Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
   3 *
   4 * (C) Copyright 2005, Intec Automation,
   5 *		Mike Lavender (mike@steroidmicros)
   6 * (C) Copyright 2006-2007, David Brownell
   7 * (C) Copyright 2007, Axis Communications,
   8 *		Hans-Peter Nilsson (hp@axis.com)
   9 * (C) Copyright 2007, ATRON electronic GmbH,
  10 *		Jan Nikitenko <jan.nikitenko@gmail.com>
  11 *
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or
  16 * (at your option) any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful,
  19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  21 * GNU General Public License for more details.
  22 *
  23 * You should have received a copy of the GNU General Public License
  24 * along with this program; if not, write to the Free Software
  25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  26 */
  27#include <linux/sched.h>
  28#include <linux/delay.h>
  29#include <linux/slab.h>
  30#include <linux/module.h>
  31#include <linux/bio.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/crc7.h>
  34#include <linux/crc-itu-t.h>
  35#include <linux/scatterlist.h>
  36
  37#include <linux/mmc/host.h>
  38#include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
 
  39
  40#include <linux/spi/spi.h>
  41#include <linux/spi/mmc_spi.h>
  42
  43#include <asm/unaligned.h>
  44
  45
  46/* NOTES:
  47 *
  48 * - For now, we won't try to interoperate with a real mmc/sd/sdio
  49 *   controller, although some of them do have hardware support for
  50 *   SPI protocol.  The main reason for such configs would be mmc-ish
  51 *   cards like DataFlash, which don't support that "native" protocol.
  52 *
  53 *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
  54 *   switch between driver stacks, and in any case if "native" mode
  55 *   is available, it will be faster and hence preferable.
  56 *
  57 * - MMC depends on a different chipselect management policy than the
  58 *   SPI interface currently supports for shared bus segments:  it needs
  59 *   to issue multiple spi_message requests with the chipselect active,
  60 *   using the results of one message to decide the next one to issue.
  61 *
  62 *   Pending updates to the programming interface, this driver expects
  63 *   that it not share the bus with other drivers (precluding conflicts).
  64 *
  65 * - We tell the controller to keep the chipselect active from the
  66 *   beginning of an mmc_host_ops.request until the end.  So beware
  67 *   of SPI controller drivers that mis-handle the cs_change flag!
  68 *
  69 *   However, many cards seem OK with chipselect flapping up/down
  70 *   during that time ... at least on unshared bus segments.
  71 */
  72
  73
  74/*
  75 * Local protocol constants, internal to data block protocols.
  76 */
  77
  78/* Response tokens used to ack each block written: */
  79#define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
  80#define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
  81#define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
  82#define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
  83
  84/* Read and write blocks start with these tokens and end with crc;
  85 * on error, read tokens act like a subset of R2_SPI_* values.
  86 */
  87#define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
  88#define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
  89#define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
  90
  91#define MMC_SPI_BLOCKSIZE	512
  92
  93
  94/* These fixed timeouts come from the latest SD specs, which say to ignore
  95 * the CSD values.  The R1B value is for card erase (e.g. the "I forgot the
  96 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
  97 * reads which takes nowhere near that long.  Older cards may be able to use
  98 * shorter timeouts ... but why bother?
  99 */
 100#define r1b_timeout		(HZ * 3)
 101
 102/* One of the critical speed parameters is the amount of data which may
 103 * be transferred in one command. If this value is too low, the SD card
 104 * controller has to do multiple partial block writes (argggh!). With
 105 * today (2008) SD cards there is little speed gain if we transfer more
 106 * than 64 KBytes at a time. So use this value until there is any indication
 107 * that we should do more here.
 108 */
 109#define MMC_SPI_BLOCKSATONCE	128
 110
 111/****************************************************************************/
 112
 113/*
 114 * Local Data Structures
 115 */
 116
 117/* "scratch" is per-{command,block} data exchanged with the card */
 118struct scratch {
 119	u8			status[29];
 120	u8			data_token;
 121	__be16			crc_val;
 122};
 123
 124struct mmc_spi_host {
 125	struct mmc_host		*mmc;
 126	struct spi_device	*spi;
 127
 128	unsigned char		power_mode;
 129	u16			powerup_msecs;
 130
 131	struct mmc_spi_platform_data	*pdata;
 132
 133	/* for bulk data transfers */
 134	struct spi_transfer	token, t, crc, early_status;
 135	struct spi_message	m;
 136
 137	/* for status readback */
 138	struct spi_transfer	status;
 139	struct spi_message	readback;
 140
 141	/* underlying DMA-aware controller, or null */
 142	struct device		*dma_dev;
 143
 144	/* buffer used for commands and for message "overhead" */
 145	struct scratch		*data;
 146	dma_addr_t		data_dma;
 147
 148	/* Specs say to write ones most of the time, even when the card
 149	 * has no need to read its input data; and many cards won't care.
 150	 * This is our source of those ones.
 151	 */
 152	void			*ones;
 153	dma_addr_t		ones_dma;
 154};
 155
 156
 157/****************************************************************************/
 158
 159/*
 160 * MMC-over-SPI protocol glue, used by the MMC stack interface
 161 */
 162
 163static inline int mmc_cs_off(struct mmc_spi_host *host)
 164{
 165	/* chipselect will always be inactive after setup() */
 166	return spi_setup(host->spi);
 167}
 168
 169static int
 170mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
 171{
 172	int status;
 173
 174	if (len > sizeof(*host->data)) {
 175		WARN_ON(1);
 176		return -EIO;
 177	}
 178
 179	host->status.len = len;
 180
 181	if (host->dma_dev)
 182		dma_sync_single_for_device(host->dma_dev,
 183				host->data_dma, sizeof(*host->data),
 184				DMA_FROM_DEVICE);
 185
 186	status = spi_sync_locked(host->spi, &host->readback);
 187
 188	if (host->dma_dev)
 189		dma_sync_single_for_cpu(host->dma_dev,
 190				host->data_dma, sizeof(*host->data),
 191				DMA_FROM_DEVICE);
 192
 193	return status;
 194}
 195
 196static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
 197			unsigned n, u8 byte)
 198{
 199	u8		*cp = host->data->status;
 200	unsigned long start = jiffies;
 201
 202	while (1) {
 203		int		status;
 204		unsigned	i;
 205
 206		status = mmc_spi_readbytes(host, n);
 207		if (status < 0)
 208			return status;
 209
 210		for (i = 0; i < n; i++) {
 211			if (cp[i] != byte)
 212				return cp[i];
 213		}
 214
 215		if (time_is_before_jiffies(start + timeout))
 216			break;
 217
 218		/* If we need long timeouts, we may release the CPU.
 219		 * We use jiffies here because we want to have a relation
 220		 * between elapsed time and the blocking of the scheduler.
 221		 */
 222		if (time_is_before_jiffies(start+1))
 223			schedule();
 224	}
 225	return -ETIMEDOUT;
 226}
 227
 228static inline int
 229mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
 230{
 231	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
 232}
 233
 234static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
 235{
 236	return mmc_spi_skip(host, timeout, 1, 0xff);
 237}
 238
 239
 240/*
 241 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
 242 * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
 243 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
 244 *
 245 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
 246 * newer cards R7 (IF_COND).
 247 */
 248
 249static char *maptype(struct mmc_command *cmd)
 250{
 251	switch (mmc_spi_resp_type(cmd)) {
 252	case MMC_RSP_SPI_R1:	return "R1";
 253	case MMC_RSP_SPI_R1B:	return "R1B";
 254	case MMC_RSP_SPI_R2:	return "R2/R5";
 255	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
 256	default:		return "?";
 257	}
 258}
 259
 260/* return zero, else negative errno after setting cmd->error */
 261static int mmc_spi_response_get(struct mmc_spi_host *host,
 262		struct mmc_command *cmd, int cs_on)
 263{
 264	u8	*cp = host->data->status;
 265	u8	*end = cp + host->t.len;
 266	int	value = 0;
 267	int	bitshift;
 268	u8 	leftover = 0;
 269	unsigned short rotator;
 270	int 	i;
 271	char	tag[32];
 272
 273	snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
 274		cmd->opcode, maptype(cmd));
 275
 276	/* Except for data block reads, the whole response will already
 277	 * be stored in the scratch buffer.  It's somewhere after the
 278	 * command and the first byte we read after it.  We ignore that
 279	 * first byte.  After STOP_TRANSMISSION command it may include
 280	 * two data bits, but otherwise it's all ones.
 281	 */
 282	cp += 8;
 283	while (cp < end && *cp == 0xff)
 284		cp++;
 285
 286	/* Data block reads (R1 response types) may need more data... */
 287	if (cp == end) {
 288		cp = host->data->status;
 289		end = cp+1;
 290
 291		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
 292		 * status byte ... and we already scanned 2 bytes.
 293		 *
 294		 * REVISIT block read paths use nasty byte-at-a-time I/O
 295		 * so it can always DMA directly into the target buffer.
 296		 * It'd probably be better to memcpy() the first chunk and
 297		 * avoid extra i/o calls...
 298		 *
 299		 * Note we check for more than 8 bytes, because in practice,
 300		 * some SD cards are slow...
 301		 */
 302		for (i = 2; i < 16; i++) {
 303			value = mmc_spi_readbytes(host, 1);
 304			if (value < 0)
 305				goto done;
 306			if (*cp != 0xff)
 307				goto checkstatus;
 308		}
 309		value = -ETIMEDOUT;
 310		goto done;
 311	}
 312
 313checkstatus:
 314	bitshift = 0;
 315	if (*cp & 0x80)	{
 316		/* Houston, we have an ugly card with a bit-shifted response */
 317		rotator = *cp++ << 8;
 318		/* read the next byte */
 319		if (cp == end) {
 320			value = mmc_spi_readbytes(host, 1);
 321			if (value < 0)
 322				goto done;
 323			cp = host->data->status;
 324			end = cp+1;
 325		}
 326		rotator |= *cp++;
 327		while (rotator & 0x8000) {
 328			bitshift++;
 329			rotator <<= 1;
 330		}
 331		cmd->resp[0] = rotator >> 8;
 332		leftover = rotator;
 333	} else {
 334		cmd->resp[0] = *cp++;
 335	}
 336	cmd->error = 0;
 337
 338	/* Status byte: the entire seven-bit R1 response.  */
 339	if (cmd->resp[0] != 0) {
 340		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
 341				& cmd->resp[0])
 342			value = -EFAULT; /* Bad address */
 343		else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
 344			value = -ENOSYS; /* Function not implemented */
 345		else if (R1_SPI_COM_CRC & cmd->resp[0])
 346			value = -EILSEQ; /* Illegal byte sequence */
 347		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
 348				& cmd->resp[0])
 349			value = -EIO;    /* I/O error */
 350		/* else R1_SPI_IDLE, "it's resetting" */
 351	}
 352
 353	switch (mmc_spi_resp_type(cmd)) {
 354
 355	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
 356	 * and less-common stuff like various erase operations.
 357	 */
 358	case MMC_RSP_SPI_R1B:
 359		/* maybe we read all the busy tokens already */
 360		while (cp < end && *cp == 0)
 361			cp++;
 362		if (cp == end)
 363			mmc_spi_wait_unbusy(host, r1b_timeout);
 364		break;
 365
 366	/* SPI R2 == R1 + second status byte; SEND_STATUS
 367	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
 368	 */
 369	case MMC_RSP_SPI_R2:
 370		/* read the next byte */
 371		if (cp == end) {
 372			value = mmc_spi_readbytes(host, 1);
 373			if (value < 0)
 374				goto done;
 375			cp = host->data->status;
 376			end = cp+1;
 377		}
 378		if (bitshift) {
 379			rotator = leftover << 8;
 380			rotator |= *cp << bitshift;
 381			cmd->resp[0] |= (rotator & 0xFF00);
 382		} else {
 383			cmd->resp[0] |= *cp << 8;
 384		}
 385		break;
 386
 387	/* SPI R3, R4, or R7 == R1 + 4 bytes */
 388	case MMC_RSP_SPI_R3:
 389		rotator = leftover << 8;
 390		cmd->resp[1] = 0;
 391		for (i = 0; i < 4; i++) {
 392			cmd->resp[1] <<= 8;
 393			/* read the next byte */
 394			if (cp == end) {
 395				value = mmc_spi_readbytes(host, 1);
 396				if (value < 0)
 397					goto done;
 398				cp = host->data->status;
 399				end = cp+1;
 400			}
 401			if (bitshift) {
 402				rotator |= *cp++ << bitshift;
 403				cmd->resp[1] |= (rotator >> 8);
 404				rotator <<= 8;
 405			} else {
 406				cmd->resp[1] |= *cp++;
 407			}
 408		}
 409		break;
 410
 411	/* SPI R1 == just one status byte */
 412	case MMC_RSP_SPI_R1:
 413		break;
 414
 415	default:
 416		dev_dbg(&host->spi->dev, "bad response type %04x\n",
 417				mmc_spi_resp_type(cmd));
 418		if (value >= 0)
 419			value = -EINVAL;
 420		goto done;
 421	}
 422
 423	if (value < 0)
 424		dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
 425			tag, cmd->resp[0], cmd->resp[1]);
 426
 427	/* disable chipselect on errors and some success cases */
 428	if (value >= 0 && cs_on)
 429		return value;
 430done:
 431	if (value < 0)
 432		cmd->error = value;
 433	mmc_cs_off(host);
 434	return value;
 435}
 436
 437/* Issue command and read its response.
 438 * Returns zero on success, negative for error.
 439 *
 440 * On error, caller must cope with mmc core retry mechanism.  That
 441 * means immediate low-level resubmit, which affects the bus lock...
 442 */
 443static int
 444mmc_spi_command_send(struct mmc_spi_host *host,
 445		struct mmc_request *mrq,
 446		struct mmc_command *cmd, int cs_on)
 447{
 448	struct scratch		*data = host->data;
 449	u8			*cp = data->status;
 450	u32			arg = cmd->arg;
 451	int			status;
 452	struct spi_transfer	*t;
 453
 454	/* We can handle most commands (except block reads) in one full
 455	 * duplex I/O operation before either starting the next transfer
 456	 * (data block or command) or else deselecting the card.
 457	 *
 458	 * First, write 7 bytes:
 459	 *  - an all-ones byte to ensure the card is ready
 460	 *  - opcode byte (plus start and transmission bits)
 461	 *  - four bytes of big-endian argument
 462	 *  - crc7 (plus end bit) ... always computed, it's cheap
 463	 *
 464	 * We init the whole buffer to all-ones, which is what we need
 465	 * to write while we're reading (later) response data.
 466	 */
 467	memset(cp++, 0xff, sizeof(data->status));
 468
 469	*cp++ = 0x40 | cmd->opcode;
 470	*cp++ = (u8)(arg >> 24);
 471	*cp++ = (u8)(arg >> 16);
 472	*cp++ = (u8)(arg >> 8);
 473	*cp++ = (u8)arg;
 474	*cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
 475
 476	/* Then, read up to 13 bytes (while writing all-ones):
 477	 *  - N(CR) (== 1..8) bytes of all-ones
 478	 *  - status byte (for all response types)
 479	 *  - the rest of the response, either:
 480	 *      + nothing, for R1 or R1B responses
 481	 *	+ second status byte, for R2 responses
 482	 *	+ four data bytes, for R3 and R7 responses
 483	 *
 484	 * Finally, read some more bytes ... in the nice cases we know in
 485	 * advance how many, and reading 1 more is always OK:
 486	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
 487	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
 488	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
 489	 *
 490	 * So in those cases one full duplex I/O of at most 21 bytes will
 491	 * handle the whole command, leaving the card ready to receive a
 492	 * data block or new command.  We do that whenever we can, shaving
 493	 * CPU and IRQ costs (especially when using DMA or FIFOs).
 494	 *
 495	 * There are two other cases, where it's not generally practical
 496	 * to rely on a single I/O:
 497	 *
 498	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
 499	 *
 500	 *    In this case we can *try* to fit it into one I/O, then
 501	 *    maybe read more data later.
 502	 *
 503	 *  - Data block reads are more troublesome, since a variable
 504	 *    number of padding bytes precede the token and data.
 505	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
 506	 *      + N(AC) (== 1..many) bytes of all-ones
 507	 *
 508	 *    In this case we currently only have minimal speedups here:
 509	 *    when N(CR) == 1 we can avoid I/O in response_get().
 510	 */
 511	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
 512		cp += 2;	/* min(N(CR)) + status */
 513		/* R1 */
 514	} else {
 515		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
 516		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
 517			cp++;
 518		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
 519			cp += 4;
 520		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
 521			cp = data->status + sizeof(data->status);
 522		/* else:  R1 (most commands) */
 523	}
 524
 525	dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
 526		cmd->opcode, maptype(cmd));
 527
 528	/* send command, leaving chipselect active */
 529	spi_message_init(&host->m);
 530
 531	t = &host->t;
 532	memset(t, 0, sizeof(*t));
 533	t->tx_buf = t->rx_buf = data->status;
 534	t->tx_dma = t->rx_dma = host->data_dma;
 535	t->len = cp - data->status;
 536	t->cs_change = 1;
 537	spi_message_add_tail(t, &host->m);
 538
 539	if (host->dma_dev) {
 540		host->m.is_dma_mapped = 1;
 541		dma_sync_single_for_device(host->dma_dev,
 542				host->data_dma, sizeof(*host->data),
 543				DMA_BIDIRECTIONAL);
 544	}
 545	status = spi_sync_locked(host->spi, &host->m);
 546
 547	if (host->dma_dev)
 548		dma_sync_single_for_cpu(host->dma_dev,
 549				host->data_dma, sizeof(*host->data),
 550				DMA_BIDIRECTIONAL);
 551	if (status < 0) {
 552		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
 553		cmd->error = status;
 554		return status;
 555	}
 556
 557	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
 558	return mmc_spi_response_get(host, cmd, cs_on);
 559}
 560
 561/* Build data message with up to four separate transfers.  For TX, we
 562 * start by writing the data token.  And in most cases, we finish with
 563 * a status transfer.
 564 *
 565 * We always provide TX data for data and CRC.  The MMC/SD protocol
 566 * requires us to write ones; but Linux defaults to writing zeroes;
 567 * so we explicitly initialize it to all ones on RX paths.
 568 *
 569 * We also handle DMA mapping, so the underlying SPI controller does
 570 * not need to (re)do it for each message.
 571 */
 572static void
 573mmc_spi_setup_data_message(
 574	struct mmc_spi_host	*host,
 575	int			multiple,
 576	enum dma_data_direction	direction)
 577{
 578	struct spi_transfer	*t;
 579	struct scratch		*scratch = host->data;
 580	dma_addr_t		dma = host->data_dma;
 581
 582	spi_message_init(&host->m);
 583	if (dma)
 584		host->m.is_dma_mapped = 1;
 585
 586	/* for reads, readblock() skips 0xff bytes before finding
 587	 * the token; for writes, this transfer issues that token.
 588	 */
 589	if (direction == DMA_TO_DEVICE) {
 590		t = &host->token;
 591		memset(t, 0, sizeof(*t));
 592		t->len = 1;
 593		if (multiple)
 594			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
 595		else
 596			scratch->data_token = SPI_TOKEN_SINGLE;
 597		t->tx_buf = &scratch->data_token;
 598		if (dma)
 599			t->tx_dma = dma + offsetof(struct scratch, data_token);
 600		spi_message_add_tail(t, &host->m);
 601	}
 602
 603	/* Body of transfer is buffer, then CRC ...
 604	 * either TX-only, or RX with TX-ones.
 605	 */
 606	t = &host->t;
 607	memset(t, 0, sizeof(*t));
 608	t->tx_buf = host->ones;
 609	t->tx_dma = host->ones_dma;
 610	/* length and actual buffer info are written later */
 611	spi_message_add_tail(t, &host->m);
 612
 613	t = &host->crc;
 614	memset(t, 0, sizeof(*t));
 615	t->len = 2;
 616	if (direction == DMA_TO_DEVICE) {
 617		/* the actual CRC may get written later */
 618		t->tx_buf = &scratch->crc_val;
 619		if (dma)
 620			t->tx_dma = dma + offsetof(struct scratch, crc_val);
 621	} else {
 622		t->tx_buf = host->ones;
 623		t->tx_dma = host->ones_dma;
 624		t->rx_buf = &scratch->crc_val;
 625		if (dma)
 626			t->rx_dma = dma + offsetof(struct scratch, crc_val);
 627	}
 628	spi_message_add_tail(t, &host->m);
 629
 630	/*
 631	 * A single block read is followed by N(EC) [0+] all-ones bytes
 632	 * before deselect ... don't bother.
 633	 *
 634	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
 635	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
 636	 * collect that single byte, so readblock() doesn't need to.
 637	 *
 638	 * For a write, the one-byte data response follows immediately, then
 639	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
 640	 * Then single block reads may deselect, and multiblock ones issue
 641	 * the next token (next data block, or STOP_TRAN).  We can try to
 642	 * minimize I/O ops by using a single read to collect end-of-busy.
 643	 */
 644	if (multiple || direction == DMA_TO_DEVICE) {
 645		t = &host->early_status;
 646		memset(t, 0, sizeof(*t));
 647		t->len = (direction == DMA_TO_DEVICE)
 648				? sizeof(scratch->status)
 649				: 1;
 650		t->tx_buf = host->ones;
 651		t->tx_dma = host->ones_dma;
 652		t->rx_buf = scratch->status;
 653		if (dma)
 654			t->rx_dma = dma + offsetof(struct scratch, status);
 655		t->cs_change = 1;
 656		spi_message_add_tail(t, &host->m);
 657	}
 658}
 659
 660/*
 661 * Write one block:
 662 *  - caller handled preceding N(WR) [1+] all-ones bytes
 663 *  - data block
 664 *	+ token
 665 *	+ data bytes
 666 *	+ crc16
 667 *  - an all-ones byte ... card writes a data-response byte
 668 *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
 669 *
 670 * Return negative errno, else success.
 671 */
 672static int
 673mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
 674	unsigned long timeout)
 675{
 676	struct spi_device	*spi = host->spi;
 677	int			status, i;
 678	struct scratch		*scratch = host->data;
 679	u32			pattern;
 680
 681	if (host->mmc->use_spi_crc)
 682		scratch->crc_val = cpu_to_be16(
 683				crc_itu_t(0, t->tx_buf, t->len));
 684	if (host->dma_dev)
 685		dma_sync_single_for_device(host->dma_dev,
 686				host->data_dma, sizeof(*scratch),
 687				DMA_BIDIRECTIONAL);
 688
 689	status = spi_sync_locked(spi, &host->m);
 690
 691	if (status != 0) {
 692		dev_dbg(&spi->dev, "write error (%d)\n", status);
 693		return status;
 694	}
 695
 696	if (host->dma_dev)
 697		dma_sync_single_for_cpu(host->dma_dev,
 698				host->data_dma, sizeof(*scratch),
 699				DMA_BIDIRECTIONAL);
 700
 701	/*
 702	 * Get the transmission data-response reply.  It must follow
 703	 * immediately after the data block we transferred.  This reply
 704	 * doesn't necessarily tell whether the write operation succeeded;
 705	 * it just says if the transmission was ok and whether *earlier*
 706	 * writes succeeded; see the standard.
 707	 *
 708	 * In practice, there are (even modern SDHC-)cards which are late
 709	 * in sending the response, and miss the time frame by a few bits,
 710	 * so we have to cope with this situation and check the response
 711	 * bit-by-bit. Arggh!!!
 712	 */
 713	pattern  = scratch->status[0] << 24;
 714	pattern |= scratch->status[1] << 16;
 715	pattern |= scratch->status[2] << 8;
 716	pattern |= scratch->status[3];
 717
 718	/* First 3 bit of pattern are undefined */
 719	pattern |= 0xE0000000;
 720
 721	/* left-adjust to leading 0 bit */
 722	while (pattern & 0x80000000)
 723		pattern <<= 1;
 724	/* right-adjust for pattern matching. Code is in bit 4..0 now. */
 725	pattern >>= 27;
 726
 727	switch (pattern) {
 728	case SPI_RESPONSE_ACCEPTED:
 729		status = 0;
 730		break;
 731	case SPI_RESPONSE_CRC_ERR:
 732		/* host shall then issue MMC_STOP_TRANSMISSION */
 733		status = -EILSEQ;
 734		break;
 735	case SPI_RESPONSE_WRITE_ERR:
 736		/* host shall then issue MMC_STOP_TRANSMISSION,
 737		 * and should MMC_SEND_STATUS to sort it out
 738		 */
 739		status = -EIO;
 740		break;
 741	default:
 742		status = -EPROTO;
 743		break;
 744	}
 745	if (status != 0) {
 746		dev_dbg(&spi->dev, "write error %02x (%d)\n",
 747			scratch->status[0], status);
 748		return status;
 749	}
 750
 751	t->tx_buf += t->len;
 752	if (host->dma_dev)
 753		t->tx_dma += t->len;
 754
 755	/* Return when not busy.  If we didn't collect that status yet,
 756	 * we'll need some more I/O.
 757	 */
 758	for (i = 4; i < sizeof(scratch->status); i++) {
 759		/* card is non-busy if the most recent bit is 1 */
 760		if (scratch->status[i] & 0x01)
 761			return 0;
 762	}
 763	return mmc_spi_wait_unbusy(host, timeout);
 764}
 765
 766/*
 767 * Read one block:
 768 *  - skip leading all-ones bytes ... either
 769 *      + N(AC) [1..f(clock,CSD)] usually, else
 770 *      + N(CX) [0..8] when reading CSD or CID
 771 *  - data block
 772 *	+ token ... if error token, no data or crc
 773 *	+ data bytes
 774 *	+ crc16
 775 *
 776 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
 777 * before dropping chipselect.
 778 *
 779 * For multiblock reads, caller either reads the next block or issues a
 780 * STOP_TRANSMISSION command.
 781 */
 782static int
 783mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
 784	unsigned long timeout)
 785{
 786	struct spi_device	*spi = host->spi;
 787	int			status;
 788	struct scratch		*scratch = host->data;
 789	unsigned int 		bitshift;
 790	u8			leftover;
 791
 792	/* At least one SD card sends an all-zeroes byte when N(CX)
 793	 * applies, before the all-ones bytes ... just cope with that.
 794	 */
 795	status = mmc_spi_readbytes(host, 1);
 796	if (status < 0)
 797		return status;
 798	status = scratch->status[0];
 799	if (status == 0xff || status == 0)
 800		status = mmc_spi_readtoken(host, timeout);
 801
 802	if (status < 0) {
 803		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
 804		return status;
 805	}
 806
 807	/* The token may be bit-shifted...
 808	 * the first 0-bit precedes the data stream.
 809	 */
 810	bitshift = 7;
 811	while (status & 0x80) {
 812		status <<= 1;
 813		bitshift--;
 814	}
 815	leftover = status << 1;
 816
 817	if (host->dma_dev) {
 818		dma_sync_single_for_device(host->dma_dev,
 819				host->data_dma, sizeof(*scratch),
 820				DMA_BIDIRECTIONAL);
 821		dma_sync_single_for_device(host->dma_dev,
 822				t->rx_dma, t->len,
 823				DMA_FROM_DEVICE);
 824	}
 825
 826	status = spi_sync_locked(spi, &host->m);
 827
 828	if (host->dma_dev) {
 829		dma_sync_single_for_cpu(host->dma_dev,
 830				host->data_dma, sizeof(*scratch),
 831				DMA_BIDIRECTIONAL);
 832		dma_sync_single_for_cpu(host->dma_dev,
 833				t->rx_dma, t->len,
 834				DMA_FROM_DEVICE);
 835	}
 836
 837	if (bitshift) {
 838		/* Walk through the data and the crc and do
 839		 * all the magic to get byte-aligned data.
 840		 */
 841		u8 *cp = t->rx_buf;
 842		unsigned int len;
 843		unsigned int bitright = 8 - bitshift;
 844		u8 temp;
 845		for (len = t->len; len; len--) {
 846			temp = *cp;
 847			*cp++ = leftover | (temp >> bitshift);
 848			leftover = temp << bitright;
 849		}
 850		cp = (u8 *) &scratch->crc_val;
 851		temp = *cp;
 852		*cp++ = leftover | (temp >> bitshift);
 853		leftover = temp << bitright;
 854		temp = *cp;
 855		*cp = leftover | (temp >> bitshift);
 856	}
 857
 858	if (host->mmc->use_spi_crc) {
 859		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
 860
 861		be16_to_cpus(&scratch->crc_val);
 862		if (scratch->crc_val != crc) {
 863			dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
 864					"computed=0x%04x len=%d\n",
 865					scratch->crc_val, crc, t->len);
 866			return -EILSEQ;
 867		}
 868	}
 869
 870	t->rx_buf += t->len;
 871	if (host->dma_dev)
 872		t->rx_dma += t->len;
 873
 874	return 0;
 875}
 876
 877/*
 878 * An MMC/SD data stage includes one or more blocks, optional CRCs,
 879 * and inline handshaking.  That handhaking makes it unlike most
 880 * other SPI protocol stacks.
 881 */
 882static void
 883mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
 884		struct mmc_data *data, u32 blk_size)
 885{
 886	struct spi_device	*spi = host->spi;
 887	struct device		*dma_dev = host->dma_dev;
 888	struct spi_transfer	*t;
 889	enum dma_data_direction	direction;
 890	struct scatterlist	*sg;
 891	unsigned		n_sg;
 892	int			multiple = (data->blocks > 1);
 893	u32			clock_rate;
 894	unsigned long		timeout;
 895
 896	if (data->flags & MMC_DATA_READ)
 897		direction = DMA_FROM_DEVICE;
 898	else
 899		direction = DMA_TO_DEVICE;
 900	mmc_spi_setup_data_message(host, multiple, direction);
 901	t = &host->t;
 902
 903	if (t->speed_hz)
 904		clock_rate = t->speed_hz;
 905	else
 906		clock_rate = spi->max_speed_hz;
 907
 908	timeout = data->timeout_ns +
 909		  data->timeout_clks * 1000000 / clock_rate;
 910	timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
 911
 912	/* Handle scatterlist segments one at a time, with synch for
 913	 * each 512-byte block
 914	 */
 915	for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
 916		int			status = 0;
 917		dma_addr_t		dma_addr = 0;
 918		void			*kmap_addr;
 919		unsigned		length = sg->length;
 920		enum dma_data_direction	dir = direction;
 921
 922		/* set up dma mapping for controller drivers that might
 923		 * use DMA ... though they may fall back to PIO
 924		 */
 925		if (dma_dev) {
 926			/* never invalidate whole *shared* pages ... */
 927			if ((sg->offset != 0 || length != PAGE_SIZE)
 928					&& dir == DMA_FROM_DEVICE)
 929				dir = DMA_BIDIRECTIONAL;
 930
 931			dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
 932						PAGE_SIZE, dir);
 
 
 
 
 933			if (direction == DMA_TO_DEVICE)
 934				t->tx_dma = dma_addr + sg->offset;
 935			else
 936				t->rx_dma = dma_addr + sg->offset;
 937		}
 938
 939		/* allow pio too; we don't allow highmem */
 940		kmap_addr = kmap(sg_page(sg));
 941		if (direction == DMA_TO_DEVICE)
 942			t->tx_buf = kmap_addr + sg->offset;
 943		else
 944			t->rx_buf = kmap_addr + sg->offset;
 945
 946		/* transfer each block, and update request status */
 947		while (length) {
 948			t->len = min(length, blk_size);
 949
 950			dev_dbg(&host->spi->dev,
 951				"    mmc_spi: %s block, %d bytes\n",
 952				(direction == DMA_TO_DEVICE)
 953				? "write"
 954				: "read",
 955				t->len);
 956
 957			if (direction == DMA_TO_DEVICE)
 958				status = mmc_spi_writeblock(host, t, timeout);
 959			else
 960				status = mmc_spi_readblock(host, t, timeout);
 961			if (status < 0)
 962				break;
 963
 964			data->bytes_xfered += t->len;
 965			length -= t->len;
 966
 967			if (!multiple)
 968				break;
 969		}
 970
 971		/* discard mappings */
 972		if (direction == DMA_FROM_DEVICE)
 973			flush_kernel_dcache_page(sg_page(sg));
 974		kunmap(sg_page(sg));
 975		if (dma_dev)
 976			dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
 977
 978		if (status < 0) {
 979			data->error = status;
 980			dev_dbg(&spi->dev, "%s status %d\n",
 981				(direction == DMA_TO_DEVICE)
 982					? "write" : "read",
 983				status);
 984			break;
 985		}
 986	}
 987
 988	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
 989	 * can be issued before multiblock writes.  Unlike its more widely
 990	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
 991	 * that can affect the STOP_TRAN logic.   Complete (and current)
 992	 * MMC specs should sort that out before Linux starts using CMD23.
 993	 */
 994	if (direction == DMA_TO_DEVICE && multiple) {
 995		struct scratch	*scratch = host->data;
 996		int		tmp;
 997		const unsigned	statlen = sizeof(scratch->status);
 998
 999		dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
1000
1001		/* Tweak the per-block message we set up earlier by morphing
1002		 * it to hold single buffer with the token followed by some
1003		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
1004		 * "not busy any longer" status, and leave chip selected.
1005		 */
1006		INIT_LIST_HEAD(&host->m.transfers);
1007		list_add(&host->early_status.transfer_list,
1008				&host->m.transfers);
1009
1010		memset(scratch->status, 0xff, statlen);
1011		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
1012
1013		host->early_status.tx_buf = host->early_status.rx_buf;
1014		host->early_status.tx_dma = host->early_status.rx_dma;
1015		host->early_status.len = statlen;
1016
1017		if (host->dma_dev)
1018			dma_sync_single_for_device(host->dma_dev,
1019					host->data_dma, sizeof(*scratch),
1020					DMA_BIDIRECTIONAL);
1021
1022		tmp = spi_sync_locked(spi, &host->m);
1023
1024		if (host->dma_dev)
1025			dma_sync_single_for_cpu(host->dma_dev,
1026					host->data_dma, sizeof(*scratch),
1027					DMA_BIDIRECTIONAL);
1028
1029		if (tmp < 0) {
1030			if (!data->error)
1031				data->error = tmp;
1032			return;
1033		}
1034
1035		/* Ideally we collected "not busy" status with one I/O,
1036		 * avoiding wasteful byte-at-a-time scanning... but more
1037		 * I/O is often needed.
1038		 */
1039		for (tmp = 2; tmp < statlen; tmp++) {
1040			if (scratch->status[tmp] != 0)
1041				return;
1042		}
1043		tmp = mmc_spi_wait_unbusy(host, timeout);
1044		if (tmp < 0 && !data->error)
1045			data->error = tmp;
1046	}
1047}
1048
1049/****************************************************************************/
1050
1051/*
1052 * MMC driver implementation -- the interface to the MMC stack
1053 */
1054
1055static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1056{
1057	struct mmc_spi_host	*host = mmc_priv(mmc);
1058	int			status = -EINVAL;
1059	int			crc_retry = 5;
1060	struct mmc_command	stop;
1061
1062#ifdef DEBUG
1063	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
1064	{
1065		struct mmc_command	*cmd;
1066		int			invalid = 0;
1067
1068		cmd = mrq->cmd;
1069		if (!mmc_spi_resp_type(cmd)) {
1070			dev_dbg(&host->spi->dev, "bogus command\n");
1071			cmd->error = -EINVAL;
1072			invalid = 1;
1073		}
1074
1075		cmd = mrq->stop;
1076		if (cmd && !mmc_spi_resp_type(cmd)) {
1077			dev_dbg(&host->spi->dev, "bogus STOP command\n");
1078			cmd->error = -EINVAL;
1079			invalid = 1;
1080		}
1081
1082		if (invalid) {
1083			dump_stack();
1084			mmc_request_done(host->mmc, mrq);
1085			return;
1086		}
1087	}
1088#endif
1089
1090	/* request exclusive bus access */
1091	spi_bus_lock(host->spi->master);
1092
1093crc_recover:
1094	/* issue command; then optionally data and stop */
1095	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1096	if (status == 0 && mrq->data) {
1097		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1098
1099		/*
1100		 * The SPI bus is not always reliable for large data transfers.
1101		 * If an occasional crc error is reported by the SD device with
1102		 * data read/write over SPI, it may be recovered by repeating
1103		 * the last SD command again. The retry count is set to 5 to
1104		 * ensure the driver passes stress tests.
1105		 */
1106		if (mrq->data->error == -EILSEQ && crc_retry) {
1107			stop.opcode = MMC_STOP_TRANSMISSION;
1108			stop.arg = 0;
1109			stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1110			status = mmc_spi_command_send(host, mrq, &stop, 0);
1111			crc_retry--;
1112			mrq->data->error = 0;
1113			goto crc_recover;
1114		}
1115
1116		if (mrq->stop)
1117			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1118		else
1119			mmc_cs_off(host);
1120	}
1121
1122	/* release the bus */
1123	spi_bus_unlock(host->spi->master);
1124
1125	mmc_request_done(host->mmc, mrq);
1126}
1127
1128/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1129 *
1130 * NOTE that here we can't know that the card has just been powered up;
1131 * not all MMC/SD sockets support power switching.
1132 *
1133 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1134 * this doesn't seem to do the right thing at all...
1135 */
1136static void mmc_spi_initsequence(struct mmc_spi_host *host)
1137{
1138	/* Try to be very sure any previous command has completed;
1139	 * wait till not-busy, skip debris from any old commands.
1140	 */
1141	mmc_spi_wait_unbusy(host, r1b_timeout);
1142	mmc_spi_readbytes(host, 10);
1143
1144	/*
1145	 * Do a burst with chipselect active-high.  We need to do this to
1146	 * meet the requirement of 74 clock cycles with both chipselect
1147	 * and CMD (MOSI) high before CMD0 ... after the card has been
1148	 * powered up to Vdd(min), and so is ready to take commands.
1149	 *
1150	 * Some cards are particularly needy of this (e.g. Viking "SD256")
1151	 * while most others don't seem to care.
1152	 *
1153	 * Note that this is one of the places MMC/SD plays games with the
1154	 * SPI protocol.  Another is that when chipselect is released while
1155	 * the card returns BUSY status, the clock must issue several cycles
1156	 * with chipselect high before the card will stop driving its output.
1157	 */
1158	host->spi->mode |= SPI_CS_HIGH;
1159	if (spi_setup(host->spi) != 0) {
1160		/* Just warn; most cards work without it. */
1161		dev_warn(&host->spi->dev,
1162				"can't change chip-select polarity\n");
1163		host->spi->mode &= ~SPI_CS_HIGH;
1164	} else {
1165		mmc_spi_readbytes(host, 18);
1166
1167		host->spi->mode &= ~SPI_CS_HIGH;
1168		if (spi_setup(host->spi) != 0) {
1169			/* Wot, we can't get the same setup we had before? */
1170			dev_err(&host->spi->dev,
1171					"can't restore chip-select polarity\n");
1172		}
1173	}
1174}
1175
1176static char *mmc_powerstring(u8 power_mode)
1177{
1178	switch (power_mode) {
1179	case MMC_POWER_OFF: return "off";
1180	case MMC_POWER_UP:  return "up";
1181	case MMC_POWER_ON:  return "on";
1182	}
1183	return "?";
1184}
1185
1186static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1187{
1188	struct mmc_spi_host *host = mmc_priv(mmc);
1189
1190	if (host->power_mode != ios->power_mode) {
1191		int		canpower;
1192
1193		canpower = host->pdata && host->pdata->setpower;
1194
1195		dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1196				mmc_powerstring(ios->power_mode),
1197				ios->vdd,
1198				canpower ? ", can switch" : "");
1199
1200		/* switch power on/off if possible, accounting for
1201		 * max 250msec powerup time if needed.
1202		 */
1203		if (canpower) {
1204			switch (ios->power_mode) {
1205			case MMC_POWER_OFF:
1206			case MMC_POWER_UP:
1207				host->pdata->setpower(&host->spi->dev,
1208						ios->vdd);
1209				if (ios->power_mode == MMC_POWER_UP)
1210					msleep(host->powerup_msecs);
1211			}
1212		}
1213
1214		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
1215		if (ios->power_mode == MMC_POWER_ON)
1216			mmc_spi_initsequence(host);
1217
1218		/* If powering down, ground all card inputs to avoid power
1219		 * delivery from data lines!  On a shared SPI bus, this
1220		 * will probably be temporary; 6.4.2 of the simplified SD
1221		 * spec says this must last at least 1msec.
1222		 *
1223		 *   - Clock low means CPOL 0, e.g. mode 0
1224		 *   - MOSI low comes from writing zero
1225		 *   - Chipselect is usually active low...
1226		 */
1227		if (canpower && ios->power_mode == MMC_POWER_OFF) {
1228			int mres;
1229			u8 nullbyte = 0;
1230
1231			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1232			mres = spi_setup(host->spi);
1233			if (mres < 0)
1234				dev_dbg(&host->spi->dev,
1235					"switch to SPI mode 0 failed\n");
1236
1237			if (spi_write(host->spi, &nullbyte, 1) < 0)
1238				dev_dbg(&host->spi->dev,
1239					"put spi signals to low failed\n");
1240
1241			/*
1242			 * Now clock should be low due to spi mode 0;
1243			 * MOSI should be low because of written 0x00;
1244			 * chipselect should be low (it is active low)
1245			 * power supply is off, so now MMC is off too!
1246			 *
1247			 * FIXME no, chipselect can be high since the
1248			 * device is inactive and SPI_CS_HIGH is clear...
1249			 */
1250			msleep(10);
1251			if (mres == 0) {
1252				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1253				mres = spi_setup(host->spi);
1254				if (mres < 0)
1255					dev_dbg(&host->spi->dev,
1256						"switch back to SPI mode 3"
1257						" failed\n");
1258			}
1259		}
1260
1261		host->power_mode = ios->power_mode;
1262	}
1263
1264	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1265		int		status;
1266
1267		host->spi->max_speed_hz = ios->clock;
1268		status = spi_setup(host->spi);
1269		dev_dbg(&host->spi->dev,
1270			"mmc_spi:  clock to %d Hz, %d\n",
1271			host->spi->max_speed_hz, status);
1272	}
1273}
1274
1275static int mmc_spi_get_ro(struct mmc_host *mmc)
1276{
1277	struct mmc_spi_host *host = mmc_priv(mmc);
1278
1279	if (host->pdata && host->pdata->get_ro)
1280		return !!host->pdata->get_ro(mmc->parent);
1281	/*
1282	 * Board doesn't support read only detection; let the mmc core
1283	 * decide what to do.
1284	 */
1285	return -ENOSYS;
1286}
1287
1288static int mmc_spi_get_cd(struct mmc_host *mmc)
1289{
1290	struct mmc_spi_host *host = mmc_priv(mmc);
1291
1292	if (host->pdata && host->pdata->get_cd)
1293		return !!host->pdata->get_cd(mmc->parent);
1294	return -ENOSYS;
1295}
1296
1297static const struct mmc_host_ops mmc_spi_ops = {
1298	.request	= mmc_spi_request,
1299	.set_ios	= mmc_spi_set_ios,
1300	.get_ro		= mmc_spi_get_ro,
1301	.get_cd		= mmc_spi_get_cd,
1302};
1303
1304
1305/****************************************************************************/
1306
1307/*
1308 * SPI driver implementation
1309 */
1310
1311static irqreturn_t
1312mmc_spi_detect_irq(int irq, void *mmc)
1313{
1314	struct mmc_spi_host *host = mmc_priv(mmc);
1315	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1316
1317	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1318	return IRQ_HANDLED;
1319}
1320
1321static int mmc_spi_probe(struct spi_device *spi)
1322{
1323	void			*ones;
1324	struct mmc_host		*mmc;
1325	struct mmc_spi_host	*host;
1326	int			status;
 
1327
1328	/* We rely on full duplex transfers, mostly to reduce
1329	 * per-transfer overheads (by making fewer transfers).
1330	 */
1331	if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1332		return -EINVAL;
1333
1334	/* MMC and SD specs only seem to care that sampling is on the
1335	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1336	 * should be legit.  We'll use mode 0 since the steady state is 0,
1337	 * which is appropriate for hotplugging, unless the platform data
1338	 * specify mode 3 (if hardware is not compatible to mode 0).
1339	 */
1340	if (spi->mode != SPI_MODE_3)
1341		spi->mode = SPI_MODE_0;
1342	spi->bits_per_word = 8;
1343
1344	status = spi_setup(spi);
1345	if (status < 0) {
1346		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1347				spi->mode, spi->max_speed_hz / 1000,
1348				status);
1349		return status;
1350	}
1351
1352	/* We need a supply of ones to transmit.  This is the only time
1353	 * the CPU touches these, so cache coherency isn't a concern.
1354	 *
1355	 * NOTE if many systems use more than one MMC-over-SPI connector
1356	 * it'd save some memory to share this.  That's evidently rare.
1357	 */
1358	status = -ENOMEM;
1359	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1360	if (!ones)
1361		goto nomem;
1362	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1363
1364	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1365	if (!mmc)
1366		goto nomem;
1367
1368	mmc->ops = &mmc_spi_ops;
1369	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1370	mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1371	mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1372	mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1373
1374	mmc->caps = MMC_CAP_SPI;
1375
1376	/* SPI doesn't need the lowspeed device identification thing for
1377	 * MMC or SD cards, since it never comes up in open drain mode.
1378	 * That's good; some SPI masters can't handle very low speeds!
1379	 *
1380	 * However, low speed SDIO cards need not handle over 400 KHz;
1381	 * that's the only reason not to use a few MHz for f_min (until
1382	 * the upper layer reads the target frequency from the CSD).
1383	 */
1384	mmc->f_min = 400000;
1385	mmc->f_max = spi->max_speed_hz;
1386
1387	host = mmc_priv(mmc);
1388	host->mmc = mmc;
1389	host->spi = spi;
1390
1391	host->ones = ones;
1392
1393	/* Platform data is used to hook up things like card sensing
1394	 * and power switching gpios.
1395	 */
1396	host->pdata = mmc_spi_get_pdata(spi);
1397	if (host->pdata)
1398		mmc->ocr_avail = host->pdata->ocr_mask;
1399	if (!mmc->ocr_avail) {
1400		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1401		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1402	}
1403	if (host->pdata && host->pdata->setpower) {
1404		host->powerup_msecs = host->pdata->powerup_msecs;
1405		if (!host->powerup_msecs || host->powerup_msecs > 250)
1406			host->powerup_msecs = 250;
1407	}
1408
1409	dev_set_drvdata(&spi->dev, mmc);
1410
1411	/* preallocate dma buffers */
1412	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1413	if (!host->data)
1414		goto fail_nobuf1;
1415
1416	if (spi->master->dev.parent->dma_mask) {
1417		struct device	*dev = spi->master->dev.parent;
1418
1419		host->dma_dev = dev;
1420		host->ones_dma = dma_map_single(dev, ones,
1421				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
 
 
1422		host->data_dma = dma_map_single(dev, host->data,
1423				sizeof(*host->data), DMA_BIDIRECTIONAL);
1424
1425		/* REVISIT in theory those map operations can fail... */
1426
1427		dma_sync_single_for_cpu(host->dma_dev,
1428				host->data_dma, sizeof(*host->data),
1429				DMA_BIDIRECTIONAL);
1430	}
1431
1432	/* setup message for status/busy readback */
1433	spi_message_init(&host->readback);
1434	host->readback.is_dma_mapped = (host->dma_dev != NULL);
1435
1436	spi_message_add_tail(&host->status, &host->readback);
1437	host->status.tx_buf = host->ones;
1438	host->status.tx_dma = host->ones_dma;
1439	host->status.rx_buf = &host->data->status;
1440	host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1441	host->status.cs_change = 1;
1442
1443	/* register card detect irq */
1444	if (host->pdata && host->pdata->init) {
1445		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1446		if (status != 0)
1447			goto fail_glue_init;
1448	}
1449
1450	/* pass platform capabilities, if any */
1451	if (host->pdata)
1452		mmc->caps |= host->pdata->caps;
 
 
1453
1454	status = mmc_add_host(mmc);
1455	if (status != 0)
1456		goto fail_add_host;
1457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1458	dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1459			dev_name(&mmc->class_dev),
1460			host->dma_dev ? "" : ", no DMA",
1461			(host->pdata && host->pdata->get_ro)
1462				? "" : ", no WP",
1463			(host->pdata && host->pdata->setpower)
1464				? "" : ", no poweroff",
1465			(mmc->caps & MMC_CAP_NEEDS_POLL)
1466				? ", cd polling" : "");
1467	return 0;
1468
1469fail_add_host:
1470	mmc_remove_host (mmc);
1471fail_glue_init:
1472	if (host->dma_dev)
1473		dma_unmap_single(host->dma_dev, host->data_dma,
1474				sizeof(*host->data), DMA_BIDIRECTIONAL);
 
 
 
 
 
1475	kfree(host->data);
1476
1477fail_nobuf1:
1478	mmc_free_host(mmc);
1479	mmc_spi_put_pdata(spi);
1480	dev_set_drvdata(&spi->dev, NULL);
1481
1482nomem:
1483	kfree(ones);
1484	return status;
1485}
1486
1487
1488static int __devexit mmc_spi_remove(struct spi_device *spi)
1489{
1490	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
1491	struct mmc_spi_host	*host;
1492
1493	if (mmc) {
1494		host = mmc_priv(mmc);
1495
1496		/* prevent new mmc_detect_change() calls */
1497		if (host->pdata && host->pdata->exit)
1498			host->pdata->exit(&spi->dev, mmc);
1499
1500		mmc_remove_host(mmc);
1501
1502		if (host->dma_dev) {
1503			dma_unmap_single(host->dma_dev, host->ones_dma,
1504				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1505			dma_unmap_single(host->dma_dev, host->data_dma,
1506				sizeof(*host->data), DMA_BIDIRECTIONAL);
1507		}
1508
1509		kfree(host->data);
1510		kfree(host->ones);
1511
1512		spi->max_speed_hz = mmc->f_max;
1513		mmc_free_host(mmc);
1514		mmc_spi_put_pdata(spi);
1515		dev_set_drvdata(&spi->dev, NULL);
1516	}
1517	return 0;
1518}
1519
1520static struct of_device_id mmc_spi_of_match_table[] __devinitdata = {
1521	{ .compatible = "mmc-spi-slot", },
1522	{},
1523};
 
1524
1525static struct spi_driver mmc_spi_driver = {
1526	.driver = {
1527		.name =		"mmc_spi",
1528		.owner =	THIS_MODULE,
1529		.of_match_table = mmc_spi_of_match_table,
1530	},
1531	.probe =	mmc_spi_probe,
1532	.remove =	__devexit_p(mmc_spi_remove),
1533};
1534
1535
1536static int __init mmc_spi_init(void)
1537{
1538	return spi_register_driver(&mmc_spi_driver);
1539}
1540module_init(mmc_spi_init);
1541
1542
1543static void __exit mmc_spi_exit(void)
1544{
1545	spi_unregister_driver(&mmc_spi_driver);
1546}
1547module_exit(mmc_spi_exit);
1548
1549
1550MODULE_AUTHOR("Mike Lavender, David Brownell, "
1551		"Hans-Peter Nilsson, Jan Nikitenko");
1552MODULE_DESCRIPTION("SPI SD/MMC host driver");
1553MODULE_LICENSE("GPL");
1554MODULE_ALIAS("spi:mmc_spi");
v4.17
   1/*
   2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
   3 *
   4 * (C) Copyright 2005, Intec Automation,
   5 *		Mike Lavender (mike@steroidmicros)
   6 * (C) Copyright 2006-2007, David Brownell
   7 * (C) Copyright 2007, Axis Communications,
   8 *		Hans-Peter Nilsson (hp@axis.com)
   9 * (C) Copyright 2007, ATRON electronic GmbH,
  10 *		Jan Nikitenko <jan.nikitenko@gmail.com>
  11 *
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or
  16 * (at your option) any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful,
  19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  21 * GNU General Public License for more details.
  22 *
  23 * You should have received a copy of the GNU General Public License
  24 * along with this program; if not, write to the Free Software
  25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  26 */
  27#include <linux/sched.h>
  28#include <linux/delay.h>
  29#include <linux/slab.h>
  30#include <linux/module.h>
  31#include <linux/bio.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/crc7.h>
  34#include <linux/crc-itu-t.h>
  35#include <linux/scatterlist.h>
  36
  37#include <linux/mmc/host.h>
  38#include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
  39#include <linux/mmc/slot-gpio.h>
  40
  41#include <linux/spi/spi.h>
  42#include <linux/spi/mmc_spi.h>
  43
  44#include <asm/unaligned.h>
  45
  46
  47/* NOTES:
  48 *
  49 * - For now, we won't try to interoperate with a real mmc/sd/sdio
  50 *   controller, although some of them do have hardware support for
  51 *   SPI protocol.  The main reason for such configs would be mmc-ish
  52 *   cards like DataFlash, which don't support that "native" protocol.
  53 *
  54 *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
  55 *   switch between driver stacks, and in any case if "native" mode
  56 *   is available, it will be faster and hence preferable.
  57 *
  58 * - MMC depends on a different chipselect management policy than the
  59 *   SPI interface currently supports for shared bus segments:  it needs
  60 *   to issue multiple spi_message requests with the chipselect active,
  61 *   using the results of one message to decide the next one to issue.
  62 *
  63 *   Pending updates to the programming interface, this driver expects
  64 *   that it not share the bus with other drivers (precluding conflicts).
  65 *
  66 * - We tell the controller to keep the chipselect active from the
  67 *   beginning of an mmc_host_ops.request until the end.  So beware
  68 *   of SPI controller drivers that mis-handle the cs_change flag!
  69 *
  70 *   However, many cards seem OK with chipselect flapping up/down
  71 *   during that time ... at least on unshared bus segments.
  72 */
  73
  74
  75/*
  76 * Local protocol constants, internal to data block protocols.
  77 */
  78
  79/* Response tokens used to ack each block written: */
  80#define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
  81#define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
  82#define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
  83#define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
  84
  85/* Read and write blocks start with these tokens and end with crc;
  86 * on error, read tokens act like a subset of R2_SPI_* values.
  87 */
  88#define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
  89#define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
  90#define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
  91
  92#define MMC_SPI_BLOCKSIZE	512
  93
  94
  95/* These fixed timeouts come from the latest SD specs, which say to ignore
  96 * the CSD values.  The R1B value is for card erase (e.g. the "I forgot the
  97 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
  98 * reads which takes nowhere near that long.  Older cards may be able to use
  99 * shorter timeouts ... but why bother?
 100 */
 101#define r1b_timeout		(HZ * 3)
 102
 103/* One of the critical speed parameters is the amount of data which may
 104 * be transferred in one command. If this value is too low, the SD card
 105 * controller has to do multiple partial block writes (argggh!). With
 106 * today (2008) SD cards there is little speed gain if we transfer more
 107 * than 64 KBytes at a time. So use this value until there is any indication
 108 * that we should do more here.
 109 */
 110#define MMC_SPI_BLOCKSATONCE	128
 111
 112/****************************************************************************/
 113
 114/*
 115 * Local Data Structures
 116 */
 117
 118/* "scratch" is per-{command,block} data exchanged with the card */
 119struct scratch {
 120	u8			status[29];
 121	u8			data_token;
 122	__be16			crc_val;
 123};
 124
 125struct mmc_spi_host {
 126	struct mmc_host		*mmc;
 127	struct spi_device	*spi;
 128
 129	unsigned char		power_mode;
 130	u16			powerup_msecs;
 131
 132	struct mmc_spi_platform_data	*pdata;
 133
 134	/* for bulk data transfers */
 135	struct spi_transfer	token, t, crc, early_status;
 136	struct spi_message	m;
 137
 138	/* for status readback */
 139	struct spi_transfer	status;
 140	struct spi_message	readback;
 141
 142	/* underlying DMA-aware controller, or null */
 143	struct device		*dma_dev;
 144
 145	/* buffer used for commands and for message "overhead" */
 146	struct scratch		*data;
 147	dma_addr_t		data_dma;
 148
 149	/* Specs say to write ones most of the time, even when the card
 150	 * has no need to read its input data; and many cards won't care.
 151	 * This is our source of those ones.
 152	 */
 153	void			*ones;
 154	dma_addr_t		ones_dma;
 155};
 156
 157
 158/****************************************************************************/
 159
 160/*
 161 * MMC-over-SPI protocol glue, used by the MMC stack interface
 162 */
 163
 164static inline int mmc_cs_off(struct mmc_spi_host *host)
 165{
 166	/* chipselect will always be inactive after setup() */
 167	return spi_setup(host->spi);
 168}
 169
 170static int
 171mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
 172{
 173	int status;
 174
 175	if (len > sizeof(*host->data)) {
 176		WARN_ON(1);
 177		return -EIO;
 178	}
 179
 180	host->status.len = len;
 181
 182	if (host->dma_dev)
 183		dma_sync_single_for_device(host->dma_dev,
 184				host->data_dma, sizeof(*host->data),
 185				DMA_FROM_DEVICE);
 186
 187	status = spi_sync_locked(host->spi, &host->readback);
 188
 189	if (host->dma_dev)
 190		dma_sync_single_for_cpu(host->dma_dev,
 191				host->data_dma, sizeof(*host->data),
 192				DMA_FROM_DEVICE);
 193
 194	return status;
 195}
 196
 197static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
 198			unsigned n, u8 byte)
 199{
 200	u8		*cp = host->data->status;
 201	unsigned long start = jiffies;
 202
 203	while (1) {
 204		int		status;
 205		unsigned	i;
 206
 207		status = mmc_spi_readbytes(host, n);
 208		if (status < 0)
 209			return status;
 210
 211		for (i = 0; i < n; i++) {
 212			if (cp[i] != byte)
 213				return cp[i];
 214		}
 215
 216		if (time_is_before_jiffies(start + timeout))
 217			break;
 218
 219		/* If we need long timeouts, we may release the CPU.
 220		 * We use jiffies here because we want to have a relation
 221		 * between elapsed time and the blocking of the scheduler.
 222		 */
 223		if (time_is_before_jiffies(start+1))
 224			schedule();
 225	}
 226	return -ETIMEDOUT;
 227}
 228
 229static inline int
 230mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
 231{
 232	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
 233}
 234
 235static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
 236{
 237	return mmc_spi_skip(host, timeout, 1, 0xff);
 238}
 239
 240
 241/*
 242 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
 243 * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
 244 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
 245 *
 246 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
 247 * newer cards R7 (IF_COND).
 248 */
 249
 250static char *maptype(struct mmc_command *cmd)
 251{
 252	switch (mmc_spi_resp_type(cmd)) {
 253	case MMC_RSP_SPI_R1:	return "R1";
 254	case MMC_RSP_SPI_R1B:	return "R1B";
 255	case MMC_RSP_SPI_R2:	return "R2/R5";
 256	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
 257	default:		return "?";
 258	}
 259}
 260
 261/* return zero, else negative errno after setting cmd->error */
 262static int mmc_spi_response_get(struct mmc_spi_host *host,
 263		struct mmc_command *cmd, int cs_on)
 264{
 265	u8	*cp = host->data->status;
 266	u8	*end = cp + host->t.len;
 267	int	value = 0;
 268	int	bitshift;
 269	u8 	leftover = 0;
 270	unsigned short rotator;
 271	int 	i;
 272	char	tag[32];
 273
 274	snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
 275		cmd->opcode, maptype(cmd));
 276
 277	/* Except for data block reads, the whole response will already
 278	 * be stored in the scratch buffer.  It's somewhere after the
 279	 * command and the first byte we read after it.  We ignore that
 280	 * first byte.  After STOP_TRANSMISSION command it may include
 281	 * two data bits, but otherwise it's all ones.
 282	 */
 283	cp += 8;
 284	while (cp < end && *cp == 0xff)
 285		cp++;
 286
 287	/* Data block reads (R1 response types) may need more data... */
 288	if (cp == end) {
 289		cp = host->data->status;
 290		end = cp+1;
 291
 292		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
 293		 * status byte ... and we already scanned 2 bytes.
 294		 *
 295		 * REVISIT block read paths use nasty byte-at-a-time I/O
 296		 * so it can always DMA directly into the target buffer.
 297		 * It'd probably be better to memcpy() the first chunk and
 298		 * avoid extra i/o calls...
 299		 *
 300		 * Note we check for more than 8 bytes, because in practice,
 301		 * some SD cards are slow...
 302		 */
 303		for (i = 2; i < 16; i++) {
 304			value = mmc_spi_readbytes(host, 1);
 305			if (value < 0)
 306				goto done;
 307			if (*cp != 0xff)
 308				goto checkstatus;
 309		}
 310		value = -ETIMEDOUT;
 311		goto done;
 312	}
 313
 314checkstatus:
 315	bitshift = 0;
 316	if (*cp & 0x80)	{
 317		/* Houston, we have an ugly card with a bit-shifted response */
 318		rotator = *cp++ << 8;
 319		/* read the next byte */
 320		if (cp == end) {
 321			value = mmc_spi_readbytes(host, 1);
 322			if (value < 0)
 323				goto done;
 324			cp = host->data->status;
 325			end = cp+1;
 326		}
 327		rotator |= *cp++;
 328		while (rotator & 0x8000) {
 329			bitshift++;
 330			rotator <<= 1;
 331		}
 332		cmd->resp[0] = rotator >> 8;
 333		leftover = rotator;
 334	} else {
 335		cmd->resp[0] = *cp++;
 336	}
 337	cmd->error = 0;
 338
 339	/* Status byte: the entire seven-bit R1 response.  */
 340	if (cmd->resp[0] != 0) {
 341		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
 342				& cmd->resp[0])
 343			value = -EFAULT; /* Bad address */
 344		else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
 345			value = -ENOSYS; /* Function not implemented */
 346		else if (R1_SPI_COM_CRC & cmd->resp[0])
 347			value = -EILSEQ; /* Illegal byte sequence */
 348		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
 349				& cmd->resp[0])
 350			value = -EIO;    /* I/O error */
 351		/* else R1_SPI_IDLE, "it's resetting" */
 352	}
 353
 354	switch (mmc_spi_resp_type(cmd)) {
 355
 356	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
 357	 * and less-common stuff like various erase operations.
 358	 */
 359	case MMC_RSP_SPI_R1B:
 360		/* maybe we read all the busy tokens already */
 361		while (cp < end && *cp == 0)
 362			cp++;
 363		if (cp == end)
 364			mmc_spi_wait_unbusy(host, r1b_timeout);
 365		break;
 366
 367	/* SPI R2 == R1 + second status byte; SEND_STATUS
 368	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
 369	 */
 370	case MMC_RSP_SPI_R2:
 371		/* read the next byte */
 372		if (cp == end) {
 373			value = mmc_spi_readbytes(host, 1);
 374			if (value < 0)
 375				goto done;
 376			cp = host->data->status;
 377			end = cp+1;
 378		}
 379		if (bitshift) {
 380			rotator = leftover << 8;
 381			rotator |= *cp << bitshift;
 382			cmd->resp[0] |= (rotator & 0xFF00);
 383		} else {
 384			cmd->resp[0] |= *cp << 8;
 385		}
 386		break;
 387
 388	/* SPI R3, R4, or R7 == R1 + 4 bytes */
 389	case MMC_RSP_SPI_R3:
 390		rotator = leftover << 8;
 391		cmd->resp[1] = 0;
 392		for (i = 0; i < 4; i++) {
 393			cmd->resp[1] <<= 8;
 394			/* read the next byte */
 395			if (cp == end) {
 396				value = mmc_spi_readbytes(host, 1);
 397				if (value < 0)
 398					goto done;
 399				cp = host->data->status;
 400				end = cp+1;
 401			}
 402			if (bitshift) {
 403				rotator |= *cp++ << bitshift;
 404				cmd->resp[1] |= (rotator >> 8);
 405				rotator <<= 8;
 406			} else {
 407				cmd->resp[1] |= *cp++;
 408			}
 409		}
 410		break;
 411
 412	/* SPI R1 == just one status byte */
 413	case MMC_RSP_SPI_R1:
 414		break;
 415
 416	default:
 417		dev_dbg(&host->spi->dev, "bad response type %04x\n",
 418				mmc_spi_resp_type(cmd));
 419		if (value >= 0)
 420			value = -EINVAL;
 421		goto done;
 422	}
 423
 424	if (value < 0)
 425		dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
 426			tag, cmd->resp[0], cmd->resp[1]);
 427
 428	/* disable chipselect on errors and some success cases */
 429	if (value >= 0 && cs_on)
 430		return value;
 431done:
 432	if (value < 0)
 433		cmd->error = value;
 434	mmc_cs_off(host);
 435	return value;
 436}
 437
 438/* Issue command and read its response.
 439 * Returns zero on success, negative for error.
 440 *
 441 * On error, caller must cope with mmc core retry mechanism.  That
 442 * means immediate low-level resubmit, which affects the bus lock...
 443 */
 444static int
 445mmc_spi_command_send(struct mmc_spi_host *host,
 446		struct mmc_request *mrq,
 447		struct mmc_command *cmd, int cs_on)
 448{
 449	struct scratch		*data = host->data;
 450	u8			*cp = data->status;
 
 451	int			status;
 452	struct spi_transfer	*t;
 453
 454	/* We can handle most commands (except block reads) in one full
 455	 * duplex I/O operation before either starting the next transfer
 456	 * (data block or command) or else deselecting the card.
 457	 *
 458	 * First, write 7 bytes:
 459	 *  - an all-ones byte to ensure the card is ready
 460	 *  - opcode byte (plus start and transmission bits)
 461	 *  - four bytes of big-endian argument
 462	 *  - crc7 (plus end bit) ... always computed, it's cheap
 463	 *
 464	 * We init the whole buffer to all-ones, which is what we need
 465	 * to write while we're reading (later) response data.
 466	 */
 467	memset(cp, 0xff, sizeof(data->status));
 468
 469	cp[1] = 0x40 | cmd->opcode;
 470	put_unaligned_be32(cmd->arg, cp+2);
 471	cp[6] = crc7_be(0, cp+1, 5) | 0x01;
 472	cp += 7;
 
 
 473
 474	/* Then, read up to 13 bytes (while writing all-ones):
 475	 *  - N(CR) (== 1..8) bytes of all-ones
 476	 *  - status byte (for all response types)
 477	 *  - the rest of the response, either:
 478	 *      + nothing, for R1 or R1B responses
 479	 *	+ second status byte, for R2 responses
 480	 *	+ four data bytes, for R3 and R7 responses
 481	 *
 482	 * Finally, read some more bytes ... in the nice cases we know in
 483	 * advance how many, and reading 1 more is always OK:
 484	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
 485	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
 486	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
 487	 *
 488	 * So in those cases one full duplex I/O of at most 21 bytes will
 489	 * handle the whole command, leaving the card ready to receive a
 490	 * data block or new command.  We do that whenever we can, shaving
 491	 * CPU and IRQ costs (especially when using DMA or FIFOs).
 492	 *
 493	 * There are two other cases, where it's not generally practical
 494	 * to rely on a single I/O:
 495	 *
 496	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
 497	 *
 498	 *    In this case we can *try* to fit it into one I/O, then
 499	 *    maybe read more data later.
 500	 *
 501	 *  - Data block reads are more troublesome, since a variable
 502	 *    number of padding bytes precede the token and data.
 503	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
 504	 *      + N(AC) (== 1..many) bytes of all-ones
 505	 *
 506	 *    In this case we currently only have minimal speedups here:
 507	 *    when N(CR) == 1 we can avoid I/O in response_get().
 508	 */
 509	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
 510		cp += 2;	/* min(N(CR)) + status */
 511		/* R1 */
 512	} else {
 513		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
 514		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
 515			cp++;
 516		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
 517			cp += 4;
 518		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
 519			cp = data->status + sizeof(data->status);
 520		/* else:  R1 (most commands) */
 521	}
 522
 523	dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
 524		cmd->opcode, maptype(cmd));
 525
 526	/* send command, leaving chipselect active */
 527	spi_message_init(&host->m);
 528
 529	t = &host->t;
 530	memset(t, 0, sizeof(*t));
 531	t->tx_buf = t->rx_buf = data->status;
 532	t->tx_dma = t->rx_dma = host->data_dma;
 533	t->len = cp - data->status;
 534	t->cs_change = 1;
 535	spi_message_add_tail(t, &host->m);
 536
 537	if (host->dma_dev) {
 538		host->m.is_dma_mapped = 1;
 539		dma_sync_single_for_device(host->dma_dev,
 540				host->data_dma, sizeof(*host->data),
 541				DMA_BIDIRECTIONAL);
 542	}
 543	status = spi_sync_locked(host->spi, &host->m);
 544
 545	if (host->dma_dev)
 546		dma_sync_single_for_cpu(host->dma_dev,
 547				host->data_dma, sizeof(*host->data),
 548				DMA_BIDIRECTIONAL);
 549	if (status < 0) {
 550		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
 551		cmd->error = status;
 552		return status;
 553	}
 554
 555	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
 556	return mmc_spi_response_get(host, cmd, cs_on);
 557}
 558
 559/* Build data message with up to four separate transfers.  For TX, we
 560 * start by writing the data token.  And in most cases, we finish with
 561 * a status transfer.
 562 *
 563 * We always provide TX data for data and CRC.  The MMC/SD protocol
 564 * requires us to write ones; but Linux defaults to writing zeroes;
 565 * so we explicitly initialize it to all ones on RX paths.
 566 *
 567 * We also handle DMA mapping, so the underlying SPI controller does
 568 * not need to (re)do it for each message.
 569 */
 570static void
 571mmc_spi_setup_data_message(
 572	struct mmc_spi_host	*host,
 573	int			multiple,
 574	enum dma_data_direction	direction)
 575{
 576	struct spi_transfer	*t;
 577	struct scratch		*scratch = host->data;
 578	dma_addr_t		dma = host->data_dma;
 579
 580	spi_message_init(&host->m);
 581	if (dma)
 582		host->m.is_dma_mapped = 1;
 583
 584	/* for reads, readblock() skips 0xff bytes before finding
 585	 * the token; for writes, this transfer issues that token.
 586	 */
 587	if (direction == DMA_TO_DEVICE) {
 588		t = &host->token;
 589		memset(t, 0, sizeof(*t));
 590		t->len = 1;
 591		if (multiple)
 592			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
 593		else
 594			scratch->data_token = SPI_TOKEN_SINGLE;
 595		t->tx_buf = &scratch->data_token;
 596		if (dma)
 597			t->tx_dma = dma + offsetof(struct scratch, data_token);
 598		spi_message_add_tail(t, &host->m);
 599	}
 600
 601	/* Body of transfer is buffer, then CRC ...
 602	 * either TX-only, or RX with TX-ones.
 603	 */
 604	t = &host->t;
 605	memset(t, 0, sizeof(*t));
 606	t->tx_buf = host->ones;
 607	t->tx_dma = host->ones_dma;
 608	/* length and actual buffer info are written later */
 609	spi_message_add_tail(t, &host->m);
 610
 611	t = &host->crc;
 612	memset(t, 0, sizeof(*t));
 613	t->len = 2;
 614	if (direction == DMA_TO_DEVICE) {
 615		/* the actual CRC may get written later */
 616		t->tx_buf = &scratch->crc_val;
 617		if (dma)
 618			t->tx_dma = dma + offsetof(struct scratch, crc_val);
 619	} else {
 620		t->tx_buf = host->ones;
 621		t->tx_dma = host->ones_dma;
 622		t->rx_buf = &scratch->crc_val;
 623		if (dma)
 624			t->rx_dma = dma + offsetof(struct scratch, crc_val);
 625	}
 626	spi_message_add_tail(t, &host->m);
 627
 628	/*
 629	 * A single block read is followed by N(EC) [0+] all-ones bytes
 630	 * before deselect ... don't bother.
 631	 *
 632	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
 633	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
 634	 * collect that single byte, so readblock() doesn't need to.
 635	 *
 636	 * For a write, the one-byte data response follows immediately, then
 637	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
 638	 * Then single block reads may deselect, and multiblock ones issue
 639	 * the next token (next data block, or STOP_TRAN).  We can try to
 640	 * minimize I/O ops by using a single read to collect end-of-busy.
 641	 */
 642	if (multiple || direction == DMA_TO_DEVICE) {
 643		t = &host->early_status;
 644		memset(t, 0, sizeof(*t));
 645		t->len = (direction == DMA_TO_DEVICE)
 646				? sizeof(scratch->status)
 647				: 1;
 648		t->tx_buf = host->ones;
 649		t->tx_dma = host->ones_dma;
 650		t->rx_buf = scratch->status;
 651		if (dma)
 652			t->rx_dma = dma + offsetof(struct scratch, status);
 653		t->cs_change = 1;
 654		spi_message_add_tail(t, &host->m);
 655	}
 656}
 657
 658/*
 659 * Write one block:
 660 *  - caller handled preceding N(WR) [1+] all-ones bytes
 661 *  - data block
 662 *	+ token
 663 *	+ data bytes
 664 *	+ crc16
 665 *  - an all-ones byte ... card writes a data-response byte
 666 *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
 667 *
 668 * Return negative errno, else success.
 669 */
 670static int
 671mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
 672	unsigned long timeout)
 673{
 674	struct spi_device	*spi = host->spi;
 675	int			status, i;
 676	struct scratch		*scratch = host->data;
 677	u32			pattern;
 678
 679	if (host->mmc->use_spi_crc)
 680		scratch->crc_val = cpu_to_be16(
 681				crc_itu_t(0, t->tx_buf, t->len));
 682	if (host->dma_dev)
 683		dma_sync_single_for_device(host->dma_dev,
 684				host->data_dma, sizeof(*scratch),
 685				DMA_BIDIRECTIONAL);
 686
 687	status = spi_sync_locked(spi, &host->m);
 688
 689	if (status != 0) {
 690		dev_dbg(&spi->dev, "write error (%d)\n", status);
 691		return status;
 692	}
 693
 694	if (host->dma_dev)
 695		dma_sync_single_for_cpu(host->dma_dev,
 696				host->data_dma, sizeof(*scratch),
 697				DMA_BIDIRECTIONAL);
 698
 699	/*
 700	 * Get the transmission data-response reply.  It must follow
 701	 * immediately after the data block we transferred.  This reply
 702	 * doesn't necessarily tell whether the write operation succeeded;
 703	 * it just says if the transmission was ok and whether *earlier*
 704	 * writes succeeded; see the standard.
 705	 *
 706	 * In practice, there are (even modern SDHC-)cards which are late
 707	 * in sending the response, and miss the time frame by a few bits,
 708	 * so we have to cope with this situation and check the response
 709	 * bit-by-bit. Arggh!!!
 710	 */
 711	pattern = get_unaligned_be32(scratch->status);
 
 
 
 712
 713	/* First 3 bit of pattern are undefined */
 714	pattern |= 0xE0000000;
 715
 716	/* left-adjust to leading 0 bit */
 717	while (pattern & 0x80000000)
 718		pattern <<= 1;
 719	/* right-adjust for pattern matching. Code is in bit 4..0 now. */
 720	pattern >>= 27;
 721
 722	switch (pattern) {
 723	case SPI_RESPONSE_ACCEPTED:
 724		status = 0;
 725		break;
 726	case SPI_RESPONSE_CRC_ERR:
 727		/* host shall then issue MMC_STOP_TRANSMISSION */
 728		status = -EILSEQ;
 729		break;
 730	case SPI_RESPONSE_WRITE_ERR:
 731		/* host shall then issue MMC_STOP_TRANSMISSION,
 732		 * and should MMC_SEND_STATUS to sort it out
 733		 */
 734		status = -EIO;
 735		break;
 736	default:
 737		status = -EPROTO;
 738		break;
 739	}
 740	if (status != 0) {
 741		dev_dbg(&spi->dev, "write error %02x (%d)\n",
 742			scratch->status[0], status);
 743		return status;
 744	}
 745
 746	t->tx_buf += t->len;
 747	if (host->dma_dev)
 748		t->tx_dma += t->len;
 749
 750	/* Return when not busy.  If we didn't collect that status yet,
 751	 * we'll need some more I/O.
 752	 */
 753	for (i = 4; i < sizeof(scratch->status); i++) {
 754		/* card is non-busy if the most recent bit is 1 */
 755		if (scratch->status[i] & 0x01)
 756			return 0;
 757	}
 758	return mmc_spi_wait_unbusy(host, timeout);
 759}
 760
 761/*
 762 * Read one block:
 763 *  - skip leading all-ones bytes ... either
 764 *      + N(AC) [1..f(clock,CSD)] usually, else
 765 *      + N(CX) [0..8] when reading CSD or CID
 766 *  - data block
 767 *	+ token ... if error token, no data or crc
 768 *	+ data bytes
 769 *	+ crc16
 770 *
 771 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
 772 * before dropping chipselect.
 773 *
 774 * For multiblock reads, caller either reads the next block or issues a
 775 * STOP_TRANSMISSION command.
 776 */
 777static int
 778mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
 779	unsigned long timeout)
 780{
 781	struct spi_device	*spi = host->spi;
 782	int			status;
 783	struct scratch		*scratch = host->data;
 784	unsigned int 		bitshift;
 785	u8			leftover;
 786
 787	/* At least one SD card sends an all-zeroes byte when N(CX)
 788	 * applies, before the all-ones bytes ... just cope with that.
 789	 */
 790	status = mmc_spi_readbytes(host, 1);
 791	if (status < 0)
 792		return status;
 793	status = scratch->status[0];
 794	if (status == 0xff || status == 0)
 795		status = mmc_spi_readtoken(host, timeout);
 796
 797	if (status < 0) {
 798		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
 799		return status;
 800	}
 801
 802	/* The token may be bit-shifted...
 803	 * the first 0-bit precedes the data stream.
 804	 */
 805	bitshift = 7;
 806	while (status & 0x80) {
 807		status <<= 1;
 808		bitshift--;
 809	}
 810	leftover = status << 1;
 811
 812	if (host->dma_dev) {
 813		dma_sync_single_for_device(host->dma_dev,
 814				host->data_dma, sizeof(*scratch),
 815				DMA_BIDIRECTIONAL);
 816		dma_sync_single_for_device(host->dma_dev,
 817				t->rx_dma, t->len,
 818				DMA_FROM_DEVICE);
 819	}
 820
 821	status = spi_sync_locked(spi, &host->m);
 822
 823	if (host->dma_dev) {
 824		dma_sync_single_for_cpu(host->dma_dev,
 825				host->data_dma, sizeof(*scratch),
 826				DMA_BIDIRECTIONAL);
 827		dma_sync_single_for_cpu(host->dma_dev,
 828				t->rx_dma, t->len,
 829				DMA_FROM_DEVICE);
 830	}
 831
 832	if (bitshift) {
 833		/* Walk through the data and the crc and do
 834		 * all the magic to get byte-aligned data.
 835		 */
 836		u8 *cp = t->rx_buf;
 837		unsigned int len;
 838		unsigned int bitright = 8 - bitshift;
 839		u8 temp;
 840		for (len = t->len; len; len--) {
 841			temp = *cp;
 842			*cp++ = leftover | (temp >> bitshift);
 843			leftover = temp << bitright;
 844		}
 845		cp = (u8 *) &scratch->crc_val;
 846		temp = *cp;
 847		*cp++ = leftover | (temp >> bitshift);
 848		leftover = temp << bitright;
 849		temp = *cp;
 850		*cp = leftover | (temp >> bitshift);
 851	}
 852
 853	if (host->mmc->use_spi_crc) {
 854		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
 855
 856		be16_to_cpus(&scratch->crc_val);
 857		if (scratch->crc_val != crc) {
 858			dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
 859					"computed=0x%04x len=%d\n",
 860					scratch->crc_val, crc, t->len);
 861			return -EILSEQ;
 862		}
 863	}
 864
 865	t->rx_buf += t->len;
 866	if (host->dma_dev)
 867		t->rx_dma += t->len;
 868
 869	return 0;
 870}
 871
 872/*
 873 * An MMC/SD data stage includes one or more blocks, optional CRCs,
 874 * and inline handshaking.  That handhaking makes it unlike most
 875 * other SPI protocol stacks.
 876 */
 877static void
 878mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
 879		struct mmc_data *data, u32 blk_size)
 880{
 881	struct spi_device	*spi = host->spi;
 882	struct device		*dma_dev = host->dma_dev;
 883	struct spi_transfer	*t;
 884	enum dma_data_direction	direction;
 885	struct scatterlist	*sg;
 886	unsigned		n_sg;
 887	int			multiple = (data->blocks > 1);
 888	u32			clock_rate;
 889	unsigned long		timeout;
 890
 891	direction = mmc_get_dma_dir(data);
 
 
 
 892	mmc_spi_setup_data_message(host, multiple, direction);
 893	t = &host->t;
 894
 895	if (t->speed_hz)
 896		clock_rate = t->speed_hz;
 897	else
 898		clock_rate = spi->max_speed_hz;
 899
 900	timeout = data->timeout_ns +
 901		  data->timeout_clks * 1000000 / clock_rate;
 902	timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
 903
 904	/* Handle scatterlist segments one at a time, with synch for
 905	 * each 512-byte block
 906	 */
 907	for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
 908		int			status = 0;
 909		dma_addr_t		dma_addr = 0;
 910		void			*kmap_addr;
 911		unsigned		length = sg->length;
 912		enum dma_data_direction	dir = direction;
 913
 914		/* set up dma mapping for controller drivers that might
 915		 * use DMA ... though they may fall back to PIO
 916		 */
 917		if (dma_dev) {
 918			/* never invalidate whole *shared* pages ... */
 919			if ((sg->offset != 0 || length != PAGE_SIZE)
 920					&& dir == DMA_FROM_DEVICE)
 921				dir = DMA_BIDIRECTIONAL;
 922
 923			dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
 924						PAGE_SIZE, dir);
 925			if (dma_mapping_error(dma_dev, dma_addr)) {
 926				data->error = -EFAULT;
 927				break;
 928			}
 929			if (direction == DMA_TO_DEVICE)
 930				t->tx_dma = dma_addr + sg->offset;
 931			else
 932				t->rx_dma = dma_addr + sg->offset;
 933		}
 934
 935		/* allow pio too; we don't allow highmem */
 936		kmap_addr = kmap(sg_page(sg));
 937		if (direction == DMA_TO_DEVICE)
 938			t->tx_buf = kmap_addr + sg->offset;
 939		else
 940			t->rx_buf = kmap_addr + sg->offset;
 941
 942		/* transfer each block, and update request status */
 943		while (length) {
 944			t->len = min(length, blk_size);
 945
 946			dev_dbg(&host->spi->dev,
 947				"    mmc_spi: %s block, %d bytes\n",
 948				(direction == DMA_TO_DEVICE)
 949				? "write"
 950				: "read",
 951				t->len);
 952
 953			if (direction == DMA_TO_DEVICE)
 954				status = mmc_spi_writeblock(host, t, timeout);
 955			else
 956				status = mmc_spi_readblock(host, t, timeout);
 957			if (status < 0)
 958				break;
 959
 960			data->bytes_xfered += t->len;
 961			length -= t->len;
 962
 963			if (!multiple)
 964				break;
 965		}
 966
 967		/* discard mappings */
 968		if (direction == DMA_FROM_DEVICE)
 969			flush_kernel_dcache_page(sg_page(sg));
 970		kunmap(sg_page(sg));
 971		if (dma_dev)
 972			dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
 973
 974		if (status < 0) {
 975			data->error = status;
 976			dev_dbg(&spi->dev, "%s status %d\n",
 977				(direction == DMA_TO_DEVICE)
 978					? "write" : "read",
 979				status);
 980			break;
 981		}
 982	}
 983
 984	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
 985	 * can be issued before multiblock writes.  Unlike its more widely
 986	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
 987	 * that can affect the STOP_TRAN logic.   Complete (and current)
 988	 * MMC specs should sort that out before Linux starts using CMD23.
 989	 */
 990	if (direction == DMA_TO_DEVICE && multiple) {
 991		struct scratch	*scratch = host->data;
 992		int		tmp;
 993		const unsigned	statlen = sizeof(scratch->status);
 994
 995		dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
 996
 997		/* Tweak the per-block message we set up earlier by morphing
 998		 * it to hold single buffer with the token followed by some
 999		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
1000		 * "not busy any longer" status, and leave chip selected.
1001		 */
1002		INIT_LIST_HEAD(&host->m.transfers);
1003		list_add(&host->early_status.transfer_list,
1004				&host->m.transfers);
1005
1006		memset(scratch->status, 0xff, statlen);
1007		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
1008
1009		host->early_status.tx_buf = host->early_status.rx_buf;
1010		host->early_status.tx_dma = host->early_status.rx_dma;
1011		host->early_status.len = statlen;
1012
1013		if (host->dma_dev)
1014			dma_sync_single_for_device(host->dma_dev,
1015					host->data_dma, sizeof(*scratch),
1016					DMA_BIDIRECTIONAL);
1017
1018		tmp = spi_sync_locked(spi, &host->m);
1019
1020		if (host->dma_dev)
1021			dma_sync_single_for_cpu(host->dma_dev,
1022					host->data_dma, sizeof(*scratch),
1023					DMA_BIDIRECTIONAL);
1024
1025		if (tmp < 0) {
1026			if (!data->error)
1027				data->error = tmp;
1028			return;
1029		}
1030
1031		/* Ideally we collected "not busy" status with one I/O,
1032		 * avoiding wasteful byte-at-a-time scanning... but more
1033		 * I/O is often needed.
1034		 */
1035		for (tmp = 2; tmp < statlen; tmp++) {
1036			if (scratch->status[tmp] != 0)
1037				return;
1038		}
1039		tmp = mmc_spi_wait_unbusy(host, timeout);
1040		if (tmp < 0 && !data->error)
1041			data->error = tmp;
1042	}
1043}
1044
1045/****************************************************************************/
1046
1047/*
1048 * MMC driver implementation -- the interface to the MMC stack
1049 */
1050
1051static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1052{
1053	struct mmc_spi_host	*host = mmc_priv(mmc);
1054	int			status = -EINVAL;
1055	int			crc_retry = 5;
1056	struct mmc_command	stop;
1057
1058#ifdef DEBUG
1059	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
1060	{
1061		struct mmc_command	*cmd;
1062		int			invalid = 0;
1063
1064		cmd = mrq->cmd;
1065		if (!mmc_spi_resp_type(cmd)) {
1066			dev_dbg(&host->spi->dev, "bogus command\n");
1067			cmd->error = -EINVAL;
1068			invalid = 1;
1069		}
1070
1071		cmd = mrq->stop;
1072		if (cmd && !mmc_spi_resp_type(cmd)) {
1073			dev_dbg(&host->spi->dev, "bogus STOP command\n");
1074			cmd->error = -EINVAL;
1075			invalid = 1;
1076		}
1077
1078		if (invalid) {
1079			dump_stack();
1080			mmc_request_done(host->mmc, mrq);
1081			return;
1082		}
1083	}
1084#endif
1085
1086	/* request exclusive bus access */
1087	spi_bus_lock(host->spi->master);
1088
1089crc_recover:
1090	/* issue command; then optionally data and stop */
1091	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1092	if (status == 0 && mrq->data) {
1093		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1094
1095		/*
1096		 * The SPI bus is not always reliable for large data transfers.
1097		 * If an occasional crc error is reported by the SD device with
1098		 * data read/write over SPI, it may be recovered by repeating
1099		 * the last SD command again. The retry count is set to 5 to
1100		 * ensure the driver passes stress tests.
1101		 */
1102		if (mrq->data->error == -EILSEQ && crc_retry) {
1103			stop.opcode = MMC_STOP_TRANSMISSION;
1104			stop.arg = 0;
1105			stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1106			status = mmc_spi_command_send(host, mrq, &stop, 0);
1107			crc_retry--;
1108			mrq->data->error = 0;
1109			goto crc_recover;
1110		}
1111
1112		if (mrq->stop)
1113			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1114		else
1115			mmc_cs_off(host);
1116	}
1117
1118	/* release the bus */
1119	spi_bus_unlock(host->spi->master);
1120
1121	mmc_request_done(host->mmc, mrq);
1122}
1123
1124/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1125 *
1126 * NOTE that here we can't know that the card has just been powered up;
1127 * not all MMC/SD sockets support power switching.
1128 *
1129 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1130 * this doesn't seem to do the right thing at all...
1131 */
1132static void mmc_spi_initsequence(struct mmc_spi_host *host)
1133{
1134	/* Try to be very sure any previous command has completed;
1135	 * wait till not-busy, skip debris from any old commands.
1136	 */
1137	mmc_spi_wait_unbusy(host, r1b_timeout);
1138	mmc_spi_readbytes(host, 10);
1139
1140	/*
1141	 * Do a burst with chipselect active-high.  We need to do this to
1142	 * meet the requirement of 74 clock cycles with both chipselect
1143	 * and CMD (MOSI) high before CMD0 ... after the card has been
1144	 * powered up to Vdd(min), and so is ready to take commands.
1145	 *
1146	 * Some cards are particularly needy of this (e.g. Viking "SD256")
1147	 * while most others don't seem to care.
1148	 *
1149	 * Note that this is one of the places MMC/SD plays games with the
1150	 * SPI protocol.  Another is that when chipselect is released while
1151	 * the card returns BUSY status, the clock must issue several cycles
1152	 * with chipselect high before the card will stop driving its output.
1153	 */
1154	host->spi->mode |= SPI_CS_HIGH;
1155	if (spi_setup(host->spi) != 0) {
1156		/* Just warn; most cards work without it. */
1157		dev_warn(&host->spi->dev,
1158				"can't change chip-select polarity\n");
1159		host->spi->mode &= ~SPI_CS_HIGH;
1160	} else {
1161		mmc_spi_readbytes(host, 18);
1162
1163		host->spi->mode &= ~SPI_CS_HIGH;
1164		if (spi_setup(host->spi) != 0) {
1165			/* Wot, we can't get the same setup we had before? */
1166			dev_err(&host->spi->dev,
1167					"can't restore chip-select polarity\n");
1168		}
1169	}
1170}
1171
1172static char *mmc_powerstring(u8 power_mode)
1173{
1174	switch (power_mode) {
1175	case MMC_POWER_OFF: return "off";
1176	case MMC_POWER_UP:  return "up";
1177	case MMC_POWER_ON:  return "on";
1178	}
1179	return "?";
1180}
1181
1182static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1183{
1184	struct mmc_spi_host *host = mmc_priv(mmc);
1185
1186	if (host->power_mode != ios->power_mode) {
1187		int		canpower;
1188
1189		canpower = host->pdata && host->pdata->setpower;
1190
1191		dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1192				mmc_powerstring(ios->power_mode),
1193				ios->vdd,
1194				canpower ? ", can switch" : "");
1195
1196		/* switch power on/off if possible, accounting for
1197		 * max 250msec powerup time if needed.
1198		 */
1199		if (canpower) {
1200			switch (ios->power_mode) {
1201			case MMC_POWER_OFF:
1202			case MMC_POWER_UP:
1203				host->pdata->setpower(&host->spi->dev,
1204						ios->vdd);
1205				if (ios->power_mode == MMC_POWER_UP)
1206					msleep(host->powerup_msecs);
1207			}
1208		}
1209
1210		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
1211		if (ios->power_mode == MMC_POWER_ON)
1212			mmc_spi_initsequence(host);
1213
1214		/* If powering down, ground all card inputs to avoid power
1215		 * delivery from data lines!  On a shared SPI bus, this
1216		 * will probably be temporary; 6.4.2 of the simplified SD
1217		 * spec says this must last at least 1msec.
1218		 *
1219		 *   - Clock low means CPOL 0, e.g. mode 0
1220		 *   - MOSI low comes from writing zero
1221		 *   - Chipselect is usually active low...
1222		 */
1223		if (canpower && ios->power_mode == MMC_POWER_OFF) {
1224			int mres;
1225			u8 nullbyte = 0;
1226
1227			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1228			mres = spi_setup(host->spi);
1229			if (mres < 0)
1230				dev_dbg(&host->spi->dev,
1231					"switch to SPI mode 0 failed\n");
1232
1233			if (spi_write(host->spi, &nullbyte, 1) < 0)
1234				dev_dbg(&host->spi->dev,
1235					"put spi signals to low failed\n");
1236
1237			/*
1238			 * Now clock should be low due to spi mode 0;
1239			 * MOSI should be low because of written 0x00;
1240			 * chipselect should be low (it is active low)
1241			 * power supply is off, so now MMC is off too!
1242			 *
1243			 * FIXME no, chipselect can be high since the
1244			 * device is inactive and SPI_CS_HIGH is clear...
1245			 */
1246			msleep(10);
1247			if (mres == 0) {
1248				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1249				mres = spi_setup(host->spi);
1250				if (mres < 0)
1251					dev_dbg(&host->spi->dev,
1252						"switch back to SPI mode 3"
1253						" failed\n");
1254			}
1255		}
1256
1257		host->power_mode = ios->power_mode;
1258	}
1259
1260	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1261		int		status;
1262
1263		host->spi->max_speed_hz = ios->clock;
1264		status = spi_setup(host->spi);
1265		dev_dbg(&host->spi->dev,
1266			"mmc_spi:  clock to %d Hz, %d\n",
1267			host->spi->max_speed_hz, status);
1268	}
1269}
1270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1271static const struct mmc_host_ops mmc_spi_ops = {
1272	.request	= mmc_spi_request,
1273	.set_ios	= mmc_spi_set_ios,
1274	.get_ro		= mmc_gpio_get_ro,
1275	.get_cd		= mmc_gpio_get_cd,
1276};
1277
1278
1279/****************************************************************************/
1280
1281/*
1282 * SPI driver implementation
1283 */
1284
1285static irqreturn_t
1286mmc_spi_detect_irq(int irq, void *mmc)
1287{
1288	struct mmc_spi_host *host = mmc_priv(mmc);
1289	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1290
1291	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1292	return IRQ_HANDLED;
1293}
1294
1295static int mmc_spi_probe(struct spi_device *spi)
1296{
1297	void			*ones;
1298	struct mmc_host		*mmc;
1299	struct mmc_spi_host	*host;
1300	int			status;
1301	bool			has_ro = false;
1302
1303	/* We rely on full duplex transfers, mostly to reduce
1304	 * per-transfer overheads (by making fewer transfers).
1305	 */
1306	if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1307		return -EINVAL;
1308
1309	/* MMC and SD specs only seem to care that sampling is on the
1310	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1311	 * should be legit.  We'll use mode 0 since the steady state is 0,
1312	 * which is appropriate for hotplugging, unless the platform data
1313	 * specify mode 3 (if hardware is not compatible to mode 0).
1314	 */
1315	if (spi->mode != SPI_MODE_3)
1316		spi->mode = SPI_MODE_0;
1317	spi->bits_per_word = 8;
1318
1319	status = spi_setup(spi);
1320	if (status < 0) {
1321		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1322				spi->mode, spi->max_speed_hz / 1000,
1323				status);
1324		return status;
1325	}
1326
1327	/* We need a supply of ones to transmit.  This is the only time
1328	 * the CPU touches these, so cache coherency isn't a concern.
1329	 *
1330	 * NOTE if many systems use more than one MMC-over-SPI connector
1331	 * it'd save some memory to share this.  That's evidently rare.
1332	 */
1333	status = -ENOMEM;
1334	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1335	if (!ones)
1336		goto nomem;
1337	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1338
1339	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1340	if (!mmc)
1341		goto nomem;
1342
1343	mmc->ops = &mmc_spi_ops;
1344	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1345	mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1346	mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1347	mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1348
1349	mmc->caps = MMC_CAP_SPI;
1350
1351	/* SPI doesn't need the lowspeed device identification thing for
1352	 * MMC or SD cards, since it never comes up in open drain mode.
1353	 * That's good; some SPI masters can't handle very low speeds!
1354	 *
1355	 * However, low speed SDIO cards need not handle over 400 KHz;
1356	 * that's the only reason not to use a few MHz for f_min (until
1357	 * the upper layer reads the target frequency from the CSD).
1358	 */
1359	mmc->f_min = 400000;
1360	mmc->f_max = spi->max_speed_hz;
1361
1362	host = mmc_priv(mmc);
1363	host->mmc = mmc;
1364	host->spi = spi;
1365
1366	host->ones = ones;
1367
1368	/* Platform data is used to hook up things like card sensing
1369	 * and power switching gpios.
1370	 */
1371	host->pdata = mmc_spi_get_pdata(spi);
1372	if (host->pdata)
1373		mmc->ocr_avail = host->pdata->ocr_mask;
1374	if (!mmc->ocr_avail) {
1375		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1376		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1377	}
1378	if (host->pdata && host->pdata->setpower) {
1379		host->powerup_msecs = host->pdata->powerup_msecs;
1380		if (!host->powerup_msecs || host->powerup_msecs > 250)
1381			host->powerup_msecs = 250;
1382	}
1383
1384	dev_set_drvdata(&spi->dev, mmc);
1385
1386	/* preallocate dma buffers */
1387	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1388	if (!host->data)
1389		goto fail_nobuf1;
1390
1391	if (spi->master->dev.parent->dma_mask) {
1392		struct device	*dev = spi->master->dev.parent;
1393
1394		host->dma_dev = dev;
1395		host->ones_dma = dma_map_single(dev, ones,
1396				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1397		if (dma_mapping_error(dev, host->ones_dma))
1398			goto fail_ones_dma;
1399		host->data_dma = dma_map_single(dev, host->data,
1400				sizeof(*host->data), DMA_BIDIRECTIONAL);
1401		if (dma_mapping_error(dev, host->data_dma))
1402			goto fail_data_dma;
1403
1404		dma_sync_single_for_cpu(host->dma_dev,
1405				host->data_dma, sizeof(*host->data),
1406				DMA_BIDIRECTIONAL);
1407	}
1408
1409	/* setup message for status/busy readback */
1410	spi_message_init(&host->readback);
1411	host->readback.is_dma_mapped = (host->dma_dev != NULL);
1412
1413	spi_message_add_tail(&host->status, &host->readback);
1414	host->status.tx_buf = host->ones;
1415	host->status.tx_dma = host->ones_dma;
1416	host->status.rx_buf = &host->data->status;
1417	host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1418	host->status.cs_change = 1;
1419
1420	/* register card detect irq */
1421	if (host->pdata && host->pdata->init) {
1422		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1423		if (status != 0)
1424			goto fail_glue_init;
1425	}
1426
1427	/* pass platform capabilities, if any */
1428	if (host->pdata) {
1429		mmc->caps |= host->pdata->caps;
1430		mmc->caps2 |= host->pdata->caps2;
1431	}
1432
1433	status = mmc_add_host(mmc);
1434	if (status != 0)
1435		goto fail_add_host;
1436
1437	if (host->pdata && host->pdata->flags & MMC_SPI_USE_CD_GPIO) {
1438		status = mmc_gpio_request_cd(mmc, host->pdata->cd_gpio,
1439					     host->pdata->cd_debounce);
1440		if (status != 0)
1441			goto fail_add_host;
1442
1443		/* The platform has a CD GPIO signal that may support
1444		 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1445		 * if polling is needed or not.
1446		 */
1447		mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1448		mmc_gpiod_request_cd_irq(mmc);
1449	}
1450
1451	if (host->pdata && host->pdata->flags & MMC_SPI_USE_RO_GPIO) {
1452		has_ro = true;
1453		status = mmc_gpio_request_ro(mmc, host->pdata->ro_gpio);
1454		if (status != 0)
1455			goto fail_add_host;
1456	}
1457
1458	dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1459			dev_name(&mmc->class_dev),
1460			host->dma_dev ? "" : ", no DMA",
1461			has_ro ? "" : ", no WP",
 
1462			(host->pdata && host->pdata->setpower)
1463				? "" : ", no poweroff",
1464			(mmc->caps & MMC_CAP_NEEDS_POLL)
1465				? ", cd polling" : "");
1466	return 0;
1467
1468fail_add_host:
1469	mmc_remove_host (mmc);
1470fail_glue_init:
1471	if (host->dma_dev)
1472		dma_unmap_single(host->dma_dev, host->data_dma,
1473				sizeof(*host->data), DMA_BIDIRECTIONAL);
1474fail_data_dma:
1475	if (host->dma_dev)
1476		dma_unmap_single(host->dma_dev, host->ones_dma,
1477				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1478fail_ones_dma:
1479	kfree(host->data);
1480
1481fail_nobuf1:
1482	mmc_free_host(mmc);
1483	mmc_spi_put_pdata(spi);
1484	dev_set_drvdata(&spi->dev, NULL);
1485
1486nomem:
1487	kfree(ones);
1488	return status;
1489}
1490
1491
1492static int mmc_spi_remove(struct spi_device *spi)
1493{
1494	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
1495	struct mmc_spi_host	*host;
1496
1497	if (mmc) {
1498		host = mmc_priv(mmc);
1499
1500		/* prevent new mmc_detect_change() calls */
1501		if (host->pdata && host->pdata->exit)
1502			host->pdata->exit(&spi->dev, mmc);
1503
1504		mmc_remove_host(mmc);
1505
1506		if (host->dma_dev) {
1507			dma_unmap_single(host->dma_dev, host->ones_dma,
1508				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1509			dma_unmap_single(host->dma_dev, host->data_dma,
1510				sizeof(*host->data), DMA_BIDIRECTIONAL);
1511		}
1512
1513		kfree(host->data);
1514		kfree(host->ones);
1515
1516		spi->max_speed_hz = mmc->f_max;
1517		mmc_free_host(mmc);
1518		mmc_spi_put_pdata(spi);
1519		dev_set_drvdata(&spi->dev, NULL);
1520	}
1521	return 0;
1522}
1523
1524static const struct of_device_id mmc_spi_of_match_table[] = {
1525	{ .compatible = "mmc-spi-slot", },
1526	{},
1527};
1528MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1529
1530static struct spi_driver mmc_spi_driver = {
1531	.driver = {
1532		.name =		"mmc_spi",
 
1533		.of_match_table = mmc_spi_of_match_table,
1534	},
1535	.probe =	mmc_spi_probe,
1536	.remove =	mmc_spi_remove,
1537};
1538
1539module_spi_driver(mmc_spi_driver);
 
 
 
 
 
 
 
 
 
 
 
 
 
1540
1541MODULE_AUTHOR("Mike Lavender, David Brownell, "
1542		"Hans-Peter Nilsson, Jan Nikitenko");
1543MODULE_DESCRIPTION("SPI SD/MMC host driver");
1544MODULE_LICENSE("GPL");
1545MODULE_ALIAS("spi:mmc_spi");