Loading...
1/*
2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
3 *
4 * (C) Copyright 2005, Intec Automation,
5 * Mike Lavender (mike@steroidmicros)
6 * (C) Copyright 2006-2007, David Brownell
7 * (C) Copyright 2007, Axis Communications,
8 * Hans-Peter Nilsson (hp@axis.com)
9 * (C) Copyright 2007, ATRON electronic GmbH,
10 * Jan Nikitenko <jan.nikitenko@gmail.com>
11 *
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27#include <linux/sched.h>
28#include <linux/delay.h>
29#include <linux/slab.h>
30#include <linux/module.h>
31#include <linux/bio.h>
32#include <linux/dma-mapping.h>
33#include <linux/crc7.h>
34#include <linux/crc-itu-t.h>
35#include <linux/scatterlist.h>
36
37#include <linux/mmc/host.h>
38#include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
39
40#include <linux/spi/spi.h>
41#include <linux/spi/mmc_spi.h>
42
43#include <asm/unaligned.h>
44
45
46/* NOTES:
47 *
48 * - For now, we won't try to interoperate with a real mmc/sd/sdio
49 * controller, although some of them do have hardware support for
50 * SPI protocol. The main reason for such configs would be mmc-ish
51 * cards like DataFlash, which don't support that "native" protocol.
52 *
53 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
54 * switch between driver stacks, and in any case if "native" mode
55 * is available, it will be faster and hence preferable.
56 *
57 * - MMC depends on a different chipselect management policy than the
58 * SPI interface currently supports for shared bus segments: it needs
59 * to issue multiple spi_message requests with the chipselect active,
60 * using the results of one message to decide the next one to issue.
61 *
62 * Pending updates to the programming interface, this driver expects
63 * that it not share the bus with other drivers (precluding conflicts).
64 *
65 * - We tell the controller to keep the chipselect active from the
66 * beginning of an mmc_host_ops.request until the end. So beware
67 * of SPI controller drivers that mis-handle the cs_change flag!
68 *
69 * However, many cards seem OK with chipselect flapping up/down
70 * during that time ... at least on unshared bus segments.
71 */
72
73
74/*
75 * Local protocol constants, internal to data block protocols.
76 */
77
78/* Response tokens used to ack each block written: */
79#define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
80#define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
81#define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
82#define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
83
84/* Read and write blocks start with these tokens and end with crc;
85 * on error, read tokens act like a subset of R2_SPI_* values.
86 */
87#define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
88#define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
89#define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
90
91#define MMC_SPI_BLOCKSIZE 512
92
93
94/* These fixed timeouts come from the latest SD specs, which say to ignore
95 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the
96 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
97 * reads which takes nowhere near that long. Older cards may be able to use
98 * shorter timeouts ... but why bother?
99 */
100#define r1b_timeout (HZ * 3)
101
102/* One of the critical speed parameters is the amount of data which may
103 * be transferred in one command. If this value is too low, the SD card
104 * controller has to do multiple partial block writes (argggh!). With
105 * today (2008) SD cards there is little speed gain if we transfer more
106 * than 64 KBytes at a time. So use this value until there is any indication
107 * that we should do more here.
108 */
109#define MMC_SPI_BLOCKSATONCE 128
110
111/****************************************************************************/
112
113/*
114 * Local Data Structures
115 */
116
117/* "scratch" is per-{command,block} data exchanged with the card */
118struct scratch {
119 u8 status[29];
120 u8 data_token;
121 __be16 crc_val;
122};
123
124struct mmc_spi_host {
125 struct mmc_host *mmc;
126 struct spi_device *spi;
127
128 unsigned char power_mode;
129 u16 powerup_msecs;
130
131 struct mmc_spi_platform_data *pdata;
132
133 /* for bulk data transfers */
134 struct spi_transfer token, t, crc, early_status;
135 struct spi_message m;
136
137 /* for status readback */
138 struct spi_transfer status;
139 struct spi_message readback;
140
141 /* underlying DMA-aware controller, or null */
142 struct device *dma_dev;
143
144 /* buffer used for commands and for message "overhead" */
145 struct scratch *data;
146 dma_addr_t data_dma;
147
148 /* Specs say to write ones most of the time, even when the card
149 * has no need to read its input data; and many cards won't care.
150 * This is our source of those ones.
151 */
152 void *ones;
153 dma_addr_t ones_dma;
154};
155
156
157/****************************************************************************/
158
159/*
160 * MMC-over-SPI protocol glue, used by the MMC stack interface
161 */
162
163static inline int mmc_cs_off(struct mmc_spi_host *host)
164{
165 /* chipselect will always be inactive after setup() */
166 return spi_setup(host->spi);
167}
168
169static int
170mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
171{
172 int status;
173
174 if (len > sizeof(*host->data)) {
175 WARN_ON(1);
176 return -EIO;
177 }
178
179 host->status.len = len;
180
181 if (host->dma_dev)
182 dma_sync_single_for_device(host->dma_dev,
183 host->data_dma, sizeof(*host->data),
184 DMA_FROM_DEVICE);
185
186 status = spi_sync_locked(host->spi, &host->readback);
187
188 if (host->dma_dev)
189 dma_sync_single_for_cpu(host->dma_dev,
190 host->data_dma, sizeof(*host->data),
191 DMA_FROM_DEVICE);
192
193 return status;
194}
195
196static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
197 unsigned n, u8 byte)
198{
199 u8 *cp = host->data->status;
200 unsigned long start = jiffies;
201
202 while (1) {
203 int status;
204 unsigned i;
205
206 status = mmc_spi_readbytes(host, n);
207 if (status < 0)
208 return status;
209
210 for (i = 0; i < n; i++) {
211 if (cp[i] != byte)
212 return cp[i];
213 }
214
215 if (time_is_before_jiffies(start + timeout))
216 break;
217
218 /* If we need long timeouts, we may release the CPU.
219 * We use jiffies here because we want to have a relation
220 * between elapsed time and the blocking of the scheduler.
221 */
222 if (time_is_before_jiffies(start+1))
223 schedule();
224 }
225 return -ETIMEDOUT;
226}
227
228static inline int
229mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
230{
231 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
232}
233
234static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
235{
236 return mmc_spi_skip(host, timeout, 1, 0xff);
237}
238
239
240/*
241 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
242 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
243 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
244 *
245 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
246 * newer cards R7 (IF_COND).
247 */
248
249static char *maptype(struct mmc_command *cmd)
250{
251 switch (mmc_spi_resp_type(cmd)) {
252 case MMC_RSP_SPI_R1: return "R1";
253 case MMC_RSP_SPI_R1B: return "R1B";
254 case MMC_RSP_SPI_R2: return "R2/R5";
255 case MMC_RSP_SPI_R3: return "R3/R4/R7";
256 default: return "?";
257 }
258}
259
260/* return zero, else negative errno after setting cmd->error */
261static int mmc_spi_response_get(struct mmc_spi_host *host,
262 struct mmc_command *cmd, int cs_on)
263{
264 u8 *cp = host->data->status;
265 u8 *end = cp + host->t.len;
266 int value = 0;
267 int bitshift;
268 u8 leftover = 0;
269 unsigned short rotator;
270 int i;
271 char tag[32];
272
273 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s",
274 cmd->opcode, maptype(cmd));
275
276 /* Except for data block reads, the whole response will already
277 * be stored in the scratch buffer. It's somewhere after the
278 * command and the first byte we read after it. We ignore that
279 * first byte. After STOP_TRANSMISSION command it may include
280 * two data bits, but otherwise it's all ones.
281 */
282 cp += 8;
283 while (cp < end && *cp == 0xff)
284 cp++;
285
286 /* Data block reads (R1 response types) may need more data... */
287 if (cp == end) {
288 cp = host->data->status;
289 end = cp+1;
290
291 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
292 * status byte ... and we already scanned 2 bytes.
293 *
294 * REVISIT block read paths use nasty byte-at-a-time I/O
295 * so it can always DMA directly into the target buffer.
296 * It'd probably be better to memcpy() the first chunk and
297 * avoid extra i/o calls...
298 *
299 * Note we check for more than 8 bytes, because in practice,
300 * some SD cards are slow...
301 */
302 for (i = 2; i < 16; i++) {
303 value = mmc_spi_readbytes(host, 1);
304 if (value < 0)
305 goto done;
306 if (*cp != 0xff)
307 goto checkstatus;
308 }
309 value = -ETIMEDOUT;
310 goto done;
311 }
312
313checkstatus:
314 bitshift = 0;
315 if (*cp & 0x80) {
316 /* Houston, we have an ugly card with a bit-shifted response */
317 rotator = *cp++ << 8;
318 /* read the next byte */
319 if (cp == end) {
320 value = mmc_spi_readbytes(host, 1);
321 if (value < 0)
322 goto done;
323 cp = host->data->status;
324 end = cp+1;
325 }
326 rotator |= *cp++;
327 while (rotator & 0x8000) {
328 bitshift++;
329 rotator <<= 1;
330 }
331 cmd->resp[0] = rotator >> 8;
332 leftover = rotator;
333 } else {
334 cmd->resp[0] = *cp++;
335 }
336 cmd->error = 0;
337
338 /* Status byte: the entire seven-bit R1 response. */
339 if (cmd->resp[0] != 0) {
340 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
341 & cmd->resp[0])
342 value = -EFAULT; /* Bad address */
343 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
344 value = -ENOSYS; /* Function not implemented */
345 else if (R1_SPI_COM_CRC & cmd->resp[0])
346 value = -EILSEQ; /* Illegal byte sequence */
347 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
348 & cmd->resp[0])
349 value = -EIO; /* I/O error */
350 /* else R1_SPI_IDLE, "it's resetting" */
351 }
352
353 switch (mmc_spi_resp_type(cmd)) {
354
355 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
356 * and less-common stuff like various erase operations.
357 */
358 case MMC_RSP_SPI_R1B:
359 /* maybe we read all the busy tokens already */
360 while (cp < end && *cp == 0)
361 cp++;
362 if (cp == end)
363 mmc_spi_wait_unbusy(host, r1b_timeout);
364 break;
365
366 /* SPI R2 == R1 + second status byte; SEND_STATUS
367 * SPI R5 == R1 + data byte; IO_RW_DIRECT
368 */
369 case MMC_RSP_SPI_R2:
370 /* read the next byte */
371 if (cp == end) {
372 value = mmc_spi_readbytes(host, 1);
373 if (value < 0)
374 goto done;
375 cp = host->data->status;
376 end = cp+1;
377 }
378 if (bitshift) {
379 rotator = leftover << 8;
380 rotator |= *cp << bitshift;
381 cmd->resp[0] |= (rotator & 0xFF00);
382 } else {
383 cmd->resp[0] |= *cp << 8;
384 }
385 break;
386
387 /* SPI R3, R4, or R7 == R1 + 4 bytes */
388 case MMC_RSP_SPI_R3:
389 rotator = leftover << 8;
390 cmd->resp[1] = 0;
391 for (i = 0; i < 4; i++) {
392 cmd->resp[1] <<= 8;
393 /* read the next byte */
394 if (cp == end) {
395 value = mmc_spi_readbytes(host, 1);
396 if (value < 0)
397 goto done;
398 cp = host->data->status;
399 end = cp+1;
400 }
401 if (bitshift) {
402 rotator |= *cp++ << bitshift;
403 cmd->resp[1] |= (rotator >> 8);
404 rotator <<= 8;
405 } else {
406 cmd->resp[1] |= *cp++;
407 }
408 }
409 break;
410
411 /* SPI R1 == just one status byte */
412 case MMC_RSP_SPI_R1:
413 break;
414
415 default:
416 dev_dbg(&host->spi->dev, "bad response type %04x\n",
417 mmc_spi_resp_type(cmd));
418 if (value >= 0)
419 value = -EINVAL;
420 goto done;
421 }
422
423 if (value < 0)
424 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
425 tag, cmd->resp[0], cmd->resp[1]);
426
427 /* disable chipselect on errors and some success cases */
428 if (value >= 0 && cs_on)
429 return value;
430done:
431 if (value < 0)
432 cmd->error = value;
433 mmc_cs_off(host);
434 return value;
435}
436
437/* Issue command and read its response.
438 * Returns zero on success, negative for error.
439 *
440 * On error, caller must cope with mmc core retry mechanism. That
441 * means immediate low-level resubmit, which affects the bus lock...
442 */
443static int
444mmc_spi_command_send(struct mmc_spi_host *host,
445 struct mmc_request *mrq,
446 struct mmc_command *cmd, int cs_on)
447{
448 struct scratch *data = host->data;
449 u8 *cp = data->status;
450 u32 arg = cmd->arg;
451 int status;
452 struct spi_transfer *t;
453
454 /* We can handle most commands (except block reads) in one full
455 * duplex I/O operation before either starting the next transfer
456 * (data block or command) or else deselecting the card.
457 *
458 * First, write 7 bytes:
459 * - an all-ones byte to ensure the card is ready
460 * - opcode byte (plus start and transmission bits)
461 * - four bytes of big-endian argument
462 * - crc7 (plus end bit) ... always computed, it's cheap
463 *
464 * We init the whole buffer to all-ones, which is what we need
465 * to write while we're reading (later) response data.
466 */
467 memset(cp++, 0xff, sizeof(data->status));
468
469 *cp++ = 0x40 | cmd->opcode;
470 *cp++ = (u8)(arg >> 24);
471 *cp++ = (u8)(arg >> 16);
472 *cp++ = (u8)(arg >> 8);
473 *cp++ = (u8)arg;
474 *cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
475
476 /* Then, read up to 13 bytes (while writing all-ones):
477 * - N(CR) (== 1..8) bytes of all-ones
478 * - status byte (for all response types)
479 * - the rest of the response, either:
480 * + nothing, for R1 or R1B responses
481 * + second status byte, for R2 responses
482 * + four data bytes, for R3 and R7 responses
483 *
484 * Finally, read some more bytes ... in the nice cases we know in
485 * advance how many, and reading 1 more is always OK:
486 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
487 * - N(RC) (== 1..N) bytes of all-ones, before next command
488 * - N(WR) (== 1..N) bytes of all-ones, before data write
489 *
490 * So in those cases one full duplex I/O of at most 21 bytes will
491 * handle the whole command, leaving the card ready to receive a
492 * data block or new command. We do that whenever we can, shaving
493 * CPU and IRQ costs (especially when using DMA or FIFOs).
494 *
495 * There are two other cases, where it's not generally practical
496 * to rely on a single I/O:
497 *
498 * - R1B responses need at least N(EC) bytes of all-zeroes.
499 *
500 * In this case we can *try* to fit it into one I/O, then
501 * maybe read more data later.
502 *
503 * - Data block reads are more troublesome, since a variable
504 * number of padding bytes precede the token and data.
505 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
506 * + N(AC) (== 1..many) bytes of all-ones
507 *
508 * In this case we currently only have minimal speedups here:
509 * when N(CR) == 1 we can avoid I/O in response_get().
510 */
511 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
512 cp += 2; /* min(N(CR)) + status */
513 /* R1 */
514 } else {
515 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
516 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
517 cp++;
518 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
519 cp += 4;
520 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
521 cp = data->status + sizeof(data->status);
522 /* else: R1 (most commands) */
523 }
524
525 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n",
526 cmd->opcode, maptype(cmd));
527
528 /* send command, leaving chipselect active */
529 spi_message_init(&host->m);
530
531 t = &host->t;
532 memset(t, 0, sizeof(*t));
533 t->tx_buf = t->rx_buf = data->status;
534 t->tx_dma = t->rx_dma = host->data_dma;
535 t->len = cp - data->status;
536 t->cs_change = 1;
537 spi_message_add_tail(t, &host->m);
538
539 if (host->dma_dev) {
540 host->m.is_dma_mapped = 1;
541 dma_sync_single_for_device(host->dma_dev,
542 host->data_dma, sizeof(*host->data),
543 DMA_BIDIRECTIONAL);
544 }
545 status = spi_sync_locked(host->spi, &host->m);
546
547 if (host->dma_dev)
548 dma_sync_single_for_cpu(host->dma_dev,
549 host->data_dma, sizeof(*host->data),
550 DMA_BIDIRECTIONAL);
551 if (status < 0) {
552 dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
553 cmd->error = status;
554 return status;
555 }
556
557 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
558 return mmc_spi_response_get(host, cmd, cs_on);
559}
560
561/* Build data message with up to four separate transfers. For TX, we
562 * start by writing the data token. And in most cases, we finish with
563 * a status transfer.
564 *
565 * We always provide TX data for data and CRC. The MMC/SD protocol
566 * requires us to write ones; but Linux defaults to writing zeroes;
567 * so we explicitly initialize it to all ones on RX paths.
568 *
569 * We also handle DMA mapping, so the underlying SPI controller does
570 * not need to (re)do it for each message.
571 */
572static void
573mmc_spi_setup_data_message(
574 struct mmc_spi_host *host,
575 int multiple,
576 enum dma_data_direction direction)
577{
578 struct spi_transfer *t;
579 struct scratch *scratch = host->data;
580 dma_addr_t dma = host->data_dma;
581
582 spi_message_init(&host->m);
583 if (dma)
584 host->m.is_dma_mapped = 1;
585
586 /* for reads, readblock() skips 0xff bytes before finding
587 * the token; for writes, this transfer issues that token.
588 */
589 if (direction == DMA_TO_DEVICE) {
590 t = &host->token;
591 memset(t, 0, sizeof(*t));
592 t->len = 1;
593 if (multiple)
594 scratch->data_token = SPI_TOKEN_MULTI_WRITE;
595 else
596 scratch->data_token = SPI_TOKEN_SINGLE;
597 t->tx_buf = &scratch->data_token;
598 if (dma)
599 t->tx_dma = dma + offsetof(struct scratch, data_token);
600 spi_message_add_tail(t, &host->m);
601 }
602
603 /* Body of transfer is buffer, then CRC ...
604 * either TX-only, or RX with TX-ones.
605 */
606 t = &host->t;
607 memset(t, 0, sizeof(*t));
608 t->tx_buf = host->ones;
609 t->tx_dma = host->ones_dma;
610 /* length and actual buffer info are written later */
611 spi_message_add_tail(t, &host->m);
612
613 t = &host->crc;
614 memset(t, 0, sizeof(*t));
615 t->len = 2;
616 if (direction == DMA_TO_DEVICE) {
617 /* the actual CRC may get written later */
618 t->tx_buf = &scratch->crc_val;
619 if (dma)
620 t->tx_dma = dma + offsetof(struct scratch, crc_val);
621 } else {
622 t->tx_buf = host->ones;
623 t->tx_dma = host->ones_dma;
624 t->rx_buf = &scratch->crc_val;
625 if (dma)
626 t->rx_dma = dma + offsetof(struct scratch, crc_val);
627 }
628 spi_message_add_tail(t, &host->m);
629
630 /*
631 * A single block read is followed by N(EC) [0+] all-ones bytes
632 * before deselect ... don't bother.
633 *
634 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
635 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
636 * collect that single byte, so readblock() doesn't need to.
637 *
638 * For a write, the one-byte data response follows immediately, then
639 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
640 * Then single block reads may deselect, and multiblock ones issue
641 * the next token (next data block, or STOP_TRAN). We can try to
642 * minimize I/O ops by using a single read to collect end-of-busy.
643 */
644 if (multiple || direction == DMA_TO_DEVICE) {
645 t = &host->early_status;
646 memset(t, 0, sizeof(*t));
647 t->len = (direction == DMA_TO_DEVICE)
648 ? sizeof(scratch->status)
649 : 1;
650 t->tx_buf = host->ones;
651 t->tx_dma = host->ones_dma;
652 t->rx_buf = scratch->status;
653 if (dma)
654 t->rx_dma = dma + offsetof(struct scratch, status);
655 t->cs_change = 1;
656 spi_message_add_tail(t, &host->m);
657 }
658}
659
660/*
661 * Write one block:
662 * - caller handled preceding N(WR) [1+] all-ones bytes
663 * - data block
664 * + token
665 * + data bytes
666 * + crc16
667 * - an all-ones byte ... card writes a data-response byte
668 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
669 *
670 * Return negative errno, else success.
671 */
672static int
673mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
674 unsigned long timeout)
675{
676 struct spi_device *spi = host->spi;
677 int status, i;
678 struct scratch *scratch = host->data;
679 u32 pattern;
680
681 if (host->mmc->use_spi_crc)
682 scratch->crc_val = cpu_to_be16(
683 crc_itu_t(0, t->tx_buf, t->len));
684 if (host->dma_dev)
685 dma_sync_single_for_device(host->dma_dev,
686 host->data_dma, sizeof(*scratch),
687 DMA_BIDIRECTIONAL);
688
689 status = spi_sync_locked(spi, &host->m);
690
691 if (status != 0) {
692 dev_dbg(&spi->dev, "write error (%d)\n", status);
693 return status;
694 }
695
696 if (host->dma_dev)
697 dma_sync_single_for_cpu(host->dma_dev,
698 host->data_dma, sizeof(*scratch),
699 DMA_BIDIRECTIONAL);
700
701 /*
702 * Get the transmission data-response reply. It must follow
703 * immediately after the data block we transferred. This reply
704 * doesn't necessarily tell whether the write operation succeeded;
705 * it just says if the transmission was ok and whether *earlier*
706 * writes succeeded; see the standard.
707 *
708 * In practice, there are (even modern SDHC-)cards which are late
709 * in sending the response, and miss the time frame by a few bits,
710 * so we have to cope with this situation and check the response
711 * bit-by-bit. Arggh!!!
712 */
713 pattern = scratch->status[0] << 24;
714 pattern |= scratch->status[1] << 16;
715 pattern |= scratch->status[2] << 8;
716 pattern |= scratch->status[3];
717
718 /* First 3 bit of pattern are undefined */
719 pattern |= 0xE0000000;
720
721 /* left-adjust to leading 0 bit */
722 while (pattern & 0x80000000)
723 pattern <<= 1;
724 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
725 pattern >>= 27;
726
727 switch (pattern) {
728 case SPI_RESPONSE_ACCEPTED:
729 status = 0;
730 break;
731 case SPI_RESPONSE_CRC_ERR:
732 /* host shall then issue MMC_STOP_TRANSMISSION */
733 status = -EILSEQ;
734 break;
735 case SPI_RESPONSE_WRITE_ERR:
736 /* host shall then issue MMC_STOP_TRANSMISSION,
737 * and should MMC_SEND_STATUS to sort it out
738 */
739 status = -EIO;
740 break;
741 default:
742 status = -EPROTO;
743 break;
744 }
745 if (status != 0) {
746 dev_dbg(&spi->dev, "write error %02x (%d)\n",
747 scratch->status[0], status);
748 return status;
749 }
750
751 t->tx_buf += t->len;
752 if (host->dma_dev)
753 t->tx_dma += t->len;
754
755 /* Return when not busy. If we didn't collect that status yet,
756 * we'll need some more I/O.
757 */
758 for (i = 4; i < sizeof(scratch->status); i++) {
759 /* card is non-busy if the most recent bit is 1 */
760 if (scratch->status[i] & 0x01)
761 return 0;
762 }
763 return mmc_spi_wait_unbusy(host, timeout);
764}
765
766/*
767 * Read one block:
768 * - skip leading all-ones bytes ... either
769 * + N(AC) [1..f(clock,CSD)] usually, else
770 * + N(CX) [0..8] when reading CSD or CID
771 * - data block
772 * + token ... if error token, no data or crc
773 * + data bytes
774 * + crc16
775 *
776 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
777 * before dropping chipselect.
778 *
779 * For multiblock reads, caller either reads the next block or issues a
780 * STOP_TRANSMISSION command.
781 */
782static int
783mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
784 unsigned long timeout)
785{
786 struct spi_device *spi = host->spi;
787 int status;
788 struct scratch *scratch = host->data;
789 unsigned int bitshift;
790 u8 leftover;
791
792 /* At least one SD card sends an all-zeroes byte when N(CX)
793 * applies, before the all-ones bytes ... just cope with that.
794 */
795 status = mmc_spi_readbytes(host, 1);
796 if (status < 0)
797 return status;
798 status = scratch->status[0];
799 if (status == 0xff || status == 0)
800 status = mmc_spi_readtoken(host, timeout);
801
802 if (status < 0) {
803 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
804 return status;
805 }
806
807 /* The token may be bit-shifted...
808 * the first 0-bit precedes the data stream.
809 */
810 bitshift = 7;
811 while (status & 0x80) {
812 status <<= 1;
813 bitshift--;
814 }
815 leftover = status << 1;
816
817 if (host->dma_dev) {
818 dma_sync_single_for_device(host->dma_dev,
819 host->data_dma, sizeof(*scratch),
820 DMA_BIDIRECTIONAL);
821 dma_sync_single_for_device(host->dma_dev,
822 t->rx_dma, t->len,
823 DMA_FROM_DEVICE);
824 }
825
826 status = spi_sync_locked(spi, &host->m);
827
828 if (host->dma_dev) {
829 dma_sync_single_for_cpu(host->dma_dev,
830 host->data_dma, sizeof(*scratch),
831 DMA_BIDIRECTIONAL);
832 dma_sync_single_for_cpu(host->dma_dev,
833 t->rx_dma, t->len,
834 DMA_FROM_DEVICE);
835 }
836
837 if (bitshift) {
838 /* Walk through the data and the crc and do
839 * all the magic to get byte-aligned data.
840 */
841 u8 *cp = t->rx_buf;
842 unsigned int len;
843 unsigned int bitright = 8 - bitshift;
844 u8 temp;
845 for (len = t->len; len; len--) {
846 temp = *cp;
847 *cp++ = leftover | (temp >> bitshift);
848 leftover = temp << bitright;
849 }
850 cp = (u8 *) &scratch->crc_val;
851 temp = *cp;
852 *cp++ = leftover | (temp >> bitshift);
853 leftover = temp << bitright;
854 temp = *cp;
855 *cp = leftover | (temp >> bitshift);
856 }
857
858 if (host->mmc->use_spi_crc) {
859 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
860
861 be16_to_cpus(&scratch->crc_val);
862 if (scratch->crc_val != crc) {
863 dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
864 "computed=0x%04x len=%d\n",
865 scratch->crc_val, crc, t->len);
866 return -EILSEQ;
867 }
868 }
869
870 t->rx_buf += t->len;
871 if (host->dma_dev)
872 t->rx_dma += t->len;
873
874 return 0;
875}
876
877/*
878 * An MMC/SD data stage includes one or more blocks, optional CRCs,
879 * and inline handshaking. That handhaking makes it unlike most
880 * other SPI protocol stacks.
881 */
882static void
883mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
884 struct mmc_data *data, u32 blk_size)
885{
886 struct spi_device *spi = host->spi;
887 struct device *dma_dev = host->dma_dev;
888 struct spi_transfer *t;
889 enum dma_data_direction direction;
890 struct scatterlist *sg;
891 unsigned n_sg;
892 int multiple = (data->blocks > 1);
893 u32 clock_rate;
894 unsigned long timeout;
895
896 if (data->flags & MMC_DATA_READ)
897 direction = DMA_FROM_DEVICE;
898 else
899 direction = DMA_TO_DEVICE;
900 mmc_spi_setup_data_message(host, multiple, direction);
901 t = &host->t;
902
903 if (t->speed_hz)
904 clock_rate = t->speed_hz;
905 else
906 clock_rate = spi->max_speed_hz;
907
908 timeout = data->timeout_ns +
909 data->timeout_clks * 1000000 / clock_rate;
910 timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
911
912 /* Handle scatterlist segments one at a time, with synch for
913 * each 512-byte block
914 */
915 for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
916 int status = 0;
917 dma_addr_t dma_addr = 0;
918 void *kmap_addr;
919 unsigned length = sg->length;
920 enum dma_data_direction dir = direction;
921
922 /* set up dma mapping for controller drivers that might
923 * use DMA ... though they may fall back to PIO
924 */
925 if (dma_dev) {
926 /* never invalidate whole *shared* pages ... */
927 if ((sg->offset != 0 || length != PAGE_SIZE)
928 && dir == DMA_FROM_DEVICE)
929 dir = DMA_BIDIRECTIONAL;
930
931 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
932 PAGE_SIZE, dir);
933 if (direction == DMA_TO_DEVICE)
934 t->tx_dma = dma_addr + sg->offset;
935 else
936 t->rx_dma = dma_addr + sg->offset;
937 }
938
939 /* allow pio too; we don't allow highmem */
940 kmap_addr = kmap(sg_page(sg));
941 if (direction == DMA_TO_DEVICE)
942 t->tx_buf = kmap_addr + sg->offset;
943 else
944 t->rx_buf = kmap_addr + sg->offset;
945
946 /* transfer each block, and update request status */
947 while (length) {
948 t->len = min(length, blk_size);
949
950 dev_dbg(&host->spi->dev,
951 " mmc_spi: %s block, %d bytes\n",
952 (direction == DMA_TO_DEVICE)
953 ? "write"
954 : "read",
955 t->len);
956
957 if (direction == DMA_TO_DEVICE)
958 status = mmc_spi_writeblock(host, t, timeout);
959 else
960 status = mmc_spi_readblock(host, t, timeout);
961 if (status < 0)
962 break;
963
964 data->bytes_xfered += t->len;
965 length -= t->len;
966
967 if (!multiple)
968 break;
969 }
970
971 /* discard mappings */
972 if (direction == DMA_FROM_DEVICE)
973 flush_kernel_dcache_page(sg_page(sg));
974 kunmap(sg_page(sg));
975 if (dma_dev)
976 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
977
978 if (status < 0) {
979 data->error = status;
980 dev_dbg(&spi->dev, "%s status %d\n",
981 (direction == DMA_TO_DEVICE)
982 ? "write" : "read",
983 status);
984 break;
985 }
986 }
987
988 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
989 * can be issued before multiblock writes. Unlike its more widely
990 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
991 * that can affect the STOP_TRAN logic. Complete (and current)
992 * MMC specs should sort that out before Linux starts using CMD23.
993 */
994 if (direction == DMA_TO_DEVICE && multiple) {
995 struct scratch *scratch = host->data;
996 int tmp;
997 const unsigned statlen = sizeof(scratch->status);
998
999 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n");
1000
1001 /* Tweak the per-block message we set up earlier by morphing
1002 * it to hold single buffer with the token followed by some
1003 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
1004 * "not busy any longer" status, and leave chip selected.
1005 */
1006 INIT_LIST_HEAD(&host->m.transfers);
1007 list_add(&host->early_status.transfer_list,
1008 &host->m.transfers);
1009
1010 memset(scratch->status, 0xff, statlen);
1011 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
1012
1013 host->early_status.tx_buf = host->early_status.rx_buf;
1014 host->early_status.tx_dma = host->early_status.rx_dma;
1015 host->early_status.len = statlen;
1016
1017 if (host->dma_dev)
1018 dma_sync_single_for_device(host->dma_dev,
1019 host->data_dma, sizeof(*scratch),
1020 DMA_BIDIRECTIONAL);
1021
1022 tmp = spi_sync_locked(spi, &host->m);
1023
1024 if (host->dma_dev)
1025 dma_sync_single_for_cpu(host->dma_dev,
1026 host->data_dma, sizeof(*scratch),
1027 DMA_BIDIRECTIONAL);
1028
1029 if (tmp < 0) {
1030 if (!data->error)
1031 data->error = tmp;
1032 return;
1033 }
1034
1035 /* Ideally we collected "not busy" status with one I/O,
1036 * avoiding wasteful byte-at-a-time scanning... but more
1037 * I/O is often needed.
1038 */
1039 for (tmp = 2; tmp < statlen; tmp++) {
1040 if (scratch->status[tmp] != 0)
1041 return;
1042 }
1043 tmp = mmc_spi_wait_unbusy(host, timeout);
1044 if (tmp < 0 && !data->error)
1045 data->error = tmp;
1046 }
1047}
1048
1049/****************************************************************************/
1050
1051/*
1052 * MMC driver implementation -- the interface to the MMC stack
1053 */
1054
1055static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1056{
1057 struct mmc_spi_host *host = mmc_priv(mmc);
1058 int status = -EINVAL;
1059 int crc_retry = 5;
1060 struct mmc_command stop;
1061
1062#ifdef DEBUG
1063 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1064 {
1065 struct mmc_command *cmd;
1066 int invalid = 0;
1067
1068 cmd = mrq->cmd;
1069 if (!mmc_spi_resp_type(cmd)) {
1070 dev_dbg(&host->spi->dev, "bogus command\n");
1071 cmd->error = -EINVAL;
1072 invalid = 1;
1073 }
1074
1075 cmd = mrq->stop;
1076 if (cmd && !mmc_spi_resp_type(cmd)) {
1077 dev_dbg(&host->spi->dev, "bogus STOP command\n");
1078 cmd->error = -EINVAL;
1079 invalid = 1;
1080 }
1081
1082 if (invalid) {
1083 dump_stack();
1084 mmc_request_done(host->mmc, mrq);
1085 return;
1086 }
1087 }
1088#endif
1089
1090 /* request exclusive bus access */
1091 spi_bus_lock(host->spi->master);
1092
1093crc_recover:
1094 /* issue command; then optionally data and stop */
1095 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1096 if (status == 0 && mrq->data) {
1097 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1098
1099 /*
1100 * The SPI bus is not always reliable for large data transfers.
1101 * If an occasional crc error is reported by the SD device with
1102 * data read/write over SPI, it may be recovered by repeating
1103 * the last SD command again. The retry count is set to 5 to
1104 * ensure the driver passes stress tests.
1105 */
1106 if (mrq->data->error == -EILSEQ && crc_retry) {
1107 stop.opcode = MMC_STOP_TRANSMISSION;
1108 stop.arg = 0;
1109 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1110 status = mmc_spi_command_send(host, mrq, &stop, 0);
1111 crc_retry--;
1112 mrq->data->error = 0;
1113 goto crc_recover;
1114 }
1115
1116 if (mrq->stop)
1117 status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1118 else
1119 mmc_cs_off(host);
1120 }
1121
1122 /* release the bus */
1123 spi_bus_unlock(host->spi->master);
1124
1125 mmc_request_done(host->mmc, mrq);
1126}
1127
1128/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1129 *
1130 * NOTE that here we can't know that the card has just been powered up;
1131 * not all MMC/SD sockets support power switching.
1132 *
1133 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1134 * this doesn't seem to do the right thing at all...
1135 */
1136static void mmc_spi_initsequence(struct mmc_spi_host *host)
1137{
1138 /* Try to be very sure any previous command has completed;
1139 * wait till not-busy, skip debris from any old commands.
1140 */
1141 mmc_spi_wait_unbusy(host, r1b_timeout);
1142 mmc_spi_readbytes(host, 10);
1143
1144 /*
1145 * Do a burst with chipselect active-high. We need to do this to
1146 * meet the requirement of 74 clock cycles with both chipselect
1147 * and CMD (MOSI) high before CMD0 ... after the card has been
1148 * powered up to Vdd(min), and so is ready to take commands.
1149 *
1150 * Some cards are particularly needy of this (e.g. Viking "SD256")
1151 * while most others don't seem to care.
1152 *
1153 * Note that this is one of the places MMC/SD plays games with the
1154 * SPI protocol. Another is that when chipselect is released while
1155 * the card returns BUSY status, the clock must issue several cycles
1156 * with chipselect high before the card will stop driving its output.
1157 */
1158 host->spi->mode |= SPI_CS_HIGH;
1159 if (spi_setup(host->spi) != 0) {
1160 /* Just warn; most cards work without it. */
1161 dev_warn(&host->spi->dev,
1162 "can't change chip-select polarity\n");
1163 host->spi->mode &= ~SPI_CS_HIGH;
1164 } else {
1165 mmc_spi_readbytes(host, 18);
1166
1167 host->spi->mode &= ~SPI_CS_HIGH;
1168 if (spi_setup(host->spi) != 0) {
1169 /* Wot, we can't get the same setup we had before? */
1170 dev_err(&host->spi->dev,
1171 "can't restore chip-select polarity\n");
1172 }
1173 }
1174}
1175
1176static char *mmc_powerstring(u8 power_mode)
1177{
1178 switch (power_mode) {
1179 case MMC_POWER_OFF: return "off";
1180 case MMC_POWER_UP: return "up";
1181 case MMC_POWER_ON: return "on";
1182 }
1183 return "?";
1184}
1185
1186static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1187{
1188 struct mmc_spi_host *host = mmc_priv(mmc);
1189
1190 if (host->power_mode != ios->power_mode) {
1191 int canpower;
1192
1193 canpower = host->pdata && host->pdata->setpower;
1194
1195 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1196 mmc_powerstring(ios->power_mode),
1197 ios->vdd,
1198 canpower ? ", can switch" : "");
1199
1200 /* switch power on/off if possible, accounting for
1201 * max 250msec powerup time if needed.
1202 */
1203 if (canpower) {
1204 switch (ios->power_mode) {
1205 case MMC_POWER_OFF:
1206 case MMC_POWER_UP:
1207 host->pdata->setpower(&host->spi->dev,
1208 ios->vdd);
1209 if (ios->power_mode == MMC_POWER_UP)
1210 msleep(host->powerup_msecs);
1211 }
1212 }
1213
1214 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1215 if (ios->power_mode == MMC_POWER_ON)
1216 mmc_spi_initsequence(host);
1217
1218 /* If powering down, ground all card inputs to avoid power
1219 * delivery from data lines! On a shared SPI bus, this
1220 * will probably be temporary; 6.4.2 of the simplified SD
1221 * spec says this must last at least 1msec.
1222 *
1223 * - Clock low means CPOL 0, e.g. mode 0
1224 * - MOSI low comes from writing zero
1225 * - Chipselect is usually active low...
1226 */
1227 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1228 int mres;
1229 u8 nullbyte = 0;
1230
1231 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1232 mres = spi_setup(host->spi);
1233 if (mres < 0)
1234 dev_dbg(&host->spi->dev,
1235 "switch to SPI mode 0 failed\n");
1236
1237 if (spi_write(host->spi, &nullbyte, 1) < 0)
1238 dev_dbg(&host->spi->dev,
1239 "put spi signals to low failed\n");
1240
1241 /*
1242 * Now clock should be low due to spi mode 0;
1243 * MOSI should be low because of written 0x00;
1244 * chipselect should be low (it is active low)
1245 * power supply is off, so now MMC is off too!
1246 *
1247 * FIXME no, chipselect can be high since the
1248 * device is inactive and SPI_CS_HIGH is clear...
1249 */
1250 msleep(10);
1251 if (mres == 0) {
1252 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1253 mres = spi_setup(host->spi);
1254 if (mres < 0)
1255 dev_dbg(&host->spi->dev,
1256 "switch back to SPI mode 3"
1257 " failed\n");
1258 }
1259 }
1260
1261 host->power_mode = ios->power_mode;
1262 }
1263
1264 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1265 int status;
1266
1267 host->spi->max_speed_hz = ios->clock;
1268 status = spi_setup(host->spi);
1269 dev_dbg(&host->spi->dev,
1270 "mmc_spi: clock to %d Hz, %d\n",
1271 host->spi->max_speed_hz, status);
1272 }
1273}
1274
1275static int mmc_spi_get_ro(struct mmc_host *mmc)
1276{
1277 struct mmc_spi_host *host = mmc_priv(mmc);
1278
1279 if (host->pdata && host->pdata->get_ro)
1280 return !!host->pdata->get_ro(mmc->parent);
1281 /*
1282 * Board doesn't support read only detection; let the mmc core
1283 * decide what to do.
1284 */
1285 return -ENOSYS;
1286}
1287
1288static int mmc_spi_get_cd(struct mmc_host *mmc)
1289{
1290 struct mmc_spi_host *host = mmc_priv(mmc);
1291
1292 if (host->pdata && host->pdata->get_cd)
1293 return !!host->pdata->get_cd(mmc->parent);
1294 return -ENOSYS;
1295}
1296
1297static const struct mmc_host_ops mmc_spi_ops = {
1298 .request = mmc_spi_request,
1299 .set_ios = mmc_spi_set_ios,
1300 .get_ro = mmc_spi_get_ro,
1301 .get_cd = mmc_spi_get_cd,
1302};
1303
1304
1305/****************************************************************************/
1306
1307/*
1308 * SPI driver implementation
1309 */
1310
1311static irqreturn_t
1312mmc_spi_detect_irq(int irq, void *mmc)
1313{
1314 struct mmc_spi_host *host = mmc_priv(mmc);
1315 u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1316
1317 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1318 return IRQ_HANDLED;
1319}
1320
1321static int mmc_spi_probe(struct spi_device *spi)
1322{
1323 void *ones;
1324 struct mmc_host *mmc;
1325 struct mmc_spi_host *host;
1326 int status;
1327
1328 /* We rely on full duplex transfers, mostly to reduce
1329 * per-transfer overheads (by making fewer transfers).
1330 */
1331 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1332 return -EINVAL;
1333
1334 /* MMC and SD specs only seem to care that sampling is on the
1335 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1336 * should be legit. We'll use mode 0 since the steady state is 0,
1337 * which is appropriate for hotplugging, unless the platform data
1338 * specify mode 3 (if hardware is not compatible to mode 0).
1339 */
1340 if (spi->mode != SPI_MODE_3)
1341 spi->mode = SPI_MODE_0;
1342 spi->bits_per_word = 8;
1343
1344 status = spi_setup(spi);
1345 if (status < 0) {
1346 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1347 spi->mode, spi->max_speed_hz / 1000,
1348 status);
1349 return status;
1350 }
1351
1352 /* We need a supply of ones to transmit. This is the only time
1353 * the CPU touches these, so cache coherency isn't a concern.
1354 *
1355 * NOTE if many systems use more than one MMC-over-SPI connector
1356 * it'd save some memory to share this. That's evidently rare.
1357 */
1358 status = -ENOMEM;
1359 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1360 if (!ones)
1361 goto nomem;
1362 memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1363
1364 mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1365 if (!mmc)
1366 goto nomem;
1367
1368 mmc->ops = &mmc_spi_ops;
1369 mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1370 mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1371 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1372 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1373
1374 mmc->caps = MMC_CAP_SPI;
1375
1376 /* SPI doesn't need the lowspeed device identification thing for
1377 * MMC or SD cards, since it never comes up in open drain mode.
1378 * That's good; some SPI masters can't handle very low speeds!
1379 *
1380 * However, low speed SDIO cards need not handle over 400 KHz;
1381 * that's the only reason not to use a few MHz for f_min (until
1382 * the upper layer reads the target frequency from the CSD).
1383 */
1384 mmc->f_min = 400000;
1385 mmc->f_max = spi->max_speed_hz;
1386
1387 host = mmc_priv(mmc);
1388 host->mmc = mmc;
1389 host->spi = spi;
1390
1391 host->ones = ones;
1392
1393 /* Platform data is used to hook up things like card sensing
1394 * and power switching gpios.
1395 */
1396 host->pdata = mmc_spi_get_pdata(spi);
1397 if (host->pdata)
1398 mmc->ocr_avail = host->pdata->ocr_mask;
1399 if (!mmc->ocr_avail) {
1400 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1401 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1402 }
1403 if (host->pdata && host->pdata->setpower) {
1404 host->powerup_msecs = host->pdata->powerup_msecs;
1405 if (!host->powerup_msecs || host->powerup_msecs > 250)
1406 host->powerup_msecs = 250;
1407 }
1408
1409 dev_set_drvdata(&spi->dev, mmc);
1410
1411 /* preallocate dma buffers */
1412 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1413 if (!host->data)
1414 goto fail_nobuf1;
1415
1416 if (spi->master->dev.parent->dma_mask) {
1417 struct device *dev = spi->master->dev.parent;
1418
1419 host->dma_dev = dev;
1420 host->ones_dma = dma_map_single(dev, ones,
1421 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1422 host->data_dma = dma_map_single(dev, host->data,
1423 sizeof(*host->data), DMA_BIDIRECTIONAL);
1424
1425 /* REVISIT in theory those map operations can fail... */
1426
1427 dma_sync_single_for_cpu(host->dma_dev,
1428 host->data_dma, sizeof(*host->data),
1429 DMA_BIDIRECTIONAL);
1430 }
1431
1432 /* setup message for status/busy readback */
1433 spi_message_init(&host->readback);
1434 host->readback.is_dma_mapped = (host->dma_dev != NULL);
1435
1436 spi_message_add_tail(&host->status, &host->readback);
1437 host->status.tx_buf = host->ones;
1438 host->status.tx_dma = host->ones_dma;
1439 host->status.rx_buf = &host->data->status;
1440 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1441 host->status.cs_change = 1;
1442
1443 /* register card detect irq */
1444 if (host->pdata && host->pdata->init) {
1445 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1446 if (status != 0)
1447 goto fail_glue_init;
1448 }
1449
1450 /* pass platform capabilities, if any */
1451 if (host->pdata)
1452 mmc->caps |= host->pdata->caps;
1453
1454 status = mmc_add_host(mmc);
1455 if (status != 0)
1456 goto fail_add_host;
1457
1458 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1459 dev_name(&mmc->class_dev),
1460 host->dma_dev ? "" : ", no DMA",
1461 (host->pdata && host->pdata->get_ro)
1462 ? "" : ", no WP",
1463 (host->pdata && host->pdata->setpower)
1464 ? "" : ", no poweroff",
1465 (mmc->caps & MMC_CAP_NEEDS_POLL)
1466 ? ", cd polling" : "");
1467 return 0;
1468
1469fail_add_host:
1470 mmc_remove_host (mmc);
1471fail_glue_init:
1472 if (host->dma_dev)
1473 dma_unmap_single(host->dma_dev, host->data_dma,
1474 sizeof(*host->data), DMA_BIDIRECTIONAL);
1475 kfree(host->data);
1476
1477fail_nobuf1:
1478 mmc_free_host(mmc);
1479 mmc_spi_put_pdata(spi);
1480 dev_set_drvdata(&spi->dev, NULL);
1481
1482nomem:
1483 kfree(ones);
1484 return status;
1485}
1486
1487
1488static int __devexit mmc_spi_remove(struct spi_device *spi)
1489{
1490 struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
1491 struct mmc_spi_host *host;
1492
1493 if (mmc) {
1494 host = mmc_priv(mmc);
1495
1496 /* prevent new mmc_detect_change() calls */
1497 if (host->pdata && host->pdata->exit)
1498 host->pdata->exit(&spi->dev, mmc);
1499
1500 mmc_remove_host(mmc);
1501
1502 if (host->dma_dev) {
1503 dma_unmap_single(host->dma_dev, host->ones_dma,
1504 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1505 dma_unmap_single(host->dma_dev, host->data_dma,
1506 sizeof(*host->data), DMA_BIDIRECTIONAL);
1507 }
1508
1509 kfree(host->data);
1510 kfree(host->ones);
1511
1512 spi->max_speed_hz = mmc->f_max;
1513 mmc_free_host(mmc);
1514 mmc_spi_put_pdata(spi);
1515 dev_set_drvdata(&spi->dev, NULL);
1516 }
1517 return 0;
1518}
1519
1520static struct of_device_id mmc_spi_of_match_table[] __devinitdata = {
1521 { .compatible = "mmc-spi-slot", },
1522 {},
1523};
1524
1525static struct spi_driver mmc_spi_driver = {
1526 .driver = {
1527 .name = "mmc_spi",
1528 .owner = THIS_MODULE,
1529 .of_match_table = mmc_spi_of_match_table,
1530 },
1531 .probe = mmc_spi_probe,
1532 .remove = __devexit_p(mmc_spi_remove),
1533};
1534
1535
1536static int __init mmc_spi_init(void)
1537{
1538 return spi_register_driver(&mmc_spi_driver);
1539}
1540module_init(mmc_spi_init);
1541
1542
1543static void __exit mmc_spi_exit(void)
1544{
1545 spi_unregister_driver(&mmc_spi_driver);
1546}
1547module_exit(mmc_spi_exit);
1548
1549
1550MODULE_AUTHOR("Mike Lavender, David Brownell, "
1551 "Hans-Peter Nilsson, Jan Nikitenko");
1552MODULE_DESCRIPTION("SPI SD/MMC host driver");
1553MODULE_LICENSE("GPL");
1554MODULE_ALIAS("spi:mmc_spi");
1/*
2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
3 *
4 * (C) Copyright 2005, Intec Automation,
5 * Mike Lavender (mike@steroidmicros)
6 * (C) Copyright 2006-2007, David Brownell
7 * (C) Copyright 2007, Axis Communications,
8 * Hans-Peter Nilsson (hp@axis.com)
9 * (C) Copyright 2007, ATRON electronic GmbH,
10 * Jan Nikitenko <jan.nikitenko@gmail.com>
11 *
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27#include <linux/sched.h>
28#include <linux/delay.h>
29#include <linux/slab.h>
30#include <linux/module.h>
31#include <linux/bio.h>
32#include <linux/dma-mapping.h>
33#include <linux/crc7.h>
34#include <linux/crc-itu-t.h>
35#include <linux/scatterlist.h>
36
37#include <linux/mmc/host.h>
38#include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
39#include <linux/mmc/slot-gpio.h>
40
41#include <linux/spi/spi.h>
42#include <linux/spi/mmc_spi.h>
43
44#include <asm/unaligned.h>
45
46
47/* NOTES:
48 *
49 * - For now, we won't try to interoperate with a real mmc/sd/sdio
50 * controller, although some of them do have hardware support for
51 * SPI protocol. The main reason for such configs would be mmc-ish
52 * cards like DataFlash, which don't support that "native" protocol.
53 *
54 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
55 * switch between driver stacks, and in any case if "native" mode
56 * is available, it will be faster and hence preferable.
57 *
58 * - MMC depends on a different chipselect management policy than the
59 * SPI interface currently supports for shared bus segments: it needs
60 * to issue multiple spi_message requests with the chipselect active,
61 * using the results of one message to decide the next one to issue.
62 *
63 * Pending updates to the programming interface, this driver expects
64 * that it not share the bus with other drivers (precluding conflicts).
65 *
66 * - We tell the controller to keep the chipselect active from the
67 * beginning of an mmc_host_ops.request until the end. So beware
68 * of SPI controller drivers that mis-handle the cs_change flag!
69 *
70 * However, many cards seem OK with chipselect flapping up/down
71 * during that time ... at least on unshared bus segments.
72 */
73
74
75/*
76 * Local protocol constants, internal to data block protocols.
77 */
78
79/* Response tokens used to ack each block written: */
80#define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
81#define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
82#define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
83#define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
84
85/* Read and write blocks start with these tokens and end with crc;
86 * on error, read tokens act like a subset of R2_SPI_* values.
87 */
88#define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
89#define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
90#define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
91
92#define MMC_SPI_BLOCKSIZE 512
93
94
95/* These fixed timeouts come from the latest SD specs, which say to ignore
96 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the
97 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
98 * reads which takes nowhere near that long. Older cards may be able to use
99 * shorter timeouts ... but why bother?
100 */
101#define r1b_timeout (HZ * 3)
102
103/* One of the critical speed parameters is the amount of data which may
104 * be transferred in one command. If this value is too low, the SD card
105 * controller has to do multiple partial block writes (argggh!). With
106 * today (2008) SD cards there is little speed gain if we transfer more
107 * than 64 KBytes at a time. So use this value until there is any indication
108 * that we should do more here.
109 */
110#define MMC_SPI_BLOCKSATONCE 128
111
112/****************************************************************************/
113
114/*
115 * Local Data Structures
116 */
117
118/* "scratch" is per-{command,block} data exchanged with the card */
119struct scratch {
120 u8 status[29];
121 u8 data_token;
122 __be16 crc_val;
123};
124
125struct mmc_spi_host {
126 struct mmc_host *mmc;
127 struct spi_device *spi;
128
129 unsigned char power_mode;
130 u16 powerup_msecs;
131
132 struct mmc_spi_platform_data *pdata;
133
134 /* for bulk data transfers */
135 struct spi_transfer token, t, crc, early_status;
136 struct spi_message m;
137
138 /* for status readback */
139 struct spi_transfer status;
140 struct spi_message readback;
141
142 /* underlying DMA-aware controller, or null */
143 struct device *dma_dev;
144
145 /* buffer used for commands and for message "overhead" */
146 struct scratch *data;
147 dma_addr_t data_dma;
148
149 /* Specs say to write ones most of the time, even when the card
150 * has no need to read its input data; and many cards won't care.
151 * This is our source of those ones.
152 */
153 void *ones;
154 dma_addr_t ones_dma;
155};
156
157
158/****************************************************************************/
159
160/*
161 * MMC-over-SPI protocol glue, used by the MMC stack interface
162 */
163
164static inline int mmc_cs_off(struct mmc_spi_host *host)
165{
166 /* chipselect will always be inactive after setup() */
167 return spi_setup(host->spi);
168}
169
170static int
171mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
172{
173 int status;
174
175 if (len > sizeof(*host->data)) {
176 WARN_ON(1);
177 return -EIO;
178 }
179
180 host->status.len = len;
181
182 if (host->dma_dev)
183 dma_sync_single_for_device(host->dma_dev,
184 host->data_dma, sizeof(*host->data),
185 DMA_FROM_DEVICE);
186
187 status = spi_sync_locked(host->spi, &host->readback);
188
189 if (host->dma_dev)
190 dma_sync_single_for_cpu(host->dma_dev,
191 host->data_dma, sizeof(*host->data),
192 DMA_FROM_DEVICE);
193
194 return status;
195}
196
197static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
198 unsigned n, u8 byte)
199{
200 u8 *cp = host->data->status;
201 unsigned long start = jiffies;
202
203 while (1) {
204 int status;
205 unsigned i;
206
207 status = mmc_spi_readbytes(host, n);
208 if (status < 0)
209 return status;
210
211 for (i = 0; i < n; i++) {
212 if (cp[i] != byte)
213 return cp[i];
214 }
215
216 if (time_is_before_jiffies(start + timeout))
217 break;
218
219 /* If we need long timeouts, we may release the CPU.
220 * We use jiffies here because we want to have a relation
221 * between elapsed time and the blocking of the scheduler.
222 */
223 if (time_is_before_jiffies(start+1))
224 schedule();
225 }
226 return -ETIMEDOUT;
227}
228
229static inline int
230mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
231{
232 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
233}
234
235static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
236{
237 return mmc_spi_skip(host, timeout, 1, 0xff);
238}
239
240
241/*
242 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
243 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
244 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
245 *
246 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
247 * newer cards R7 (IF_COND).
248 */
249
250static char *maptype(struct mmc_command *cmd)
251{
252 switch (mmc_spi_resp_type(cmd)) {
253 case MMC_RSP_SPI_R1: return "R1";
254 case MMC_RSP_SPI_R1B: return "R1B";
255 case MMC_RSP_SPI_R2: return "R2/R5";
256 case MMC_RSP_SPI_R3: return "R3/R4/R7";
257 default: return "?";
258 }
259}
260
261/* return zero, else negative errno after setting cmd->error */
262static int mmc_spi_response_get(struct mmc_spi_host *host,
263 struct mmc_command *cmd, int cs_on)
264{
265 u8 *cp = host->data->status;
266 u8 *end = cp + host->t.len;
267 int value = 0;
268 int bitshift;
269 u8 leftover = 0;
270 unsigned short rotator;
271 int i;
272 char tag[32];
273
274 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s",
275 cmd->opcode, maptype(cmd));
276
277 /* Except for data block reads, the whole response will already
278 * be stored in the scratch buffer. It's somewhere after the
279 * command and the first byte we read after it. We ignore that
280 * first byte. After STOP_TRANSMISSION command it may include
281 * two data bits, but otherwise it's all ones.
282 */
283 cp += 8;
284 while (cp < end && *cp == 0xff)
285 cp++;
286
287 /* Data block reads (R1 response types) may need more data... */
288 if (cp == end) {
289 cp = host->data->status;
290 end = cp+1;
291
292 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
293 * status byte ... and we already scanned 2 bytes.
294 *
295 * REVISIT block read paths use nasty byte-at-a-time I/O
296 * so it can always DMA directly into the target buffer.
297 * It'd probably be better to memcpy() the first chunk and
298 * avoid extra i/o calls...
299 *
300 * Note we check for more than 8 bytes, because in practice,
301 * some SD cards are slow...
302 */
303 for (i = 2; i < 16; i++) {
304 value = mmc_spi_readbytes(host, 1);
305 if (value < 0)
306 goto done;
307 if (*cp != 0xff)
308 goto checkstatus;
309 }
310 value = -ETIMEDOUT;
311 goto done;
312 }
313
314checkstatus:
315 bitshift = 0;
316 if (*cp & 0x80) {
317 /* Houston, we have an ugly card with a bit-shifted response */
318 rotator = *cp++ << 8;
319 /* read the next byte */
320 if (cp == end) {
321 value = mmc_spi_readbytes(host, 1);
322 if (value < 0)
323 goto done;
324 cp = host->data->status;
325 end = cp+1;
326 }
327 rotator |= *cp++;
328 while (rotator & 0x8000) {
329 bitshift++;
330 rotator <<= 1;
331 }
332 cmd->resp[0] = rotator >> 8;
333 leftover = rotator;
334 } else {
335 cmd->resp[0] = *cp++;
336 }
337 cmd->error = 0;
338
339 /* Status byte: the entire seven-bit R1 response. */
340 if (cmd->resp[0] != 0) {
341 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
342 & cmd->resp[0])
343 value = -EFAULT; /* Bad address */
344 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
345 value = -ENOSYS; /* Function not implemented */
346 else if (R1_SPI_COM_CRC & cmd->resp[0])
347 value = -EILSEQ; /* Illegal byte sequence */
348 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
349 & cmd->resp[0])
350 value = -EIO; /* I/O error */
351 /* else R1_SPI_IDLE, "it's resetting" */
352 }
353
354 switch (mmc_spi_resp_type(cmd)) {
355
356 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
357 * and less-common stuff like various erase operations.
358 */
359 case MMC_RSP_SPI_R1B:
360 /* maybe we read all the busy tokens already */
361 while (cp < end && *cp == 0)
362 cp++;
363 if (cp == end)
364 mmc_spi_wait_unbusy(host, r1b_timeout);
365 break;
366
367 /* SPI R2 == R1 + second status byte; SEND_STATUS
368 * SPI R5 == R1 + data byte; IO_RW_DIRECT
369 */
370 case MMC_RSP_SPI_R2:
371 /* read the next byte */
372 if (cp == end) {
373 value = mmc_spi_readbytes(host, 1);
374 if (value < 0)
375 goto done;
376 cp = host->data->status;
377 end = cp+1;
378 }
379 if (bitshift) {
380 rotator = leftover << 8;
381 rotator |= *cp << bitshift;
382 cmd->resp[0] |= (rotator & 0xFF00);
383 } else {
384 cmd->resp[0] |= *cp << 8;
385 }
386 break;
387
388 /* SPI R3, R4, or R7 == R1 + 4 bytes */
389 case MMC_RSP_SPI_R3:
390 rotator = leftover << 8;
391 cmd->resp[1] = 0;
392 for (i = 0; i < 4; i++) {
393 cmd->resp[1] <<= 8;
394 /* read the next byte */
395 if (cp == end) {
396 value = mmc_spi_readbytes(host, 1);
397 if (value < 0)
398 goto done;
399 cp = host->data->status;
400 end = cp+1;
401 }
402 if (bitshift) {
403 rotator |= *cp++ << bitshift;
404 cmd->resp[1] |= (rotator >> 8);
405 rotator <<= 8;
406 } else {
407 cmd->resp[1] |= *cp++;
408 }
409 }
410 break;
411
412 /* SPI R1 == just one status byte */
413 case MMC_RSP_SPI_R1:
414 break;
415
416 default:
417 dev_dbg(&host->spi->dev, "bad response type %04x\n",
418 mmc_spi_resp_type(cmd));
419 if (value >= 0)
420 value = -EINVAL;
421 goto done;
422 }
423
424 if (value < 0)
425 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
426 tag, cmd->resp[0], cmd->resp[1]);
427
428 /* disable chipselect on errors and some success cases */
429 if (value >= 0 && cs_on)
430 return value;
431done:
432 if (value < 0)
433 cmd->error = value;
434 mmc_cs_off(host);
435 return value;
436}
437
438/* Issue command and read its response.
439 * Returns zero on success, negative for error.
440 *
441 * On error, caller must cope with mmc core retry mechanism. That
442 * means immediate low-level resubmit, which affects the bus lock...
443 */
444static int
445mmc_spi_command_send(struct mmc_spi_host *host,
446 struct mmc_request *mrq,
447 struct mmc_command *cmd, int cs_on)
448{
449 struct scratch *data = host->data;
450 u8 *cp = data->status;
451 int status;
452 struct spi_transfer *t;
453
454 /* We can handle most commands (except block reads) in one full
455 * duplex I/O operation before either starting the next transfer
456 * (data block or command) or else deselecting the card.
457 *
458 * First, write 7 bytes:
459 * - an all-ones byte to ensure the card is ready
460 * - opcode byte (plus start and transmission bits)
461 * - four bytes of big-endian argument
462 * - crc7 (plus end bit) ... always computed, it's cheap
463 *
464 * We init the whole buffer to all-ones, which is what we need
465 * to write while we're reading (later) response data.
466 */
467 memset(cp, 0xff, sizeof(data->status));
468
469 cp[1] = 0x40 | cmd->opcode;
470 put_unaligned_be32(cmd->arg, cp+2);
471 cp[6] = crc7_be(0, cp+1, 5) | 0x01;
472 cp += 7;
473
474 /* Then, read up to 13 bytes (while writing all-ones):
475 * - N(CR) (== 1..8) bytes of all-ones
476 * - status byte (for all response types)
477 * - the rest of the response, either:
478 * + nothing, for R1 or R1B responses
479 * + second status byte, for R2 responses
480 * + four data bytes, for R3 and R7 responses
481 *
482 * Finally, read some more bytes ... in the nice cases we know in
483 * advance how many, and reading 1 more is always OK:
484 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
485 * - N(RC) (== 1..N) bytes of all-ones, before next command
486 * - N(WR) (== 1..N) bytes of all-ones, before data write
487 *
488 * So in those cases one full duplex I/O of at most 21 bytes will
489 * handle the whole command, leaving the card ready to receive a
490 * data block or new command. We do that whenever we can, shaving
491 * CPU and IRQ costs (especially when using DMA or FIFOs).
492 *
493 * There are two other cases, where it's not generally practical
494 * to rely on a single I/O:
495 *
496 * - R1B responses need at least N(EC) bytes of all-zeroes.
497 *
498 * In this case we can *try* to fit it into one I/O, then
499 * maybe read more data later.
500 *
501 * - Data block reads are more troublesome, since a variable
502 * number of padding bytes precede the token and data.
503 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
504 * + N(AC) (== 1..many) bytes of all-ones
505 *
506 * In this case we currently only have minimal speedups here:
507 * when N(CR) == 1 we can avoid I/O in response_get().
508 */
509 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
510 cp += 2; /* min(N(CR)) + status */
511 /* R1 */
512 } else {
513 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
514 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
515 cp++;
516 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
517 cp += 4;
518 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
519 cp = data->status + sizeof(data->status);
520 /* else: R1 (most commands) */
521 }
522
523 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n",
524 cmd->opcode, maptype(cmd));
525
526 /* send command, leaving chipselect active */
527 spi_message_init(&host->m);
528
529 t = &host->t;
530 memset(t, 0, sizeof(*t));
531 t->tx_buf = t->rx_buf = data->status;
532 t->tx_dma = t->rx_dma = host->data_dma;
533 t->len = cp - data->status;
534 t->cs_change = 1;
535 spi_message_add_tail(t, &host->m);
536
537 if (host->dma_dev) {
538 host->m.is_dma_mapped = 1;
539 dma_sync_single_for_device(host->dma_dev,
540 host->data_dma, sizeof(*host->data),
541 DMA_BIDIRECTIONAL);
542 }
543 status = spi_sync_locked(host->spi, &host->m);
544
545 if (host->dma_dev)
546 dma_sync_single_for_cpu(host->dma_dev,
547 host->data_dma, sizeof(*host->data),
548 DMA_BIDIRECTIONAL);
549 if (status < 0) {
550 dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
551 cmd->error = status;
552 return status;
553 }
554
555 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
556 return mmc_spi_response_get(host, cmd, cs_on);
557}
558
559/* Build data message with up to four separate transfers. For TX, we
560 * start by writing the data token. And in most cases, we finish with
561 * a status transfer.
562 *
563 * We always provide TX data for data and CRC. The MMC/SD protocol
564 * requires us to write ones; but Linux defaults to writing zeroes;
565 * so we explicitly initialize it to all ones on RX paths.
566 *
567 * We also handle DMA mapping, so the underlying SPI controller does
568 * not need to (re)do it for each message.
569 */
570static void
571mmc_spi_setup_data_message(
572 struct mmc_spi_host *host,
573 int multiple,
574 enum dma_data_direction direction)
575{
576 struct spi_transfer *t;
577 struct scratch *scratch = host->data;
578 dma_addr_t dma = host->data_dma;
579
580 spi_message_init(&host->m);
581 if (dma)
582 host->m.is_dma_mapped = 1;
583
584 /* for reads, readblock() skips 0xff bytes before finding
585 * the token; for writes, this transfer issues that token.
586 */
587 if (direction == DMA_TO_DEVICE) {
588 t = &host->token;
589 memset(t, 0, sizeof(*t));
590 t->len = 1;
591 if (multiple)
592 scratch->data_token = SPI_TOKEN_MULTI_WRITE;
593 else
594 scratch->data_token = SPI_TOKEN_SINGLE;
595 t->tx_buf = &scratch->data_token;
596 if (dma)
597 t->tx_dma = dma + offsetof(struct scratch, data_token);
598 spi_message_add_tail(t, &host->m);
599 }
600
601 /* Body of transfer is buffer, then CRC ...
602 * either TX-only, or RX with TX-ones.
603 */
604 t = &host->t;
605 memset(t, 0, sizeof(*t));
606 t->tx_buf = host->ones;
607 t->tx_dma = host->ones_dma;
608 /* length and actual buffer info are written later */
609 spi_message_add_tail(t, &host->m);
610
611 t = &host->crc;
612 memset(t, 0, sizeof(*t));
613 t->len = 2;
614 if (direction == DMA_TO_DEVICE) {
615 /* the actual CRC may get written later */
616 t->tx_buf = &scratch->crc_val;
617 if (dma)
618 t->tx_dma = dma + offsetof(struct scratch, crc_val);
619 } else {
620 t->tx_buf = host->ones;
621 t->tx_dma = host->ones_dma;
622 t->rx_buf = &scratch->crc_val;
623 if (dma)
624 t->rx_dma = dma + offsetof(struct scratch, crc_val);
625 }
626 spi_message_add_tail(t, &host->m);
627
628 /*
629 * A single block read is followed by N(EC) [0+] all-ones bytes
630 * before deselect ... don't bother.
631 *
632 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
633 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
634 * collect that single byte, so readblock() doesn't need to.
635 *
636 * For a write, the one-byte data response follows immediately, then
637 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
638 * Then single block reads may deselect, and multiblock ones issue
639 * the next token (next data block, or STOP_TRAN). We can try to
640 * minimize I/O ops by using a single read to collect end-of-busy.
641 */
642 if (multiple || direction == DMA_TO_DEVICE) {
643 t = &host->early_status;
644 memset(t, 0, sizeof(*t));
645 t->len = (direction == DMA_TO_DEVICE)
646 ? sizeof(scratch->status)
647 : 1;
648 t->tx_buf = host->ones;
649 t->tx_dma = host->ones_dma;
650 t->rx_buf = scratch->status;
651 if (dma)
652 t->rx_dma = dma + offsetof(struct scratch, status);
653 t->cs_change = 1;
654 spi_message_add_tail(t, &host->m);
655 }
656}
657
658/*
659 * Write one block:
660 * - caller handled preceding N(WR) [1+] all-ones bytes
661 * - data block
662 * + token
663 * + data bytes
664 * + crc16
665 * - an all-ones byte ... card writes a data-response byte
666 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
667 *
668 * Return negative errno, else success.
669 */
670static int
671mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
672 unsigned long timeout)
673{
674 struct spi_device *spi = host->spi;
675 int status, i;
676 struct scratch *scratch = host->data;
677 u32 pattern;
678
679 if (host->mmc->use_spi_crc)
680 scratch->crc_val = cpu_to_be16(
681 crc_itu_t(0, t->tx_buf, t->len));
682 if (host->dma_dev)
683 dma_sync_single_for_device(host->dma_dev,
684 host->data_dma, sizeof(*scratch),
685 DMA_BIDIRECTIONAL);
686
687 status = spi_sync_locked(spi, &host->m);
688
689 if (status != 0) {
690 dev_dbg(&spi->dev, "write error (%d)\n", status);
691 return status;
692 }
693
694 if (host->dma_dev)
695 dma_sync_single_for_cpu(host->dma_dev,
696 host->data_dma, sizeof(*scratch),
697 DMA_BIDIRECTIONAL);
698
699 /*
700 * Get the transmission data-response reply. It must follow
701 * immediately after the data block we transferred. This reply
702 * doesn't necessarily tell whether the write operation succeeded;
703 * it just says if the transmission was ok and whether *earlier*
704 * writes succeeded; see the standard.
705 *
706 * In practice, there are (even modern SDHC-)cards which are late
707 * in sending the response, and miss the time frame by a few bits,
708 * so we have to cope with this situation and check the response
709 * bit-by-bit. Arggh!!!
710 */
711 pattern = get_unaligned_be32(scratch->status);
712
713 /* First 3 bit of pattern are undefined */
714 pattern |= 0xE0000000;
715
716 /* left-adjust to leading 0 bit */
717 while (pattern & 0x80000000)
718 pattern <<= 1;
719 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
720 pattern >>= 27;
721
722 switch (pattern) {
723 case SPI_RESPONSE_ACCEPTED:
724 status = 0;
725 break;
726 case SPI_RESPONSE_CRC_ERR:
727 /* host shall then issue MMC_STOP_TRANSMISSION */
728 status = -EILSEQ;
729 break;
730 case SPI_RESPONSE_WRITE_ERR:
731 /* host shall then issue MMC_STOP_TRANSMISSION,
732 * and should MMC_SEND_STATUS to sort it out
733 */
734 status = -EIO;
735 break;
736 default:
737 status = -EPROTO;
738 break;
739 }
740 if (status != 0) {
741 dev_dbg(&spi->dev, "write error %02x (%d)\n",
742 scratch->status[0], status);
743 return status;
744 }
745
746 t->tx_buf += t->len;
747 if (host->dma_dev)
748 t->tx_dma += t->len;
749
750 /* Return when not busy. If we didn't collect that status yet,
751 * we'll need some more I/O.
752 */
753 for (i = 4; i < sizeof(scratch->status); i++) {
754 /* card is non-busy if the most recent bit is 1 */
755 if (scratch->status[i] & 0x01)
756 return 0;
757 }
758 return mmc_spi_wait_unbusy(host, timeout);
759}
760
761/*
762 * Read one block:
763 * - skip leading all-ones bytes ... either
764 * + N(AC) [1..f(clock,CSD)] usually, else
765 * + N(CX) [0..8] when reading CSD or CID
766 * - data block
767 * + token ... if error token, no data or crc
768 * + data bytes
769 * + crc16
770 *
771 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
772 * before dropping chipselect.
773 *
774 * For multiblock reads, caller either reads the next block or issues a
775 * STOP_TRANSMISSION command.
776 */
777static int
778mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
779 unsigned long timeout)
780{
781 struct spi_device *spi = host->spi;
782 int status;
783 struct scratch *scratch = host->data;
784 unsigned int bitshift;
785 u8 leftover;
786
787 /* At least one SD card sends an all-zeroes byte when N(CX)
788 * applies, before the all-ones bytes ... just cope with that.
789 */
790 status = mmc_spi_readbytes(host, 1);
791 if (status < 0)
792 return status;
793 status = scratch->status[0];
794 if (status == 0xff || status == 0)
795 status = mmc_spi_readtoken(host, timeout);
796
797 if (status < 0) {
798 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
799 return status;
800 }
801
802 /* The token may be bit-shifted...
803 * the first 0-bit precedes the data stream.
804 */
805 bitshift = 7;
806 while (status & 0x80) {
807 status <<= 1;
808 bitshift--;
809 }
810 leftover = status << 1;
811
812 if (host->dma_dev) {
813 dma_sync_single_for_device(host->dma_dev,
814 host->data_dma, sizeof(*scratch),
815 DMA_BIDIRECTIONAL);
816 dma_sync_single_for_device(host->dma_dev,
817 t->rx_dma, t->len,
818 DMA_FROM_DEVICE);
819 }
820
821 status = spi_sync_locked(spi, &host->m);
822
823 if (host->dma_dev) {
824 dma_sync_single_for_cpu(host->dma_dev,
825 host->data_dma, sizeof(*scratch),
826 DMA_BIDIRECTIONAL);
827 dma_sync_single_for_cpu(host->dma_dev,
828 t->rx_dma, t->len,
829 DMA_FROM_DEVICE);
830 }
831
832 if (bitshift) {
833 /* Walk through the data and the crc and do
834 * all the magic to get byte-aligned data.
835 */
836 u8 *cp = t->rx_buf;
837 unsigned int len;
838 unsigned int bitright = 8 - bitshift;
839 u8 temp;
840 for (len = t->len; len; len--) {
841 temp = *cp;
842 *cp++ = leftover | (temp >> bitshift);
843 leftover = temp << bitright;
844 }
845 cp = (u8 *) &scratch->crc_val;
846 temp = *cp;
847 *cp++ = leftover | (temp >> bitshift);
848 leftover = temp << bitright;
849 temp = *cp;
850 *cp = leftover | (temp >> bitshift);
851 }
852
853 if (host->mmc->use_spi_crc) {
854 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
855
856 be16_to_cpus(&scratch->crc_val);
857 if (scratch->crc_val != crc) {
858 dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
859 "computed=0x%04x len=%d\n",
860 scratch->crc_val, crc, t->len);
861 return -EILSEQ;
862 }
863 }
864
865 t->rx_buf += t->len;
866 if (host->dma_dev)
867 t->rx_dma += t->len;
868
869 return 0;
870}
871
872/*
873 * An MMC/SD data stage includes one or more blocks, optional CRCs,
874 * and inline handshaking. That handhaking makes it unlike most
875 * other SPI protocol stacks.
876 */
877static void
878mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
879 struct mmc_data *data, u32 blk_size)
880{
881 struct spi_device *spi = host->spi;
882 struct device *dma_dev = host->dma_dev;
883 struct spi_transfer *t;
884 enum dma_data_direction direction;
885 struct scatterlist *sg;
886 unsigned n_sg;
887 int multiple = (data->blocks > 1);
888 u32 clock_rate;
889 unsigned long timeout;
890
891 direction = mmc_get_dma_dir(data);
892 mmc_spi_setup_data_message(host, multiple, direction);
893 t = &host->t;
894
895 if (t->speed_hz)
896 clock_rate = t->speed_hz;
897 else
898 clock_rate = spi->max_speed_hz;
899
900 timeout = data->timeout_ns +
901 data->timeout_clks * 1000000 / clock_rate;
902 timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
903
904 /* Handle scatterlist segments one at a time, with synch for
905 * each 512-byte block
906 */
907 for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
908 int status = 0;
909 dma_addr_t dma_addr = 0;
910 void *kmap_addr;
911 unsigned length = sg->length;
912 enum dma_data_direction dir = direction;
913
914 /* set up dma mapping for controller drivers that might
915 * use DMA ... though they may fall back to PIO
916 */
917 if (dma_dev) {
918 /* never invalidate whole *shared* pages ... */
919 if ((sg->offset != 0 || length != PAGE_SIZE)
920 && dir == DMA_FROM_DEVICE)
921 dir = DMA_BIDIRECTIONAL;
922
923 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
924 PAGE_SIZE, dir);
925 if (dma_mapping_error(dma_dev, dma_addr)) {
926 data->error = -EFAULT;
927 break;
928 }
929 if (direction == DMA_TO_DEVICE)
930 t->tx_dma = dma_addr + sg->offset;
931 else
932 t->rx_dma = dma_addr + sg->offset;
933 }
934
935 /* allow pio too; we don't allow highmem */
936 kmap_addr = kmap(sg_page(sg));
937 if (direction == DMA_TO_DEVICE)
938 t->tx_buf = kmap_addr + sg->offset;
939 else
940 t->rx_buf = kmap_addr + sg->offset;
941
942 /* transfer each block, and update request status */
943 while (length) {
944 t->len = min(length, blk_size);
945
946 dev_dbg(&host->spi->dev,
947 " mmc_spi: %s block, %d bytes\n",
948 (direction == DMA_TO_DEVICE)
949 ? "write"
950 : "read",
951 t->len);
952
953 if (direction == DMA_TO_DEVICE)
954 status = mmc_spi_writeblock(host, t, timeout);
955 else
956 status = mmc_spi_readblock(host, t, timeout);
957 if (status < 0)
958 break;
959
960 data->bytes_xfered += t->len;
961 length -= t->len;
962
963 if (!multiple)
964 break;
965 }
966
967 /* discard mappings */
968 if (direction == DMA_FROM_DEVICE)
969 flush_kernel_dcache_page(sg_page(sg));
970 kunmap(sg_page(sg));
971 if (dma_dev)
972 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
973
974 if (status < 0) {
975 data->error = status;
976 dev_dbg(&spi->dev, "%s status %d\n",
977 (direction == DMA_TO_DEVICE)
978 ? "write" : "read",
979 status);
980 break;
981 }
982 }
983
984 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
985 * can be issued before multiblock writes. Unlike its more widely
986 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
987 * that can affect the STOP_TRAN logic. Complete (and current)
988 * MMC specs should sort that out before Linux starts using CMD23.
989 */
990 if (direction == DMA_TO_DEVICE && multiple) {
991 struct scratch *scratch = host->data;
992 int tmp;
993 const unsigned statlen = sizeof(scratch->status);
994
995 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n");
996
997 /* Tweak the per-block message we set up earlier by morphing
998 * it to hold single buffer with the token followed by some
999 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
1000 * "not busy any longer" status, and leave chip selected.
1001 */
1002 INIT_LIST_HEAD(&host->m.transfers);
1003 list_add(&host->early_status.transfer_list,
1004 &host->m.transfers);
1005
1006 memset(scratch->status, 0xff, statlen);
1007 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
1008
1009 host->early_status.tx_buf = host->early_status.rx_buf;
1010 host->early_status.tx_dma = host->early_status.rx_dma;
1011 host->early_status.len = statlen;
1012
1013 if (host->dma_dev)
1014 dma_sync_single_for_device(host->dma_dev,
1015 host->data_dma, sizeof(*scratch),
1016 DMA_BIDIRECTIONAL);
1017
1018 tmp = spi_sync_locked(spi, &host->m);
1019
1020 if (host->dma_dev)
1021 dma_sync_single_for_cpu(host->dma_dev,
1022 host->data_dma, sizeof(*scratch),
1023 DMA_BIDIRECTIONAL);
1024
1025 if (tmp < 0) {
1026 if (!data->error)
1027 data->error = tmp;
1028 return;
1029 }
1030
1031 /* Ideally we collected "not busy" status with one I/O,
1032 * avoiding wasteful byte-at-a-time scanning... but more
1033 * I/O is often needed.
1034 */
1035 for (tmp = 2; tmp < statlen; tmp++) {
1036 if (scratch->status[tmp] != 0)
1037 return;
1038 }
1039 tmp = mmc_spi_wait_unbusy(host, timeout);
1040 if (tmp < 0 && !data->error)
1041 data->error = tmp;
1042 }
1043}
1044
1045/****************************************************************************/
1046
1047/*
1048 * MMC driver implementation -- the interface to the MMC stack
1049 */
1050
1051static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1052{
1053 struct mmc_spi_host *host = mmc_priv(mmc);
1054 int status = -EINVAL;
1055 int crc_retry = 5;
1056 struct mmc_command stop;
1057
1058#ifdef DEBUG
1059 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1060 {
1061 struct mmc_command *cmd;
1062 int invalid = 0;
1063
1064 cmd = mrq->cmd;
1065 if (!mmc_spi_resp_type(cmd)) {
1066 dev_dbg(&host->spi->dev, "bogus command\n");
1067 cmd->error = -EINVAL;
1068 invalid = 1;
1069 }
1070
1071 cmd = mrq->stop;
1072 if (cmd && !mmc_spi_resp_type(cmd)) {
1073 dev_dbg(&host->spi->dev, "bogus STOP command\n");
1074 cmd->error = -EINVAL;
1075 invalid = 1;
1076 }
1077
1078 if (invalid) {
1079 dump_stack();
1080 mmc_request_done(host->mmc, mrq);
1081 return;
1082 }
1083 }
1084#endif
1085
1086 /* request exclusive bus access */
1087 spi_bus_lock(host->spi->master);
1088
1089crc_recover:
1090 /* issue command; then optionally data and stop */
1091 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1092 if (status == 0 && mrq->data) {
1093 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1094
1095 /*
1096 * The SPI bus is not always reliable for large data transfers.
1097 * If an occasional crc error is reported by the SD device with
1098 * data read/write over SPI, it may be recovered by repeating
1099 * the last SD command again. The retry count is set to 5 to
1100 * ensure the driver passes stress tests.
1101 */
1102 if (mrq->data->error == -EILSEQ && crc_retry) {
1103 stop.opcode = MMC_STOP_TRANSMISSION;
1104 stop.arg = 0;
1105 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1106 status = mmc_spi_command_send(host, mrq, &stop, 0);
1107 crc_retry--;
1108 mrq->data->error = 0;
1109 goto crc_recover;
1110 }
1111
1112 if (mrq->stop)
1113 status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1114 else
1115 mmc_cs_off(host);
1116 }
1117
1118 /* release the bus */
1119 spi_bus_unlock(host->spi->master);
1120
1121 mmc_request_done(host->mmc, mrq);
1122}
1123
1124/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1125 *
1126 * NOTE that here we can't know that the card has just been powered up;
1127 * not all MMC/SD sockets support power switching.
1128 *
1129 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1130 * this doesn't seem to do the right thing at all...
1131 */
1132static void mmc_spi_initsequence(struct mmc_spi_host *host)
1133{
1134 /* Try to be very sure any previous command has completed;
1135 * wait till not-busy, skip debris from any old commands.
1136 */
1137 mmc_spi_wait_unbusy(host, r1b_timeout);
1138 mmc_spi_readbytes(host, 10);
1139
1140 /*
1141 * Do a burst with chipselect active-high. We need to do this to
1142 * meet the requirement of 74 clock cycles with both chipselect
1143 * and CMD (MOSI) high before CMD0 ... after the card has been
1144 * powered up to Vdd(min), and so is ready to take commands.
1145 *
1146 * Some cards are particularly needy of this (e.g. Viking "SD256")
1147 * while most others don't seem to care.
1148 *
1149 * Note that this is one of the places MMC/SD plays games with the
1150 * SPI protocol. Another is that when chipselect is released while
1151 * the card returns BUSY status, the clock must issue several cycles
1152 * with chipselect high before the card will stop driving its output.
1153 */
1154 host->spi->mode |= SPI_CS_HIGH;
1155 if (spi_setup(host->spi) != 0) {
1156 /* Just warn; most cards work without it. */
1157 dev_warn(&host->spi->dev,
1158 "can't change chip-select polarity\n");
1159 host->spi->mode &= ~SPI_CS_HIGH;
1160 } else {
1161 mmc_spi_readbytes(host, 18);
1162
1163 host->spi->mode &= ~SPI_CS_HIGH;
1164 if (spi_setup(host->spi) != 0) {
1165 /* Wot, we can't get the same setup we had before? */
1166 dev_err(&host->spi->dev,
1167 "can't restore chip-select polarity\n");
1168 }
1169 }
1170}
1171
1172static char *mmc_powerstring(u8 power_mode)
1173{
1174 switch (power_mode) {
1175 case MMC_POWER_OFF: return "off";
1176 case MMC_POWER_UP: return "up";
1177 case MMC_POWER_ON: return "on";
1178 }
1179 return "?";
1180}
1181
1182static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1183{
1184 struct mmc_spi_host *host = mmc_priv(mmc);
1185
1186 if (host->power_mode != ios->power_mode) {
1187 int canpower;
1188
1189 canpower = host->pdata && host->pdata->setpower;
1190
1191 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1192 mmc_powerstring(ios->power_mode),
1193 ios->vdd,
1194 canpower ? ", can switch" : "");
1195
1196 /* switch power on/off if possible, accounting for
1197 * max 250msec powerup time if needed.
1198 */
1199 if (canpower) {
1200 switch (ios->power_mode) {
1201 case MMC_POWER_OFF:
1202 case MMC_POWER_UP:
1203 host->pdata->setpower(&host->spi->dev,
1204 ios->vdd);
1205 if (ios->power_mode == MMC_POWER_UP)
1206 msleep(host->powerup_msecs);
1207 }
1208 }
1209
1210 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1211 if (ios->power_mode == MMC_POWER_ON)
1212 mmc_spi_initsequence(host);
1213
1214 /* If powering down, ground all card inputs to avoid power
1215 * delivery from data lines! On a shared SPI bus, this
1216 * will probably be temporary; 6.4.2 of the simplified SD
1217 * spec says this must last at least 1msec.
1218 *
1219 * - Clock low means CPOL 0, e.g. mode 0
1220 * - MOSI low comes from writing zero
1221 * - Chipselect is usually active low...
1222 */
1223 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1224 int mres;
1225 u8 nullbyte = 0;
1226
1227 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1228 mres = spi_setup(host->spi);
1229 if (mres < 0)
1230 dev_dbg(&host->spi->dev,
1231 "switch to SPI mode 0 failed\n");
1232
1233 if (spi_write(host->spi, &nullbyte, 1) < 0)
1234 dev_dbg(&host->spi->dev,
1235 "put spi signals to low failed\n");
1236
1237 /*
1238 * Now clock should be low due to spi mode 0;
1239 * MOSI should be low because of written 0x00;
1240 * chipselect should be low (it is active low)
1241 * power supply is off, so now MMC is off too!
1242 *
1243 * FIXME no, chipselect can be high since the
1244 * device is inactive and SPI_CS_HIGH is clear...
1245 */
1246 msleep(10);
1247 if (mres == 0) {
1248 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1249 mres = spi_setup(host->spi);
1250 if (mres < 0)
1251 dev_dbg(&host->spi->dev,
1252 "switch back to SPI mode 3"
1253 " failed\n");
1254 }
1255 }
1256
1257 host->power_mode = ios->power_mode;
1258 }
1259
1260 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1261 int status;
1262
1263 host->spi->max_speed_hz = ios->clock;
1264 status = spi_setup(host->spi);
1265 dev_dbg(&host->spi->dev,
1266 "mmc_spi: clock to %d Hz, %d\n",
1267 host->spi->max_speed_hz, status);
1268 }
1269}
1270
1271static const struct mmc_host_ops mmc_spi_ops = {
1272 .request = mmc_spi_request,
1273 .set_ios = mmc_spi_set_ios,
1274 .get_ro = mmc_gpio_get_ro,
1275 .get_cd = mmc_gpio_get_cd,
1276};
1277
1278
1279/****************************************************************************/
1280
1281/*
1282 * SPI driver implementation
1283 */
1284
1285static irqreturn_t
1286mmc_spi_detect_irq(int irq, void *mmc)
1287{
1288 struct mmc_spi_host *host = mmc_priv(mmc);
1289 u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1290
1291 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1292 return IRQ_HANDLED;
1293}
1294
1295static int mmc_spi_probe(struct spi_device *spi)
1296{
1297 void *ones;
1298 struct mmc_host *mmc;
1299 struct mmc_spi_host *host;
1300 int status;
1301 bool has_ro = false;
1302
1303 /* We rely on full duplex transfers, mostly to reduce
1304 * per-transfer overheads (by making fewer transfers).
1305 */
1306 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1307 return -EINVAL;
1308
1309 /* MMC and SD specs only seem to care that sampling is on the
1310 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1311 * should be legit. We'll use mode 0 since the steady state is 0,
1312 * which is appropriate for hotplugging, unless the platform data
1313 * specify mode 3 (if hardware is not compatible to mode 0).
1314 */
1315 if (spi->mode != SPI_MODE_3)
1316 spi->mode = SPI_MODE_0;
1317 spi->bits_per_word = 8;
1318
1319 status = spi_setup(spi);
1320 if (status < 0) {
1321 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1322 spi->mode, spi->max_speed_hz / 1000,
1323 status);
1324 return status;
1325 }
1326
1327 /* We need a supply of ones to transmit. This is the only time
1328 * the CPU touches these, so cache coherency isn't a concern.
1329 *
1330 * NOTE if many systems use more than one MMC-over-SPI connector
1331 * it'd save some memory to share this. That's evidently rare.
1332 */
1333 status = -ENOMEM;
1334 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1335 if (!ones)
1336 goto nomem;
1337 memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1338
1339 mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1340 if (!mmc)
1341 goto nomem;
1342
1343 mmc->ops = &mmc_spi_ops;
1344 mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1345 mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1346 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1347 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1348
1349 mmc->caps = MMC_CAP_SPI;
1350
1351 /* SPI doesn't need the lowspeed device identification thing for
1352 * MMC or SD cards, since it never comes up in open drain mode.
1353 * That's good; some SPI masters can't handle very low speeds!
1354 *
1355 * However, low speed SDIO cards need not handle over 400 KHz;
1356 * that's the only reason not to use a few MHz for f_min (until
1357 * the upper layer reads the target frequency from the CSD).
1358 */
1359 mmc->f_min = 400000;
1360 mmc->f_max = spi->max_speed_hz;
1361
1362 host = mmc_priv(mmc);
1363 host->mmc = mmc;
1364 host->spi = spi;
1365
1366 host->ones = ones;
1367
1368 /* Platform data is used to hook up things like card sensing
1369 * and power switching gpios.
1370 */
1371 host->pdata = mmc_spi_get_pdata(spi);
1372 if (host->pdata)
1373 mmc->ocr_avail = host->pdata->ocr_mask;
1374 if (!mmc->ocr_avail) {
1375 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1376 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1377 }
1378 if (host->pdata && host->pdata->setpower) {
1379 host->powerup_msecs = host->pdata->powerup_msecs;
1380 if (!host->powerup_msecs || host->powerup_msecs > 250)
1381 host->powerup_msecs = 250;
1382 }
1383
1384 dev_set_drvdata(&spi->dev, mmc);
1385
1386 /* preallocate dma buffers */
1387 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1388 if (!host->data)
1389 goto fail_nobuf1;
1390
1391 if (spi->master->dev.parent->dma_mask) {
1392 struct device *dev = spi->master->dev.parent;
1393
1394 host->dma_dev = dev;
1395 host->ones_dma = dma_map_single(dev, ones,
1396 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1397 if (dma_mapping_error(dev, host->ones_dma))
1398 goto fail_ones_dma;
1399 host->data_dma = dma_map_single(dev, host->data,
1400 sizeof(*host->data), DMA_BIDIRECTIONAL);
1401 if (dma_mapping_error(dev, host->data_dma))
1402 goto fail_data_dma;
1403
1404 dma_sync_single_for_cpu(host->dma_dev,
1405 host->data_dma, sizeof(*host->data),
1406 DMA_BIDIRECTIONAL);
1407 }
1408
1409 /* setup message for status/busy readback */
1410 spi_message_init(&host->readback);
1411 host->readback.is_dma_mapped = (host->dma_dev != NULL);
1412
1413 spi_message_add_tail(&host->status, &host->readback);
1414 host->status.tx_buf = host->ones;
1415 host->status.tx_dma = host->ones_dma;
1416 host->status.rx_buf = &host->data->status;
1417 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1418 host->status.cs_change = 1;
1419
1420 /* register card detect irq */
1421 if (host->pdata && host->pdata->init) {
1422 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1423 if (status != 0)
1424 goto fail_glue_init;
1425 }
1426
1427 /* pass platform capabilities, if any */
1428 if (host->pdata) {
1429 mmc->caps |= host->pdata->caps;
1430 mmc->caps2 |= host->pdata->caps2;
1431 }
1432
1433 status = mmc_add_host(mmc);
1434 if (status != 0)
1435 goto fail_add_host;
1436
1437 if (host->pdata && host->pdata->flags & MMC_SPI_USE_CD_GPIO) {
1438 status = mmc_gpio_request_cd(mmc, host->pdata->cd_gpio,
1439 host->pdata->cd_debounce);
1440 if (status != 0)
1441 goto fail_add_host;
1442
1443 /* The platform has a CD GPIO signal that may support
1444 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1445 * if polling is needed or not.
1446 */
1447 mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1448 mmc_gpiod_request_cd_irq(mmc);
1449 }
1450
1451 if (host->pdata && host->pdata->flags & MMC_SPI_USE_RO_GPIO) {
1452 has_ro = true;
1453 status = mmc_gpio_request_ro(mmc, host->pdata->ro_gpio);
1454 if (status != 0)
1455 goto fail_add_host;
1456 }
1457
1458 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1459 dev_name(&mmc->class_dev),
1460 host->dma_dev ? "" : ", no DMA",
1461 has_ro ? "" : ", no WP",
1462 (host->pdata && host->pdata->setpower)
1463 ? "" : ", no poweroff",
1464 (mmc->caps & MMC_CAP_NEEDS_POLL)
1465 ? ", cd polling" : "");
1466 return 0;
1467
1468fail_add_host:
1469 mmc_remove_host (mmc);
1470fail_glue_init:
1471 if (host->dma_dev)
1472 dma_unmap_single(host->dma_dev, host->data_dma,
1473 sizeof(*host->data), DMA_BIDIRECTIONAL);
1474fail_data_dma:
1475 if (host->dma_dev)
1476 dma_unmap_single(host->dma_dev, host->ones_dma,
1477 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1478fail_ones_dma:
1479 kfree(host->data);
1480
1481fail_nobuf1:
1482 mmc_free_host(mmc);
1483 mmc_spi_put_pdata(spi);
1484 dev_set_drvdata(&spi->dev, NULL);
1485
1486nomem:
1487 kfree(ones);
1488 return status;
1489}
1490
1491
1492static int mmc_spi_remove(struct spi_device *spi)
1493{
1494 struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
1495 struct mmc_spi_host *host;
1496
1497 if (mmc) {
1498 host = mmc_priv(mmc);
1499
1500 /* prevent new mmc_detect_change() calls */
1501 if (host->pdata && host->pdata->exit)
1502 host->pdata->exit(&spi->dev, mmc);
1503
1504 mmc_remove_host(mmc);
1505
1506 if (host->dma_dev) {
1507 dma_unmap_single(host->dma_dev, host->ones_dma,
1508 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1509 dma_unmap_single(host->dma_dev, host->data_dma,
1510 sizeof(*host->data), DMA_BIDIRECTIONAL);
1511 }
1512
1513 kfree(host->data);
1514 kfree(host->ones);
1515
1516 spi->max_speed_hz = mmc->f_max;
1517 mmc_free_host(mmc);
1518 mmc_spi_put_pdata(spi);
1519 dev_set_drvdata(&spi->dev, NULL);
1520 }
1521 return 0;
1522}
1523
1524static const struct of_device_id mmc_spi_of_match_table[] = {
1525 { .compatible = "mmc-spi-slot", },
1526 {},
1527};
1528MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1529
1530static struct spi_driver mmc_spi_driver = {
1531 .driver = {
1532 .name = "mmc_spi",
1533 .of_match_table = mmc_spi_of_match_table,
1534 },
1535 .probe = mmc_spi_probe,
1536 .remove = mmc_spi_remove,
1537};
1538
1539module_spi_driver(mmc_spi_driver);
1540
1541MODULE_AUTHOR("Mike Lavender, David Brownell, "
1542 "Hans-Peter Nilsson, Jan Nikitenko");
1543MODULE_DESCRIPTION("SPI SD/MMC host driver");
1544MODULE_LICENSE("GPL");
1545MODULE_ALIAS("spi:mmc_spi");