Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   3 *
   4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   5 *  Copyright (C) 2010 ST-Ericsson SA
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/moduleparam.h>
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/device.h>
 
  16#include <linux/interrupt.h>
  17#include <linux/kernel.h>
  18#include <linux/slab.h>
  19#include <linux/delay.h>
  20#include <linux/err.h>
  21#include <linux/highmem.h>
  22#include <linux/log2.h>
 
  23#include <linux/mmc/host.h>
  24#include <linux/mmc/card.h>
 
  25#include <linux/amba/bus.h>
  26#include <linux/clk.h>
  27#include <linux/scatterlist.h>
  28#include <linux/gpio.h>
  29#include <linux/of_gpio.h>
  30#include <linux/regulator/consumer.h>
  31#include <linux/dmaengine.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/amba/mmci.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/types.h>
 
  36
  37#include <asm/div64.h>
  38#include <asm/io.h>
  39#include <asm/sizes.h>
  40
  41#include "mmci.h"
 
  42
  43#define DRIVER_NAME "mmci-pl18x"
  44
  45static unsigned int fmax = 515633;
  46
  47/**
  48 * struct variant_data - MMCI variant-specific quirks
  49 * @clkreg: default value for MCICLOCK register
  50 * @clkreg_enable: enable value for MMCICLOCK register
 
 
  51 * @datalength_bits: number of bits in the MMCIDATALENGTH register
  52 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
  53 *	      is asserted (likewise for RX)
  54 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
  55 *		  is asserted (likewise for RX)
  56 * @sdio: variant supports SDIO
 
  57 * @st_clkdiv: true if using a ST-specific clock divider algorithm
 
  58 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
 
 
 
  59 * @pwrreg_powerup: power up value for MMCIPOWER register
 
  60 * @signal_direction: input/out direction of bus signals can be indicated
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61 */
  62struct variant_data {
  63	unsigned int		clkreg;
  64	unsigned int		clkreg_enable;
 
 
  65	unsigned int		datalength_bits;
  66	unsigned int		fifosize;
  67	unsigned int		fifohalfsize;
  68	bool			sdio;
 
 
 
  69	bool			st_clkdiv;
  70	bool			blksz_datactrl16;
 
  71	u32			pwrreg_powerup;
 
  72	bool			signal_direction;
 
 
 
 
 
 
 
 
 
 
 
 
 
  73};
  74
  75static struct variant_data variant_arm = {
  76	.fifosize		= 16 * 4,
  77	.fifohalfsize		= 8 * 4,
  78	.datalength_bits	= 16,
  79	.pwrreg_powerup		= MCI_PWR_UP,
 
 
 
 
 
  80};
  81
  82static struct variant_data variant_arm_extended_fifo = {
  83	.fifosize		= 128 * 4,
  84	.fifohalfsize		= 64 * 4,
  85	.datalength_bits	= 16,
  86	.pwrreg_powerup		= MCI_PWR_UP,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87};
  88
  89static struct variant_data variant_u300 = {
  90	.fifosize		= 16 * 4,
  91	.fifohalfsize		= 8 * 4,
  92	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 
  93	.datalength_bits	= 16,
  94	.sdio			= true,
 
  95	.pwrreg_powerup		= MCI_PWR_ON,
 
  96	.signal_direction	= true,
 
 
 
 
 
  97};
  98
  99static struct variant_data variant_nomadik = {
 100	.fifosize		= 16 * 4,
 101	.fifohalfsize		= 8 * 4,
 102	.clkreg			= MCI_CLK_ENABLE,
 
 103	.datalength_bits	= 24,
 104	.sdio			= true,
 
 105	.st_clkdiv		= true,
 106	.pwrreg_powerup		= MCI_PWR_ON,
 
 107	.signal_direction	= true,
 
 
 
 
 
 108};
 109
 110static struct variant_data variant_ux500 = {
 111	.fifosize		= 30 * 4,
 112	.fifohalfsize		= 8 * 4,
 113	.clkreg			= MCI_CLK_ENABLE,
 114	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 
 
 115	.datalength_bits	= 24,
 116	.sdio			= true,
 
 117	.st_clkdiv		= true,
 118	.pwrreg_powerup		= MCI_PWR_ON,
 
 119	.signal_direction	= true,
 
 
 
 
 
 
 
 
 
 120};
 121
 122static struct variant_data variant_ux500v2 = {
 123	.fifosize		= 30 * 4,
 124	.fifohalfsize		= 8 * 4,
 125	.clkreg			= MCI_CLK_ENABLE,
 126	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 
 
 
 127	.datalength_bits	= 24,
 128	.sdio			= true,
 
 129	.st_clkdiv		= true,
 130	.blksz_datactrl16	= true,
 131	.pwrreg_powerup		= MCI_PWR_ON,
 
 132	.signal_direction	= true,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 133};
 134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 135/*
 136 * This must be called with host->lock held
 137 */
 138static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 139{
 140	if (host->clk_reg != clk) {
 141		host->clk_reg = clk;
 142		writel(clk, host->base + MMCICLOCK);
 143	}
 144}
 145
 146/*
 147 * This must be called with host->lock held
 148 */
 149static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 150{
 151	if (host->pwr_reg != pwr) {
 152		host->pwr_reg = pwr;
 153		writel(pwr, host->base + MMCIPOWER);
 154	}
 155}
 156
 157/*
 158 * This must be called with host->lock held
 159 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 161{
 162	struct variant_data *variant = host->variant;
 163	u32 clk = variant->clkreg;
 164
 
 
 
 165	if (desired) {
 166		if (desired >= host->mclk) {
 
 
 167			clk = MCI_CLK_BYPASS;
 168			if (variant->st_clkdiv)
 169				clk |= MCI_ST_UX500_NEG_EDGE;
 170			host->cclk = host->mclk;
 171		} else if (variant->st_clkdiv) {
 172			/*
 173			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 174			 * => clkdiv = (mclk / f) - 2
 175			 * Round the divider up so we don't exceed the max
 176			 * frequency
 177			 */
 178			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 179			if (clk >= 256)
 180				clk = 255;
 181			host->cclk = host->mclk / (clk + 2);
 182		} else {
 183			/*
 184			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 185			 * => clkdiv = mclk / (2 * f) - 1
 186			 */
 187			clk = host->mclk / (2 * desired) - 1;
 188			if (clk >= 256)
 189				clk = 255;
 190			host->cclk = host->mclk / (2 * (clk + 1));
 191		}
 192
 193		clk |= variant->clkreg_enable;
 194		clk |= MCI_CLK_ENABLE;
 195		/* This hasn't proven to be worthwhile */
 196		/* clk |= MCI_CLK_PWRSAVE; */
 197	}
 198
 
 
 
 199	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 200		clk |= MCI_4BIT_BUS;
 201	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 202		clk |= MCI_ST_8BIT_BUS;
 
 
 
 
 203
 204	mmci_write_clkreg(host, clk);
 205}
 206
 207static void
 208mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 209{
 210	writel(0, host->base + MMCICOMMAND);
 211
 212	BUG_ON(host->data);
 213
 214	host->mrq = NULL;
 215	host->cmd = NULL;
 216
 217	mmc_request_done(host->mmc, mrq);
 218
 219	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
 220	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
 221}
 222
 223static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 224{
 225	void __iomem *base = host->base;
 
 226
 227	if (host->singleirq) {
 228		unsigned int mask0 = readl(base + MMCIMASK0);
 229
 230		mask0 &= ~MCI_IRQ1MASK;
 231		mask0 |= mask;
 232
 233		writel(mask0, base + MMCIMASK0);
 234	}
 235
 236	writel(mask, base + MMCIMASK1);
 
 
 
 237}
 238
 239static void mmci_stop_data(struct mmci_host *host)
 240{
 241	writel(0, host->base + MMCIDATACTRL);
 242	mmci_set_mask1(host, 0);
 243	host->data = NULL;
 244}
 245
 246static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 247{
 248	unsigned int flags = SG_MITER_ATOMIC;
 249
 250	if (data->flags & MMC_DATA_READ)
 251		flags |= SG_MITER_TO_SG;
 252	else
 253		flags |= SG_MITER_FROM_SG;
 254
 255	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 256}
 257
 258/*
 259 * All the DMA operation mode stuff goes inside this ifdef.
 260 * This assumes that you have a generic DMA device interface,
 261 * no custom DMA interfaces are supported.
 262 */
 263#ifdef CONFIG_DMA_ENGINE
 264static void __devinit mmci_dma_setup(struct mmci_host *host)
 265{
 266	struct mmci_platform_data *plat = host->plat;
 267	const char *rxname, *txname;
 268	dma_cap_mask_t mask;
 269
 270	if (!plat || !plat->dma_filter) {
 271		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
 272		return;
 273	}
 274
 275	/* initialize pre request cookie */
 276	host->next_data.cookie = 1;
 277
 278	/* Try to acquire a generic DMA engine slave channel */
 279	dma_cap_zero(mask);
 280	dma_cap_set(DMA_SLAVE, mask);
 281
 282	/*
 283	 * If only an RX channel is specified, the driver will
 284	 * attempt to use it bidirectionally, however if it is
 285	 * is specified but cannot be located, DMA will be disabled.
 286	 */
 287	if (plat->dma_rx_param) {
 288		host->dma_rx_channel = dma_request_channel(mask,
 289							   plat->dma_filter,
 290							   plat->dma_rx_param);
 291		/* E.g if no DMA hardware is present */
 292		if (!host->dma_rx_channel)
 293			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
 294	}
 295
 296	if (plat->dma_tx_param) {
 297		host->dma_tx_channel = dma_request_channel(mask,
 298							   plat->dma_filter,
 299							   plat->dma_tx_param);
 300		if (!host->dma_tx_channel)
 301			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
 302	} else {
 303		host->dma_tx_channel = host->dma_rx_channel;
 304	}
 305
 306	if (host->dma_rx_channel)
 307		rxname = dma_chan_name(host->dma_rx_channel);
 308	else
 309		rxname = "none";
 310
 311	if (host->dma_tx_channel)
 312		txname = dma_chan_name(host->dma_tx_channel);
 313	else
 314		txname = "none";
 315
 316	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 317		 rxname, txname);
 318
 319	/*
 320	 * Limit the maximum segment size in any SG entry according to
 321	 * the parameters of the DMA engine device.
 322	 */
 323	if (host->dma_tx_channel) {
 324		struct device *dev = host->dma_tx_channel->device->dev;
 325		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 326
 327		if (max_seg_size < host->mmc->max_seg_size)
 328			host->mmc->max_seg_size = max_seg_size;
 329	}
 330	if (host->dma_rx_channel) {
 331		struct device *dev = host->dma_rx_channel->device->dev;
 332		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 333
 334		if (max_seg_size < host->mmc->max_seg_size)
 335			host->mmc->max_seg_size = max_seg_size;
 336	}
 
 
 
 
 337}
 338
 339/*
 340 * This is used in __devinit or __devexit so inline it
 341 * so it can be discarded.
 342 */
 343static inline void mmci_dma_release(struct mmci_host *host)
 344{
 345	struct mmci_platform_data *plat = host->plat;
 346
 347	if (host->dma_rx_channel)
 348		dma_release_channel(host->dma_rx_channel);
 349	if (host->dma_tx_channel && plat->dma_tx_param)
 350		dma_release_channel(host->dma_tx_channel);
 351	host->dma_rx_channel = host->dma_tx_channel = NULL;
 352}
 353
 
 
 
 
 
 
 
 
 
 
 354static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 355{
 356	struct dma_chan *chan = host->dma_current;
 357	enum dma_data_direction dir;
 
 
 
 
 
 
 
 
 
 
 
 358	u32 status;
 359	int i;
 360
 361	/* Wait up to 1ms for the DMA to complete */
 362	for (i = 0; ; i++) {
 363		status = readl(host->base + MMCISTATUS);
 364		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 365			break;
 366		udelay(10);
 367	}
 368
 369	/*
 370	 * Check to see whether we still have some data left in the FIFO -
 371	 * this catches DMA controllers which are unable to monitor the
 372	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 373	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 374	 */
 375	if (status & MCI_RXDATAAVLBLMASK) {
 376		dmaengine_terminate_all(chan);
 377		if (!data->error)
 378			data->error = -EIO;
 379	}
 380
 381	if (data->flags & MMC_DATA_WRITE) {
 382		dir = DMA_TO_DEVICE;
 383	} else {
 384		dir = DMA_FROM_DEVICE;
 385	}
 386
 387	if (!data->host_cookie)
 388		dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
 389
 390	/*
 391	 * Use of DMA with scatter-gather is impossible.
 392	 * Give up with DMA and switch back to PIO mode.
 393	 */
 394	if (status & MCI_RXDATAAVLBLMASK) {
 395		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 396		mmci_dma_release(host);
 397	}
 398}
 399
 400static void mmci_dma_data_error(struct mmci_host *host)
 401{
 402	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 403	dmaengine_terminate_all(host->dma_current);
 404}
 405
 406static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
 407			      struct mmci_host_next *next)
 
 
 408{
 409	struct variant_data *variant = host->variant;
 410	struct dma_slave_config conf = {
 411		.src_addr = host->phybase + MMCIFIFO,
 412		.dst_addr = host->phybase + MMCIFIFO,
 413		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 414		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 415		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 416		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 417		.device_fc = false,
 418	};
 419	struct dma_chan *chan;
 420	struct dma_device *device;
 421	struct dma_async_tx_descriptor *desc;
 422	enum dma_data_direction buffer_dirn;
 423	int nr_sg;
 424
 425	/* Check if next job is already prepared */
 426	if (data->host_cookie && !next &&
 427	    host->dma_current && host->dma_desc_current)
 428		return 0;
 429
 430	if (!next) {
 431		host->dma_current = NULL;
 432		host->dma_desc_current = NULL;
 433	}
 434
 435	if (data->flags & MMC_DATA_READ) {
 436		conf.direction = DMA_DEV_TO_MEM;
 437		buffer_dirn = DMA_FROM_DEVICE;
 438		chan = host->dma_rx_channel;
 439	} else {
 440		conf.direction = DMA_MEM_TO_DEV;
 441		buffer_dirn = DMA_TO_DEVICE;
 442		chan = host->dma_tx_channel;
 443	}
 444
 445	/* If there's no DMA channel, fall back to PIO */
 446	if (!chan)
 447		return -EINVAL;
 448
 449	/* If less than or equal to the fifo size, don't bother with DMA */
 450	if (data->blksz * data->blocks <= variant->fifosize)
 451		return -EINVAL;
 452
 453	device = chan->device;
 454	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
 
 455	if (nr_sg == 0)
 456		return -EINVAL;
 457
 
 
 
 458	dmaengine_slave_config(chan, &conf);
 459	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 460					    conf.direction, DMA_CTRL_ACK);
 461	if (!desc)
 462		goto unmap_exit;
 463
 464	if (next) {
 465		next->dma_chan = chan;
 466		next->dma_desc = desc;
 467	} else {
 468		host->dma_current = chan;
 469		host->dma_desc_current = desc;
 470	}
 471
 472	return 0;
 473
 474 unmap_exit:
 475	if (!next)
 476		dmaengine_terminate_all(chan);
 477	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
 478	return -ENOMEM;
 479}
 480
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 481static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 482{
 483	int ret;
 484	struct mmc_data *data = host->data;
 485
 486	ret = mmci_dma_prep_data(host, host->data, NULL);
 487	if (ret)
 488		return ret;
 489
 490	/* Okay, go for it. */
 491	dev_vdbg(mmc_dev(host->mmc),
 492		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 493		 data->sg_len, data->blksz, data->blocks, data->flags);
 
 494	dmaengine_submit(host->dma_desc_current);
 495	dma_async_issue_pending(host->dma_current);
 496
 
 
 
 497	datactrl |= MCI_DPSM_DMAENABLE;
 498
 499	/* Trigger the DMA transfer */
 500	writel(datactrl, host->base + MMCIDATACTRL);
 501
 502	/*
 503	 * Let the MMCI say when the data is ended and it's time
 504	 * to fire next DMA request. When that happens, MMCI will
 505	 * call mmci_data_end()
 506	 */
 507	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 508	       host->base + MMCIMASK0);
 509	return 0;
 510}
 511
 512static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 513{
 514	struct mmci_host_next *next = &host->next_data;
 515
 516	if (data->host_cookie && data->host_cookie != next->cookie) {
 517		pr_warning("[%s] invalid cookie: data->host_cookie %d"
 518		       " host->next_data.cookie %d\n",
 519		       __func__, data->host_cookie, host->next_data.cookie);
 520		data->host_cookie = 0;
 521	}
 522
 523	if (!data->host_cookie)
 524		return;
 525
 526	host->dma_desc_current = next->dma_desc;
 527	host->dma_current = next->dma_chan;
 528
 529	next->dma_desc = NULL;
 530	next->dma_chan = NULL;
 531}
 532
 533static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
 534			     bool is_first_req)
 535{
 536	struct mmci_host *host = mmc_priv(mmc);
 537	struct mmc_data *data = mrq->data;
 538	struct mmci_host_next *nd = &host->next_data;
 539
 540	if (!data)
 541		return;
 542
 543	if (data->host_cookie) {
 544		data->host_cookie = 0;
 
 545		return;
 546	}
 547
 548	/* if config for dma */
 549	if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
 550	    ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
 551		if (mmci_dma_prep_data(host, data, nd))
 552			data->host_cookie = 0;
 553		else
 554			data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
 555	}
 556}
 557
 558static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 559			      int err)
 560{
 561	struct mmci_host *host = mmc_priv(mmc);
 562	struct mmc_data *data = mrq->data;
 563	struct dma_chan *chan;
 564	enum dma_data_direction dir;
 565
 566	if (!data)
 567		return;
 568
 569	if (data->flags & MMC_DATA_READ) {
 570		dir = DMA_FROM_DEVICE;
 571		chan = host->dma_rx_channel;
 572	} else {
 573		dir = DMA_TO_DEVICE;
 574		chan = host->dma_tx_channel;
 575	}
 576
 
 
 
 
 
 
 
 
 
 
 
 577
 578	/* if config for dma */
 579	if (chan) {
 580		if (err)
 581			dmaengine_terminate_all(chan);
 582		if (data->host_cookie)
 583			dma_unmap_sg(mmc_dev(host->mmc), data->sg,
 584				     data->sg_len, dir);
 585		mrq->data->host_cookie = 0;
 586	}
 587}
 588
 589#else
 590/* Blank functions if the DMA engine is not available */
 591static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 592{
 593}
 594static inline void mmci_dma_setup(struct mmci_host *host)
 595{
 596}
 597
 598static inline void mmci_dma_release(struct mmci_host *host)
 599{
 600}
 601
 602static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 603{
 604}
 605
 
 
 
 
 
 606static inline void mmci_dma_data_error(struct mmci_host *host)
 607{
 608}
 609
 610static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 611{
 612	return -ENOSYS;
 613}
 614
 615#define mmci_pre_request NULL
 616#define mmci_post_request NULL
 617
 618#endif
 619
 620static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 621{
 622	struct variant_data *variant = host->variant;
 623	unsigned int datactrl, timeout, irqmask;
 624	unsigned long long clks;
 625	void __iomem *base;
 626	int blksz_bits;
 627
 628	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 629		data->blksz, data->blocks, data->flags);
 630
 631	host->data = data;
 632	host->size = data->blksz * data->blocks;
 633	data->bytes_xfered = 0;
 634
 635	clks = (unsigned long long)data->timeout_ns * host->cclk;
 636	do_div(clks, 1000000000UL);
 637
 638	timeout = data->timeout_clks + (unsigned int)clks;
 639
 640	base = host->base;
 641	writel(timeout, base + MMCIDATATIMER);
 642	writel(host->size, base + MMCIDATALENGTH);
 643
 644	blksz_bits = ffs(data->blksz) - 1;
 645	BUG_ON(1 << blksz_bits != data->blksz);
 646
 647	if (variant->blksz_datactrl16)
 648		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
 
 
 649	else
 650		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
 651
 652	if (data->flags & MMC_DATA_READ)
 653		datactrl |= MCI_DPSM_DIRECTION;
 654
 655	/* The ST Micro variants has a special bit to enable SDIO */
 656	if (variant->sdio && host->mmc->card)
 657		if (mmc_card_sdio(host->mmc->card))
 658			datactrl |= MCI_ST_DPSM_SDIOEN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659
 660	/*
 661	 * Attempt to use DMA operation mode, if this
 662	 * should fail, fall back to PIO mode
 663	 */
 664	if (!mmci_dma_start_data(host, datactrl))
 665		return;
 666
 667	/* IRQ mode, map the SG list for CPU reading/writing */
 668	mmci_init_sg(host, data);
 669
 670	if (data->flags & MMC_DATA_READ) {
 671		irqmask = MCI_RXFIFOHALFFULLMASK;
 672
 673		/*
 674		 * If we have less than the fifo 'half-full' threshold to
 675		 * transfer, trigger a PIO interrupt as soon as any data
 676		 * is available.
 677		 */
 678		if (host->size < variant->fifohalfsize)
 679			irqmask |= MCI_RXDATAAVLBLMASK;
 680	} else {
 681		/*
 682		 * We don't actually need to include "FIFO empty" here
 683		 * since its implicit in "FIFO half empty".
 684		 */
 685		irqmask = MCI_TXFIFOHALFEMPTYMASK;
 686	}
 687
 688	writel(datactrl, base + MMCIDATACTRL);
 689	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
 690	mmci_set_mask1(host, irqmask);
 691}
 692
 693static void
 694mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
 695{
 696	void __iomem *base = host->base;
 697
 698	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
 699	    cmd->opcode, cmd->arg, cmd->flags);
 700
 701	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
 702		writel(0, base + MMCICOMMAND);
 703		udelay(1);
 704	}
 705
 706	c |= cmd->opcode | MCI_CPSM_ENABLE;
 707	if (cmd->flags & MMC_RSP_PRESENT) {
 708		if (cmd->flags & MMC_RSP_136)
 709			c |= MCI_CPSM_LONGRSP;
 710		c |= MCI_CPSM_RESPONSE;
 711	}
 712	if (/*interrupt*/0)
 713		c |= MCI_CPSM_INTERRUPT;
 714
 
 
 
 715	host->cmd = cmd;
 716
 717	writel(cmd->arg, base + MMCIARGUMENT);
 718	writel(c, base + MMCICOMMAND);
 719}
 720
 721static void
 722mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
 723	      unsigned int status)
 724{
 
 
 
 
 725	/* First check for errors */
 726	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
 727		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
 
 728		u32 remain, success;
 729
 730		/* Terminate the DMA transfer */
 731		if (dma_inprogress(host))
 732			mmci_dma_data_error(host);
 
 
 733
 734		/*
 735		 * Calculate how far we are into the transfer.  Note that
 736		 * the data counter gives the number of bytes transferred
 737		 * on the MMC bus, not on the host side.  On reads, this
 738		 * can be as much as a FIFO-worth of data ahead.  This
 739		 * matters for FIFO overruns only.
 740		 */
 741		remain = readl(host->base + MMCIDATACNT);
 742		success = data->blksz * data->blocks - remain;
 743
 744		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
 745			status, success);
 746		if (status & MCI_DATACRCFAIL) {
 747			/* Last block was not successful */
 748			success -= 1;
 749			data->error = -EILSEQ;
 750		} else if (status & MCI_DATATIMEOUT) {
 751			data->error = -ETIMEDOUT;
 752		} else if (status & MCI_STARTBITERR) {
 753			data->error = -ECOMM;
 754		} else if (status & MCI_TXUNDERRUN) {
 755			data->error = -EIO;
 756		} else if (status & MCI_RXOVERRUN) {
 757			if (success > host->variant->fifosize)
 758				success -= host->variant->fifosize;
 759			else
 760				success = 0;
 761			data->error = -EIO;
 762		}
 763		data->bytes_xfered = round_down(success, data->blksz);
 764	}
 765
 766	if (status & MCI_DATABLOCKEND)
 767		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
 768
 769	if (status & MCI_DATAEND || data->error) {
 770		if (dma_inprogress(host))
 771			mmci_dma_unmap(host, data);
 772		mmci_stop_data(host);
 773
 774		if (!data->error)
 775			/* The error clause is handled above, success! */
 776			data->bytes_xfered = data->blksz * data->blocks;
 777
 778		if (!data->stop) {
 779			mmci_request_end(host, data->mrq);
 780		} else {
 781			mmci_start_command(host, data->stop, 0);
 782		}
 783	}
 784}
 785
 786static void
 787mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
 788	     unsigned int status)
 789{
 790	void __iomem *base = host->base;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791
 792	host->cmd = NULL;
 793
 794	if (status & MCI_CMDTIMEOUT) {
 795		cmd->error = -ETIMEDOUT;
 796	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
 797		cmd->error = -EILSEQ;
 798	} else {
 799		cmd->resp[0] = readl(base + MMCIRESPONSE0);
 800		cmd->resp[1] = readl(base + MMCIRESPONSE1);
 801		cmd->resp[2] = readl(base + MMCIRESPONSE2);
 802		cmd->resp[3] = readl(base + MMCIRESPONSE3);
 803	}
 804
 805	if (!cmd->data || cmd->error) {
 806		if (host->data) {
 807			/* Terminate the DMA transfer */
 808			if (dma_inprogress(host))
 809				mmci_dma_data_error(host);
 
 
 810			mmci_stop_data(host);
 811		}
 812		mmci_request_end(host, cmd->mrq);
 
 
 813	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
 814		mmci_start_data(host, cmd->data);
 815	}
 816}
 817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
 819{
 820	void __iomem *base = host->base;
 821	char *ptr = buffer;
 822	u32 status;
 823	int host_remain = host->size;
 824
 825	do {
 826		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
 827
 828		if (count > remain)
 829			count = remain;
 830
 831		if (count <= 0)
 832			break;
 833
 834		/*
 835		 * SDIO especially may want to send something that is
 836		 * not divisible by 4 (as opposed to card sectors
 837		 * etc). Therefore make sure to always read the last bytes
 838		 * while only doing full 32-bit reads towards the FIFO.
 839		 */
 840		if (unlikely(count & 0x3)) {
 841			if (count < 4) {
 842				unsigned char buf[4];
 843				readsl(base + MMCIFIFO, buf, 1);
 844				memcpy(ptr, buf, count);
 845			} else {
 846				readsl(base + MMCIFIFO, ptr, count >> 2);
 847				count &= ~0x3;
 848			}
 849		} else {
 850			readsl(base + MMCIFIFO, ptr, count >> 2);
 851		}
 852
 853		ptr += count;
 854		remain -= count;
 855		host_remain -= count;
 856
 857		if (remain == 0)
 858			break;
 859
 860		status = readl(base + MMCISTATUS);
 861	} while (status & MCI_RXDATAAVLBL);
 862
 863	return ptr - buffer;
 864}
 865
 866static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
 867{
 868	struct variant_data *variant = host->variant;
 869	void __iomem *base = host->base;
 870	char *ptr = buffer;
 871
 872	do {
 873		unsigned int count, maxcnt;
 874
 875		maxcnt = status & MCI_TXFIFOEMPTY ?
 876			 variant->fifosize : variant->fifohalfsize;
 877		count = min(remain, maxcnt);
 878
 879		/*
 880		 * The ST Micro variant for SDIO transfer sizes
 881		 * less then 8 bytes should have clock H/W flow
 882		 * control disabled.
 883		 */
 884		if (variant->sdio &&
 885		    mmc_card_sdio(host->mmc->card)) {
 886			u32 clk;
 887			if (count < 8)
 888				clk = host->clk_reg & ~variant->clkreg_enable;
 889			else
 890				clk = host->clk_reg | variant->clkreg_enable;
 891
 892			mmci_write_clkreg(host, clk);
 893		}
 894
 895		/*
 896		 * SDIO especially may want to send something that is
 897		 * not divisible by 4 (as opposed to card sectors
 898		 * etc), and the FIFO only accept full 32-bit writes.
 899		 * So compensate by adding +3 on the count, a single
 900		 * byte become a 32bit write, 7 bytes will be two
 901		 * 32bit writes etc.
 902		 */
 903		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
 904
 905		ptr += count;
 906		remain -= count;
 907
 908		if (remain == 0)
 909			break;
 910
 911		status = readl(base + MMCISTATUS);
 912	} while (status & MCI_TXFIFOHALFEMPTY);
 913
 914	return ptr - buffer;
 915}
 916
 917/*
 918 * PIO data transfer IRQ handler.
 919 */
 920static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
 921{
 922	struct mmci_host *host = dev_id;
 923	struct sg_mapping_iter *sg_miter = &host->sg_miter;
 924	struct variant_data *variant = host->variant;
 925	void __iomem *base = host->base;
 926	unsigned long flags;
 927	u32 status;
 928
 929	status = readl(base + MMCISTATUS);
 930
 931	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
 932
 933	local_irq_save(flags);
 934
 935	do {
 936		unsigned int remain, len;
 937		char *buffer;
 938
 939		/*
 940		 * For write, we only need to test the half-empty flag
 941		 * here - if the FIFO is completely empty, then by
 942		 * definition it is more than half empty.
 943		 *
 944		 * For read, check for data available.
 945		 */
 946		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
 947			break;
 948
 949		if (!sg_miter_next(sg_miter))
 950			break;
 951
 952		buffer = sg_miter->addr;
 953		remain = sg_miter->length;
 954
 955		len = 0;
 956		if (status & MCI_RXACTIVE)
 957			len = mmci_pio_read(host, buffer, remain);
 958		if (status & MCI_TXACTIVE)
 959			len = mmci_pio_write(host, buffer, remain, status);
 960
 961		sg_miter->consumed = len;
 962
 963		host->size -= len;
 964		remain -= len;
 965
 966		if (remain)
 967			break;
 968
 969		status = readl(base + MMCISTATUS);
 970	} while (1);
 971
 972	sg_miter_stop(sg_miter);
 973
 974	local_irq_restore(flags);
 975
 976	/*
 977	 * If we have less than the fifo 'half-full' threshold to transfer,
 978	 * trigger a PIO interrupt as soon as any data is available.
 979	 */
 980	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
 981		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
 982
 983	/*
 984	 * If we run out of data, disable the data IRQs; this
 985	 * prevents a race where the FIFO becomes empty before
 986	 * the chip itself has disabled the data path, and
 987	 * stops us racing with our data end IRQ.
 988	 */
 989	if (host->size == 0) {
 990		mmci_set_mask1(host, 0);
 991		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
 992	}
 993
 994	return IRQ_HANDLED;
 995}
 996
 997/*
 998 * Handle completion of command and data transfers.
 999 */
1000static irqreturn_t mmci_irq(int irq, void *dev_id)
1001{
1002	struct mmci_host *host = dev_id;
1003	u32 status;
1004	int ret = 0;
1005
1006	spin_lock(&host->lock);
1007
1008	do {
1009		struct mmc_command *cmd;
1010		struct mmc_data *data;
1011
1012		status = readl(host->base + MMCISTATUS);
1013
1014		if (host->singleirq) {
1015			if (status & readl(host->base + MMCIMASK1))
1016				mmci_pio_irq(irq, dev_id);
1017
1018			status &= ~MCI_IRQ1MASK;
1019		}
1020
 
 
 
 
 
 
 
 
 
 
1021		status &= readl(host->base + MMCIMASK0);
1022		writel(status, host->base + MMCICLEAR);
 
 
 
 
1023
1024		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1025
1026		data = host->data;
1027		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1028			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1029			      MCI_DATABLOCKEND) && data)
1030			mmci_data_irq(host, data, status);
1031
1032		cmd = host->cmd;
1033		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1034			mmci_cmd_irq(host, cmd, status);
 
 
 
 
1035
1036		ret = 1;
1037	} while (status);
1038
1039	spin_unlock(&host->lock);
1040
1041	return IRQ_RETVAL(ret);
1042}
1043
1044static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1045{
1046	struct mmci_host *host = mmc_priv(mmc);
1047	unsigned long flags;
1048
1049	WARN_ON(host->mrq != NULL);
1050
1051	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
1052		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
1053			mrq->data->blksz);
1054		mrq->cmd->error = -EINVAL;
1055		mmc_request_done(mmc, mrq);
1056		return;
1057	}
1058
1059	pm_runtime_get_sync(mmc_dev(mmc));
1060
1061	spin_lock_irqsave(&host->lock, flags);
1062
1063	host->mrq = mrq;
1064
1065	if (mrq->data)
1066		mmci_get_next_data(host, mrq->data);
1067
1068	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1069		mmci_start_data(host, mrq->data);
1070
1071	mmci_start_command(host, mrq->cmd, 0);
 
 
 
1072
1073	spin_unlock_irqrestore(&host->lock, flags);
1074}
1075
1076static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1077{
1078	struct mmci_host *host = mmc_priv(mmc);
1079	struct variant_data *variant = host->variant;
1080	u32 pwr = 0;
1081	unsigned long flags;
1082	int ret;
1083
1084	pm_runtime_get_sync(mmc_dev(mmc));
1085
1086	if (host->plat->ios_handler &&
1087		host->plat->ios_handler(mmc_dev(mmc), ios))
1088			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1089
1090	switch (ios->power_mode) {
1091	case MMC_POWER_OFF:
1092		if (host->vcc)
1093			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
 
 
 
 
 
 
1094		break;
1095	case MMC_POWER_UP:
1096		if (host->vcc) {
1097			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1098			if (ret) {
1099				dev_err(mmc_dev(mmc), "unable to set OCR\n");
1100				/*
1101				 * The .set_ios() function in the mmc_host_ops
1102				 * struct return void, and failing to set the
1103				 * power should be rare so we print an error
1104				 * and return here.
1105				 */
1106				goto out;
1107			}
1108		}
1109		/*
1110		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1111		 * and instead uses MCI_PWR_ON so apply whatever value is
1112		 * configured in the variant data.
1113		 */
1114		pwr |= variant->pwrreg_powerup;
1115
1116		break;
1117	case MMC_POWER_ON:
 
 
 
 
 
 
 
 
 
1118		pwr |= MCI_PWR_ON;
1119		break;
1120	}
1121
1122	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1123		/*
1124		 * The ST Micro variant has some additional bits
1125		 * indicating signal direction for the signals in
1126		 * the SD/MMC bus and feedback-clock usage.
1127		 */
1128		pwr |= host->plat->sigdir;
1129
1130		if (ios->bus_width == MMC_BUS_WIDTH_4)
1131			pwr &= ~MCI_ST_DATA74DIREN;
1132		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1133			pwr &= (~MCI_ST_DATA74DIREN &
1134				~MCI_ST_DATA31DIREN &
1135				~MCI_ST_DATA2DIREN);
1136	}
1137
1138	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1139		if (host->hw_designer != AMBA_VENDOR_ST)
1140			pwr |= MCI_ROD;
1141		else {
1142			/*
1143			 * The ST Micro variant use the ROD bit for something
1144			 * else and only has OD (Open Drain).
1145			 */
1146			pwr |= MCI_OD;
1147		}
 
 
1148	}
1149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150	spin_lock_irqsave(&host->lock, flags);
1151
1152	mmci_set_clkreg(host, ios->clock);
1153	mmci_write_pwrreg(host, pwr);
 
1154
1155	spin_unlock_irqrestore(&host->lock, flags);
1156
1157 out:
1158	pm_runtime_mark_last_busy(mmc_dev(mmc));
1159	pm_runtime_put_autosuspend(mmc_dev(mmc));
1160}
1161
1162static int mmci_get_ro(struct mmc_host *mmc)
1163{
1164	struct mmci_host *host = mmc_priv(mmc);
1165
1166	if (host->gpio_wp == -ENOSYS)
1167		return -ENOSYS;
1168
1169	return gpio_get_value_cansleep(host->gpio_wp);
1170}
1171
1172static int mmci_get_cd(struct mmc_host *mmc)
1173{
1174	struct mmci_host *host = mmc_priv(mmc);
1175	struct mmci_platform_data *plat = host->plat;
1176	unsigned int status;
1177
1178	if (host->gpio_cd == -ENOSYS) {
1179		if (!plat->status)
1180			return 1; /* Assume always present */
1181
1182		status = plat->status(mmc_dev(host->mmc));
1183	} else
1184		status = !!gpio_get_value_cansleep(host->gpio_cd)
1185			^ plat->cd_invert;
1186
1187	/*
1188	 * Use positive logic throughout - status is zero for no card,
1189	 * non-zero for card inserted.
1190	 */
1191	return status;
1192}
1193
1194static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1195{
1196	struct mmci_host *host = dev_id;
1197
1198	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1199
1200	return IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1201}
1202
1203static const struct mmc_host_ops mmci_ops = {
1204	.request	= mmci_request,
1205	.pre_req	= mmci_pre_request,
1206	.post_req	= mmci_post_request,
1207	.set_ios	= mmci_set_ios,
1208	.get_ro		= mmci_get_ro,
1209	.get_cd		= mmci_get_cd,
 
1210};
1211
1212#ifdef CONFIG_OF
1213static void mmci_dt_populate_generic_pdata(struct device_node *np,
1214					struct mmci_platform_data *pdata)
1215{
1216	int bus_width = 0;
1217
1218	pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1219	pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1220
1221	if (of_get_property(np, "cd-inverted", NULL))
1222		pdata->cd_invert = true;
1223	else
1224		pdata->cd_invert = false;
1225
1226	of_property_read_u32(np, "max-frequency", &pdata->f_max);
1227	if (!pdata->f_max)
1228		pr_warn("%s has no 'max-frequency' property\n", np->full_name);
 
 
 
 
 
 
 
 
 
1229
1230	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1231		pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1232	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1233		pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1234
1235	of_property_read_u32(np, "bus-width", &bus_width);
1236	switch (bus_width) {
1237	case 0 :
1238		/* No bus-width supplied. */
1239		break;
1240	case 4 :
1241		pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1242		break;
1243	case 8 :
1244		pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1245		break;
1246	default :
1247		pr_warn("%s: Unsupported bus width\n", np->full_name);
1248	}
1249}
1250#else
1251static void mmci_dt_populate_generic_pdata(struct device_node *np,
1252					struct mmci_platform_data *pdata)
1253{
1254	return;
1255}
1256#endif
1257
1258static int __devinit mmci_probe(struct amba_device *dev,
1259	const struct amba_id *id)
1260{
1261	struct mmci_platform_data *plat = dev->dev.platform_data;
1262	struct device_node *np = dev->dev.of_node;
1263	struct variant_data *variant = id->data;
1264	struct mmci_host *host;
1265	struct mmc_host *mmc;
1266	int ret;
1267
1268	/* Must have platform data or Device Tree. */
1269	if (!plat && !np) {
1270		dev_err(&dev->dev, "No plat data or DT found\n");
1271		return -EINVAL;
1272	}
1273
1274	if (!plat) {
1275		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1276		if (!plat)
1277			return -ENOMEM;
1278	}
1279
1280	if (np)
1281		mmci_dt_populate_generic_pdata(np, plat);
 
1282
1283	ret = amba_request_regions(dev, DRIVER_NAME);
1284	if (ret)
1285		goto out;
1286
1287	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1288	if (!mmc) {
1289		ret = -ENOMEM;
1290		goto rel_regions;
1291	}
1292
1293	host = mmc_priv(mmc);
1294	host->mmc = mmc;
1295
1296	host->gpio_wp = -ENOSYS;
1297	host->gpio_cd = -ENOSYS;
1298	host->gpio_cd_irq = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1299
1300	host->hw_designer = amba_manf(dev);
1301	host->hw_revision = amba_rev(dev);
1302	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1303	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1304
1305	host->clk = clk_get(&dev->dev, NULL);
1306	if (IS_ERR(host->clk)) {
1307		ret = PTR_ERR(host->clk);
1308		host->clk = NULL;
1309		goto host_free;
1310	}
1311
1312	ret = clk_prepare(host->clk);
1313	if (ret)
1314		goto clk_free;
1315
1316	ret = clk_enable(host->clk);
1317	if (ret)
1318		goto clk_unprep;
 
1319
1320	host->plat = plat;
1321	host->variant = variant;
1322	host->mclk = clk_get_rate(host->clk);
1323	/*
1324	 * According to the spec, mclk is max 100 MHz,
1325	 * so we try to adjust the clock down to this,
1326	 * (if possible).
1327	 */
1328	if (host->mclk > 100000000) {
1329		ret = clk_set_rate(host->clk, 100000000);
1330		if (ret < 0)
1331			goto clk_disable;
1332		host->mclk = clk_get_rate(host->clk);
1333		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1334			host->mclk);
1335	}
 
1336	host->phybase = dev->res.start;
1337	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1338	if (!host->base) {
1339		ret = -ENOMEM;
1340		goto clk_disable;
1341	}
1342
1343	mmc->ops = &mmci_ops;
1344	/*
1345	 * The ARM and ST versions of the block have slightly different
1346	 * clock divider equations which means that the minimum divider
1347	 * differs too.
 
1348	 */
1349	if (variant->st_clkdiv)
1350		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
 
 
1351	else
1352		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1353	/*
1354	 * If the platform data supplies a maximum operating
1355	 * frequency, this takes precedence. Else, we fall back
1356	 * to using the module parameter, which has a (low)
1357	 * default value in case it is not specified. Either
1358	 * value must not exceed the clock rate into the block,
1359	 * of course.
1360	 */
1361	if (plat->f_max)
1362		mmc->f_max = min(host->mclk, plat->f_max);
 
 
1363	else
1364		mmc->f_max = min(host->mclk, fmax);
 
 
 
1365	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1366
1367#ifdef CONFIG_REGULATOR
1368	/* If we're using the regulator framework, try to fetch a regulator */
1369	host->vcc = regulator_get(&dev->dev, "vmmc");
1370	if (IS_ERR(host->vcc))
1371		host->vcc = NULL;
1372	else {
1373		int mask = mmc_regulator_get_ocrmask(host->vcc);
1374
1375		if (mask < 0)
1376			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1377				mask);
1378		else {
1379			host->mmc->ocr_avail = (u32) mask;
1380			if (plat->ocr_mask)
1381				dev_warn(&dev->dev,
1382				 "Provided ocr_mask/setpower will not be used "
1383				 "(using regulator instead)\n");
1384		}
1385	}
1386#endif
1387	/* Fall back to platform data if no regulator is found */
1388	if (host->vcc == NULL)
1389		mmc->ocr_avail = plat->ocr_mask;
1390	mmc->caps = plat->capabilities;
1391	mmc->caps2 = plat->capabilities2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1392
1393	/*
1394	 * We can do SGIO
1395	 */
1396	mmc->max_segs = NR_SG;
1397
1398	/*
1399	 * Since only a certain number of bits are valid in the data length
1400	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1401	 * single request.
1402	 */
1403	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1404
1405	/*
1406	 * Set the maximum segment size.  Since we aren't doing DMA
1407	 * (yet) we are only limited by the data length register.
1408	 */
1409	mmc->max_seg_size = mmc->max_req_size;
1410
1411	/*
1412	 * Block size can be up to 2048 bytes, but must be a power of two.
1413	 */
1414	mmc->max_blk_size = 1 << 11;
1415
1416	/*
1417	 * Limit the number of blocks transferred so that we don't overflow
1418	 * the maximum request size.
1419	 */
1420	mmc->max_blk_count = mmc->max_req_size >> 11;
1421
1422	spin_lock_init(&host->lock);
1423
1424	writel(0, host->base + MMCIMASK0);
1425	writel(0, host->base + MMCIMASK1);
 
 
 
1426	writel(0xfff, host->base + MMCICLEAR);
1427
1428	if (plat->gpio_cd == -EPROBE_DEFER) {
1429		ret = -EPROBE_DEFER;
1430		goto err_gpio_cd;
1431	}
1432	if (gpio_is_valid(plat->gpio_cd)) {
1433		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1434		if (ret == 0)
1435			ret = gpio_direction_input(plat->gpio_cd);
1436		if (ret == 0)
1437			host->gpio_cd = plat->gpio_cd;
1438		else if (ret != -ENOSYS)
1439			goto err_gpio_cd;
 
 
 
 
 
 
1440
1441		/*
1442		 * A gpio pin that will detect cards when inserted and removed
1443		 * will most likely want to trigger on the edges if it is
1444		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1445		 * for the inverted case) so we request triggers on both
1446		 * edges.
1447		 */
1448		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1449				mmci_cd_irq,
1450				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1451				DRIVER_NAME " (cd)", host);
1452		if (ret >= 0)
1453			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1454	}
1455	if (plat->gpio_wp == -EPROBE_DEFER) {
1456		ret = -EPROBE_DEFER;
1457		goto err_gpio_wp;
1458	}
1459	if (gpio_is_valid(plat->gpio_wp)) {
1460		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1461		if (ret == 0)
1462			ret = gpio_direction_input(plat->gpio_wp);
1463		if (ret == 0)
1464			host->gpio_wp = plat->gpio_wp;
1465		else if (ret != -ENOSYS)
1466			goto err_gpio_wp;
1467	}
1468
1469	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1470	    && host->gpio_cd_irq < 0)
1471		mmc->caps |= MMC_CAP_NEEDS_POLL;
1472
1473	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
 
1474	if (ret)
1475		goto unmap;
1476
1477	if (!dev->irq[1])
1478		host->singleirq = true;
1479	else {
1480		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1481				  DRIVER_NAME " (pio)", host);
1482		if (ret)
1483			goto irq0_free;
1484	}
1485
1486	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1487
1488	amba_set_drvdata(dev, mmc);
1489
1490	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1491		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1492		 amba_rev(dev), (unsigned long long)dev->res.start,
1493		 dev->irq[0], dev->irq[1]);
1494
1495	mmci_dma_setup(host);
1496
1497	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1498	pm_runtime_use_autosuspend(&dev->dev);
1499	pm_runtime_put(&dev->dev);
1500
1501	mmc_add_host(mmc);
1502
 
1503	return 0;
1504
1505 irq0_free:
1506	free_irq(dev->irq[0], host);
1507 unmap:
1508	if (host->gpio_wp != -ENOSYS)
1509		gpio_free(host->gpio_wp);
1510 err_gpio_wp:
1511	if (host->gpio_cd_irq >= 0)
1512		free_irq(host->gpio_cd_irq, host);
1513	if (host->gpio_cd != -ENOSYS)
1514		gpio_free(host->gpio_cd);
1515 err_gpio_cd:
1516	iounmap(host->base);
1517 clk_disable:
1518	clk_disable(host->clk);
1519 clk_unprep:
1520	clk_unprepare(host->clk);
1521 clk_free:
1522	clk_put(host->clk);
1523 host_free:
1524	mmc_free_host(mmc);
1525 rel_regions:
1526	amba_release_regions(dev);
1527 out:
1528	return ret;
1529}
1530
1531static int __devexit mmci_remove(struct amba_device *dev)
1532{
1533	struct mmc_host *mmc = amba_get_drvdata(dev);
1534
1535	amba_set_drvdata(dev, NULL);
1536
1537	if (mmc) {
1538		struct mmci_host *host = mmc_priv(mmc);
 
1539
1540		/*
1541		 * Undo pm_runtime_put() in probe.  We use the _sync
1542		 * version here so that we can access the primecell.
1543		 */
1544		pm_runtime_get_sync(&dev->dev);
1545
1546		mmc_remove_host(mmc);
1547
1548		writel(0, host->base + MMCIMASK0);
1549		writel(0, host->base + MMCIMASK1);
 
 
1550
1551		writel(0, host->base + MMCICOMMAND);
1552		writel(0, host->base + MMCIDATACTRL);
1553
1554		mmci_dma_release(host);
1555		free_irq(dev->irq[0], host);
1556		if (!host->singleirq)
1557			free_irq(dev->irq[1], host);
1558
1559		if (host->gpio_wp != -ENOSYS)
1560			gpio_free(host->gpio_wp);
1561		if (host->gpio_cd_irq >= 0)
1562			free_irq(host->gpio_cd_irq, host);
1563		if (host->gpio_cd != -ENOSYS)
1564			gpio_free(host->gpio_cd);
1565
1566		iounmap(host->base);
1567		clk_disable(host->clk);
1568		clk_unprepare(host->clk);
1569		clk_put(host->clk);
1570
1571		if (host->vcc)
1572			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1573		regulator_put(host->vcc);
1574
1575		mmc_free_host(mmc);
1576
1577		amba_release_regions(dev);
1578	}
1579
1580	return 0;
1581}
1582
1583#ifdef CONFIG_SUSPEND
1584static int mmci_suspend(struct device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1585{
1586	struct amba_device *adev = to_amba_device(dev);
1587	struct mmc_host *mmc = amba_get_drvdata(adev);
1588	int ret = 0;
1589
1590	if (mmc) {
1591		struct mmci_host *host = mmc_priv(mmc);
1592
1593		ret = mmc_suspend_host(mmc);
1594		if (ret == 0) {
1595			pm_runtime_get_sync(dev);
1596			writel(0, host->base + MMCIMASK0);
1597		}
1598	}
1599
1600	return ret;
1601}
1602
1603static int mmci_resume(struct device *dev)
1604{
1605	struct amba_device *adev = to_amba_device(dev);
1606	struct mmc_host *mmc = amba_get_drvdata(adev);
1607	int ret = 0;
1608
1609	if (mmc) {
1610		struct mmci_host *host = mmc_priv(mmc);
1611
1612		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1613		pm_runtime_put(dev);
1614
1615		ret = mmc_resume_host(mmc);
1616	}
1617
1618	return ret;
1619}
1620#endif
1621
1622static const struct dev_pm_ops mmci_dev_pm_ops = {
1623	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
 
 
1624};
1625
1626static struct amba_id mmci_ids[] = {
1627	{
1628		.id	= 0x00041180,
1629		.mask	= 0xff0fffff,
1630		.data	= &variant_arm,
1631	},
1632	{
1633		.id	= 0x01041180,
1634		.mask	= 0xff0fffff,
1635		.data	= &variant_arm_extended_fifo,
1636	},
1637	{
 
 
 
 
 
1638		.id	= 0x00041181,
1639		.mask	= 0x000fffff,
1640		.data	= &variant_arm,
1641	},
1642	/* ST Micro variants */
1643	{
1644		.id     = 0x00180180,
1645		.mask   = 0x00ffffff,
1646		.data	= &variant_u300,
1647	},
1648	{
1649		.id     = 0x10180180,
1650		.mask   = 0xf0ffffff,
1651		.data	= &variant_nomadik,
1652	},
1653	{
1654		.id     = 0x00280180,
1655		.mask   = 0x00ffffff,
1656		.data	= &variant_u300,
1657	},
1658	{
1659		.id     = 0x00480180,
1660		.mask   = 0xf0ffffff,
1661		.data	= &variant_ux500,
1662	},
1663	{
1664		.id     = 0x10480180,
1665		.mask   = 0xf0ffffff,
1666		.data	= &variant_ux500v2,
1667	},
 
 
 
 
 
 
 
 
 
 
 
1668	{ 0, 0 },
1669};
1670
1671MODULE_DEVICE_TABLE(amba, mmci_ids);
1672
1673static struct amba_driver mmci_driver = {
1674	.drv		= {
1675		.name	= DRIVER_NAME,
1676		.pm	= &mmci_dev_pm_ops,
1677	},
1678	.probe		= mmci_probe,
1679	.remove		= __devexit_p(mmci_remove),
1680	.id_table	= mmci_ids,
1681};
1682
1683module_amba_driver(mmci_driver);
1684
1685module_param(fmax, uint, 0444);
1686
1687MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1688MODULE_LICENSE("GPL");
v4.17
   1/*
   2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   3 *
   4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   5 *  Copyright (C) 2010 ST-Ericsson SA
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/moduleparam.h>
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/device.h>
  16#include <linux/io.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel.h>
  19#include <linux/slab.h>
  20#include <linux/delay.h>
  21#include <linux/err.h>
  22#include <linux/highmem.h>
  23#include <linux/log2.h>
  24#include <linux/mmc/pm.h>
  25#include <linux/mmc/host.h>
  26#include <linux/mmc/card.h>
  27#include <linux/mmc/slot-gpio.h>
  28#include <linux/amba/bus.h>
  29#include <linux/clk.h>
  30#include <linux/scatterlist.h>
  31#include <linux/gpio.h>
  32#include <linux/of_gpio.h>
  33#include <linux/regulator/consumer.h>
  34#include <linux/dmaengine.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/amba/mmci.h>
  37#include <linux/pm_runtime.h>
  38#include <linux/types.h>
  39#include <linux/pinctrl/consumer.h>
  40
  41#include <asm/div64.h>
  42#include <asm/io.h>
 
  43
  44#include "mmci.h"
  45#include "mmci_qcom_dml.h"
  46
  47#define DRIVER_NAME "mmci-pl18x"
  48
  49static unsigned int fmax = 515633;
  50
  51/**
  52 * struct variant_data - MMCI variant-specific quirks
  53 * @clkreg: default value for MCICLOCK register
  54 * @clkreg_enable: enable value for MMCICLOCK register
  55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
  56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
  57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
  58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
  59 *	      is asserted (likewise for RX)
  60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
  61 *		  is asserted (likewise for RX)
  62 * @data_cmd_enable: enable value for data commands.
  63 * @st_sdio: enable ST specific SDIO logic
  64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
  65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
  66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
  67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
  68 *		     register
  69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
  70 * @pwrreg_powerup: power up value for MMCIPOWER register
  71 * @f_max: maximum clk frequency supported by the controller.
  72 * @signal_direction: input/out direction of bus signals can be indicated
  73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
  74 * @busy_detect: true if the variant supports busy detection on DAT0.
  75 * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
  76 * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
  77 *		      indicating that the card is busy
  78 * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
  79 *		      getting busy end detection interrupts
  80 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
  81 * @explicit_mclk_control: enable explicit mclk control in driver.
  82 * @qcom_fifo: enables qcom specific fifo pio read logic.
  83 * @qcom_dml: enables qcom specific dma glue for dma transfers.
  84 * @reversed_irq_handling: handle data irq before cmd irq.
  85 * @mmcimask1: true if variant have a MMCIMASK1 register.
  86 * @start_err: bitmask identifying the STARTBITERR bit inside MMCISTATUS
  87 *	       register.
  88 * @opendrain: bitmask identifying the OPENDRAIN bit inside MMCIPOWER register
  89 */
  90struct variant_data {
  91	unsigned int		clkreg;
  92	unsigned int		clkreg_enable;
  93	unsigned int		clkreg_8bit_bus_enable;
  94	unsigned int		clkreg_neg_edge_enable;
  95	unsigned int		datalength_bits;
  96	unsigned int		fifosize;
  97	unsigned int		fifohalfsize;
  98	unsigned int		data_cmd_enable;
  99	unsigned int		datactrl_mask_ddrmode;
 100	unsigned int		datactrl_mask_sdio;
 101	bool			st_sdio;
 102	bool			st_clkdiv;
 103	bool			blksz_datactrl16;
 104	bool			blksz_datactrl4;
 105	u32			pwrreg_powerup;
 106	u32			f_max;
 107	bool			signal_direction;
 108	bool			pwrreg_clkgate;
 109	bool			busy_detect;
 110	u32			busy_dpsm_flag;
 111	u32			busy_detect_flag;
 112	u32			busy_detect_mask;
 113	bool			pwrreg_nopower;
 114	bool			explicit_mclk_control;
 115	bool			qcom_fifo;
 116	bool			qcom_dml;
 117	bool			reversed_irq_handling;
 118	bool			mmcimask1;
 119	u32			start_err;
 120	u32			opendrain;
 121};
 122
 123static struct variant_data variant_arm = {
 124	.fifosize		= 16 * 4,
 125	.fifohalfsize		= 8 * 4,
 126	.datalength_bits	= 16,
 127	.pwrreg_powerup		= MCI_PWR_UP,
 128	.f_max			= 100000000,
 129	.reversed_irq_handling	= true,
 130	.mmcimask1		= true,
 131	.start_err		= MCI_STARTBITERR,
 132	.opendrain		= MCI_ROD,
 133};
 134
 135static struct variant_data variant_arm_extended_fifo = {
 136	.fifosize		= 128 * 4,
 137	.fifohalfsize		= 64 * 4,
 138	.datalength_bits	= 16,
 139	.pwrreg_powerup		= MCI_PWR_UP,
 140	.f_max			= 100000000,
 141	.mmcimask1		= true,
 142	.start_err		= MCI_STARTBITERR,
 143	.opendrain		= MCI_ROD,
 144};
 145
 146static struct variant_data variant_arm_extended_fifo_hwfc = {
 147	.fifosize		= 128 * 4,
 148	.fifohalfsize		= 64 * 4,
 149	.clkreg_enable		= MCI_ARM_HWFCEN,
 150	.datalength_bits	= 16,
 151	.pwrreg_powerup		= MCI_PWR_UP,
 152	.f_max			= 100000000,
 153	.mmcimask1		= true,
 154	.start_err		= MCI_STARTBITERR,
 155	.opendrain		= MCI_ROD,
 156};
 157
 158static struct variant_data variant_u300 = {
 159	.fifosize		= 16 * 4,
 160	.fifohalfsize		= 8 * 4,
 161	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 162	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 163	.datalength_bits	= 16,
 164	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 165	.st_sdio			= true,
 166	.pwrreg_powerup		= MCI_PWR_ON,
 167	.f_max			= 100000000,
 168	.signal_direction	= true,
 169	.pwrreg_clkgate		= true,
 170	.pwrreg_nopower		= true,
 171	.mmcimask1		= true,
 172	.start_err		= MCI_STARTBITERR,
 173	.opendrain		= MCI_OD,
 174};
 175
 176static struct variant_data variant_nomadik = {
 177	.fifosize		= 16 * 4,
 178	.fifohalfsize		= 8 * 4,
 179	.clkreg			= MCI_CLK_ENABLE,
 180	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 181	.datalength_bits	= 24,
 182	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 183	.st_sdio		= true,
 184	.st_clkdiv		= true,
 185	.pwrreg_powerup		= MCI_PWR_ON,
 186	.f_max			= 100000000,
 187	.signal_direction	= true,
 188	.pwrreg_clkgate		= true,
 189	.pwrreg_nopower		= true,
 190	.mmcimask1		= true,
 191	.start_err		= MCI_STARTBITERR,
 192	.opendrain		= MCI_OD,
 193};
 194
 195static struct variant_data variant_ux500 = {
 196	.fifosize		= 30 * 4,
 197	.fifohalfsize		= 8 * 4,
 198	.clkreg			= MCI_CLK_ENABLE,
 199	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 200	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 201	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 202	.datalength_bits	= 24,
 203	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 204	.st_sdio		= true,
 205	.st_clkdiv		= true,
 206	.pwrreg_powerup		= MCI_PWR_ON,
 207	.f_max			= 100000000,
 208	.signal_direction	= true,
 209	.pwrreg_clkgate		= true,
 210	.busy_detect		= true,
 211	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 212	.busy_detect_flag	= MCI_ST_CARDBUSY,
 213	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 214	.pwrreg_nopower		= true,
 215	.mmcimask1		= true,
 216	.start_err		= MCI_STARTBITERR,
 217	.opendrain		= MCI_OD,
 218};
 219
 220static struct variant_data variant_ux500v2 = {
 221	.fifosize		= 30 * 4,
 222	.fifohalfsize		= 8 * 4,
 223	.clkreg			= MCI_CLK_ENABLE,
 224	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 225	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 226	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 227	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
 228	.datalength_bits	= 24,
 229	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 230	.st_sdio		= true,
 231	.st_clkdiv		= true,
 232	.blksz_datactrl16	= true,
 233	.pwrreg_powerup		= MCI_PWR_ON,
 234	.f_max			= 100000000,
 235	.signal_direction	= true,
 236	.pwrreg_clkgate		= true,
 237	.busy_detect		= true,
 238	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 239	.busy_detect_flag	= MCI_ST_CARDBUSY,
 240	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 241	.pwrreg_nopower		= true,
 242	.mmcimask1		= true,
 243	.start_err		= MCI_STARTBITERR,
 244	.opendrain		= MCI_OD,
 245};
 246
 247static struct variant_data variant_stm32 = {
 248	.fifosize		= 32 * 4,
 249	.fifohalfsize		= 8 * 4,
 250	.clkreg			= MCI_CLK_ENABLE,
 251	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 252	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 253	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 254	.datalength_bits	= 24,
 255	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 256	.st_sdio		= true,
 257	.st_clkdiv		= true,
 258	.pwrreg_powerup		= MCI_PWR_ON,
 259	.f_max			= 48000000,
 260	.pwrreg_clkgate		= true,
 261	.pwrreg_nopower		= true,
 262};
 263
 264static struct variant_data variant_qcom = {
 265	.fifosize		= 16 * 4,
 266	.fifohalfsize		= 8 * 4,
 267	.clkreg			= MCI_CLK_ENABLE,
 268	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
 269				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
 270	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 271	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 272	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
 273	.blksz_datactrl4	= true,
 274	.datalength_bits	= 24,
 275	.pwrreg_powerup		= MCI_PWR_UP,
 276	.f_max			= 208000000,
 277	.explicit_mclk_control	= true,
 278	.qcom_fifo		= true,
 279	.qcom_dml		= true,
 280	.mmcimask1		= true,
 281	.start_err		= MCI_STARTBITERR,
 282	.opendrain		= MCI_ROD,
 283};
 284
 285/* Busy detection for the ST Micro variant */
 286static int mmci_card_busy(struct mmc_host *mmc)
 287{
 288	struct mmci_host *host = mmc_priv(mmc);
 289	unsigned long flags;
 290	int busy = 0;
 291
 292	spin_lock_irqsave(&host->lock, flags);
 293	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
 294		busy = 1;
 295	spin_unlock_irqrestore(&host->lock, flags);
 296
 297	return busy;
 298}
 299
 300/*
 301 * Validate mmc prerequisites
 302 */
 303static int mmci_validate_data(struct mmci_host *host,
 304			      struct mmc_data *data)
 305{
 306	if (!data)
 307		return 0;
 308
 309	if (!is_power_of_2(data->blksz)) {
 310		dev_err(mmc_dev(host->mmc),
 311			"unsupported block size (%d bytes)\n", data->blksz);
 312		return -EINVAL;
 313	}
 314
 315	return 0;
 316}
 317
 318static void mmci_reg_delay(struct mmci_host *host)
 319{
 320	/*
 321	 * According to the spec, at least three feedback clock cycles
 322	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 323	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 324	 * Worst delay time during card init is at 100 kHz => 30 us.
 325	 * Worst delay time when up and running is at 25 MHz => 120 ns.
 326	 */
 327	if (host->cclk < 25000000)
 328		udelay(30);
 329	else
 330		ndelay(120);
 331}
 332
 333/*
 334 * This must be called with host->lock held
 335 */
 336static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 337{
 338	if (host->clk_reg != clk) {
 339		host->clk_reg = clk;
 340		writel(clk, host->base + MMCICLOCK);
 341	}
 342}
 343
 344/*
 345 * This must be called with host->lock held
 346 */
 347static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 348{
 349	if (host->pwr_reg != pwr) {
 350		host->pwr_reg = pwr;
 351		writel(pwr, host->base + MMCIPOWER);
 352	}
 353}
 354
 355/*
 356 * This must be called with host->lock held
 357 */
 358static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 359{
 360	/* Keep busy mode in DPSM if enabled */
 361	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
 362
 363	if (host->datactrl_reg != datactrl) {
 364		host->datactrl_reg = datactrl;
 365		writel(datactrl, host->base + MMCIDATACTRL);
 366	}
 367}
 368
 369/*
 370 * This must be called with host->lock held
 371 */
 372static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 373{
 374	struct variant_data *variant = host->variant;
 375	u32 clk = variant->clkreg;
 376
 377	/* Make sure cclk reflects the current calculated clock */
 378	host->cclk = 0;
 379
 380	if (desired) {
 381		if (variant->explicit_mclk_control) {
 382			host->cclk = host->mclk;
 383		} else if (desired >= host->mclk) {
 384			clk = MCI_CLK_BYPASS;
 385			if (variant->st_clkdiv)
 386				clk |= MCI_ST_UX500_NEG_EDGE;
 387			host->cclk = host->mclk;
 388		} else if (variant->st_clkdiv) {
 389			/*
 390			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 391			 * => clkdiv = (mclk / f) - 2
 392			 * Round the divider up so we don't exceed the max
 393			 * frequency
 394			 */
 395			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 396			if (clk >= 256)
 397				clk = 255;
 398			host->cclk = host->mclk / (clk + 2);
 399		} else {
 400			/*
 401			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 402			 * => clkdiv = mclk / (2 * f) - 1
 403			 */
 404			clk = host->mclk / (2 * desired) - 1;
 405			if (clk >= 256)
 406				clk = 255;
 407			host->cclk = host->mclk / (2 * (clk + 1));
 408		}
 409
 410		clk |= variant->clkreg_enable;
 411		clk |= MCI_CLK_ENABLE;
 412		/* This hasn't proven to be worthwhile */
 413		/* clk |= MCI_CLK_PWRSAVE; */
 414	}
 415
 416	/* Set actual clock for debug */
 417	host->mmc->actual_clock = host->cclk;
 418
 419	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 420		clk |= MCI_4BIT_BUS;
 421	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 422		clk |= variant->clkreg_8bit_bus_enable;
 423
 424	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 425	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 426		clk |= variant->clkreg_neg_edge_enable;
 427
 428	mmci_write_clkreg(host, clk);
 429}
 430
 431static void
 432mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 433{
 434	writel(0, host->base + MMCICOMMAND);
 435
 436	BUG_ON(host->data);
 437
 438	host->mrq = NULL;
 439	host->cmd = NULL;
 440
 441	mmc_request_done(host->mmc, mrq);
 
 
 
 442}
 443
 444static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 445{
 446	void __iomem *base = host->base;
 447	struct variant_data *variant = host->variant;
 448
 449	if (host->singleirq) {
 450		unsigned int mask0 = readl(base + MMCIMASK0);
 451
 452		mask0 &= ~MCI_IRQ1MASK;
 453		mask0 |= mask;
 454
 455		writel(mask0, base + MMCIMASK0);
 456	}
 457
 458	if (variant->mmcimask1)
 459		writel(mask, base + MMCIMASK1);
 460
 461	host->mask1_reg = mask;
 462}
 463
 464static void mmci_stop_data(struct mmci_host *host)
 465{
 466	mmci_write_datactrlreg(host, 0);
 467	mmci_set_mask1(host, 0);
 468	host->data = NULL;
 469}
 470
 471static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 472{
 473	unsigned int flags = SG_MITER_ATOMIC;
 474
 475	if (data->flags & MMC_DATA_READ)
 476		flags |= SG_MITER_TO_SG;
 477	else
 478		flags |= SG_MITER_FROM_SG;
 479
 480	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 481}
 482
 483/*
 484 * All the DMA operation mode stuff goes inside this ifdef.
 485 * This assumes that you have a generic DMA device interface,
 486 * no custom DMA interfaces are supported.
 487 */
 488#ifdef CONFIG_DMA_ENGINE
 489static void mmci_dma_setup(struct mmci_host *host)
 490{
 
 491	const char *rxname, *txname;
 492	struct variant_data *variant = host->variant;
 493
 494	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
 495	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
 
 
 496
 497	/* initialize pre request cookie */
 498	host->next_data.cookie = 1;
 499
 
 
 
 
 500	/*
 501	 * If only an RX channel is specified, the driver will
 502	 * attempt to use it bidirectionally, however if it is
 503	 * is specified but cannot be located, DMA will be disabled.
 504	 */
 505	if (host->dma_rx_channel && !host->dma_tx_channel)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506		host->dma_tx_channel = host->dma_rx_channel;
 
 507
 508	if (host->dma_rx_channel)
 509		rxname = dma_chan_name(host->dma_rx_channel);
 510	else
 511		rxname = "none";
 512
 513	if (host->dma_tx_channel)
 514		txname = dma_chan_name(host->dma_tx_channel);
 515	else
 516		txname = "none";
 517
 518	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 519		 rxname, txname);
 520
 521	/*
 522	 * Limit the maximum segment size in any SG entry according to
 523	 * the parameters of the DMA engine device.
 524	 */
 525	if (host->dma_tx_channel) {
 526		struct device *dev = host->dma_tx_channel->device->dev;
 527		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 528
 529		if (max_seg_size < host->mmc->max_seg_size)
 530			host->mmc->max_seg_size = max_seg_size;
 531	}
 532	if (host->dma_rx_channel) {
 533		struct device *dev = host->dma_rx_channel->device->dev;
 534		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 535
 536		if (max_seg_size < host->mmc->max_seg_size)
 537			host->mmc->max_seg_size = max_seg_size;
 538	}
 539
 540	if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
 541		if (dml_hw_init(host, host->mmc->parent->of_node))
 542			variant->qcom_dml = false;
 543}
 544
 545/*
 546 * This is used in or so inline it
 547 * so it can be discarded.
 548 */
 549static inline void mmci_dma_release(struct mmci_host *host)
 550{
 
 
 551	if (host->dma_rx_channel)
 552		dma_release_channel(host->dma_rx_channel);
 553	if (host->dma_tx_channel)
 554		dma_release_channel(host->dma_tx_channel);
 555	host->dma_rx_channel = host->dma_tx_channel = NULL;
 556}
 557
 558static void mmci_dma_data_error(struct mmci_host *host)
 559{
 560	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 561	dmaengine_terminate_all(host->dma_current);
 562	host->dma_in_progress = false;
 563	host->dma_current = NULL;
 564	host->dma_desc_current = NULL;
 565	host->data->host_cookie = 0;
 566}
 567
 568static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 569{
 570	struct dma_chan *chan;
 571
 572	if (data->flags & MMC_DATA_READ)
 573		chan = host->dma_rx_channel;
 574	else
 575		chan = host->dma_tx_channel;
 576
 577	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
 578		     mmc_get_dma_dir(data));
 579}
 580
 581static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 582{
 583	u32 status;
 584	int i;
 585
 586	/* Wait up to 1ms for the DMA to complete */
 587	for (i = 0; ; i++) {
 588		status = readl(host->base + MMCISTATUS);
 589		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 590			break;
 591		udelay(10);
 592	}
 593
 594	/*
 595	 * Check to see whether we still have some data left in the FIFO -
 596	 * this catches DMA controllers which are unable to monitor the
 597	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 598	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 599	 */
 600	if (status & MCI_RXDATAAVLBLMASK) {
 601		mmci_dma_data_error(host);
 602		if (!data->error)
 603			data->error = -EIO;
 604	}
 605
 
 
 
 
 
 
 606	if (!data->host_cookie)
 607		mmci_dma_unmap(host, data);
 608
 609	/*
 610	 * Use of DMA with scatter-gather is impossible.
 611	 * Give up with DMA and switch back to PIO mode.
 612	 */
 613	if (status & MCI_RXDATAAVLBLMASK) {
 614		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 615		mmci_dma_release(host);
 616	}
 
 617
 618	host->dma_in_progress = false;
 619	host->dma_current = NULL;
 620	host->dma_desc_current = NULL;
 
 621}
 622
 623/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 624static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
 625				struct dma_chan **dma_chan,
 626				struct dma_async_tx_descriptor **dma_desc)
 627{
 628	struct variant_data *variant = host->variant;
 629	struct dma_slave_config conf = {
 630		.src_addr = host->phybase + MMCIFIFO,
 631		.dst_addr = host->phybase + MMCIFIFO,
 632		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 633		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 634		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 635		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 636		.device_fc = false,
 637	};
 638	struct dma_chan *chan;
 639	struct dma_device *device;
 640	struct dma_async_tx_descriptor *desc;
 
 641	int nr_sg;
 642	unsigned long flags = DMA_CTRL_ACK;
 
 
 
 
 
 
 
 
 
 643
 644	if (data->flags & MMC_DATA_READ) {
 645		conf.direction = DMA_DEV_TO_MEM;
 
 646		chan = host->dma_rx_channel;
 647	} else {
 648		conf.direction = DMA_MEM_TO_DEV;
 
 649		chan = host->dma_tx_channel;
 650	}
 651
 652	/* If there's no DMA channel, fall back to PIO */
 653	if (!chan)
 654		return -EINVAL;
 655
 656	/* If less than or equal to the fifo size, don't bother with DMA */
 657	if (data->blksz * data->blocks <= variant->fifosize)
 658		return -EINVAL;
 659
 660	device = chan->device;
 661	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
 662			   mmc_get_dma_dir(data));
 663	if (nr_sg == 0)
 664		return -EINVAL;
 665
 666	if (host->variant->qcom_dml)
 667		flags |= DMA_PREP_INTERRUPT;
 668
 669	dmaengine_slave_config(chan, &conf);
 670	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 671					    conf.direction, flags);
 672	if (!desc)
 673		goto unmap_exit;
 674
 675	*dma_chan = chan;
 676	*dma_desc = desc;
 
 
 
 
 
 677
 678	return 0;
 679
 680 unmap_exit:
 681	dma_unmap_sg(device->dev, data->sg, data->sg_len,
 682		     mmc_get_dma_dir(data));
 
 683	return -ENOMEM;
 684}
 685
 686static inline int mmci_dma_prep_data(struct mmci_host *host,
 687				     struct mmc_data *data)
 688{
 689	/* Check if next job is already prepared. */
 690	if (host->dma_current && host->dma_desc_current)
 691		return 0;
 692
 693	/* No job were prepared thus do it now. */
 694	return __mmci_dma_prep_data(host, data, &host->dma_current,
 695				    &host->dma_desc_current);
 696}
 697
 698static inline int mmci_dma_prep_next(struct mmci_host *host,
 699				     struct mmc_data *data)
 700{
 701	struct mmci_host_next *nd = &host->next_data;
 702	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
 703}
 704
 705static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 706{
 707	int ret;
 708	struct mmc_data *data = host->data;
 709
 710	ret = mmci_dma_prep_data(host, host->data);
 711	if (ret)
 712		return ret;
 713
 714	/* Okay, go for it. */
 715	dev_vdbg(mmc_dev(host->mmc),
 716		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 717		 data->sg_len, data->blksz, data->blocks, data->flags);
 718	host->dma_in_progress = true;
 719	dmaengine_submit(host->dma_desc_current);
 720	dma_async_issue_pending(host->dma_current);
 721
 722	if (host->variant->qcom_dml)
 723		dml_start_xfer(host, data);
 724
 725	datactrl |= MCI_DPSM_DMAENABLE;
 726
 727	/* Trigger the DMA transfer */
 728	mmci_write_datactrlreg(host, datactrl);
 729
 730	/*
 731	 * Let the MMCI say when the data is ended and it's time
 732	 * to fire next DMA request. When that happens, MMCI will
 733	 * call mmci_data_end()
 734	 */
 735	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 736	       host->base + MMCIMASK0);
 737	return 0;
 738}
 739
 740static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 741{
 742	struct mmci_host_next *next = &host->next_data;
 743
 744	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
 745	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
 
 
 
 
 
 
 
 746
 747	host->dma_desc_current = next->dma_desc;
 748	host->dma_current = next->dma_chan;
 
 749	next->dma_desc = NULL;
 750	next->dma_chan = NULL;
 751}
 752
 753static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
 
 754{
 755	struct mmci_host *host = mmc_priv(mmc);
 756	struct mmc_data *data = mrq->data;
 757	struct mmci_host_next *nd = &host->next_data;
 758
 759	if (!data)
 760		return;
 761
 762	BUG_ON(data->host_cookie);
 763
 764	if (mmci_validate_data(host, data))
 765		return;
 
 766
 767	if (!mmci_dma_prep_next(host, data))
 768		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
 
 
 
 
 
 
 769}
 770
 771static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 772			      int err)
 773{
 774	struct mmci_host *host = mmc_priv(mmc);
 775	struct mmc_data *data = mrq->data;
 
 
 776
 777	if (!data || !data->host_cookie)
 778		return;
 779
 780	mmci_dma_unmap(host, data);
 
 
 
 
 
 
 781
 782	if (err) {
 783		struct mmci_host_next *next = &host->next_data;
 784		struct dma_chan *chan;
 785		if (data->flags & MMC_DATA_READ)
 786			chan = host->dma_rx_channel;
 787		else
 788			chan = host->dma_tx_channel;
 789		dmaengine_terminate_all(chan);
 790
 791		if (host->dma_desc_current == next->dma_desc)
 792			host->dma_desc_current = NULL;
 793
 794		if (host->dma_current == next->dma_chan) {
 795			host->dma_in_progress = false;
 796			host->dma_current = NULL;
 797		}
 798
 799		next->dma_desc = NULL;
 800		next->dma_chan = NULL;
 801		data->host_cookie = 0;
 802	}
 803}
 804
 805#else
 806/* Blank functions if the DMA engine is not available */
 807static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 808{
 809}
 810static inline void mmci_dma_setup(struct mmci_host *host)
 811{
 812}
 813
 814static inline void mmci_dma_release(struct mmci_host *host)
 815{
 816}
 817
 818static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 819{
 820}
 821
 822static inline void mmci_dma_finalize(struct mmci_host *host,
 823				     struct mmc_data *data)
 824{
 825}
 826
 827static inline void mmci_dma_data_error(struct mmci_host *host)
 828{
 829}
 830
 831static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 832{
 833	return -ENOSYS;
 834}
 835
 836#define mmci_pre_request NULL
 837#define mmci_post_request NULL
 838
 839#endif
 840
 841static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 842{
 843	struct variant_data *variant = host->variant;
 844	unsigned int datactrl, timeout, irqmask;
 845	unsigned long long clks;
 846	void __iomem *base;
 847	int blksz_bits;
 848
 849	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 850		data->blksz, data->blocks, data->flags);
 851
 852	host->data = data;
 853	host->size = data->blksz * data->blocks;
 854	data->bytes_xfered = 0;
 855
 856	clks = (unsigned long long)data->timeout_ns * host->cclk;
 857	do_div(clks, NSEC_PER_SEC);
 858
 859	timeout = data->timeout_clks + (unsigned int)clks;
 860
 861	base = host->base;
 862	writel(timeout, base + MMCIDATATIMER);
 863	writel(host->size, base + MMCIDATALENGTH);
 864
 865	blksz_bits = ffs(data->blksz) - 1;
 866	BUG_ON(1 << blksz_bits != data->blksz);
 867
 868	if (variant->blksz_datactrl16)
 869		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
 870	else if (variant->blksz_datactrl4)
 871		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
 872	else
 873		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
 874
 875	if (data->flags & MMC_DATA_READ)
 876		datactrl |= MCI_DPSM_DIRECTION;
 877
 878	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
 879		u32 clk;
 880
 881		datactrl |= variant->datactrl_mask_sdio;
 882
 883		/*
 884		 * The ST Micro variant for SDIO small write transfers
 885		 * needs to have clock H/W flow control disabled,
 886		 * otherwise the transfer will not start. The threshold
 887		 * depends on the rate of MCLK.
 888		 */
 889		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
 890		    (host->size < 8 ||
 891		     (host->size <= 8 && host->mclk > 50000000)))
 892			clk = host->clk_reg & ~variant->clkreg_enable;
 893		else
 894			clk = host->clk_reg | variant->clkreg_enable;
 895
 896		mmci_write_clkreg(host, clk);
 897	}
 898
 899	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 900	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 901		datactrl |= variant->datactrl_mask_ddrmode;
 902
 903	/*
 904	 * Attempt to use DMA operation mode, if this
 905	 * should fail, fall back to PIO mode
 906	 */
 907	if (!mmci_dma_start_data(host, datactrl))
 908		return;
 909
 910	/* IRQ mode, map the SG list for CPU reading/writing */
 911	mmci_init_sg(host, data);
 912
 913	if (data->flags & MMC_DATA_READ) {
 914		irqmask = MCI_RXFIFOHALFFULLMASK;
 915
 916		/*
 917		 * If we have less than the fifo 'half-full' threshold to
 918		 * transfer, trigger a PIO interrupt as soon as any data
 919		 * is available.
 920		 */
 921		if (host->size < variant->fifohalfsize)
 922			irqmask |= MCI_RXDATAAVLBLMASK;
 923	} else {
 924		/*
 925		 * We don't actually need to include "FIFO empty" here
 926		 * since its implicit in "FIFO half empty".
 927		 */
 928		irqmask = MCI_TXFIFOHALFEMPTYMASK;
 929	}
 930
 931	mmci_write_datactrlreg(host, datactrl);
 932	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
 933	mmci_set_mask1(host, irqmask);
 934}
 935
 936static void
 937mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
 938{
 939	void __iomem *base = host->base;
 940
 941	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
 942	    cmd->opcode, cmd->arg, cmd->flags);
 943
 944	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
 945		writel(0, base + MMCICOMMAND);
 946		mmci_reg_delay(host);
 947	}
 948
 949	c |= cmd->opcode | MCI_CPSM_ENABLE;
 950	if (cmd->flags & MMC_RSP_PRESENT) {
 951		if (cmd->flags & MMC_RSP_136)
 952			c |= MCI_CPSM_LONGRSP;
 953		c |= MCI_CPSM_RESPONSE;
 954	}
 955	if (/*interrupt*/0)
 956		c |= MCI_CPSM_INTERRUPT;
 957
 958	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
 959		c |= host->variant->data_cmd_enable;
 960
 961	host->cmd = cmd;
 962
 963	writel(cmd->arg, base + MMCIARGUMENT);
 964	writel(c, base + MMCICOMMAND);
 965}
 966
 967static void
 968mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
 969	      unsigned int status)
 970{
 971	/* Make sure we have data to handle */
 972	if (!data)
 973		return;
 974
 975	/* First check for errors */
 976	if (status & (MCI_DATACRCFAIL | MCI_DATATIMEOUT |
 977		      host->variant->start_err |
 978		      MCI_TXUNDERRUN | MCI_RXOVERRUN)) {
 979		u32 remain, success;
 980
 981		/* Terminate the DMA transfer */
 982		if (dma_inprogress(host)) {
 983			mmci_dma_data_error(host);
 984			mmci_dma_unmap(host, data);
 985		}
 986
 987		/*
 988		 * Calculate how far we are into the transfer.  Note that
 989		 * the data counter gives the number of bytes transferred
 990		 * on the MMC bus, not on the host side.  On reads, this
 991		 * can be as much as a FIFO-worth of data ahead.  This
 992		 * matters for FIFO overruns only.
 993		 */
 994		remain = readl(host->base + MMCIDATACNT);
 995		success = data->blksz * data->blocks - remain;
 996
 997		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
 998			status, success);
 999		if (status & MCI_DATACRCFAIL) {
1000			/* Last block was not successful */
1001			success -= 1;
1002			data->error = -EILSEQ;
1003		} else if (status & MCI_DATATIMEOUT) {
1004			data->error = -ETIMEDOUT;
1005		} else if (status & MCI_STARTBITERR) {
1006			data->error = -ECOMM;
1007		} else if (status & MCI_TXUNDERRUN) {
1008			data->error = -EIO;
1009		} else if (status & MCI_RXOVERRUN) {
1010			if (success > host->variant->fifosize)
1011				success -= host->variant->fifosize;
1012			else
1013				success = 0;
1014			data->error = -EIO;
1015		}
1016		data->bytes_xfered = round_down(success, data->blksz);
1017	}
1018
1019	if (status & MCI_DATABLOCKEND)
1020		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1021
1022	if (status & MCI_DATAEND || data->error) {
1023		if (dma_inprogress(host))
1024			mmci_dma_finalize(host, data);
1025		mmci_stop_data(host);
1026
1027		if (!data->error)
1028			/* The error clause is handled above, success! */
1029			data->bytes_xfered = data->blksz * data->blocks;
1030
1031		if (!data->stop || host->mrq->sbc) {
1032			mmci_request_end(host, data->mrq);
1033		} else {
1034			mmci_start_command(host, data->stop, 0);
1035		}
1036	}
1037}
1038
1039static void
1040mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1041	     unsigned int status)
1042{
1043	void __iomem *base = host->base;
1044	bool sbc;
1045
1046	if (!cmd)
1047		return;
1048
1049	sbc = (cmd == host->mrq->sbc);
1050
1051	/*
1052	 * We need to be one of these interrupts to be considered worth
1053	 * handling. Note that we tag on any latent IRQs postponed
1054	 * due to waiting for busy status.
1055	 */
1056	if (!((status|host->busy_status) &
1057	      (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1058		return;
1059
1060	/*
1061	 * ST Micro variant: handle busy detection.
1062	 */
1063	if (host->variant->busy_detect) {
1064		bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1065
1066		/* We are busy with a command, return */
1067		if (host->busy_status &&
1068		    (status & host->variant->busy_detect_flag))
1069			return;
1070
1071		/*
1072		 * We were not busy, but we now got a busy response on
1073		 * something that was not an error, and we double-check
1074		 * that the special busy status bit is still set before
1075		 * proceeding.
1076		 */
1077		if (!host->busy_status && busy_resp &&
1078		    !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1079		    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1080
1081			/* Clear the busy start IRQ */
1082			writel(host->variant->busy_detect_mask,
1083			       host->base + MMCICLEAR);
1084
1085			/* Unmask the busy end IRQ */
1086			writel(readl(base + MMCIMASK0) |
1087			       host->variant->busy_detect_mask,
1088			       base + MMCIMASK0);
1089			/*
1090			 * Now cache the last response status code (until
1091			 * the busy bit goes low), and return.
1092			 */
1093			host->busy_status =
1094				status & (MCI_CMDSENT|MCI_CMDRESPEND);
1095			return;
1096		}
1097
1098		/*
1099		 * At this point we are not busy with a command, we have
1100		 * not received a new busy request, clear and mask the busy
1101		 * end IRQ and fall through to process the IRQ.
1102		 */
1103		if (host->busy_status) {
1104
1105			writel(host->variant->busy_detect_mask,
1106			       host->base + MMCICLEAR);
1107
1108			writel(readl(base + MMCIMASK0) &
1109			       ~host->variant->busy_detect_mask,
1110			       base + MMCIMASK0);
1111			host->busy_status = 0;
1112		}
1113	}
1114
1115	host->cmd = NULL;
1116
1117	if (status & MCI_CMDTIMEOUT) {
1118		cmd->error = -ETIMEDOUT;
1119	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1120		cmd->error = -EILSEQ;
1121	} else {
1122		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1123		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1124		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1125		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1126	}
1127
1128	if ((!sbc && !cmd->data) || cmd->error) {
1129		if (host->data) {
1130			/* Terminate the DMA transfer */
1131			if (dma_inprogress(host)) {
1132				mmci_dma_data_error(host);
1133				mmci_dma_unmap(host, host->data);
1134			}
1135			mmci_stop_data(host);
1136		}
1137		mmci_request_end(host, host->mrq);
1138	} else if (sbc) {
1139		mmci_start_command(host, host->mrq->cmd, 0);
1140	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
1141		mmci_start_data(host, cmd->data);
1142	}
1143}
1144
1145static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1146{
1147	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1148}
1149
1150static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1151{
1152	/*
1153	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1154	 * from the fifo range should be used
1155	 */
1156	if (status & MCI_RXFIFOHALFFULL)
1157		return host->variant->fifohalfsize;
1158	else if (status & MCI_RXDATAAVLBL)
1159		return 4;
1160
1161	return 0;
1162}
1163
1164static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1165{
1166	void __iomem *base = host->base;
1167	char *ptr = buffer;
1168	u32 status = readl(host->base + MMCISTATUS);
1169	int host_remain = host->size;
1170
1171	do {
1172		int count = host->get_rx_fifocnt(host, status, host_remain);
1173
1174		if (count > remain)
1175			count = remain;
1176
1177		if (count <= 0)
1178			break;
1179
1180		/*
1181		 * SDIO especially may want to send something that is
1182		 * not divisible by 4 (as opposed to card sectors
1183		 * etc). Therefore make sure to always read the last bytes
1184		 * while only doing full 32-bit reads towards the FIFO.
1185		 */
1186		if (unlikely(count & 0x3)) {
1187			if (count < 4) {
1188				unsigned char buf[4];
1189				ioread32_rep(base + MMCIFIFO, buf, 1);
1190				memcpy(ptr, buf, count);
1191			} else {
1192				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1193				count &= ~0x3;
1194			}
1195		} else {
1196			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1197		}
1198
1199		ptr += count;
1200		remain -= count;
1201		host_remain -= count;
1202
1203		if (remain == 0)
1204			break;
1205
1206		status = readl(base + MMCISTATUS);
1207	} while (status & MCI_RXDATAAVLBL);
1208
1209	return ptr - buffer;
1210}
1211
1212static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1213{
1214	struct variant_data *variant = host->variant;
1215	void __iomem *base = host->base;
1216	char *ptr = buffer;
1217
1218	do {
1219		unsigned int count, maxcnt;
1220
1221		maxcnt = status & MCI_TXFIFOEMPTY ?
1222			 variant->fifosize : variant->fifohalfsize;
1223		count = min(remain, maxcnt);
1224
1225		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1226		 * SDIO especially may want to send something that is
1227		 * not divisible by 4 (as opposed to card sectors
1228		 * etc), and the FIFO only accept full 32-bit writes.
1229		 * So compensate by adding +3 on the count, a single
1230		 * byte become a 32bit write, 7 bytes will be two
1231		 * 32bit writes etc.
1232		 */
1233		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1234
1235		ptr += count;
1236		remain -= count;
1237
1238		if (remain == 0)
1239			break;
1240
1241		status = readl(base + MMCISTATUS);
1242	} while (status & MCI_TXFIFOHALFEMPTY);
1243
1244	return ptr - buffer;
1245}
1246
1247/*
1248 * PIO data transfer IRQ handler.
1249 */
1250static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1251{
1252	struct mmci_host *host = dev_id;
1253	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1254	struct variant_data *variant = host->variant;
1255	void __iomem *base = host->base;
1256	unsigned long flags;
1257	u32 status;
1258
1259	status = readl(base + MMCISTATUS);
1260
1261	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1262
1263	local_irq_save(flags);
1264
1265	do {
1266		unsigned int remain, len;
1267		char *buffer;
1268
1269		/*
1270		 * For write, we only need to test the half-empty flag
1271		 * here - if the FIFO is completely empty, then by
1272		 * definition it is more than half empty.
1273		 *
1274		 * For read, check for data available.
1275		 */
1276		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1277			break;
1278
1279		if (!sg_miter_next(sg_miter))
1280			break;
1281
1282		buffer = sg_miter->addr;
1283		remain = sg_miter->length;
1284
1285		len = 0;
1286		if (status & MCI_RXACTIVE)
1287			len = mmci_pio_read(host, buffer, remain);
1288		if (status & MCI_TXACTIVE)
1289			len = mmci_pio_write(host, buffer, remain, status);
1290
1291		sg_miter->consumed = len;
1292
1293		host->size -= len;
1294		remain -= len;
1295
1296		if (remain)
1297			break;
1298
1299		status = readl(base + MMCISTATUS);
1300	} while (1);
1301
1302	sg_miter_stop(sg_miter);
1303
1304	local_irq_restore(flags);
1305
1306	/*
1307	 * If we have less than the fifo 'half-full' threshold to transfer,
1308	 * trigger a PIO interrupt as soon as any data is available.
1309	 */
1310	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1311		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1312
1313	/*
1314	 * If we run out of data, disable the data IRQs; this
1315	 * prevents a race where the FIFO becomes empty before
1316	 * the chip itself has disabled the data path, and
1317	 * stops us racing with our data end IRQ.
1318	 */
1319	if (host->size == 0) {
1320		mmci_set_mask1(host, 0);
1321		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1322	}
1323
1324	return IRQ_HANDLED;
1325}
1326
1327/*
1328 * Handle completion of command and data transfers.
1329 */
1330static irqreturn_t mmci_irq(int irq, void *dev_id)
1331{
1332	struct mmci_host *host = dev_id;
1333	u32 status;
1334	int ret = 0;
1335
1336	spin_lock(&host->lock);
1337
1338	do {
 
 
 
1339		status = readl(host->base + MMCISTATUS);
1340
1341		if (host->singleirq) {
1342			if (status & host->mask1_reg)
1343				mmci_pio_irq(irq, dev_id);
1344
1345			status &= ~MCI_IRQ1MASK;
1346		}
1347
1348		/*
1349		 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1350		 * enabled) in mmci_cmd_irq() function where ST Micro busy
1351		 * detection variant is handled. Considering the HW seems to be
1352		 * triggering the IRQ on both edges while monitoring DAT0 for
1353		 * busy completion and that same status bit is used to monitor
1354		 * start and end of busy detection, special care must be taken
1355		 * to make sure that both start and end interrupts are always
1356		 * cleared one after the other.
1357		 */
1358		status &= readl(host->base + MMCIMASK0);
1359		if (host->variant->busy_detect)
1360			writel(status & ~host->variant->busy_detect_mask,
1361			       host->base + MMCICLEAR);
1362		else
1363			writel(status, host->base + MMCICLEAR);
1364
1365		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1366
1367		if (host->variant->reversed_irq_handling) {
1368			mmci_data_irq(host, host->data, status);
1369			mmci_cmd_irq(host, host->cmd, status);
1370		} else {
1371			mmci_cmd_irq(host, host->cmd, status);
1372			mmci_data_irq(host, host->data, status);
1373		}
1374
1375		/*
1376		 * Don't poll for busy completion in irq context.
1377		 */
1378		if (host->variant->busy_detect && host->busy_status)
1379			status &= ~host->variant->busy_detect_flag;
1380
1381		ret = 1;
1382	} while (status);
1383
1384	spin_unlock(&host->lock);
1385
1386	return IRQ_RETVAL(ret);
1387}
1388
1389static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1390{
1391	struct mmci_host *host = mmc_priv(mmc);
1392	unsigned long flags;
1393
1394	WARN_ON(host->mrq != NULL);
1395
1396	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1397	if (mrq->cmd->error) {
 
 
1398		mmc_request_done(mmc, mrq);
1399		return;
1400	}
1401
 
 
1402	spin_lock_irqsave(&host->lock, flags);
1403
1404	host->mrq = mrq;
1405
1406	if (mrq->data)
1407		mmci_get_next_data(host, mrq->data);
1408
1409	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1410		mmci_start_data(host, mrq->data);
1411
1412	if (mrq->sbc)
1413		mmci_start_command(host, mrq->sbc, 0);
1414	else
1415		mmci_start_command(host, mrq->cmd, 0);
1416
1417	spin_unlock_irqrestore(&host->lock, flags);
1418}
1419
1420static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1421{
1422	struct mmci_host *host = mmc_priv(mmc);
1423	struct variant_data *variant = host->variant;
1424	u32 pwr = 0;
1425	unsigned long flags;
1426	int ret;
1427
 
 
1428	if (host->plat->ios_handler &&
1429		host->plat->ios_handler(mmc_dev(mmc), ios))
1430			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1431
1432	switch (ios->power_mode) {
1433	case MMC_POWER_OFF:
1434		if (!IS_ERR(mmc->supply.vmmc))
1435			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1436
1437		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1438			regulator_disable(mmc->supply.vqmmc);
1439			host->vqmmc_enabled = false;
1440		}
1441
1442		break;
1443	case MMC_POWER_UP:
1444		if (!IS_ERR(mmc->supply.vmmc))
1445			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1446
 
 
 
 
 
 
 
 
 
 
1447		/*
1448		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1449		 * and instead uses MCI_PWR_ON so apply whatever value is
1450		 * configured in the variant data.
1451		 */
1452		pwr |= variant->pwrreg_powerup;
1453
1454		break;
1455	case MMC_POWER_ON:
1456		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1457			ret = regulator_enable(mmc->supply.vqmmc);
1458			if (ret < 0)
1459				dev_err(mmc_dev(mmc),
1460					"failed to enable vqmmc regulator\n");
1461			else
1462				host->vqmmc_enabled = true;
1463		}
1464
1465		pwr |= MCI_PWR_ON;
1466		break;
1467	}
1468
1469	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1470		/*
1471		 * The ST Micro variant has some additional bits
1472		 * indicating signal direction for the signals in
1473		 * the SD/MMC bus and feedback-clock usage.
1474		 */
1475		pwr |= host->pwr_reg_add;
1476
1477		if (ios->bus_width == MMC_BUS_WIDTH_4)
1478			pwr &= ~MCI_ST_DATA74DIREN;
1479		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1480			pwr &= (~MCI_ST_DATA74DIREN &
1481				~MCI_ST_DATA31DIREN &
1482				~MCI_ST_DATA2DIREN);
1483	}
1484
1485	if (variant->opendrain) {
1486		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1487			pwr |= variant->opendrain;
1488	} else {
1489		/*
1490		 * If the variant cannot configure the pads by its own, then we
1491		 * expect the pinctrl to be able to do that for us
1492		 */
1493		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1494			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1495		else
1496			pinctrl_select_state(host->pinctrl, host->pins_default);
1497	}
1498
1499	/*
1500	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1501	 * gating the clock, the MCI_PWR_ON bit is cleared.
1502	 */
1503	if (!ios->clock && variant->pwrreg_clkgate)
1504		pwr &= ~MCI_PWR_ON;
1505
1506	if (host->variant->explicit_mclk_control &&
1507	    ios->clock != host->clock_cache) {
1508		ret = clk_set_rate(host->clk, ios->clock);
1509		if (ret < 0)
1510			dev_err(mmc_dev(host->mmc),
1511				"Error setting clock rate (%d)\n", ret);
1512		else
1513			host->mclk = clk_get_rate(host->clk);
1514	}
1515	host->clock_cache = ios->clock;
1516
1517	spin_lock_irqsave(&host->lock, flags);
1518
1519	mmci_set_clkreg(host, ios->clock);
1520	mmci_write_pwrreg(host, pwr);
1521	mmci_reg_delay(host);
1522
1523	spin_unlock_irqrestore(&host->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1524}
1525
1526static int mmci_get_cd(struct mmc_host *mmc)
1527{
1528	struct mmci_host *host = mmc_priv(mmc);
1529	struct mmci_platform_data *plat = host->plat;
1530	unsigned int status = mmc_gpio_get_cd(mmc);
1531
1532	if (status == -ENOSYS) {
1533		if (!plat->status)
1534			return 1; /* Assume always present */
1535
1536		status = plat->status(mmc_dev(host->mmc));
1537	}
 
 
 
 
 
 
 
1538	return status;
1539}
1540
1541static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1542{
1543	int ret = 0;
1544
1545	if (!IS_ERR(mmc->supply.vqmmc)) {
1546
1547		switch (ios->signal_voltage) {
1548		case MMC_SIGNAL_VOLTAGE_330:
1549			ret = regulator_set_voltage(mmc->supply.vqmmc,
1550						2700000, 3600000);
1551			break;
1552		case MMC_SIGNAL_VOLTAGE_180:
1553			ret = regulator_set_voltage(mmc->supply.vqmmc,
1554						1700000, 1950000);
1555			break;
1556		case MMC_SIGNAL_VOLTAGE_120:
1557			ret = regulator_set_voltage(mmc->supply.vqmmc,
1558						1100000, 1300000);
1559			break;
1560		}
1561
1562		if (ret)
1563			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1564	}
1565
1566	return ret;
1567}
1568
1569static struct mmc_host_ops mmci_ops = {
1570	.request	= mmci_request,
1571	.pre_req	= mmci_pre_request,
1572	.post_req	= mmci_post_request,
1573	.set_ios	= mmci_set_ios,
1574	.get_ro		= mmc_gpio_get_ro,
1575	.get_cd		= mmci_get_cd,
1576	.start_signal_voltage_switch = mmci_sig_volt_switch,
1577};
1578
1579static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
 
 
1580{
1581	struct mmci_host *host = mmc_priv(mmc);
1582	int ret = mmc_of_parse(mmc);
 
 
1583
1584	if (ret)
1585		return ret;
 
 
1586
1587	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1588		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1589	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1590		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1591	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1592		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1593	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1594		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1595	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1596		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1597	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1598		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1599
1600	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1601		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1602	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1603		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1604
1605	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1606}
 
1607
1608static int mmci_probe(struct amba_device *dev,
1609	const struct amba_id *id)
1610{
1611	struct mmci_platform_data *plat = dev->dev.platform_data;
1612	struct device_node *np = dev->dev.of_node;
1613	struct variant_data *variant = id->data;
1614	struct mmci_host *host;
1615	struct mmc_host *mmc;
1616	int ret;
1617
1618	/* Must have platform data or Device Tree. */
1619	if (!plat && !np) {
1620		dev_err(&dev->dev, "No plat data or DT found\n");
1621		return -EINVAL;
1622	}
1623
1624	if (!plat) {
1625		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1626		if (!plat)
1627			return -ENOMEM;
1628	}
1629
1630	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1631	if (!mmc)
1632		return -ENOMEM;
1633
1634	ret = mmci_of_parse(np, mmc);
1635	if (ret)
1636		goto host_free;
 
 
 
 
 
 
1637
1638	host = mmc_priv(mmc);
1639	host->mmc = mmc;
1640
1641	/*
1642	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1643	 * pins can be set accordingly using pinctrl
1644	 */
1645	if (!variant->opendrain) {
1646		host->pinctrl = devm_pinctrl_get(&dev->dev);
1647		if (IS_ERR(host->pinctrl)) {
1648			dev_err(&dev->dev, "failed to get pinctrl");
1649			ret = PTR_ERR(host->pinctrl);
1650			goto host_free;
1651		}
1652
1653		host->pins_default = pinctrl_lookup_state(host->pinctrl,
1654							  PINCTRL_STATE_DEFAULT);
1655		if (IS_ERR(host->pins_default)) {
1656			dev_err(mmc_dev(mmc), "Can't select default pins\n");
1657			ret = PTR_ERR(host->pins_default);
1658			goto host_free;
1659		}
1660
1661		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1662							    MMCI_PINCTRL_STATE_OPENDRAIN);
1663		if (IS_ERR(host->pins_opendrain)) {
1664			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1665			ret = PTR_ERR(host->pins_opendrain);
1666			goto host_free;
1667		}
1668	}
1669
1670	host->hw_designer = amba_manf(dev);
1671	host->hw_revision = amba_rev(dev);
1672	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1673	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1674
1675	host->clk = devm_clk_get(&dev->dev, NULL);
1676	if (IS_ERR(host->clk)) {
1677		ret = PTR_ERR(host->clk);
 
1678		goto host_free;
1679	}
1680
1681	ret = clk_prepare_enable(host->clk);
1682	if (ret)
1683		goto host_free;
1684
1685	if (variant->qcom_fifo)
1686		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1687	else
1688		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1689
1690	host->plat = plat;
1691	host->variant = variant;
1692	host->mclk = clk_get_rate(host->clk);
1693	/*
1694	 * According to the spec, mclk is max 100 MHz,
1695	 * so we try to adjust the clock down to this,
1696	 * (if possible).
1697	 */
1698	if (host->mclk > variant->f_max) {
1699		ret = clk_set_rate(host->clk, variant->f_max);
1700		if (ret < 0)
1701			goto clk_disable;
1702		host->mclk = clk_get_rate(host->clk);
1703		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1704			host->mclk);
1705	}
1706
1707	host->phybase = dev->res.start;
1708	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1709	if (IS_ERR(host->base)) {
1710		ret = PTR_ERR(host->base);
1711		goto clk_disable;
1712	}
1713
 
1714	/*
1715	 * The ARM and ST versions of the block have slightly different
1716	 * clock divider equations which means that the minimum divider
1717	 * differs too.
1718	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1719	 */
1720	if (variant->st_clkdiv)
1721		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1722	else if (variant->explicit_mclk_control)
1723		mmc->f_min = clk_round_rate(host->clk, 100000);
1724	else
1725		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1726	/*
1727	 * If no maximum operating frequency is supplied, fall back to use
1728	 * the module parameter, which has a (low) default value in case it
1729	 * is not specified. Either value must not exceed the clock rate into
1730	 * the block, of course.
 
 
1731	 */
1732	if (mmc->f_max)
1733		mmc->f_max = variant->explicit_mclk_control ?
1734				min(variant->f_max, mmc->f_max) :
1735				min(host->mclk, mmc->f_max);
1736	else
1737		mmc->f_max = variant->explicit_mclk_control ?
1738				fmax : min(host->mclk, fmax);
1739
1740
1741	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1742
1743	/* Get regulators and the supported OCR mask */
1744	ret = mmc_regulator_get_supply(mmc);
1745	if (ret)
1746		goto clk_disable;
 
 
 
1747
1748	if (!mmc->ocr_avail)
 
 
 
 
 
 
 
 
 
 
 
 
 
1749		mmc->ocr_avail = plat->ocr_mask;
1750	else if (plat->ocr_mask)
1751		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1752
1753	/* DT takes precedence over platform data. */
1754	if (!np) {
1755		if (!plat->cd_invert)
1756			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1757		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1758	}
1759
1760	/* We support these capabilities. */
1761	mmc->caps |= MMC_CAP_CMD23;
1762
1763	/*
1764	 * Enable busy detection.
1765	 */
1766	if (variant->busy_detect) {
1767		mmci_ops.card_busy = mmci_card_busy;
1768		/*
1769		 * Not all variants have a flag to enable busy detection
1770		 * in the DPSM, but if they do, set it here.
1771		 */
1772		if (variant->busy_dpsm_flag)
1773			mmci_write_datactrlreg(host,
1774					       host->variant->busy_dpsm_flag);
1775		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1776		mmc->max_busy_timeout = 0;
1777	}
1778
1779	mmc->ops = &mmci_ops;
1780
1781	/* We support these PM capabilities. */
1782	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1783
1784	/*
1785	 * We can do SGIO
1786	 */
1787	mmc->max_segs = NR_SG;
1788
1789	/*
1790	 * Since only a certain number of bits are valid in the data length
1791	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1792	 * single request.
1793	 */
1794	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1795
1796	/*
1797	 * Set the maximum segment size.  Since we aren't doing DMA
1798	 * (yet) we are only limited by the data length register.
1799	 */
1800	mmc->max_seg_size = mmc->max_req_size;
1801
1802	/*
1803	 * Block size can be up to 2048 bytes, but must be a power of two.
1804	 */
1805	mmc->max_blk_size = 1 << 11;
1806
1807	/*
1808	 * Limit the number of blocks transferred so that we don't overflow
1809	 * the maximum request size.
1810	 */
1811	mmc->max_blk_count = mmc->max_req_size >> 11;
1812
1813	spin_lock_init(&host->lock);
1814
1815	writel(0, host->base + MMCIMASK0);
1816
1817	if (variant->mmcimask1)
1818		writel(0, host->base + MMCIMASK1);
1819
1820	writel(0xfff, host->base + MMCICLEAR);
1821
1822	/*
1823	 * If:
1824	 * - not using DT but using a descriptor table, or
1825	 * - using a table of descriptors ALONGSIDE DT, or
1826	 * look up these descriptors named "cd" and "wp" right here, fail
1827	 * silently of these do not exist and proceed to try platform data
1828	 */
1829	if (!np) {
1830		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1831		if (ret < 0) {
1832			if (ret == -EPROBE_DEFER)
1833				goto clk_disable;
1834			else if (gpio_is_valid(plat->gpio_cd)) {
1835				ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1836				if (ret)
1837					goto clk_disable;
1838			}
1839		}
1840
1841		ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1842		if (ret < 0) {
1843			if (ret == -EPROBE_DEFER)
1844				goto clk_disable;
1845			else if (gpio_is_valid(plat->gpio_wp)) {
1846				ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1847				if (ret)
1848					goto clk_disable;
1849			}
1850		}
1851	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1852
1853	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1854			DRIVER_NAME " (cmd)", host);
1855	if (ret)
1856		goto clk_disable;
1857
1858	if (!dev->irq[1])
1859		host->singleirq = true;
1860	else {
1861		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1862				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1863		if (ret)
1864			goto clk_disable;
1865	}
1866
1867	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1868
1869	amba_set_drvdata(dev, mmc);
1870
1871	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1872		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1873		 amba_rev(dev), (unsigned long long)dev->res.start,
1874		 dev->irq[0], dev->irq[1]);
1875
1876	mmci_dma_setup(host);
1877
1878	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1879	pm_runtime_use_autosuspend(&dev->dev);
 
1880
1881	mmc_add_host(mmc);
1882
1883	pm_runtime_put(&dev->dev);
1884	return 0;
1885
 
 
 
 
 
 
 
 
 
 
 
 
1886 clk_disable:
1887	clk_disable_unprepare(host->clk);
 
 
 
 
1888 host_free:
1889	mmc_free_host(mmc);
 
 
 
1890	return ret;
1891}
1892
1893static int mmci_remove(struct amba_device *dev)
1894{
1895	struct mmc_host *mmc = amba_get_drvdata(dev);
1896
 
 
1897	if (mmc) {
1898		struct mmci_host *host = mmc_priv(mmc);
1899		struct variant_data *variant = host->variant;
1900
1901		/*
1902		 * Undo pm_runtime_put() in probe.  We use the _sync
1903		 * version here so that we can access the primecell.
1904		 */
1905		pm_runtime_get_sync(&dev->dev);
1906
1907		mmc_remove_host(mmc);
1908
1909		writel(0, host->base + MMCIMASK0);
1910
1911		if (variant->mmcimask1)
1912			writel(0, host->base + MMCIMASK1);
1913
1914		writel(0, host->base + MMCICOMMAND);
1915		writel(0, host->base + MMCIDATACTRL);
1916
1917		mmci_dma_release(host);
1918		clk_disable_unprepare(host->clk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1919		mmc_free_host(mmc);
 
 
1920	}
1921
1922	return 0;
1923}
1924
1925#ifdef CONFIG_PM
1926static void mmci_save(struct mmci_host *host)
1927{
1928	unsigned long flags;
1929
1930	spin_lock_irqsave(&host->lock, flags);
1931
1932	writel(0, host->base + MMCIMASK0);
1933	if (host->variant->pwrreg_nopower) {
1934		writel(0, host->base + MMCIDATACTRL);
1935		writel(0, host->base + MMCIPOWER);
1936		writel(0, host->base + MMCICLOCK);
1937	}
1938	mmci_reg_delay(host);
1939
1940	spin_unlock_irqrestore(&host->lock, flags);
1941}
1942
1943static void mmci_restore(struct mmci_host *host)
1944{
1945	unsigned long flags;
1946
1947	spin_lock_irqsave(&host->lock, flags);
1948
1949	if (host->variant->pwrreg_nopower) {
1950		writel(host->clk_reg, host->base + MMCICLOCK);
1951		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1952		writel(host->pwr_reg, host->base + MMCIPOWER);
1953	}
1954	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1955	mmci_reg_delay(host);
1956
1957	spin_unlock_irqrestore(&host->lock, flags);
1958}
1959
1960static int mmci_runtime_suspend(struct device *dev)
1961{
1962	struct amba_device *adev = to_amba_device(dev);
1963	struct mmc_host *mmc = amba_get_drvdata(adev);
 
1964
1965	if (mmc) {
1966		struct mmci_host *host = mmc_priv(mmc);
1967		pinctrl_pm_select_sleep_state(dev);
1968		mmci_save(host);
1969		clk_disable_unprepare(host->clk);
 
 
 
1970	}
1971
1972	return 0;
1973}
1974
1975static int mmci_runtime_resume(struct device *dev)
1976{
1977	struct amba_device *adev = to_amba_device(dev);
1978	struct mmc_host *mmc = amba_get_drvdata(adev);
 
1979
1980	if (mmc) {
1981		struct mmci_host *host = mmc_priv(mmc);
1982		clk_prepare_enable(host->clk);
1983		mmci_restore(host);
1984		pinctrl_pm_select_default_state(dev);
 
 
1985	}
1986
1987	return 0;
1988}
1989#endif
1990
1991static const struct dev_pm_ops mmci_dev_pm_ops = {
1992	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1993				pm_runtime_force_resume)
1994	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1995};
1996
1997static const struct amba_id mmci_ids[] = {
1998	{
1999		.id	= 0x00041180,
2000		.mask	= 0xff0fffff,
2001		.data	= &variant_arm,
2002	},
2003	{
2004		.id	= 0x01041180,
2005		.mask	= 0xff0fffff,
2006		.data	= &variant_arm_extended_fifo,
2007	},
2008	{
2009		.id	= 0x02041180,
2010		.mask	= 0xff0fffff,
2011		.data	= &variant_arm_extended_fifo_hwfc,
2012	},
2013	{
2014		.id	= 0x00041181,
2015		.mask	= 0x000fffff,
2016		.data	= &variant_arm,
2017	},
2018	/* ST Micro variants */
2019	{
2020		.id     = 0x00180180,
2021		.mask   = 0x00ffffff,
2022		.data	= &variant_u300,
2023	},
2024	{
2025		.id     = 0x10180180,
2026		.mask   = 0xf0ffffff,
2027		.data	= &variant_nomadik,
2028	},
2029	{
2030		.id     = 0x00280180,
2031		.mask   = 0x00ffffff,
2032		.data	= &variant_nomadik,
2033	},
2034	{
2035		.id     = 0x00480180,
2036		.mask   = 0xf0ffffff,
2037		.data	= &variant_ux500,
2038	},
2039	{
2040		.id     = 0x10480180,
2041		.mask   = 0xf0ffffff,
2042		.data	= &variant_ux500v2,
2043	},
2044	{
2045		.id     = 0x00880180,
2046		.mask   = 0x00ffffff,
2047		.data	= &variant_stm32,
2048	},
2049	/* Qualcomm variants */
2050	{
2051		.id     = 0x00051180,
2052		.mask	= 0x000fffff,
2053		.data	= &variant_qcom,
2054	},
2055	{ 0, 0 },
2056};
2057
2058MODULE_DEVICE_TABLE(amba, mmci_ids);
2059
2060static struct amba_driver mmci_driver = {
2061	.drv		= {
2062		.name	= DRIVER_NAME,
2063		.pm	= &mmci_dev_pm_ops,
2064	},
2065	.probe		= mmci_probe,
2066	.remove		= mmci_remove,
2067	.id_table	= mmci_ids,
2068};
2069
2070module_amba_driver(mmci_driver);
2071
2072module_param(fmax, uint, 0444);
2073
2074MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2075MODULE_LICENSE("GPL");