Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v3.5.6
  1/*
  2 * RTC subsystem, interface functions
  3 *
  4 * Copyright (C) 2005 Tower Technologies
  5 * Author: Alessandro Zummo <a.zummo@towertech.it>
  6 *
  7 * based on arch/arm/common/rtctime.c
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12*/
 13
 14#include <linux/rtc.h>
 15#include <linux/sched.h>
 16#include <linux/module.h>
 17#include <linux/log2.h>
 18#include <linux/workqueue.h>
 19
 
 
 
 20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
 21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
 22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 23static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 24{
 25	int err;
 26	if (!rtc->ops)
 27		err = -ENODEV;
 28	else if (!rtc->ops->read_time)
 29		err = -EINVAL;
 30	else {
 31		memset(tm, 0, sizeof(struct rtc_time));
 32		err = rtc->ops->read_time(rtc->dev.parent, tm);
 
 
 
 
 
 
 
 
 
 
 
 33	}
 34	return err;
 35}
 36
 37int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 38{
 39	int err;
 40
 41	err = mutex_lock_interruptible(&rtc->ops_lock);
 42	if (err)
 43		return err;
 44
 45	err = __rtc_read_time(rtc, tm);
 46	mutex_unlock(&rtc->ops_lock);
 
 
 47	return err;
 48}
 49EXPORT_SYMBOL_GPL(rtc_read_time);
 50
 51int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 52{
 53	int err;
 54
 55	err = rtc_valid_tm(tm);
 56	if (err != 0)
 57		return err;
 58
 59	err = mutex_lock_interruptible(&rtc->ops_lock);
 60	if (err)
 61		return err;
 62
 63	if (!rtc->ops)
 64		err = -ENODEV;
 65	else if (rtc->ops->set_time)
 66		err = rtc->ops->set_time(rtc->dev.parent, tm);
 67	else if (rtc->ops->set_mmss) {
 68		unsigned long secs;
 69		err = rtc_tm_to_time(tm, &secs);
 70		if (err == 0)
 71			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
 72	} else
 73		err = -EINVAL;
 74
 75	mutex_unlock(&rtc->ops_lock);
 76	/* A timer might have just expired */
 77	schedule_work(&rtc->irqwork);
 78	return err;
 79}
 80EXPORT_SYMBOL_GPL(rtc_set_time);
 81
 82int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
 83{
 84	int err;
 85
 86	err = mutex_lock_interruptible(&rtc->ops_lock);
 87	if (err)
 88		return err;
 89
 90	if (!rtc->ops)
 91		err = -ENODEV;
 92	else if (rtc->ops->set_mmss)
 93		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
 94	else if (rtc->ops->read_time && rtc->ops->set_time) {
 95		struct rtc_time new, old;
 96
 97		err = rtc->ops->read_time(rtc->dev.parent, &old);
 98		if (err == 0) {
 99			rtc_time_to_tm(secs, &new);
100
101			/*
102			 * avoid writing when we're going to change the day of
103			 * the month. We will retry in the next minute. This
104			 * basically means that if the RTC must not drift
105			 * by more than 1 minute in 11 minutes.
106			 */
107			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
108				(new.tm_hour == 23 && new.tm_min == 59)))
109				err = rtc->ops->set_time(rtc->dev.parent,
110						&new);
111		}
112	}
113	else
114		err = -EINVAL;
115
 
116	mutex_unlock(&rtc->ops_lock);
117	/* A timer might have just expired */
118	schedule_work(&rtc->irqwork);
119
 
120	return err;
121}
122EXPORT_SYMBOL_GPL(rtc_set_mmss);
123
124static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
125{
126	int err;
127
128	err = mutex_lock_interruptible(&rtc->ops_lock);
129	if (err)
130		return err;
131
132	if (rtc->ops == NULL)
133		err = -ENODEV;
134	else if (!rtc->ops->read_alarm)
135		err = -EINVAL;
136	else {
137		memset(alarm, 0, sizeof(struct rtc_wkalrm));
 
 
 
 
 
 
 
 
 
 
138		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
139	}
140
141	mutex_unlock(&rtc->ops_lock);
 
 
142	return err;
143}
144
145int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
146{
147	int err;
148	struct rtc_time before, now;
149	int first_time = 1;
150	unsigned long t_now, t_alm;
151	enum { none, day, month, year } missing = none;
152	unsigned days;
153
154	/* The lower level RTC driver may return -1 in some fields,
155	 * creating invalid alarm->time values, for reasons like:
156	 *
157	 *   - The hardware may not be capable of filling them in;
158	 *     many alarms match only on time-of-day fields, not
159	 *     day/month/year calendar data.
160	 *
161	 *   - Some hardware uses illegal values as "wildcard" match
162	 *     values, which non-Linux firmware (like a BIOS) may try
163	 *     to set up as e.g. "alarm 15 minutes after each hour".
164	 *     Linux uses only oneshot alarms.
165	 *
166	 * When we see that here, we deal with it by using values from
167	 * a current RTC timestamp for any missing (-1) values.  The
168	 * RTC driver prevents "periodic alarm" modes.
169	 *
170	 * But this can be racey, because some fields of the RTC timestamp
171	 * may have wrapped in the interval since we read the RTC alarm,
172	 * which would lead to us inserting inconsistent values in place
173	 * of the -1 fields.
174	 *
175	 * Reading the alarm and timestamp in the reverse sequence
176	 * would have the same race condition, and not solve the issue.
177	 *
178	 * So, we must first read the RTC timestamp,
179	 * then read the RTC alarm value,
180	 * and then read a second RTC timestamp.
181	 *
182	 * If any fields of the second timestamp have changed
183	 * when compared with the first timestamp, then we know
184	 * our timestamp may be inconsistent with that used by
185	 * the low-level rtc_read_alarm_internal() function.
186	 *
187	 * So, when the two timestamps disagree, we just loop and do
188	 * the process again to get a fully consistent set of values.
189	 *
190	 * This could all instead be done in the lower level driver,
191	 * but since more than one lower level RTC implementation needs it,
192	 * then it's probably best best to do it here instead of there..
193	 */
194
195	/* Get the "before" timestamp */
196	err = rtc_read_time(rtc, &before);
197	if (err < 0)
198		return err;
199	do {
200		if (!first_time)
201			memcpy(&before, &now, sizeof(struct rtc_time));
202		first_time = 0;
203
204		/* get the RTC alarm values, which may be incomplete */
205		err = rtc_read_alarm_internal(rtc, alarm);
206		if (err)
207			return err;
208
209		/* full-function RTCs won't have such missing fields */
210		if (rtc_valid_tm(&alarm->time) == 0)
211			return 0;
212
213		/* get the "after" timestamp, to detect wrapped fields */
214		err = rtc_read_time(rtc, &now);
215		if (err < 0)
216			return err;
217
218		/* note that tm_sec is a "don't care" value here: */
219	} while (   before.tm_min   != now.tm_min
220		 || before.tm_hour  != now.tm_hour
221		 || before.tm_mon   != now.tm_mon
222		 || before.tm_year  != now.tm_year);
223
224	/* Fill in the missing alarm fields using the timestamp; we
225	 * know there's at least one since alarm->time is invalid.
226	 */
227	if (alarm->time.tm_sec == -1)
228		alarm->time.tm_sec = now.tm_sec;
229	if (alarm->time.tm_min == -1)
230		alarm->time.tm_min = now.tm_min;
231	if (alarm->time.tm_hour == -1)
232		alarm->time.tm_hour = now.tm_hour;
233
234	/* For simplicity, only support date rollover for now */
235	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
236		alarm->time.tm_mday = now.tm_mday;
237		missing = day;
238	}
239	if ((unsigned)alarm->time.tm_mon >= 12) {
240		alarm->time.tm_mon = now.tm_mon;
241		if (missing == none)
242			missing = month;
243	}
244	if (alarm->time.tm_year == -1) {
245		alarm->time.tm_year = now.tm_year;
246		if (missing == none)
247			missing = year;
248	}
249
 
 
 
 
 
 
 
250	/* with luck, no rollover is needed */
251	rtc_tm_to_time(&now, &t_now);
252	rtc_tm_to_time(&alarm->time, &t_alm);
253	if (t_now < t_alm)
254		goto done;
255
256	switch (missing) {
257
258	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
259	 * that will trigger at 5am will do so at 5am Tuesday, which
260	 * could also be in the next month or year.  This is a common
261	 * case, especially for PCs.
262	 */
263	case day:
264		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
265		t_alm += 24 * 60 * 60;
266		rtc_time_to_tm(t_alm, &alarm->time);
267		break;
268
269	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
270	 * be next month.  An alarm matching on the 30th, 29th, or 28th
271	 * may end up in the month after that!  Many newer PCs support
272	 * this type of alarm.
273	 */
274	case month:
275		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
276		do {
277			if (alarm->time.tm_mon < 11)
278				alarm->time.tm_mon++;
279			else {
280				alarm->time.tm_mon = 0;
281				alarm->time.tm_year++;
282			}
283			days = rtc_month_days(alarm->time.tm_mon,
284					alarm->time.tm_year);
285		} while (days < alarm->time.tm_mday);
286		break;
287
288	/* Year rollover ... easy except for leap years! */
289	case year:
290		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
291		do {
292			alarm->time.tm_year++;
293		} while (rtc_valid_tm(&alarm->time) != 0);
 
294		break;
295
296	default:
297		dev_warn(&rtc->dev, "alarm rollover not handled\n");
298	}
299
 
 
300done:
301	return 0;
 
 
 
 
 
 
 
302}
303
304int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
305{
306	int err;
307
308	err = mutex_lock_interruptible(&rtc->ops_lock);
309	if (err)
310		return err;
311	if (rtc->ops == NULL)
312		err = -ENODEV;
313	else if (!rtc->ops->read_alarm)
314		err = -EINVAL;
315	else {
316		memset(alarm, 0, sizeof(struct rtc_wkalrm));
317		alarm->enabled = rtc->aie_timer.enabled;
318		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
319	}
320	mutex_unlock(&rtc->ops_lock);
321
 
322	return err;
323}
324EXPORT_SYMBOL_GPL(rtc_read_alarm);
325
326static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
327{
328	struct rtc_time tm;
329	long now, scheduled;
330	int err;
331
332	err = rtc_valid_tm(&alarm->time);
333	if (err)
334		return err;
335	rtc_tm_to_time(&alarm->time, &scheduled);
 
 
336
337	/* Make sure we're not setting alarms in the past */
338	err = __rtc_read_time(rtc, &tm);
339	rtc_tm_to_time(&tm, &now);
 
 
340	if (scheduled <= now)
341		return -ETIME;
342	/*
343	 * XXX - We just checked to make sure the alarm time is not
344	 * in the past, but there is still a race window where if
345	 * the is alarm set for the next second and the second ticks
346	 * over right here, before we set the alarm.
347	 */
348
349	if (!rtc->ops)
350		err = -ENODEV;
351	else if (!rtc->ops->set_alarm)
352		err = -EINVAL;
353	else
354		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
355
 
356	return err;
357}
358
359int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
360{
361	int err;
362
363	err = rtc_valid_tm(&alarm->time);
364	if (err != 0)
365		return err;
366
 
 
 
 
367	err = mutex_lock_interruptible(&rtc->ops_lock);
368	if (err)
369		return err;
370	if (rtc->aie_timer.enabled) {
371		rtc_timer_remove(rtc, &rtc->aie_timer);
372	}
373	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
374	rtc->aie_timer.period = ktime_set(0, 0);
375	if (alarm->enabled) {
376		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
377	}
378	mutex_unlock(&rtc->ops_lock);
 
 
379	return err;
380}
381EXPORT_SYMBOL_GPL(rtc_set_alarm);
382
383/* Called once per device from rtc_device_register */
384int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
385{
386	int err;
387	struct rtc_time now;
388
389	err = rtc_valid_tm(&alarm->time);
390	if (err != 0)
391		return err;
392
393	err = rtc_read_time(rtc, &now);
394	if (err)
395		return err;
396
397	err = mutex_lock_interruptible(&rtc->ops_lock);
398	if (err)
399		return err;
400
401	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
402	rtc->aie_timer.period = ktime_set(0, 0);
403
404	/* Alarm has to be enabled & in the futrure for us to enqueue it */
405	if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
406			 rtc->aie_timer.node.expires.tv64)) {
407
408		rtc->aie_timer.enabled = 1;
409		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 
410	}
411	mutex_unlock(&rtc->ops_lock);
412	return err;
413}
414EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
415
416
417
418int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
419{
420	int err = mutex_lock_interruptible(&rtc->ops_lock);
421	if (err)
422		return err;
423
424	if (rtc->aie_timer.enabled != enabled) {
425		if (enabled)
426			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
427		else
428			rtc_timer_remove(rtc, &rtc->aie_timer);
429	}
430
431	if (err)
432		/* nothing */;
433	else if (!rtc->ops)
434		err = -ENODEV;
435	else if (!rtc->ops->alarm_irq_enable)
436		err = -EINVAL;
437	else
438		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
439
440	mutex_unlock(&rtc->ops_lock);
 
 
441	return err;
442}
443EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
444
445int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
446{
447	int err = mutex_lock_interruptible(&rtc->ops_lock);
448	if (err)
449		return err;
450
451#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
452	if (enabled == 0 && rtc->uie_irq_active) {
453		mutex_unlock(&rtc->ops_lock);
454		return rtc_dev_update_irq_enable_emul(rtc, 0);
455	}
456#endif
457	/* make sure we're changing state */
458	if (rtc->uie_rtctimer.enabled == enabled)
459		goto out;
460
461	if (rtc->uie_unsupported) {
462		err = -EINVAL;
463		goto out;
464	}
465
466	if (enabled) {
467		struct rtc_time tm;
468		ktime_t now, onesec;
469
470		__rtc_read_time(rtc, &tm);
471		onesec = ktime_set(1, 0);
472		now = rtc_tm_to_ktime(tm);
473		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
474		rtc->uie_rtctimer.period = ktime_set(1, 0);
475		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
476	} else
477		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
478
479out:
480	mutex_unlock(&rtc->ops_lock);
481#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
482	/*
483	 * Enable emulation if the driver did not provide
484	 * the update_irq_enable function pointer or if returned
485	 * -EINVAL to signal that it has been configured without
486	 * interrupts or that are not available at the moment.
487	 */
488	if (err == -EINVAL)
489		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
490#endif
491	return err;
492
493}
494EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
495
496
497/**
498 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
499 * @rtc: pointer to the rtc device
500 *
501 * This function is called when an AIE, UIE or PIE mode interrupt
502 * has occurred (or been emulated).
503 *
504 * Triggers the registered irq_task function callback.
505 */
506void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
507{
508	unsigned long flags;
509
510	/* mark one irq of the appropriate mode */
511	spin_lock_irqsave(&rtc->irq_lock, flags);
512	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
513	spin_unlock_irqrestore(&rtc->irq_lock, flags);
514
515	/* call the task func */
516	spin_lock_irqsave(&rtc->irq_task_lock, flags);
517	if (rtc->irq_task)
518		rtc->irq_task->func(rtc->irq_task->private_data);
519	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
520
521	wake_up_interruptible(&rtc->irq_queue);
522	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
523}
524
525
526/**
527 * rtc_aie_update_irq - AIE mode rtctimer hook
528 * @private: pointer to the rtc_device
529 *
530 * This functions is called when the aie_timer expires.
531 */
532void rtc_aie_update_irq(void *private)
533{
534	struct rtc_device *rtc = (struct rtc_device *)private;
535	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
536}
537
538
539/**
540 * rtc_uie_update_irq - UIE mode rtctimer hook
541 * @private: pointer to the rtc_device
542 *
543 * This functions is called when the uie_timer expires.
544 */
545void rtc_uie_update_irq(void *private)
546{
547	struct rtc_device *rtc = (struct rtc_device *)private;
548	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
549}
550
551
552/**
553 * rtc_pie_update_irq - PIE mode hrtimer hook
554 * @timer: pointer to the pie mode hrtimer
555 *
556 * This function is used to emulate PIE mode interrupts
557 * using an hrtimer. This function is called when the periodic
558 * hrtimer expires.
559 */
560enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
561{
562	struct rtc_device *rtc;
563	ktime_t period;
564	int count;
565	rtc = container_of(timer, struct rtc_device, pie_timer);
566
567	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
568	count = hrtimer_forward_now(timer, period);
569
570	rtc_handle_legacy_irq(rtc, count, RTC_PF);
571
572	return HRTIMER_RESTART;
573}
574
575/**
576 * rtc_update_irq - Triggered when a RTC interrupt occurs.
577 * @rtc: the rtc device
578 * @num: how many irqs are being reported (usually one)
579 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
580 * Context: any
581 */
582void rtc_update_irq(struct rtc_device *rtc,
583		unsigned long num, unsigned long events)
584{
 
 
 
 
585	schedule_work(&rtc->irqwork);
586}
587EXPORT_SYMBOL_GPL(rtc_update_irq);
588
589static int __rtc_match(struct device *dev, void *data)
590{
591	char *name = (char *)data;
592
593	if (strcmp(dev_name(dev), name) == 0)
594		return 1;
595	return 0;
596}
597
598struct rtc_device *rtc_class_open(char *name)
599{
600	struct device *dev;
601	struct rtc_device *rtc = NULL;
602
603	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
604	if (dev)
605		rtc = to_rtc_device(dev);
606
607	if (rtc) {
608		if (!try_module_get(rtc->owner)) {
609			put_device(dev);
610			rtc = NULL;
611		}
612	}
613
614	return rtc;
615}
616EXPORT_SYMBOL_GPL(rtc_class_open);
617
618void rtc_class_close(struct rtc_device *rtc)
619{
620	module_put(rtc->owner);
621	put_device(&rtc->dev);
622}
623EXPORT_SYMBOL_GPL(rtc_class_close);
624
625int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
626{
627	int retval = -EBUSY;
628
629	if (task == NULL || task->func == NULL)
630		return -EINVAL;
631
632	/* Cannot register while the char dev is in use */
633	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
634		return -EBUSY;
635
636	spin_lock_irq(&rtc->irq_task_lock);
637	if (rtc->irq_task == NULL) {
638		rtc->irq_task = task;
639		retval = 0;
640	}
641	spin_unlock_irq(&rtc->irq_task_lock);
642
643	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
644
645	return retval;
646}
647EXPORT_SYMBOL_GPL(rtc_irq_register);
648
649void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
650{
651	spin_lock_irq(&rtc->irq_task_lock);
652	if (rtc->irq_task == task)
653		rtc->irq_task = NULL;
654	spin_unlock_irq(&rtc->irq_task_lock);
655}
656EXPORT_SYMBOL_GPL(rtc_irq_unregister);
657
658static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
659{
660	/*
661	 * We always cancel the timer here first, because otherwise
662	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
663	 * when we manage to start the timer before the callback
664	 * returns HRTIMER_RESTART.
665	 *
666	 * We cannot use hrtimer_cancel() here as a running callback
667	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
668	 * would spin forever.
669	 */
670	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
671		return -1;
672
673	if (enabled) {
674		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
675
676		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
677	}
678	return 0;
679}
680
681/**
682 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
683 * @rtc: the rtc device
684 * @task: currently registered with rtc_irq_register()
685 * @enabled: true to enable periodic IRQs
686 * Context: any
687 *
688 * Note that rtc_irq_set_freq() should previously have been used to
689 * specify the desired frequency of periodic IRQ task->func() callbacks.
690 */
691int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
692{
693	int err = 0;
694	unsigned long flags;
695
696retry:
697	spin_lock_irqsave(&rtc->irq_task_lock, flags);
698	if (rtc->irq_task != NULL && task == NULL)
699		err = -EBUSY;
700	if (rtc->irq_task != task)
701		err = -EACCES;
702	if (!err) {
703		if (rtc_update_hrtimer(rtc, enabled) < 0) {
704			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
705			cpu_relax();
706			goto retry;
707		}
708		rtc->pie_enabled = enabled;
709	}
710	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 
 
711	return err;
712}
713EXPORT_SYMBOL_GPL(rtc_irq_set_state);
714
715/**
716 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
717 * @rtc: the rtc device
718 * @task: currently registered with rtc_irq_register()
719 * @freq: positive frequency with which task->func() will be called
720 * Context: any
721 *
722 * Note that rtc_irq_set_state() is used to enable or disable the
723 * periodic IRQs.
724 */
725int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
726{
727	int err = 0;
728	unsigned long flags;
729
730	if (freq <= 0 || freq > RTC_MAX_FREQ)
731		return -EINVAL;
732retry:
733	spin_lock_irqsave(&rtc->irq_task_lock, flags);
734	if (rtc->irq_task != NULL && task == NULL)
735		err = -EBUSY;
736	if (rtc->irq_task != task)
737		err = -EACCES;
738	if (!err) {
739		rtc->irq_freq = freq;
740		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
741			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
742			cpu_relax();
743			goto retry;
744		}
745	}
746	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 
 
747	return err;
748}
749EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
750
751/**
752 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
753 * @rtc rtc device
754 * @timer timer being added.
755 *
756 * Enqueues a timer onto the rtc devices timerqueue and sets
757 * the next alarm event appropriately.
758 *
759 * Sets the enabled bit on the added timer.
760 *
761 * Must hold ops_lock for proper serialization of timerqueue
762 */
763static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
764{
 
 
 
 
765	timer->enabled = 1;
 
 
 
 
 
 
 
 
 
 
766	timerqueue_add(&rtc->timerqueue, &timer->node);
767	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
 
768		struct rtc_wkalrm alarm;
769		int err;
770		alarm.time = rtc_ktime_to_tm(timer->node.expires);
771		alarm.enabled = 1;
772		err = __rtc_set_alarm(rtc, &alarm);
773		if (err == -ETIME)
 
774			schedule_work(&rtc->irqwork);
775		else if (err) {
776			timerqueue_del(&rtc->timerqueue, &timer->node);
 
777			timer->enabled = 0;
778			return err;
779		}
780	}
781	return 0;
782}
783
784static void rtc_alarm_disable(struct rtc_device *rtc)
785{
786	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
787		return;
788
789	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
 
790}
791
792/**
793 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
794 * @rtc rtc device
795 * @timer timer being removed.
796 *
797 * Removes a timer onto the rtc devices timerqueue and sets
798 * the next alarm event appropriately.
799 *
800 * Clears the enabled bit on the removed timer.
801 *
802 * Must hold ops_lock for proper serialization of timerqueue
803 */
804static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
805{
806	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
807	timerqueue_del(&rtc->timerqueue, &timer->node);
 
808	timer->enabled = 0;
809	if (next == &timer->node) {
810		struct rtc_wkalrm alarm;
811		int err;
812		next = timerqueue_getnext(&rtc->timerqueue);
813		if (!next) {
814			rtc_alarm_disable(rtc);
815			return;
816		}
817		alarm.time = rtc_ktime_to_tm(next->expires);
818		alarm.enabled = 1;
819		err = __rtc_set_alarm(rtc, &alarm);
820		if (err == -ETIME)
 
821			schedule_work(&rtc->irqwork);
 
822	}
823}
824
825/**
826 * rtc_timer_do_work - Expires rtc timers
827 * @rtc rtc device
828 * @timer timer being removed.
829 *
830 * Expires rtc timers. Reprograms next alarm event if needed.
831 * Called via worktask.
832 *
833 * Serializes access to timerqueue via ops_lock mutex
834 */
835void rtc_timer_do_work(struct work_struct *work)
836{
837	struct rtc_timer *timer;
838	struct timerqueue_node *next;
839	ktime_t now;
840	struct rtc_time tm;
841
842	struct rtc_device *rtc =
843		container_of(work, struct rtc_device, irqwork);
844
845	mutex_lock(&rtc->ops_lock);
846again:
847	__rtc_read_time(rtc, &tm);
848	now = rtc_tm_to_ktime(tm);
849	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
850		if (next->expires.tv64 > now.tv64)
851			break;
852
853		/* expire timer */
854		timer = container_of(next, struct rtc_timer, node);
855		timerqueue_del(&rtc->timerqueue, &timer->node);
 
856		timer->enabled = 0;
857		if (timer->task.func)
858			timer->task.func(timer->task.private_data);
859
 
860		/* Re-add/fwd periodic timers */
861		if (ktime_to_ns(timer->period)) {
862			timer->node.expires = ktime_add(timer->node.expires,
863							timer->period);
864			timer->enabled = 1;
865			timerqueue_add(&rtc->timerqueue, &timer->node);
 
866		}
867	}
868
869	/* Set next alarm */
870	if (next) {
871		struct rtc_wkalrm alarm;
872		int err;
 
 
873		alarm.time = rtc_ktime_to_tm(next->expires);
874		alarm.enabled = 1;
 
875		err = __rtc_set_alarm(rtc, &alarm);
876		if (err == -ETIME)
877			goto again;
 
 
 
 
 
 
 
 
 
 
 
878	} else
879		rtc_alarm_disable(rtc);
880
 
881	mutex_unlock(&rtc->ops_lock);
882}
883
884
885/* rtc_timer_init - Initializes an rtc_timer
886 * @timer: timer to be intiialized
887 * @f: function pointer to be called when timer fires
888 * @data: private data passed to function pointer
889 *
890 * Kernel interface to initializing an rtc_timer.
891 */
892void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
893{
894	timerqueue_init(&timer->node);
895	timer->enabled = 0;
896	timer->task.func = f;
897	timer->task.private_data = data;
898}
899
900/* rtc_timer_start - Sets an rtc_timer to fire in the future
901 * @ rtc: rtc device to be used
902 * @ timer: timer being set
903 * @ expires: time at which to expire the timer
904 * @ period: period that the timer will recur
905 *
906 * Kernel interface to set an rtc_timer
907 */
908int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
909			ktime_t expires, ktime_t period)
910{
911	int ret = 0;
912	mutex_lock(&rtc->ops_lock);
913	if (timer->enabled)
914		rtc_timer_remove(rtc, timer);
915
916	timer->node.expires = expires;
917	timer->period = period;
918
919	ret = rtc_timer_enqueue(rtc, timer);
920
921	mutex_unlock(&rtc->ops_lock);
922	return ret;
923}
924
925/* rtc_timer_cancel - Stops an rtc_timer
926 * @ rtc: rtc device to be used
927 * @ timer: timer being set
928 *
929 * Kernel interface to cancel an rtc_timer
930 */
931int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
932{
933	int ret = 0;
934	mutex_lock(&rtc->ops_lock);
935	if (timer->enabled)
936		rtc_timer_remove(rtc, timer);
937	mutex_unlock(&rtc->ops_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
938	return ret;
939}
940
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
941
v4.17
   1/*
   2 * RTC subsystem, interface functions
   3 *
   4 * Copyright (C) 2005 Tower Technologies
   5 * Author: Alessandro Zummo <a.zummo@towertech.it>
   6 *
   7 * based on arch/arm/common/rtctime.c
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12*/
  13
  14#include <linux/rtc.h>
  15#include <linux/sched.h>
  16#include <linux/module.h>
  17#include <linux/log2.h>
  18#include <linux/workqueue.h>
  19
  20#define CREATE_TRACE_POINTS
  21#include <trace/events/rtc.h>
  22
  23static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
  24static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
  25
  26static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
  27{
  28	time64_t secs;
  29
  30	if (!rtc->offset_secs)
  31		return;
  32
  33	secs = rtc_tm_to_time64(tm);
  34
  35	/*
  36	 * Since the reading time values from RTC device are always in the RTC
  37	 * original valid range, but we need to skip the overlapped region
  38	 * between expanded range and original range, which is no need to add
  39	 * the offset.
  40	 */
  41	if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
  42	    (rtc->start_secs < rtc->range_min &&
  43	     secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
  44		return;
  45
  46	rtc_time64_to_tm(secs + rtc->offset_secs, tm);
  47}
  48
  49static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
  50{
  51	time64_t secs;
  52
  53	if (!rtc->offset_secs)
  54		return;
  55
  56	secs = rtc_tm_to_time64(tm);
  57
  58	/*
  59	 * If the setting time values are in the valid range of RTC hardware
  60	 * device, then no need to subtract the offset when setting time to RTC
  61	 * device. Otherwise we need to subtract the offset to make the time
  62	 * values are valid for RTC hardware device.
  63	 */
  64	if (secs >= rtc->range_min && secs <= rtc->range_max)
  65		return;
  66
  67	rtc_time64_to_tm(secs - rtc->offset_secs, tm);
  68}
  69
  70static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
  71{
  72	if (rtc->range_min != rtc->range_max) {
  73		time64_t time = rtc_tm_to_time64(tm);
  74		time64_t range_min = rtc->set_start_time ? rtc->start_secs :
  75			rtc->range_min;
  76		time64_t range_max = rtc->set_start_time ?
  77			(rtc->start_secs + rtc->range_max - rtc->range_min) :
  78			rtc->range_max;
  79
  80		if (time < range_min || time > range_max)
  81			return -ERANGE;
  82	}
  83
  84	return 0;
  85}
  86
  87static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
  88{
  89	int err;
  90	if (!rtc->ops)
  91		err = -ENODEV;
  92	else if (!rtc->ops->read_time)
  93		err = -EINVAL;
  94	else {
  95		memset(tm, 0, sizeof(struct rtc_time));
  96		err = rtc->ops->read_time(rtc->dev.parent, tm);
  97		if (err < 0) {
  98			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
  99				err);
 100			return err;
 101		}
 102
 103		rtc_add_offset(rtc, tm);
 104
 105		err = rtc_valid_tm(tm);
 106		if (err < 0)
 107			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
 108	}
 109	return err;
 110}
 111
 112int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 113{
 114	int err;
 115
 116	err = mutex_lock_interruptible(&rtc->ops_lock);
 117	if (err)
 118		return err;
 119
 120	err = __rtc_read_time(rtc, tm);
 121	mutex_unlock(&rtc->ops_lock);
 122
 123	trace_rtc_read_time(rtc_tm_to_time64(tm), err);
 124	return err;
 125}
 126EXPORT_SYMBOL_GPL(rtc_read_time);
 127
 128int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 129{
 130	int err;
 131
 132	err = rtc_valid_tm(tm);
 133	if (err != 0)
 134		return err;
 135
 136	err = rtc_valid_range(rtc, tm);
 137	if (err)
 138		return err;
 139
 140	rtc_subtract_offset(rtc, tm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 141
 142	err = mutex_lock_interruptible(&rtc->ops_lock);
 143	if (err)
 144		return err;
 145
 146	if (!rtc->ops)
 147		err = -ENODEV;
 148	else if (rtc->ops->set_time)
 149		err = rtc->ops->set_time(rtc->dev.parent, tm);
 150	else if (rtc->ops->set_mmss64) {
 151		time64_t secs64 = rtc_tm_to_time64(tm);
 152
 153		err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
 154	} else if (rtc->ops->set_mmss) {
 155		time64_t secs64 = rtc_tm_to_time64(tm);
 156		err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
 157	} else
 
 
 
 
 
 
 
 
 
 
 
 
 158		err = -EINVAL;
 159
 160	pm_stay_awake(rtc->dev.parent);
 161	mutex_unlock(&rtc->ops_lock);
 162	/* A timer might have just expired */
 163	schedule_work(&rtc->irqwork);
 164
 165	trace_rtc_set_time(rtc_tm_to_time64(tm), err);
 166	return err;
 167}
 168EXPORT_SYMBOL_GPL(rtc_set_time);
 169
 170static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 171{
 172	int err;
 173
 174	err = mutex_lock_interruptible(&rtc->ops_lock);
 175	if (err)
 176		return err;
 177
 178	if (rtc->ops == NULL)
 179		err = -ENODEV;
 180	else if (!rtc->ops->read_alarm)
 181		err = -EINVAL;
 182	else {
 183		alarm->enabled = 0;
 184		alarm->pending = 0;
 185		alarm->time.tm_sec = -1;
 186		alarm->time.tm_min = -1;
 187		alarm->time.tm_hour = -1;
 188		alarm->time.tm_mday = -1;
 189		alarm->time.tm_mon = -1;
 190		alarm->time.tm_year = -1;
 191		alarm->time.tm_wday = -1;
 192		alarm->time.tm_yday = -1;
 193		alarm->time.tm_isdst = -1;
 194		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
 195	}
 196
 197	mutex_unlock(&rtc->ops_lock);
 198
 199	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 200	return err;
 201}
 202
 203int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 204{
 205	int err;
 206	struct rtc_time before, now;
 207	int first_time = 1;
 208	time64_t t_now, t_alm;
 209	enum { none, day, month, year } missing = none;
 210	unsigned days;
 211
 212	/* The lower level RTC driver may return -1 in some fields,
 213	 * creating invalid alarm->time values, for reasons like:
 214	 *
 215	 *   - The hardware may not be capable of filling them in;
 216	 *     many alarms match only on time-of-day fields, not
 217	 *     day/month/year calendar data.
 218	 *
 219	 *   - Some hardware uses illegal values as "wildcard" match
 220	 *     values, which non-Linux firmware (like a BIOS) may try
 221	 *     to set up as e.g. "alarm 15 minutes after each hour".
 222	 *     Linux uses only oneshot alarms.
 223	 *
 224	 * When we see that here, we deal with it by using values from
 225	 * a current RTC timestamp for any missing (-1) values.  The
 226	 * RTC driver prevents "periodic alarm" modes.
 227	 *
 228	 * But this can be racey, because some fields of the RTC timestamp
 229	 * may have wrapped in the interval since we read the RTC alarm,
 230	 * which would lead to us inserting inconsistent values in place
 231	 * of the -1 fields.
 232	 *
 233	 * Reading the alarm and timestamp in the reverse sequence
 234	 * would have the same race condition, and not solve the issue.
 235	 *
 236	 * So, we must first read the RTC timestamp,
 237	 * then read the RTC alarm value,
 238	 * and then read a second RTC timestamp.
 239	 *
 240	 * If any fields of the second timestamp have changed
 241	 * when compared with the first timestamp, then we know
 242	 * our timestamp may be inconsistent with that used by
 243	 * the low-level rtc_read_alarm_internal() function.
 244	 *
 245	 * So, when the two timestamps disagree, we just loop and do
 246	 * the process again to get a fully consistent set of values.
 247	 *
 248	 * This could all instead be done in the lower level driver,
 249	 * but since more than one lower level RTC implementation needs it,
 250	 * then it's probably best best to do it here instead of there..
 251	 */
 252
 253	/* Get the "before" timestamp */
 254	err = rtc_read_time(rtc, &before);
 255	if (err < 0)
 256		return err;
 257	do {
 258		if (!first_time)
 259			memcpy(&before, &now, sizeof(struct rtc_time));
 260		first_time = 0;
 261
 262		/* get the RTC alarm values, which may be incomplete */
 263		err = rtc_read_alarm_internal(rtc, alarm);
 264		if (err)
 265			return err;
 266
 267		/* full-function RTCs won't have such missing fields */
 268		if (rtc_valid_tm(&alarm->time) == 0)
 269			return 0;
 270
 271		/* get the "after" timestamp, to detect wrapped fields */
 272		err = rtc_read_time(rtc, &now);
 273		if (err < 0)
 274			return err;
 275
 276		/* note that tm_sec is a "don't care" value here: */
 277	} while (   before.tm_min   != now.tm_min
 278		 || before.tm_hour  != now.tm_hour
 279		 || before.tm_mon   != now.tm_mon
 280		 || before.tm_year  != now.tm_year);
 281
 282	/* Fill in the missing alarm fields using the timestamp; we
 283	 * know there's at least one since alarm->time is invalid.
 284	 */
 285	if (alarm->time.tm_sec == -1)
 286		alarm->time.tm_sec = now.tm_sec;
 287	if (alarm->time.tm_min == -1)
 288		alarm->time.tm_min = now.tm_min;
 289	if (alarm->time.tm_hour == -1)
 290		alarm->time.tm_hour = now.tm_hour;
 291
 292	/* For simplicity, only support date rollover for now */
 293	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
 294		alarm->time.tm_mday = now.tm_mday;
 295		missing = day;
 296	}
 297	if ((unsigned)alarm->time.tm_mon >= 12) {
 298		alarm->time.tm_mon = now.tm_mon;
 299		if (missing == none)
 300			missing = month;
 301	}
 302	if (alarm->time.tm_year == -1) {
 303		alarm->time.tm_year = now.tm_year;
 304		if (missing == none)
 305			missing = year;
 306	}
 307
 308	/* Can't proceed if alarm is still invalid after replacing
 309	 * missing fields.
 310	 */
 311	err = rtc_valid_tm(&alarm->time);
 312	if (err)
 313		goto done;
 314
 315	/* with luck, no rollover is needed */
 316	t_now = rtc_tm_to_time64(&now);
 317	t_alm = rtc_tm_to_time64(&alarm->time);
 318	if (t_now < t_alm)
 319		goto done;
 320
 321	switch (missing) {
 322
 323	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
 324	 * that will trigger at 5am will do so at 5am Tuesday, which
 325	 * could also be in the next month or year.  This is a common
 326	 * case, especially for PCs.
 327	 */
 328	case day:
 329		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
 330		t_alm += 24 * 60 * 60;
 331		rtc_time64_to_tm(t_alm, &alarm->time);
 332		break;
 333
 334	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
 335	 * be next month.  An alarm matching on the 30th, 29th, or 28th
 336	 * may end up in the month after that!  Many newer PCs support
 337	 * this type of alarm.
 338	 */
 339	case month:
 340		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
 341		do {
 342			if (alarm->time.tm_mon < 11)
 343				alarm->time.tm_mon++;
 344			else {
 345				alarm->time.tm_mon = 0;
 346				alarm->time.tm_year++;
 347			}
 348			days = rtc_month_days(alarm->time.tm_mon,
 349					alarm->time.tm_year);
 350		} while (days < alarm->time.tm_mday);
 351		break;
 352
 353	/* Year rollover ... easy except for leap years! */
 354	case year:
 355		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
 356		do {
 357			alarm->time.tm_year++;
 358		} while (!is_leap_year(alarm->time.tm_year + 1900)
 359			&& rtc_valid_tm(&alarm->time) != 0);
 360		break;
 361
 362	default:
 363		dev_warn(&rtc->dev, "alarm rollover not handled\n");
 364	}
 365
 366	err = rtc_valid_tm(&alarm->time);
 367
 368done:
 369	if (err) {
 370		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
 371			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
 372			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
 373			alarm->time.tm_sec);
 374	}
 375
 376	return err;
 377}
 378
 379int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 380{
 381	int err;
 382
 383	err = mutex_lock_interruptible(&rtc->ops_lock);
 384	if (err)
 385		return err;
 386	if (rtc->ops == NULL)
 387		err = -ENODEV;
 388	else if (!rtc->ops->read_alarm)
 389		err = -EINVAL;
 390	else {
 391		memset(alarm, 0, sizeof(struct rtc_wkalrm));
 392		alarm->enabled = rtc->aie_timer.enabled;
 393		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
 394	}
 395	mutex_unlock(&rtc->ops_lock);
 396
 397	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 398	return err;
 399}
 400EXPORT_SYMBOL_GPL(rtc_read_alarm);
 401
 402static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 403{
 404	struct rtc_time tm;
 405	time64_t now, scheduled;
 406	int err;
 407
 408	err = rtc_valid_tm(&alarm->time);
 409	if (err)
 410		return err;
 411
 412	rtc_subtract_offset(rtc, &alarm->time);
 413	scheduled = rtc_tm_to_time64(&alarm->time);
 414
 415	/* Make sure we're not setting alarms in the past */
 416	err = __rtc_read_time(rtc, &tm);
 417	if (err)
 418		return err;
 419	now = rtc_tm_to_time64(&tm);
 420	if (scheduled <= now)
 421		return -ETIME;
 422	/*
 423	 * XXX - We just checked to make sure the alarm time is not
 424	 * in the past, but there is still a race window where if
 425	 * the is alarm set for the next second and the second ticks
 426	 * over right here, before we set the alarm.
 427	 */
 428
 429	if (!rtc->ops)
 430		err = -ENODEV;
 431	else if (!rtc->ops->set_alarm)
 432		err = -EINVAL;
 433	else
 434		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
 435
 436	trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
 437	return err;
 438}
 439
 440int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 441{
 442	int err;
 443
 444	err = rtc_valid_tm(&alarm->time);
 445	if (err != 0)
 446		return err;
 447
 448	err = rtc_valid_range(rtc, &alarm->time);
 449	if (err)
 450		return err;
 451
 452	err = mutex_lock_interruptible(&rtc->ops_lock);
 453	if (err)
 454		return err;
 455	if (rtc->aie_timer.enabled)
 456		rtc_timer_remove(rtc, &rtc->aie_timer);
 457
 458	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 459	rtc->aie_timer.period = 0;
 460	if (alarm->enabled)
 461		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 462
 463	mutex_unlock(&rtc->ops_lock);
 464
 465	rtc_add_offset(rtc, &alarm->time);
 466	return err;
 467}
 468EXPORT_SYMBOL_GPL(rtc_set_alarm);
 469
 470/* Called once per device from rtc_device_register */
 471int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 472{
 473	int err;
 474	struct rtc_time now;
 475
 476	err = rtc_valid_tm(&alarm->time);
 477	if (err != 0)
 478		return err;
 479
 480	err = rtc_read_time(rtc, &now);
 481	if (err)
 482		return err;
 483
 484	err = mutex_lock_interruptible(&rtc->ops_lock);
 485	if (err)
 486		return err;
 487
 488	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 489	rtc->aie_timer.period = 0;
 490
 491	/* Alarm has to be enabled & in the future for us to enqueue it */
 492	if (alarm->enabled && (rtc_tm_to_ktime(now) <
 493			 rtc->aie_timer.node.expires)) {
 494
 495		rtc->aie_timer.enabled = 1;
 496		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 497		trace_rtc_timer_enqueue(&rtc->aie_timer);
 498	}
 499	mutex_unlock(&rtc->ops_lock);
 500	return err;
 501}
 502EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
 503
 
 
 504int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 505{
 506	int err = mutex_lock_interruptible(&rtc->ops_lock);
 507	if (err)
 508		return err;
 509
 510	if (rtc->aie_timer.enabled != enabled) {
 511		if (enabled)
 512			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 513		else
 514			rtc_timer_remove(rtc, &rtc->aie_timer);
 515	}
 516
 517	if (err)
 518		/* nothing */;
 519	else if (!rtc->ops)
 520		err = -ENODEV;
 521	else if (!rtc->ops->alarm_irq_enable)
 522		err = -EINVAL;
 523	else
 524		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
 525
 526	mutex_unlock(&rtc->ops_lock);
 527
 528	trace_rtc_alarm_irq_enable(enabled, err);
 529	return err;
 530}
 531EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
 532
 533int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 534{
 535	int err = mutex_lock_interruptible(&rtc->ops_lock);
 536	if (err)
 537		return err;
 538
 539#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 540	if (enabled == 0 && rtc->uie_irq_active) {
 541		mutex_unlock(&rtc->ops_lock);
 542		return rtc_dev_update_irq_enable_emul(rtc, 0);
 543	}
 544#endif
 545	/* make sure we're changing state */
 546	if (rtc->uie_rtctimer.enabled == enabled)
 547		goto out;
 548
 549	if (rtc->uie_unsupported) {
 550		err = -EINVAL;
 551		goto out;
 552	}
 553
 554	if (enabled) {
 555		struct rtc_time tm;
 556		ktime_t now, onesec;
 557
 558		__rtc_read_time(rtc, &tm);
 559		onesec = ktime_set(1, 0);
 560		now = rtc_tm_to_ktime(tm);
 561		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
 562		rtc->uie_rtctimer.period = ktime_set(1, 0);
 563		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
 564	} else
 565		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
 566
 567out:
 568	mutex_unlock(&rtc->ops_lock);
 569#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 570	/*
 571	 * Enable emulation if the driver did not provide
 572	 * the update_irq_enable function pointer or if returned
 573	 * -EINVAL to signal that it has been configured without
 574	 * interrupts or that are not available at the moment.
 575	 */
 576	if (err == -EINVAL)
 577		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
 578#endif
 579	return err;
 580
 581}
 582EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
 583
 584
 585/**
 586 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
 587 * @rtc: pointer to the rtc device
 588 *
 589 * This function is called when an AIE, UIE or PIE mode interrupt
 590 * has occurred (or been emulated).
 591 *
 592 * Triggers the registered irq_task function callback.
 593 */
 594void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
 595{
 596	unsigned long flags;
 597
 598	/* mark one irq of the appropriate mode */
 599	spin_lock_irqsave(&rtc->irq_lock, flags);
 600	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
 601	spin_unlock_irqrestore(&rtc->irq_lock, flags);
 602
 603	/* call the task func */
 604	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 605	if (rtc->irq_task)
 606		rtc->irq_task->func(rtc->irq_task->private_data);
 607	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 608
 609	wake_up_interruptible(&rtc->irq_queue);
 610	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
 611}
 612
 613
 614/**
 615 * rtc_aie_update_irq - AIE mode rtctimer hook
 616 * @private: pointer to the rtc_device
 617 *
 618 * This functions is called when the aie_timer expires.
 619 */
 620void rtc_aie_update_irq(void *private)
 621{
 622	struct rtc_device *rtc = (struct rtc_device *)private;
 623	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
 624}
 625
 626
 627/**
 628 * rtc_uie_update_irq - UIE mode rtctimer hook
 629 * @private: pointer to the rtc_device
 630 *
 631 * This functions is called when the uie_timer expires.
 632 */
 633void rtc_uie_update_irq(void *private)
 634{
 635	struct rtc_device *rtc = (struct rtc_device *)private;
 636	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
 637}
 638
 639
 640/**
 641 * rtc_pie_update_irq - PIE mode hrtimer hook
 642 * @timer: pointer to the pie mode hrtimer
 643 *
 644 * This function is used to emulate PIE mode interrupts
 645 * using an hrtimer. This function is called when the periodic
 646 * hrtimer expires.
 647 */
 648enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
 649{
 650	struct rtc_device *rtc;
 651	ktime_t period;
 652	int count;
 653	rtc = container_of(timer, struct rtc_device, pie_timer);
 654
 655	period = NSEC_PER_SEC / rtc->irq_freq;
 656	count = hrtimer_forward_now(timer, period);
 657
 658	rtc_handle_legacy_irq(rtc, count, RTC_PF);
 659
 660	return HRTIMER_RESTART;
 661}
 662
 663/**
 664 * rtc_update_irq - Triggered when a RTC interrupt occurs.
 665 * @rtc: the rtc device
 666 * @num: how many irqs are being reported (usually one)
 667 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
 668 * Context: any
 669 */
 670void rtc_update_irq(struct rtc_device *rtc,
 671		unsigned long num, unsigned long events)
 672{
 673	if (IS_ERR_OR_NULL(rtc))
 674		return;
 675
 676	pm_stay_awake(rtc->dev.parent);
 677	schedule_work(&rtc->irqwork);
 678}
 679EXPORT_SYMBOL_GPL(rtc_update_irq);
 680
 681static int __rtc_match(struct device *dev, const void *data)
 682{
 683	const char *name = data;
 684
 685	if (strcmp(dev_name(dev), name) == 0)
 686		return 1;
 687	return 0;
 688}
 689
 690struct rtc_device *rtc_class_open(const char *name)
 691{
 692	struct device *dev;
 693	struct rtc_device *rtc = NULL;
 694
 695	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
 696	if (dev)
 697		rtc = to_rtc_device(dev);
 698
 699	if (rtc) {
 700		if (!try_module_get(rtc->owner)) {
 701			put_device(dev);
 702			rtc = NULL;
 703		}
 704	}
 705
 706	return rtc;
 707}
 708EXPORT_SYMBOL_GPL(rtc_class_open);
 709
 710void rtc_class_close(struct rtc_device *rtc)
 711{
 712	module_put(rtc->owner);
 713	put_device(&rtc->dev);
 714}
 715EXPORT_SYMBOL_GPL(rtc_class_close);
 716
 717int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
 718{
 719	int retval = -EBUSY;
 720
 721	if (task == NULL || task->func == NULL)
 722		return -EINVAL;
 723
 724	/* Cannot register while the char dev is in use */
 725	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
 726		return -EBUSY;
 727
 728	spin_lock_irq(&rtc->irq_task_lock);
 729	if (rtc->irq_task == NULL) {
 730		rtc->irq_task = task;
 731		retval = 0;
 732	}
 733	spin_unlock_irq(&rtc->irq_task_lock);
 734
 735	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
 736
 737	return retval;
 738}
 739EXPORT_SYMBOL_GPL(rtc_irq_register);
 740
 741void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
 742{
 743	spin_lock_irq(&rtc->irq_task_lock);
 744	if (rtc->irq_task == task)
 745		rtc->irq_task = NULL;
 746	spin_unlock_irq(&rtc->irq_task_lock);
 747}
 748EXPORT_SYMBOL_GPL(rtc_irq_unregister);
 749
 750static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
 751{
 752	/*
 753	 * We always cancel the timer here first, because otherwise
 754	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
 755	 * when we manage to start the timer before the callback
 756	 * returns HRTIMER_RESTART.
 757	 *
 758	 * We cannot use hrtimer_cancel() here as a running callback
 759	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
 760	 * would spin forever.
 761	 */
 762	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
 763		return -1;
 764
 765	if (enabled) {
 766		ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
 767
 768		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
 769	}
 770	return 0;
 771}
 772
 773/**
 774 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
 775 * @rtc: the rtc device
 776 * @task: currently registered with rtc_irq_register()
 777 * @enabled: true to enable periodic IRQs
 778 * Context: any
 779 *
 780 * Note that rtc_irq_set_freq() should previously have been used to
 781 * specify the desired frequency of periodic IRQ task->func() callbacks.
 782 */
 783int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
 784{
 785	int err = 0;
 786	unsigned long flags;
 787
 788retry:
 789	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 790	if (rtc->irq_task != NULL && task == NULL)
 791		err = -EBUSY;
 792	else if (rtc->irq_task != task)
 793		err = -EACCES;
 794	else {
 795		if (rtc_update_hrtimer(rtc, enabled) < 0) {
 796			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 797			cpu_relax();
 798			goto retry;
 799		}
 800		rtc->pie_enabled = enabled;
 801	}
 802	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 803
 804	trace_rtc_irq_set_state(enabled, err);
 805	return err;
 806}
 807EXPORT_SYMBOL_GPL(rtc_irq_set_state);
 808
 809/**
 810 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
 811 * @rtc: the rtc device
 812 * @task: currently registered with rtc_irq_register()
 813 * @freq: positive frequency with which task->func() will be called
 814 * Context: any
 815 *
 816 * Note that rtc_irq_set_state() is used to enable or disable the
 817 * periodic IRQs.
 818 */
 819int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
 820{
 821	int err = 0;
 822	unsigned long flags;
 823
 824	if (freq <= 0 || freq > RTC_MAX_FREQ)
 825		return -EINVAL;
 826retry:
 827	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 828	if (rtc->irq_task != NULL && task == NULL)
 829		err = -EBUSY;
 830	else if (rtc->irq_task != task)
 831		err = -EACCES;
 832	else {
 833		rtc->irq_freq = freq;
 834		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
 835			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 836			cpu_relax();
 837			goto retry;
 838		}
 839	}
 840	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 841
 842	trace_rtc_irq_set_freq(freq, err);
 843	return err;
 844}
 845EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
 846
 847/**
 848 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
 849 * @rtc rtc device
 850 * @timer timer being added.
 851 *
 852 * Enqueues a timer onto the rtc devices timerqueue and sets
 853 * the next alarm event appropriately.
 854 *
 855 * Sets the enabled bit on the added timer.
 856 *
 857 * Must hold ops_lock for proper serialization of timerqueue
 858 */
 859static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
 860{
 861	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 862	struct rtc_time tm;
 863	ktime_t now;
 864
 865	timer->enabled = 1;
 866	__rtc_read_time(rtc, &tm);
 867	now = rtc_tm_to_ktime(tm);
 868
 869	/* Skip over expired timers */
 870	while (next) {
 871		if (next->expires >= now)
 872			break;
 873		next = timerqueue_iterate_next(next);
 874	}
 875
 876	timerqueue_add(&rtc->timerqueue, &timer->node);
 877	trace_rtc_timer_enqueue(timer);
 878	if (!next || ktime_before(timer->node.expires, next->expires)) {
 879		struct rtc_wkalrm alarm;
 880		int err;
 881		alarm.time = rtc_ktime_to_tm(timer->node.expires);
 882		alarm.enabled = 1;
 883		err = __rtc_set_alarm(rtc, &alarm);
 884		if (err == -ETIME) {
 885			pm_stay_awake(rtc->dev.parent);
 886			schedule_work(&rtc->irqwork);
 887		} else if (err) {
 888			timerqueue_del(&rtc->timerqueue, &timer->node);
 889			trace_rtc_timer_dequeue(timer);
 890			timer->enabled = 0;
 891			return err;
 892		}
 893	}
 894	return 0;
 895}
 896
 897static void rtc_alarm_disable(struct rtc_device *rtc)
 898{
 899	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
 900		return;
 901
 902	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
 903	trace_rtc_alarm_irq_enable(0, 0);
 904}
 905
 906/**
 907 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
 908 * @rtc rtc device
 909 * @timer timer being removed.
 910 *
 911 * Removes a timer onto the rtc devices timerqueue and sets
 912 * the next alarm event appropriately.
 913 *
 914 * Clears the enabled bit on the removed timer.
 915 *
 916 * Must hold ops_lock for proper serialization of timerqueue
 917 */
 918static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
 919{
 920	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 921	timerqueue_del(&rtc->timerqueue, &timer->node);
 922	trace_rtc_timer_dequeue(timer);
 923	timer->enabled = 0;
 924	if (next == &timer->node) {
 925		struct rtc_wkalrm alarm;
 926		int err;
 927		next = timerqueue_getnext(&rtc->timerqueue);
 928		if (!next) {
 929			rtc_alarm_disable(rtc);
 930			return;
 931		}
 932		alarm.time = rtc_ktime_to_tm(next->expires);
 933		alarm.enabled = 1;
 934		err = __rtc_set_alarm(rtc, &alarm);
 935		if (err == -ETIME) {
 936			pm_stay_awake(rtc->dev.parent);
 937			schedule_work(&rtc->irqwork);
 938		}
 939	}
 940}
 941
 942/**
 943 * rtc_timer_do_work - Expires rtc timers
 944 * @rtc rtc device
 945 * @timer timer being removed.
 946 *
 947 * Expires rtc timers. Reprograms next alarm event if needed.
 948 * Called via worktask.
 949 *
 950 * Serializes access to timerqueue via ops_lock mutex
 951 */
 952void rtc_timer_do_work(struct work_struct *work)
 953{
 954	struct rtc_timer *timer;
 955	struct timerqueue_node *next;
 956	ktime_t now;
 957	struct rtc_time tm;
 958
 959	struct rtc_device *rtc =
 960		container_of(work, struct rtc_device, irqwork);
 961
 962	mutex_lock(&rtc->ops_lock);
 963again:
 964	__rtc_read_time(rtc, &tm);
 965	now = rtc_tm_to_ktime(tm);
 966	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
 967		if (next->expires > now)
 968			break;
 969
 970		/* expire timer */
 971		timer = container_of(next, struct rtc_timer, node);
 972		timerqueue_del(&rtc->timerqueue, &timer->node);
 973		trace_rtc_timer_dequeue(timer);
 974		timer->enabled = 0;
 975		if (timer->task.func)
 976			timer->task.func(timer->task.private_data);
 977
 978		trace_rtc_timer_fired(timer);
 979		/* Re-add/fwd periodic timers */
 980		if (ktime_to_ns(timer->period)) {
 981			timer->node.expires = ktime_add(timer->node.expires,
 982							timer->period);
 983			timer->enabled = 1;
 984			timerqueue_add(&rtc->timerqueue, &timer->node);
 985			trace_rtc_timer_enqueue(timer);
 986		}
 987	}
 988
 989	/* Set next alarm */
 990	if (next) {
 991		struct rtc_wkalrm alarm;
 992		int err;
 993		int retry = 3;
 994
 995		alarm.time = rtc_ktime_to_tm(next->expires);
 996		alarm.enabled = 1;
 997reprogram:
 998		err = __rtc_set_alarm(rtc, &alarm);
 999		if (err == -ETIME)
1000			goto again;
1001		else if (err) {
1002			if (retry-- > 0)
1003				goto reprogram;
1004
1005			timer = container_of(next, struct rtc_timer, node);
1006			timerqueue_del(&rtc->timerqueue, &timer->node);
1007			trace_rtc_timer_dequeue(timer);
1008			timer->enabled = 0;
1009			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
1010			goto again;
1011		}
1012	} else
1013		rtc_alarm_disable(rtc);
1014
1015	pm_relax(rtc->dev.parent);
1016	mutex_unlock(&rtc->ops_lock);
1017}
1018
1019
1020/* rtc_timer_init - Initializes an rtc_timer
1021 * @timer: timer to be intiialized
1022 * @f: function pointer to be called when timer fires
1023 * @data: private data passed to function pointer
1024 *
1025 * Kernel interface to initializing an rtc_timer.
1026 */
1027void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
1028{
1029	timerqueue_init(&timer->node);
1030	timer->enabled = 0;
1031	timer->task.func = f;
1032	timer->task.private_data = data;
1033}
1034
1035/* rtc_timer_start - Sets an rtc_timer to fire in the future
1036 * @ rtc: rtc device to be used
1037 * @ timer: timer being set
1038 * @ expires: time at which to expire the timer
1039 * @ period: period that the timer will recur
1040 *
1041 * Kernel interface to set an rtc_timer
1042 */
1043int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
1044			ktime_t expires, ktime_t period)
1045{
1046	int ret = 0;
1047	mutex_lock(&rtc->ops_lock);
1048	if (timer->enabled)
1049		rtc_timer_remove(rtc, timer);
1050
1051	timer->node.expires = expires;
1052	timer->period = period;
1053
1054	ret = rtc_timer_enqueue(rtc, timer);
1055
1056	mutex_unlock(&rtc->ops_lock);
1057	return ret;
1058}
1059
1060/* rtc_timer_cancel - Stops an rtc_timer
1061 * @ rtc: rtc device to be used
1062 * @ timer: timer being set
1063 *
1064 * Kernel interface to cancel an rtc_timer
1065 */
1066void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
1067{
 
1068	mutex_lock(&rtc->ops_lock);
1069	if (timer->enabled)
1070		rtc_timer_remove(rtc, timer);
1071	mutex_unlock(&rtc->ops_lock);
1072}
1073
1074/**
1075 * rtc_read_offset - Read the amount of rtc offset in parts per billion
1076 * @ rtc: rtc device to be used
1077 * @ offset: the offset in parts per billion
1078 *
1079 * see below for details.
1080 *
1081 * Kernel interface to read rtc clock offset
1082 * Returns 0 on success, or a negative number on error.
1083 * If read_offset() is not implemented for the rtc, return -EINVAL
1084 */
1085int rtc_read_offset(struct rtc_device *rtc, long *offset)
1086{
1087	int ret;
1088
1089	if (!rtc->ops)
1090		return -ENODEV;
1091
1092	if (!rtc->ops->read_offset)
1093		return -EINVAL;
1094
1095	mutex_lock(&rtc->ops_lock);
1096	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1097	mutex_unlock(&rtc->ops_lock);
1098
1099	trace_rtc_read_offset(*offset, ret);
1100	return ret;
1101}
1102
1103/**
1104 * rtc_set_offset - Adjusts the duration of the average second
1105 * @ rtc: rtc device to be used
1106 * @ offset: the offset in parts per billion
1107 *
1108 * Some rtc's allow an adjustment to the average duration of a second
1109 * to compensate for differences in the actual clock rate due to temperature,
1110 * the crystal, capacitor, etc.
1111 *
1112 * The adjustment applied is as follows:
1113 *   t = t0 * (1 + offset * 1e-9)
1114 * where t0 is the measured length of 1 RTC second with offset = 0
1115 *
1116 * Kernel interface to adjust an rtc clock offset.
1117 * Return 0 on success, or a negative number on error.
1118 * If the rtc offset is not setable (or not implemented), return -EINVAL
1119 */
1120int rtc_set_offset(struct rtc_device *rtc, long offset)
1121{
1122	int ret;
1123
1124	if (!rtc->ops)
1125		return -ENODEV;
1126
1127	if (!rtc->ops->set_offset)
1128		return -EINVAL;
1129
1130	mutex_lock(&rtc->ops_lock);
1131	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1132	mutex_unlock(&rtc->ops_lock);
1133
1134	trace_rtc_set_offset(offset, ret);
1135	return ret;
1136}