs_err(fs_info,
430"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
431 eb->start, level, found_level);
432#endif
433 return -EIO;
434 }
435
436 if (!first_key)
437 return 0;
438
439 /*
440 * For live tree block (new tree blocks in current transaction),
441 * we need proper lock context to avoid race, which is impossible here.
442 * So we only checks tree blocks which is read from disk, whose
443 * generation <= fs_info->last_trans_committed.
444 */
445 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
446 return 0;
447 if (found_level)
448 btrfs_node_key_to_cpu(eb, &found_key, 0);
449 else
450 btrfs_item_key_to_cpu(eb, &found_key, 0);
451 ret = btrfs_comp_cpu_keys(first_key, &found_key);
452
453#ifdef CONFIG_BTRFS_DEBUG
454 if (ret) {
455 WARN_ON(1);
456 btrfs_err(fs_info,
457"tree first key mismatch detected, bytenr=%llu key expected=(%llu, %u, %llu) has=(%llu, %u, %llu)",
458 eb->start, first_key->objectid, first_key->type,
459 first_key->offset, found_key.objectid,
460 found_key.type, found_key.offset);
461 }
462#endif
463 return ret;
464}
465
466/*
467 * helper to read a given tree block, doing retries as required when
468 * the checksums don't match and we have alternate mirrors to try.
469 *
470 * @parent_transid: expected transid, skip check if 0
471 * @level: expected level, mandatory check
472 * @first_key: expected key of first slot, skip check if NULL
473 */
474static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
475 struct extent_buffer *eb,
476 u64 parent_transid, int level,
477 struct btrfs_key *first_key)
478{
479 struct extent_io_tree *io_tree;
480 int failed = 0;
481 int ret;
482 int num_copies = 0;
483 int mirror_num = 0;
484 int failed_mirror = 0;
485
486 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
487 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
488 while (1) {
489 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
490 mirror_num);
491 if (!ret) {
492 if (verify_parent_transid(io_tree, eb,
493 parent_transid, 0))
494 ret = -EIO;
495 else if (verify_level_key(fs_info, eb, level,
496 first_key))
497 ret = -EUCLEAN;
498 else
499 break;
500 }
501
502 /*
503 * This buffer's crc is fine, but its contents are corrupted, so
504 * there is no reason to read the other copies, they won't be
505 * any less wrong.
506 */
507 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) ||
508 ret == -EUCLEAN)
509 break;
510
511 num_copies = btrfs_num_copies(fs_info,
512 eb->start, eb->len);
513 if (num_copies == 1)
514 break;
515
516 if (!failed_mirror) {
517 failed = 1;
518 failed_mirror = eb->read_mirror;
519 }
520
521 mirror_num++;
522 if (mirror_num == failed_mirror)
523 mirror_num++;
524
525 if (mirror_num > num_copies)
526 break;
527 }
528
529 if (failed && !ret && failed_mirror)
530 repair_eb_io_failure(fs_info, eb, failed_mirror);
531
532 return ret;
533}
534
535/*
536 * checksum a dirty tree block before IO. This has extra checks to make sure
537 * we only fill in the checksum field in the first page of a multi-page block
538 */
539
540static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
541{
542 u64 start = page_offset(page);
543 u64 found_start;
544 struct extent_buffer *eb;
545
546 eb = (struct extent_buffer *)page->private;
547 if (page != eb->pages[0])
548 return 0;
549
550 found_start = btrfs_header_bytenr(eb);
551 /*
552 * Please do not consolidate these warnings into a single if.
553 * It is useful to know what went wrong.
554 */
555 if (WARN_ON(found_start != start))
556 return -EUCLEAN;
557 if (WARN_ON(!PageUptodate(page)))
558 return -EUCLEAN;
559
560 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
561 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
562
563 return csum_tree_block(fs_info, eb, 0);
564}
565
566static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
567 struct extent_buffer *eb)
568{
569 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
570 u8 fsid[BTRFS_FSID_SIZE];
571 int ret = 1;
572
573 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
574 while (fs_devices) {
575 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
576 ret = 0;
577 break;
578 }
579 fs_devices = fs_devices->seed;
580 }
581 return ret;
582}
583
584static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
585 u64 phy_offset, struct page *page,
586 u64 start, u64 end, int mirror)
587{
588 u64 found_start;
589 int found_level;
590 struct extent_buffer *eb;
591 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
592 struct btrfs_fs_info *fs_info = root->fs_info;
593 int ret = 0;
594 int reads_done;
595
596 if (!page->private)
597 goto out;
598
599 eb = (struct extent_buffer *)page->private;
600
601 /* the pending IO might have been the only thing that kept this buffer
602 * in memory. Make sure we have a ref for all this other checks
603 */
604 extent_buffer_get(eb);
605
606 reads_done = atomic_dec_and_test(&eb->io_pages);
607 if (!reads_done)
608 goto err;
609
610 eb->read_mirror = mirror;
611 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
612 ret = -EIO;
613 goto err;
614 }
615
616 found_start = btrfs_header_bytenr(eb);
617 if (found_start != eb->start) {
618 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
619 found_start, eb->start);
620 ret = -EIO;
621 goto err;
622 }
623 if (check_tree_block_fsid(fs_info, eb)) {
624 btrfs_err_rl(fs_info, "bad fsid on block %llu",
625 eb->start);
626 ret = -EIO;
627 goto err;
628 }
629 found_level = btrfs_header_level(eb);
630 if (found_level >= BTRFS_MAX_LEVEL) {
631 btrfs_err(fs_info, "bad tree block level %d",
632 (int)btrfs_header_level(eb));
633 ret = -EIO;
634 goto err;
635 }
636
637 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
638 eb, found_level);
639
640 ret = csum_tree_block(fs_info, eb, 1);
641 if (ret)
642 goto err;
643
644 /*
645 * If this is a leaf block and it is corrupt, set the corrupt bit so
646 * that we don't try and read the other copies of this block, just
647 * return -EIO.
648 */
649 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
650 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
651 ret = -EIO;
652 }
653
654 if (found_level > 0 && btrfs_check_node(fs_info, eb))
655 ret = -EIO;
656
657 if (!ret)
658 set_extent_buffer_uptodate(eb);
659err:
660 if (reads_done &&
661 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
662 btree_readahead_hook(eb, ret);
663
664 if (ret) {
665 /*
666 * our io error hook is going to dec the io pages
667 * again, we have to make sure it has something
668 * to decrement
669 */
670 atomic_inc(&eb->io_pages);
671 clear_extent_buffer_uptodate(eb);
672 }
673 free_extent_buffer(eb);
674out:
675 return ret;
676}
677
678static int btree_io_failed_hook(struct page *page, int failed_mirror)
679{
680 struct extent_buffer *eb;
681
682 eb = (struct extent_buffer *)page->private;
683 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
684 eb->read_mirror = failed_mirror;
685 atomic_dec(&eb->io_pages);
686 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
687 btree_readahead_hook(eb, -EIO);
688 return -EIO; /* we fixed nothing */
689}
690
691static void end_workqueue_bio(struct bio *bio)
692{
693 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
694 struct btrfs_fs_info *fs_info;
695 struct btrfs_workqueue *wq;
696 btrfs_work_func_t func;
697
698 fs_info = end_io_wq->info;
699 end_io_wq->status = bio->bi_status;
700
701 if (bio_op(bio) == REQ_OP_WRITE) {
702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
703 wq = fs_info->endio_meta_write_workers;
704 func = btrfs_endio_meta_write_helper;
705 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
706 wq = fs_info->endio_freespace_worker;
707 func = btrfs_freespace_write_helper;
708 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
709 wq = fs_info->endio_raid56_workers;
710 func = btrfs_endio_raid56_helper;
711 } else {
712 wq = fs_info->endio_write_workers;
713 func = btrfs_endio_write_helper;
714 }
715 } else {
716 if (unlikely(end_io_wq->metadata ==
717 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
718 wq = fs_info->endio_repair_workers;
719 func = btrfs_endio_repair_helper;
720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
721 wq = fs_info->endio_raid56_workers;
722 func = btrfs_endio_raid56_helper;
723 } else if (end_io_wq->metadata) {
724 wq = fs_info->endio_meta_workers;
725 func = btrfs_endio_meta_helper;
726 } else {
727 wq = fs_info->endio_workers;
728 func = btrfs_endio_helper;
729 }
730 }
731
732 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
733 btrfs_queue_work(wq, &end_io_wq->work);
734}
735
736blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
737 enum btrfs_wq_endio_type metadata)
738{
739 struct btrfs_end_io_wq *end_io_wq;
740
741 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
742 if (!end_io_wq)
743 return BLK_STS_RESOURCE;
744
745 end_io_wq->private = bio->bi_private;
746 end_io_wq->end_io = bio->bi_end_io;
747 end_io_wq->info = info;
748 end_io_wq->status = 0;
749 end_io_wq->bio = bio;
750 end_io_wq->metadata = metadata;
751
752 bio->bi_private = end_io_wq;
753 bio->bi_end_io = end_workqueue_bio;
754 return 0;
755}
756
757static void run_one_async_start(struct btrfs_work *work)
758{
759 struct async_submit_bio *async;
760 blk_status_t ret;
761
762 async = container_of(work, struct async_submit_bio, work);
763 ret = async->submit_bio_start(async->private_data, async->bio,
764 async->bio_offset);
765 if (ret)
766 async->status = ret;
767}
768
769static void run_one_async_done(struct btrfs_work *work)
770{
771 struct async_submit_bio *async;
772
773 async = container_of(work, struct async_submit_bio, work);
774
775 /* If an error occurred we just want to clean up the bio and move on */
776 if (async->status) {
777 async->bio->bi_status = async->status;
778 bio_endio(async->bio);
779 return;
780 }
781
782 async->submit_bio_done(async->private_data, async->bio, async->mirror_num);
783}
784
785static void run_one_async_free(struct btrfs_work *work)
786{
787 struct async_submit_bio *async;
788
789 async = container_of(work, struct async_submit_bio, work);
790 kfree(async);
791}
792
793blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
794 int mirror_num, unsigned long bio_flags,
795 u64 bio_offset, void *private_data,
796 extent_submit_bio_start_t *submit_bio_start,
797 extent_submit_bio_done_t *submit_bio_done)
798{
799 struct async_submit_bio *async;
800
801 async = kmalloc(sizeof(*async), GFP_NOFS);
802 if (!async)
803 return BLK_STS_RESOURCE;
804
805 async->private_data = private_data;
806 async->fs_info = fs_info;
807 async->bio = bio;
808 async->mirror_num = mirror_num;
809 async->submit_bio_start = submit_bio_start;
810 async->submit_bio_done = submit_bio_done;
811
812 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
813 run_one_async_done, run_one_async_free);
814
815 async->bio_flags = bio_flags;
816 async->bio_offset = bio_offset;
817
818 async->status = 0;
819
820 if (op_is_sync(bio->bi_opf))
821 btrfs_set_work_high_priority(&async->work);
822
823 btrfs_queue_work(fs_info->workers, &async->work);
824 return 0;
825}
826
827static blk_status_t btree_csum_one_bio(struct bio *bio)
828{
829 struct bio_vec *bvec;
830 struct btrfs_root *root;
831 int i, ret = 0;
832
833 ASSERT(!bio_flagged(bio, BIO_CLONED));
834 bio_for_each_segment_all(bvec, bio, i) {
835 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
836 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
837 if (ret)
838 break;
839 }
840
841 return errno_to_blk_status(ret);
842}
843
844static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
845 u64 bio_offset)
846{
847 /*
848 * when we're called for a write, we're already in the async
849 * submission context. Just jump into btrfs_map_bio
850 */
851 return btree_csum_one_bio(bio);
852}
853
854static blk_status_t btree_submit_bio_done(void *private_data, struct bio *bio,
855 int mirror_num)
856{
857 struct inode *inode = private_data;
858 blk_status_t ret;
859
860 /*
861 * when we're called for a write, we're already in the async
862 * submission context. Just jump into btrfs_map_bio
863 */
864 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
865 if (ret) {
866 bio->bi_status = ret;
867 bio_endio(bio);
868 }
869 return ret;
870}
871
872static int check_async_write(struct btrfs_inode *bi)
873{
874 if (atomic_read(&bi->sync_writers))
875 return 0;
876#ifdef CONFIG_X86
877 if (static_cpu_has(X86_FEATURE_XMM4_2))
878 return 0;
879#endif
880 return 1;
881}
882
883static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
884 int mirror_num, unsigned long bio_flags,
885 u64 bio_offset)
886{
887 struct inode *inode = private_data;
888 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
889 int async = check_async_write(BTRFS_I(inode));
890 blk_status_t ret;
891
892 if (bio_op(bio) != REQ_OP_WRITE) {
893 /*
894 * called for a read, do the setup so that checksum validation
895 * can happen in the async kernel threads
896 */
897 ret = btrfs_bio_wq_end_io(fs_info, bio,
898 BTRFS_WQ_ENDIO_METADATA);
899 if (ret)
900 goto out_w_error;
901 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
902 } else if (!async) {
903 ret = btree_csum_one_bio(bio);
904 if (ret)
905 goto out_w_error;
906 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
907 } else {
908 /*
909 * kthread helpers are used to submit writes so that
910 * checksumming can happen in parallel across all CPUs
911 */
912 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
913 bio_offset, private_data,
914 btree_submit_bio_start,
915 btree_submit_bio_done);
916 }
917
918 if (ret)
919 goto out_w_error;
920 return 0;
921
922out_w_error:
923 bio->bi_status = ret;
924 bio_endio(bio);
925 return ret;
926}
927
928#ifdef CONFIG_MIGRATION
929static int btree_migratepage(struct address_space *mapping,
930 struct page *newpage, struct page *page,
931 enum migrate_mode mode)
932{
933 /*
934 * we can't safely write a btree page from here,
935 * we haven't done the locking hook
936 */
937 if (PageDirty(page))
938 return -EAGAIN;
939 /*
940 * Buffers may be managed in a filesystem specific way.
941 * We must have no buffers or drop them.
942 */
943 if (page_has_private(page) &&
944 !try_to_release_page(page, GFP_KERNEL))
945 return -EAGAIN;
946 return migrate_page(mapping, newpage, page, mode);
947}
948#endif
949
950
951static int btree_writepages(struct address_space *mapping,
952 struct writeback_control *wbc)
953{
954 struct btrfs_fs_info *fs_info;
955 int ret;
956
957 if (wbc->sync_mode == WB_SYNC_NONE) {
958
959 if (wbc->for_kupdate)
960 return 0;
961
962 fs_info = BTRFS_I(mapping->host)->root->fs_info;
963 /* this is a bit racy, but that's ok */
964 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
965 BTRFS_DIRTY_METADATA_THRESH);
966 if (ret < 0)
967 return 0;
968 }
969 return btree_write_cache_pages(mapping, wbc);
970}
971
972static int btree_readpage(struct file *file, struct page *page)
973{
974 struct extent_io_tree *tree;
975 tree = &BTRFS_I(page->mapping->host)->io_tree;
976 return extent_read_full_page(tree, page, btree_get_extent, 0);
977}
978
979static int btree_releasepage(struct page *page, gfp_t gfp_flags)
980{
981 if (PageWriteback(page) || PageDirty(page))
982 return 0;
983
984 return try_release_extent_buffer(page);
985}
986
987static void btree_invalidatepage(struct page *page, unsigned int offset,
988 unsigned int length)
989{
990 struct extent_io_tree *tree;
991 tree = &BTRFS_I(page->mapping->host)->io_tree;
992 extent_invalidatepage(tree, page, offset);
993 btree_releasepage(page, GFP_NOFS);
994 if (PagePrivate(page)) {
995 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
996 "page private not zero on page %llu",
997 (unsigned long long)page_offset(page));
998 ClearPagePrivate(page);
999 set_page_private(page, 0);
1000 put_page(page);
1001 }
1002}
1003
1004static int btree_set_page_dirty(struct page *page)
1005{
1006#ifdef DEBUG
1007 struct extent_buffer *eb;
1008
1009 BUG_ON(!PagePrivate(page));
1010 eb = (struct extent_buffer *)page->private;
1011 BUG_ON(!eb);
1012 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1013 BUG_ON(!atomic_read(&eb->refs));
1014 btrfs_assert_tree_locked(eb);
1015#endif
1016 return __set_page_dirty_nobuffers(page);
1017}
1018
1019static const struct address_space_operations btree_aops = {
1020 .readpage = btree_readpage,
1021 .writepages = btree_writepages,
1022 .releasepage = btree_releasepage,
1023 .invalidatepage = btree_invalidatepage,
1024#ifdef CONFIG_MIGRATION
1025 .migratepage = btree_migratepage,
1026#endif
1027 .set_page_dirty = btree_set_page_dirty,
1028};
1029
1030void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1031{
1032 struct extent_buffer *buf = NULL;
1033 struct inode *btree_inode = fs_info->btree_inode;
1034
1035 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1036 if (IS_ERR(buf))
1037 return;
1038 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1039 buf, WAIT_NONE, 0);
1040 free_extent_buffer(buf);
1041}
1042
1043int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1044 int mirror_num, struct extent_buffer **eb)
1045{
1046 struct extent_buffer *buf = NULL;
1047 struct inode *btree_inode = fs_info->btree_inode;
1048 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1049 int ret;
1050
1051 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1052 if (IS_ERR(buf))
1053 return 0;
1054
1055 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1056
1057 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1058 mirror_num);
1059 if (ret) {
1060 free_extent_buffer(buf);
1061 return ret;
1062 }
1063
1064 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1065 free_extent_buffer(buf);
1066 return -EIO;
1067 } else if (extent_buffer_uptodate(buf)) {
1068 *eb = buf;
1069 } else {
1070 free_extent_buffer(buf);
1071 }
1072 return 0;
1073}
1074
1075struct extent_buffer *btrfs_find_create_tree_block(
1076 struct btrfs_fs_info *fs_info,
1077 u64 bytenr)
1078{
1079 if (btrfs_is_testing(fs_info))
1080 return alloc_test_extent_buffer(fs_info, bytenr);
1081 return alloc_extent_buffer(fs_info, bytenr);
1082}
1083
1084
1085int btrfs_write_tree_block(struct extent_buffer *buf)
1086{
1087 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1088 buf->start + buf->len - 1);
1089}
1090
1091void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1092{
1093 filemap_fdatawait_range(buf->pages[0]->mapping,
1094 buf->start, buf->start + buf->len - 1);
1095}
1096
1097/*
1098 * Read tree block at logical address @bytenr and do variant basic but critical
1099 * verification.
1100 *
1101 * @parent_transid: expected transid of this tree block, skip check if 0
1102 * @level: expected level, mandatory check
1103 * @first_key: expected key in slot 0, skip check if NULL
1104 */
1105struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1106 u64 parent_transid, int level,
1107 struct btrfs_key *first_key)
1108{
1109 struct extent_buffer *buf = NULL;
1110 int ret;
1111
1112 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1113 if (IS_ERR(buf))
1114 return buf;
1115
1116 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1117 level, first_key);
1118 if (ret) {
1119 free_extent_buffer(buf);
1120 return ERR_PTR(ret);
1121 }
1122 return buf;
1123
1124}
1125
1126void clean_tree_block(struct btrfs_fs_info *fs_info,
1127 struct extent_buffer *buf)
1128{
1129 if (btrfs_header_generation(buf) ==
1130 fs_info->running_transaction->transid) {
1131 btrfs_assert_tree_locked(buf);
1132
1133 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1134 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1135 -buf->len,
1136 fs_info->dirty_metadata_batch);
1137 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1138 btrfs_set_lock_blocking(buf);
1139 clear_extent_buffer_dirty(buf);
1140 }
1141 }
1142}
1143
1144static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1145{
1146 struct btrfs_subvolume_writers *writers;
1147 int ret;
1148
1149 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1150 if (!writers)
1151 return ERR_PTR(-ENOMEM);
1152
1153 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1154 if (ret < 0) {
1155 kfree(writers);
1156 return ERR_PTR(ret);
1157 }
1158
1159 init_waitqueue_head(&writers->wait);
1160 return writers;
1161}
1162
1163static void
1164btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1165{
1166 percpu_counter_destroy(&writers->counter);
1167 kfree(writers);
1168}
1169
1170static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1171 u64 objectid)
1172{
1173 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1174 root->node = NULL;
1175 root->commit_root = NULL;
1176 root->state = 0;
1177 root->orphan_cleanup_state = 0;
1178
1179 root->objectid = objectid;
1180 root->last_trans = 0;
1181 root->highest_objectid = 0;
1182 root->nr_delalloc_inodes = 0;
1183 root->nr_ordered_extents = 0;
1184 root->name = NULL;
1185 root->inode_tree = RB_ROOT;
1186 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1187 root->block_rsv = NULL;
1188 root->orphan_block_rsv = NULL;
1189
1190 INIT_LIST_HEAD(&root->dirty_list);
1191 INIT_LIST_HEAD(&root->root_list);
1192 INIT_LIST_HEAD(&root->delalloc_inodes);
1193 INIT_LIST_HEAD(&root->delalloc_root);
1194 INIT_LIST_HEAD(&root->ordered_extents);
1195 INIT_LIST_HEAD(&root->ordered_root);
1196 INIT_LIST_HEAD(&root->logged_list[0]);
1197 INIT_LIST_HEAD(&root->logged_list[1]);
1198 spin_lock_init(&root->orphan_lock);
1199 spin_lock_init(&root->inode_lock);
1200 spin_lock_init(&root->delalloc_lock);
1201 spin_lock_init(&root->ordered_extent_lock);
1202 spin_lock_init(&root->accounting_lock);
1203 spin_lock_init(&root->log_extents_lock[0]);
1204 spin_lock_init(&root->log_extents_lock[1]);
1205 spin_lock_init(&root->qgroup_meta_rsv_lock);
1206 mutex_init(&root->objectid_mutex);
1207 mutex_init(&root->log_mutex);
1208 mutex_init(&root->ordered_extent_mutex);
1209 mutex_init(&root->delalloc_mutex);
1210 init_waitqueue_head(&root->log_writer_wait);
1211 init_waitqueue_head(&root->log_commit_wait[0]);
1212 init_waitqueue_head(&root->log_commit_wait[1]);
1213 INIT_LIST_HEAD(&root->log_ctxs[0]);
1214 INIT_LIST_HEAD(&root->log_ctxs[1]);
1215 atomic_set(&root->log_commit[0], 0);
1216 atomic_set(&root->log_commit[1], 0);
1217 atomic_set(&root->log_writers, 0);
1218 atomic_set(&root->log_batch, 0);
1219 atomic_set(&root->orphan_inodes, 0);
1220 refcount_set(&root->refs, 1);
1221 atomic_set(&root->will_be_snapshotted, 0);
1222 root->log_transid = 0;
1223 root->log_transid_committed = -1;
1224 root->last_log_commit = 0;
1225 if (!dummy)
1226 extent_io_tree_init(&root->dirty_log_pages, NULL);
1227
1228 memset(&root->root_key, 0, sizeof(root->root_key));
1229 memset(&root->root_item, 0, sizeof(root->root_item));
1230 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1231 if (!dummy)
1232 root->defrag_trans_start = fs_info->generation;
1233 else
1234 root->defrag_trans_start = 0;
1235 root->root_key.objectid = objectid;
1236 root->anon_dev = 0;
1237
1238 spin_lock_init(&root->root_item_lock);
1239}
1240
1241static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1242 gfp_t flags)
1243{
1244 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1245 if (root)
1246 root->fs_info = fs_info;
1247 return root;
1248}
1249
1250#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1251/* Should only be used by the testing infrastructure */
1252struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1253{
1254 struct btrfs_root *root;
1255
1256 if (!fs_info)
1257 return ERR_PTR(-EINVAL);
1258
1259 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1260 if (!root)
1261 return ERR_PTR(-ENOMEM);
1262
1263 /* We don't use the stripesize in selftest, set it as sectorsize */
1264 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1265 root->alloc_bytenr = 0;
1266
1267 return root;
1268}
1269#endif
1270
1271struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1272 struct btrfs_fs_info *fs_info,
1273 u64 objectid)
1274{
1275 struct extent_buffer *leaf;
1276 struct btrfs_root *tree_root = fs_info->tree_root;
1277 struct btrfs_root *root;
1278 struct btrfs_key key;
1279 int ret = 0;
1280 uuid_le uuid = NULL_UUID_LE;
1281
1282 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1283 if (!root)
1284 return ERR_PTR(-ENOMEM);
1285
1286 __setup_root(root, fs_info, objectid);
1287 root->root_key.objectid = objectid;
1288 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1289 root->root_key.offset = 0;
1290
1291 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1292 if (IS_ERR(leaf)) {
1293 ret = PTR_ERR(leaf);
1294 leaf = NULL;
1295 goto fail;
1296 }
1297
1298 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1299 btrfs_set_header_bytenr(leaf, leaf->start);
1300 btrfs_set_header_generation(leaf, trans->transid);
1301 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1302 btrfs_set_header_owner(leaf, objectid);
1303 root->node = leaf;
1304
1305 write_extent_buffer_fsid(leaf, fs_info->fsid);
1306 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1307 btrfs_mark_buffer_dirty(leaf);
1308
1309 root->commit_root = btrfs_root_node(root);
1310 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1311
1312 root->root_item.flags = 0;
1313 root->root_item.byte_limit = 0;
1314 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1315 btrfs_set_root_generation(&root->root_item, trans->transid);
1316 btrfs_set_root_level(&root->root_item, 0);
1317 btrfs_set_root_refs(&root->root_item, 1);
1318 btrfs_set_root_used(&root->root_item, leaf->len);
1319 btrfs_set_root_last_snapshot(&root->root_item, 0);
1320 btrfs_set_root_dirid(&root->root_item, 0);
1321 if (is_fstree(objectid))
1322 uuid_le_gen(&uuid);
1323 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1324 root->root_item.drop_level = 0;
1325
1326 key.objectid = objectid;
1327 key.type = BTRFS_ROOT_ITEM_KEY;
1328 key.offset = 0;
1329 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1330 if (ret)
1331 goto fail;
1332
1333 btrfs_tree_unlock(leaf);
1334
1335 return root;
1336
1337fail:
1338 if (leaf) {
1339 btrfs_tree_unlock(leaf);
1340 free_extent_buffer(root->commit_root);
1341 free_extent_buffer(leaf);
1342 }
1343 kfree(root);
1344
1345 return ERR_PTR(ret);
1346}
1347
1348static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1349 struct btrfs_fs_info *fs_info)
1350{
1351 struct btrfs_root *root;
1352 struct extent_buffer *leaf;
1353
1354 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1355 if (!root)
1356 return ERR_PTR(-ENOMEM);
1357
1358 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1359
1360 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1361 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1362 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1363
1364 /*
1365 * DON'T set REF_COWS for log trees
1366 *
1367 * log trees do not get reference counted because they go away
1368 * before a real commit is actually done. They do store pointers
1369 * to file data extents, and those reference counts still get
1370 * updated (along with back refs to the log tree).
1371 */
1372
1373 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1374 NULL, 0, 0, 0);
1375 if (IS_ERR(leaf)) {
1376 kfree(root);
1377 return ERR_CAST(leaf);
1378 }
1379
1380 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1381 btrfs_set_header_bytenr(leaf, leaf->start);
1382 btrfs_set_header_generation(leaf, trans->transid);
1383 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1384 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1385 root->node = leaf;
1386
1387 write_extent_buffer_fsid(root->node, fs_info->fsid);
1388 btrfs_mark_buffer_dirty(root->node);
1389 btrfs_tree_unlock(root->node);
1390 return root;
1391}
1392
1393int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1394 struct btrfs_fs_info *fs_info)
1395{
1396 struct btrfs_root *log_root;
1397
1398 log_root = alloc_log_tree(trans, fs_info);
1399 if (IS_ERR(log_root))
1400 return PTR_ERR(log_root);
1401 WARN_ON(fs_info->log_root_tree);
1402 fs_info->log_root_tree = log_root;
1403 return 0;
1404}
1405
1406int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1407 struct btrfs_root *root)
1408{
1409 struct btrfs_fs_info *fs_info = root->fs_info;
1410 struct btrfs_root *log_root;
1411 struct btrfs_inode_item *inode_item;
1412
1413 log_root = alloc_log_tree(trans, fs_info);
1414 if (IS_ERR(log_root))
1415 return PTR_ERR(log_root);
1416
1417 log_root->last_trans = trans->transid;
1418 log_root->root_key.offset = root->root_key.objectid;
1419
1420 inode_item = &log_root->root_item.inode;
1421 btrfs_set_stack_inode_generation(inode_item, 1);
1422 btrfs_set_stack_inode_size(inode_item, 3);
1423 btrfs_set_stack_inode_nlink(inode_item, 1);
1424 btrfs_set_stack_inode_nbytes(inode_item,
1425 fs_info->nodesize);
1426 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1427
1428 btrfs_set_root_node(&log_root->root_item, log_root->node);
1429
1430 WARN_ON(root->log_root);
1431 root->log_root = log_root;
1432 root->log_transid = 0;
1433 root->log_transid_committed = -1;
1434 root->last_log_commit = 0;
1435 return 0;
1436}
1437
1438static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1439 struct btrfs_key *key)
1440{
1441 struct btrfs_root *root;
1442 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1443 struct btrfs_path *path;
1444 u64 generation;
1445 int ret;
1446 int level;
1447
1448 path = btrfs_alloc_path();
1449 if (!path)
1450 return ERR_PTR(-ENOMEM);
1451
1452 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1453 if (!root) {
1454 ret = -ENOMEM;
1455 goto alloc_fail;
1456 }
1457
1458 __setup_root(root, fs_info, key->objectid);
1459
1460 ret = btrfs_find_root(tree_root, key, path,
1461 &root->root_item, &root->root_key);
1462 if (ret) {
1463 if (ret > 0)
1464 ret = -ENOENT;
1465 goto find_fail;
1466 }
1467
1468 generation = btrfs_root_generation(&root->root_item);
1469 level = btrfs_root_level(&root->root_item);
1470 root->node = read_tree_block(fs_info,
1471 btrfs_root_bytenr(&root->root_item),
1472 generation, level, NULL);
1473 if (IS_ERR(root->node)) {
1474 ret = PTR_ERR(root->node);
1475 goto find_fail;
1476 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1477 ret = -EIO;
1478 free_extent_buffer(root->node);
1479 goto find_fail;
1480 }
1481 root->commit_root = btrfs_root_node(root);
1482out:
1483 btrfs_free_path(path);
1484 return root;
1485
1486find_fail:
1487 kfree(root);
1488alloc_fail:
1489 root = ERR_PTR(ret);
1490 goto out;
1491}
1492
1493struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1494 struct btrfs_key *location)
1495{
1496 struct btrfs_root *root;
1497
1498 root = btrfs_read_tree_root(tree_root, location);
1499 if (IS_ERR(root))
1500 return root;
1501
1502 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1503 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1504 btrfs_check_and_init_root_item(&root->root_item);
1505 }
1506
1507 return root;
1508}
1509
1510int btrfs_init_fs_root(struct btrfs_root *root)
1511{
1512 int ret;
1513 struct btrfs_subvolume_writers *writers;
1514
1515 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1516 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1517 GFP_NOFS);
1518 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1519 ret = -ENOMEM;
1520 goto fail;
1521 }
1522
1523 writers = btrfs_alloc_subvolume_writers();
1524 if (IS_ERR(writers)) {
1525 ret = PTR_ERR(writers);
1526 goto fail;
1527 }
1528 root->subv_writers = writers;
1529
1530 btrfs_init_free_ino_ctl(root);
1531 spin_lock_init(&root->ino_cache_lock);
1532 init_waitqueue_head(&root->ino_cache_wait);
1533
1534 ret = get_anon_bdev(&root->anon_dev);
1535 if (ret)
1536 goto fail;
1537
1538 mutex_lock(&root->objectid_mutex);
1539 ret = btrfs_find_highest_objectid(root,
1540 &root->highest_objectid);
1541 if (ret) {
1542 mutex_unlock(&root->objectid_mutex);
1543 goto fail;
1544 }
1545
1546 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1547
1548 mutex_unlock(&root->objectid_mutex);
1549
1550 return 0;
1551fail:
1552 /* the caller is responsible to call free_fs_root */
1553 return ret;
1554}
1555
1556struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1557 u64 root_id)
1558{
1559 struct btrfs_root *root;
1560
1561 spin_lock(&fs_info->fs_roots_radix_lock);
1562 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1563 (unsigned long)root_id);
1564 spin_unlock(&fs_info->fs_roots_radix_lock);
1565 return root;
1566}
1567
1568int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1569 struct btrfs_root *root)
1570{
1571 int ret;
1572
1573 ret = radix_tree_preload(GFP_NOFS);
1574 if (ret)
1575 return ret;
1576
1577 spin_lock(&fs_info->fs_roots_radix_lock);
1578 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1579 (unsigned long)root->root_key.objectid,
1580 root);
1581 if (ret == 0)
1582 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1583 spin_unlock(&fs_info->fs_roots_radix_lock);
1584 radix_tree_preload_end();
1585
1586 return ret;
1587}
1588
1589struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1590 struct btrfs_key *location,
1591 bool check_ref)
1592{
1593 struct btrfs_root *root;
1594 struct btrfs_path *path;
1595 struct btrfs_key key;
1596 int ret;
1597
1598 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1599 return fs_info->tree_root;
1600 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1601 return fs_info->extent_root;
1602 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1603 return fs_info->chunk_root;
1604 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1605 return fs_info->dev_root;
1606 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1607 return fs_info->csum_root;
1608 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1609 return fs_info->quota_root ? fs_info->quota_root :
1610 ERR_PTR(-ENOENT);
1611 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1612 return fs_info->uuid_root ? fs_info->uuid_root :
1613 ERR_PTR(-ENOENT);
1614 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1615 return fs_info->free_space_root ? fs_info->free_space_root :
1616 ERR_PTR(-ENOENT);
1617again:
1618 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1619 if (root) {
1620 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1621 return ERR_PTR(-ENOENT);
1622 return root;
1623 }
1624
1625 root = btrfs_read_fs_root(fs_info->tree_root, location);
1626 if (IS_ERR(root))
1627 return root;
1628
1629 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1630 ret = -ENOENT;
1631 goto fail;
1632 }
1633
1634 ret = btrfs_init_fs_root(root);
1635 if (ret)
1636 goto fail;
1637
1638 path = btrfs_alloc_path();
1639 if (!path) {
1640 ret = -ENOMEM;
1641 goto fail;
1642 }
1643 key.objectid = BTRFS_ORPHAN_OBJECTID;
1644 key.type = BTRFS_ORPHAN_ITEM_KEY;
1645 key.offset = location->objectid;
1646
1647 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1648 btrfs_free_path(path);
1649 if (ret < 0)
1650 goto fail;
1651 if (ret == 0)
1652 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1653
1654 ret = btrfs_insert_fs_root(fs_info, root);
1655 if (ret) {
1656 if (ret == -EEXIST) {
1657 free_fs_root(root);
1658 goto again;
1659 }
1660 goto fail;
1661 }
1662 return root;
1663fail:
1664 free_fs_root(root);
1665 return ERR_PTR(ret);
1666}
1667
1668static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1669{
1670 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1671 int ret = 0;
1672 struct btrfs_device *device;
1673 struct backing_dev_info *bdi;
1674
1675 rcu_read_lock();
1676 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1677 if (!device->bdev)
1678 continue;
1679 bdi = device->bdev->bd_bdi;
1680 if (bdi_congested(bdi, bdi_bits)) {
1681 ret = 1;
1682 break;
1683 }
1684 }
1685 rcu_read_unlock();
1686 return ret;
1687}
1688
1689/*
1690 * called by the kthread helper functions to finally call the bio end_io
1691 * functions. This is where read checksum verification actually happens
1692 */
1693static void end_workqueue_fn(struct btrfs_work *work)
1694{
1695 struct bio *bio;
1696 struct btrfs_end_io_wq *end_io_wq;
1697
1698 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1699 bio = end_io_wq->bio;
1700
1701 bio->bi_status = end_io_wq->status;
1702 bio->bi_private = end_io_wq->private;
1703 bio->bi_end_io = end_io_wq->end_io;
1704 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1705 bio_endio(bio);
1706}
1707
1708static int cleaner_kthread(void *arg)
1709{
1710 struct btrfs_root *root = arg;
1711 struct btrfs_fs_info *fs_info = root->fs_info;
1712 int again;
1713 struct btrfs_trans_handle *trans;
1714
1715 do {
1716 again = 0;
1717
1718 /* Make the cleaner go to sleep early. */
1719 if (btrfs_need_cleaner_sleep(fs_info))
1720 goto sleep;
1721
1722 /*
1723 * Do not do anything if we might cause open_ctree() to block
1724 * before we have finished mounting the filesystem.
1725 */
1726 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1727 goto sleep;
1728
1729 if (!mutex_trylock(&fs_info->cleaner_mutex))
1730 goto sleep;
1731
1732 /*
1733 * Avoid the problem that we change the status of the fs
1734 * during the above check and trylock.
1735 */
1736 if (btrfs_need_cleaner_sleep(fs_info)) {
1737 mutex_unlock(&fs_info->cleaner_mutex);
1738 goto sleep;
1739 }
1740
1741 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1742 btrfs_run_delayed_iputs(fs_info);
1743 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1744
1745 again = btrfs_clean_one_deleted_snapshot(root);
1746 mutex_unlock(&fs_info->cleaner_mutex);
1747
1748 /*
1749 * The defragger has dealt with the R/O remount and umount,
1750 * needn't do anything special here.
1751 */
1752 btrfs_run_defrag_inodes(fs_info);
1753
1754 /*
1755 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1756 * with relocation (btrfs_relocate_chunk) and relocation
1757 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1758 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1759 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1760 * unused block groups.
1761 */
1762 btrfs_delete_unused_bgs(fs_info);
1763sleep:
1764 if (!again) {
1765 set_current_state(TASK_INTERRUPTIBLE);
1766 if (!kthread_should_stop())
1767 schedule();
1768 __set_current_state(TASK_RUNNING);
1769 }
1770 } while (!kthread_should_stop());
1771
1772 /*
1773 * Transaction kthread is stopped before us and wakes us up.
1774 * However we might have started a new transaction and COWed some
1775 * tree blocks when deleting unused block groups for example. So
1776 * make sure we commit the transaction we started to have a clean
1777 * shutdown when evicting the btree inode - if it has dirty pages
1778 * when we do the final iput() on it, eviction will trigger a
1779 * writeback for it which will fail with null pointer dereferences
1780 * since work queues and other resources were already released and
1781 * destroyed by the time the iput/eviction/writeback is made.
1782 */
1783 trans = btrfs_attach_transaction(root);
1784 if (IS_ERR(trans)) {
1785 if (PTR_ERR(trans) != -ENOENT)
1786 btrfs_err(fs_info,
1787 "cleaner transaction attach returned %ld",
1788 PTR_ERR(trans));
1789 } else {
1790 int ret;
1791
1792 ret = btrfs_commit_transaction(trans);
1793 if (ret)
1794 btrfs_err(fs_info,
1795 "cleaner open transaction commit returned %d",
1796 ret);
1797 }
1798
1799 return 0;
1800}
1801
1802static int transaction_kthread(void *arg)
1803{
1804 struct btrfs_root *root = arg;
1805 struct btrfs_fs_info *fs_info = root->fs_info;
1806 struct btrfs_trans_handle *trans;
1807 struct btrfs_transaction *cur;
1808 u64 transid;
1809 unsigned long now;
1810 unsigned long delay;
1811 bool cannot_commit;
1812
1813 do {
1814 cannot_commit = false;
1815 delay = HZ * fs_info->commit_interval;
1816 mutex_lock(&fs_info->transaction_kthread_mutex);
1817
1818 spin_lock(&fs_info->trans_lock);
1819 cur = fs_info->running_transaction;
1820 if (!cur) {
1821 spin_unlock(&fs_info->trans_lock);
1822 goto sleep;
1823 }
1824
1825 now = get_seconds();
1826 if (cur->state < TRANS_STATE_BLOCKED &&
1827 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1828 (now < cur->start_time ||
1829 now - cur->start_time < fs_info->commit_interval)) {
1830 spin_unlock(&fs_info->trans_lock);
1831 delay = HZ * 5;
1832 goto sleep;
1833 }
1834 transid = cur->transid;
1835 spin_unlock(&fs_info->trans_lock);
1836
1837 /* If the file system is aborted, this will always fail. */
1838 trans = btrfs_attach_transaction(root);
1839 if (IS_ERR(trans)) {
1840 if (PTR_ERR(trans) != -ENOENT)
1841 cannot_commit = true;
1842 goto sleep;
1843 }
1844 if (transid == trans->transid) {
1845 btrfs_commit_transaction(trans);
1846 } else {
1847 btrfs_end_transaction(trans);
1848 }
1849sleep:
1850 wake_up_process(fs_info->cleaner_kthread);
1851 mutex_unlock(&fs_info->transaction_kthread_mutex);
1852
1853 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1854 &fs_info->fs_state)))
1855 btrfs_cleanup_transaction(fs_info);
1856 if (!kthread_should_stop() &&
1857 (!btrfs_transaction_blocked(fs_info) ||
1858 cannot_commit))
1859 schedule_timeout_interruptible(delay);
1860 } while (!kthread_should_stop());
1861 return 0;
1862}
1863
1864/*
1865 * this will find the highest generation in the array of
1866 * root backups. The index of the highest array is returned,
1867 * or -1 if we can't find anything.
1868 *
1869 * We check to make sure the array is valid by comparing the
1870 * generation of the latest root in the array with the generation
1871 * in the super block. If they don't match we pitch it.
1872 */
1873static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1874{
1875 u64 cur;
1876 int newest_index = -1;
1877 struct btrfs_root_backup *root_backup;
1878 int i;
1879
1880 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1881 root_backup = info->super_copy->super_roots + i;
1882 cur = btrfs_backup_tree_root_gen(root_backup);
1883 if (cur == newest_gen)
1884 newest_index = i;
1885 }
1886
1887 /* check to see if we actually wrapped around */
1888 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1889 root_backup = info->super_copy->super_roots;
1890 cur = btrfs_backup_tree_root_gen(root_backup);
1891 if (cur == newest_gen)
1892 newest_index = 0;
1893 }
1894 return newest_index;
1895}
1896
1897
1898/*
1899 * find the oldest backup so we know where to store new entries
1900 * in the backup array. This will set the backup_root_index
1901 * field in the fs_info struct
1902 */
1903static void find_oldest_super_backup(struct btrfs_fs_info *info,
1904 u64 newest_gen)
1905{
1906 int newest_index = -1;
1907
1908 newest_index = find_newest_super_backup(info, newest_gen);
1909 /* if there was garbage in there, just move along */
1910 if (newest_index == -1) {
1911 info->backup_root_index = 0;
1912 } else {
1913 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1914 }
1915}
1916
1917/*
1918 * copy all the root pointers into the super backup array.
1919 * this will bump the backup pointer by one when it is
1920 * done
1921 */
1922static void backup_super_roots(struct btrfs_fs_info *info)
1923{
1924 int next_backup;
1925 struct btrfs_root_backup *root_backup;
1926 int last_backup;
1927
1928 next_backup = info->backup_root_index;
1929 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1930 BTRFS_NUM_BACKUP_ROOTS;
1931
1932 /*
1933 * just overwrite the last backup if we're at the same generation
1934 * this happens only at umount
1935 */
1936 root_backup = info->super_for_commit->super_roots + last_backup;
1937 if (btrfs_backup_tree_root_gen(root_backup) ==
1938 btrfs_header_generation(info->tree_root->node))
1939 next_backup = last_backup;
1940
1941 root_backup = info->super_for_commit->super_roots + next_backup;
1942
1943 /*
1944 * make sure all of our padding and empty slots get zero filled
1945 * regardless of which ones we use today
1946 */
1947 memset(root_backup, 0, sizeof(*root_backup));
1948
1949 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1950
1951 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1952 btrfs_set_backup_tree_root_gen(root_backup,
1953 btrfs_header_generation(info->tree_root->node));
1954
1955 btrfs_set_backup_tree_root_level(root_backup,
1956 btrfs_header_level(info->tree_root->node));
1957
1958 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1959 btrfs_set_backup_chunk_root_gen(root_backup,
1960 btrfs_header_generation(info->chunk_root->node));
1961 btrfs_set_backup_chunk_root_level(root_backup,
1962 btrfs_header_level(info->chunk_root->node));
1963
1964 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1965 btrfs_set_backup_extent_root_gen(root_backup,
1966 btrfs_header_generation(info->extent_root->node));
1967 btrfs_set_backup_extent_root_level(root_backup,
1968 btrfs_header_level(info->extent_root->node));
1969
1970 /*
1971 * we might commit during log recovery, which happens before we set
1972 * the fs_root. Make sure it is valid before we fill it in.
1973 */
1974 if (info->fs_root && info->fs_root->node) {
1975 btrfs_set_backup_fs_root(root_backup,
1976 info->fs_root->node->start);
1977 btrfs_set_backup_fs_root_gen(root_backup,
1978 btrfs_header_generation(info->fs_root->node));
1979 btrfs_set_backup_fs_root_level(root_backup,
1980 btrfs_header_level(info->fs_root->node));
1981 }
1982
1983 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1984 btrfs_set_backup_dev_root_gen(root_backup,
1985 btrfs_header_generation(info->dev_root->node));
1986 btrfs_set_backup_dev_root_level(root_backup,
1987 btrfs_header_level(info->dev_root->node));
1988
1989 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1990 btrfs_set_backup_csum_root_gen(root_backup,
1991 btrfs_header_generation(info->csum_root->node));
1992 btrfs_set_backup_csum_root_level(root_backup,
1993 btrfs_header_level(info->csum_root->node));
1994
1995 btrfs_set_backup_total_bytes(root_backup,
1996 btrfs_super_total_bytes(info->super_copy));
1997 btrfs_set_backup_bytes_used(root_backup,
1998 btrfs_super_bytes_used(info->super_copy));
1999 btrfs_set_backup_num_devices(root_backup,
2000 btrfs_super_num_devices(info->super_copy));
2001
2002 /*
2003 * if we don't copy this out to the super_copy, it won't get remembered
2004 * for the next commit
2005 */
2006 memcpy(&info->super_copy->super_roots,
2007 &info->super_for_commit->super_roots,
2008 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2009}
2010
2011/*
2012 * this copies info out of the root backup array and back into
2013 * the in-memory super block. It is meant to help iterate through
2014 * the array, so you send it the number of backups you've already
2015 * tried and the last backup index you used.
2016 *
2017 * this returns -1 when it has tried all the backups
2018 */
2019static noinline int next_root_backup(struct btrfs_fs_info *info,
2020 struct btrfs_super_block *super,
2021 int *num_backups_tried, int *backup_index)
2022{
2023 struct btrfs_root_backup *root_backup;
2024 int newest = *backup_index;
2025
2026 if (*num_backups_tried == 0) {
2027 u64 gen = btrfs_super_generation(super);
2028
2029 newest = find_newest_super_backup(info, gen);
2030 if (newest == -1)
2031 return -1;
2032
2033 *backup_index = newest;
2034 *num_backups_tried = 1;
2035 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2036 /* we've tried all the backups, all done */
2037 return -1;
2038 } else {
2039 /* jump to the next oldest backup */
2040 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2041 BTRFS_NUM_BACKUP_ROOTS;
2042 *backup_index = newest;
2043 *num_backups_tried += 1;
2044 }
2045 root_backup = super->super_roots + newest;
2046
2047 btrfs_set_super_generation(super,
2048 btrfs_backup_tree_root_gen(root_backup));
2049 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2050 btrfs_set_super_root_level(super,
2051 btrfs_backup_tree_root_level(root_backup));
2052 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2053
2054 /*
2055 * fixme: the total bytes and num_devices need to match or we should
2056 * need a fsck
2057 */
2058 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2059 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2060 return 0;
2061}
2062
2063/* helper to cleanup workers */
2064static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2065{
2066 btrfs_destroy_workqueue(fs_info->fixup_workers);
2067 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2068 btrfs_destroy_workqueue(fs_info->workers);
2069 btrfs_destroy_workqueue(fs_info->endio_workers);
2070 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2071 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2072 btrfs_destroy_workqueue(fs_info->rmw_workers);
2073 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2074 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2075 btrfs_destroy_workqueue(fs_info->submit_workers);
2076 btrfs_destroy_workqueue(fs_info->delayed_workers);
2077 btrfs_destroy_workqueue(fs_info->caching_workers);
2078 btrfs_destroy_workqueue(fs_info->readahead_workers);
2079 btrfs_destroy_workqueue(fs_info->flush_workers);
2080 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2081 btrfs_destroy_workqueue(fs_info->extent_workers);
2082 /*
2083 * Now that all other work queues are destroyed, we can safely destroy
2084 * the queues used for metadata I/O, since tasks from those other work
2085 * queues can do metadata I/O operations.
2086 */
2087 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2088 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2089}
2090
2091static void free_root_extent_buffers(struct btrfs_root *root)
2092{
2093 if (root) {
2094 free_extent_buffer(root->node);
2095 free_extent_buffer(root->commit_root);
2096 root->node = NULL;
2097 root->commit_root = NULL;
2098 }
2099}
2100
2101/* helper to cleanup tree roots */
2102static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2103{
2104 free_root_extent_buffers(info->tree_root);
2105
2106 free_root_extent_buffers(info->dev_root);
2107 free_root_extent_buffers(info->extent_root);
2108 free_root_extent_buffers(info->csum_root);
2109 free_root_extent_buffers(info->quota_root);
2110 free_root_extent_buffers(info->uuid_root);
2111 if (chunk_root)
2112 free_root_extent_buffers(info->chunk_root);
2113 free_root_extent_buffers(info->free_space_root);
2114}
2115
2116void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2117{
2118 int ret;
2119 struct btrfs_root *gang[8];
2120 int i;
2121
2122 while (!list_empty(&fs_info->dead_roots)) {
2123 gang[0] = list_entry(fs_info->dead_roots.next,
2124 struct btrfs_root, root_list);
2125 list_del(&gang[0]->root_list);
2126
2127 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2128 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2129 } else {
2130 free_extent_buffer(gang[0]->node);
2131 free_extent_buffer(gang[0]->commit_root);
2132 btrfs_put_fs_root(gang[0]);
2133 }
2134 }
2135
2136 while (1) {
2137 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2138 (void **)gang, 0,
2139 ARRAY_SIZE(gang));
2140 if (!ret)
2141 break;
2142 for (i = 0; i < ret; i++)
2143 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2144 }
2145
2146 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2147 btrfs_free_log_root_tree(NULL, fs_info);
2148 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2149 }
2150}
2151
2152static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2153{
2154 mutex_init(&fs_info->scrub_lock);
2155 atomic_set(&fs_info->scrubs_running, 0);
2156 atomic_set(&fs_info->scrub_pause_req, 0);
2157 atomic_set(&fs_info->scrubs_paused, 0);
2158 atomic_set(&fs_info->scrub_cancel_req, 0);
2159 init_waitqueue_head(&fs_info->scrub_pause_wait);
2160 fs_info->scrub_workers_refcnt = 0;
2161}
2162
2163static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2164{
2165 spin_lock_init(&fs_info->balance_lock);
2166 mutex_init(&fs_info->balance_mutex);
2167 atomic_set(&fs_info->balance_running, 0);
2168 atomic_set(&fs_info->balance_pause_req, 0);
2169 atomic_set(&fs_info->balance_cancel_req, 0);
2170 fs_info->balance_ctl = NULL;
2171 init_waitqueue_head(&fs_info->balance_wait_q);
2172}
2173
2174static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2175{
2176 struct inode *inode = fs_info->btree_inode;
2177
2178 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2179 set_nlink(inode, 1);
2180 /*
2181 * we set the i_size on the btree inode to the max possible int.
2182 * the real end of the address space is determined by all of
2183 * the devices in the system
2184 */
2185 inode->i_size = OFFSET_MAX;
2186 inode->i_mapping->a_ops = &btree_aops;
2187
2188 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2189 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2190 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2191 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2192
2193 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2194
2195 BTRFS_I(inode)->root = fs_info->tree_root;
2196 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2197 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2198 btrfs_insert_inode_hash(inode);
2199}
2200
2201static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2202{
2203 fs_info->dev_replace.lock_owner = 0;
2204 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2205 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2206 rwlock_init(&fs_info->dev_replace.lock);
2207 atomic_set(&fs_info->dev_replace.read_locks, 0);
2208 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2209 init_waitqueue_head(&fs_info->replace_wait);
2210 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2211}
2212
2213static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2214{
2215 spin_lock_init(&fs_info->qgroup_lock);
2216 mutex_init(&fs_info->qgroup_ioctl_lock);
2217 fs_info->qgroup_tree = RB_ROOT;
2218 fs_info->qgroup_op_tree = RB_ROOT;
2219 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2220 fs_info->qgroup_seq = 1;
2221 fs_info->qgroup_ulist = NULL;
2222 fs_info->qgroup_rescan_running = false;
2223 mutex_init(&fs_info->qgroup_rescan_lock);
2224}
2225
2226static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2227 struct btrfs_fs_devices *fs_devices)
2228{
2229 u32 max_active = fs_info->thread_pool_size;
2230 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2231
2232 fs_info->workers =
2233 btrfs_alloc_workqueue(fs_info, "worker",
2234 flags | WQ_HIGHPRI, max_active, 16);
2235
2236 fs_info->delalloc_workers =
2237 btrfs_alloc_workqueue(fs_info, "delalloc",
2238 flags, max_active, 2);
2239
2240 fs_info->flush_workers =
2241 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2242 flags, max_active, 0);
2243
2244 fs_info->caching_workers =
2245 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2246
2247 /*
2248 * a higher idle thresh on the submit workers makes it much more
2249 * likely that bios will be send down in a sane order to the
2250 * devices
2251 */
2252 fs_info->submit_workers =
2253 btrfs_alloc_workqueue(fs_info, "submit", flags,
2254 min_t(u64, fs_devices->num_devices,
2255 max_active), 64);
2256
2257 fs_info->fixup_workers =
2258 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2259
2260 /*
2261 * endios are largely parallel and should have a very
2262 * low idle thresh
2263 */
2264 fs_info->endio_workers =
2265 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2266 fs_info->endio_meta_workers =
2267 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2268 max_active, 4);
2269 fs_info->endio_meta_write_workers =
2270 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2271 max_active, 2);
2272 fs_info->endio_raid56_workers =
2273 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2274 max_active, 4);
2275 fs_info->endio_repair_workers =
2276 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2277 fs_info->rmw_workers =
2278 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2279 fs_info->endio_write_workers =
2280 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2281 max_active, 2);
2282 fs_info->endio_freespace_worker =
2283 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2284 max_active, 0);
2285 fs_info->delayed_workers =
2286 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2287 max_active, 0);
2288 fs_info->readahead_workers =
2289 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2290 max_active, 2);
2291 fs_info->qgroup_rescan_workers =
2292 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2293 fs_info->extent_workers =
2294 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2295 min_t(u64, fs_devices->num_devices,
2296 max_active), 8);
2297
2298 if (!(fs_info->workers && fs_info->delalloc_workers &&
2299 fs_info->submit_workers && fs_info->flush_workers &&
2300 fs_info->endio_workers && fs_info->endio_meta_workers &&
2301 fs_info->endio_meta_write_workers &&
2302 fs_info->endio_repair_workers &&
2303 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2304 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2305 fs_info->caching_workers && fs_info->readahead_workers &&
2306 fs_info->fixup_workers && fs_info->delayed_workers &&
2307 fs_info->extent_workers &&
2308 fs_info->qgroup_rescan_workers)) {
2309 return -ENOMEM;
2310 }
2311
2312 return 0;
2313}
2314
2315static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2316 struct btrfs_fs_devices *fs_devices)
2317{
2318 int ret;
2319 struct btrfs_root *log_tree_root;
2320 struct btrfs_super_block *disk_super = fs_info->super_copy;
2321 u64 bytenr = btrfs_super_log_root(disk_super);
2322 int level = btrfs_super_log_root_level(disk_super);
2323
2324 if (fs_devices->rw_devices == 0) {
2325 btrfs_warn(fs_info, "log replay required on RO media");
2326 return -EIO;
2327 }
2328
2329 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2330 if (!log_tree_root)
2331 return -ENOMEM;
2332
2333 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2334
2335 log_tree_root->node = read_tree_block(fs_info, bytenr,
2336 fs_info->generation + 1,
2337 level, NULL);
2338 if (IS_ERR(log_tree_root->node)) {
2339 btrfs_warn(fs_info, "failed to read log tree");
2340 ret = PTR_ERR(log_tree_root->node);
2341 kfree(log_tree_root);
2342 return ret;
2343 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2344 btrfs_err(fs_info, "failed to read log tree");
2345 free_extent_buffer(log_tree_root->node);
2346 kfree(log_tree_root);
2347 return -EIO;
2348 }
2349 /* returns with log_tree_root freed on success */
2350 ret = btrfs_recover_log_trees(log_tree_root);
2351 if (ret) {
2352 btrfs_handle_fs_error(fs_info, ret,
2353 "Failed to recover log tree");
2354 free_extent_buffer(log_tree_root->node);
2355 kfree(log_tree_root);
2356 return ret;
2357 }
2358
2359 if (sb_rdonly(fs_info->sb)) {
2360 ret = btrfs_commit_super(fs_info);
2361 if (ret)
2362 return ret;
2363 }
2364
2365 return 0;
2366}
2367
2368static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2369{
2370 struct btrfs_root *tree_root = fs_info->tree_root;
2371 struct btrfs_root *root;
2372 struct btrfs_key location;
2373 int ret;
2374
2375 BUG_ON(!fs_info->tree_root);
2376
2377 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2378 location.type = BTRFS_ROOT_ITEM_KEY;
2379 location.offset = 0;
2380
2381 root = btrfs_read_tree_root(tree_root, &location);
2382 if (IS_ERR(root)) {
2383 ret = PTR_ERR(root);
2384 goto out;
2385 }
2386 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2387 fs_info->extent_root = root;
2388
2389 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2390 root = btrfs_read_tree_root(tree_root, &location);
2391 if (IS_ERR(root)) {
2392 ret = PTR_ERR(root);
2393 goto out;
2394 }
2395 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2396 fs_info->dev_root = root;
2397 btrfs_init_devices_late(fs_info);
2398
2399 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2400 root = btrfs_read_tree_root(tree_root, &location);
2401 if (IS_ERR(root)) {
2402 ret = PTR_ERR(root);
2403 goto out;
2404 }
2405 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2406 fs_info->csum_root = root;
2407
2408 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2409 root = btrfs_read_tree_root(tree_root, &location);
2410 if (!IS_ERR(root)) {
2411 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2412 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2413 fs_info->quota_root = root;
2414 }
2415
2416 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2417 root = btrfs_read_tree_root(tree_root, &location);
2418 if (IS_ERR(root)) {
2419 ret = PTR_ERR(root);
2420 if (ret != -ENOENT)
2421 goto out;
2422 } else {
2423 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2424 fs_info->uuid_root = root;
2425 }
2426
2427 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2428 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2429 root = btrfs_read_tree_root(tree_root, &location);
2430 if (IS_ERR(root)) {
2431 ret = PTR_ERR(root);
2432 goto out;
2433 }
2434 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2435 fs_info->free_space_root = root;
2436 }
2437
2438 return 0;
2439out:
2440 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2441 location.objectid, ret);
2442 return ret;
2443}
2444
2445int open_ctree(struct super_block *sb,
2446 struct btrfs_fs_devices *fs_devices,
2447 char *options)
2448{
2449 u32 sectorsize;
2450 u32 nodesize;
2451 u32 stripesize;
2452 u64 generation;
2453 u64 features;
2454 struct btrfs_key location;
2455 struct buffer_head *bh;
2456 struct btrfs_super_block *disk_super;
2457 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2458 struct btrfs_root *tree_root;
2459 struct btrfs_root *chunk_root;
2460 int ret;
2461 int err = -EINVAL;
2462 int num_backups_tried = 0;
2463 int backup_index = 0;
2464 int clear_free_space_tree = 0;
2465 int level;
2466
2467 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2468 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2469 if (!tree_root || !chunk_root) {
2470 err = -ENOMEM;
2471 goto fail;
2472 }
2473
2474 ret = init_srcu_struct(&fs_info->subvol_srcu);
2475 if (ret) {
2476 err = ret;
2477 goto fail;
2478 }
2479
2480 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2481 if (ret) {
2482 err = ret;
2483 goto fail_srcu;
2484 }
2485 fs_info->dirty_metadata_batch = PAGE_SIZE *
2486 (1 + ilog2(nr_cpu_ids));
2487
2488 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2489 if (ret) {
2490 err = ret;
2491 goto fail_dirty_metadata_bytes;
2492 }
2493
2494 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2495 if (ret) {
2496 err = ret;
2497 goto fail_delalloc_bytes;
2498 }
2499
2500 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2501 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2502 INIT_LIST_HEAD(&fs_info->trans_list);
2503 INIT_LIST_HEAD(&fs_info->dead_roots);
2504 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2505 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2506 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2507 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2508 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2509 spin_lock_init(&fs_info->delalloc_root_lock);
2510 spin_lock_init(&fs_info->trans_lock);
2511 spin_lock_init(&fs_info->fs_roots_radix_lock);
2512 spin_lock_init(&fs_info->delayed_iput_lock);
2513 spin_lock_init(&fs_info->defrag_inodes_lock);
2514 spin_lock_init(&fs_info->tree_mod_seq_lock);
2515 spin_lock_init(&fs_info->super_lock);
2516 spin_lock_init(&fs_info->qgroup_op_lock);
2517 spin_lock_init(&fs_info->buffer_lock);
2518 spin_lock_init(&fs_info->unused_bgs_lock);
2519 rwlock_init(&fs_info->tree_mod_log_lock);
2520 mutex_init(&fs_info->unused_bg_unpin_mutex);
2521 mutex_init(&fs_info->delete_unused_bgs_mutex);
2522 mutex_init(&fs_info->reloc_mutex);
2523 mutex_init(&fs_info->delalloc_root_mutex);
2524 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2525 seqlock_init(&fs_info->profiles_lock);
2526
2527 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2528 INIT_LIST_HEAD(&fs_info->space_info);
2529 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2530 INIT_LIST_HEAD(&fs_info->unused_bgs);
2531 btrfs_mapping_init(&fs_info->mapping_tree);
2532 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2533 BTRFS_BLOCK_RSV_GLOBAL);
2534 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2535 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2536 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2537 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2538 BTRFS_BLOCK_RSV_DELOPS);
2539 atomic_set(&fs_info->async_delalloc_pages, 0);
2540 atomic_set(&fs_info->defrag_running, 0);
2541 atomic_set(&fs_info->qgroup_op_seq, 0);
2542 atomic_set(&fs_info->reada_works_cnt, 0);
2543 atomic64_set(&fs_info->tree_mod_seq, 0);
2544 fs_info->sb = sb;
2545 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2546 fs_info->metadata_ratio = 0;
2547 fs_info->defrag_inodes = RB_ROOT;
2548 atomic64_set(&fs_info->free_chunk_space, 0);
2549 fs_info->tree_mod_log = RB_ROOT;
2550 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2551 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2552 /* readahead state */
2553 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2554 spin_lock_init(&fs_info->reada_lock);
2555 btrfs_init_ref_verify(fs_info);
2556
2557 fs_info->thread_pool_size = min_t(unsigned long,
2558 num_online_cpus() + 2, 8);
2559
2560 INIT_LIST_HEAD(&fs_info->ordered_roots);
2561 spin_lock_init(&fs_info->ordered_root_lock);
2562
2563 fs_info->btree_inode = new_inode(sb);
2564 if (!fs_info->btree_inode) {
2565 err = -ENOMEM;
2566 goto fail_bio_counter;
2567 }
2568 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2569
2570 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2571 GFP_KERNEL);
2572 if (!fs_info->delayed_root) {
2573 err = -ENOMEM;
2574 goto fail_iput;
2575 }
2576 btrfs_init_delayed_root(fs_info->delayed_root);
2577
2578 btrfs_init_scrub(fs_info);
2579#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2580 fs_info->check_integrity_print_mask = 0;
2581#endif
2582 btrfs_init_balance(fs_info);
2583 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2584
2585 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2586 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2587
2588 btrfs_init_btree_inode(fs_info);
2589
2590 spin_lock_init(&fs_info->block_group_cache_lock);
2591 fs_info->block_group_cache_tree = RB_ROOT;
2592 fs_info->first_logical_byte = (u64)-1;
2593
2594 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2595 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2596 fs_info->pinned_extents = &fs_info->freed_extents[0];
2597 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2598
2599 mutex_init(&fs_info->ordered_operations_mutex);
2600 mutex_init(&fs_info->tree_log_mutex);
2601 mutex_init(&fs_info->chunk_mutex);
2602 mutex_init(&fs_info->transaction_kthread_mutex);
2603 mutex_init(&fs_info->cleaner_mutex);
2604 mutex_init(&fs_info->volume_mutex);
2605 mutex_init(&fs_info->ro_block_group_mutex);
2606 init_rwsem(&fs_info->commit_root_sem);
2607 init_rwsem(&fs_info->cleanup_work_sem);
2608 init_rwsem(&fs_info->subvol_sem);
2609 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2610
2611 btrfs_init_dev_replace_locks(fs_info);
2612 btrfs_init_qgroup(fs_info);
2613
2614 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2615 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2616
2617 init_waitqueue_head(&fs_info->transaction_throttle);
2618 init_waitqueue_head(&fs_info->transaction_wait);
2619 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2620 init_waitqueue_head(&fs_info->async_submit_wait);
2621
2622 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2623
2624 /* Usable values until the real ones are cached from the superblock */
2625 fs_info->nodesize = 4096;
2626 fs_info->sectorsize = 4096;
2627 fs_info->stripesize = 4096;
2628
2629 ret = btrfs_alloc_stripe_hash_table(fs_info);
2630 if (ret) {
2631 err = ret;
2632 goto fail_alloc;
2633 }
2634
2635 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2636
2637 invalidate_bdev(fs_devices->latest_bdev);
2638
2639 /*
2640 * Read super block and check the signature bytes only
2641 */
2642 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2643 if (IS_ERR(bh)) {
2644 err = PTR_ERR(bh);
2645 goto fail_alloc;
2646 }
2647
2648 /*
2649 * We want to check superblock checksum, the type is stored inside.
2650 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2651 */
2652 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2653 btrfs_err(fs_info, "superblock checksum mismatch");
2654 err = -EINVAL;
2655 brelse(bh);
2656 goto fail_alloc;
2657 }
2658
2659 /*
2660 * super_copy is zeroed at allocation time and we never touch the
2661 * following bytes up to INFO_SIZE, the checksum is calculated from
2662 * the whole block of INFO_SIZE
2663 */
2664 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2665 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2666 sizeof(*fs_info->super_for_commit));
2667 brelse(bh);
2668
2669 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2670
2671 ret = btrfs_check_super_valid(fs_info);
2672 if (ret) {
2673 btrfs_err(fs_info, "superblock contains fatal errors");
2674 err = -EINVAL;
2675 goto fail_alloc;
2676 }
2677
2678 disk_super = fs_info->super_copy;
2679 if (!btrfs_super_root(disk_super))
2680 goto fail_alloc;
2681
2682 /* check FS state, whether FS is broken. */
2683 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2684 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2685
2686 /*
2687 * run through our array of backup supers and setup
2688 * our ring pointer to the oldest one
2689 */
2690 generation = btrfs_super_generation(disk_super);
2691 find_oldest_super_backup(fs_info, generation);
2692
2693 /*
2694 * In the long term, we'll store the compression type in the super
2695 * block, and it'll be used for per file compression control.
2696 */
2697 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2698
2699 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2700 if (ret) {
2701 err = ret;
2702 goto fail_alloc;
2703 }
2704
2705 features = btrfs_super_incompat_flags(disk_super) &
2706 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2707 if (features) {
2708 btrfs_err(fs_info,
2709 "cannot mount because of unsupported optional features (%llx)",
2710 features);
2711 err = -EINVAL;
2712 goto fail_alloc;
2713 }
2714
2715 features = btrfs_super_incompat_flags(disk_super);
2716 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2717 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2718 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2719 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2720 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2721
2722 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2723 btrfs_info(fs_info, "has skinny extents");
2724
2725 /*
2726 * flag our filesystem as having big metadata blocks if
2727 * they are bigger than the page size
2728 */
2729 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2730 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2731 btrfs_info(fs_info,
2732 "flagging fs with big metadata feature");
2733 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2734 }
2735
2736 nodesize = btrfs_super_nodesize(disk_super);
2737 sectorsize = btrfs_super_sectorsize(disk_super);
2738 stripesize = sectorsize;
2739 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2740 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2741
2742 /* Cache block sizes */
2743 fs_info->nodesize = nodesize;
2744 fs_info->sectorsize = sectorsize;
2745 fs_info->stripesize = stripesize;
2746
2747 /*
2748 * mixed block groups end up with duplicate but slightly offset
2749 * extent buffers for the same range. It leads to corruptions
2750 */
2751 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2752 (sectorsize != nodesize)) {
2753 btrfs_err(fs_info,
2754"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2755 nodesize, sectorsize);
2756 goto fail_alloc;
2757 }
2758
2759 /*
2760 * Needn't use the lock because there is no other task which will
2761 * update the flag.
2762 */
2763 btrfs_set_super_incompat_flags(disk_super, features);
2764
2765 features = btrfs_super_compat_ro_flags(disk_super) &
2766 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2767 if (!sb_rdonly(sb) && features) {
2768 btrfs_err(fs_info,
2769 "cannot mount read-write because of unsupported optional features (%llx)",
2770 features);
2771 err = -EINVAL;
2772 goto fail_alloc;
2773 }
2774
2775 ret = btrfs_init_workqueues(fs_info, fs_devices);
2776 if (ret) {
2777 err = ret;
2778 goto fail_sb_buffer;
2779 }
2780
2781 sb->s_bdi->congested_fn = btrfs_congested_fn;
2782 sb->s_bdi->congested_data = fs_info;
2783 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2784 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2785 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2786 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2787
2788 sb->s_blocksize = sectorsize;
2789 sb->s_blocksize_bits = blksize_bits(sectorsize);
2790 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2791
2792 mutex_lock(&fs_info->chunk_mutex);
2793 ret = btrfs_read_sys_array(fs_info);
2794 mutex_unlock(&fs_info->chunk_mutex);
2795 if (ret) {
2796 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2797 goto fail_sb_buffer;
2798 }
2799
2800 generation = btrfs_super_chunk_root_generation(disk_super);
2801 level = btrfs_super_chunk_root_level(disk_super);
2802
2803 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2804
2805 chunk_root->node = read_tree_block(fs_info,
2806 btrfs_super_chunk_root(disk_super),
2807 generation, level, NULL);
2808 if (IS_ERR(chunk_root->node) ||
2809 !extent_buffer_uptodate(chunk_root->node)) {
2810 btrfs_err(fs_info, "failed to read chunk root");
2811 if (!IS_ERR(chunk_root->node))
2812 free_extent_buffer(chunk_root->node);
2813 chunk_root->node = NULL;
2814 goto fail_tree_roots;
2815 }
2816 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2817 chunk_root->commit_root = btrfs_root_node(chunk_root);
2818
2819 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2820 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2821
2822 ret = btrfs_read_chunk_tree(fs_info);
2823 if (ret) {
2824 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2825 goto fail_tree_roots;
2826 }
2827
2828 /*
2829 * Keep the devid that is marked to be the target device for the
2830 * device replace procedure
2831 */
2832 btrfs_free_extra_devids(fs_devices, 0);
2833
2834 if (!fs_devices->latest_bdev) {
2835 btrfs_err(fs_info, "failed to read devices");
2836 goto fail_tree_roots;
2837 }
2838
2839retry_root_backup:
2840 generation = btrfs_super_generation(disk_super);
2841 level = btrfs_super_root_level(disk_super);
2842
2843 tree_root->node = read_tree_block(fs_info,
2844 btrfs_super_root(disk_super),
2845 generation, level, NULL);
2846 if (IS_ERR(tree_root->node) ||
2847 !extent_buffer_uptodate(tree_root->node)) {
2848 btrfs_warn(fs_info, "failed to read tree root");
2849 if (!IS_ERR(tree_root->node))
2850 free_extent_buffer(tree_root->node);
2851 tree_root->node = NULL;
2852 goto recovery_tree_root;
2853 }
2854
2855 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2856 tree_root->commit_root = btrfs_root_node(tree_root);
2857 btrfs_set_root_refs(&tree_root->root_item, 1);
2858
2859 mutex_lock(&tree_root->objectid_mutex);
2860 ret = btrfs_find_highest_objectid(tree_root,
2861 &tree_root->highest_objectid);
2862 if (ret) {
2863 mutex_unlock(&tree_root->objectid_mutex);
2864 goto recovery_tree_root;
2865 }
2866
2867 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2868
2869 mutex_unlock(&tree_root->objectid_mutex);
2870
2871 ret = btrfs_read_roots(fs_info);
2872 if (ret)
2873 goto recovery_tree_root;
2874
2875 fs_info->generation = generation;
2876 fs_info->last_trans_committed = generation;
2877
2878 ret = btrfs_recover_balance(fs_info);
2879 if (ret) {
2880 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2881 goto fail_block_groups;
2882 }
2883
2884 ret = btrfs_init_dev_stats(fs_info);
2885 if (ret) {
2886 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2887 goto fail_block_groups;
2888 }
2889
2890 ret = btrfs_init_dev_replace(fs_info);
2891 if (ret) {
2892 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2893 goto fail_block_groups;
2894 }
2895
2896 btrfs_free_extra_devids(fs_devices, 1);
2897
2898 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2899 if (ret) {
2900 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2901 ret);
2902 goto fail_block_groups;
2903 }
2904
2905 ret = btrfs_sysfs_add_device(fs_devices);
2906 if (ret) {
2907 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2908 ret);
2909 goto fail_fsdev_sysfs;
2910 }
2911
2912 ret = btrfs_sysfs_add_mounted(fs_info);
2913 if (ret) {
2914 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2915 goto fail_fsdev_sysfs;
2916 }
2917
2918 ret = btrfs_init_space_info(fs_info);
2919 if (ret) {
2920 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2921 goto fail_sysfs;
2922 }
2923
2924 ret = btrfs_read_block_groups(fs_info);
2925 if (ret) {
2926 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2927 goto fail_sysfs;
2928 }
2929
2930 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
2931 btrfs_warn(fs_info,
2932 "writeable mount is not allowed due to too many missing devices");
2933 goto fail_sysfs;
2934 }
2935
2936 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2937 "btrfs-cleaner");
2938 if (IS_ERR(fs_info->cleaner_kthread))
2939 goto fail_sysfs;
2940
2941 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2942 tree_root,
2943 "btrfs-transaction");
2944 if (IS_ERR(fs_info->transaction_kthread))
2945 goto fail_cleaner;
2946
2947 if (!btrfs_test_opt(fs_info, NOSSD) &&
2948 !fs_info->fs_devices->rotating) {
2949 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
2950 }
2951
2952 /*
2953 * Mount does not set all options immediately, we can do it now and do
2954 * not have to wait for transaction commit
2955 */
2956 btrfs_apply_pending_changes(fs_info);
2957
2958#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2959 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2960 ret = btrfsic_mount(fs_info, fs_devices,
2961 btrfs_test_opt(fs_info,
2962 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2963 1 : 0,
2964 fs_info->check_integrity_print_mask);
2965 if (ret)
2966 btrfs_warn(fs_info,
2967 "failed to initialize integrity check module: %d",
2968 ret);
2969 }
2970#endif
2971 ret = btrfs_read_qgroup_config(fs_info);
2972 if (ret)
2973 goto fail_trans_kthread;
2974
2975 if (btrfs_build_ref_tree(fs_info))
2976 btrfs_err(fs_info, "couldn't build ref tree");
2977
2978 /* do not make disk changes in broken FS or nologreplay is given */
2979 if (btrfs_super_log_root(disk_super) != 0 &&
2980 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
2981 ret = btrfs_replay_log(fs_info, fs_devices);
2982 if (ret) {
2983 err = ret;
2984 goto fail_qgroup;
2985 }
2986 }
2987
2988 ret = btrfs_find_orphan_roots(fs_info);
2989 if (ret)
2990 goto fail_qgroup;
2991
2992 if (!sb_rdonly(sb)) {
2993 ret = btrfs_cleanup_fs_roots(fs_info);
2994 if (ret)
2995 goto fail_qgroup;
2996
2997 mutex_lock(&fs_info->cleaner_mutex);
2998 ret = btrfs_recover_relocation(tree_root);
2999 mutex_unlock(&fs_info->cleaner_mutex);
3000 if (ret < 0) {
3001 btrfs_warn(fs_info, "failed to recover relocation: %d",
3002 ret);
3003 err = -EINVAL;
3004 goto fail_qgroup;
3005 }
3006 }
3007
3008 location.objectid = BTRFS_FS_TREE_OBJECTID;
3009 location.type = BTRFS_ROOT_ITEM_KEY;
3010 location.offset = 0;
3011
3012 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3013 if (IS_ERR(fs_info->fs_root)) {
3014 err = PTR_ERR(fs_info->fs_root);
3015 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3016 goto fail_qgroup;
3017 }
3018
3019 if (sb_rdonly(sb))
3020 return 0;
3021
3022 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3023 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3024 clear_free_space_tree = 1;
3025 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3026 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3027 btrfs_warn(fs_info, "free space tree is invalid");
3028 clear_free_space_tree = 1;
3029 }
3030
3031 if (clear_free_space_tree) {
3032 btrfs_info(fs_info, "clearing free space tree");
3033 ret = btrfs_clear_free_space_tree(fs_info);
3034 if (ret) {
3035 btrfs_warn(fs_info,
3036 "failed to clear free space tree: %d", ret);
3037 close_ctree(fs_info);
3038 return ret;
3039 }
3040 }
3041
3042 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3043 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3044 btrfs_info(fs_info, "creating free space tree");
3045 ret = btrfs_create_free_space_tree(fs_info);
3046 if (ret) {
3047 btrfs_warn(fs_info,
3048 "failed to create free space tree: %d", ret);
3049 close_ctree(fs_info);
3050 return ret;
3051 }
3052 }
3053
3054 down_read(&fs_info->cleanup_work_sem);
3055 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3056 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3057 up_read(&fs_info->cleanup_work_sem);
3058 close_ctree(fs_info);
3059 return ret;
3060 }
3061 up_read(&fs_info->cleanup_work_sem);
3062
3063 ret = btrfs_resume_balance_async(fs_info);
3064 if (ret) {
3065 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3066 close_ctree(fs_info);
3067 return ret;
3068 }
3069
3070 ret = btrfs_resume_dev_replace_async(fs_info);
3071 if (ret) {
3072 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3073 close_ctree(fs_info);
3074 return ret;
3075 }
3076
3077 btrfs_qgroup_rescan_resume(fs_info);
3078
3079 if (!fs_info->uuid_root) {
3080 btrfs_info(fs_info, "creating UUID tree");
3081 ret = btrfs_create_uuid_tree(fs_info);
3082 if (ret) {
3083 btrfs_warn(fs_info,
3084 "failed to create the UUID tree: %d", ret);
3085 close_ctree(fs_info);
3086 return ret;
3087 }
3088 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3089 fs_info->generation !=
3090 btrfs_super_uuid_tree_generation(disk_super)) {
3091 btrfs_info(fs_info, "checking UUID tree");
3092 ret = btrfs_check_uuid_tree(fs_info);
3093 if (ret) {
3094 btrfs_warn(fs_info,
3095 "failed to check the UUID tree: %d", ret);
3096 close_ctree(fs_info);
3097 return ret;
3098 }
3099 } else {
3100 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3101 }
3102 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3103
3104 /*
3105 * backuproot only affect mount behavior, and if open_ctree succeeded,
3106 * no need to keep the flag
3107 */
3108 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3109
3110 return 0;
3111
3112fail_qgroup:
3113 btrfs_free_qgroup_config(fs_info);
3114fail_trans_kthread:
3115 kthread_stop(fs_info->transaction_kthread);
3116 btrfs_cleanup_transaction(fs_info);
3117 btrfs_free_fs_roots(fs_info);
3118fail_cleaner:
3119 kthread_stop(fs_info->cleaner_kthread);
3120
3121 /*
3122 * make sure we're done with the btree inode before we stop our
3123 * kthreads
3124 */
3125 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3126
3127fail_sysfs:
3128 btrfs_sysfs_remove_mounted(fs_info);
3129
3130fail_fsdev_sysfs:
3131 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3132
3133fail_block_groups:
3134 btrfs_put_block_group_cache(fs_info);
3135
3136fail_tree_roots:
3137 free_root_pointers(fs_info, 1);
3138 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3139
3140fail_sb_buffer:
3141 btrfs_stop_all_workers(fs_info);
3142 btrfs_free_block_groups(fs_info);
3143fail_alloc:
3144fail_iput:
3145 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3146
3147 iput(fs_info->btree_inode);
3148fail_bio_counter:
3149 percpu_counter_destroy(&fs_info->bio_counter);
3150fail_delalloc_bytes:
3151 percpu_counter_destroy(&fs_info->delalloc_bytes);
3152fail_dirty_metadata_bytes:
3153 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3154fail_srcu:
3155 cleanup_srcu_struct(&fs_info->subvol_srcu);
3156fail:
3157 btrfs_free_stripe_hash_table(fs_info);
3158 btrfs_close_devices(fs_info->fs_devices);
3159 return err;
3160
3161recovery_tree_root:
3162 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3163 goto fail_tree_roots;
3164
3165 free_root_pointers(fs_info, 0);
3166
3167 /* don't use the log in recovery mode, it won't be valid */
3168 btrfs_set_super_log_root(disk_super, 0);
3169
3170 /* we can't trust the free space cache either */
3171 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3172
3173 ret = next_root_backup(fs_info, fs_info->super_copy,
3174 &num_backups_tried, &backup_index);
3175 if (ret == -1)
3176 goto fail_block_groups;
3177 goto retry_root_backup;
3178}
3179ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3180
3181static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3182{
3183 if (uptodate) {
3184 set_buffer_uptodate(bh);
3185 } else {
3186 struct btrfs_device *device = (struct btrfs_device *)
3187 bh->b_private;
3188
3189 btrfs_warn_rl_in_rcu(device->fs_info,
3190 "lost page write due to IO error on %s",
3191 rcu_str_deref(device->name));
3192 /* note, we don't set_buffer_write_io_error because we have
3193 * our own ways of dealing with the IO errors
3194 */
3195 clear_buffer_uptodate(bh);
3196 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3197 }
3198 unlock_buffer(bh);
3199 put_bh(bh);
3200}
3201
3202int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3203 struct buffer_head **bh_ret)
3204{
3205 struct buffer_head *bh;
3206 struct btrfs_super_block *super;
3207 u64 bytenr;
3208
3209 bytenr = btrfs_sb_offset(copy_num);
3210 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3211 return -EINVAL;
3212
3213 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3214 /*
3215 * If we fail to read from the underlying devices, as of now
3216 * the best option we have is to mark it EIO.
3217 */
3218 if (!bh)
3219 return -EIO;
3220
3221 super = (struct btrfs_super_block *)bh->b_data;
3222 if (btrfs_super_bytenr(super) != bytenr ||
3223 btrfs_super_magic(super) != BTRFS_MAGIC) {
3224 brelse(bh);
3225 return -EINVAL;
3226 }
3227
3228 *bh_ret = bh;
3229 return 0;
3230}
3231
3232
3233struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3234{
3235 struct buffer_head *bh;
3236 struct buffer_head *latest = NULL;
3237 struct btrfs_super_block *super;
3238 int i;
3239 u64 transid = 0;
3240 int ret = -EINVAL;
3241
3242 /* we would like to check all the supers, but that would make
3243 * a btrfs mount succeed after a mkfs from a different FS.
3244 * So, we need to add a special mount option to scan for
3245 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3246 */
3247 for (i = 0; i < 1; i++) {
3248 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3249 if (ret)
3250 continue;
3251
3252 super = (struct btrfs_super_block *)bh->b_data;
3253
3254 if (!latest || btrfs_super_generation(super) > transid) {
3255 brelse(latest);
3256 latest = bh;
3257 transid = btrfs_super_generation(super);
3258 } else {
3259 brelse(bh);
3260 }
3261 }
3262
3263 if (!latest)
3264 return ERR_PTR(ret);
3265
3266 return latest;
3267}
3268
3269/*
3270 * Write superblock @sb to the @device. Do not wait for completion, all the
3271 * buffer heads we write are pinned.
3272 *
3273 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3274 * the expected device size at commit time. Note that max_mirrors must be
3275 * same for write and wait phases.
3276 *
3277 * Return number of errors when buffer head is not found or submission fails.
3278 */
3279static int write_dev_supers(struct btrfs_device *device,
3280 struct btrfs_super_block *sb, int max_mirrors)
3281{
3282 struct buffer_head *bh;
3283 int i;
3284 int ret;
3285 int errors = 0;
3286 u32 crc;
3287 u64 bytenr;
3288 int op_flags;
3289
3290 if (max_mirrors == 0)
3291 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3292
3293 for (i = 0; i < max_mirrors; i++) {
3294 bytenr = btrfs_sb_offset(i);
3295 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3296 device->commit_total_bytes)
3297 break;
3298
3299 btrfs_set_super_bytenr(sb, bytenr);
3300
3301 crc = ~(u32)0;
3302 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3303 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3304 btrfs_csum_final(crc, sb->csum);
3305
3306 /* One reference for us, and we leave it for the caller */
3307 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3308 BTRFS_SUPER_INFO_SIZE);
3309 if (!bh) {
3310 btrfs_err(device->fs_info,
3311 "couldn't get super buffer head for bytenr %llu",
3312 bytenr);
3313 errors++;
3314 continue;
3315 }
3316
3317 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3318
3319 /* one reference for submit_bh */
3320 get_bh(bh);
3321
3322 set_buffer_uptodate(bh);
3323 lock_buffer(bh);
3324 bh->b_end_io = btrfs_end_buffer_write_sync;
3325 bh->b_private = device;
3326
3327 /*
3328 * we fua the first super. The others we allow
3329 * to go down lazy.
3330 */
3331 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3332 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3333 op_flags |= REQ_FUA;
3334 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3335 if (ret)
3336 errors++;
3337 }
3338 return errors < i ? 0 : -1;
3339}
3340
3341/*
3342 * Wait for write completion of superblocks done by write_dev_supers,
3343 * @max_mirrors same for write and wait phases.
3344 *
3345 * Return number of errors when buffer head is not found or not marked up to
3346 * date.
3347 */
3348static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3349{
3350 struct buffer_head *bh;
3351 int i;
3352 int errors = 0;
3353 bool primary_failed = false;
3354 u64 bytenr;
3355
3356 if (max_mirrors == 0)
3357 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3358
3359 for (i = 0; i < max_mirrors; i++) {
3360 bytenr = btrfs_sb_offset(i);
3361 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3362 device->commit_total_bytes)
3363 break;
3364
3365 bh = __find_get_block(device->bdev,
3366 bytenr / BTRFS_BDEV_BLOCKSIZE,
3367 BTRFS_SUPER_INFO_SIZE);
3368 if (!bh) {
3369 errors++;
3370 if (i == 0)
3371 primary_failed = true;
3372 continue;
3373 }
3374 wait_on_buffer(bh);
3375 if (!buffer_uptodate(bh)) {
3376 errors++;
3377 if (i == 0)
3378 primary_failed = true;
3379 }
3380
3381 /* drop our reference */
3382 brelse(bh);
3383
3384 /* drop the reference from the writing run */
3385 brelse(bh);
3386 }
3387
3388 /* log error, force error return */
3389 if (primary_failed) {
3390 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3391 device->devid);
3392 return -1;
3393 }
3394
3395 return errors < i ? 0 : -1;
3396}
3397
3398/*
3399 * endio for the write_dev_flush, this will wake anyone waiting
3400 * for the barrier when it is done
3401 */
3402static void btrfs_end_empty_barrier(struct bio *bio)
3403{
3404 complete(bio->bi_private);
3405}
3406
3407/*
3408 * Submit a flush request to the device if it supports it. Error handling is
3409 * done in the waiting counterpart.
3410 */
3411static void write_dev_flush(struct btrfs_device *device)
3412{
3413 struct request_queue *q = bdev_get_queue(device->bdev);
3414 struct bio *bio = device->flush_bio;
3415
3416 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3417 return;
3418
3419 bio_reset(bio);
3420 bio->bi_end_io = btrfs_end_empty_barrier;
3421 bio_set_dev(bio, device->bdev);
3422 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3423 init_completion(&device->flush_wait);
3424 bio->bi_private = &device->flush_wait;
3425
3426 btrfsic_submit_bio(bio);
3427 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3428}
3429
3430/*
3431 * If the flush bio has been submitted by write_dev_flush, wait for it.
3432 */
3433static blk_status_t wait_dev_flush(struct btrfs_device *device)
3434{
3435 struct bio *bio = device->flush_bio;
3436
3437 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3438 return BLK_STS_OK;
3439
3440 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3441 wait_for_completion_io(&device->flush_wait);
3442
3443 return bio->bi_status;
3444}
3445
3446static int check_barrier_error(struct btrfs_fs_info *fs_info)
3447{
3448 if (!btrfs_check_rw_degradable(fs_info, NULL))
3449 return -EIO;
3450 return 0;
3451}
3452
3453/*
3454 * send an empty flush down to each device in parallel,
3455 * then wait for them
3456 */
3457static int barrier_all_devices(struct btrfs_fs_info *info)
3458{
3459 struct list_head *head;
3460 struct btrfs_device *dev;
3461 int errors_wait = 0;
3462 blk_status_t ret;
3463
3464 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3465 /* send down all the barriers */
3466 head = &info->fs_devices->devices;
3467 list_for_each_entry(dev, head, dev_list) {
3468 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3469 continue;
3470 if (!dev->bdev)
3471 continue;
3472 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3473 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3474 continue;
3475
3476 write_dev_flush(dev);
3477 dev->last_flush_error = BLK_STS_OK;
3478 }
3479
3480 /* wait for all the barriers */
3481 list_for_each_entry(dev, head, dev_list) {
3482 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3483 continue;
3484 if (!dev->bdev) {
3485 errors_wait++;
3486 continue;
3487 }
3488 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3489 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3490 continue;
3491
3492 ret = wait_dev_flush(dev);
3493 if (ret) {
3494 dev->last_flush_error = ret;
3495 btrfs_dev_stat_inc_and_print(dev,
3496 BTRFS_DEV_STAT_FLUSH_ERRS);
3497 errors_wait++;
3498 }
3499 }
3500
3501 if (errors_wait) {
3502 /*
3503 * At some point we need the status of all disks
3504 * to arrive at the volume status. So error checking
3505 * is being pushed to a separate loop.
3506 */
3507 return check_barrier_error(info);
3508 }
3509 return 0;
3510}
3511
3512int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3513{
3514 int raid_type;
3515 int min_tolerated = INT_MAX;
3516
3517 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3518 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3519 min_tolerated = min(min_tolerated,
3520 btrfs_raid_array[BTRFS_RAID_SINGLE].
3521 tolerated_failures);
3522
3523 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3524 if (raid_type == BTRFS_RAID_SINGLE)
3525 continue;
3526 if (!(flags & btrfs_raid_group[raid_type]))
3527 continue;
3528 min_tolerated = min(min_tolerated,
3529 btrfs_raid_array[raid_type].
3530 tolerated_failures);
3531 }
3532
3533 if (min_tolerated == INT_MAX) {
3534 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3535 min_tolerated = 0;
3536 }
3537
3538 return min_tolerated;
3539}
3540
3541int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3542{
3543 struct list_head *head;
3544 struct btrfs_device *dev;
3545 struct btrfs_super_block *sb;
3546 struct btrfs_dev_item *dev_item;
3547 int ret;
3548 int do_barriers;
3549 int max_errors;
3550 int total_errors = 0;
3551 u64 flags;
3552
3553 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3554
3555 /*
3556 * max_mirrors == 0 indicates we're from commit_transaction,
3557 * not from fsync where the tree roots in fs_info have not
3558 * been consistent on disk.
3559 */
3560 if (max_mirrors == 0)
3561 backup_super_roots(fs_info);
3562
3563 sb = fs_info->super_for_commit;
3564 dev_item = &sb->dev_item;
3565
3566 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3567 head = &fs_info->fs_devices->devices;
3568 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3569
3570 if (do_barriers) {
3571 ret = barrier_all_devices(fs_info);
3572 if (ret) {
3573 mutex_unlock(
3574 &fs_info->fs_devices->device_list_mutex);
3575 btrfs_handle_fs_error(fs_info, ret,
3576 "errors while submitting device barriers.");
3577 return ret;
3578 }
3579 }
3580
3581 list_for_each_entry(dev, head, dev_list) {
3582 if (!dev->bdev) {
3583 total_errors++;
3584 continue;
3585 }
3586 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3587 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3588 continue;
3589
3590 btrfs_set_stack_device_generation(dev_item, 0);
3591 btrfs_set_stack_device_type(dev_item, dev->type);
3592 btrfs_set_stack_device_id(dev_item, dev->devid);
3593 btrfs_set_stack_device_total_bytes(dev_item,
3594 dev->commit_total_bytes);
3595 btrfs_set_stack_device_bytes_used(dev_item,
3596 dev->commit_bytes_used);
3597 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3598 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3599 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3600 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3601 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3602
3603 flags = btrfs_super_flags(sb);
3604 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3605
3606 ret = write_dev_supers(dev, sb, max_mirrors);
3607 if (ret)
3608 total_errors++;
3609 }
3610 if (total_errors > max_errors) {
3611 btrfs_err(fs_info, "%d errors while writing supers",
3612 total_errors);
3613 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3614
3615 /* FUA is masked off if unsupported and can't be the reason */
3616 btrfs_handle_fs_error(fs_info, -EIO,
3617 "%d errors while writing supers",
3618 total_errors);
3619 return -EIO;
3620 }
3621
3622 total_errors = 0;
3623 list_for_each_entry(dev, head, dev_list) {
3624 if (!dev->bdev)
3625 continue;
3626 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3627 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3628 continue;
3629
3630 ret = wait_dev_supers(dev, max_mirrors);
3631 if (ret)
3632 total_errors++;
3633 }
3634 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3635 if (total_errors > max_errors) {
3636 btrfs_handle_fs_error(fs_info, -EIO,
3637 "%d errors while writing supers",
3638 total_errors);
3639 return -EIO;
3640 }
3641 return 0;
3642}
3643
3644/* Drop a fs root from the radix tree and free it. */
3645void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3646 struct btrfs_root *root)
3647{
3648 spin_lock(&fs_info->fs_roots_radix_lock);
3649 radix_tree_delete(&fs_info->fs_roots_radix,
3650 (unsigned long)root->root_key.objectid);
3651 spin_unlock(&fs_info->fs_roots_radix_lock);
3652
3653 if (btrfs_root_refs(&root->root_item) == 0)
3654 synchronize_srcu(&fs_info->subvol_srcu);
3655
3656 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3657 btrfs_free_log(NULL, root);
3658 if (root->reloc_root) {
3659 free_extent_buffer(root->reloc_root->node);
3660 free_extent_buffer(root->reloc_root->commit_root);
3661 btrfs_put_fs_root(root->reloc_root);
3662 root->reloc_root = NULL;
3663 }
3664 }
3665
3666 if (root->free_ino_pinned)
3667 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3668 if (root->free_ino_ctl)
3669 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3670 free_fs_root(root);
3671}
3672
3673static void free_fs_root(struct btrfs_root *root)
3674{
3675 iput(root->ino_cache_inode);
3676 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3677 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3678 root->orphan_block_rsv = NULL;
3679 if (root->anon_dev)
3680 free_anon_bdev(root->anon_dev);
3681 if (root->subv_writers)
3682 btrfs_free_subvolume_writers(root->subv_writers);
3683 free_extent_buffer(root->node);
3684 free_extent_buffer(root->commit_root);
3685 kfree(root->free_ino_ctl);
3686 kfree(root->free_ino_pinned);
3687 kfree(root->name);
3688 btrfs_put_fs_root(root);
3689}
3690
3691void btrfs_free_fs_root(struct btrfs_root *root)
3692{
3693 free_fs_root(root);
3694}
3695
3696int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3697{
3698 u64 root_objectid = 0;
3699 struct btrfs_root *gang[8];
3700 int i = 0;
3701 int err = 0;
3702 unsigned int ret = 0;
3703 int index;
3704
3705 while (1) {
3706 index = srcu_read_lock(&fs_info->subvol_srcu);
3707 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3708 (void **)gang, root_objectid,
3709 ARRAY_SIZE(gang));
3710 if (!ret) {
3711 srcu_read_unlock(&fs_info->subvol_srcu, index);
3712 break;
3713 }
3714 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3715
3716 for (i = 0; i < ret; i++) {
3717 /* Avoid to grab roots in dead_roots */
3718 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3719 gang[i] = NULL;
3720 continue;
3721 }
3722 /* grab all the search result for later use */
3723 gang[i] = btrfs_grab_fs_root(gang[i]);
3724 }
3725 srcu_read_unlock(&fs_info->subvol_srcu, index);
3726
3727 for (i = 0; i < ret; i++) {
3728 if (!gang[i])
3729 continue;
3730 root_objectid = gang[i]->root_key.objectid;
3731 err = btrfs_orphan_cleanup(gang[i]);
3732 if (err)
3733 break;
3734 btrfs_put_fs_root(gang[i]);
3735 }
3736 root_objectid++;
3737 }
3738
3739 /* release the uncleaned roots due to error */
3740 for (; i < ret; i++) {
3741 if (gang[i])
3742 btrfs_put_fs_root(gang[i]);
3743 }
3744 return err;
3745}
3746
3747int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3748{
3749 struct btrfs_root *root = fs_info->tree_root;
3750 struct btrfs_trans_handle *trans;
3751
3752 mutex_lock(&fs_info->cleaner_mutex);
3753 btrfs_run_delayed_iputs(fs_info);
3754 mutex_unlock(&fs_info->cleaner_mutex);
3755 wake_up_process(fs_info->cleaner_kthread);
3756
3757 /* wait until ongoing cleanup work done */
3758 down_write(&fs_info->cleanup_work_sem);
3759 up_write(&fs_info->cleanup_work_sem);
3760
3761 trans = btrfs_join_transaction(root);
3762 if (IS_ERR(trans))
3763 return PTR_ERR(trans);
3764 return btrfs_commit_transaction(trans);
3765}
3766
3767void close_ctree(struct btrfs_fs_info *fs_info)
3768{
3769 struct btrfs_root *root = fs_info->tree_root;
3770 int ret;
3771
3772 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3773
3774 /* wait for the qgroup rescan worker to stop */
3775 btrfs_qgroup_wait_for_completion(fs_info, false);
3776
3777 /* wait for the uuid_scan task to finish */
3778 down(&fs_info->uuid_tree_rescan_sem);
3779 /* avoid complains from lockdep et al., set sem back to initial state */
3780 up(&fs_info->uuid_tree_rescan_sem);
3781
3782 /* pause restriper - we want to resume on mount */
3783 btrfs_pause_balance(fs_info);
3784
3785 btrfs_dev_replace_suspend_for_unmount(fs_info);
3786
3787 btrfs_scrub_cancel(fs_info);
3788
3789 /* wait for any defraggers to finish */
3790 wait_event(fs_info->transaction_wait,
3791 (atomic_read(&fs_info->defrag_running) == 0));
3792
3793 /* clear out the rbtree of defraggable inodes */
3794 btrfs_cleanup_defrag_inodes(fs_info);
3795
3796 cancel_work_sync(&fs_info->async_reclaim_work);
3797
3798 if (!sb_rdonly(fs_info->sb)) {
3799 /*
3800 * If the cleaner thread is stopped and there are
3801 * block groups queued for removal, the deletion will be
3802 * skipped when we quit the cleaner thread.
3803 */
3804 btrfs_delete_unused_bgs(fs_info);
3805
3806 ret = btrfs_commit_super(fs_info);
3807 if (ret)
3808 btrfs_err(fs_info, "commit super ret %d", ret);
3809 }
3810
3811 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3812 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3813 btrfs_error_commit_super(fs_info);
3814
3815 kthread_stop(fs_info->transaction_kthread);
3816 kthread_stop(fs_info->cleaner_kthread);
3817
3818 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3819
3820 btrfs_free_qgroup_config(fs_info);
3821 ASSERT(list_empty(&fs_info->delalloc_roots));
3822
3823 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3824 btrfs_info(fs_info, "at unmount delalloc count %lld",
3825 percpu_counter_sum(&fs_info->delalloc_bytes));
3826 }
3827
3828 btrfs_sysfs_remove_mounted(fs_info);
3829 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3830
3831 btrfs_free_fs_roots(fs_info);
3832
3833 btrfs_put_block_group_cache(fs_info);
3834
3835 /*
3836 * we must make sure there is not any read request to
3837 * submit after we stopping all workers.
3838 */
3839 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3840 btrfs_stop_all_workers(fs_info);
3841
3842 btrfs_free_block_groups(fs_info);
3843
3844 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3845 free_root_pointers(fs_info, 1);
3846
3847 iput(fs_info->btree_inode);
3848
3849#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3850 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
3851 btrfsic_unmount(fs_info->fs_devices);
3852#endif
3853
3854 btrfs_close_devices(fs_info->fs_devices);
3855 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3856
3857 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3858 percpu_counter_destroy(&fs_info->delalloc_bytes);
3859 percpu_counter_destroy(&fs_info->bio_counter);
3860 cleanup_srcu_struct(&fs_info->subvol_srcu);
3861
3862 btrfs_free_stripe_hash_table(fs_info);
3863 btrfs_free_ref_cache(fs_info);
3864
3865 __btrfs_free_block_rsv(root->orphan_block_rsv);
3866 root->orphan_block_rsv = NULL;
3867
3868 while (!list_empty(&fs_info->pinned_chunks)) {
3869 struct extent_map *em;
3870
3871 em = list_first_entry(&fs_info->pinned_chunks,
3872 struct extent_map, list);
3873 list_del_init(&em->list);
3874 free_extent_map(em);
3875 }
3876}
3877
3878int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3879 int atomic)
3880{
3881 int ret;
3882 struct inode *btree_inode = buf->pages[0]->mapping->host;
3883
3884 ret = extent_buffer_uptodate(buf);
3885 if (!ret)
3886 return ret;
3887
3888 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3889 parent_transid, atomic);
3890 if (ret == -EAGAIN)
3891 return ret;
3892 return !ret;
3893}
3894
3895void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3896{
3897 struct btrfs_fs_info *fs_info;
3898 struct btrfs_root *root;
3899 u64 transid = btrfs_header_generation(buf);
3900 int was_dirty;
3901
3902#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3903 /*
3904 * This is a fast path so only do this check if we have sanity tests
3905 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3906 * outside of the sanity tests.
3907 */
3908 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3909 return;
3910#endif
3911 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3912 fs_info = root->fs_info;
3913 btrfs_assert_tree_locked(buf);
3914 if (transid != fs_info->generation)
3915 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
3916 buf->start, transid, fs_info->generation);
3917 was_dirty = set_extent_buffer_dirty(buf);
3918 if (!was_dirty)
3919 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3920 buf->len,
3921 fs_info->dirty_metadata_batch);
3922#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3923 /*
3924 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3925 * but item data not updated.
3926 * So here we should only check item pointers, not item data.
3927 */
3928 if (btrfs_header_level(buf) == 0 &&
3929 btrfs_check_leaf_relaxed(fs_info, buf)) {
3930 btrfs_print_leaf(buf);
3931 ASSERT(0);
3932 }
3933#endif
3934}
3935
3936static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
3937 int flush_delayed)
3938{
3939 /*
3940 * looks as though older kernels can get into trouble with
3941 * this code, they end up stuck in balance_dirty_pages forever
3942 */
3943 int ret;
3944
3945 if (current->flags & PF_MEMALLOC)
3946 return;
3947
3948 if (flush_delayed)
3949 btrfs_balance_delayed_items(fs_info);
3950
3951 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
3952 BTRFS_DIRTY_METADATA_THRESH);
3953 if (ret > 0) {
3954 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
3955 }
3956}
3957
3958void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
3959{
3960 __btrfs_btree_balance_dirty(fs_info, 1);
3961}
3962
3963void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
3964{
3965 __btrfs_btree_balance_dirty(fs_info, 0);
3966}
3967
3968int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
3969 struct btrfs_key *first_key)
3970{
3971 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3972 struct btrfs_fs_info *fs_info = root->fs_info;
3973
3974 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
3975 level, first_key);
3976}
3977
3978static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
3979{
3980 struct btrfs_super_block *sb = fs_info->super_copy;
3981 u64 nodesize = btrfs_super_nodesize(sb);
3982 u64 sectorsize = btrfs_super_sectorsize(sb);
3983 int ret = 0;
3984
3985 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
3986 btrfs_err(fs_info, "no valid FS found");
3987 ret = -EINVAL;
3988 }
3989 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
3990 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
3991 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
3992 ret = -EINVAL;
3993 }
3994 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3995 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
3996 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3997 ret = -EINVAL;
3998 }
3999 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4000 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4001 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4002 ret = -EINVAL;
4003 }
4004 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4005 btrfs_err(fs_info, "log_root level too big: %d >= %d",
4006 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4007 ret = -EINVAL;
4008 }
4009
4010 /*
4011 * Check sectorsize and nodesize first, other check will need it.
4012 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4013 */
4014 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4015 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4016 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4017 ret = -EINVAL;
4018 }
4019 /* Only PAGE SIZE is supported yet */
4020 if (sectorsize != PAGE_SIZE) {
4021 btrfs_err(fs_info,
4022 "sectorsize %llu not supported yet, only support %lu",
4023 sectorsize, PAGE_SIZE);
4024 ret = -EINVAL;
4025 }
4026 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4027 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4028 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4029 ret = -EINVAL;
4030 }
4031 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4032 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4033 le32_to_cpu(sb->__unused_leafsize), nodesize);
4034 ret = -EINVAL;
4035 }
4036
4037 /* Root alignment check */
4038 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4039 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4040 btrfs_super_root(sb));
4041 ret = -EINVAL;
4042 }
4043 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4044 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4045 btrfs_super_chunk_root(sb));
4046 ret = -EINVAL;
4047 }
4048 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4049 btrfs_warn(fs_info, "log_root block unaligned: %llu",
4050 btrfs_super_log_root(sb));
4051 ret = -EINVAL;
4052 }
4053
4054 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
4055 btrfs_err(fs_info,
4056 "dev_item UUID does not match fsid: %pU != %pU",
4057 fs_info->fsid, sb->dev_item.fsid);
4058 ret = -EINVAL;
4059 }
4060
4061 /*
4062 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4063 * done later
4064 */
4065 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4066 btrfs_err(fs_info, "bytes_used is too small %llu",
4067 btrfs_super_bytes_used(sb));
4068 ret = -EINVAL;
4069 }
4070 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4071 btrfs_err(fs_info, "invalid stripesize %u",
4072 btrfs_super_stripesize(sb));
4073 ret = -EINVAL;
4074 }
4075 if (btrfs_super_num_devices(sb) > (1UL << 31))
4076 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4077 btrfs_super_num_devices(sb));
4078 if (btrfs_super_num_devices(sb) == 0) {
4079 btrfs_err(fs_info, "number of devices is 0");
4080 ret = -EINVAL;
4081 }
4082
4083 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4084 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4085 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4086 ret = -EINVAL;
4087 }
4088
4089 /*
4090 * Obvious sys_chunk_array corruptions, it must hold at least one key
4091 * and one chunk
4092 */
4093 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4094 btrfs_err(fs_info, "system chunk array too big %u > %u",
4095 btrfs_super_sys_array_size(sb),
4096 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4097 ret = -EINVAL;
4098 }
4099 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4100 + sizeof(struct btrfs_chunk)) {
4101 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4102 btrfs_super_sys_array_size(sb),
4103 sizeof(struct btrfs_disk_key)
4104 + sizeof(struct btrfs_chunk));
4105 ret = -EINVAL;
4106 }
4107
4108 /*
4109 * The generation is a global counter, we'll trust it more than the others
4110 * but it's still possible that it's the one that's wrong.
4111 */
4112 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4113 btrfs_warn(fs_info,
4114 "suspicious: generation < chunk_root_generation: %llu < %llu",
4115 btrfs_super_generation(sb),
4116 btrfs_super_chunk_root_generation(sb));
4117 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4118 && btrfs_super_cache_generation(sb) != (u64)-1)
4119 btrfs_warn(fs_info,
4120 "suspicious: generation < cache_generation: %llu < %llu",
4121 btrfs_super_generation(sb),
4122 btrfs_super_cache_generation(sb));
4123
4124 return ret;
4125}
4126
4127static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4128{
4129 /* cleanup FS via transaction */
4130 btrfs_cleanup_transaction(fs_info);
4131
4132 mutex_lock(&fs_info->cleaner_mutex);
4133 btrfs_run_delayed_iputs(fs_info);
4134 mutex_unlock(&fs_info->cleaner_mutex);
4135
4136 down_write(&fs_info->cleanup_work_sem);
4137 up_write(&fs_info->cleanup_work_sem);
4138}
4139
4140static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4141{
4142 struct btrfs_ordered_extent *ordered;
4143
4144 spin_lock(&root->ordered_extent_lock);
4145 /*
4146 * This will just short circuit the ordered completion stuff which will
4147 * make sure the ordered extent gets properly cleaned up.
4148 */
4149 list_for_each_entry(ordered, &root->ordered_extents,
4150 root_extent_list)
4151 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4152 spin_unlock(&root->ordered_extent_lock);
4153}
4154
4155static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4156{
4157 struct btrfs_root *root;
4158 struct list_head splice;
4159
4160 INIT_LIST_HEAD(&splice);
4161
4162 spin_lock(&fs_info->ordered_root_lock);
4163 list_splice_init(&fs_info->ordered_roots, &splice);
4164 while (!list_empty(&splice)) {
4165 root = list_first_entry(&splice, struct btrfs_root,
4166 ordered_root);
4167 list_move_tail(&root->ordered_root,
4168 &fs_info->ordered_roots);
4169
4170 spin_unlock(&fs_info->ordered_root_lock);
4171 btrfs_destroy_ordered_extents(root);
4172
4173 cond_resched();
4174 spin_lock(&fs_info->ordered_root_lock);
4175 }
4176 spin_unlock(&fs_info->ordered_root_lock);
4177}
4178
4179static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4180 struct btrfs_fs_info *fs_info)
4181{
4182 struct rb_node *node;
4183 struct btrfs_delayed_ref_root *delayed_refs;
4184 struct btrfs_delayed_ref_node *ref;
4185 int ret = 0;
4186
4187 delayed_refs = &trans->delayed_refs;
4188
4189 spin_lock(&delayed_refs->lock);
4190 if (atomic_read(&delayed_refs->num_entries) == 0) {
4191 spin_unlock(&delayed_refs->lock);
4192 btrfs_info(fs_info, "delayed_refs has NO entry");
4193 return ret;
4194 }
4195
4196 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4197 struct btrfs_delayed_ref_head *head;
4198 struct rb_node *n;
4199 bool pin_bytes = false;
4200
4201 head = rb_entry(node, struct btrfs_delayed_ref_head,
4202 href_node);
4203 if (!mutex_trylock(&head->mutex)) {
4204 refcount_inc(&head->refs);
4205 spin_unlock(&delayed_refs->lock);
4206
4207 mutex_lock(&head->mutex);
4208 mutex_unlock(&head->mutex);
4209 btrfs_put_delayed_ref_head(head);
4210 spin_lock(&delayed_refs->lock);
4211 continue;
4212 }
4213 spin_lock(&head->lock);
4214 while ((n = rb_first(&head->ref_tree)) != NULL) {
4215 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4216 ref_node);
4217 ref->in_tree = 0;
4218 rb_erase(&ref->ref_node, &head->ref_tree);
4219 RB_CLEAR_NODE(&ref->ref_node);
4220 if (!list_empty(&ref->add_list))
4221 list_del(&ref->add_list);
4222 atomic_dec(&delayed_refs->num_entries);
4223 btrfs_put_delayed_ref(ref);
4224 }
4225 if (head->must_insert_reserved)
4226 pin_bytes = true;
4227 btrfs_free_delayed_extent_op(head->extent_op);
4228 delayed_refs->num_heads--;
4229 if (head->processing == 0)
4230 delayed_refs->num_heads_ready--;
4231 atomic_dec(&delayed_refs->num_entries);
4232 rb_erase(&head->href_node, &delayed_refs->href_root);
4233 RB_CLEAR_NODE(&head->href_node);
4234 spin_unlock(&head->lock);
4235 spin_unlock(&delayed_refs->lock);
4236 mutex_unlock(&head->mutex);
4237
4238 if (pin_bytes)
4239 btrfs_pin_extent(fs_info, head->bytenr,
4240 head->num_bytes, 1);
4241 btrfs_put_delayed_ref_head(head);
4242 cond_resched();
4243 spin_lock(&delayed_refs->lock);
4244 }
4245
4246 spin_unlock(&delayed_refs->lock);
4247
4248 return ret;
4249}
4250
4251static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4252{
4253 struct btrfs_inode *btrfs_inode;
4254 struct list_head splice;
4255
4256 INIT_LIST_HEAD(&splice);
4257
4258 spin_lock(&root->delalloc_lock);
4259 list_splice_init(&root->delalloc_inodes, &splice);
4260
4261 while (!list_empty(&splice)) {
4262 struct inode *inode = NULL;
4263 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4264 delalloc_inodes);
4265 __btrfs_del_delalloc_inode(root, btrfs_inode);
4266 spin_unlock(&root->delalloc_lock);
4267
4268 /*
4269 * Make sure we get a live inode and that it'll not disappear
4270 * meanwhile.
4271 */
4272 inode = igrab(&btrfs_inode->vfs_inode);
4273 if (inode) {
4274 invalidate_inode_pages2(inode->i_mapping);
4275 iput(inode);
4276 }
4277 spin_lock(&root->delalloc_lock);
4278 }
4279 spin_unlock(&root->delalloc_lock);
4280}
4281
4282static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4283{
4284 struct btrfs_root *root;
4285 struct list_head splice;
4286
4287 INIT_LIST_HEAD(&splice);
4288
4289 spin_lock(&fs_info->delalloc_root_lock);
4290 list_splice_init(&fs_info->delalloc_roots, &splice);
4291 while (!list_empty(&splice)) {
4292 root = list_first_entry(&splice, struct btrfs_root,
4293 delalloc_root);
4294 root = btrfs_grab_fs_root(root);
4295 BUG_ON(!root);
4296 spin_unlock(&fs_info->delalloc_root_lock);
4297
4298 btrfs_destroy_delalloc_inodes(root);
4299 btrfs_put_fs_root(root);
4300
4301 spin_lock(&fs_info->delalloc_root_lock);
4302 }
4303 spin_unlock(&fs_info->delalloc_root_lock);
4304}
4305
4306static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4307 struct extent_io_tree *dirty_pages,
4308 int mark)
4309{
4310 int ret;
4311 struct extent_buffer *eb;
4312 u64 start = 0;
4313 u64 end;
4314
4315 while (1) {
4316 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4317 mark, NULL);
4318 if (ret)
4319 break;
4320
4321 clear_extent_bits(dirty_pages, start, end, mark);
4322 while (start <= end) {
4323 eb = find_extent_buffer(fs_info, start);
4324 start += fs_info->nodesize;
4325 if (!eb)
4326 continue;
4327 wait_on_extent_buffer_writeback(eb);
4328
4329 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4330 &eb->bflags))
4331 clear_extent_buffer_dirty(eb);
4332 free_extent_buffer_stale(eb);
4333 }
4334 }
4335
4336 return ret;
4337}
4338
4339static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4340 struct extent_io_tree *pinned_extents)
4341{
4342 struct extent_io_tree *unpin;
4343 u64 start;
4344 u64 end;
4345 int ret;
4346 bool loop = true;
4347
4348 unpin = pinned_extents;
4349again:
4350 while (1) {
4351 ret = find_first_extent_bit(unpin, 0, &start, &end,
4352 EXTENT_DIRTY, NULL);
4353 if (ret)
4354 break;
4355
4356 clear_extent_dirty(unpin, start, end);
4357 btrfs_error_unpin_extent_range(fs_info, start, end);
4358 cond_resched();
4359 }
4360
4361 if (loop) {
4362 if (unpin == &fs_info->freed_extents[0])
4363 unpin = &fs_info->freed_extents[1];
4364 else
4365 unpin = &fs_info->freed_extents[0];
4366 loop = false;
4367 goto again;
4368 }
4369
4370 return 0;
4371}
4372
4373static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4374{
4375 struct inode *inode;
4376
4377 inode = cache->io_ctl.inode;
4378 if (inode) {
4379 invalidate_inode_pages2(inode->i_mapping);
4380 BTRFS_I(inode)->generation = 0;
4381 cache->io_ctl.inode = NULL;
4382 iput(inode);
4383 }
4384 btrfs_put_block_group(cache);
4385}
4386
4387void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4388 struct btrfs_fs_info *fs_info)
4389{
4390 struct btrfs_block_group_cache *cache;
4391
4392 spin_lock(&cur_trans->dirty_bgs_lock);
4393 while (!list_empty(&cur_trans->dirty_bgs)) {
4394 cache = list_first_entry(&cur_trans->dirty_bgs,
4395 struct btrfs_block_group_cache,
4396 dirty_list);
4397
4398 if (!list_empty(&cache->io_list)) {
4399 spin_unlock(&cur_trans->dirty_bgs_lock);
4400 list_del_init(&cache->io_list);
4401 btrfs_cleanup_bg_io(cache);
4402 spin_lock(&cur_trans->dirty_bgs_lock);
4403 }
4404
4405 list_del_init(&cache->dirty_list);
4406 spin_lock(&cache->lock);
4407 cache->disk_cache_state = BTRFS_DC_ERROR;
4408 spin_unlock(&cache->lock);
4409
4410 spin_unlock(&cur_trans->dirty_bgs_lock);
4411 btrfs_put_block_group(cache);
4412 spin_lock(&cur_trans->dirty_bgs_lock);
4413 }
4414 spin_unlock(&cur_trans->dirty_bgs_lock);
4415
4416 /*
4417 * Refer to the definition of io_bgs member for details why it's safe
4418 * to use it without any locking
4419 */
4420 while (!list_empty(&cur_trans->io_bgs)) {
4421 cache = list_first_entry(&cur_trans->io_bgs,
4422 struct btrfs_block_group_cache,
4423 io_list);
4424
4425 list_del_init(&cache->io_list);
4426 spin_lock(&cache->lock);
4427 cache->disk_cache_state = BTRFS_DC_ERROR;
4428 spin_unlock(&cache->lock);
4429 btrfs_cleanup_bg_io(cache);
4430 }
4431}
4432
4433void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4434 struct btrfs_fs_info *fs_info)
4435{
4436 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4437 ASSERT(list_empty(&cur_trans->dirty_bgs));
4438 ASSERT(list_empty(&cur_trans->io_bgs));
4439
4440 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4441
4442 cur_trans->state = TRANS_STATE_COMMIT_START;
4443 wake_up(&fs_info->transaction_blocked_wait);
4444
4445 cur_trans->state = TRANS_STATE_UNBLOCKED;
4446 wake_up(&fs_info->transaction_wait);
4447
4448 btrfs_destroy_delayed_inodes(fs_info);
4449 btrfs_assert_delayed_root_empty(fs_info);
4450
4451 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4452 EXTENT_DIRTY);
4453 btrfs_destroy_pinned_extent(fs_info,
4454 fs_info->pinned_extents);
4455
4456 cur_trans->state =TRANS_STATE_COMPLETED;
4457 wake_up(&cur_trans->commit_wait);
4458}
4459
4460static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4461{
4462 struct btrfs_transaction *t;
4463
4464 mutex_lock(&fs_info->transaction_kthread_mutex);
4465
4466 spin_lock(&fs_info->trans_lock);
4467 while (!list_empty(&fs_info->trans_list)) {
4468 t = list_first_entry(&fs_info->trans_list,
4469 struct btrfs_transaction, list);
4470 if (t->state >= TRANS_STATE_COMMIT_START) {
4471 refcount_inc(&t->use_count);
4472 spin_unlock(&fs_info->trans_lock);
4473 btrfs_wait_for_commit(fs_info, t->transid);
4474 btrfs_put_transaction(t);
4475 spin_lock(&fs_info->trans_lock);
4476 continue;
4477 }
4478 if (t == fs_info->running_transaction) {
4479 t->state = TRANS_STATE_COMMIT_DOING;
4480 spin_unlock(&fs_info->trans_lock);
4481 /*
4482 * We wait for 0 num_writers since we don't hold a trans
4483 * handle open currently for this transaction.
4484 */
4485 wait_event(t->writer_wait,
4486 atomic_read(&t->num_writers) == 0);
4487 } else {
4488 spin_unlock(&fs_info->trans_lock);
4489 }
4490 btrfs_cleanup_one_transaction(t, fs_info);
4491
4492 spin_lock(&fs_info->trans_lock);
4493 if (t == fs_info->running_transaction)
4494 fs_info->running_transaction = NULL;
4495 list_del_init(&t->list);
4496 spin_unlock(&fs_info->trans_lock);
4497
4498 btrfs_put_transaction(t);
4499 trace_btrfs_transaction_commit(fs_info->tree_root);
4500 spin_lock(&fs_info->trans_lock);
4501 }
4502 spin_unlock(&fs_info->trans_lock);
4503 btrfs_destroy_all_ordered_extents(fs_info);
4504 btrfs_destroy_delayed_inodes(fs_info);
4505 btrfs_assert_delayed_root_empty(fs_info);
4506 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4507 btrfs_destroy_all_delalloc_inodes(fs_info);
4508 mutex_unlock(&fs_info->transaction_kthread_mutex);
4509
4510 return 0;
4511}
4512
4513static struct btrfs_fs_info *btree_fs_info(void *private_data)
4514{
4515 struct inode *inode = private_data;
4516 return btrfs_sb(inode->i_sb);
4517}
4518
4519static const struct extent_io_ops btree_extent_io_ops = {
4520 /* mandatory callbacks */
4521 .submit_bio_hook = btree_submit_bio_hook,
4522 .readpage_end_io_hook = btree_readpage_end_io_hook,
4523 /* note we're sharing with inode.c for the merge bio hook */
4524 .merge_bio_hook = btrfs_merge_bio_hook,
4525 .readpage_io_failed_hook = btree_io_failed_hook,
4526 .set_range_writeback = btrfs_set_range_writeback,
4527 .tree_fs_info = btree_fs_info,
4528
4529 /* optional callbacks */
4530};