Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v3.5.6
   1/*
   2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   3 *
   4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   5 *  Copyright (C) 2010 ST-Ericsson SA
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/moduleparam.h>
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/device.h>
  16#include <linux/interrupt.h>
  17#include <linux/kernel.h>
  18#include <linux/slab.h>
  19#include <linux/delay.h>
  20#include <linux/err.h>
  21#include <linux/highmem.h>
  22#include <linux/log2.h>
 
  23#include <linux/mmc/host.h>
  24#include <linux/mmc/card.h>
  25#include <linux/amba/bus.h>
  26#include <linux/clk.h>
  27#include <linux/scatterlist.h>
  28#include <linux/gpio.h>
  29#include <linux/of_gpio.h>
  30#include <linux/regulator/consumer.h>
  31#include <linux/dmaengine.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/amba/mmci.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/types.h>
 
  36
  37#include <asm/div64.h>
  38#include <asm/io.h>
  39#include <asm/sizes.h>
  40
  41#include "mmci.h"
  42
  43#define DRIVER_NAME "mmci-pl18x"
  44
  45static unsigned int fmax = 515633;
  46
  47/**
  48 * struct variant_data - MMCI variant-specific quirks
  49 * @clkreg: default value for MCICLOCK register
  50 * @clkreg_enable: enable value for MMCICLOCK register
  51 * @datalength_bits: number of bits in the MMCIDATALENGTH register
  52 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
  53 *	      is asserted (likewise for RX)
  54 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
  55 *		  is asserted (likewise for RX)
  56 * @sdio: variant supports SDIO
  57 * @st_clkdiv: true if using a ST-specific clock divider algorithm
  58 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
  59 * @pwrreg_powerup: power up value for MMCIPOWER register
  60 * @signal_direction: input/out direction of bus signals can be indicated
 
 
 
  61 */
  62struct variant_data {
  63	unsigned int		clkreg;
  64	unsigned int		clkreg_enable;
  65	unsigned int		datalength_bits;
  66	unsigned int		fifosize;
  67	unsigned int		fifohalfsize;
  68	bool			sdio;
  69	bool			st_clkdiv;
  70	bool			blksz_datactrl16;
  71	u32			pwrreg_powerup;
  72	bool			signal_direction;
 
 
 
  73};
  74
  75static struct variant_data variant_arm = {
  76	.fifosize		= 16 * 4,
  77	.fifohalfsize		= 8 * 4,
  78	.datalength_bits	= 16,
  79	.pwrreg_powerup		= MCI_PWR_UP,
  80};
  81
  82static struct variant_data variant_arm_extended_fifo = {
  83	.fifosize		= 128 * 4,
  84	.fifohalfsize		= 64 * 4,
  85	.datalength_bits	= 16,
  86	.pwrreg_powerup		= MCI_PWR_UP,
  87};
  88
 
 
 
 
 
 
 
 
  89static struct variant_data variant_u300 = {
  90	.fifosize		= 16 * 4,
  91	.fifohalfsize		= 8 * 4,
  92	.clkreg_enable		= MCI_ST_U300_HWFCEN,
  93	.datalength_bits	= 16,
  94	.sdio			= true,
  95	.pwrreg_powerup		= MCI_PWR_ON,
  96	.signal_direction	= true,
 
 
  97};
  98
  99static struct variant_data variant_nomadik = {
 100	.fifosize		= 16 * 4,
 101	.fifohalfsize		= 8 * 4,
 102	.clkreg			= MCI_CLK_ENABLE,
 103	.datalength_bits	= 24,
 104	.sdio			= true,
 105	.st_clkdiv		= true,
 106	.pwrreg_powerup		= MCI_PWR_ON,
 107	.signal_direction	= true,
 
 
 108};
 109
 110static struct variant_data variant_ux500 = {
 111	.fifosize		= 30 * 4,
 112	.fifohalfsize		= 8 * 4,
 113	.clkreg			= MCI_CLK_ENABLE,
 114	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 115	.datalength_bits	= 24,
 116	.sdio			= true,
 117	.st_clkdiv		= true,
 118	.pwrreg_powerup		= MCI_PWR_ON,
 119	.signal_direction	= true,
 
 
 
 120};
 121
 122static struct variant_data variant_ux500v2 = {
 123	.fifosize		= 30 * 4,
 124	.fifohalfsize		= 8 * 4,
 125	.clkreg			= MCI_CLK_ENABLE,
 126	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 127	.datalength_bits	= 24,
 128	.sdio			= true,
 129	.st_clkdiv		= true,
 130	.blksz_datactrl16	= true,
 131	.pwrreg_powerup		= MCI_PWR_ON,
 132	.signal_direction	= true,
 
 
 
 133};
 134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 135/*
 136 * This must be called with host->lock held
 137 */
 138static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 139{
 140	if (host->clk_reg != clk) {
 141		host->clk_reg = clk;
 142		writel(clk, host->base + MMCICLOCK);
 143	}
 144}
 145
 146/*
 147 * This must be called with host->lock held
 148 */
 149static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 150{
 151	if (host->pwr_reg != pwr) {
 152		host->pwr_reg = pwr;
 153		writel(pwr, host->base + MMCIPOWER);
 154	}
 155}
 156
 157/*
 158 * This must be called with host->lock held
 159 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 161{
 162	struct variant_data *variant = host->variant;
 163	u32 clk = variant->clkreg;
 164
 
 
 
 165	if (desired) {
 166		if (desired >= host->mclk) {
 167			clk = MCI_CLK_BYPASS;
 168			if (variant->st_clkdiv)
 169				clk |= MCI_ST_UX500_NEG_EDGE;
 170			host->cclk = host->mclk;
 171		} else if (variant->st_clkdiv) {
 172			/*
 173			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 174			 * => clkdiv = (mclk / f) - 2
 175			 * Round the divider up so we don't exceed the max
 176			 * frequency
 177			 */
 178			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 179			if (clk >= 256)
 180				clk = 255;
 181			host->cclk = host->mclk / (clk + 2);
 182		} else {
 183			/*
 184			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 185			 * => clkdiv = mclk / (2 * f) - 1
 186			 */
 187			clk = host->mclk / (2 * desired) - 1;
 188			if (clk >= 256)
 189				clk = 255;
 190			host->cclk = host->mclk / (2 * (clk + 1));
 191		}
 192
 193		clk |= variant->clkreg_enable;
 194		clk |= MCI_CLK_ENABLE;
 195		/* This hasn't proven to be worthwhile */
 196		/* clk |= MCI_CLK_PWRSAVE; */
 197	}
 198
 
 
 
 199	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 200		clk |= MCI_4BIT_BUS;
 201	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 202		clk |= MCI_ST_8BIT_BUS;
 203
 
 
 
 204	mmci_write_clkreg(host, clk);
 205}
 206
 207static void
 208mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 209{
 210	writel(0, host->base + MMCICOMMAND);
 211
 212	BUG_ON(host->data);
 213
 214	host->mrq = NULL;
 215	host->cmd = NULL;
 216
 217	mmc_request_done(host->mmc, mrq);
 218
 219	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
 220	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
 221}
 222
 223static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 224{
 225	void __iomem *base = host->base;
 226
 227	if (host->singleirq) {
 228		unsigned int mask0 = readl(base + MMCIMASK0);
 229
 230		mask0 &= ~MCI_IRQ1MASK;
 231		mask0 |= mask;
 232
 233		writel(mask0, base + MMCIMASK0);
 234	}
 235
 236	writel(mask, base + MMCIMASK1);
 237}
 238
 239static void mmci_stop_data(struct mmci_host *host)
 240{
 241	writel(0, host->base + MMCIDATACTRL);
 242	mmci_set_mask1(host, 0);
 243	host->data = NULL;
 244}
 245
 246static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 247{
 248	unsigned int flags = SG_MITER_ATOMIC;
 249
 250	if (data->flags & MMC_DATA_READ)
 251		flags |= SG_MITER_TO_SG;
 252	else
 253		flags |= SG_MITER_FROM_SG;
 254
 255	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 256}
 257
 258/*
 259 * All the DMA operation mode stuff goes inside this ifdef.
 260 * This assumes that you have a generic DMA device interface,
 261 * no custom DMA interfaces are supported.
 262 */
 263#ifdef CONFIG_DMA_ENGINE
 264static void __devinit mmci_dma_setup(struct mmci_host *host)
 265{
 266	struct mmci_platform_data *plat = host->plat;
 267	const char *rxname, *txname;
 268	dma_cap_mask_t mask;
 269
 270	if (!plat || !plat->dma_filter) {
 271		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
 272		return;
 273	}
 274
 275	/* initialize pre request cookie */
 276	host->next_data.cookie = 1;
 277
 278	/* Try to acquire a generic DMA engine slave channel */
 279	dma_cap_zero(mask);
 280	dma_cap_set(DMA_SLAVE, mask);
 281
 282	/*
 283	 * If only an RX channel is specified, the driver will
 284	 * attempt to use it bidirectionally, however if it is
 285	 * is specified but cannot be located, DMA will be disabled.
 286	 */
 287	if (plat->dma_rx_param) {
 288		host->dma_rx_channel = dma_request_channel(mask,
 289							   plat->dma_filter,
 290							   plat->dma_rx_param);
 291		/* E.g if no DMA hardware is present */
 292		if (!host->dma_rx_channel)
 293			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
 294	}
 295
 296	if (plat->dma_tx_param) {
 297		host->dma_tx_channel = dma_request_channel(mask,
 298							   plat->dma_filter,
 299							   plat->dma_tx_param);
 300		if (!host->dma_tx_channel)
 301			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
 302	} else {
 303		host->dma_tx_channel = host->dma_rx_channel;
 304	}
 305
 
 
 
 
 
 
 
 
 306	if (host->dma_rx_channel)
 307		rxname = dma_chan_name(host->dma_rx_channel);
 308	else
 309		rxname = "none";
 310
 311	if (host->dma_tx_channel)
 312		txname = dma_chan_name(host->dma_tx_channel);
 313	else
 314		txname = "none";
 315
 316	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 317		 rxname, txname);
 318
 319	/*
 320	 * Limit the maximum segment size in any SG entry according to
 321	 * the parameters of the DMA engine device.
 322	 */
 323	if (host->dma_tx_channel) {
 324		struct device *dev = host->dma_tx_channel->device->dev;
 325		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 326
 327		if (max_seg_size < host->mmc->max_seg_size)
 328			host->mmc->max_seg_size = max_seg_size;
 329	}
 330	if (host->dma_rx_channel) {
 331		struct device *dev = host->dma_rx_channel->device->dev;
 332		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 333
 334		if (max_seg_size < host->mmc->max_seg_size)
 335			host->mmc->max_seg_size = max_seg_size;
 336	}
 337}
 338
 339/*
 340 * This is used in __devinit or __devexit so inline it
 341 * so it can be discarded.
 342 */
 343static inline void mmci_dma_release(struct mmci_host *host)
 344{
 345	struct mmci_platform_data *plat = host->plat;
 346
 347	if (host->dma_rx_channel)
 348		dma_release_channel(host->dma_rx_channel);
 349	if (host->dma_tx_channel && plat->dma_tx_param)
 350		dma_release_channel(host->dma_tx_channel);
 351	host->dma_rx_channel = host->dma_tx_channel = NULL;
 352}
 353
 
 
 
 
 
 
 
 
 
 354static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 355{
 356	struct dma_chan *chan = host->dma_current;
 357	enum dma_data_direction dir;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 358	u32 status;
 359	int i;
 360
 361	/* Wait up to 1ms for the DMA to complete */
 362	for (i = 0; ; i++) {
 363		status = readl(host->base + MMCISTATUS);
 364		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 365			break;
 366		udelay(10);
 367	}
 368
 369	/*
 370	 * Check to see whether we still have some data left in the FIFO -
 371	 * this catches DMA controllers which are unable to monitor the
 372	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 373	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 374	 */
 375	if (status & MCI_RXDATAAVLBLMASK) {
 376		dmaengine_terminate_all(chan);
 377		if (!data->error)
 378			data->error = -EIO;
 379	}
 380
 381	if (data->flags & MMC_DATA_WRITE) {
 382		dir = DMA_TO_DEVICE;
 383	} else {
 384		dir = DMA_FROM_DEVICE;
 385	}
 386
 387	if (!data->host_cookie)
 388		dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
 389
 390	/*
 391	 * Use of DMA with scatter-gather is impossible.
 392	 * Give up with DMA and switch back to PIO mode.
 393	 */
 394	if (status & MCI_RXDATAAVLBLMASK) {
 395		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 396		mmci_dma_release(host);
 397	}
 398}
 399
 400static void mmci_dma_data_error(struct mmci_host *host)
 401{
 402	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 403	dmaengine_terminate_all(host->dma_current);
 404}
 405
 406static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
 407			      struct mmci_host_next *next)
 
 
 408{
 409	struct variant_data *variant = host->variant;
 410	struct dma_slave_config conf = {
 411		.src_addr = host->phybase + MMCIFIFO,
 412		.dst_addr = host->phybase + MMCIFIFO,
 413		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 414		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 415		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 416		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 417		.device_fc = false,
 418	};
 419	struct dma_chan *chan;
 420	struct dma_device *device;
 421	struct dma_async_tx_descriptor *desc;
 422	enum dma_data_direction buffer_dirn;
 423	int nr_sg;
 424
 425	/* Check if next job is already prepared */
 426	if (data->host_cookie && !next &&
 427	    host->dma_current && host->dma_desc_current)
 428		return 0;
 429
 430	if (!next) {
 431		host->dma_current = NULL;
 432		host->dma_desc_current = NULL;
 433	}
 434
 435	if (data->flags & MMC_DATA_READ) {
 436		conf.direction = DMA_DEV_TO_MEM;
 437		buffer_dirn = DMA_FROM_DEVICE;
 438		chan = host->dma_rx_channel;
 439	} else {
 440		conf.direction = DMA_MEM_TO_DEV;
 441		buffer_dirn = DMA_TO_DEVICE;
 442		chan = host->dma_tx_channel;
 443	}
 444
 445	/* If there's no DMA channel, fall back to PIO */
 446	if (!chan)
 447		return -EINVAL;
 448
 449	/* If less than or equal to the fifo size, don't bother with DMA */
 450	if (data->blksz * data->blocks <= variant->fifosize)
 451		return -EINVAL;
 452
 453	device = chan->device;
 454	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
 455	if (nr_sg == 0)
 456		return -EINVAL;
 457
 458	dmaengine_slave_config(chan, &conf);
 459	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 460					    conf.direction, DMA_CTRL_ACK);
 461	if (!desc)
 462		goto unmap_exit;
 463
 464	if (next) {
 465		next->dma_chan = chan;
 466		next->dma_desc = desc;
 467	} else {
 468		host->dma_current = chan;
 469		host->dma_desc_current = desc;
 470	}
 471
 472	return 0;
 473
 474 unmap_exit:
 475	if (!next)
 476		dmaengine_terminate_all(chan);
 477	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
 478	return -ENOMEM;
 479}
 480
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 481static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 482{
 483	int ret;
 484	struct mmc_data *data = host->data;
 485
 486	ret = mmci_dma_prep_data(host, host->data, NULL);
 487	if (ret)
 488		return ret;
 489
 490	/* Okay, go for it. */
 491	dev_vdbg(mmc_dev(host->mmc),
 492		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 493		 data->sg_len, data->blksz, data->blocks, data->flags);
 494	dmaengine_submit(host->dma_desc_current);
 495	dma_async_issue_pending(host->dma_current);
 496
 497	datactrl |= MCI_DPSM_DMAENABLE;
 498
 499	/* Trigger the DMA transfer */
 500	writel(datactrl, host->base + MMCIDATACTRL);
 501
 502	/*
 503	 * Let the MMCI say when the data is ended and it's time
 504	 * to fire next DMA request. When that happens, MMCI will
 505	 * call mmci_data_end()
 506	 */
 507	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 508	       host->base + MMCIMASK0);
 509	return 0;
 510}
 511
 512static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 513{
 514	struct mmci_host_next *next = &host->next_data;
 515
 516	if (data->host_cookie && data->host_cookie != next->cookie) {
 517		pr_warning("[%s] invalid cookie: data->host_cookie %d"
 518		       " host->next_data.cookie %d\n",
 519		       __func__, data->host_cookie, host->next_data.cookie);
 520		data->host_cookie = 0;
 521	}
 522
 523	if (!data->host_cookie)
 524		return;
 525
 526	host->dma_desc_current = next->dma_desc;
 527	host->dma_current = next->dma_chan;
 528
 529	next->dma_desc = NULL;
 530	next->dma_chan = NULL;
 531}
 532
 533static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
 534			     bool is_first_req)
 535{
 536	struct mmci_host *host = mmc_priv(mmc);
 537	struct mmc_data *data = mrq->data;
 538	struct mmci_host_next *nd = &host->next_data;
 539
 540	if (!data)
 541		return;
 542
 543	if (data->host_cookie) {
 544		data->host_cookie = 0;
 
 545		return;
 546	}
 547
 548	/* if config for dma */
 549	if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
 550	    ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
 551		if (mmci_dma_prep_data(host, data, nd))
 552			data->host_cookie = 0;
 553		else
 554			data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
 555	}
 556}
 557
 558static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 559			      int err)
 560{
 561	struct mmci_host *host = mmc_priv(mmc);
 562	struct mmc_data *data = mrq->data;
 563	struct dma_chan *chan;
 564	enum dma_data_direction dir;
 565
 566	if (!data)
 567		return;
 568
 569	if (data->flags & MMC_DATA_READ) {
 570		dir = DMA_FROM_DEVICE;
 571		chan = host->dma_rx_channel;
 572	} else {
 573		dir = DMA_TO_DEVICE;
 574		chan = host->dma_tx_channel;
 575	}
 576
 
 
 
 
 
 
 
 
 577
 578	/* if config for dma */
 579	if (chan) {
 580		if (err)
 581			dmaengine_terminate_all(chan);
 582		if (data->host_cookie)
 583			dma_unmap_sg(mmc_dev(host->mmc), data->sg,
 584				     data->sg_len, dir);
 585		mrq->data->host_cookie = 0;
 586	}
 587}
 588
 589#else
 590/* Blank functions if the DMA engine is not available */
 591static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 592{
 593}
 594static inline void mmci_dma_setup(struct mmci_host *host)
 595{
 596}
 597
 598static inline void mmci_dma_release(struct mmci_host *host)
 599{
 600}
 601
 602static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 603{
 604}
 605
 
 
 
 
 
 606static inline void mmci_dma_data_error(struct mmci_host *host)
 607{
 608}
 609
 610static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 611{
 612	return -ENOSYS;
 613}
 614
 615#define mmci_pre_request NULL
 616#define mmci_post_request NULL
 617
 618#endif
 619
 620static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 621{
 622	struct variant_data *variant = host->variant;
 623	unsigned int datactrl, timeout, irqmask;
 624	unsigned long long clks;
 625	void __iomem *base;
 626	int blksz_bits;
 627
 628	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 629		data->blksz, data->blocks, data->flags);
 630
 631	host->data = data;
 632	host->size = data->blksz * data->blocks;
 633	data->bytes_xfered = 0;
 634
 635	clks = (unsigned long long)data->timeout_ns * host->cclk;
 636	do_div(clks, 1000000000UL);
 637
 638	timeout = data->timeout_clks + (unsigned int)clks;
 639
 640	base = host->base;
 641	writel(timeout, base + MMCIDATATIMER);
 642	writel(host->size, base + MMCIDATALENGTH);
 643
 644	blksz_bits = ffs(data->blksz) - 1;
 645	BUG_ON(1 << blksz_bits != data->blksz);
 646
 647	if (variant->blksz_datactrl16)
 648		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
 649	else
 650		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
 651
 652	if (data->flags & MMC_DATA_READ)
 653		datactrl |= MCI_DPSM_DIRECTION;
 654
 655	/* The ST Micro variants has a special bit to enable SDIO */
 656	if (variant->sdio && host->mmc->card)
 657		if (mmc_card_sdio(host->mmc->card))
 
 
 
 
 
 
 658			datactrl |= MCI_ST_DPSM_SDIOEN;
 659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 660	/*
 661	 * Attempt to use DMA operation mode, if this
 662	 * should fail, fall back to PIO mode
 663	 */
 664	if (!mmci_dma_start_data(host, datactrl))
 665		return;
 666
 667	/* IRQ mode, map the SG list for CPU reading/writing */
 668	mmci_init_sg(host, data);
 669
 670	if (data->flags & MMC_DATA_READ) {
 671		irqmask = MCI_RXFIFOHALFFULLMASK;
 672
 673		/*
 674		 * If we have less than the fifo 'half-full' threshold to
 675		 * transfer, trigger a PIO interrupt as soon as any data
 676		 * is available.
 677		 */
 678		if (host->size < variant->fifohalfsize)
 679			irqmask |= MCI_RXDATAAVLBLMASK;
 680	} else {
 681		/*
 682		 * We don't actually need to include "FIFO empty" here
 683		 * since its implicit in "FIFO half empty".
 684		 */
 685		irqmask = MCI_TXFIFOHALFEMPTYMASK;
 686	}
 687
 688	writel(datactrl, base + MMCIDATACTRL);
 689	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
 690	mmci_set_mask1(host, irqmask);
 691}
 692
 693static void
 694mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
 695{
 696	void __iomem *base = host->base;
 697
 698	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
 699	    cmd->opcode, cmd->arg, cmd->flags);
 700
 701	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
 702		writel(0, base + MMCICOMMAND);
 703		udelay(1);
 704	}
 705
 706	c |= cmd->opcode | MCI_CPSM_ENABLE;
 707	if (cmd->flags & MMC_RSP_PRESENT) {
 708		if (cmd->flags & MMC_RSP_136)
 709			c |= MCI_CPSM_LONGRSP;
 710		c |= MCI_CPSM_RESPONSE;
 711	}
 712	if (/*interrupt*/0)
 713		c |= MCI_CPSM_INTERRUPT;
 714
 715	host->cmd = cmd;
 716
 717	writel(cmd->arg, base + MMCIARGUMENT);
 718	writel(c, base + MMCICOMMAND);
 719}
 720
 721static void
 722mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
 723	      unsigned int status)
 724{
 725	/* First check for errors */
 726	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
 727		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
 728		u32 remain, success;
 729
 730		/* Terminate the DMA transfer */
 731		if (dma_inprogress(host))
 732			mmci_dma_data_error(host);
 
 
 733
 734		/*
 735		 * Calculate how far we are into the transfer.  Note that
 736		 * the data counter gives the number of bytes transferred
 737		 * on the MMC bus, not on the host side.  On reads, this
 738		 * can be as much as a FIFO-worth of data ahead.  This
 739		 * matters for FIFO overruns only.
 740		 */
 741		remain = readl(host->base + MMCIDATACNT);
 742		success = data->blksz * data->blocks - remain;
 743
 744		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
 745			status, success);
 746		if (status & MCI_DATACRCFAIL) {
 747			/* Last block was not successful */
 748			success -= 1;
 749			data->error = -EILSEQ;
 750		} else if (status & MCI_DATATIMEOUT) {
 751			data->error = -ETIMEDOUT;
 752		} else if (status & MCI_STARTBITERR) {
 753			data->error = -ECOMM;
 754		} else if (status & MCI_TXUNDERRUN) {
 755			data->error = -EIO;
 756		} else if (status & MCI_RXOVERRUN) {
 757			if (success > host->variant->fifosize)
 758				success -= host->variant->fifosize;
 759			else
 760				success = 0;
 761			data->error = -EIO;
 762		}
 763		data->bytes_xfered = round_down(success, data->blksz);
 764	}
 765
 766	if (status & MCI_DATABLOCKEND)
 767		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
 768
 769	if (status & MCI_DATAEND || data->error) {
 770		if (dma_inprogress(host))
 771			mmci_dma_unmap(host, data);
 772		mmci_stop_data(host);
 773
 774		if (!data->error)
 775			/* The error clause is handled above, success! */
 776			data->bytes_xfered = data->blksz * data->blocks;
 777
 778		if (!data->stop) {
 779			mmci_request_end(host, data->mrq);
 780		} else {
 781			mmci_start_command(host, data->stop, 0);
 782		}
 783	}
 784}
 785
 786static void
 787mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
 788	     unsigned int status)
 789{
 790	void __iomem *base = host->base;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791
 792	host->cmd = NULL;
 793
 794	if (status & MCI_CMDTIMEOUT) {
 795		cmd->error = -ETIMEDOUT;
 796	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
 797		cmd->error = -EILSEQ;
 798	} else {
 799		cmd->resp[0] = readl(base + MMCIRESPONSE0);
 800		cmd->resp[1] = readl(base + MMCIRESPONSE1);
 801		cmd->resp[2] = readl(base + MMCIRESPONSE2);
 802		cmd->resp[3] = readl(base + MMCIRESPONSE3);
 803	}
 804
 805	if (!cmd->data || cmd->error) {
 806		if (host->data) {
 807			/* Terminate the DMA transfer */
 808			if (dma_inprogress(host))
 809				mmci_dma_data_error(host);
 
 
 810			mmci_stop_data(host);
 811		}
 812		mmci_request_end(host, cmd->mrq);
 
 
 813	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
 814		mmci_start_data(host, cmd->data);
 815	}
 816}
 817
 818static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
 819{
 820	void __iomem *base = host->base;
 821	char *ptr = buffer;
 822	u32 status;
 823	int host_remain = host->size;
 824
 825	do {
 826		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
 827
 828		if (count > remain)
 829			count = remain;
 830
 831		if (count <= 0)
 832			break;
 833
 834		/*
 835		 * SDIO especially may want to send something that is
 836		 * not divisible by 4 (as opposed to card sectors
 837		 * etc). Therefore make sure to always read the last bytes
 838		 * while only doing full 32-bit reads towards the FIFO.
 839		 */
 840		if (unlikely(count & 0x3)) {
 841			if (count < 4) {
 842				unsigned char buf[4];
 843				readsl(base + MMCIFIFO, buf, 1);
 844				memcpy(ptr, buf, count);
 845			} else {
 846				readsl(base + MMCIFIFO, ptr, count >> 2);
 847				count &= ~0x3;
 848			}
 849		} else {
 850			readsl(base + MMCIFIFO, ptr, count >> 2);
 851		}
 852
 853		ptr += count;
 854		remain -= count;
 855		host_remain -= count;
 856
 857		if (remain == 0)
 858			break;
 859
 860		status = readl(base + MMCISTATUS);
 861	} while (status & MCI_RXDATAAVLBL);
 862
 863	return ptr - buffer;
 864}
 865
 866static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
 867{
 868	struct variant_data *variant = host->variant;
 869	void __iomem *base = host->base;
 870	char *ptr = buffer;
 871
 872	do {
 873		unsigned int count, maxcnt;
 874
 875		maxcnt = status & MCI_TXFIFOEMPTY ?
 876			 variant->fifosize : variant->fifohalfsize;
 877		count = min(remain, maxcnt);
 878
 879		/*
 880		 * The ST Micro variant for SDIO transfer sizes
 881		 * less then 8 bytes should have clock H/W flow
 882		 * control disabled.
 883		 */
 884		if (variant->sdio &&
 885		    mmc_card_sdio(host->mmc->card)) {
 886			u32 clk;
 887			if (count < 8)
 888				clk = host->clk_reg & ~variant->clkreg_enable;
 889			else
 890				clk = host->clk_reg | variant->clkreg_enable;
 891
 892			mmci_write_clkreg(host, clk);
 893		}
 894
 895		/*
 896		 * SDIO especially may want to send something that is
 897		 * not divisible by 4 (as opposed to card sectors
 898		 * etc), and the FIFO only accept full 32-bit writes.
 899		 * So compensate by adding +3 on the count, a single
 900		 * byte become a 32bit write, 7 bytes will be two
 901		 * 32bit writes etc.
 902		 */
 903		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
 904
 905		ptr += count;
 906		remain -= count;
 907
 908		if (remain == 0)
 909			break;
 910
 911		status = readl(base + MMCISTATUS);
 912	} while (status & MCI_TXFIFOHALFEMPTY);
 913
 914	return ptr - buffer;
 915}
 916
 917/*
 918 * PIO data transfer IRQ handler.
 919 */
 920static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
 921{
 922	struct mmci_host *host = dev_id;
 923	struct sg_mapping_iter *sg_miter = &host->sg_miter;
 924	struct variant_data *variant = host->variant;
 925	void __iomem *base = host->base;
 926	unsigned long flags;
 927	u32 status;
 928
 929	status = readl(base + MMCISTATUS);
 930
 931	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
 932
 933	local_irq_save(flags);
 934
 935	do {
 936		unsigned int remain, len;
 937		char *buffer;
 938
 939		/*
 940		 * For write, we only need to test the half-empty flag
 941		 * here - if the FIFO is completely empty, then by
 942		 * definition it is more than half empty.
 943		 *
 944		 * For read, check for data available.
 945		 */
 946		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
 947			break;
 948
 949		if (!sg_miter_next(sg_miter))
 950			break;
 951
 952		buffer = sg_miter->addr;
 953		remain = sg_miter->length;
 954
 955		len = 0;
 956		if (status & MCI_RXACTIVE)
 957			len = mmci_pio_read(host, buffer, remain);
 958		if (status & MCI_TXACTIVE)
 959			len = mmci_pio_write(host, buffer, remain, status);
 960
 961		sg_miter->consumed = len;
 962
 963		host->size -= len;
 964		remain -= len;
 965
 966		if (remain)
 967			break;
 968
 969		status = readl(base + MMCISTATUS);
 970	} while (1);
 971
 972	sg_miter_stop(sg_miter);
 973
 974	local_irq_restore(flags);
 975
 976	/*
 977	 * If we have less than the fifo 'half-full' threshold to transfer,
 978	 * trigger a PIO interrupt as soon as any data is available.
 979	 */
 980	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
 981		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
 982
 983	/*
 984	 * If we run out of data, disable the data IRQs; this
 985	 * prevents a race where the FIFO becomes empty before
 986	 * the chip itself has disabled the data path, and
 987	 * stops us racing with our data end IRQ.
 988	 */
 989	if (host->size == 0) {
 990		mmci_set_mask1(host, 0);
 991		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
 992	}
 993
 994	return IRQ_HANDLED;
 995}
 996
 997/*
 998 * Handle completion of command and data transfers.
 999 */
1000static irqreturn_t mmci_irq(int irq, void *dev_id)
1001{
1002	struct mmci_host *host = dev_id;
1003	u32 status;
1004	int ret = 0;
1005
1006	spin_lock(&host->lock);
1007
1008	do {
1009		struct mmc_command *cmd;
1010		struct mmc_data *data;
1011
1012		status = readl(host->base + MMCISTATUS);
1013
1014		if (host->singleirq) {
1015			if (status & readl(host->base + MMCIMASK1))
1016				mmci_pio_irq(irq, dev_id);
1017
1018			status &= ~MCI_IRQ1MASK;
1019		}
1020
 
 
 
 
 
1021		status &= readl(host->base + MMCIMASK0);
1022		writel(status, host->base + MMCICLEAR);
1023
1024		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1025
 
 
 
 
 
1026		data = host->data;
1027		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1028			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1029			      MCI_DATABLOCKEND) && data)
1030			mmci_data_irq(host, data, status);
1031
1032		cmd = host->cmd;
1033		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1034			mmci_cmd_irq(host, cmd, status);
1035
1036		ret = 1;
1037	} while (status);
1038
1039	spin_unlock(&host->lock);
1040
1041	return IRQ_RETVAL(ret);
1042}
1043
1044static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1045{
1046	struct mmci_host *host = mmc_priv(mmc);
1047	unsigned long flags;
1048
1049	WARN_ON(host->mrq != NULL);
1050
1051	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
1052		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
1053			mrq->data->blksz);
1054		mrq->cmd->error = -EINVAL;
1055		mmc_request_done(mmc, mrq);
1056		return;
1057	}
1058
1059	pm_runtime_get_sync(mmc_dev(mmc));
1060
1061	spin_lock_irqsave(&host->lock, flags);
1062
1063	host->mrq = mrq;
1064
1065	if (mrq->data)
1066		mmci_get_next_data(host, mrq->data);
1067
1068	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1069		mmci_start_data(host, mrq->data);
1070
1071	mmci_start_command(host, mrq->cmd, 0);
 
 
 
1072
1073	spin_unlock_irqrestore(&host->lock, flags);
1074}
1075
1076static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1077{
1078	struct mmci_host *host = mmc_priv(mmc);
1079	struct variant_data *variant = host->variant;
1080	u32 pwr = 0;
1081	unsigned long flags;
1082	int ret;
1083
1084	pm_runtime_get_sync(mmc_dev(mmc));
1085
1086	if (host->plat->ios_handler &&
1087		host->plat->ios_handler(mmc_dev(mmc), ios))
1088			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1089
1090	switch (ios->power_mode) {
1091	case MMC_POWER_OFF:
1092		if (host->vcc)
1093			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
 
 
 
 
 
 
1094		break;
1095	case MMC_POWER_UP:
1096		if (host->vcc) {
1097			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1098			if (ret) {
1099				dev_err(mmc_dev(mmc), "unable to set OCR\n");
1100				/*
1101				 * The .set_ios() function in the mmc_host_ops
1102				 * struct return void, and failing to set the
1103				 * power should be rare so we print an error
1104				 * and return here.
1105				 */
1106				goto out;
1107			}
1108		}
1109		/*
1110		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1111		 * and instead uses MCI_PWR_ON so apply whatever value is
1112		 * configured in the variant data.
1113		 */
1114		pwr |= variant->pwrreg_powerup;
1115
1116		break;
1117	case MMC_POWER_ON:
 
 
 
 
 
 
 
 
 
1118		pwr |= MCI_PWR_ON;
1119		break;
1120	}
1121
1122	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1123		/*
1124		 * The ST Micro variant has some additional bits
1125		 * indicating signal direction for the signals in
1126		 * the SD/MMC bus and feedback-clock usage.
1127		 */
1128		pwr |= host->plat->sigdir;
1129
1130		if (ios->bus_width == MMC_BUS_WIDTH_4)
1131			pwr &= ~MCI_ST_DATA74DIREN;
1132		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1133			pwr &= (~MCI_ST_DATA74DIREN &
1134				~MCI_ST_DATA31DIREN &
1135				~MCI_ST_DATA2DIREN);
1136	}
1137
1138	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1139		if (host->hw_designer != AMBA_VENDOR_ST)
1140			pwr |= MCI_ROD;
1141		else {
1142			/*
1143			 * The ST Micro variant use the ROD bit for something
1144			 * else and only has OD (Open Drain).
1145			 */
1146			pwr |= MCI_OD;
1147		}
1148	}
1149
 
 
 
 
 
 
 
1150	spin_lock_irqsave(&host->lock, flags);
1151
1152	mmci_set_clkreg(host, ios->clock);
1153	mmci_write_pwrreg(host, pwr);
 
1154
1155	spin_unlock_irqrestore(&host->lock, flags);
1156
1157 out:
1158	pm_runtime_mark_last_busy(mmc_dev(mmc));
1159	pm_runtime_put_autosuspend(mmc_dev(mmc));
1160}
1161
1162static int mmci_get_ro(struct mmc_host *mmc)
1163{
1164	struct mmci_host *host = mmc_priv(mmc);
1165
1166	if (host->gpio_wp == -ENOSYS)
1167		return -ENOSYS;
1168
1169	return gpio_get_value_cansleep(host->gpio_wp);
1170}
1171
1172static int mmci_get_cd(struct mmc_host *mmc)
1173{
1174	struct mmci_host *host = mmc_priv(mmc);
1175	struct mmci_platform_data *plat = host->plat;
1176	unsigned int status;
1177
1178	if (host->gpio_cd == -ENOSYS) {
1179		if (!plat->status)
1180			return 1; /* Assume always present */
1181
1182		status = plat->status(mmc_dev(host->mmc));
1183	} else
1184		status = !!gpio_get_value_cansleep(host->gpio_cd)
1185			^ plat->cd_invert;
1186
1187	/*
1188	 * Use positive logic throughout - status is zero for no card,
1189	 * non-zero for card inserted.
1190	 */
1191	return status;
1192}
1193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1194static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1195{
1196	struct mmci_host *host = dev_id;
1197
1198	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1199
1200	return IRQ_HANDLED;
1201}
1202
1203static const struct mmc_host_ops mmci_ops = {
1204	.request	= mmci_request,
1205	.pre_req	= mmci_pre_request,
1206	.post_req	= mmci_post_request,
1207	.set_ios	= mmci_set_ios,
1208	.get_ro		= mmci_get_ro,
1209	.get_cd		= mmci_get_cd,
 
1210};
1211
1212#ifdef CONFIG_OF
1213static void mmci_dt_populate_generic_pdata(struct device_node *np,
1214					struct mmci_platform_data *pdata)
1215{
1216	int bus_width = 0;
1217
1218	pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1219	pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1220
1221	if (of_get_property(np, "cd-inverted", NULL))
1222		pdata->cd_invert = true;
1223	else
1224		pdata->cd_invert = false;
1225
1226	of_property_read_u32(np, "max-frequency", &pdata->f_max);
1227	if (!pdata->f_max)
1228		pr_warn("%s has no 'max-frequency' property\n", np->full_name);
1229
1230	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1231		pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1232	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1233		pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1234
1235	of_property_read_u32(np, "bus-width", &bus_width);
1236	switch (bus_width) {
1237	case 0 :
1238		/* No bus-width supplied. */
1239		break;
1240	case 4 :
1241		pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1242		break;
1243	case 8 :
1244		pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1245		break;
1246	default :
1247		pr_warn("%s: Unsupported bus width\n", np->full_name);
1248	}
1249}
1250#else
1251static void mmci_dt_populate_generic_pdata(struct device_node *np,
1252					struct mmci_platform_data *pdata)
1253{
1254	return;
1255}
1256#endif
1257
1258static int __devinit mmci_probe(struct amba_device *dev,
1259	const struct amba_id *id)
1260{
1261	struct mmci_platform_data *plat = dev->dev.platform_data;
1262	struct device_node *np = dev->dev.of_node;
1263	struct variant_data *variant = id->data;
1264	struct mmci_host *host;
1265	struct mmc_host *mmc;
1266	int ret;
1267
1268	/* Must have platform data or Device Tree. */
1269	if (!plat && !np) {
1270		dev_err(&dev->dev, "No plat data or DT found\n");
1271		return -EINVAL;
1272	}
1273
1274	if (!plat) {
1275		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1276		if (!plat)
1277			return -ENOMEM;
1278	}
1279
1280	if (np)
1281		mmci_dt_populate_generic_pdata(np, plat);
1282
1283	ret = amba_request_regions(dev, DRIVER_NAME);
1284	if (ret)
1285		goto out;
1286
1287	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1288	if (!mmc) {
1289		ret = -ENOMEM;
1290		goto rel_regions;
1291	}
1292
1293	host = mmc_priv(mmc);
1294	host->mmc = mmc;
1295
1296	host->gpio_wp = -ENOSYS;
1297	host->gpio_cd = -ENOSYS;
1298	host->gpio_cd_irq = -1;
1299
1300	host->hw_designer = amba_manf(dev);
1301	host->hw_revision = amba_rev(dev);
1302	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1303	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1304
1305	host->clk = clk_get(&dev->dev, NULL);
1306	if (IS_ERR(host->clk)) {
1307		ret = PTR_ERR(host->clk);
1308		host->clk = NULL;
1309		goto host_free;
1310	}
1311
1312	ret = clk_prepare(host->clk);
1313	if (ret)
1314		goto clk_free;
1315
1316	ret = clk_enable(host->clk);
1317	if (ret)
1318		goto clk_unprep;
1319
1320	host->plat = plat;
1321	host->variant = variant;
1322	host->mclk = clk_get_rate(host->clk);
1323	/*
1324	 * According to the spec, mclk is max 100 MHz,
1325	 * so we try to adjust the clock down to this,
1326	 * (if possible).
1327	 */
1328	if (host->mclk > 100000000) {
1329		ret = clk_set_rate(host->clk, 100000000);
1330		if (ret < 0)
1331			goto clk_disable;
1332		host->mclk = clk_get_rate(host->clk);
1333		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1334			host->mclk);
1335	}
1336	host->phybase = dev->res.start;
1337	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1338	if (!host->base) {
1339		ret = -ENOMEM;
1340		goto clk_disable;
1341	}
1342
1343	mmc->ops = &mmci_ops;
1344	/*
1345	 * The ARM and ST versions of the block have slightly different
1346	 * clock divider equations which means that the minimum divider
1347	 * differs too.
1348	 */
1349	if (variant->st_clkdiv)
1350		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1351	else
1352		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1353	/*
1354	 * If the platform data supplies a maximum operating
1355	 * frequency, this takes precedence. Else, we fall back
1356	 * to using the module parameter, which has a (low)
1357	 * default value in case it is not specified. Either
1358	 * value must not exceed the clock rate into the block,
1359	 * of course.
1360	 */
1361	if (plat->f_max)
1362		mmc->f_max = min(host->mclk, plat->f_max);
1363	else
1364		mmc->f_max = min(host->mclk, fmax);
1365	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1366
1367#ifdef CONFIG_REGULATOR
1368	/* If we're using the regulator framework, try to fetch a regulator */
1369	host->vcc = regulator_get(&dev->dev, "vmmc");
1370	if (IS_ERR(host->vcc))
1371		host->vcc = NULL;
1372	else {
1373		int mask = mmc_regulator_get_ocrmask(host->vcc);
1374
1375		if (mask < 0)
1376			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1377				mask);
1378		else {
1379			host->mmc->ocr_avail = (u32) mask;
1380			if (plat->ocr_mask)
1381				dev_warn(&dev->dev,
1382				 "Provided ocr_mask/setpower will not be used "
1383				 "(using regulator instead)\n");
1384		}
1385	}
1386#endif
1387	/* Fall back to platform data if no regulator is found */
1388	if (host->vcc == NULL)
1389		mmc->ocr_avail = plat->ocr_mask;
 
 
 
1390	mmc->caps = plat->capabilities;
1391	mmc->caps2 = plat->capabilities2;
1392
 
 
 
 
 
 
 
 
 
 
 
 
1393	/*
1394	 * We can do SGIO
1395	 */
1396	mmc->max_segs = NR_SG;
1397
1398	/*
1399	 * Since only a certain number of bits are valid in the data length
1400	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1401	 * single request.
1402	 */
1403	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1404
1405	/*
1406	 * Set the maximum segment size.  Since we aren't doing DMA
1407	 * (yet) we are only limited by the data length register.
1408	 */
1409	mmc->max_seg_size = mmc->max_req_size;
1410
1411	/*
1412	 * Block size can be up to 2048 bytes, but must be a power of two.
1413	 */
1414	mmc->max_blk_size = 1 << 11;
1415
1416	/*
1417	 * Limit the number of blocks transferred so that we don't overflow
1418	 * the maximum request size.
1419	 */
1420	mmc->max_blk_count = mmc->max_req_size >> 11;
1421
1422	spin_lock_init(&host->lock);
1423
1424	writel(0, host->base + MMCIMASK0);
1425	writel(0, host->base + MMCIMASK1);
1426	writel(0xfff, host->base + MMCICLEAR);
1427
1428	if (plat->gpio_cd == -EPROBE_DEFER) {
1429		ret = -EPROBE_DEFER;
1430		goto err_gpio_cd;
1431	}
1432	if (gpio_is_valid(plat->gpio_cd)) {
1433		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1434		if (ret == 0)
1435			ret = gpio_direction_input(plat->gpio_cd);
1436		if (ret == 0)
1437			host->gpio_cd = plat->gpio_cd;
1438		else if (ret != -ENOSYS)
1439			goto err_gpio_cd;
1440
1441		/*
1442		 * A gpio pin that will detect cards when inserted and removed
1443		 * will most likely want to trigger on the edges if it is
1444		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1445		 * for the inverted case) so we request triggers on both
1446		 * edges.
1447		 */
1448		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1449				mmci_cd_irq,
1450				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1451				DRIVER_NAME " (cd)", host);
1452		if (ret >= 0)
1453			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1454	}
1455	if (plat->gpio_wp == -EPROBE_DEFER) {
1456		ret = -EPROBE_DEFER;
1457		goto err_gpio_wp;
1458	}
1459	if (gpio_is_valid(plat->gpio_wp)) {
1460		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1461		if (ret == 0)
1462			ret = gpio_direction_input(plat->gpio_wp);
1463		if (ret == 0)
1464			host->gpio_wp = plat->gpio_wp;
1465		else if (ret != -ENOSYS)
1466			goto err_gpio_wp;
1467	}
1468
1469	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1470	    && host->gpio_cd_irq < 0)
1471		mmc->caps |= MMC_CAP_NEEDS_POLL;
1472
1473	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1474	if (ret)
1475		goto unmap;
1476
1477	if (!dev->irq[1])
1478		host->singleirq = true;
1479	else {
1480		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1481				  DRIVER_NAME " (pio)", host);
1482		if (ret)
1483			goto irq0_free;
1484	}
1485
1486	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1487
1488	amba_set_drvdata(dev, mmc);
1489
1490	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1491		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1492		 amba_rev(dev), (unsigned long long)dev->res.start,
1493		 dev->irq[0], dev->irq[1]);
1494
1495	mmci_dma_setup(host);
1496
1497	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1498	pm_runtime_use_autosuspend(&dev->dev);
1499	pm_runtime_put(&dev->dev);
1500
1501	mmc_add_host(mmc);
1502
1503	return 0;
1504
1505 irq0_free:
1506	free_irq(dev->irq[0], host);
1507 unmap:
1508	if (host->gpio_wp != -ENOSYS)
1509		gpio_free(host->gpio_wp);
1510 err_gpio_wp:
1511	if (host->gpio_cd_irq >= 0)
1512		free_irq(host->gpio_cd_irq, host);
1513	if (host->gpio_cd != -ENOSYS)
1514		gpio_free(host->gpio_cd);
1515 err_gpio_cd:
1516	iounmap(host->base);
1517 clk_disable:
1518	clk_disable(host->clk);
1519 clk_unprep:
1520	clk_unprepare(host->clk);
1521 clk_free:
1522	clk_put(host->clk);
1523 host_free:
1524	mmc_free_host(mmc);
1525 rel_regions:
1526	amba_release_regions(dev);
1527 out:
1528	return ret;
1529}
1530
1531static int __devexit mmci_remove(struct amba_device *dev)
1532{
1533	struct mmc_host *mmc = amba_get_drvdata(dev);
1534
1535	amba_set_drvdata(dev, NULL);
1536
1537	if (mmc) {
1538		struct mmci_host *host = mmc_priv(mmc);
1539
1540		/*
1541		 * Undo pm_runtime_put() in probe.  We use the _sync
1542		 * version here so that we can access the primecell.
1543		 */
1544		pm_runtime_get_sync(&dev->dev);
1545
1546		mmc_remove_host(mmc);
1547
1548		writel(0, host->base + MMCIMASK0);
1549		writel(0, host->base + MMCIMASK1);
1550
1551		writel(0, host->base + MMCICOMMAND);
1552		writel(0, host->base + MMCIDATACTRL);
1553
1554		mmci_dma_release(host);
1555		free_irq(dev->irq[0], host);
1556		if (!host->singleirq)
1557			free_irq(dev->irq[1], host);
1558
1559		if (host->gpio_wp != -ENOSYS)
1560			gpio_free(host->gpio_wp);
1561		if (host->gpio_cd_irq >= 0)
1562			free_irq(host->gpio_cd_irq, host);
1563		if (host->gpio_cd != -ENOSYS)
1564			gpio_free(host->gpio_cd);
1565
1566		iounmap(host->base);
1567		clk_disable(host->clk);
1568		clk_unprepare(host->clk);
1569		clk_put(host->clk);
1570
1571		if (host->vcc)
1572			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1573		regulator_put(host->vcc);
1574
1575		mmc_free_host(mmc);
1576
1577		amba_release_regions(dev);
1578	}
1579
1580	return 0;
1581}
1582
1583#ifdef CONFIG_SUSPEND
1584static int mmci_suspend(struct device *dev)
1585{
1586	struct amba_device *adev = to_amba_device(dev);
1587	struct mmc_host *mmc = amba_get_drvdata(adev);
1588	int ret = 0;
1589
1590	if (mmc) {
1591		struct mmci_host *host = mmc_priv(mmc);
1592
1593		ret = mmc_suspend_host(mmc);
1594		if (ret == 0) {
1595			pm_runtime_get_sync(dev);
1596			writel(0, host->base + MMCIMASK0);
1597		}
1598	}
1599
1600	return ret;
1601}
1602
1603static int mmci_resume(struct device *dev)
1604{
1605	struct amba_device *adev = to_amba_device(dev);
1606	struct mmc_host *mmc = amba_get_drvdata(adev);
1607	int ret = 0;
1608
1609	if (mmc) {
1610		struct mmci_host *host = mmc_priv(mmc);
1611
1612		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1613		pm_runtime_put(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1614
1615		ret = mmc_resume_host(mmc);
1616	}
1617
1618	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1619}
1620#endif
1621
1622static const struct dev_pm_ops mmci_dev_pm_ops = {
1623	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
 
1624};
1625
1626static struct amba_id mmci_ids[] = {
1627	{
1628		.id	= 0x00041180,
1629		.mask	= 0xff0fffff,
1630		.data	= &variant_arm,
1631	},
1632	{
1633		.id	= 0x01041180,
1634		.mask	= 0xff0fffff,
1635		.data	= &variant_arm_extended_fifo,
1636	},
1637	{
 
 
 
 
 
1638		.id	= 0x00041181,
1639		.mask	= 0x000fffff,
1640		.data	= &variant_arm,
1641	},
1642	/* ST Micro variants */
1643	{
1644		.id     = 0x00180180,
1645		.mask   = 0x00ffffff,
1646		.data	= &variant_u300,
1647	},
1648	{
1649		.id     = 0x10180180,
1650		.mask   = 0xf0ffffff,
1651		.data	= &variant_nomadik,
1652	},
1653	{
1654		.id     = 0x00280180,
1655		.mask   = 0x00ffffff,
1656		.data	= &variant_u300,
1657	},
1658	{
1659		.id     = 0x00480180,
1660		.mask   = 0xf0ffffff,
1661		.data	= &variant_ux500,
1662	},
1663	{
1664		.id     = 0x10480180,
1665		.mask   = 0xf0ffffff,
1666		.data	= &variant_ux500v2,
1667	},
1668	{ 0, 0 },
1669};
1670
1671MODULE_DEVICE_TABLE(amba, mmci_ids);
1672
1673static struct amba_driver mmci_driver = {
1674	.drv		= {
1675		.name	= DRIVER_NAME,
1676		.pm	= &mmci_dev_pm_ops,
1677	},
1678	.probe		= mmci_probe,
1679	.remove		= __devexit_p(mmci_remove),
1680	.id_table	= mmci_ids,
1681};
1682
1683module_amba_driver(mmci_driver);
1684
1685module_param(fmax, uint, 0444);
1686
1687MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1688MODULE_LICENSE("GPL");
v3.15
   1/*
   2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   3 *
   4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   5 *  Copyright (C) 2010 ST-Ericsson SA
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/moduleparam.h>
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/device.h>
  16#include <linux/interrupt.h>
  17#include <linux/kernel.h>
  18#include <linux/slab.h>
  19#include <linux/delay.h>
  20#include <linux/err.h>
  21#include <linux/highmem.h>
  22#include <linux/log2.h>
  23#include <linux/mmc/pm.h>
  24#include <linux/mmc/host.h>
  25#include <linux/mmc/card.h>
  26#include <linux/amba/bus.h>
  27#include <linux/clk.h>
  28#include <linux/scatterlist.h>
  29#include <linux/gpio.h>
  30#include <linux/of_gpio.h>
  31#include <linux/regulator/consumer.h>
  32#include <linux/dmaengine.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/amba/mmci.h>
  35#include <linux/pm_runtime.h>
  36#include <linux/types.h>
  37#include <linux/pinctrl/consumer.h>
  38
  39#include <asm/div64.h>
  40#include <asm/io.h>
  41#include <asm/sizes.h>
  42
  43#include "mmci.h"
  44
  45#define DRIVER_NAME "mmci-pl18x"
  46
  47static unsigned int fmax = 515633;
  48
  49/**
  50 * struct variant_data - MMCI variant-specific quirks
  51 * @clkreg: default value for MCICLOCK register
  52 * @clkreg_enable: enable value for MMCICLOCK register
  53 * @datalength_bits: number of bits in the MMCIDATALENGTH register
  54 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
  55 *	      is asserted (likewise for RX)
  56 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
  57 *		  is asserted (likewise for RX)
  58 * @sdio: variant supports SDIO
  59 * @st_clkdiv: true if using a ST-specific clock divider algorithm
  60 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
  61 * @pwrreg_powerup: power up value for MMCIPOWER register
  62 * @signal_direction: input/out direction of bus signals can be indicated
  63 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
  64 * @busy_detect: true if busy detection on dat0 is supported
  65 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
  66 */
  67struct variant_data {
  68	unsigned int		clkreg;
  69	unsigned int		clkreg_enable;
  70	unsigned int		datalength_bits;
  71	unsigned int		fifosize;
  72	unsigned int		fifohalfsize;
  73	bool			sdio;
  74	bool			st_clkdiv;
  75	bool			blksz_datactrl16;
  76	u32			pwrreg_powerup;
  77	bool			signal_direction;
  78	bool			pwrreg_clkgate;
  79	bool			busy_detect;
  80	bool			pwrreg_nopower;
  81};
  82
  83static struct variant_data variant_arm = {
  84	.fifosize		= 16 * 4,
  85	.fifohalfsize		= 8 * 4,
  86	.datalength_bits	= 16,
  87	.pwrreg_powerup		= MCI_PWR_UP,
  88};
  89
  90static struct variant_data variant_arm_extended_fifo = {
  91	.fifosize		= 128 * 4,
  92	.fifohalfsize		= 64 * 4,
  93	.datalength_bits	= 16,
  94	.pwrreg_powerup		= MCI_PWR_UP,
  95};
  96
  97static struct variant_data variant_arm_extended_fifo_hwfc = {
  98	.fifosize		= 128 * 4,
  99	.fifohalfsize		= 64 * 4,
 100	.clkreg_enable		= MCI_ARM_HWFCEN,
 101	.datalength_bits	= 16,
 102	.pwrreg_powerup		= MCI_PWR_UP,
 103};
 104
 105static struct variant_data variant_u300 = {
 106	.fifosize		= 16 * 4,
 107	.fifohalfsize		= 8 * 4,
 108	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 109	.datalength_bits	= 16,
 110	.sdio			= true,
 111	.pwrreg_powerup		= MCI_PWR_ON,
 112	.signal_direction	= true,
 113	.pwrreg_clkgate		= true,
 114	.pwrreg_nopower		= true,
 115};
 116
 117static struct variant_data variant_nomadik = {
 118	.fifosize		= 16 * 4,
 119	.fifohalfsize		= 8 * 4,
 120	.clkreg			= MCI_CLK_ENABLE,
 121	.datalength_bits	= 24,
 122	.sdio			= true,
 123	.st_clkdiv		= true,
 124	.pwrreg_powerup		= MCI_PWR_ON,
 125	.signal_direction	= true,
 126	.pwrreg_clkgate		= true,
 127	.pwrreg_nopower		= true,
 128};
 129
 130static struct variant_data variant_ux500 = {
 131	.fifosize		= 30 * 4,
 132	.fifohalfsize		= 8 * 4,
 133	.clkreg			= MCI_CLK_ENABLE,
 134	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 135	.datalength_bits	= 24,
 136	.sdio			= true,
 137	.st_clkdiv		= true,
 138	.pwrreg_powerup		= MCI_PWR_ON,
 139	.signal_direction	= true,
 140	.pwrreg_clkgate		= true,
 141	.busy_detect		= true,
 142	.pwrreg_nopower		= true,
 143};
 144
 145static struct variant_data variant_ux500v2 = {
 146	.fifosize		= 30 * 4,
 147	.fifohalfsize		= 8 * 4,
 148	.clkreg			= MCI_CLK_ENABLE,
 149	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 150	.datalength_bits	= 24,
 151	.sdio			= true,
 152	.st_clkdiv		= true,
 153	.blksz_datactrl16	= true,
 154	.pwrreg_powerup		= MCI_PWR_ON,
 155	.signal_direction	= true,
 156	.pwrreg_clkgate		= true,
 157	.busy_detect		= true,
 158	.pwrreg_nopower		= true,
 159};
 160
 161static int mmci_card_busy(struct mmc_host *mmc)
 162{
 163	struct mmci_host *host = mmc_priv(mmc);
 164	unsigned long flags;
 165	int busy = 0;
 166
 167	pm_runtime_get_sync(mmc_dev(mmc));
 168
 169	spin_lock_irqsave(&host->lock, flags);
 170	if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
 171		busy = 1;
 172	spin_unlock_irqrestore(&host->lock, flags);
 173
 174	pm_runtime_mark_last_busy(mmc_dev(mmc));
 175	pm_runtime_put_autosuspend(mmc_dev(mmc));
 176
 177	return busy;
 178}
 179
 180/*
 181 * Validate mmc prerequisites
 182 */
 183static int mmci_validate_data(struct mmci_host *host,
 184			      struct mmc_data *data)
 185{
 186	if (!data)
 187		return 0;
 188
 189	if (!is_power_of_2(data->blksz)) {
 190		dev_err(mmc_dev(host->mmc),
 191			"unsupported block size (%d bytes)\n", data->blksz);
 192		return -EINVAL;
 193	}
 194
 195	return 0;
 196}
 197
 198static void mmci_reg_delay(struct mmci_host *host)
 199{
 200	/*
 201	 * According to the spec, at least three feedback clock cycles
 202	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 203	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 204	 * Worst delay time during card init is at 100 kHz => 30 us.
 205	 * Worst delay time when up and running is at 25 MHz => 120 ns.
 206	 */
 207	if (host->cclk < 25000000)
 208		udelay(30);
 209	else
 210		ndelay(120);
 211}
 212
 213/*
 214 * This must be called with host->lock held
 215 */
 216static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 217{
 218	if (host->clk_reg != clk) {
 219		host->clk_reg = clk;
 220		writel(clk, host->base + MMCICLOCK);
 221	}
 222}
 223
 224/*
 225 * This must be called with host->lock held
 226 */
 227static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 228{
 229	if (host->pwr_reg != pwr) {
 230		host->pwr_reg = pwr;
 231		writel(pwr, host->base + MMCIPOWER);
 232	}
 233}
 234
 235/*
 236 * This must be called with host->lock held
 237 */
 238static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 239{
 240	/* Keep ST Micro busy mode if enabled */
 241	datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
 242
 243	if (host->datactrl_reg != datactrl) {
 244		host->datactrl_reg = datactrl;
 245		writel(datactrl, host->base + MMCIDATACTRL);
 246	}
 247}
 248
 249/*
 250 * This must be called with host->lock held
 251 */
 252static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 253{
 254	struct variant_data *variant = host->variant;
 255	u32 clk = variant->clkreg;
 256
 257	/* Make sure cclk reflects the current calculated clock */
 258	host->cclk = 0;
 259
 260	if (desired) {
 261		if (desired >= host->mclk) {
 262			clk = MCI_CLK_BYPASS;
 263			if (variant->st_clkdiv)
 264				clk |= MCI_ST_UX500_NEG_EDGE;
 265			host->cclk = host->mclk;
 266		} else if (variant->st_clkdiv) {
 267			/*
 268			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 269			 * => clkdiv = (mclk / f) - 2
 270			 * Round the divider up so we don't exceed the max
 271			 * frequency
 272			 */
 273			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 274			if (clk >= 256)
 275				clk = 255;
 276			host->cclk = host->mclk / (clk + 2);
 277		} else {
 278			/*
 279			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 280			 * => clkdiv = mclk / (2 * f) - 1
 281			 */
 282			clk = host->mclk / (2 * desired) - 1;
 283			if (clk >= 256)
 284				clk = 255;
 285			host->cclk = host->mclk / (2 * (clk + 1));
 286		}
 287
 288		clk |= variant->clkreg_enable;
 289		clk |= MCI_CLK_ENABLE;
 290		/* This hasn't proven to be worthwhile */
 291		/* clk |= MCI_CLK_PWRSAVE; */
 292	}
 293
 294	/* Set actual clock for debug */
 295	host->mmc->actual_clock = host->cclk;
 296
 297	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 298		clk |= MCI_4BIT_BUS;
 299	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 300		clk |= MCI_ST_8BIT_BUS;
 301
 302	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
 303		clk |= MCI_ST_UX500_NEG_EDGE;
 304
 305	mmci_write_clkreg(host, clk);
 306}
 307
 308static void
 309mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 310{
 311	writel(0, host->base + MMCICOMMAND);
 312
 313	BUG_ON(host->data);
 314
 315	host->mrq = NULL;
 316	host->cmd = NULL;
 317
 318	mmc_request_done(host->mmc, mrq);
 319
 320	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
 321	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
 322}
 323
 324static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 325{
 326	void __iomem *base = host->base;
 327
 328	if (host->singleirq) {
 329		unsigned int mask0 = readl(base + MMCIMASK0);
 330
 331		mask0 &= ~MCI_IRQ1MASK;
 332		mask0 |= mask;
 333
 334		writel(mask0, base + MMCIMASK0);
 335	}
 336
 337	writel(mask, base + MMCIMASK1);
 338}
 339
 340static void mmci_stop_data(struct mmci_host *host)
 341{
 342	mmci_write_datactrlreg(host, 0);
 343	mmci_set_mask1(host, 0);
 344	host->data = NULL;
 345}
 346
 347static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 348{
 349	unsigned int flags = SG_MITER_ATOMIC;
 350
 351	if (data->flags & MMC_DATA_READ)
 352		flags |= SG_MITER_TO_SG;
 353	else
 354		flags |= SG_MITER_FROM_SG;
 355
 356	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 357}
 358
 359/*
 360 * All the DMA operation mode stuff goes inside this ifdef.
 361 * This assumes that you have a generic DMA device interface,
 362 * no custom DMA interfaces are supported.
 363 */
 364#ifdef CONFIG_DMA_ENGINE
 365static void mmci_dma_setup(struct mmci_host *host)
 366{
 367	struct mmci_platform_data *plat = host->plat;
 368	const char *rxname, *txname;
 369	dma_cap_mask_t mask;
 370
 371	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
 372	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
 
 
 373
 374	/* initialize pre request cookie */
 375	host->next_data.cookie = 1;
 376
 377	/* Try to acquire a generic DMA engine slave channel */
 378	dma_cap_zero(mask);
 379	dma_cap_set(DMA_SLAVE, mask);
 380
 381	if (plat && plat->dma_filter) {
 382		if (!host->dma_rx_channel && plat->dma_rx_param) {
 383			host->dma_rx_channel = dma_request_channel(mask,
 
 
 
 
 384							   plat->dma_filter,
 385							   plat->dma_rx_param);
 386			/* E.g if no DMA hardware is present */
 387			if (!host->dma_rx_channel)
 388				dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
 389		}
 390
 391		if (!host->dma_tx_channel && plat->dma_tx_param) {
 392			host->dma_tx_channel = dma_request_channel(mask,
 393							   plat->dma_filter,
 394							   plat->dma_tx_param);
 395			if (!host->dma_tx_channel)
 396				dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
 397		}
 
 398	}
 399
 400	/*
 401	 * If only an RX channel is specified, the driver will
 402	 * attempt to use it bidirectionally, however if it is
 403	 * is specified but cannot be located, DMA will be disabled.
 404	 */
 405	if (host->dma_rx_channel && !host->dma_tx_channel)
 406		host->dma_tx_channel = host->dma_rx_channel;
 407
 408	if (host->dma_rx_channel)
 409		rxname = dma_chan_name(host->dma_rx_channel);
 410	else
 411		rxname = "none";
 412
 413	if (host->dma_tx_channel)
 414		txname = dma_chan_name(host->dma_tx_channel);
 415	else
 416		txname = "none";
 417
 418	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 419		 rxname, txname);
 420
 421	/*
 422	 * Limit the maximum segment size in any SG entry according to
 423	 * the parameters of the DMA engine device.
 424	 */
 425	if (host->dma_tx_channel) {
 426		struct device *dev = host->dma_tx_channel->device->dev;
 427		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 428
 429		if (max_seg_size < host->mmc->max_seg_size)
 430			host->mmc->max_seg_size = max_seg_size;
 431	}
 432	if (host->dma_rx_channel) {
 433		struct device *dev = host->dma_rx_channel->device->dev;
 434		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 435
 436		if (max_seg_size < host->mmc->max_seg_size)
 437			host->mmc->max_seg_size = max_seg_size;
 438	}
 439}
 440
 441/*
 442 * This is used in or so inline it
 443 * so it can be discarded.
 444 */
 445static inline void mmci_dma_release(struct mmci_host *host)
 446{
 447	struct mmci_platform_data *plat = host->plat;
 448
 449	if (host->dma_rx_channel)
 450		dma_release_channel(host->dma_rx_channel);
 451	if (host->dma_tx_channel && plat->dma_tx_param)
 452		dma_release_channel(host->dma_tx_channel);
 453	host->dma_rx_channel = host->dma_tx_channel = NULL;
 454}
 455
 456static void mmci_dma_data_error(struct mmci_host *host)
 457{
 458	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 459	dmaengine_terminate_all(host->dma_current);
 460	host->dma_current = NULL;
 461	host->dma_desc_current = NULL;
 462	host->data->host_cookie = 0;
 463}
 464
 465static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 466{
 467	struct dma_chan *chan;
 468	enum dma_data_direction dir;
 469
 470	if (data->flags & MMC_DATA_READ) {
 471		dir = DMA_FROM_DEVICE;
 472		chan = host->dma_rx_channel;
 473	} else {
 474		dir = DMA_TO_DEVICE;
 475		chan = host->dma_tx_channel;
 476	}
 477
 478	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
 479}
 480
 481static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 482{
 483	u32 status;
 484	int i;
 485
 486	/* Wait up to 1ms for the DMA to complete */
 487	for (i = 0; ; i++) {
 488		status = readl(host->base + MMCISTATUS);
 489		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 490			break;
 491		udelay(10);
 492	}
 493
 494	/*
 495	 * Check to see whether we still have some data left in the FIFO -
 496	 * this catches DMA controllers which are unable to monitor the
 497	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 498	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 499	 */
 500	if (status & MCI_RXDATAAVLBLMASK) {
 501		mmci_dma_data_error(host);
 502		if (!data->error)
 503			data->error = -EIO;
 504	}
 505
 
 
 
 
 
 
 506	if (!data->host_cookie)
 507		mmci_dma_unmap(host, data);
 508
 509	/*
 510	 * Use of DMA with scatter-gather is impossible.
 511	 * Give up with DMA and switch back to PIO mode.
 512	 */
 513	if (status & MCI_RXDATAAVLBLMASK) {
 514		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 515		mmci_dma_release(host);
 516	}
 
 517
 518	host->dma_current = NULL;
 519	host->dma_desc_current = NULL;
 
 
 520}
 521
 522/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 523static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
 524				struct dma_chan **dma_chan,
 525				struct dma_async_tx_descriptor **dma_desc)
 526{
 527	struct variant_data *variant = host->variant;
 528	struct dma_slave_config conf = {
 529		.src_addr = host->phybase + MMCIFIFO,
 530		.dst_addr = host->phybase + MMCIFIFO,
 531		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 532		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 533		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 534		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 535		.device_fc = false,
 536	};
 537	struct dma_chan *chan;
 538	struct dma_device *device;
 539	struct dma_async_tx_descriptor *desc;
 540	enum dma_data_direction buffer_dirn;
 541	int nr_sg;
 542
 
 
 
 
 
 
 
 
 
 
 543	if (data->flags & MMC_DATA_READ) {
 544		conf.direction = DMA_DEV_TO_MEM;
 545		buffer_dirn = DMA_FROM_DEVICE;
 546		chan = host->dma_rx_channel;
 547	} else {
 548		conf.direction = DMA_MEM_TO_DEV;
 549		buffer_dirn = DMA_TO_DEVICE;
 550		chan = host->dma_tx_channel;
 551	}
 552
 553	/* If there's no DMA channel, fall back to PIO */
 554	if (!chan)
 555		return -EINVAL;
 556
 557	/* If less than or equal to the fifo size, don't bother with DMA */
 558	if (data->blksz * data->blocks <= variant->fifosize)
 559		return -EINVAL;
 560
 561	device = chan->device;
 562	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
 563	if (nr_sg == 0)
 564		return -EINVAL;
 565
 566	dmaengine_slave_config(chan, &conf);
 567	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 568					    conf.direction, DMA_CTRL_ACK);
 569	if (!desc)
 570		goto unmap_exit;
 571
 572	*dma_chan = chan;
 573	*dma_desc = desc;
 
 
 
 
 
 574
 575	return 0;
 576
 577 unmap_exit:
 
 
 578	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
 579	return -ENOMEM;
 580}
 581
 582static inline int mmci_dma_prep_data(struct mmci_host *host,
 583				     struct mmc_data *data)
 584{
 585	/* Check if next job is already prepared. */
 586	if (host->dma_current && host->dma_desc_current)
 587		return 0;
 588
 589	/* No job were prepared thus do it now. */
 590	return __mmci_dma_prep_data(host, data, &host->dma_current,
 591				    &host->dma_desc_current);
 592}
 593
 594static inline int mmci_dma_prep_next(struct mmci_host *host,
 595				     struct mmc_data *data)
 596{
 597	struct mmci_host_next *nd = &host->next_data;
 598	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
 599}
 600
 601static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 602{
 603	int ret;
 604	struct mmc_data *data = host->data;
 605
 606	ret = mmci_dma_prep_data(host, host->data);
 607	if (ret)
 608		return ret;
 609
 610	/* Okay, go for it. */
 611	dev_vdbg(mmc_dev(host->mmc),
 612		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 613		 data->sg_len, data->blksz, data->blocks, data->flags);
 614	dmaengine_submit(host->dma_desc_current);
 615	dma_async_issue_pending(host->dma_current);
 616
 617	datactrl |= MCI_DPSM_DMAENABLE;
 618
 619	/* Trigger the DMA transfer */
 620	mmci_write_datactrlreg(host, datactrl);
 621
 622	/*
 623	 * Let the MMCI say when the data is ended and it's time
 624	 * to fire next DMA request. When that happens, MMCI will
 625	 * call mmci_data_end()
 626	 */
 627	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 628	       host->base + MMCIMASK0);
 629	return 0;
 630}
 631
 632static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 633{
 634	struct mmci_host_next *next = &host->next_data;
 635
 636	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
 637	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
 
 
 
 
 
 
 
 638
 639	host->dma_desc_current = next->dma_desc;
 640	host->dma_current = next->dma_chan;
 
 641	next->dma_desc = NULL;
 642	next->dma_chan = NULL;
 643}
 644
 645static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
 646			     bool is_first_req)
 647{
 648	struct mmci_host *host = mmc_priv(mmc);
 649	struct mmc_data *data = mrq->data;
 650	struct mmci_host_next *nd = &host->next_data;
 651
 652	if (!data)
 653		return;
 654
 655	BUG_ON(data->host_cookie);
 656
 657	if (mmci_validate_data(host, data))
 658		return;
 
 659
 660	if (!mmci_dma_prep_next(host, data))
 661		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
 
 
 
 
 
 
 662}
 663
 664static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 665			      int err)
 666{
 667	struct mmci_host *host = mmc_priv(mmc);
 668	struct mmc_data *data = mrq->data;
 
 
 669
 670	if (!data || !data->host_cookie)
 671		return;
 672
 673	mmci_dma_unmap(host, data);
 
 
 
 
 
 
 674
 675	if (err) {
 676		struct mmci_host_next *next = &host->next_data;
 677		struct dma_chan *chan;
 678		if (data->flags & MMC_DATA_READ)
 679			chan = host->dma_rx_channel;
 680		else
 681			chan = host->dma_tx_channel;
 682		dmaengine_terminate_all(chan);
 683
 684		next->dma_desc = NULL;
 685		next->dma_chan = NULL;
 
 
 
 
 
 
 686	}
 687}
 688
 689#else
 690/* Blank functions if the DMA engine is not available */
 691static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 692{
 693}
 694static inline void mmci_dma_setup(struct mmci_host *host)
 695{
 696}
 697
 698static inline void mmci_dma_release(struct mmci_host *host)
 699{
 700}
 701
 702static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 703{
 704}
 705
 706static inline void mmci_dma_finalize(struct mmci_host *host,
 707				     struct mmc_data *data)
 708{
 709}
 710
 711static inline void mmci_dma_data_error(struct mmci_host *host)
 712{
 713}
 714
 715static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 716{
 717	return -ENOSYS;
 718}
 719
 720#define mmci_pre_request NULL
 721#define mmci_post_request NULL
 722
 723#endif
 724
 725static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 726{
 727	struct variant_data *variant = host->variant;
 728	unsigned int datactrl, timeout, irqmask;
 729	unsigned long long clks;
 730	void __iomem *base;
 731	int blksz_bits;
 732
 733	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 734		data->blksz, data->blocks, data->flags);
 735
 736	host->data = data;
 737	host->size = data->blksz * data->blocks;
 738	data->bytes_xfered = 0;
 739
 740	clks = (unsigned long long)data->timeout_ns * host->cclk;
 741	do_div(clks, 1000000000UL);
 742
 743	timeout = data->timeout_clks + (unsigned int)clks;
 744
 745	base = host->base;
 746	writel(timeout, base + MMCIDATATIMER);
 747	writel(host->size, base + MMCIDATALENGTH);
 748
 749	blksz_bits = ffs(data->blksz) - 1;
 750	BUG_ON(1 << blksz_bits != data->blksz);
 751
 752	if (variant->blksz_datactrl16)
 753		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
 754	else
 755		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
 756
 757	if (data->flags & MMC_DATA_READ)
 758		datactrl |= MCI_DPSM_DIRECTION;
 759
 760	/* The ST Micro variants has a special bit to enable SDIO */
 761	if (variant->sdio && host->mmc->card)
 762		if (mmc_card_sdio(host->mmc->card)) {
 763			/*
 764			 * The ST Micro variants has a special bit
 765			 * to enable SDIO.
 766			 */
 767			u32 clk;
 768
 769			datactrl |= MCI_ST_DPSM_SDIOEN;
 770
 771			/*
 772			 * The ST Micro variant for SDIO small write transfers
 773			 * needs to have clock H/W flow control disabled,
 774			 * otherwise the transfer will not start. The threshold
 775			 * depends on the rate of MCLK.
 776			 */
 777			if (data->flags & MMC_DATA_WRITE &&
 778			    (host->size < 8 ||
 779			     (host->size <= 8 && host->mclk > 50000000)))
 780				clk = host->clk_reg & ~variant->clkreg_enable;
 781			else
 782				clk = host->clk_reg | variant->clkreg_enable;
 783
 784			mmci_write_clkreg(host, clk);
 785		}
 786
 787	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
 788		datactrl |= MCI_ST_DPSM_DDRMODE;
 789
 790	/*
 791	 * Attempt to use DMA operation mode, if this
 792	 * should fail, fall back to PIO mode
 793	 */
 794	if (!mmci_dma_start_data(host, datactrl))
 795		return;
 796
 797	/* IRQ mode, map the SG list for CPU reading/writing */
 798	mmci_init_sg(host, data);
 799
 800	if (data->flags & MMC_DATA_READ) {
 801		irqmask = MCI_RXFIFOHALFFULLMASK;
 802
 803		/*
 804		 * If we have less than the fifo 'half-full' threshold to
 805		 * transfer, trigger a PIO interrupt as soon as any data
 806		 * is available.
 807		 */
 808		if (host->size < variant->fifohalfsize)
 809			irqmask |= MCI_RXDATAAVLBLMASK;
 810	} else {
 811		/*
 812		 * We don't actually need to include "FIFO empty" here
 813		 * since its implicit in "FIFO half empty".
 814		 */
 815		irqmask = MCI_TXFIFOHALFEMPTYMASK;
 816	}
 817
 818	mmci_write_datactrlreg(host, datactrl);
 819	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
 820	mmci_set_mask1(host, irqmask);
 821}
 822
 823static void
 824mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
 825{
 826	void __iomem *base = host->base;
 827
 828	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
 829	    cmd->opcode, cmd->arg, cmd->flags);
 830
 831	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
 832		writel(0, base + MMCICOMMAND);
 833		udelay(1);
 834	}
 835
 836	c |= cmd->opcode | MCI_CPSM_ENABLE;
 837	if (cmd->flags & MMC_RSP_PRESENT) {
 838		if (cmd->flags & MMC_RSP_136)
 839			c |= MCI_CPSM_LONGRSP;
 840		c |= MCI_CPSM_RESPONSE;
 841	}
 842	if (/*interrupt*/0)
 843		c |= MCI_CPSM_INTERRUPT;
 844
 845	host->cmd = cmd;
 846
 847	writel(cmd->arg, base + MMCIARGUMENT);
 848	writel(c, base + MMCICOMMAND);
 849}
 850
 851static void
 852mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
 853	      unsigned int status)
 854{
 855	/* First check for errors */
 856	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
 857		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
 858		u32 remain, success;
 859
 860		/* Terminate the DMA transfer */
 861		if (dma_inprogress(host)) {
 862			mmci_dma_data_error(host);
 863			mmci_dma_unmap(host, data);
 864		}
 865
 866		/*
 867		 * Calculate how far we are into the transfer.  Note that
 868		 * the data counter gives the number of bytes transferred
 869		 * on the MMC bus, not on the host side.  On reads, this
 870		 * can be as much as a FIFO-worth of data ahead.  This
 871		 * matters for FIFO overruns only.
 872		 */
 873		remain = readl(host->base + MMCIDATACNT);
 874		success = data->blksz * data->blocks - remain;
 875
 876		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
 877			status, success);
 878		if (status & MCI_DATACRCFAIL) {
 879			/* Last block was not successful */
 880			success -= 1;
 881			data->error = -EILSEQ;
 882		} else if (status & MCI_DATATIMEOUT) {
 883			data->error = -ETIMEDOUT;
 884		} else if (status & MCI_STARTBITERR) {
 885			data->error = -ECOMM;
 886		} else if (status & MCI_TXUNDERRUN) {
 887			data->error = -EIO;
 888		} else if (status & MCI_RXOVERRUN) {
 889			if (success > host->variant->fifosize)
 890				success -= host->variant->fifosize;
 891			else
 892				success = 0;
 893			data->error = -EIO;
 894		}
 895		data->bytes_xfered = round_down(success, data->blksz);
 896	}
 897
 898	if (status & MCI_DATABLOCKEND)
 899		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
 900
 901	if (status & MCI_DATAEND || data->error) {
 902		if (dma_inprogress(host))
 903			mmci_dma_finalize(host, data);
 904		mmci_stop_data(host);
 905
 906		if (!data->error)
 907			/* The error clause is handled above, success! */
 908			data->bytes_xfered = data->blksz * data->blocks;
 909
 910		if (!data->stop || host->mrq->sbc) {
 911			mmci_request_end(host, data->mrq);
 912		} else {
 913			mmci_start_command(host, data->stop, 0);
 914		}
 915	}
 916}
 917
 918static void
 919mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
 920	     unsigned int status)
 921{
 922	void __iomem *base = host->base;
 923	bool sbc = (cmd == host->mrq->sbc);
 924	bool busy_resp = host->variant->busy_detect &&
 925			(cmd->flags & MMC_RSP_BUSY);
 926
 927	/* Check if we need to wait for busy completion. */
 928	if (host->busy_status && (status & MCI_ST_CARDBUSY))
 929		return;
 930
 931	/* Enable busy completion if needed and supported. */
 932	if (!host->busy_status && busy_resp &&
 933		!(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
 934		(readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
 935		writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
 936			base + MMCIMASK0);
 937		host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
 938		return;
 939	}
 940
 941	/* At busy completion, mask the IRQ and complete the request. */
 942	if (host->busy_status) {
 943		writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
 944			base + MMCIMASK0);
 945		host->busy_status = 0;
 946	}
 947
 948	host->cmd = NULL;
 949
 950	if (status & MCI_CMDTIMEOUT) {
 951		cmd->error = -ETIMEDOUT;
 952	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
 953		cmd->error = -EILSEQ;
 954	} else {
 955		cmd->resp[0] = readl(base + MMCIRESPONSE0);
 956		cmd->resp[1] = readl(base + MMCIRESPONSE1);
 957		cmd->resp[2] = readl(base + MMCIRESPONSE2);
 958		cmd->resp[3] = readl(base + MMCIRESPONSE3);
 959	}
 960
 961	if ((!sbc && !cmd->data) || cmd->error) {
 962		if (host->data) {
 963			/* Terminate the DMA transfer */
 964			if (dma_inprogress(host)) {
 965				mmci_dma_data_error(host);
 966				mmci_dma_unmap(host, host->data);
 967			}
 968			mmci_stop_data(host);
 969		}
 970		mmci_request_end(host, host->mrq);
 971	} else if (sbc) {
 972		mmci_start_command(host, host->mrq->cmd, 0);
 973	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
 974		mmci_start_data(host, cmd->data);
 975	}
 976}
 977
 978static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
 979{
 980	void __iomem *base = host->base;
 981	char *ptr = buffer;
 982	u32 status;
 983	int host_remain = host->size;
 984
 985	do {
 986		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
 987
 988		if (count > remain)
 989			count = remain;
 990
 991		if (count <= 0)
 992			break;
 993
 994		/*
 995		 * SDIO especially may want to send something that is
 996		 * not divisible by 4 (as opposed to card sectors
 997		 * etc). Therefore make sure to always read the last bytes
 998		 * while only doing full 32-bit reads towards the FIFO.
 999		 */
1000		if (unlikely(count & 0x3)) {
1001			if (count < 4) {
1002				unsigned char buf[4];
1003				ioread32_rep(base + MMCIFIFO, buf, 1);
1004				memcpy(ptr, buf, count);
1005			} else {
1006				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1007				count &= ~0x3;
1008			}
1009		} else {
1010			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1011		}
1012
1013		ptr += count;
1014		remain -= count;
1015		host_remain -= count;
1016
1017		if (remain == 0)
1018			break;
1019
1020		status = readl(base + MMCISTATUS);
1021	} while (status & MCI_RXDATAAVLBL);
1022
1023	return ptr - buffer;
1024}
1025
1026static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1027{
1028	struct variant_data *variant = host->variant;
1029	void __iomem *base = host->base;
1030	char *ptr = buffer;
1031
1032	do {
1033		unsigned int count, maxcnt;
1034
1035		maxcnt = status & MCI_TXFIFOEMPTY ?
1036			 variant->fifosize : variant->fifohalfsize;
1037		count = min(remain, maxcnt);
1038
1039		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1040		 * SDIO especially may want to send something that is
1041		 * not divisible by 4 (as opposed to card sectors
1042		 * etc), and the FIFO only accept full 32-bit writes.
1043		 * So compensate by adding +3 on the count, a single
1044		 * byte become a 32bit write, 7 bytes will be two
1045		 * 32bit writes etc.
1046		 */
1047		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1048
1049		ptr += count;
1050		remain -= count;
1051
1052		if (remain == 0)
1053			break;
1054
1055		status = readl(base + MMCISTATUS);
1056	} while (status & MCI_TXFIFOHALFEMPTY);
1057
1058	return ptr - buffer;
1059}
1060
1061/*
1062 * PIO data transfer IRQ handler.
1063 */
1064static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1065{
1066	struct mmci_host *host = dev_id;
1067	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1068	struct variant_data *variant = host->variant;
1069	void __iomem *base = host->base;
1070	unsigned long flags;
1071	u32 status;
1072
1073	status = readl(base + MMCISTATUS);
1074
1075	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1076
1077	local_irq_save(flags);
1078
1079	do {
1080		unsigned int remain, len;
1081		char *buffer;
1082
1083		/*
1084		 * For write, we only need to test the half-empty flag
1085		 * here - if the FIFO is completely empty, then by
1086		 * definition it is more than half empty.
1087		 *
1088		 * For read, check for data available.
1089		 */
1090		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1091			break;
1092
1093		if (!sg_miter_next(sg_miter))
1094			break;
1095
1096		buffer = sg_miter->addr;
1097		remain = sg_miter->length;
1098
1099		len = 0;
1100		if (status & MCI_RXACTIVE)
1101			len = mmci_pio_read(host, buffer, remain);
1102		if (status & MCI_TXACTIVE)
1103			len = mmci_pio_write(host, buffer, remain, status);
1104
1105		sg_miter->consumed = len;
1106
1107		host->size -= len;
1108		remain -= len;
1109
1110		if (remain)
1111			break;
1112
1113		status = readl(base + MMCISTATUS);
1114	} while (1);
1115
1116	sg_miter_stop(sg_miter);
1117
1118	local_irq_restore(flags);
1119
1120	/*
1121	 * If we have less than the fifo 'half-full' threshold to transfer,
1122	 * trigger a PIO interrupt as soon as any data is available.
1123	 */
1124	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1125		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1126
1127	/*
1128	 * If we run out of data, disable the data IRQs; this
1129	 * prevents a race where the FIFO becomes empty before
1130	 * the chip itself has disabled the data path, and
1131	 * stops us racing with our data end IRQ.
1132	 */
1133	if (host->size == 0) {
1134		mmci_set_mask1(host, 0);
1135		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1136	}
1137
1138	return IRQ_HANDLED;
1139}
1140
1141/*
1142 * Handle completion of command and data transfers.
1143 */
1144static irqreturn_t mmci_irq(int irq, void *dev_id)
1145{
1146	struct mmci_host *host = dev_id;
1147	u32 status;
1148	int ret = 0;
1149
1150	spin_lock(&host->lock);
1151
1152	do {
1153		struct mmc_command *cmd;
1154		struct mmc_data *data;
1155
1156		status = readl(host->base + MMCISTATUS);
1157
1158		if (host->singleirq) {
1159			if (status & readl(host->base + MMCIMASK1))
1160				mmci_pio_irq(irq, dev_id);
1161
1162			status &= ~MCI_IRQ1MASK;
1163		}
1164
1165		/*
1166		 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1167		 * enabled) since the HW seems to be triggering the IRQ on both
1168		 * edges while monitoring DAT0 for busy completion.
1169		 */
1170		status &= readl(host->base + MMCIMASK0);
1171		writel(status, host->base + MMCICLEAR);
1172
1173		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1174
1175		cmd = host->cmd;
1176		if ((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
1177			MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1178			mmci_cmd_irq(host, cmd, status);
1179
1180		data = host->data;
1181		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1182			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1183			      MCI_DATABLOCKEND) && data)
1184			mmci_data_irq(host, data, status);
1185
1186		/* Don't poll for busy completion in irq context. */
1187		if (host->busy_status)
1188			status &= ~MCI_ST_CARDBUSY;
1189
1190		ret = 1;
1191	} while (status);
1192
1193	spin_unlock(&host->lock);
1194
1195	return IRQ_RETVAL(ret);
1196}
1197
1198static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1199{
1200	struct mmci_host *host = mmc_priv(mmc);
1201	unsigned long flags;
1202
1203	WARN_ON(host->mrq != NULL);
1204
1205	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1206	if (mrq->cmd->error) {
 
 
1207		mmc_request_done(mmc, mrq);
1208		return;
1209	}
1210
1211	pm_runtime_get_sync(mmc_dev(mmc));
1212
1213	spin_lock_irqsave(&host->lock, flags);
1214
1215	host->mrq = mrq;
1216
1217	if (mrq->data)
1218		mmci_get_next_data(host, mrq->data);
1219
1220	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1221		mmci_start_data(host, mrq->data);
1222
1223	if (mrq->sbc)
1224		mmci_start_command(host, mrq->sbc, 0);
1225	else
1226		mmci_start_command(host, mrq->cmd, 0);
1227
1228	spin_unlock_irqrestore(&host->lock, flags);
1229}
1230
1231static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1232{
1233	struct mmci_host *host = mmc_priv(mmc);
1234	struct variant_data *variant = host->variant;
1235	u32 pwr = 0;
1236	unsigned long flags;
1237	int ret;
1238
1239	pm_runtime_get_sync(mmc_dev(mmc));
1240
1241	if (host->plat->ios_handler &&
1242		host->plat->ios_handler(mmc_dev(mmc), ios))
1243			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1244
1245	switch (ios->power_mode) {
1246	case MMC_POWER_OFF:
1247		if (!IS_ERR(mmc->supply.vmmc))
1248			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1249
1250		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1251			regulator_disable(mmc->supply.vqmmc);
1252			host->vqmmc_enabled = false;
1253		}
1254
1255		break;
1256	case MMC_POWER_UP:
1257		if (!IS_ERR(mmc->supply.vmmc))
1258			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1259
 
 
 
 
 
 
 
 
 
 
1260		/*
1261		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1262		 * and instead uses MCI_PWR_ON so apply whatever value is
1263		 * configured in the variant data.
1264		 */
1265		pwr |= variant->pwrreg_powerup;
1266
1267		break;
1268	case MMC_POWER_ON:
1269		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1270			ret = regulator_enable(mmc->supply.vqmmc);
1271			if (ret < 0)
1272				dev_err(mmc_dev(mmc),
1273					"failed to enable vqmmc regulator\n");
1274			else
1275				host->vqmmc_enabled = true;
1276		}
1277
1278		pwr |= MCI_PWR_ON;
1279		break;
1280	}
1281
1282	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1283		/*
1284		 * The ST Micro variant has some additional bits
1285		 * indicating signal direction for the signals in
1286		 * the SD/MMC bus and feedback-clock usage.
1287		 */
1288		pwr |= host->plat->sigdir;
1289
1290		if (ios->bus_width == MMC_BUS_WIDTH_4)
1291			pwr &= ~MCI_ST_DATA74DIREN;
1292		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1293			pwr &= (~MCI_ST_DATA74DIREN &
1294				~MCI_ST_DATA31DIREN &
1295				~MCI_ST_DATA2DIREN);
1296	}
1297
1298	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1299		if (host->hw_designer != AMBA_VENDOR_ST)
1300			pwr |= MCI_ROD;
1301		else {
1302			/*
1303			 * The ST Micro variant use the ROD bit for something
1304			 * else and only has OD (Open Drain).
1305			 */
1306			pwr |= MCI_OD;
1307		}
1308	}
1309
1310	/*
1311	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1312	 * gating the clock, the MCI_PWR_ON bit is cleared.
1313	 */
1314	if (!ios->clock && variant->pwrreg_clkgate)
1315		pwr &= ~MCI_PWR_ON;
1316
1317	spin_lock_irqsave(&host->lock, flags);
1318
1319	mmci_set_clkreg(host, ios->clock);
1320	mmci_write_pwrreg(host, pwr);
1321	mmci_reg_delay(host);
1322
1323	spin_unlock_irqrestore(&host->lock, flags);
1324
 
1325	pm_runtime_mark_last_busy(mmc_dev(mmc));
1326	pm_runtime_put_autosuspend(mmc_dev(mmc));
1327}
1328
1329static int mmci_get_ro(struct mmc_host *mmc)
1330{
1331	struct mmci_host *host = mmc_priv(mmc);
1332
1333	if (host->gpio_wp == -ENOSYS)
1334		return -ENOSYS;
1335
1336	return gpio_get_value_cansleep(host->gpio_wp);
1337}
1338
1339static int mmci_get_cd(struct mmc_host *mmc)
1340{
1341	struct mmci_host *host = mmc_priv(mmc);
1342	struct mmci_platform_data *plat = host->plat;
1343	unsigned int status;
1344
1345	if (host->gpio_cd == -ENOSYS) {
1346		if (!plat->status)
1347			return 1; /* Assume always present */
1348
1349		status = plat->status(mmc_dev(host->mmc));
1350	} else
1351		status = !!gpio_get_value_cansleep(host->gpio_cd)
1352			^ plat->cd_invert;
1353
1354	/*
1355	 * Use positive logic throughout - status is zero for no card,
1356	 * non-zero for card inserted.
1357	 */
1358	return status;
1359}
1360
1361static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1362{
1363	int ret = 0;
1364
1365	if (!IS_ERR(mmc->supply.vqmmc)) {
1366
1367		pm_runtime_get_sync(mmc_dev(mmc));
1368
1369		switch (ios->signal_voltage) {
1370		case MMC_SIGNAL_VOLTAGE_330:
1371			ret = regulator_set_voltage(mmc->supply.vqmmc,
1372						2700000, 3600000);
1373			break;
1374		case MMC_SIGNAL_VOLTAGE_180:
1375			ret = regulator_set_voltage(mmc->supply.vqmmc,
1376						1700000, 1950000);
1377			break;
1378		case MMC_SIGNAL_VOLTAGE_120:
1379			ret = regulator_set_voltage(mmc->supply.vqmmc,
1380						1100000, 1300000);
1381			break;
1382		}
1383
1384		if (ret)
1385			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1386
1387		pm_runtime_mark_last_busy(mmc_dev(mmc));
1388		pm_runtime_put_autosuspend(mmc_dev(mmc));
1389	}
1390
1391	return ret;
1392}
1393
1394static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1395{
1396	struct mmci_host *host = dev_id;
1397
1398	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1399
1400	return IRQ_HANDLED;
1401}
1402
1403static struct mmc_host_ops mmci_ops = {
1404	.request	= mmci_request,
1405	.pre_req	= mmci_pre_request,
1406	.post_req	= mmci_post_request,
1407	.set_ios	= mmci_set_ios,
1408	.get_ro		= mmci_get_ro,
1409	.get_cd		= mmci_get_cd,
1410	.start_signal_voltage_switch = mmci_sig_volt_switch,
1411};
1412
1413#ifdef CONFIG_OF
1414static void mmci_dt_populate_generic_pdata(struct device_node *np,
1415					struct mmci_platform_data *pdata)
1416{
1417	int bus_width = 0;
1418
1419	pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1420	pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1421
1422	if (of_get_property(np, "cd-inverted", NULL))
1423		pdata->cd_invert = true;
1424	else
1425		pdata->cd_invert = false;
1426
1427	of_property_read_u32(np, "max-frequency", &pdata->f_max);
1428	if (!pdata->f_max)
1429		pr_warn("%s has no 'max-frequency' property\n", np->full_name);
1430
1431	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1432		pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1433	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1434		pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1435
1436	of_property_read_u32(np, "bus-width", &bus_width);
1437	switch (bus_width) {
1438	case 0 :
1439		/* No bus-width supplied. */
1440		break;
1441	case 4 :
1442		pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1443		break;
1444	case 8 :
1445		pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1446		break;
1447	default :
1448		pr_warn("%s: Unsupported bus width\n", np->full_name);
1449	}
1450}
1451#else
1452static void mmci_dt_populate_generic_pdata(struct device_node *np,
1453					struct mmci_platform_data *pdata)
1454{
1455	return;
1456}
1457#endif
1458
1459static int mmci_probe(struct amba_device *dev,
1460	const struct amba_id *id)
1461{
1462	struct mmci_platform_data *plat = dev->dev.platform_data;
1463	struct device_node *np = dev->dev.of_node;
1464	struct variant_data *variant = id->data;
1465	struct mmci_host *host;
1466	struct mmc_host *mmc;
1467	int ret;
1468
1469	/* Must have platform data or Device Tree. */
1470	if (!plat && !np) {
1471		dev_err(&dev->dev, "No plat data or DT found\n");
1472		return -EINVAL;
1473	}
1474
1475	if (!plat) {
1476		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1477		if (!plat)
1478			return -ENOMEM;
1479	}
1480
1481	if (np)
1482		mmci_dt_populate_generic_pdata(np, plat);
1483
1484	ret = amba_request_regions(dev, DRIVER_NAME);
1485	if (ret)
1486		goto out;
1487
1488	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1489	if (!mmc) {
1490		ret = -ENOMEM;
1491		goto rel_regions;
1492	}
1493
1494	host = mmc_priv(mmc);
1495	host->mmc = mmc;
1496
1497	host->gpio_wp = -ENOSYS;
1498	host->gpio_cd = -ENOSYS;
1499	host->gpio_cd_irq = -1;
1500
1501	host->hw_designer = amba_manf(dev);
1502	host->hw_revision = amba_rev(dev);
1503	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1504	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1505
1506	host->clk = devm_clk_get(&dev->dev, NULL);
1507	if (IS_ERR(host->clk)) {
1508		ret = PTR_ERR(host->clk);
 
1509		goto host_free;
1510	}
1511
1512	ret = clk_prepare_enable(host->clk);
 
 
 
 
1513	if (ret)
1514		goto host_free;
1515
1516	host->plat = plat;
1517	host->variant = variant;
1518	host->mclk = clk_get_rate(host->clk);
1519	/*
1520	 * According to the spec, mclk is max 100 MHz,
1521	 * so we try to adjust the clock down to this,
1522	 * (if possible).
1523	 */
1524	if (host->mclk > 100000000) {
1525		ret = clk_set_rate(host->clk, 100000000);
1526		if (ret < 0)
1527			goto clk_disable;
1528		host->mclk = clk_get_rate(host->clk);
1529		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1530			host->mclk);
1531	}
1532	host->phybase = dev->res.start;
1533	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1534	if (!host->base) {
1535		ret = -ENOMEM;
1536		goto clk_disable;
1537	}
1538
 
1539	/*
1540	 * The ARM and ST versions of the block have slightly different
1541	 * clock divider equations which means that the minimum divider
1542	 * differs too.
1543	 */
1544	if (variant->st_clkdiv)
1545		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1546	else
1547		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1548	/*
1549	 * If the platform data supplies a maximum operating
1550	 * frequency, this takes precedence. Else, we fall back
1551	 * to using the module parameter, which has a (low)
1552	 * default value in case it is not specified. Either
1553	 * value must not exceed the clock rate into the block,
1554	 * of course.
1555	 */
1556	if (plat->f_max)
1557		mmc->f_max = min(host->mclk, plat->f_max);
1558	else
1559		mmc->f_max = min(host->mclk, fmax);
1560	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1561
1562	/* Get regulators and the supported OCR mask */
1563	mmc_regulator_get_supply(mmc);
1564	if (!mmc->ocr_avail)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1565		mmc->ocr_avail = plat->ocr_mask;
1566	else if (plat->ocr_mask)
1567		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1568
1569	mmc->caps = plat->capabilities;
1570	mmc->caps2 = plat->capabilities2;
1571
1572	if (variant->busy_detect) {
1573		mmci_ops.card_busy = mmci_card_busy;
1574		mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1575		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1576		mmc->max_busy_timeout = 0;
1577	}
1578
1579	mmc->ops = &mmci_ops;
1580
1581	/* We support these PM capabilities. */
1582	mmc->pm_caps = MMC_PM_KEEP_POWER;
1583
1584	/*
1585	 * We can do SGIO
1586	 */
1587	mmc->max_segs = NR_SG;
1588
1589	/*
1590	 * Since only a certain number of bits are valid in the data length
1591	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1592	 * single request.
1593	 */
1594	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1595
1596	/*
1597	 * Set the maximum segment size.  Since we aren't doing DMA
1598	 * (yet) we are only limited by the data length register.
1599	 */
1600	mmc->max_seg_size = mmc->max_req_size;
1601
1602	/*
1603	 * Block size can be up to 2048 bytes, but must be a power of two.
1604	 */
1605	mmc->max_blk_size = 1 << 11;
1606
1607	/*
1608	 * Limit the number of blocks transferred so that we don't overflow
1609	 * the maximum request size.
1610	 */
1611	mmc->max_blk_count = mmc->max_req_size >> 11;
1612
1613	spin_lock_init(&host->lock);
1614
1615	writel(0, host->base + MMCIMASK0);
1616	writel(0, host->base + MMCIMASK1);
1617	writel(0xfff, host->base + MMCICLEAR);
1618
1619	if (plat->gpio_cd == -EPROBE_DEFER) {
1620		ret = -EPROBE_DEFER;
1621		goto err_gpio_cd;
1622	}
1623	if (gpio_is_valid(plat->gpio_cd)) {
1624		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1625		if (ret == 0)
1626			ret = gpio_direction_input(plat->gpio_cd);
1627		if (ret == 0)
1628			host->gpio_cd = plat->gpio_cd;
1629		else if (ret != -ENOSYS)
1630			goto err_gpio_cd;
1631
1632		/*
1633		 * A gpio pin that will detect cards when inserted and removed
1634		 * will most likely want to trigger on the edges if it is
1635		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1636		 * for the inverted case) so we request triggers on both
1637		 * edges.
1638		 */
1639		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1640				mmci_cd_irq,
1641				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1642				DRIVER_NAME " (cd)", host);
1643		if (ret >= 0)
1644			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1645	}
1646	if (plat->gpio_wp == -EPROBE_DEFER) {
1647		ret = -EPROBE_DEFER;
1648		goto err_gpio_wp;
1649	}
1650	if (gpio_is_valid(plat->gpio_wp)) {
1651		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1652		if (ret == 0)
1653			ret = gpio_direction_input(plat->gpio_wp);
1654		if (ret == 0)
1655			host->gpio_wp = plat->gpio_wp;
1656		else if (ret != -ENOSYS)
1657			goto err_gpio_wp;
1658	}
1659
1660	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1661	    && host->gpio_cd_irq < 0)
1662		mmc->caps |= MMC_CAP_NEEDS_POLL;
1663
1664	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1665	if (ret)
1666		goto unmap;
1667
1668	if (!dev->irq[1])
1669		host->singleirq = true;
1670	else {
1671		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1672				  DRIVER_NAME " (pio)", host);
1673		if (ret)
1674			goto irq0_free;
1675	}
1676
1677	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1678
1679	amba_set_drvdata(dev, mmc);
1680
1681	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1682		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1683		 amba_rev(dev), (unsigned long long)dev->res.start,
1684		 dev->irq[0], dev->irq[1]);
1685
1686	mmci_dma_setup(host);
1687
1688	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1689	pm_runtime_use_autosuspend(&dev->dev);
1690	pm_runtime_put(&dev->dev);
1691
1692	mmc_add_host(mmc);
1693
1694	return 0;
1695
1696 irq0_free:
1697	free_irq(dev->irq[0], host);
1698 unmap:
1699	if (host->gpio_wp != -ENOSYS)
1700		gpio_free(host->gpio_wp);
1701 err_gpio_wp:
1702	if (host->gpio_cd_irq >= 0)
1703		free_irq(host->gpio_cd_irq, host);
1704	if (host->gpio_cd != -ENOSYS)
1705		gpio_free(host->gpio_cd);
1706 err_gpio_cd:
1707	iounmap(host->base);
1708 clk_disable:
1709	clk_disable_unprepare(host->clk);
 
 
 
 
1710 host_free:
1711	mmc_free_host(mmc);
1712 rel_regions:
1713	amba_release_regions(dev);
1714 out:
1715	return ret;
1716}
1717
1718static int mmci_remove(struct amba_device *dev)
1719{
1720	struct mmc_host *mmc = amba_get_drvdata(dev);
1721
 
 
1722	if (mmc) {
1723		struct mmci_host *host = mmc_priv(mmc);
1724
1725		/*
1726		 * Undo pm_runtime_put() in probe.  We use the _sync
1727		 * version here so that we can access the primecell.
1728		 */
1729		pm_runtime_get_sync(&dev->dev);
1730
1731		mmc_remove_host(mmc);
1732
1733		writel(0, host->base + MMCIMASK0);
1734		writel(0, host->base + MMCIMASK1);
1735
1736		writel(0, host->base + MMCICOMMAND);
1737		writel(0, host->base + MMCIDATACTRL);
1738
1739		mmci_dma_release(host);
1740		free_irq(dev->irq[0], host);
1741		if (!host->singleirq)
1742			free_irq(dev->irq[1], host);
1743
1744		if (host->gpio_wp != -ENOSYS)
1745			gpio_free(host->gpio_wp);
1746		if (host->gpio_cd_irq >= 0)
1747			free_irq(host->gpio_cd_irq, host);
1748		if (host->gpio_cd != -ENOSYS)
1749			gpio_free(host->gpio_cd);
1750
1751		iounmap(host->base);
1752		clk_disable_unprepare(host->clk);
 
 
 
 
 
 
1753
1754		mmc_free_host(mmc);
1755
1756		amba_release_regions(dev);
1757	}
1758
1759	return 0;
1760}
1761
1762#ifdef CONFIG_SUSPEND
1763static int mmci_suspend(struct device *dev)
1764{
1765	struct amba_device *adev = to_amba_device(dev);
1766	struct mmc_host *mmc = amba_get_drvdata(adev);
 
1767
1768	if (mmc) {
1769		struct mmci_host *host = mmc_priv(mmc);
1770		pm_runtime_get_sync(dev);
1771		writel(0, host->base + MMCIMASK0);
 
 
 
 
1772	}
1773
1774	return 0;
1775}
1776
1777static int mmci_resume(struct device *dev)
1778{
1779	struct amba_device *adev = to_amba_device(dev);
1780	struct mmc_host *mmc = amba_get_drvdata(adev);
 
1781
1782	if (mmc) {
1783		struct mmci_host *host = mmc_priv(mmc);
 
1784		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1785		pm_runtime_put(dev);
1786	}
1787
1788	return 0;
1789}
1790#endif
1791
1792#ifdef CONFIG_PM_RUNTIME
1793static void mmci_save(struct mmci_host *host)
1794{
1795	unsigned long flags;
1796
1797	if (host->variant->pwrreg_nopower) {
1798		spin_lock_irqsave(&host->lock, flags);
1799
1800		writel(0, host->base + MMCIMASK0);
1801		writel(0, host->base + MMCIDATACTRL);
1802		writel(0, host->base + MMCIPOWER);
1803		writel(0, host->base + MMCICLOCK);
1804		mmci_reg_delay(host);
1805
1806		spin_unlock_irqrestore(&host->lock, flags);
1807	}
1808
1809}
1810
1811static void mmci_restore(struct mmci_host *host)
1812{
1813	unsigned long flags;
1814
1815	if (host->variant->pwrreg_nopower) {
1816		spin_lock_irqsave(&host->lock, flags);
1817
1818		writel(host->clk_reg, host->base + MMCICLOCK);
1819		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1820		writel(host->pwr_reg, host->base + MMCIPOWER);
1821		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1822		mmci_reg_delay(host);
1823
1824		spin_unlock_irqrestore(&host->lock, flags);
1825	}
1826}
1827
1828static int mmci_runtime_suspend(struct device *dev)
1829{
1830	struct amba_device *adev = to_amba_device(dev);
1831	struct mmc_host *mmc = amba_get_drvdata(adev);
1832
1833	if (mmc) {
1834		struct mmci_host *host = mmc_priv(mmc);
1835		pinctrl_pm_select_sleep_state(dev);
1836		mmci_save(host);
1837		clk_disable_unprepare(host->clk);
1838	}
1839
1840	return 0;
1841}
1842
1843static int mmci_runtime_resume(struct device *dev)
1844{
1845	struct amba_device *adev = to_amba_device(dev);
1846	struct mmc_host *mmc = amba_get_drvdata(adev);
1847
1848	if (mmc) {
1849		struct mmci_host *host = mmc_priv(mmc);
1850		clk_prepare_enable(host->clk);
1851		mmci_restore(host);
1852		pinctrl_pm_select_default_state(dev);
1853	}
1854
1855	return 0;
1856}
1857#endif
1858
1859static const struct dev_pm_ops mmci_dev_pm_ops = {
1860	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1861	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1862};
1863
1864static struct amba_id mmci_ids[] = {
1865	{
1866		.id	= 0x00041180,
1867		.mask	= 0xff0fffff,
1868		.data	= &variant_arm,
1869	},
1870	{
1871		.id	= 0x01041180,
1872		.mask	= 0xff0fffff,
1873		.data	= &variant_arm_extended_fifo,
1874	},
1875	{
1876		.id	= 0x02041180,
1877		.mask	= 0xff0fffff,
1878		.data	= &variant_arm_extended_fifo_hwfc,
1879	},
1880	{
1881		.id	= 0x00041181,
1882		.mask	= 0x000fffff,
1883		.data	= &variant_arm,
1884	},
1885	/* ST Micro variants */
1886	{
1887		.id     = 0x00180180,
1888		.mask   = 0x00ffffff,
1889		.data	= &variant_u300,
1890	},
1891	{
1892		.id     = 0x10180180,
1893		.mask   = 0xf0ffffff,
1894		.data	= &variant_nomadik,
1895	},
1896	{
1897		.id     = 0x00280180,
1898		.mask   = 0x00ffffff,
1899		.data	= &variant_u300,
1900	},
1901	{
1902		.id     = 0x00480180,
1903		.mask   = 0xf0ffffff,
1904		.data	= &variant_ux500,
1905	},
1906	{
1907		.id     = 0x10480180,
1908		.mask   = 0xf0ffffff,
1909		.data	= &variant_ux500v2,
1910	},
1911	{ 0, 0 },
1912};
1913
1914MODULE_DEVICE_TABLE(amba, mmci_ids);
1915
1916static struct amba_driver mmci_driver = {
1917	.drv		= {
1918		.name	= DRIVER_NAME,
1919		.pm	= &mmci_dev_pm_ops,
1920	},
1921	.probe		= mmci_probe,
1922	.remove		= mmci_remove,
1923	.id_table	= mmci_ids,
1924};
1925
1926module_amba_driver(mmci_driver);
1927
1928module_param(fmax, uint, 0444);
1929
1930MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1931MODULE_LICENSE("GPL");