Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 *  CFQ, or complete fairness queueing, disk scheduler.
   3 *
   4 *  Based on ideas from a previously unfinished io
   5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
   6 *
   7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
   8 */
   9#include <linux/module.h>
  10#include <linux/slab.h>
 
  11#include <linux/blkdev.h>
  12#include <linux/elevator.h>
  13#include <linux/jiffies.h>
  14#include <linux/rbtree.h>
  15#include <linux/ioprio.h>
  16#include <linux/blktrace_api.h>
 
  17#include "blk.h"
  18#include "blk-cgroup.h"
  19
  20/*
  21 * tunables
  22 */
  23/* max queue in one round of service */
  24static const int cfq_quantum = 8;
  25static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  26/* maximum backwards seek, in KiB */
  27static const int cfq_back_max = 16 * 1024;
  28/* penalty of a backwards seek */
  29static const int cfq_back_penalty = 2;
  30static const int cfq_slice_sync = HZ / 10;
  31static int cfq_slice_async = HZ / 25;
  32static const int cfq_slice_async_rq = 2;
  33static int cfq_slice_idle = HZ / 125;
  34static int cfq_group_idle = HZ / 125;
  35static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  36static const int cfq_hist_divisor = 4;
  37
  38/*
  39 * offset from end of service tree
  40 */
  41#define CFQ_IDLE_DELAY		(HZ / 5)
 
 
 
 
  42
  43/*
  44 * below this threshold, we consider thinktime immediate
  45 */
  46#define CFQ_MIN_TT		(2)
  47
  48#define CFQ_SLICE_SCALE		(5)
  49#define CFQ_HW_QUEUE_MIN	(5)
  50#define CFQ_SERVICE_SHIFT       12
  51
  52#define CFQQ_SEEK_THR		(sector_t)(8 * 100)
  53#define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)
  54#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
  55#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
  56
  57#define RQ_CIC(rq)		icq_to_cic((rq)->elv.icq)
  58#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elv.priv[0])
  59#define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elv.priv[1])
  60
  61static struct kmem_cache *cfq_pool;
  62
  63#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
  64#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  65#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  66
  67#define sample_valid(samples)	((samples) > 80)
  68#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
  69
 
 
 
 
 
  70struct cfq_ttime {
  71	unsigned long last_end_request;
  72
  73	unsigned long ttime_total;
 
  74	unsigned long ttime_samples;
  75	unsigned long ttime_mean;
  76};
  77
  78/*
  79 * Most of our rbtree usage is for sorting with min extraction, so
  80 * if we cache the leftmost node we don't have to walk down the tree
  81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  82 * move this into the elevator for the rq sorting as well.
  83 */
  84struct cfq_rb_root {
  85	struct rb_root rb;
  86	struct rb_node *left;
  87	unsigned count;
  88	unsigned total_weight;
  89	u64 min_vdisktime;
  90	struct cfq_ttime ttime;
  91};
  92#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, \
  93			.ttime = {.last_end_request = jiffies,},}
 
  94
  95/*
  96 * Per process-grouping structure
  97 */
  98struct cfq_queue {
  99	/* reference count */
 100	int ref;
 101	/* various state flags, see below */
 102	unsigned int flags;
 103	/* parent cfq_data */
 104	struct cfq_data *cfqd;
 105	/* service_tree member */
 106	struct rb_node rb_node;
 107	/* service_tree key */
 108	unsigned long rb_key;
 109	/* prio tree member */
 110	struct rb_node p_node;
 111	/* prio tree root we belong to, if any */
 112	struct rb_root *p_root;
 113	/* sorted list of pending requests */
 114	struct rb_root sort_list;
 115	/* if fifo isn't expired, next request to serve */
 116	struct request *next_rq;
 117	/* requests queued in sort_list */
 118	int queued[2];
 119	/* currently allocated requests */
 120	int allocated[2];
 121	/* fifo list of requests in sort_list */
 122	struct list_head fifo;
 123
 124	/* time when queue got scheduled in to dispatch first request. */
 125	unsigned long dispatch_start;
 126	unsigned int allocated_slice;
 127	unsigned int slice_dispatch;
 128	/* time when first request from queue completed and slice started. */
 129	unsigned long slice_start;
 130	unsigned long slice_end;
 131	long slice_resid;
 132
 133	/* pending priority requests */
 134	int prio_pending;
 135	/* number of requests that are on the dispatch list or inside driver */
 136	int dispatched;
 137
 138	/* io prio of this group */
 139	unsigned short ioprio, org_ioprio;
 140	unsigned short ioprio_class;
 141
 142	pid_t pid;
 143
 144	u32 seek_history;
 145	sector_t last_request_pos;
 146
 147	struct cfq_rb_root *service_tree;
 148	struct cfq_queue *new_cfqq;
 149	struct cfq_group *cfqg;
 150	/* Number of sectors dispatched from queue in single dispatch round */
 151	unsigned long nr_sectors;
 152};
 153
 154/*
 155 * First index in the service_trees.
 156 * IDLE is handled separately, so it has negative index
 157 */
 158enum wl_prio_t {
 159	BE_WORKLOAD = 0,
 160	RT_WORKLOAD = 1,
 161	IDLE_WORKLOAD = 2,
 162	CFQ_PRIO_NR,
 163};
 164
 165/*
 166 * Second index in the service_trees.
 167 */
 168enum wl_type_t {
 169	ASYNC_WORKLOAD = 0,
 170	SYNC_NOIDLE_WORKLOAD = 1,
 171	SYNC_WORKLOAD = 2
 172};
 173
 174struct cfqg_stats {
 175#ifdef CONFIG_CFQ_GROUP_IOSCHED
 176	/* total bytes transferred */
 177	struct blkg_rwstat		service_bytes;
 178	/* total IOs serviced, post merge */
 179	struct blkg_rwstat		serviced;
 180	/* number of ios merged */
 181	struct blkg_rwstat		merged;
 182	/* total time spent on device in ns, may not be accurate w/ queueing */
 183	struct blkg_rwstat		service_time;
 184	/* total time spent waiting in scheduler queue in ns */
 185	struct blkg_rwstat		wait_time;
 186	/* number of IOs queued up */
 187	struct blkg_rwstat		queued;
 188	/* total sectors transferred */
 189	struct blkg_stat		sectors;
 190	/* total disk time and nr sectors dispatched by this group */
 191	struct blkg_stat		time;
 192#ifdef CONFIG_DEBUG_BLK_CGROUP
 193	/* time not charged to this cgroup */
 194	struct blkg_stat		unaccounted_time;
 195	/* sum of number of ios queued across all samples */
 196	struct blkg_stat		avg_queue_size_sum;
 197	/* count of samples taken for average */
 198	struct blkg_stat		avg_queue_size_samples;
 199	/* how many times this group has been removed from service tree */
 200	struct blkg_stat		dequeue;
 201	/* total time spent waiting for it to be assigned a timeslice. */
 202	struct blkg_stat		group_wait_time;
 203	/* time spent idling for this blkcg_gq */
 204	struct blkg_stat		idle_time;
 205	/* total time with empty current active q with other requests queued */
 206	struct blkg_stat		empty_time;
 207	/* fields after this shouldn't be cleared on stat reset */
 208	uint64_t			start_group_wait_time;
 209	uint64_t			start_idle_time;
 210	uint64_t			start_empty_time;
 211	uint16_t			flags;
 212#endif	/* CONFIG_DEBUG_BLK_CGROUP */
 213#endif	/* CONFIG_CFQ_GROUP_IOSCHED */
 214};
 215
 
 
 
 
 
 
 
 
 
 216/* This is per cgroup per device grouping structure */
 217struct cfq_group {
 218	/* must be the first member */
 219	struct blkg_policy_data pd;
 220
 221	/* group service_tree member */
 222	struct rb_node rb_node;
 223
 224	/* group service_tree key */
 225	u64 vdisktime;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226	unsigned int weight;
 227	unsigned int new_weight;
 228	unsigned int dev_weight;
 229
 
 
 
 
 230	/* number of cfqq currently on this group */
 231	int nr_cfqq;
 232
 233	/*
 234	 * Per group busy queues average. Useful for workload slice calc. We
 235	 * create the array for each prio class but at run time it is used
 236	 * only for RT and BE class and slot for IDLE class remains unused.
 237	 * This is primarily done to avoid confusion and a gcc warning.
 238	 */
 239	unsigned int busy_queues_avg[CFQ_PRIO_NR];
 240	/*
 241	 * rr lists of queues with requests. We maintain service trees for
 242	 * RT and BE classes. These trees are subdivided in subclasses
 243	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
 244	 * class there is no subclassification and all the cfq queues go on
 245	 * a single tree service_tree_idle.
 246	 * Counts are embedded in the cfq_rb_root
 247	 */
 248	struct cfq_rb_root service_trees[2][3];
 249	struct cfq_rb_root service_tree_idle;
 250
 251	unsigned long saved_workload_slice;
 252	enum wl_type_t saved_workload;
 253	enum wl_prio_t saved_serving_prio;
 254
 255	/* number of requests that are on the dispatch list or inside driver */
 256	int dispatched;
 257	struct cfq_ttime ttime;
 258	struct cfqg_stats stats;
 
 
 
 
 
 259};
 260
 261struct cfq_io_cq {
 262	struct io_cq		icq;		/* must be the first member */
 263	struct cfq_queue	*cfqq[2];
 264	struct cfq_ttime	ttime;
 265	int			ioprio;		/* the current ioprio */
 266#ifdef CONFIG_CFQ_GROUP_IOSCHED
 267	uint64_t		blkcg_id;	/* the current blkcg ID */
 268#endif
 269};
 270
 271/*
 272 * Per block device queue structure
 273 */
 274struct cfq_data {
 275	struct request_queue *queue;
 276	/* Root service tree for cfq_groups */
 277	struct cfq_rb_root grp_service_tree;
 278	struct cfq_group *root_group;
 279
 280	/*
 281	 * The priority currently being served
 282	 */
 283	enum wl_prio_t serving_prio;
 284	enum wl_type_t serving_type;
 285	unsigned long workload_expires;
 286	struct cfq_group *serving_group;
 287
 288	/*
 289	 * Each priority tree is sorted by next_request position.  These
 290	 * trees are used when determining if two or more queues are
 291	 * interleaving requests (see cfq_close_cooperator).
 292	 */
 293	struct rb_root prio_trees[CFQ_PRIO_LISTS];
 294
 295	unsigned int busy_queues;
 296	unsigned int busy_sync_queues;
 297
 298	int rq_in_driver;
 299	int rq_in_flight[2];
 300
 301	/*
 302	 * queue-depth detection
 303	 */
 304	int rq_queued;
 305	int hw_tag;
 306	/*
 307	 * hw_tag can be
 308	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
 309	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
 310	 *  0 => no NCQ
 311	 */
 312	int hw_tag_est_depth;
 313	unsigned int hw_tag_samples;
 314
 315	/*
 316	 * idle window management
 317	 */
 318	struct timer_list idle_slice_timer;
 319	struct work_struct unplug_work;
 320
 321	struct cfq_queue *active_queue;
 322	struct cfq_io_cq *active_cic;
 323
 324	/*
 325	 * async queue for each priority case
 326	 */
 327	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
 328	struct cfq_queue *async_idle_cfqq;
 329
 330	sector_t last_position;
 331
 332	/*
 333	 * tunables, see top of file
 334	 */
 335	unsigned int cfq_quantum;
 336	unsigned int cfq_fifo_expire[2];
 337	unsigned int cfq_back_penalty;
 338	unsigned int cfq_back_max;
 339	unsigned int cfq_slice[2];
 340	unsigned int cfq_slice_async_rq;
 341	unsigned int cfq_slice_idle;
 342	unsigned int cfq_group_idle;
 343	unsigned int cfq_latency;
 344	unsigned int cfq_target_latency;
 
 
 
 
 345
 346	/*
 347	 * Fallback dummy cfqq for extreme OOM conditions
 348	 */
 349	struct cfq_queue oom_cfqq;
 350
 351	unsigned long last_delayed_sync;
 352};
 353
 354static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
 
 355
 356static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
 357					    enum wl_prio_t prio,
 358					    enum wl_type_t type)
 359{
 360	if (!cfqg)
 361		return NULL;
 362
 363	if (prio == IDLE_WORKLOAD)
 364		return &cfqg->service_tree_idle;
 365
 366	return &cfqg->service_trees[prio][type];
 367}
 368
 369enum cfqq_state_flags {
 370	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
 371	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
 372	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
 373	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
 374	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
 375	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
 376	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
 377	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
 378	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
 379	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
 380	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
 381	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
 382	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
 383};
 384
 385#define CFQ_CFQQ_FNS(name)						\
 386static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
 387{									\
 388	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
 389}									\
 390static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
 391{									\
 392	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
 393}									\
 394static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
 395{									\
 396	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
 397}
 398
 399CFQ_CFQQ_FNS(on_rr);
 400CFQ_CFQQ_FNS(wait_request);
 401CFQ_CFQQ_FNS(must_dispatch);
 402CFQ_CFQQ_FNS(must_alloc_slice);
 403CFQ_CFQQ_FNS(fifo_expire);
 404CFQ_CFQQ_FNS(idle_window);
 405CFQ_CFQQ_FNS(prio_changed);
 406CFQ_CFQQ_FNS(slice_new);
 407CFQ_CFQQ_FNS(sync);
 408CFQ_CFQQ_FNS(coop);
 409CFQ_CFQQ_FNS(split_coop);
 410CFQ_CFQQ_FNS(deep);
 411CFQ_CFQQ_FNS(wait_busy);
 412#undef CFQ_CFQQ_FNS
 413
 414static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
 415{
 416	return pd ? container_of(pd, struct cfq_group, pd) : NULL;
 417}
 418
 419static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
 420{
 421	return pd_to_blkg(&cfqg->pd);
 422}
 423
 424#if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
 425
 426/* cfqg stats flags */
 427enum cfqg_stats_flags {
 428	CFQG_stats_waiting = 0,
 429	CFQG_stats_idling,
 430	CFQG_stats_empty,
 431};
 432
 433#define CFQG_FLAG_FNS(name)						\
 434static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats)	\
 435{									\
 436	stats->flags |= (1 << CFQG_stats_##name);			\
 437}									\
 438static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats)	\
 439{									\
 440	stats->flags &= ~(1 << CFQG_stats_##name);			\
 441}									\
 442static inline int cfqg_stats_##name(struct cfqg_stats *stats)		\
 443{									\
 444	return (stats->flags & (1 << CFQG_stats_##name)) != 0;		\
 445}									\
 446
 447CFQG_FLAG_FNS(waiting)
 448CFQG_FLAG_FNS(idling)
 449CFQG_FLAG_FNS(empty)
 450#undef CFQG_FLAG_FNS
 451
 452/* This should be called with the queue_lock held. */
 453static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
 454{
 455	unsigned long long now;
 456
 457	if (!cfqg_stats_waiting(stats))
 458		return;
 459
 460	now = sched_clock();
 461	if (time_after64(now, stats->start_group_wait_time))
 462		blkg_stat_add(&stats->group_wait_time,
 463			      now - stats->start_group_wait_time);
 464	cfqg_stats_clear_waiting(stats);
 465}
 466
 467/* This should be called with the queue_lock held. */
 468static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
 469						 struct cfq_group *curr_cfqg)
 470{
 471	struct cfqg_stats *stats = &cfqg->stats;
 472
 473	if (cfqg_stats_waiting(stats))
 474		return;
 475	if (cfqg == curr_cfqg)
 476		return;
 477	stats->start_group_wait_time = sched_clock();
 478	cfqg_stats_mark_waiting(stats);
 479}
 480
 481/* This should be called with the queue_lock held. */
 482static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
 483{
 484	unsigned long long now;
 485
 486	if (!cfqg_stats_empty(stats))
 487		return;
 488
 489	now = sched_clock();
 490	if (time_after64(now, stats->start_empty_time))
 491		blkg_stat_add(&stats->empty_time,
 492			      now - stats->start_empty_time);
 493	cfqg_stats_clear_empty(stats);
 494}
 495
 496static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
 497{
 498	blkg_stat_add(&cfqg->stats.dequeue, 1);
 499}
 500
 501static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
 502{
 503	struct cfqg_stats *stats = &cfqg->stats;
 504
 505	if (blkg_rwstat_sum(&stats->queued))
 506		return;
 507
 508	/*
 509	 * group is already marked empty. This can happen if cfqq got new
 510	 * request in parent group and moved to this group while being added
 511	 * to service tree. Just ignore the event and move on.
 512	 */
 513	if (cfqg_stats_empty(stats))
 514		return;
 515
 516	stats->start_empty_time = sched_clock();
 517	cfqg_stats_mark_empty(stats);
 518}
 519
 520static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
 521{
 522	struct cfqg_stats *stats = &cfqg->stats;
 523
 524	if (cfqg_stats_idling(stats)) {
 525		unsigned long long now = sched_clock();
 526
 527		if (time_after64(now, stats->start_idle_time))
 528			blkg_stat_add(&stats->idle_time,
 529				      now - stats->start_idle_time);
 530		cfqg_stats_clear_idling(stats);
 531	}
 532}
 533
 534static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
 535{
 536	struct cfqg_stats *stats = &cfqg->stats;
 537
 538	BUG_ON(cfqg_stats_idling(stats));
 539
 540	stats->start_idle_time = sched_clock();
 541	cfqg_stats_mark_idling(stats);
 542}
 543
 544static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
 545{
 546	struct cfqg_stats *stats = &cfqg->stats;
 547
 548	blkg_stat_add(&stats->avg_queue_size_sum,
 549		      blkg_rwstat_sum(&stats->queued));
 550	blkg_stat_add(&stats->avg_queue_size_samples, 1);
 551	cfqg_stats_update_group_wait_time(stats);
 552}
 553
 554#else	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
 555
 556static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
 557static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
 558static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
 559static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
 560static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
 561static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
 562static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
 563
 564#endif	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
 565
 566#ifdef CONFIG_CFQ_GROUP_IOSCHED
 567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568static struct blkcg_policy blkcg_policy_cfq;
 569
 570static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
 571{
 572	return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
 573}
 574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 575static inline void cfqg_get(struct cfq_group *cfqg)
 576{
 577	return blkg_get(cfqg_to_blkg(cfqg));
 578}
 579
 580static inline void cfqg_put(struct cfq_group *cfqg)
 581{
 582	return blkg_put(cfqg_to_blkg(cfqg));
 583}
 584
 585#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	do {			\
 586	char __pbuf[128];						\
 587									\
 588	blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf));	\
 589	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
 590			  cfq_cfqq_sync((cfqq)) ? 'S' : 'A',		\
 591			  __pbuf, ##args);				\
 592} while (0)
 593
 594#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)	do {			\
 595	char __pbuf[128];						\
 596									\
 597	blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf));		\
 598	blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args);	\
 599} while (0)
 600
 601static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
 602					    struct cfq_group *curr_cfqg, int rw)
 
 603{
 604	blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
 605	cfqg_stats_end_empty_time(&cfqg->stats);
 606	cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
 607}
 608
 609static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
 610			unsigned long time, unsigned long unaccounted_time)
 611{
 612	blkg_stat_add(&cfqg->stats.time, time);
 613#ifdef CONFIG_DEBUG_BLK_CGROUP
 614	blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
 615#endif
 616}
 617
 618static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
 
 619{
 620	blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
 621}
 622
 623static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
 
 624{
 625	blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
 626}
 627
 628static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
 629					      uint64_t bytes, int rw)
 630{
 631	blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
 632	blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
 633	blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
 634}
 635
 636static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
 637			uint64_t start_time, uint64_t io_start_time, int rw)
 
 638{
 639	struct cfqg_stats *stats = &cfqg->stats;
 640	unsigned long long now = sched_clock();
 641
 642	if (time_after64(now, io_start_time))
 643		blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
 644	if (time_after64(io_start_time, start_time))
 645		blkg_rwstat_add(&stats->wait_time, rw,
 646				io_start_time - start_time);
 647}
 648
 649static void cfq_pd_reset_stats(struct blkcg_gq *blkg)
 
 650{
 651	struct cfq_group *cfqg = blkg_to_cfqg(blkg);
 652	struct cfqg_stats *stats = &cfqg->stats;
 653
 654	/* queued stats shouldn't be cleared */
 655	blkg_rwstat_reset(&stats->service_bytes);
 656	blkg_rwstat_reset(&stats->serviced);
 657	blkg_rwstat_reset(&stats->merged);
 658	blkg_rwstat_reset(&stats->service_time);
 659	blkg_rwstat_reset(&stats->wait_time);
 660	blkg_stat_reset(&stats->time);
 661#ifdef CONFIG_DEBUG_BLK_CGROUP
 662	blkg_stat_reset(&stats->unaccounted_time);
 663	blkg_stat_reset(&stats->avg_queue_size_sum);
 664	blkg_stat_reset(&stats->avg_queue_size_samples);
 665	blkg_stat_reset(&stats->dequeue);
 666	blkg_stat_reset(&stats->group_wait_time);
 667	blkg_stat_reset(&stats->idle_time);
 668	blkg_stat_reset(&stats->empty_time);
 669#endif
 670}
 671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 672#else	/* CONFIG_CFQ_GROUP_IOSCHED */
 673
 
 
 
 
 
 
 674static inline void cfqg_get(struct cfq_group *cfqg) { }
 675static inline void cfqg_put(struct cfq_group *cfqg) { }
 676
 677#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
 678	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
 
 
 
 679#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0)
 680
 681static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
 682			struct cfq_group *curr_cfqg, int rw) { }
 683static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
 684			unsigned long time, unsigned long unaccounted_time) { }
 685static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
 686static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
 687static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
 688					      uint64_t bytes, int rw) { }
 689static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
 690			uint64_t start_time, uint64_t io_start_time, int rw) { }
 
 691
 692#endif	/* CONFIG_CFQ_GROUP_IOSCHED */
 693
 694#define cfq_log(cfqd, fmt, args...)	\
 695	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
 696
 697/* Traverses through cfq group service trees */
 698#define for_each_cfqg_st(cfqg, i, j, st) \
 699	for (i = 0; i <= IDLE_WORKLOAD; i++) \
 700		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
 701			: &cfqg->service_tree_idle; \
 702			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
 703			(i == IDLE_WORKLOAD && j == 0); \
 704			j++, st = i < IDLE_WORKLOAD ? \
 705			&cfqg->service_trees[i][j]: NULL) \
 706
 707static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
 708	struct cfq_ttime *ttime, bool group_idle)
 709{
 710	unsigned long slice;
 711	if (!sample_valid(ttime->ttime_samples))
 712		return false;
 713	if (group_idle)
 714		slice = cfqd->cfq_group_idle;
 715	else
 716		slice = cfqd->cfq_slice_idle;
 717	return ttime->ttime_mean > slice;
 718}
 719
 720static inline bool iops_mode(struct cfq_data *cfqd)
 721{
 722	/*
 723	 * If we are not idling on queues and it is a NCQ drive, parallel
 724	 * execution of requests is on and measuring time is not possible
 725	 * in most of the cases until and unless we drive shallower queue
 726	 * depths and that becomes a performance bottleneck. In such cases
 727	 * switch to start providing fairness in terms of number of IOs.
 728	 */
 729	if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
 730		return true;
 731	else
 732		return false;
 733}
 734
 735static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
 736{
 737	if (cfq_class_idle(cfqq))
 738		return IDLE_WORKLOAD;
 739	if (cfq_class_rt(cfqq))
 740		return RT_WORKLOAD;
 741	return BE_WORKLOAD;
 742}
 743
 744
 745static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
 746{
 747	if (!cfq_cfqq_sync(cfqq))
 748		return ASYNC_WORKLOAD;
 749	if (!cfq_cfqq_idle_window(cfqq))
 750		return SYNC_NOIDLE_WORKLOAD;
 751	return SYNC_WORKLOAD;
 752}
 753
 754static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
 755					struct cfq_data *cfqd,
 756					struct cfq_group *cfqg)
 757{
 758	if (wl == IDLE_WORKLOAD)
 759		return cfqg->service_tree_idle.count;
 760
 761	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
 762		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
 763		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
 764}
 765
 766static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
 767					struct cfq_group *cfqg)
 768{
 769	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
 770		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
 771}
 772
 773static void cfq_dispatch_insert(struct request_queue *, struct request *);
 774static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
 775				       struct cfq_io_cq *cic, struct bio *bio,
 776				       gfp_t gfp_mask);
 777
 778static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
 779{
 780	/* cic->icq is the first member, %NULL will convert to %NULL */
 781	return container_of(icq, struct cfq_io_cq, icq);
 782}
 783
 784static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
 785					       struct io_context *ioc)
 786{
 787	if (ioc)
 788		return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
 789	return NULL;
 790}
 791
 792static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
 793{
 794	return cic->cfqq[is_sync];
 795}
 796
 797static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
 798				bool is_sync)
 799{
 800	cic->cfqq[is_sync] = cfqq;
 801}
 802
 803static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
 804{
 805	return cic->icq.q->elevator->elevator_data;
 806}
 807
 808/*
 809 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 810 * set (in which case it could also be direct WRITE).
 811 */
 812static inline bool cfq_bio_sync(struct bio *bio)
 813{
 814	return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
 815}
 816
 817/*
 818 * scheduler run of queue, if there are requests pending and no one in the
 819 * driver that will restart queueing
 820 */
 821static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
 822{
 823	if (cfqd->busy_queues) {
 824		cfq_log(cfqd, "schedule dispatch");
 825		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
 826	}
 827}
 828
 829/*
 830 * Scale schedule slice based on io priority. Use the sync time slice only
 831 * if a queue is marked sync and has sync io queued. A sync queue with async
 832 * io only, should not get full sync slice length.
 833 */
 834static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
 835				 unsigned short prio)
 836{
 837	const int base_slice = cfqd->cfq_slice[sync];
 
 838
 839	WARN_ON(prio >= IOPRIO_BE_NR);
 840
 841	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
 842}
 843
 844static inline int
 845cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 846{
 847	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
 848}
 849
 850static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 851{
 852	u64 d = delta << CFQ_SERVICE_SHIFT;
 853
 854	d = d * CFQ_WEIGHT_DEFAULT;
 855	do_div(d, cfqg->weight);
 856	return d;
 857}
 858
 859static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
 860{
 861	s64 delta = (s64)(vdisktime - min_vdisktime);
 862	if (delta > 0)
 863		min_vdisktime = vdisktime;
 864
 865	return min_vdisktime;
 866}
 867
 868static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
 869{
 870	s64 delta = (s64)(vdisktime - min_vdisktime);
 871	if (delta < 0)
 872		min_vdisktime = vdisktime;
 873
 874	return min_vdisktime;
 875}
 876
 877static void update_min_vdisktime(struct cfq_rb_root *st)
 878{
 879	struct cfq_group *cfqg;
 
 880
 881	if (st->left) {
 882		cfqg = rb_entry_cfqg(st->left);
 883		st->min_vdisktime = max_vdisktime(st->min_vdisktime,
 884						  cfqg->vdisktime);
 885	}
 886}
 887
 888/*
 889 * get averaged number of queues of RT/BE priority.
 890 * average is updated, with a formula that gives more weight to higher numbers,
 891 * to quickly follows sudden increases and decrease slowly
 892 */
 893
 894static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
 895					struct cfq_group *cfqg, bool rt)
 896{
 897	unsigned min_q, max_q;
 898	unsigned mult  = cfq_hist_divisor - 1;
 899	unsigned round = cfq_hist_divisor / 2;
 900	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
 901
 902	min_q = min(cfqg->busy_queues_avg[rt], busy);
 903	max_q = max(cfqg->busy_queues_avg[rt], busy);
 904	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
 905		cfq_hist_divisor;
 906	return cfqg->busy_queues_avg[rt];
 907}
 908
 909static inline unsigned
 910cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
 911{
 912	struct cfq_rb_root *st = &cfqd->grp_service_tree;
 913
 914	return cfqd->cfq_target_latency * cfqg->weight / st->total_weight;
 915}
 916
 917static inline unsigned
 918cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 919{
 920	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
 921	if (cfqd->cfq_latency) {
 922		/*
 923		 * interested queues (we consider only the ones with the same
 924		 * priority class in the cfq group)
 925		 */
 926		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
 927						cfq_class_rt(cfqq));
 928		unsigned sync_slice = cfqd->cfq_slice[1];
 929		unsigned expect_latency = sync_slice * iq;
 930		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
 931
 932		if (expect_latency > group_slice) {
 933			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
 
 
 934			/* scale low_slice according to IO priority
 935			 * and sync vs async */
 936			unsigned low_slice =
 937				min(slice, base_low_slice * slice / sync_slice);
 938			/* the adapted slice value is scaled to fit all iqs
 939			 * into the target latency */
 940			slice = max(slice * group_slice / expect_latency,
 941				    low_slice);
 942		}
 943	}
 944	return slice;
 945}
 946
 947static inline void
 948cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 949{
 950	unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
 
 951
 952	cfqq->slice_start = jiffies;
 953	cfqq->slice_end = jiffies + slice;
 954	cfqq->allocated_slice = slice;
 955	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
 956}
 957
 958/*
 959 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 960 * isn't valid until the first request from the dispatch is activated
 961 * and the slice time set.
 962 */
 963static inline bool cfq_slice_used(struct cfq_queue *cfqq)
 964{
 965	if (cfq_cfqq_slice_new(cfqq))
 966		return false;
 967	if (time_before(jiffies, cfqq->slice_end))
 968		return false;
 969
 970	return true;
 971}
 972
 973/*
 974 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
 975 * We choose the request that is closest to the head right now. Distance
 976 * behind the head is penalized and only allowed to a certain extent.
 977 */
 978static struct request *
 979cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
 980{
 981	sector_t s1, s2, d1 = 0, d2 = 0;
 982	unsigned long back_max;
 983#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
 984#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
 985	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
 986
 987	if (rq1 == NULL || rq1 == rq2)
 988		return rq2;
 989	if (rq2 == NULL)
 990		return rq1;
 991
 992	if (rq_is_sync(rq1) != rq_is_sync(rq2))
 993		return rq_is_sync(rq1) ? rq1 : rq2;
 994
 995	if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
 996		return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
 997
 998	s1 = blk_rq_pos(rq1);
 999	s2 = blk_rq_pos(rq2);
1000
1001	/*
1002	 * by definition, 1KiB is 2 sectors
1003	 */
1004	back_max = cfqd->cfq_back_max * 2;
1005
1006	/*
1007	 * Strict one way elevator _except_ in the case where we allow
1008	 * short backward seeks which are biased as twice the cost of a
1009	 * similar forward seek.
1010	 */
1011	if (s1 >= last)
1012		d1 = s1 - last;
1013	else if (s1 + back_max >= last)
1014		d1 = (last - s1) * cfqd->cfq_back_penalty;
1015	else
1016		wrap |= CFQ_RQ1_WRAP;
1017
1018	if (s2 >= last)
1019		d2 = s2 - last;
1020	else if (s2 + back_max >= last)
1021		d2 = (last - s2) * cfqd->cfq_back_penalty;
1022	else
1023		wrap |= CFQ_RQ2_WRAP;
1024
1025	/* Found required data */
1026
1027	/*
1028	 * By doing switch() on the bit mask "wrap" we avoid having to
1029	 * check two variables for all permutations: --> faster!
1030	 */
1031	switch (wrap) {
1032	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1033		if (d1 < d2)
1034			return rq1;
1035		else if (d2 < d1)
1036			return rq2;
1037		else {
1038			if (s1 >= s2)
1039				return rq1;
1040			else
1041				return rq2;
1042		}
1043
1044	case CFQ_RQ2_WRAP:
1045		return rq1;
1046	case CFQ_RQ1_WRAP:
1047		return rq2;
1048	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1049	default:
1050		/*
1051		 * Since both rqs are wrapped,
1052		 * start with the one that's further behind head
1053		 * (--> only *one* back seek required),
1054		 * since back seek takes more time than forward.
1055		 */
1056		if (s1 <= s2)
1057			return rq1;
1058		else
1059			return rq2;
1060	}
1061}
1062
1063/*
1064 * The below is leftmost cache rbtree addon
1065 */
1066static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1067{
1068	/* Service tree is empty */
1069	if (!root->count)
1070		return NULL;
1071
1072	if (!root->left)
1073		root->left = rb_first(&root->rb);
1074
1075	if (root->left)
1076		return rb_entry(root->left, struct cfq_queue, rb_node);
1077
1078	return NULL;
1079}
1080
1081static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1082{
1083	if (!root->left)
1084		root->left = rb_first(&root->rb);
1085
1086	if (root->left)
1087		return rb_entry_cfqg(root->left);
1088
1089	return NULL;
1090}
1091
1092static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1093{
1094	rb_erase(n, root);
 
 
 
1095	RB_CLEAR_NODE(n);
1096}
1097
1098static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1099{
1100	if (root->left == n)
1101		root->left = NULL;
1102	rb_erase_init(n, &root->rb);
1103	--root->count;
1104}
1105
1106/*
1107 * would be nice to take fifo expire time into account as well
1108 */
1109static struct request *
1110cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1111		  struct request *last)
1112{
1113	struct rb_node *rbnext = rb_next(&last->rb_node);
1114	struct rb_node *rbprev = rb_prev(&last->rb_node);
1115	struct request *next = NULL, *prev = NULL;
1116
1117	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1118
1119	if (rbprev)
1120		prev = rb_entry_rq(rbprev);
1121
1122	if (rbnext)
1123		next = rb_entry_rq(rbnext);
1124	else {
1125		rbnext = rb_first(&cfqq->sort_list);
1126		if (rbnext && rbnext != &last->rb_node)
1127			next = rb_entry_rq(rbnext);
1128	}
1129
1130	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1131}
1132
1133static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1134				      struct cfq_queue *cfqq)
1135{
1136	/*
1137	 * just an approximation, should be ok.
1138	 */
1139	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1140		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1141}
1142
1143static inline s64
1144cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1145{
1146	return cfqg->vdisktime - st->min_vdisktime;
1147}
1148
1149static void
1150__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1151{
1152	struct rb_node **node = &st->rb.rb_node;
1153	struct rb_node *parent = NULL;
1154	struct cfq_group *__cfqg;
1155	s64 key = cfqg_key(st, cfqg);
1156	int left = 1;
1157
1158	while (*node != NULL) {
1159		parent = *node;
1160		__cfqg = rb_entry_cfqg(parent);
1161
1162		if (key < cfqg_key(st, __cfqg))
1163			node = &parent->rb_left;
1164		else {
 
1165			node = &parent->rb_right;
1166			left = 0;
1167		}
1168	}
1169
1170	if (left)
1171		st->left = &cfqg->rb_node;
1172
1173	rb_link_node(&cfqg->rb_node, parent, node);
1174	rb_insert_color(&cfqg->rb_node, &st->rb);
1175}
1176
 
 
 
1177static void
1178cfq_update_group_weight(struct cfq_group *cfqg)
1179{
1180	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1181	if (cfqg->new_weight) {
1182		cfqg->weight = cfqg->new_weight;
1183		cfqg->new_weight = 0;
1184	}
1185}
1186
1187static void
 
 
 
 
 
 
 
 
 
 
 
1188cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1189{
 
 
 
 
 
 
1190	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1191
1192	cfq_update_group_weight(cfqg);
 
 
 
 
 
1193	__cfq_group_service_tree_add(st, cfqg);
1194	st->total_weight += cfqg->weight;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1195}
1196
1197static void
1198cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1199{
1200	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1201	struct cfq_group *__cfqg;
1202	struct rb_node *n;
1203
1204	cfqg->nr_cfqq++;
1205	if (!RB_EMPTY_NODE(&cfqg->rb_node))
1206		return;
1207
1208	/*
1209	 * Currently put the group at the end. Later implement something
1210	 * so that groups get lesser vtime based on their weights, so that
1211	 * if group does not loose all if it was not continuously backlogged.
1212	 */
1213	n = rb_last(&st->rb);
1214	if (n) {
1215		__cfqg = rb_entry_cfqg(n);
1216		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
 
1217	} else
1218		cfqg->vdisktime = st->min_vdisktime;
1219	cfq_group_service_tree_add(st, cfqg);
1220}
1221
1222static void
1223cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1224{
1225	st->total_weight -= cfqg->weight;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1226	if (!RB_EMPTY_NODE(&cfqg->rb_node))
1227		cfq_rb_erase(&cfqg->rb_node, st);
1228}
1229
1230static void
1231cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1232{
1233	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1234
1235	BUG_ON(cfqg->nr_cfqq < 1);
1236	cfqg->nr_cfqq--;
1237
1238	/* If there are other cfq queues under this group, don't delete it */
1239	if (cfqg->nr_cfqq)
1240		return;
1241
1242	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1243	cfq_group_service_tree_del(st, cfqg);
1244	cfqg->saved_workload_slice = 0;
1245	cfqg_stats_update_dequeue(cfqg);
1246}
1247
1248static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1249						unsigned int *unaccounted_time)
1250{
1251	unsigned int slice_used;
 
1252
1253	/*
1254	 * Queue got expired before even a single request completed or
1255	 * got expired immediately after first request completion.
1256	 */
1257	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1258		/*
1259		 * Also charge the seek time incurred to the group, otherwise
1260		 * if there are mutiple queues in the group, each can dispatch
1261		 * a single request on seeky media and cause lots of seek time
1262		 * and group will never know it.
1263		 */
1264		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1265					1);
1266	} else {
1267		slice_used = jiffies - cfqq->slice_start;
1268		if (slice_used > cfqq->allocated_slice) {
1269			*unaccounted_time = slice_used - cfqq->allocated_slice;
1270			slice_used = cfqq->allocated_slice;
1271		}
1272		if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1273			*unaccounted_time += cfqq->slice_start -
1274					cfqq->dispatch_start;
1275	}
1276
1277	return slice_used;
1278}
1279
1280static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1281				struct cfq_queue *cfqq)
1282{
1283	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1284	unsigned int used_sl, charge, unaccounted_sl = 0;
1285	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1286			- cfqg->service_tree_idle.count;
 
 
1287
1288	BUG_ON(nr_sync < 0);
1289	used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1290
1291	if (iops_mode(cfqd))
1292		charge = cfqq->slice_dispatch;
1293	else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1294		charge = cfqq->allocated_slice;
1295
1296	/* Can't update vdisktime while group is on service tree */
 
 
 
 
 
 
1297	cfq_group_service_tree_del(st, cfqg);
1298	cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
1299	/* If a new weight was requested, update now, off tree */
1300	cfq_group_service_tree_add(st, cfqg);
1301
1302	/* This group is being expired. Save the context */
1303	if (time_after(cfqd->workload_expires, jiffies)) {
1304		cfqg->saved_workload_slice = cfqd->workload_expires
1305						- jiffies;
1306		cfqg->saved_workload = cfqd->serving_type;
1307		cfqg->saved_serving_prio = cfqd->serving_prio;
1308	} else
1309		cfqg->saved_workload_slice = 0;
1310
1311	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1312					st->min_vdisktime);
1313	cfq_log_cfqq(cfqq->cfqd, cfqq,
1314		     "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1315		     used_sl, cfqq->slice_dispatch, charge,
1316		     iops_mode(cfqd), cfqq->nr_sectors);
1317	cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1318	cfqg_stats_set_start_empty_time(cfqg);
1319}
1320
1321/**
1322 * cfq_init_cfqg_base - initialize base part of a cfq_group
1323 * @cfqg: cfq_group to initialize
1324 *
1325 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1326 * is enabled or not.
1327 */
1328static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1329{
1330	struct cfq_rb_root *st;
1331	int i, j;
1332
1333	for_each_cfqg_st(cfqg, i, j, st)
1334		*st = CFQ_RB_ROOT;
1335	RB_CLEAR_NODE(&cfqg->rb_node);
1336
1337	cfqg->ttime.last_end_request = jiffies;
1338}
1339
1340#ifdef CONFIG_CFQ_GROUP_IOSCHED
1341static void cfq_pd_init(struct blkcg_gq *blkg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342{
1343	struct cfq_group *cfqg = blkg_to_cfqg(blkg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1344
1345	cfq_init_cfqg_base(cfqg);
1346	cfqg->weight = blkg->blkcg->cfq_weight;
 
 
 
 
 
1347}
1348
1349/*
1350 * Search for the cfq group current task belongs to. request_queue lock must
1351 * be held.
1352 */
1353static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1354						struct blkcg *blkcg)
1355{
1356	struct request_queue *q = cfqd->queue;
1357	struct cfq_group *cfqg = NULL;
1358
1359	/* avoid lookup for the common case where there's no blkcg */
1360	if (blkcg == &blkcg_root) {
1361		cfqg = cfqd->root_group;
1362	} else {
1363		struct blkcg_gq *blkg;
1364
1365		blkg = blkg_lookup_create(blkcg, q);
1366		if (!IS_ERR(blkg))
1367			cfqg = blkg_to_cfqg(blkg);
 
 
 
 
 
 
 
1368	}
1369
1370	return cfqg;
 
 
 
 
 
 
 
 
 
1371}
1372
1373static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1374{
1375	/* Currently, all async queues are mapped to root group */
1376	if (!cfq_cfqq_sync(cfqq))
1377		cfqg = cfqq->cfqd->root_group;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1378
 
 
1379	cfqq->cfqg = cfqg;
1380	/* cfqq reference on cfqg */
1381	cfqg_get(cfqg);
1382}
1383
1384static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1385				     struct blkg_policy_data *pd, int off)
1386{
1387	struct cfq_group *cfqg = pd_to_cfqg(pd);
1388
1389	if (!cfqg->dev_weight)
1390		return 0;
1391	return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1392}
1393
1394static int cfqg_print_weight_device(struct cgroup *cgrp, struct cftype *cft,
1395				    struct seq_file *sf)
1396{
1397	blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),
1398			  cfqg_prfill_weight_device, &blkcg_policy_cfq, 0,
1399			  false);
1400	return 0;
1401}
1402
1403static int cfq_print_weight(struct cgroup *cgrp, struct cftype *cft,
1404			    struct seq_file *sf)
1405{
1406	seq_printf(sf, "%u\n", cgroup_to_blkcg(cgrp)->cfq_weight);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1407	return 0;
1408}
1409
1410static int cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
1411				  const char *buf)
1412{
1413	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1414	struct blkg_conf_ctx ctx;
1415	struct cfq_group *cfqg;
 
1416	int ret;
 
1417
1418	ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1419	if (ret)
1420		return ret;
1421
1422	ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
1423	cfqg = blkg_to_cfqg(ctx.blkg);
1424	if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1425		cfqg->dev_weight = ctx.v;
1426		cfqg->new_weight = cfqg->dev_weight ?: blkcg->cfq_weight;
 
 
 
 
 
 
 
 
1427		ret = 0;
1428	}
1429
1430	blkg_conf_finish(&ctx);
1431	return ret;
 
 
 
 
 
 
1432}
1433
1434static int cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
 
1435{
1436	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
 
 
 
 
 
 
 
 
1437	struct blkcg_gq *blkg;
1438	struct hlist_node *n;
 
1439
1440	if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1441		return -EINVAL;
1442
1443	spin_lock_irq(&blkcg->lock);
1444	blkcg->cfq_weight = (unsigned int)val;
 
 
 
 
1445
1446	hlist_for_each_entry(blkg, n, &blkcg->blkg_list, blkcg_node) {
 
 
 
 
 
1447		struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1448
1449		if (cfqg && !cfqg->dev_weight)
1450			cfqg->new_weight = blkcg->cfq_weight;
 
 
 
 
 
 
 
 
 
 
 
 
1451	}
1452
 
1453	spin_unlock_irq(&blkcg->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1454	return 0;
1455}
1456
1457static int cfqg_print_stat(struct cgroup *cgrp, struct cftype *cft,
1458			   struct seq_file *sf)
 
 
 
 
 
 
 
 
1459{
1460	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
 
 
 
 
 
 
 
 
 
 
 
1461
1462	blkcg_print_blkgs(sf, blkcg, blkg_prfill_stat, &blkcg_policy_cfq,
1463			  cft->private, false);
 
 
 
1464	return 0;
1465}
1466
1467static int cfqg_print_rwstat(struct cgroup *cgrp, struct cftype *cft,
1468			     struct seq_file *sf)
1469{
1470	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
 
 
 
1471
1472	blkcg_print_blkgs(sf, blkcg, blkg_prfill_rwstat, &blkcg_policy_cfq,
1473			  cft->private, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1474	return 0;
1475}
1476
1477#ifdef CONFIG_DEBUG_BLK_CGROUP
1478static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1479				      struct blkg_policy_data *pd, int off)
1480{
1481	struct cfq_group *cfqg = pd_to_cfqg(pd);
1482	u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1483	u64 v = 0;
1484
1485	if (samples) {
1486		v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1487		do_div(v, samples);
1488	}
1489	__blkg_prfill_u64(sf, pd, v);
1490	return 0;
1491}
1492
1493/* print avg_queue_size */
1494static int cfqg_print_avg_queue_size(struct cgroup *cgrp, struct cftype *cft,
1495				     struct seq_file *sf)
1496{
1497	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1498
1499	blkcg_print_blkgs(sf, blkcg, cfqg_prfill_avg_queue_size,
1500			  &blkcg_policy_cfq, 0, false);
1501	return 0;
1502}
1503#endif	/* CONFIG_DEBUG_BLK_CGROUP */
1504
1505static struct cftype cfq_blkcg_files[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1506	{
1507		.name = "weight_device",
1508		.read_seq_string = cfqg_print_weight_device,
1509		.write_string = cfqg_set_weight_device,
1510		.max_write_len = 256,
1511	},
1512	{
1513		.name = "weight",
1514		.read_seq_string = cfq_print_weight,
 
1515		.write_u64 = cfq_set_weight,
1516	},
 
 
 
 
 
 
 
 
 
 
 
 
 
1517	{
1518		.name = "time",
1519		.private = offsetof(struct cfq_group, stats.time),
1520		.read_seq_string = cfqg_print_stat,
1521	},
1522	{
1523		.name = "sectors",
1524		.private = offsetof(struct cfq_group, stats.sectors),
1525		.read_seq_string = cfqg_print_stat,
1526	},
1527	{
1528		.name = "io_service_bytes",
1529		.private = offsetof(struct cfq_group, stats.service_bytes),
1530		.read_seq_string = cfqg_print_rwstat,
1531	},
1532	{
1533		.name = "io_serviced",
1534		.private = offsetof(struct cfq_group, stats.serviced),
1535		.read_seq_string = cfqg_print_rwstat,
1536	},
1537	{
1538		.name = "io_service_time",
1539		.private = offsetof(struct cfq_group, stats.service_time),
1540		.read_seq_string = cfqg_print_rwstat,
1541	},
1542	{
1543		.name = "io_wait_time",
1544		.private = offsetof(struct cfq_group, stats.wait_time),
1545		.read_seq_string = cfqg_print_rwstat,
1546	},
1547	{
1548		.name = "io_merged",
1549		.private = offsetof(struct cfq_group, stats.merged),
1550		.read_seq_string = cfqg_print_rwstat,
1551	},
1552	{
1553		.name = "io_queued",
1554		.private = offsetof(struct cfq_group, stats.queued),
1555		.read_seq_string = cfqg_print_rwstat,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1556	},
1557#ifdef CONFIG_DEBUG_BLK_CGROUP
1558	{
1559		.name = "avg_queue_size",
1560		.read_seq_string = cfqg_print_avg_queue_size,
1561	},
1562	{
1563		.name = "group_wait_time",
1564		.private = offsetof(struct cfq_group, stats.group_wait_time),
1565		.read_seq_string = cfqg_print_stat,
1566	},
1567	{
1568		.name = "idle_time",
1569		.private = offsetof(struct cfq_group, stats.idle_time),
1570		.read_seq_string = cfqg_print_stat,
1571	},
1572	{
1573		.name = "empty_time",
1574		.private = offsetof(struct cfq_group, stats.empty_time),
1575		.read_seq_string = cfqg_print_stat,
1576	},
1577	{
1578		.name = "dequeue",
1579		.private = offsetof(struct cfq_group, stats.dequeue),
1580		.read_seq_string = cfqg_print_stat,
1581	},
1582	{
1583		.name = "unaccounted_time",
1584		.private = offsetof(struct cfq_group, stats.unaccounted_time),
1585		.read_seq_string = cfqg_print_stat,
1586	},
1587#endif	/* CONFIG_DEBUG_BLK_CGROUP */
1588	{ }	/* terminate */
1589};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1590#else /* GROUP_IOSCHED */
1591static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1592						struct blkcg *blkcg)
1593{
1594	return cfqd->root_group;
1595}
1596
1597static inline void
1598cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1599	cfqq->cfqg = cfqg;
1600}
1601
1602#endif /* GROUP_IOSCHED */
1603
1604/*
1605 * The cfqd->service_trees holds all pending cfq_queue's that have
1606 * requests waiting to be processed. It is sorted in the order that
1607 * we will service the queues.
1608 */
1609static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1610				 bool add_front)
1611{
1612	struct rb_node **p, *parent;
1613	struct cfq_queue *__cfqq;
1614	unsigned long rb_key;
1615	struct cfq_rb_root *service_tree;
1616	int left;
1617	int new_cfqq = 1;
 
1618
1619	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1620						cfqq_type(cfqq));
1621	if (cfq_class_idle(cfqq)) {
1622		rb_key = CFQ_IDLE_DELAY;
1623		parent = rb_last(&service_tree->rb);
1624		if (parent && parent != &cfqq->rb_node) {
1625			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1626			rb_key += __cfqq->rb_key;
1627		} else
1628			rb_key += jiffies;
1629	} else if (!add_front) {
1630		/*
1631		 * Get our rb key offset. Subtract any residual slice
1632		 * value carried from last service. A negative resid
1633		 * count indicates slice overrun, and this should position
1634		 * the next service time further away in the tree.
1635		 */
1636		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1637		rb_key -= cfqq->slice_resid;
1638		cfqq->slice_resid = 0;
1639	} else {
1640		rb_key = -HZ;
1641		__cfqq = cfq_rb_first(service_tree);
1642		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1643	}
1644
1645	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1646		new_cfqq = 0;
1647		/*
1648		 * same position, nothing more to do
1649		 */
1650		if (rb_key == cfqq->rb_key &&
1651		    cfqq->service_tree == service_tree)
1652			return;
1653
1654		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1655		cfqq->service_tree = NULL;
1656	}
1657
1658	left = 1;
1659	parent = NULL;
1660	cfqq->service_tree = service_tree;
1661	p = &service_tree->rb.rb_node;
1662	while (*p) {
1663		struct rb_node **n;
1664
1665		parent = *p;
1666		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1667
1668		/*
1669		 * sort by key, that represents service time.
1670		 */
1671		if (time_before(rb_key, __cfqq->rb_key))
1672			n = &(*p)->rb_left;
1673		else {
1674			n = &(*p)->rb_right;
1675			left = 0;
1676		}
1677
1678		p = n;
1679	}
1680
1681	if (left)
1682		service_tree->left = &cfqq->rb_node;
1683
1684	cfqq->rb_key = rb_key;
1685	rb_link_node(&cfqq->rb_node, parent, p);
1686	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1687	service_tree->count++;
1688	if (add_front || !new_cfqq)
1689		return;
1690	cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1691}
1692
1693static struct cfq_queue *
1694cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1695		     sector_t sector, struct rb_node **ret_parent,
1696		     struct rb_node ***rb_link)
1697{
1698	struct rb_node **p, *parent;
1699	struct cfq_queue *cfqq = NULL;
1700
1701	parent = NULL;
1702	p = &root->rb_node;
1703	while (*p) {
1704		struct rb_node **n;
1705
1706		parent = *p;
1707		cfqq = rb_entry(parent, struct cfq_queue, p_node);
1708
1709		/*
1710		 * Sort strictly based on sector.  Smallest to the left,
1711		 * largest to the right.
1712		 */
1713		if (sector > blk_rq_pos(cfqq->next_rq))
1714			n = &(*p)->rb_right;
1715		else if (sector < blk_rq_pos(cfqq->next_rq))
1716			n = &(*p)->rb_left;
1717		else
1718			break;
1719		p = n;
1720		cfqq = NULL;
1721	}
1722
1723	*ret_parent = parent;
1724	if (rb_link)
1725		*rb_link = p;
1726	return cfqq;
1727}
1728
1729static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1730{
1731	struct rb_node **p, *parent;
1732	struct cfq_queue *__cfqq;
1733
1734	if (cfqq->p_root) {
1735		rb_erase(&cfqq->p_node, cfqq->p_root);
1736		cfqq->p_root = NULL;
1737	}
1738
1739	if (cfq_class_idle(cfqq))
1740		return;
1741	if (!cfqq->next_rq)
1742		return;
1743
1744	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1745	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1746				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1747	if (!__cfqq) {
1748		rb_link_node(&cfqq->p_node, parent, p);
1749		rb_insert_color(&cfqq->p_node, cfqq->p_root);
1750	} else
1751		cfqq->p_root = NULL;
1752}
1753
1754/*
1755 * Update cfqq's position in the service tree.
1756 */
1757static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1758{
1759	/*
1760	 * Resorting requires the cfqq to be on the RR list already.
1761	 */
1762	if (cfq_cfqq_on_rr(cfqq)) {
1763		cfq_service_tree_add(cfqd, cfqq, 0);
1764		cfq_prio_tree_add(cfqd, cfqq);
1765	}
1766}
1767
1768/*
1769 * add to busy list of queues for service, trying to be fair in ordering
1770 * the pending list according to last request service
1771 */
1772static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1773{
1774	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1775	BUG_ON(cfq_cfqq_on_rr(cfqq));
1776	cfq_mark_cfqq_on_rr(cfqq);
1777	cfqd->busy_queues++;
1778	if (cfq_cfqq_sync(cfqq))
1779		cfqd->busy_sync_queues++;
1780
1781	cfq_resort_rr_list(cfqd, cfqq);
1782}
1783
1784/*
1785 * Called when the cfqq no longer has requests pending, remove it from
1786 * the service tree.
1787 */
1788static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1789{
1790	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1791	BUG_ON(!cfq_cfqq_on_rr(cfqq));
1792	cfq_clear_cfqq_on_rr(cfqq);
1793
1794	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1795		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1796		cfqq->service_tree = NULL;
1797	}
1798	if (cfqq->p_root) {
1799		rb_erase(&cfqq->p_node, cfqq->p_root);
1800		cfqq->p_root = NULL;
1801	}
1802
1803	cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1804	BUG_ON(!cfqd->busy_queues);
1805	cfqd->busy_queues--;
1806	if (cfq_cfqq_sync(cfqq))
1807		cfqd->busy_sync_queues--;
1808}
1809
1810/*
1811 * rb tree support functions
1812 */
1813static void cfq_del_rq_rb(struct request *rq)
1814{
1815	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1816	const int sync = rq_is_sync(rq);
1817
1818	BUG_ON(!cfqq->queued[sync]);
1819	cfqq->queued[sync]--;
1820
1821	elv_rb_del(&cfqq->sort_list, rq);
1822
1823	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1824		/*
1825		 * Queue will be deleted from service tree when we actually
1826		 * expire it later. Right now just remove it from prio tree
1827		 * as it is empty.
1828		 */
1829		if (cfqq->p_root) {
1830			rb_erase(&cfqq->p_node, cfqq->p_root);
1831			cfqq->p_root = NULL;
1832		}
1833	}
1834}
1835
1836static void cfq_add_rq_rb(struct request *rq)
1837{
1838	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1839	struct cfq_data *cfqd = cfqq->cfqd;
1840	struct request *prev;
1841
1842	cfqq->queued[rq_is_sync(rq)]++;
1843
1844	elv_rb_add(&cfqq->sort_list, rq);
1845
1846	if (!cfq_cfqq_on_rr(cfqq))
1847		cfq_add_cfqq_rr(cfqd, cfqq);
1848
1849	/*
1850	 * check if this request is a better next-serve candidate
1851	 */
1852	prev = cfqq->next_rq;
1853	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1854
1855	/*
1856	 * adjust priority tree position, if ->next_rq changes
1857	 */
1858	if (prev != cfqq->next_rq)
1859		cfq_prio_tree_add(cfqd, cfqq);
1860
1861	BUG_ON(!cfqq->next_rq);
1862}
1863
1864static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1865{
1866	elv_rb_del(&cfqq->sort_list, rq);
1867	cfqq->queued[rq_is_sync(rq)]--;
1868	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
1869	cfq_add_rq_rb(rq);
1870	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
1871				 rq->cmd_flags);
1872}
1873
1874static struct request *
1875cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1876{
1877	struct task_struct *tsk = current;
1878	struct cfq_io_cq *cic;
1879	struct cfq_queue *cfqq;
1880
1881	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1882	if (!cic)
1883		return NULL;
1884
1885	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1886	if (cfqq) {
1887		sector_t sector = bio->bi_sector + bio_sectors(bio);
1888
1889		return elv_rb_find(&cfqq->sort_list, sector);
1890	}
1891
1892	return NULL;
1893}
1894
1895static void cfq_activate_request(struct request_queue *q, struct request *rq)
1896{
1897	struct cfq_data *cfqd = q->elevator->elevator_data;
1898
1899	cfqd->rq_in_driver++;
1900	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1901						cfqd->rq_in_driver);
1902
1903	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1904}
1905
1906static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1907{
1908	struct cfq_data *cfqd = q->elevator->elevator_data;
1909
1910	WARN_ON(!cfqd->rq_in_driver);
1911	cfqd->rq_in_driver--;
1912	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1913						cfqd->rq_in_driver);
1914}
1915
1916static void cfq_remove_request(struct request *rq)
1917{
1918	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1919
1920	if (cfqq->next_rq == rq)
1921		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1922
1923	list_del_init(&rq->queuelist);
1924	cfq_del_rq_rb(rq);
1925
1926	cfqq->cfqd->rq_queued--;
1927	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
1928	if (rq->cmd_flags & REQ_PRIO) {
1929		WARN_ON(!cfqq->prio_pending);
1930		cfqq->prio_pending--;
1931	}
1932}
1933
1934static int cfq_merge(struct request_queue *q, struct request **req,
1935		     struct bio *bio)
1936{
1937	struct cfq_data *cfqd = q->elevator->elevator_data;
1938	struct request *__rq;
1939
1940	__rq = cfq_find_rq_fmerge(cfqd, bio);
1941	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1942		*req = __rq;
1943		return ELEVATOR_FRONT_MERGE;
1944	}
1945
1946	return ELEVATOR_NO_MERGE;
1947}
1948
1949static void cfq_merged_request(struct request_queue *q, struct request *req,
1950			       int type)
1951{
1952	if (type == ELEVATOR_FRONT_MERGE) {
1953		struct cfq_queue *cfqq = RQ_CFQQ(req);
1954
1955		cfq_reposition_rq_rb(cfqq, req);
1956	}
1957}
1958
1959static void cfq_bio_merged(struct request_queue *q, struct request *req,
1960				struct bio *bio)
1961{
1962	cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
1963}
1964
1965static void
1966cfq_merged_requests(struct request_queue *q, struct request *rq,
1967		    struct request *next)
1968{
1969	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1970	struct cfq_data *cfqd = q->elevator->elevator_data;
1971
1972	/*
1973	 * reposition in fifo if next is older than rq
1974	 */
1975	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1976	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
 
1977		list_move(&rq->queuelist, &next->queuelist);
1978		rq_set_fifo_time(rq, rq_fifo_time(next));
1979	}
1980
1981	if (cfqq->next_rq == next)
1982		cfqq->next_rq = rq;
1983	cfq_remove_request(next);
1984	cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
1985
1986	cfqq = RQ_CFQQ(next);
1987	/*
1988	 * all requests of this queue are merged to other queues, delete it
1989	 * from the service tree. If it's the active_queue,
1990	 * cfq_dispatch_requests() will choose to expire it or do idle
1991	 */
1992	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
1993	    cfqq != cfqd->active_queue)
1994		cfq_del_cfqq_rr(cfqd, cfqq);
1995}
1996
1997static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1998			   struct bio *bio)
1999{
2000	struct cfq_data *cfqd = q->elevator->elevator_data;
 
2001	struct cfq_io_cq *cic;
2002	struct cfq_queue *cfqq;
2003
2004	/*
2005	 * Disallow merge of a sync bio into an async request.
2006	 */
2007	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2008		return false;
2009
2010	/*
2011	 * Lookup the cfqq that this bio will be queued with and allow
2012	 * merge only if rq is queued there.
2013	 */
2014	cic = cfq_cic_lookup(cfqd, current->io_context);
2015	if (!cic)
2016		return false;
2017
2018	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2019	return cfqq == RQ_CFQQ(rq);
2020}
2021
 
 
 
 
 
 
2022static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2023{
2024	del_timer(&cfqd->idle_slice_timer);
2025	cfqg_stats_update_idle_time(cfqq->cfqg);
2026}
2027
2028static void __cfq_set_active_queue(struct cfq_data *cfqd,
2029				   struct cfq_queue *cfqq)
2030{
2031	if (cfqq) {
2032		cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
2033				cfqd->serving_prio, cfqd->serving_type);
2034		cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2035		cfqq->slice_start = 0;
2036		cfqq->dispatch_start = jiffies;
2037		cfqq->allocated_slice = 0;
2038		cfqq->slice_end = 0;
2039		cfqq->slice_dispatch = 0;
2040		cfqq->nr_sectors = 0;
2041
2042		cfq_clear_cfqq_wait_request(cfqq);
2043		cfq_clear_cfqq_must_dispatch(cfqq);
2044		cfq_clear_cfqq_must_alloc_slice(cfqq);
2045		cfq_clear_cfqq_fifo_expire(cfqq);
2046		cfq_mark_cfqq_slice_new(cfqq);
2047
2048		cfq_del_timer(cfqd, cfqq);
2049	}
2050
2051	cfqd->active_queue = cfqq;
2052}
2053
2054/*
2055 * current cfqq expired its slice (or was too idle), select new one
2056 */
2057static void
2058__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2059		    bool timed_out)
2060{
2061	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2062
2063	if (cfq_cfqq_wait_request(cfqq))
2064		cfq_del_timer(cfqd, cfqq);
2065
2066	cfq_clear_cfqq_wait_request(cfqq);
2067	cfq_clear_cfqq_wait_busy(cfqq);
2068
2069	/*
2070	 * If this cfqq is shared between multiple processes, check to
2071	 * make sure that those processes are still issuing I/Os within
2072	 * the mean seek distance.  If not, it may be time to break the
2073	 * queues apart again.
2074	 */
2075	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2076		cfq_mark_cfqq_split_coop(cfqq);
2077
2078	/*
2079	 * store what was left of this slice, if the queue idled/timed out
2080	 */
2081	if (timed_out) {
2082		if (cfq_cfqq_slice_new(cfqq))
2083			cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2084		else
2085			cfqq->slice_resid = cfqq->slice_end - jiffies;
2086		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2087	}
2088
2089	cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2090
2091	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2092		cfq_del_cfqq_rr(cfqd, cfqq);
2093
2094	cfq_resort_rr_list(cfqd, cfqq);
2095
2096	if (cfqq == cfqd->active_queue)
2097		cfqd->active_queue = NULL;
2098
2099	if (cfqd->active_cic) {
2100		put_io_context(cfqd->active_cic->icq.ioc);
2101		cfqd->active_cic = NULL;
2102	}
2103}
2104
2105static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2106{
2107	struct cfq_queue *cfqq = cfqd->active_queue;
2108
2109	if (cfqq)
2110		__cfq_slice_expired(cfqd, cfqq, timed_out);
2111}
2112
2113/*
2114 * Get next queue for service. Unless we have a queue preemption,
2115 * we'll simply select the first cfqq in the service tree.
2116 */
2117static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2118{
2119	struct cfq_rb_root *service_tree =
2120		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
2121					cfqd->serving_type);
2122
2123	if (!cfqd->rq_queued)
2124		return NULL;
2125
2126	/* There is nothing to dispatch */
2127	if (!service_tree)
2128		return NULL;
2129	if (RB_EMPTY_ROOT(&service_tree->rb))
2130		return NULL;
2131	return cfq_rb_first(service_tree);
2132}
2133
2134static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2135{
2136	struct cfq_group *cfqg;
2137	struct cfq_queue *cfqq;
2138	int i, j;
2139	struct cfq_rb_root *st;
2140
2141	if (!cfqd->rq_queued)
2142		return NULL;
2143
2144	cfqg = cfq_get_next_cfqg(cfqd);
2145	if (!cfqg)
2146		return NULL;
2147
2148	for_each_cfqg_st(cfqg, i, j, st)
2149		if ((cfqq = cfq_rb_first(st)) != NULL)
 
2150			return cfqq;
 
2151	return NULL;
2152}
2153
2154/*
2155 * Get and set a new active queue for service.
2156 */
2157static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2158					      struct cfq_queue *cfqq)
2159{
2160	if (!cfqq)
2161		cfqq = cfq_get_next_queue(cfqd);
2162
2163	__cfq_set_active_queue(cfqd, cfqq);
2164	return cfqq;
2165}
2166
2167static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2168					  struct request *rq)
2169{
2170	if (blk_rq_pos(rq) >= cfqd->last_position)
2171		return blk_rq_pos(rq) - cfqd->last_position;
2172	else
2173		return cfqd->last_position - blk_rq_pos(rq);
2174}
2175
2176static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2177			       struct request *rq)
2178{
2179	return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2180}
2181
2182static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2183				    struct cfq_queue *cur_cfqq)
2184{
2185	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2186	struct rb_node *parent, *node;
2187	struct cfq_queue *__cfqq;
2188	sector_t sector = cfqd->last_position;
2189
2190	if (RB_EMPTY_ROOT(root))
2191		return NULL;
2192
2193	/*
2194	 * First, if we find a request starting at the end of the last
2195	 * request, choose it.
2196	 */
2197	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2198	if (__cfqq)
2199		return __cfqq;
2200
2201	/*
2202	 * If the exact sector wasn't found, the parent of the NULL leaf
2203	 * will contain the closest sector.
2204	 */
2205	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
2206	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2207		return __cfqq;
2208
2209	if (blk_rq_pos(__cfqq->next_rq) < sector)
2210		node = rb_next(&__cfqq->p_node);
2211	else
2212		node = rb_prev(&__cfqq->p_node);
2213	if (!node)
2214		return NULL;
2215
2216	__cfqq = rb_entry(node, struct cfq_queue, p_node);
2217	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2218		return __cfqq;
2219
2220	return NULL;
2221}
2222
2223/*
2224 * cfqd - obvious
2225 * cur_cfqq - passed in so that we don't decide that the current queue is
2226 * 	      closely cooperating with itself.
2227 *
2228 * So, basically we're assuming that that cur_cfqq has dispatched at least
2229 * one request, and that cfqd->last_position reflects a position on the disk
2230 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
2231 * assumption.
2232 */
2233static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2234					      struct cfq_queue *cur_cfqq)
2235{
2236	struct cfq_queue *cfqq;
2237
2238	if (cfq_class_idle(cur_cfqq))
2239		return NULL;
2240	if (!cfq_cfqq_sync(cur_cfqq))
2241		return NULL;
2242	if (CFQQ_SEEKY(cur_cfqq))
2243		return NULL;
2244
2245	/*
2246	 * Don't search priority tree if it's the only queue in the group.
2247	 */
2248	if (cur_cfqq->cfqg->nr_cfqq == 1)
2249		return NULL;
2250
2251	/*
2252	 * We should notice if some of the queues are cooperating, eg
2253	 * working closely on the same area of the disk. In that case,
2254	 * we can group them together and don't waste time idling.
2255	 */
2256	cfqq = cfqq_close(cfqd, cur_cfqq);
2257	if (!cfqq)
2258		return NULL;
2259
2260	/* If new queue belongs to different cfq_group, don't choose it */
2261	if (cur_cfqq->cfqg != cfqq->cfqg)
2262		return NULL;
2263
2264	/*
2265	 * It only makes sense to merge sync queues.
2266	 */
2267	if (!cfq_cfqq_sync(cfqq))
2268		return NULL;
2269	if (CFQQ_SEEKY(cfqq))
2270		return NULL;
2271
2272	/*
2273	 * Do not merge queues of different priority classes
2274	 */
2275	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2276		return NULL;
2277
2278	return cfqq;
2279}
2280
2281/*
2282 * Determine whether we should enforce idle window for this queue.
2283 */
2284
2285static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2286{
2287	enum wl_prio_t prio = cfqq_prio(cfqq);
2288	struct cfq_rb_root *service_tree = cfqq->service_tree;
2289
2290	BUG_ON(!service_tree);
2291	BUG_ON(!service_tree->count);
2292
2293	if (!cfqd->cfq_slice_idle)
2294		return false;
2295
2296	/* We never do for idle class queues. */
2297	if (prio == IDLE_WORKLOAD)
2298		return false;
2299
2300	/* We do for queues that were marked with idle window flag. */
2301	if (cfq_cfqq_idle_window(cfqq) &&
2302	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2303		return true;
2304
2305	/*
2306	 * Otherwise, we do only if they are the last ones
2307	 * in their service tree.
2308	 */
2309	if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
2310	   !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
2311		return true;
2312	cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
2313			service_tree->count);
2314	return false;
2315}
2316
2317static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2318{
2319	struct cfq_queue *cfqq = cfqd->active_queue;
 
2320	struct cfq_io_cq *cic;
2321	unsigned long sl, group_idle = 0;
 
2322
2323	/*
2324	 * SSD device without seek penalty, disable idling. But only do so
2325	 * for devices that support queuing, otherwise we still have a problem
2326	 * with sync vs async workloads.
2327	 */
2328	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
 
2329		return;
2330
2331	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2332	WARN_ON(cfq_cfqq_slice_new(cfqq));
2333
2334	/*
2335	 * idle is disabled, either manually or by past process history
2336	 */
2337	if (!cfq_should_idle(cfqd, cfqq)) {
2338		/* no queue idling. Check for group idling */
2339		if (cfqd->cfq_group_idle)
2340			group_idle = cfqd->cfq_group_idle;
2341		else
2342			return;
2343	}
2344
2345	/*
2346	 * still active requests from this queue, don't idle
2347	 */
2348	if (cfqq->dispatched)
2349		return;
2350
2351	/*
2352	 * task has exited, don't wait
2353	 */
2354	cic = cfqd->active_cic;
2355	if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2356		return;
2357
2358	/*
2359	 * If our average think time is larger than the remaining time
2360	 * slice, then don't idle. This avoids overrunning the allotted
2361	 * time slice.
2362	 */
2363	if (sample_valid(cic->ttime.ttime_samples) &&
2364	    (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2365		cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2366			     cic->ttime.ttime_mean);
2367		return;
2368	}
2369
2370	/* There are other queues in the group, don't do group idle */
2371	if (group_idle && cfqq->cfqg->nr_cfqq > 1)
 
 
 
 
 
2372		return;
2373
2374	cfq_mark_cfqq_wait_request(cfqq);
2375
2376	if (group_idle)
2377		sl = cfqd->cfq_group_idle;
2378	else
2379		sl = cfqd->cfq_slice_idle;
2380
2381	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
 
2382	cfqg_stats_set_start_idle_time(cfqq->cfqg);
2383	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2384			group_idle ? 1 : 0);
2385}
2386
2387/*
2388 * Move request from internal lists to the request queue dispatch list.
2389 */
2390static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2391{
2392	struct cfq_data *cfqd = q->elevator->elevator_data;
2393	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2394
2395	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2396
2397	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2398	cfq_remove_request(rq);
2399	cfqq->dispatched++;
2400	(RQ_CFQG(rq))->dispatched++;
2401	elv_dispatch_sort(q, rq);
2402
2403	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2404	cfqq->nr_sectors += blk_rq_sectors(rq);
2405	cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2406}
2407
2408/*
2409 * return expired entry, or NULL to just start from scratch in rbtree
2410 */
2411static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2412{
2413	struct request *rq = NULL;
2414
2415	if (cfq_cfqq_fifo_expire(cfqq))
2416		return NULL;
2417
2418	cfq_mark_cfqq_fifo_expire(cfqq);
2419
2420	if (list_empty(&cfqq->fifo))
2421		return NULL;
2422
2423	rq = rq_entry_fifo(cfqq->fifo.next);
2424	if (time_before(jiffies, rq_fifo_time(rq)))
2425		rq = NULL;
2426
2427	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2428	return rq;
2429}
2430
2431static inline int
2432cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2433{
2434	const int base_rq = cfqd->cfq_slice_async_rq;
2435
2436	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2437
2438	return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2439}
2440
2441/*
2442 * Must be called with the queue_lock held.
2443 */
2444static int cfqq_process_refs(struct cfq_queue *cfqq)
2445{
2446	int process_refs, io_refs;
2447
2448	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2449	process_refs = cfqq->ref - io_refs;
2450	BUG_ON(process_refs < 0);
2451	return process_refs;
2452}
2453
2454static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2455{
2456	int process_refs, new_process_refs;
2457	struct cfq_queue *__cfqq;
2458
2459	/*
2460	 * If there are no process references on the new_cfqq, then it is
2461	 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2462	 * chain may have dropped their last reference (not just their
2463	 * last process reference).
2464	 */
2465	if (!cfqq_process_refs(new_cfqq))
2466		return;
2467
2468	/* Avoid a circular list and skip interim queue merges */
2469	while ((__cfqq = new_cfqq->new_cfqq)) {
2470		if (__cfqq == cfqq)
2471			return;
2472		new_cfqq = __cfqq;
2473	}
2474
2475	process_refs = cfqq_process_refs(cfqq);
2476	new_process_refs = cfqq_process_refs(new_cfqq);
2477	/*
2478	 * If the process for the cfqq has gone away, there is no
2479	 * sense in merging the queues.
2480	 */
2481	if (process_refs == 0 || new_process_refs == 0)
2482		return;
2483
2484	/*
2485	 * Merge in the direction of the lesser amount of work.
2486	 */
2487	if (new_process_refs >= process_refs) {
2488		cfqq->new_cfqq = new_cfqq;
2489		new_cfqq->ref += process_refs;
2490	} else {
2491		new_cfqq->new_cfqq = cfqq;
2492		cfqq->ref += new_process_refs;
2493	}
2494}
2495
2496static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2497				struct cfq_group *cfqg, enum wl_prio_t prio)
2498{
2499	struct cfq_queue *queue;
2500	int i;
2501	bool key_valid = false;
2502	unsigned long lowest_key = 0;
2503	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2504
2505	for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2506		/* select the one with lowest rb_key */
2507		queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2508		if (queue &&
2509		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
2510			lowest_key = queue->rb_key;
2511			cur_best = i;
2512			key_valid = true;
2513		}
2514	}
2515
2516	return cur_best;
2517}
2518
2519static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
 
2520{
2521	unsigned slice;
2522	unsigned count;
2523	struct cfq_rb_root *st;
2524	unsigned group_slice;
2525	enum wl_prio_t original_prio = cfqd->serving_prio;
 
2526
2527	/* Choose next priority. RT > BE > IDLE */
2528	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2529		cfqd->serving_prio = RT_WORKLOAD;
2530	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2531		cfqd->serving_prio = BE_WORKLOAD;
2532	else {
2533		cfqd->serving_prio = IDLE_WORKLOAD;
2534		cfqd->workload_expires = jiffies + 1;
2535		return;
2536	}
2537
2538	if (original_prio != cfqd->serving_prio)
2539		goto new_workload;
2540
2541	/*
2542	 * For RT and BE, we have to choose also the type
2543	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2544	 * expiration time
2545	 */
2546	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2547	count = st->count;
2548
2549	/*
2550	 * check workload expiration, and that we still have other queues ready
2551	 */
2552	if (count && !time_after(jiffies, cfqd->workload_expires))
2553		return;
2554
2555new_workload:
2556	/* otherwise select new workload type */
2557	cfqd->serving_type =
2558		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2559	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2560	count = st->count;
2561
2562	/*
2563	 * the workload slice is computed as a fraction of target latency
2564	 * proportional to the number of queues in that workload, over
2565	 * all the queues in the same priority class
2566	 */
2567	group_slice = cfq_group_slice(cfqd, cfqg);
2568
2569	slice = group_slice * count /
2570		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2571		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
 
2572
2573	if (cfqd->serving_type == ASYNC_WORKLOAD) {
2574		unsigned int tmp;
2575
2576		/*
2577		 * Async queues are currently system wide. Just taking
2578		 * proportion of queues with-in same group will lead to higher
2579		 * async ratio system wide as generally root group is going
2580		 * to have higher weight. A more accurate thing would be to
2581		 * calculate system wide asnc/sync ratio.
2582		 */
2583		tmp = cfqd->cfq_target_latency *
2584			cfqg_busy_async_queues(cfqd, cfqg);
2585		tmp = tmp/cfqd->busy_queues;
2586		slice = min_t(unsigned, slice, tmp);
2587
2588		/* async workload slice is scaled down according to
2589		 * the sync/async slice ratio. */
2590		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2591	} else
2592		/* sync workload slice is at least 2 * cfq_slice_idle */
2593		slice = max(slice, 2 * cfqd->cfq_slice_idle);
2594
2595	slice = max_t(unsigned, slice, CFQ_MIN_TT);
2596	cfq_log(cfqd, "workload slice:%d", slice);
2597	cfqd->workload_expires = jiffies + slice;
2598}
2599
2600static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2601{
2602	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2603	struct cfq_group *cfqg;
2604
2605	if (RB_EMPTY_ROOT(&st->rb))
2606		return NULL;
2607	cfqg = cfq_rb_first_group(st);
2608	update_min_vdisktime(st);
2609	return cfqg;
2610}
2611
2612static void cfq_choose_cfqg(struct cfq_data *cfqd)
2613{
2614	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
 
2615
2616	cfqd->serving_group = cfqg;
2617
2618	/* Restore the workload type data */
2619	if (cfqg->saved_workload_slice) {
2620		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2621		cfqd->serving_type = cfqg->saved_workload;
2622		cfqd->serving_prio = cfqg->saved_serving_prio;
2623	} else
2624		cfqd->workload_expires = jiffies - 1;
2625
2626	choose_service_tree(cfqd, cfqg);
2627}
2628
2629/*
2630 * Select a queue for service. If we have a current active queue,
2631 * check whether to continue servicing it, or retrieve and set a new one.
2632 */
2633static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2634{
2635	struct cfq_queue *cfqq, *new_cfqq = NULL;
 
2636
2637	cfqq = cfqd->active_queue;
2638	if (!cfqq)
2639		goto new_queue;
2640
2641	if (!cfqd->rq_queued)
2642		return NULL;
2643
2644	/*
2645	 * We were waiting for group to get backlogged. Expire the queue
2646	 */
2647	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2648		goto expire;
2649
2650	/*
2651	 * The active queue has run out of time, expire it and select new.
2652	 */
2653	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2654		/*
2655		 * If slice had not expired at the completion of last request
2656		 * we might not have turned on wait_busy flag. Don't expire
2657		 * the queue yet. Allow the group to get backlogged.
2658		 *
2659		 * The very fact that we have used the slice, that means we
2660		 * have been idling all along on this queue and it should be
2661		 * ok to wait for this request to complete.
2662		 */
2663		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2664		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2665			cfqq = NULL;
2666			goto keep_queue;
2667		} else
2668			goto check_group_idle;
2669	}
2670
2671	/*
2672	 * The active queue has requests and isn't expired, allow it to
2673	 * dispatch.
2674	 */
2675	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2676		goto keep_queue;
2677
2678	/*
2679	 * If another queue has a request waiting within our mean seek
2680	 * distance, let it run.  The expire code will check for close
2681	 * cooperators and put the close queue at the front of the service
2682	 * tree.  If possible, merge the expiring queue with the new cfqq.
2683	 */
2684	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2685	if (new_cfqq) {
2686		if (!cfqq->new_cfqq)
2687			cfq_setup_merge(cfqq, new_cfqq);
2688		goto expire;
2689	}
2690
2691	/*
2692	 * No requests pending. If the active queue still has requests in
2693	 * flight or is idling for a new request, allow either of these
2694	 * conditions to happen (or time out) before selecting a new queue.
2695	 */
2696	if (timer_pending(&cfqd->idle_slice_timer)) {
2697		cfqq = NULL;
2698		goto keep_queue;
2699	}
2700
2701	/*
2702	 * This is a deep seek queue, but the device is much faster than
2703	 * the queue can deliver, don't idle
2704	 **/
2705	if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2706	    (cfq_cfqq_slice_new(cfqq) ||
2707	    (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2708		cfq_clear_cfqq_deep(cfqq);
2709		cfq_clear_cfqq_idle_window(cfqq);
2710	}
2711
2712	if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2713		cfqq = NULL;
2714		goto keep_queue;
2715	}
2716
2717	/*
2718	 * If group idle is enabled and there are requests dispatched from
2719	 * this group, wait for requests to complete.
2720	 */
2721check_group_idle:
2722	if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2723	    cfqq->cfqg->dispatched &&
2724	    !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2725		cfqq = NULL;
2726		goto keep_queue;
2727	}
2728
2729expire:
2730	cfq_slice_expired(cfqd, 0);
2731new_queue:
2732	/*
2733	 * Current queue expired. Check if we have to switch to a new
2734	 * service tree
2735	 */
2736	if (!new_cfqq)
2737		cfq_choose_cfqg(cfqd);
2738
2739	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2740keep_queue:
2741	return cfqq;
2742}
2743
2744static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2745{
2746	int dispatched = 0;
2747
2748	while (cfqq->next_rq) {
2749		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2750		dispatched++;
2751	}
2752
2753	BUG_ON(!list_empty(&cfqq->fifo));
2754
2755	/* By default cfqq is not expired if it is empty. Do it explicitly */
2756	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2757	return dispatched;
2758}
2759
2760/*
2761 * Drain our current requests. Used for barriers and when switching
2762 * io schedulers on-the-fly.
2763 */
2764static int cfq_forced_dispatch(struct cfq_data *cfqd)
2765{
2766	struct cfq_queue *cfqq;
2767	int dispatched = 0;
2768
2769	/* Expire the timeslice of the current active queue first */
2770	cfq_slice_expired(cfqd, 0);
2771	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2772		__cfq_set_active_queue(cfqd, cfqq);
2773		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2774	}
2775
2776	BUG_ON(cfqd->busy_queues);
2777
2778	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2779	return dispatched;
2780}
2781
2782static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2783	struct cfq_queue *cfqq)
2784{
 
 
2785	/* the queue hasn't finished any request, can't estimate */
2786	if (cfq_cfqq_slice_new(cfqq))
2787		return true;
2788	if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2789		cfqq->slice_end))
2790		return true;
2791
2792	return false;
2793}
2794
2795static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2796{
2797	unsigned int max_dispatch;
2798
 
 
 
2799	/*
2800	 * Drain async requests before we start sync IO
2801	 */
2802	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2803		return false;
2804
2805	/*
2806	 * If this is an async queue and we have sync IO in flight, let it wait
2807	 */
2808	if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2809		return false;
2810
2811	max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2812	if (cfq_class_idle(cfqq))
2813		max_dispatch = 1;
2814
2815	/*
2816	 * Does this cfqq already have too much IO in flight?
2817	 */
2818	if (cfqq->dispatched >= max_dispatch) {
2819		bool promote_sync = false;
2820		/*
2821		 * idle queue must always only have a single IO in flight
2822		 */
2823		if (cfq_class_idle(cfqq))
2824			return false;
2825
2826		/*
2827		 * If there is only one sync queue
2828		 * we can ignore async queue here and give the sync
2829		 * queue no dispatch limit. The reason is a sync queue can
2830		 * preempt async queue, limiting the sync queue doesn't make
2831		 * sense. This is useful for aiostress test.
2832		 */
2833		if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2834			promote_sync = true;
2835
2836		/*
2837		 * We have other queues, don't allow more IO from this one
2838		 */
2839		if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2840				!promote_sync)
2841			return false;
2842
2843		/*
2844		 * Sole queue user, no limit
2845		 */
2846		if (cfqd->busy_queues == 1 || promote_sync)
2847			max_dispatch = -1;
2848		else
2849			/*
2850			 * Normally we start throttling cfqq when cfq_quantum/2
2851			 * requests have been dispatched. But we can drive
2852			 * deeper queue depths at the beginning of slice
2853			 * subjected to upper limit of cfq_quantum.
2854			 * */
2855			max_dispatch = cfqd->cfq_quantum;
2856	}
2857
2858	/*
2859	 * Async queues must wait a bit before being allowed dispatch.
2860	 * We also ramp up the dispatch depth gradually for async IO,
2861	 * based on the last sync IO we serviced
2862	 */
2863	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2864		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2865		unsigned int depth;
2866
2867		depth = last_sync / cfqd->cfq_slice[1];
2868		if (!depth && !cfqq->dispatched)
2869			depth = 1;
2870		if (depth < max_dispatch)
2871			max_dispatch = depth;
2872	}
2873
2874	/*
2875	 * If we're below the current max, allow a dispatch
2876	 */
2877	return cfqq->dispatched < max_dispatch;
2878}
2879
2880/*
2881 * Dispatch a request from cfqq, moving them to the request queue
2882 * dispatch list.
2883 */
2884static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2885{
2886	struct request *rq;
2887
2888	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2889
 
 
 
 
2890	if (!cfq_may_dispatch(cfqd, cfqq))
2891		return false;
2892
2893	/*
2894	 * follow expired path, else get first next available
2895	 */
2896	rq = cfq_check_fifo(cfqq);
2897	if (!rq)
2898		rq = cfqq->next_rq;
 
 
2899
2900	/*
2901	 * insert request into driver dispatch list
2902	 */
2903	cfq_dispatch_insert(cfqd->queue, rq);
2904
2905	if (!cfqd->active_cic) {
2906		struct cfq_io_cq *cic = RQ_CIC(rq);
2907
2908		atomic_long_inc(&cic->icq.ioc->refcount);
2909		cfqd->active_cic = cic;
2910	}
2911
2912	return true;
2913}
2914
2915/*
2916 * Find the cfqq that we need to service and move a request from that to the
2917 * dispatch list
2918 */
2919static int cfq_dispatch_requests(struct request_queue *q, int force)
2920{
2921	struct cfq_data *cfqd = q->elevator->elevator_data;
2922	struct cfq_queue *cfqq;
2923
2924	if (!cfqd->busy_queues)
2925		return 0;
2926
2927	if (unlikely(force))
2928		return cfq_forced_dispatch(cfqd);
2929
2930	cfqq = cfq_select_queue(cfqd);
2931	if (!cfqq)
2932		return 0;
2933
2934	/*
2935	 * Dispatch a request from this cfqq, if it is allowed
2936	 */
2937	if (!cfq_dispatch_request(cfqd, cfqq))
2938		return 0;
2939
2940	cfqq->slice_dispatch++;
2941	cfq_clear_cfqq_must_dispatch(cfqq);
2942
2943	/*
2944	 * expire an async queue immediately if it has used up its slice. idle
2945	 * queue always expire after 1 dispatch round.
2946	 */
2947	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2948	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2949	    cfq_class_idle(cfqq))) {
2950		cfqq->slice_end = jiffies + 1;
2951		cfq_slice_expired(cfqd, 0);
2952	}
2953
2954	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2955	return 1;
2956}
2957
2958/*
2959 * task holds one reference to the queue, dropped when task exits. each rq
2960 * in-flight on this queue also holds a reference, dropped when rq is freed.
2961 *
2962 * Each cfq queue took a reference on the parent group. Drop it now.
2963 * queue lock must be held here.
2964 */
2965static void cfq_put_queue(struct cfq_queue *cfqq)
2966{
2967	struct cfq_data *cfqd = cfqq->cfqd;
2968	struct cfq_group *cfqg;
2969
2970	BUG_ON(cfqq->ref <= 0);
2971
2972	cfqq->ref--;
2973	if (cfqq->ref)
2974		return;
2975
2976	cfq_log_cfqq(cfqd, cfqq, "put_queue");
2977	BUG_ON(rb_first(&cfqq->sort_list));
2978	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2979	cfqg = cfqq->cfqg;
2980
2981	if (unlikely(cfqd->active_queue == cfqq)) {
2982		__cfq_slice_expired(cfqd, cfqq, 0);
2983		cfq_schedule_dispatch(cfqd);
2984	}
2985
2986	BUG_ON(cfq_cfqq_on_rr(cfqq));
2987	kmem_cache_free(cfq_pool, cfqq);
2988	cfqg_put(cfqg);
2989}
2990
2991static void cfq_put_cooperator(struct cfq_queue *cfqq)
2992{
2993	struct cfq_queue *__cfqq, *next;
2994
2995	/*
2996	 * If this queue was scheduled to merge with another queue, be
2997	 * sure to drop the reference taken on that queue (and others in
2998	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2999	 */
3000	__cfqq = cfqq->new_cfqq;
3001	while (__cfqq) {
3002		if (__cfqq == cfqq) {
3003			WARN(1, "cfqq->new_cfqq loop detected\n");
3004			break;
3005		}
3006		next = __cfqq->new_cfqq;
3007		cfq_put_queue(__cfqq);
3008		__cfqq = next;
3009	}
3010}
3011
3012static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3013{
3014	if (unlikely(cfqq == cfqd->active_queue)) {
3015		__cfq_slice_expired(cfqd, cfqq, 0);
3016		cfq_schedule_dispatch(cfqd);
3017	}
3018
3019	cfq_put_cooperator(cfqq);
3020
3021	cfq_put_queue(cfqq);
3022}
3023
3024static void cfq_init_icq(struct io_cq *icq)
3025{
3026	struct cfq_io_cq *cic = icq_to_cic(icq);
3027
3028	cic->ttime.last_end_request = jiffies;
3029}
3030
3031static void cfq_exit_icq(struct io_cq *icq)
3032{
3033	struct cfq_io_cq *cic = icq_to_cic(icq);
3034	struct cfq_data *cfqd = cic_to_cfqd(cic);
3035
3036	if (cic->cfqq[BLK_RW_ASYNC]) {
3037		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
3038		cic->cfqq[BLK_RW_ASYNC] = NULL;
3039	}
3040
3041	if (cic->cfqq[BLK_RW_SYNC]) {
3042		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
3043		cic->cfqq[BLK_RW_SYNC] = NULL;
3044	}
3045}
3046
3047static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3048{
3049	struct task_struct *tsk = current;
3050	int ioprio_class;
3051
3052	if (!cfq_cfqq_prio_changed(cfqq))
3053		return;
3054
3055	ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3056	switch (ioprio_class) {
3057	default:
3058		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3059	case IOPRIO_CLASS_NONE:
3060		/*
3061		 * no prio set, inherit CPU scheduling settings
3062		 */
3063		cfqq->ioprio = task_nice_ioprio(tsk);
3064		cfqq->ioprio_class = task_nice_ioclass(tsk);
3065		break;
3066	case IOPRIO_CLASS_RT:
3067		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3068		cfqq->ioprio_class = IOPRIO_CLASS_RT;
3069		break;
3070	case IOPRIO_CLASS_BE:
3071		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3072		cfqq->ioprio_class = IOPRIO_CLASS_BE;
3073		break;
3074	case IOPRIO_CLASS_IDLE:
3075		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3076		cfqq->ioprio = 7;
3077		cfq_clear_cfqq_idle_window(cfqq);
3078		break;
3079	}
3080
3081	/*
3082	 * keep track of original prio settings in case we have to temporarily
3083	 * elevate the priority of this queue
3084	 */
3085	cfqq->org_ioprio = cfqq->ioprio;
 
3086	cfq_clear_cfqq_prio_changed(cfqq);
3087}
3088
3089static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3090{
3091	int ioprio = cic->icq.ioc->ioprio;
3092	struct cfq_data *cfqd = cic_to_cfqd(cic);
3093	struct cfq_queue *cfqq;
3094
3095	/*
3096	 * Check whether ioprio has changed.  The condition may trigger
3097	 * spuriously on a newly created cic but there's no harm.
3098	 */
3099	if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3100		return;
3101
3102	cfqq = cic->cfqq[BLK_RW_ASYNC];
3103	if (cfqq) {
3104		struct cfq_queue *new_cfqq;
3105		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
3106					 GFP_ATOMIC);
3107		if (new_cfqq) {
3108			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
3109			cfq_put_queue(cfqq);
3110		}
3111	}
3112
3113	cfqq = cic->cfqq[BLK_RW_SYNC];
3114	if (cfqq)
3115		cfq_mark_cfqq_prio_changed(cfqq);
3116
3117	cic->ioprio = ioprio;
3118}
3119
3120static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3121			  pid_t pid, bool is_sync)
3122{
3123	RB_CLEAR_NODE(&cfqq->rb_node);
3124	RB_CLEAR_NODE(&cfqq->p_node);
3125	INIT_LIST_HEAD(&cfqq->fifo);
3126
3127	cfqq->ref = 0;
3128	cfqq->cfqd = cfqd;
3129
3130	cfq_mark_cfqq_prio_changed(cfqq);
3131
3132	if (is_sync) {
3133		if (!cfq_class_idle(cfqq))
3134			cfq_mark_cfqq_idle_window(cfqq);
3135		cfq_mark_cfqq_sync(cfqq);
3136	}
3137	cfqq->pid = pid;
3138}
3139
3140#ifdef CONFIG_CFQ_GROUP_IOSCHED
3141static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3142{
3143	struct cfq_data *cfqd = cic_to_cfqd(cic);
3144	struct cfq_queue *sync_cfqq;
3145	uint64_t id;
3146
3147	rcu_read_lock();
3148	id = bio_blkcg(bio)->id;
3149	rcu_read_unlock();
3150
3151	/*
3152	 * Check whether blkcg has changed.  The condition may trigger
3153	 * spuriously on a newly created cic but there's no harm.
3154	 */
3155	if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
3156		return;
3157
3158	sync_cfqq = cic_to_cfqq(cic, 1);
3159	if (sync_cfqq) {
3160		/*
3161		 * Drop reference to sync queue. A new sync queue will be
3162		 * assigned in new group upon arrival of a fresh request.
3163		 */
3164		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3165		cic_set_cfqq(cic, NULL, 1);
3166		cfq_put_queue(sync_cfqq);
3167	}
3168
3169	cic->blkcg_id = id;
3170}
3171#else
3172static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3173#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
3174
3175static struct cfq_queue *
3176cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3177		     struct bio *bio, gfp_t gfp_mask)
3178{
3179	struct blkcg *blkcg;
3180	struct cfq_queue *cfqq, *new_cfqq = NULL;
3181	struct cfq_group *cfqg;
3182
3183retry:
3184	rcu_read_lock();
3185
3186	blkcg = bio_blkcg(bio);
3187	cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3188	cfqq = cic_to_cfqq(cic, is_sync);
3189
3190	/*
3191	 * Always try a new alloc if we fell back to the OOM cfqq
3192	 * originally, since it should just be a temporary situation.
3193	 */
3194	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3195		cfqq = NULL;
3196		if (new_cfqq) {
3197			cfqq = new_cfqq;
3198			new_cfqq = NULL;
3199		} else if (gfp_mask & __GFP_WAIT) {
3200			rcu_read_unlock();
3201			spin_unlock_irq(cfqd->queue->queue_lock);
3202			new_cfqq = kmem_cache_alloc_node(cfq_pool,
3203					gfp_mask | __GFP_ZERO,
3204					cfqd->queue->node);
3205			spin_lock_irq(cfqd->queue->queue_lock);
3206			if (new_cfqq)
3207				goto retry;
3208		} else {
3209			cfqq = kmem_cache_alloc_node(cfq_pool,
3210					gfp_mask | __GFP_ZERO,
3211					cfqd->queue->node);
3212		}
3213
3214		if (cfqq) {
3215			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3216			cfq_init_prio_data(cfqq, cic);
3217			cfq_link_cfqq_cfqg(cfqq, cfqg);
3218			cfq_log_cfqq(cfqd, cfqq, "alloced");
3219		} else
3220			cfqq = &cfqd->oom_cfqq;
3221	}
3222
3223	if (new_cfqq)
3224		kmem_cache_free(cfq_pool, new_cfqq);
 
 
 
 
3225
3226	rcu_read_unlock();
3227	return cfqq;
 
 
 
3228}
 
3229
3230static struct cfq_queue **
3231cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3232{
3233	switch (ioprio_class) {
3234	case IOPRIO_CLASS_RT:
3235		return &cfqd->async_cfqq[0][ioprio];
3236	case IOPRIO_CLASS_NONE:
3237		ioprio = IOPRIO_NORM;
3238		/* fall through */
3239	case IOPRIO_CLASS_BE:
3240		return &cfqd->async_cfqq[1][ioprio];
3241	case IOPRIO_CLASS_IDLE:
3242		return &cfqd->async_idle_cfqq;
3243	default:
3244		BUG();
3245	}
3246}
3247
3248static struct cfq_queue *
3249cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3250	      struct bio *bio, gfp_t gfp_mask)
3251{
3252	const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3253	const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3254	struct cfq_queue **async_cfqq = NULL;
3255	struct cfq_queue *cfqq = NULL;
 
 
 
 
 
 
 
 
3256
3257	if (!is_sync) {
3258		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
 
 
 
 
 
3259		cfqq = *async_cfqq;
 
 
3260	}
3261
3262	if (!cfqq)
3263		cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
3264
3265	/*
3266	 * pin the queue now that it's allocated, scheduler exit will prune it
3267	 */
3268	if (!is_sync && !(*async_cfqq)) {
3269		cfqq->ref++;
3270		*async_cfqq = cfqq;
3271	}
3272
3273	cfqq->ref++;
 
3274	return cfqq;
3275}
3276
3277static void
3278__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3279{
3280	unsigned long elapsed = jiffies - ttime->last_end_request;
3281	elapsed = min(elapsed, 2UL * slice_idle);
3282
3283	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3284	ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3285	ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
 
3286}
3287
3288static void
3289cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3290			struct cfq_io_cq *cic)
3291{
3292	if (cfq_cfqq_sync(cfqq)) {
3293		__cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3294		__cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3295			cfqd->cfq_slice_idle);
3296	}
3297#ifdef CONFIG_CFQ_GROUP_IOSCHED
3298	__cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3299#endif
3300}
3301
3302static void
3303cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3304		       struct request *rq)
3305{
3306	sector_t sdist = 0;
3307	sector_t n_sec = blk_rq_sectors(rq);
3308	if (cfqq->last_request_pos) {
3309		if (cfqq->last_request_pos < blk_rq_pos(rq))
3310			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3311		else
3312			sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3313	}
3314
3315	cfqq->seek_history <<= 1;
3316	if (blk_queue_nonrot(cfqd->queue))
3317		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3318	else
3319		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3320}
3321
 
 
 
 
 
 
3322/*
3323 * Disable idle window if the process thinks too long or seeks so much that
3324 * it doesn't matter
3325 */
3326static void
3327cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3328		       struct cfq_io_cq *cic)
3329{
3330	int old_idle, enable_idle;
3331
3332	/*
3333	 * Don't idle for async or idle io prio class
3334	 */
3335	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3336		return;
3337
3338	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3339
3340	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3341		cfq_mark_cfqq_deep(cfqq);
3342
3343	if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3344		enable_idle = 0;
3345	else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3346		 !cfqd->cfq_slice_idle ||
3347		 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3348		enable_idle = 0;
3349	else if (sample_valid(cic->ttime.ttime_samples)) {
3350		if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3351			enable_idle = 0;
3352		else
3353			enable_idle = 1;
3354	}
3355
3356	if (old_idle != enable_idle) {
3357		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3358		if (enable_idle)
3359			cfq_mark_cfqq_idle_window(cfqq);
3360		else
3361			cfq_clear_cfqq_idle_window(cfqq);
3362	}
3363}
3364
3365/*
3366 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3367 * no or if we aren't sure, a 1 will cause a preempt.
3368 */
3369static bool
3370cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3371		   struct request *rq)
3372{
3373	struct cfq_queue *cfqq;
3374
3375	cfqq = cfqd->active_queue;
3376	if (!cfqq)
3377		return false;
3378
3379	if (cfq_class_idle(new_cfqq))
3380		return false;
3381
3382	if (cfq_class_idle(cfqq))
3383		return true;
3384
3385	/*
3386	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3387	 */
3388	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3389		return false;
3390
3391	/*
3392	 * if the new request is sync, but the currently running queue is
3393	 * not, let the sync request have priority.
3394	 */
3395	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3396		return true;
3397
3398	if (new_cfqq->cfqg != cfqq->cfqg)
 
 
 
 
 
3399		return false;
3400
3401	if (cfq_slice_used(cfqq))
3402		return true;
3403
 
 
 
 
 
 
 
3404	/* Allow preemption only if we are idling on sync-noidle tree */
3405	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3406	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3407	    new_cfqq->service_tree->count == 2 &&
3408	    RB_EMPTY_ROOT(&cfqq->sort_list))
3409		return true;
3410
3411	/*
3412	 * So both queues are sync. Let the new request get disk time if
3413	 * it's a metadata request and the current queue is doing regular IO.
3414	 */
3415	if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3416		return true;
3417
3418	/*
3419	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3420	 */
3421	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3422		return true;
3423
3424	/* An idle queue should not be idle now for some reason */
3425	if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3426		return true;
3427
3428	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3429		return false;
3430
3431	/*
3432	 * if this request is as-good as one we would expect from the
3433	 * current cfqq, let it preempt
3434	 */
3435	if (cfq_rq_close(cfqd, cfqq, rq))
3436		return true;
3437
3438	return false;
3439}
3440
3441/*
3442 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3443 * let it have half of its nominal slice.
3444 */
3445static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3446{
3447	enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3448
3449	cfq_log_cfqq(cfqd, cfqq, "preempt");
3450	cfq_slice_expired(cfqd, 1);
3451
3452	/*
3453	 * workload type is changed, don't save slice, otherwise preempt
3454	 * doesn't happen
3455	 */
3456	if (old_type != cfqq_type(cfqq))
3457		cfqq->cfqg->saved_workload_slice = 0;
3458
3459	/*
3460	 * Put the new queue at the front of the of the current list,
3461	 * so we know that it will be selected next.
3462	 */
3463	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3464
3465	cfq_service_tree_add(cfqd, cfqq, 1);
3466
3467	cfqq->slice_end = 0;
3468	cfq_mark_cfqq_slice_new(cfqq);
3469}
3470
3471/*
3472 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3473 * something we should do about it
3474 */
3475static void
3476cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3477		struct request *rq)
3478{
3479	struct cfq_io_cq *cic = RQ_CIC(rq);
3480
3481	cfqd->rq_queued++;
3482	if (rq->cmd_flags & REQ_PRIO)
3483		cfqq->prio_pending++;
3484
3485	cfq_update_io_thinktime(cfqd, cfqq, cic);
3486	cfq_update_io_seektime(cfqd, cfqq, rq);
3487	cfq_update_idle_window(cfqd, cfqq, cic);
3488
3489	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3490
3491	if (cfqq == cfqd->active_queue) {
3492		/*
3493		 * Remember that we saw a request from this process, but
3494		 * don't start queuing just yet. Otherwise we risk seeing lots
3495		 * of tiny requests, because we disrupt the normal plugging
3496		 * and merging. If the request is already larger than a single
3497		 * page, let it rip immediately. For that case we assume that
3498		 * merging is already done. Ditto for a busy system that
3499		 * has other work pending, don't risk delaying until the
3500		 * idle timer unplug to continue working.
3501		 */
3502		if (cfq_cfqq_wait_request(cfqq)) {
3503			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3504			    cfqd->busy_queues > 1) {
3505				cfq_del_timer(cfqd, cfqq);
3506				cfq_clear_cfqq_wait_request(cfqq);
3507				__blk_run_queue(cfqd->queue);
3508			} else {
3509				cfqg_stats_update_idle_time(cfqq->cfqg);
3510				cfq_mark_cfqq_must_dispatch(cfqq);
3511			}
3512		}
3513	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3514		/*
3515		 * not the active queue - expire current slice if it is
3516		 * idle and has expired it's mean thinktime or this new queue
3517		 * has some old slice time left and is of higher priority or
3518		 * this new queue is RT and the current one is BE
3519		 */
3520		cfq_preempt_queue(cfqd, cfqq);
3521		__blk_run_queue(cfqd->queue);
3522	}
3523}
3524
3525static void cfq_insert_request(struct request_queue *q, struct request *rq)
3526{
3527	struct cfq_data *cfqd = q->elevator->elevator_data;
3528	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3529
3530	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3531	cfq_init_prio_data(cfqq, RQ_CIC(rq));
3532
3533	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3534	list_add_tail(&rq->queuelist, &cfqq->fifo);
3535	cfq_add_rq_rb(rq);
3536	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
3537				 rq->cmd_flags);
3538	cfq_rq_enqueued(cfqd, cfqq, rq);
3539}
3540
3541/*
3542 * Update hw_tag based on peak queue depth over 50 samples under
3543 * sufficient load.
3544 */
3545static void cfq_update_hw_tag(struct cfq_data *cfqd)
3546{
3547	struct cfq_queue *cfqq = cfqd->active_queue;
3548
3549	if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3550		cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3551
3552	if (cfqd->hw_tag == 1)
3553		return;
3554
3555	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3556	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3557		return;
3558
3559	/*
3560	 * If active queue hasn't enough requests and can idle, cfq might not
3561	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3562	 * case
3563	 */
3564	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3565	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3566	    CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3567		return;
3568
3569	if (cfqd->hw_tag_samples++ < 50)
3570		return;
3571
3572	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3573		cfqd->hw_tag = 1;
3574	else
3575		cfqd->hw_tag = 0;
3576}
3577
3578static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3579{
3580	struct cfq_io_cq *cic = cfqd->active_cic;
 
3581
3582	/* If the queue already has requests, don't wait */
3583	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3584		return false;
3585
3586	/* If there are other queues in the group, don't wait */
3587	if (cfqq->cfqg->nr_cfqq > 1)
3588		return false;
3589
3590	/* the only queue in the group, but think time is big */
3591	if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3592		return false;
3593
3594	if (cfq_slice_used(cfqq))
3595		return true;
3596
3597	/* if slice left is less than think time, wait busy */
3598	if (cic && sample_valid(cic->ttime.ttime_samples)
3599	    && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3600		return true;
3601
3602	/*
3603	 * If think times is less than a jiffy than ttime_mean=0 and above
3604	 * will not be true. It might happen that slice has not expired yet
3605	 * but will expire soon (4-5 ns) during select_queue(). To cover the
3606	 * case where think time is less than a jiffy, mark the queue wait
3607	 * busy if only 1 jiffy is left in the slice.
3608	 */
3609	if (cfqq->slice_end - jiffies == 1)
3610		return true;
3611
3612	return false;
3613}
3614
3615static void cfq_completed_request(struct request_queue *q, struct request *rq)
3616{
3617	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3618	struct cfq_data *cfqd = cfqq->cfqd;
3619	const int sync = rq_is_sync(rq);
3620	unsigned long now;
3621
3622	now = jiffies;
3623	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3624		     !!(rq->cmd_flags & REQ_NOIDLE));
3625
3626	cfq_update_hw_tag(cfqd);
3627
3628	WARN_ON(!cfqd->rq_in_driver);
3629	WARN_ON(!cfqq->dispatched);
3630	cfqd->rq_in_driver--;
3631	cfqq->dispatched--;
3632	(RQ_CFQG(rq))->dispatched--;
3633	cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
3634				     rq_io_start_time_ns(rq), rq->cmd_flags);
3635
3636	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3637
3638	if (sync) {
3639		struct cfq_rb_root *service_tree;
3640
3641		RQ_CIC(rq)->ttime.last_end_request = now;
3642
3643		if (cfq_cfqq_on_rr(cfqq))
3644			service_tree = cfqq->service_tree;
3645		else
3646			service_tree = service_tree_for(cfqq->cfqg,
3647				cfqq_prio(cfqq), cfqq_type(cfqq));
3648		service_tree->ttime.last_end_request = now;
3649		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
 
 
 
 
 
 
 
 
 
 
3650			cfqd->last_delayed_sync = now;
3651	}
3652
3653#ifdef CONFIG_CFQ_GROUP_IOSCHED
3654	cfqq->cfqg->ttime.last_end_request = now;
3655#endif
3656
3657	/*
3658	 * If this is the active queue, check if it needs to be expired,
3659	 * or if we want to idle in case it has no pending requests.
3660	 */
3661	if (cfqd->active_queue == cfqq) {
3662		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3663
3664		if (cfq_cfqq_slice_new(cfqq)) {
3665			cfq_set_prio_slice(cfqd, cfqq);
3666			cfq_clear_cfqq_slice_new(cfqq);
3667		}
3668
3669		/*
3670		 * Should we wait for next request to come in before we expire
3671		 * the queue.
3672		 */
3673		if (cfq_should_wait_busy(cfqd, cfqq)) {
3674			unsigned long extend_sl = cfqd->cfq_slice_idle;
3675			if (!cfqd->cfq_slice_idle)
3676				extend_sl = cfqd->cfq_group_idle;
3677			cfqq->slice_end = jiffies + extend_sl;
3678			cfq_mark_cfqq_wait_busy(cfqq);
3679			cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3680		}
3681
3682		/*
3683		 * Idling is not enabled on:
3684		 * - expired queues
3685		 * - idle-priority queues
3686		 * - async queues
3687		 * - queues with still some requests queued
3688		 * - when there is a close cooperator
3689		 */
3690		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3691			cfq_slice_expired(cfqd, 1);
3692		else if (sync && cfqq_empty &&
3693			 !cfq_close_cooperator(cfqd, cfqq)) {
3694			cfq_arm_slice_timer(cfqd);
3695		}
3696	}
3697
3698	if (!cfqd->rq_in_driver)
3699		cfq_schedule_dispatch(cfqd);
3700}
3701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3702static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3703{
3704	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3705		cfq_mark_cfqq_must_alloc_slice(cfqq);
3706		return ELV_MQUEUE_MUST;
3707	}
3708
3709	return ELV_MQUEUE_MAY;
3710}
3711
3712static int cfq_may_queue(struct request_queue *q, int rw)
3713{
3714	struct cfq_data *cfqd = q->elevator->elevator_data;
3715	struct task_struct *tsk = current;
3716	struct cfq_io_cq *cic;
3717	struct cfq_queue *cfqq;
3718
3719	/*
3720	 * don't force setup of a queue from here, as a call to may_queue
3721	 * does not necessarily imply that a request actually will be queued.
3722	 * so just lookup a possibly existing queue, or return 'may queue'
3723	 * if that fails
3724	 */
3725	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3726	if (!cic)
3727		return ELV_MQUEUE_MAY;
3728
3729	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3730	if (cfqq) {
3731		cfq_init_prio_data(cfqq, cic);
 
3732
3733		return __cfq_may_queue(cfqq);
3734	}
3735
3736	return ELV_MQUEUE_MAY;
3737}
3738
3739/*
3740 * queue lock held here
3741 */
3742static void cfq_put_request(struct request *rq)
3743{
3744	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3745
3746	if (cfqq) {
3747		const int rw = rq_data_dir(rq);
3748
3749		BUG_ON(!cfqq->allocated[rw]);
3750		cfqq->allocated[rw]--;
3751
3752		/* Put down rq reference on cfqg */
3753		cfqg_put(RQ_CFQG(rq));
3754		rq->elv.priv[0] = NULL;
3755		rq->elv.priv[1] = NULL;
3756
3757		cfq_put_queue(cfqq);
3758	}
3759}
3760
3761static struct cfq_queue *
3762cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
3763		struct cfq_queue *cfqq)
3764{
3765	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3766	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3767	cfq_mark_cfqq_coop(cfqq->new_cfqq);
3768	cfq_put_queue(cfqq);
3769	return cic_to_cfqq(cic, 1);
3770}
3771
3772/*
3773 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3774 * was the last process referring to said cfqq.
3775 */
3776static struct cfq_queue *
3777split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
3778{
3779	if (cfqq_process_refs(cfqq) == 1) {
3780		cfqq->pid = current->pid;
3781		cfq_clear_cfqq_coop(cfqq);
3782		cfq_clear_cfqq_split_coop(cfqq);
3783		return cfqq;
3784	}
3785
3786	cic_set_cfqq(cic, NULL, 1);
3787
3788	cfq_put_cooperator(cfqq);
3789
3790	cfq_put_queue(cfqq);
3791	return NULL;
3792}
3793/*
3794 * Allocate cfq data structures associated with this request.
3795 */
3796static int
3797cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
3798		gfp_t gfp_mask)
3799{
3800	struct cfq_data *cfqd = q->elevator->elevator_data;
3801	struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
3802	const int rw = rq_data_dir(rq);
3803	const bool is_sync = rq_is_sync(rq);
3804	struct cfq_queue *cfqq;
3805
3806	might_sleep_if(gfp_mask & __GFP_WAIT);
3807
3808	spin_lock_irq(q->queue_lock);
3809
3810	check_ioprio_changed(cic, bio);
3811	check_blkcg_changed(cic, bio);
3812new_queue:
3813	cfqq = cic_to_cfqq(cic, is_sync);
3814	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3815		cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
 
 
3816		cic_set_cfqq(cic, cfqq, is_sync);
3817	} else {
3818		/*
3819		 * If the queue was seeky for too long, break it apart.
3820		 */
3821		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3822			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3823			cfqq = split_cfqq(cic, cfqq);
3824			if (!cfqq)
3825				goto new_queue;
3826		}
3827
3828		/*
3829		 * Check to see if this queue is scheduled to merge with
3830		 * another, closely cooperating queue.  The merging of
3831		 * queues happens here as it must be done in process context.
3832		 * The reference on new_cfqq was taken in merge_cfqqs.
3833		 */
3834		if (cfqq->new_cfqq)
3835			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3836	}
3837
3838	cfqq->allocated[rw]++;
3839
3840	cfqq->ref++;
3841	cfqg_get(cfqq->cfqg);
3842	rq->elv.priv[0] = cfqq;
3843	rq->elv.priv[1] = cfqq->cfqg;
3844	spin_unlock_irq(q->queue_lock);
 
3845	return 0;
3846}
3847
3848static void cfq_kick_queue(struct work_struct *work)
3849{
3850	struct cfq_data *cfqd =
3851		container_of(work, struct cfq_data, unplug_work);
3852	struct request_queue *q = cfqd->queue;
3853
3854	spin_lock_irq(q->queue_lock);
3855	__blk_run_queue(cfqd->queue);
3856	spin_unlock_irq(q->queue_lock);
3857}
3858
3859/*
3860 * Timer running if the active_queue is currently idling inside its time slice
3861 */
3862static void cfq_idle_slice_timer(unsigned long data)
3863{
3864	struct cfq_data *cfqd = (struct cfq_data *) data;
 
3865	struct cfq_queue *cfqq;
3866	unsigned long flags;
3867	int timed_out = 1;
3868
3869	cfq_log(cfqd, "idle timer fired");
3870
3871	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3872
3873	cfqq = cfqd->active_queue;
3874	if (cfqq) {
3875		timed_out = 0;
3876
3877		/*
3878		 * We saw a request before the queue expired, let it through
3879		 */
3880		if (cfq_cfqq_must_dispatch(cfqq))
3881			goto out_kick;
3882
3883		/*
3884		 * expired
3885		 */
3886		if (cfq_slice_used(cfqq))
3887			goto expire;
3888
3889		/*
3890		 * only expire and reinvoke request handler, if there are
3891		 * other queues with pending requests
3892		 */
3893		if (!cfqd->busy_queues)
3894			goto out_cont;
3895
3896		/*
3897		 * not expired and it has a request pending, let it dispatch
3898		 */
3899		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3900			goto out_kick;
3901
3902		/*
3903		 * Queue depth flag is reset only when the idle didn't succeed
3904		 */
3905		cfq_clear_cfqq_deep(cfqq);
3906	}
3907expire:
3908	cfq_slice_expired(cfqd, timed_out);
3909out_kick:
3910	cfq_schedule_dispatch(cfqd);
3911out_cont:
3912	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
 
3913}
3914
3915static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3916{
3917	del_timer_sync(&cfqd->idle_slice_timer);
3918	cancel_work_sync(&cfqd->unplug_work);
3919}
3920
3921static void cfq_put_async_queues(struct cfq_data *cfqd)
3922{
3923	int i;
3924
3925	for (i = 0; i < IOPRIO_BE_NR; i++) {
3926		if (cfqd->async_cfqq[0][i])
3927			cfq_put_queue(cfqd->async_cfqq[0][i]);
3928		if (cfqd->async_cfqq[1][i])
3929			cfq_put_queue(cfqd->async_cfqq[1][i]);
3930	}
3931
3932	if (cfqd->async_idle_cfqq)
3933		cfq_put_queue(cfqd->async_idle_cfqq);
3934}
3935
3936static void cfq_exit_queue(struct elevator_queue *e)
3937{
3938	struct cfq_data *cfqd = e->elevator_data;
3939	struct request_queue *q = cfqd->queue;
3940
3941	cfq_shutdown_timer_wq(cfqd);
3942
3943	spin_lock_irq(q->queue_lock);
3944
3945	if (cfqd->active_queue)
3946		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3947
3948	cfq_put_async_queues(cfqd);
3949
3950	spin_unlock_irq(q->queue_lock);
3951
3952	cfq_shutdown_timer_wq(cfqd);
3953
3954#ifdef CONFIG_CFQ_GROUP_IOSCHED
3955	blkcg_deactivate_policy(q, &blkcg_policy_cfq);
3956#else
3957	kfree(cfqd->root_group);
3958#endif
3959	kfree(cfqd);
3960}
3961
3962static int cfq_init_queue(struct request_queue *q)
3963{
3964	struct cfq_data *cfqd;
3965	struct blkcg_gq *blkg __maybe_unused;
3966	int i, ret;
 
3967
3968	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3969	if (!cfqd)
3970		return -ENOMEM;
3971
 
 
 
 
 
 
 
3972	cfqd->queue = q;
3973	q->elevator->elevator_data = cfqd;
 
 
3974
3975	/* Init root service tree */
3976	cfqd->grp_service_tree = CFQ_RB_ROOT;
3977
3978	/* Init root group and prefer root group over other groups by default */
3979#ifdef CONFIG_CFQ_GROUP_IOSCHED
3980	ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
3981	if (ret)
3982		goto out_free;
3983
3984	cfqd->root_group = blkg_to_cfqg(q->root_blkg);
3985#else
3986	ret = -ENOMEM;
3987	cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
3988					GFP_KERNEL, cfqd->queue->node);
3989	if (!cfqd->root_group)
3990		goto out_free;
3991
3992	cfq_init_cfqg_base(cfqd->root_group);
 
 
3993#endif
3994	cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
3995
3996	/*
3997	 * Not strictly needed (since RB_ROOT just clears the node and we
3998	 * zeroed cfqd on alloc), but better be safe in case someone decides
3999	 * to add magic to the rb code
4000	 */
4001	for (i = 0; i < CFQ_PRIO_LISTS; i++)
4002		cfqd->prio_trees[i] = RB_ROOT;
4003
4004	/*
4005	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4006	 * Grab a permanent reference to it, so that the normal code flow
4007	 * will not attempt to free it.  oom_cfqq is linked to root_group
4008	 * but shouldn't hold a reference as it'll never be unlinked.  Lose
4009	 * the reference from linking right away.
4010	 */
4011	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4012	cfqd->oom_cfqq.ref++;
4013
4014	spin_lock_irq(q->queue_lock);
4015	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4016	cfqg_put(cfqd->root_group);
4017	spin_unlock_irq(q->queue_lock);
4018
4019	init_timer(&cfqd->idle_slice_timer);
 
4020	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4021	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4022
4023	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4024
4025	cfqd->cfq_quantum = cfq_quantum;
4026	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4027	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4028	cfqd->cfq_back_max = cfq_back_max;
4029	cfqd->cfq_back_penalty = cfq_back_penalty;
4030	cfqd->cfq_slice[0] = cfq_slice_async;
4031	cfqd->cfq_slice[1] = cfq_slice_sync;
4032	cfqd->cfq_target_latency = cfq_target_latency;
4033	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4034	cfqd->cfq_slice_idle = cfq_slice_idle;
4035	cfqd->cfq_group_idle = cfq_group_idle;
4036	cfqd->cfq_latency = 1;
4037	cfqd->hw_tag = -1;
4038	/*
4039	 * we optimistically start assuming sync ops weren't delayed in last
4040	 * second, in order to have larger depth for async operations.
4041	 */
4042	cfqd->last_delayed_sync = jiffies - HZ;
4043	return 0;
4044
4045out_free:
4046	kfree(cfqd);
 
4047	return ret;
4048}
4049
 
 
 
 
 
 
 
 
 
 
 
 
 
4050/*
4051 * sysfs parts below -->
4052 */
4053static ssize_t
4054cfq_var_show(unsigned int var, char *page)
4055{
4056	return sprintf(page, "%d\n", var);
4057}
4058
4059static ssize_t
4060cfq_var_store(unsigned int *var, const char *page, size_t count)
4061{
4062	char *p = (char *) page;
4063
4064	*var = simple_strtoul(p, &p, 10);
4065	return count;
4066}
4067
4068#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
4069static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4070{									\
4071	struct cfq_data *cfqd = e->elevator_data;			\
4072	unsigned int __data = __VAR;					\
4073	if (__CONV)							\
4074		__data = jiffies_to_msecs(__data);			\
4075	return cfq_var_show(__data, (page));				\
4076}
4077SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4078SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4079SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4080SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4081SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4082SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4083SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4084SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4085SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4086SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4087SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4088SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4089#undef SHOW_FUNCTION
4090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4091#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
4092static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
4093{									\
4094	struct cfq_data *cfqd = e->elevator_data;			\
4095	unsigned int __data;						\
4096	int ret = cfq_var_store(&__data, (page), count);		\
4097	if (__data < (MIN))						\
4098		__data = (MIN);						\
4099	else if (__data > (MAX))					\
4100		__data = (MAX);						\
4101	if (__CONV)							\
4102		*(__PTR) = msecs_to_jiffies(__data);			\
4103	else								\
4104		*(__PTR) = __data;					\
4105	return ret;							\
4106}
4107STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4108STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4109		UINT_MAX, 1);
4110STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4111		UINT_MAX, 1);
4112STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4113STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4114		UINT_MAX, 0);
4115STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4116STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4117STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4118STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4119STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4120		UINT_MAX, 0);
4121STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4122STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4123#undef STORE_FUNCTION
4124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4125#define CFQ_ATTR(name) \
4126	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4127
4128static struct elv_fs_entry cfq_attrs[] = {
4129	CFQ_ATTR(quantum),
4130	CFQ_ATTR(fifo_expire_sync),
4131	CFQ_ATTR(fifo_expire_async),
4132	CFQ_ATTR(back_seek_max),
4133	CFQ_ATTR(back_seek_penalty),
4134	CFQ_ATTR(slice_sync),
 
4135	CFQ_ATTR(slice_async),
 
4136	CFQ_ATTR(slice_async_rq),
4137	CFQ_ATTR(slice_idle),
 
4138	CFQ_ATTR(group_idle),
 
4139	CFQ_ATTR(low_latency),
4140	CFQ_ATTR(target_latency),
 
4141	__ATTR_NULL
4142};
4143
4144static struct elevator_type iosched_cfq = {
4145	.ops = {
4146		.elevator_merge_fn = 		cfq_merge,
4147		.elevator_merged_fn =		cfq_merged_request,
4148		.elevator_merge_req_fn =	cfq_merged_requests,
4149		.elevator_allow_merge_fn =	cfq_allow_merge,
 
4150		.elevator_bio_merged_fn =	cfq_bio_merged,
4151		.elevator_dispatch_fn =		cfq_dispatch_requests,
4152		.elevator_add_req_fn =		cfq_insert_request,
4153		.elevator_activate_req_fn =	cfq_activate_request,
4154		.elevator_deactivate_req_fn =	cfq_deactivate_request,
4155		.elevator_completed_req_fn =	cfq_completed_request,
4156		.elevator_former_req_fn =	elv_rb_former_request,
4157		.elevator_latter_req_fn =	elv_rb_latter_request,
4158		.elevator_init_icq_fn =		cfq_init_icq,
4159		.elevator_exit_icq_fn =		cfq_exit_icq,
4160		.elevator_set_req_fn =		cfq_set_request,
4161		.elevator_put_req_fn =		cfq_put_request,
4162		.elevator_may_queue_fn =	cfq_may_queue,
4163		.elevator_init_fn =		cfq_init_queue,
4164		.elevator_exit_fn =		cfq_exit_queue,
 
4165	},
4166	.icq_size	=	sizeof(struct cfq_io_cq),
4167	.icq_align	=	__alignof__(struct cfq_io_cq),
4168	.elevator_attrs =	cfq_attrs,
4169	.elevator_name	=	"cfq",
4170	.elevator_owner =	THIS_MODULE,
4171};
4172
4173#ifdef CONFIG_CFQ_GROUP_IOSCHED
4174static struct blkcg_policy blkcg_policy_cfq = {
4175	.pd_size		= sizeof(struct cfq_group),
4176	.cftypes		= cfq_blkcg_files,
4177
 
 
 
 
 
 
4178	.pd_init_fn		= cfq_pd_init,
 
 
4179	.pd_reset_stats_fn	= cfq_pd_reset_stats,
4180};
4181#endif
4182
4183static int __init cfq_init(void)
4184{
4185	int ret;
4186
4187	/*
4188	 * could be 0 on HZ < 1000 setups
4189	 */
4190	if (!cfq_slice_async)
4191		cfq_slice_async = 1;
4192	if (!cfq_slice_idle)
4193		cfq_slice_idle = 1;
4194
4195#ifdef CONFIG_CFQ_GROUP_IOSCHED
4196	if (!cfq_group_idle)
4197		cfq_group_idle = 1;
4198
4199	ret = blkcg_policy_register(&blkcg_policy_cfq);
4200	if (ret)
4201		return ret;
4202#else
4203	cfq_group_idle = 0;
4204#endif
4205
4206	ret = -ENOMEM;
4207	cfq_pool = KMEM_CACHE(cfq_queue, 0);
4208	if (!cfq_pool)
4209		goto err_pol_unreg;
4210
4211	ret = elv_register(&iosched_cfq);
4212	if (ret)
4213		goto err_free_pool;
4214
4215	return 0;
4216
4217err_free_pool:
4218	kmem_cache_destroy(cfq_pool);
4219err_pol_unreg:
4220#ifdef CONFIG_CFQ_GROUP_IOSCHED
4221	blkcg_policy_unregister(&blkcg_policy_cfq);
4222#endif
4223	return ret;
4224}
4225
4226static void __exit cfq_exit(void)
4227{
4228#ifdef CONFIG_CFQ_GROUP_IOSCHED
4229	blkcg_policy_unregister(&blkcg_policy_cfq);
4230#endif
4231	elv_unregister(&iosched_cfq);
4232	kmem_cache_destroy(cfq_pool);
4233}
4234
4235module_init(cfq_init);
4236module_exit(cfq_exit);
4237
4238MODULE_AUTHOR("Jens Axboe");
4239MODULE_LICENSE("GPL");
4240MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
v4.17
   1/*
   2 *  CFQ, or complete fairness queueing, disk scheduler.
   3 *
   4 *  Based on ideas from a previously unfinished io
   5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
   6 *
   7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
   8 */
   9#include <linux/module.h>
  10#include <linux/slab.h>
  11#include <linux/sched/clock.h>
  12#include <linux/blkdev.h>
  13#include <linux/elevator.h>
  14#include <linux/ktime.h>
  15#include <linux/rbtree.h>
  16#include <linux/ioprio.h>
  17#include <linux/blktrace_api.h>
  18#include <linux/blk-cgroup.h>
  19#include "blk.h"
  20#include "blk-wbt.h"
  21
  22/*
  23 * tunables
  24 */
  25/* max queue in one round of service */
  26static const int cfq_quantum = 8;
  27static const u64 cfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
  28/* maximum backwards seek, in KiB */
  29static const int cfq_back_max = 16 * 1024;
  30/* penalty of a backwards seek */
  31static const int cfq_back_penalty = 2;
  32static const u64 cfq_slice_sync = NSEC_PER_SEC / 10;
  33static u64 cfq_slice_async = NSEC_PER_SEC / 25;
  34static const int cfq_slice_async_rq = 2;
  35static u64 cfq_slice_idle = NSEC_PER_SEC / 125;
  36static u64 cfq_group_idle = NSEC_PER_SEC / 125;
  37static const u64 cfq_target_latency = (u64)NSEC_PER_SEC * 3/10; /* 300 ms */
  38static const int cfq_hist_divisor = 4;
  39
  40/*
  41 * offset from end of queue service tree for idle class
  42 */
  43#define CFQ_IDLE_DELAY		(NSEC_PER_SEC / 5)
  44/* offset from end of group service tree under time slice mode */
  45#define CFQ_SLICE_MODE_GROUP_DELAY (NSEC_PER_SEC / 5)
  46/* offset from end of group service under IOPS mode */
  47#define CFQ_IOPS_MODE_GROUP_DELAY (HZ / 5)
  48
  49/*
  50 * below this threshold, we consider thinktime immediate
  51 */
  52#define CFQ_MIN_TT		(2 * NSEC_PER_SEC / HZ)
  53
  54#define CFQ_SLICE_SCALE		(5)
  55#define CFQ_HW_QUEUE_MIN	(5)
  56#define CFQ_SERVICE_SHIFT       12
  57
  58#define CFQQ_SEEK_THR		(sector_t)(8 * 100)
  59#define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)
  60#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
  61#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
  62
  63#define RQ_CIC(rq)		icq_to_cic((rq)->elv.icq)
  64#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elv.priv[0])
  65#define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elv.priv[1])
  66
  67static struct kmem_cache *cfq_pool;
  68
  69#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
  70#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  71#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  72
  73#define sample_valid(samples)	((samples) > 80)
  74#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
  75
  76/* blkio-related constants */
  77#define CFQ_WEIGHT_LEGACY_MIN	10
  78#define CFQ_WEIGHT_LEGACY_DFL	500
  79#define CFQ_WEIGHT_LEGACY_MAX	1000
  80
  81struct cfq_ttime {
  82	u64 last_end_request;
  83
  84	u64 ttime_total;
  85	u64 ttime_mean;
  86	unsigned long ttime_samples;
 
  87};
  88
  89/*
  90 * Most of our rbtree usage is for sorting with min extraction, so
  91 * if we cache the leftmost node we don't have to walk down the tree
  92 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  93 * move this into the elevator for the rq sorting as well.
  94 */
  95struct cfq_rb_root {
  96	struct rb_root_cached rb;
  97	struct rb_node *rb_rightmost;
  98	unsigned count;
 
  99	u64 min_vdisktime;
 100	struct cfq_ttime ttime;
 101};
 102#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT_CACHED, \
 103			.rb_rightmost = NULL,			     \
 104			.ttime = {.last_end_request = ktime_get_ns(),},}
 105
 106/*
 107 * Per process-grouping structure
 108 */
 109struct cfq_queue {
 110	/* reference count */
 111	int ref;
 112	/* various state flags, see below */
 113	unsigned int flags;
 114	/* parent cfq_data */
 115	struct cfq_data *cfqd;
 116	/* service_tree member */
 117	struct rb_node rb_node;
 118	/* service_tree key */
 119	u64 rb_key;
 120	/* prio tree member */
 121	struct rb_node p_node;
 122	/* prio tree root we belong to, if any */
 123	struct rb_root *p_root;
 124	/* sorted list of pending requests */
 125	struct rb_root sort_list;
 126	/* if fifo isn't expired, next request to serve */
 127	struct request *next_rq;
 128	/* requests queued in sort_list */
 129	int queued[2];
 130	/* currently allocated requests */
 131	int allocated[2];
 132	/* fifo list of requests in sort_list */
 133	struct list_head fifo;
 134
 135	/* time when queue got scheduled in to dispatch first request. */
 136	u64 dispatch_start;
 137	u64 allocated_slice;
 138	u64 slice_dispatch;
 139	/* time when first request from queue completed and slice started. */
 140	u64 slice_start;
 141	u64 slice_end;
 142	s64 slice_resid;
 143
 144	/* pending priority requests */
 145	int prio_pending;
 146	/* number of requests that are on the dispatch list or inside driver */
 147	int dispatched;
 148
 149	/* io prio of this group */
 150	unsigned short ioprio, org_ioprio;
 151	unsigned short ioprio_class, org_ioprio_class;
 152
 153	pid_t pid;
 154
 155	u32 seek_history;
 156	sector_t last_request_pos;
 157
 158	struct cfq_rb_root *service_tree;
 159	struct cfq_queue *new_cfqq;
 160	struct cfq_group *cfqg;
 161	/* Number of sectors dispatched from queue in single dispatch round */
 162	unsigned long nr_sectors;
 163};
 164
 165/*
 166 * First index in the service_trees.
 167 * IDLE is handled separately, so it has negative index
 168 */
 169enum wl_class_t {
 170	BE_WORKLOAD = 0,
 171	RT_WORKLOAD = 1,
 172	IDLE_WORKLOAD = 2,
 173	CFQ_PRIO_NR,
 174};
 175
 176/*
 177 * Second index in the service_trees.
 178 */
 179enum wl_type_t {
 180	ASYNC_WORKLOAD = 0,
 181	SYNC_NOIDLE_WORKLOAD = 1,
 182	SYNC_WORKLOAD = 2
 183};
 184
 185struct cfqg_stats {
 186#ifdef CONFIG_CFQ_GROUP_IOSCHED
 
 
 
 
 187	/* number of ios merged */
 188	struct blkg_rwstat		merged;
 189	/* total time spent on device in ns, may not be accurate w/ queueing */
 190	struct blkg_rwstat		service_time;
 191	/* total time spent waiting in scheduler queue in ns */
 192	struct blkg_rwstat		wait_time;
 193	/* number of IOs queued up */
 194	struct blkg_rwstat		queued;
 
 
 195	/* total disk time and nr sectors dispatched by this group */
 196	struct blkg_stat		time;
 197#ifdef CONFIG_DEBUG_BLK_CGROUP
 198	/* time not charged to this cgroup */
 199	struct blkg_stat		unaccounted_time;
 200	/* sum of number of ios queued across all samples */
 201	struct blkg_stat		avg_queue_size_sum;
 202	/* count of samples taken for average */
 203	struct blkg_stat		avg_queue_size_samples;
 204	/* how many times this group has been removed from service tree */
 205	struct blkg_stat		dequeue;
 206	/* total time spent waiting for it to be assigned a timeslice. */
 207	struct blkg_stat		group_wait_time;
 208	/* time spent idling for this blkcg_gq */
 209	struct blkg_stat		idle_time;
 210	/* total time with empty current active q with other requests queued */
 211	struct blkg_stat		empty_time;
 212	/* fields after this shouldn't be cleared on stat reset */
 213	uint64_t			start_group_wait_time;
 214	uint64_t			start_idle_time;
 215	uint64_t			start_empty_time;
 216	uint16_t			flags;
 217#endif	/* CONFIG_DEBUG_BLK_CGROUP */
 218#endif	/* CONFIG_CFQ_GROUP_IOSCHED */
 219};
 220
 221/* Per-cgroup data */
 222struct cfq_group_data {
 223	/* must be the first member */
 224	struct blkcg_policy_data cpd;
 225
 226	unsigned int weight;
 227	unsigned int leaf_weight;
 228};
 229
 230/* This is per cgroup per device grouping structure */
 231struct cfq_group {
 232	/* must be the first member */
 233	struct blkg_policy_data pd;
 234
 235	/* group service_tree member */
 236	struct rb_node rb_node;
 237
 238	/* group service_tree key */
 239	u64 vdisktime;
 240
 241	/*
 242	 * The number of active cfqgs and sum of their weights under this
 243	 * cfqg.  This covers this cfqg's leaf_weight and all children's
 244	 * weights, but does not cover weights of further descendants.
 245	 *
 246	 * If a cfqg is on the service tree, it's active.  An active cfqg
 247	 * also activates its parent and contributes to the children_weight
 248	 * of the parent.
 249	 */
 250	int nr_active;
 251	unsigned int children_weight;
 252
 253	/*
 254	 * vfraction is the fraction of vdisktime that the tasks in this
 255	 * cfqg are entitled to.  This is determined by compounding the
 256	 * ratios walking up from this cfqg to the root.
 257	 *
 258	 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
 259	 * vfractions on a service tree is approximately 1.  The sum may
 260	 * deviate a bit due to rounding errors and fluctuations caused by
 261	 * cfqgs entering and leaving the service tree.
 262	 */
 263	unsigned int vfraction;
 264
 265	/*
 266	 * There are two weights - (internal) weight is the weight of this
 267	 * cfqg against the sibling cfqgs.  leaf_weight is the wight of
 268	 * this cfqg against the child cfqgs.  For the root cfqg, both
 269	 * weights are kept in sync for backward compatibility.
 270	 */
 271	unsigned int weight;
 272	unsigned int new_weight;
 273	unsigned int dev_weight;
 274
 275	unsigned int leaf_weight;
 276	unsigned int new_leaf_weight;
 277	unsigned int dev_leaf_weight;
 278
 279	/* number of cfqq currently on this group */
 280	int nr_cfqq;
 281
 282	/*
 283	 * Per group busy queues average. Useful for workload slice calc. We
 284	 * create the array for each prio class but at run time it is used
 285	 * only for RT and BE class and slot for IDLE class remains unused.
 286	 * This is primarily done to avoid confusion and a gcc warning.
 287	 */
 288	unsigned int busy_queues_avg[CFQ_PRIO_NR];
 289	/*
 290	 * rr lists of queues with requests. We maintain service trees for
 291	 * RT and BE classes. These trees are subdivided in subclasses
 292	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
 293	 * class there is no subclassification and all the cfq queues go on
 294	 * a single tree service_tree_idle.
 295	 * Counts are embedded in the cfq_rb_root
 296	 */
 297	struct cfq_rb_root service_trees[2][3];
 298	struct cfq_rb_root service_tree_idle;
 299
 300	u64 saved_wl_slice;
 301	enum wl_type_t saved_wl_type;
 302	enum wl_class_t saved_wl_class;
 303
 304	/* number of requests that are on the dispatch list or inside driver */
 305	int dispatched;
 306	struct cfq_ttime ttime;
 307	struct cfqg_stats stats;	/* stats for this cfqg */
 308
 309	/* async queue for each priority case */
 310	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
 311	struct cfq_queue *async_idle_cfqq;
 312
 313};
 314
 315struct cfq_io_cq {
 316	struct io_cq		icq;		/* must be the first member */
 317	struct cfq_queue	*cfqq[2];
 318	struct cfq_ttime	ttime;
 319	int			ioprio;		/* the current ioprio */
 320#ifdef CONFIG_CFQ_GROUP_IOSCHED
 321	uint64_t		blkcg_serial_nr; /* the current blkcg serial */
 322#endif
 323};
 324
 325/*
 326 * Per block device queue structure
 327 */
 328struct cfq_data {
 329	struct request_queue *queue;
 330	/* Root service tree for cfq_groups */
 331	struct cfq_rb_root grp_service_tree;
 332	struct cfq_group *root_group;
 333
 334	/*
 335	 * The priority currently being served
 336	 */
 337	enum wl_class_t serving_wl_class;
 338	enum wl_type_t serving_wl_type;
 339	u64 workload_expires;
 340	struct cfq_group *serving_group;
 341
 342	/*
 343	 * Each priority tree is sorted by next_request position.  These
 344	 * trees are used when determining if two or more queues are
 345	 * interleaving requests (see cfq_close_cooperator).
 346	 */
 347	struct rb_root prio_trees[CFQ_PRIO_LISTS];
 348
 349	unsigned int busy_queues;
 350	unsigned int busy_sync_queues;
 351
 352	int rq_in_driver;
 353	int rq_in_flight[2];
 354
 355	/*
 356	 * queue-depth detection
 357	 */
 358	int rq_queued;
 359	int hw_tag;
 360	/*
 361	 * hw_tag can be
 362	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
 363	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
 364	 *  0 => no NCQ
 365	 */
 366	int hw_tag_est_depth;
 367	unsigned int hw_tag_samples;
 368
 369	/*
 370	 * idle window management
 371	 */
 372	struct hrtimer idle_slice_timer;
 373	struct work_struct unplug_work;
 374
 375	struct cfq_queue *active_queue;
 376	struct cfq_io_cq *active_cic;
 377
 
 
 
 
 
 
 378	sector_t last_position;
 379
 380	/*
 381	 * tunables, see top of file
 382	 */
 383	unsigned int cfq_quantum;
 
 384	unsigned int cfq_back_penalty;
 385	unsigned int cfq_back_max;
 
 386	unsigned int cfq_slice_async_rq;
 
 
 387	unsigned int cfq_latency;
 388	u64 cfq_fifo_expire[2];
 389	u64 cfq_slice[2];
 390	u64 cfq_slice_idle;
 391	u64 cfq_group_idle;
 392	u64 cfq_target_latency;
 393
 394	/*
 395	 * Fallback dummy cfqq for extreme OOM conditions
 396	 */
 397	struct cfq_queue oom_cfqq;
 398
 399	u64 last_delayed_sync;
 400};
 401
 402static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
 403static void cfq_put_queue(struct cfq_queue *cfqq);
 404
 405static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
 406					    enum wl_class_t class,
 407					    enum wl_type_t type)
 408{
 409	if (!cfqg)
 410		return NULL;
 411
 412	if (class == IDLE_WORKLOAD)
 413		return &cfqg->service_tree_idle;
 414
 415	return &cfqg->service_trees[class][type];
 416}
 417
 418enum cfqq_state_flags {
 419	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
 420	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
 421	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
 422	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
 423	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
 424	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
 425	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
 426	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
 427	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
 428	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
 429	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
 430	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
 431	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
 432};
 433
 434#define CFQ_CFQQ_FNS(name)						\
 435static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
 436{									\
 437	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
 438}									\
 439static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
 440{									\
 441	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
 442}									\
 443static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
 444{									\
 445	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
 446}
 447
 448CFQ_CFQQ_FNS(on_rr);
 449CFQ_CFQQ_FNS(wait_request);
 450CFQ_CFQQ_FNS(must_dispatch);
 451CFQ_CFQQ_FNS(must_alloc_slice);
 452CFQ_CFQQ_FNS(fifo_expire);
 453CFQ_CFQQ_FNS(idle_window);
 454CFQ_CFQQ_FNS(prio_changed);
 455CFQ_CFQQ_FNS(slice_new);
 456CFQ_CFQQ_FNS(sync);
 457CFQ_CFQQ_FNS(coop);
 458CFQ_CFQQ_FNS(split_coop);
 459CFQ_CFQQ_FNS(deep);
 460CFQ_CFQQ_FNS(wait_busy);
 461#undef CFQ_CFQQ_FNS
 462
 
 
 
 
 
 
 
 
 
 
 463#if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
 464
 465/* cfqg stats flags */
 466enum cfqg_stats_flags {
 467	CFQG_stats_waiting = 0,
 468	CFQG_stats_idling,
 469	CFQG_stats_empty,
 470};
 471
 472#define CFQG_FLAG_FNS(name)						\
 473static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats)	\
 474{									\
 475	stats->flags |= (1 << CFQG_stats_##name);			\
 476}									\
 477static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats)	\
 478{									\
 479	stats->flags &= ~(1 << CFQG_stats_##name);			\
 480}									\
 481static inline int cfqg_stats_##name(struct cfqg_stats *stats)		\
 482{									\
 483	return (stats->flags & (1 << CFQG_stats_##name)) != 0;		\
 484}									\
 485
 486CFQG_FLAG_FNS(waiting)
 487CFQG_FLAG_FNS(idling)
 488CFQG_FLAG_FNS(empty)
 489#undef CFQG_FLAG_FNS
 490
 491/* This should be called with the queue_lock held. */
 492static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
 493{
 494	unsigned long long now;
 495
 496	if (!cfqg_stats_waiting(stats))
 497		return;
 498
 499	now = sched_clock();
 500	if (time_after64(now, stats->start_group_wait_time))
 501		blkg_stat_add(&stats->group_wait_time,
 502			      now - stats->start_group_wait_time);
 503	cfqg_stats_clear_waiting(stats);
 504}
 505
 506/* This should be called with the queue_lock held. */
 507static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
 508						 struct cfq_group *curr_cfqg)
 509{
 510	struct cfqg_stats *stats = &cfqg->stats;
 511
 512	if (cfqg_stats_waiting(stats))
 513		return;
 514	if (cfqg == curr_cfqg)
 515		return;
 516	stats->start_group_wait_time = sched_clock();
 517	cfqg_stats_mark_waiting(stats);
 518}
 519
 520/* This should be called with the queue_lock held. */
 521static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
 522{
 523	unsigned long long now;
 524
 525	if (!cfqg_stats_empty(stats))
 526		return;
 527
 528	now = sched_clock();
 529	if (time_after64(now, stats->start_empty_time))
 530		blkg_stat_add(&stats->empty_time,
 531			      now - stats->start_empty_time);
 532	cfqg_stats_clear_empty(stats);
 533}
 534
 535static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
 536{
 537	blkg_stat_add(&cfqg->stats.dequeue, 1);
 538}
 539
 540static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
 541{
 542	struct cfqg_stats *stats = &cfqg->stats;
 543
 544	if (blkg_rwstat_total(&stats->queued))
 545		return;
 546
 547	/*
 548	 * group is already marked empty. This can happen if cfqq got new
 549	 * request in parent group and moved to this group while being added
 550	 * to service tree. Just ignore the event and move on.
 551	 */
 552	if (cfqg_stats_empty(stats))
 553		return;
 554
 555	stats->start_empty_time = sched_clock();
 556	cfqg_stats_mark_empty(stats);
 557}
 558
 559static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
 560{
 561	struct cfqg_stats *stats = &cfqg->stats;
 562
 563	if (cfqg_stats_idling(stats)) {
 564		unsigned long long now = sched_clock();
 565
 566		if (time_after64(now, stats->start_idle_time))
 567			blkg_stat_add(&stats->idle_time,
 568				      now - stats->start_idle_time);
 569		cfqg_stats_clear_idling(stats);
 570	}
 571}
 572
 573static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
 574{
 575	struct cfqg_stats *stats = &cfqg->stats;
 576
 577	BUG_ON(cfqg_stats_idling(stats));
 578
 579	stats->start_idle_time = sched_clock();
 580	cfqg_stats_mark_idling(stats);
 581}
 582
 583static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
 584{
 585	struct cfqg_stats *stats = &cfqg->stats;
 586
 587	blkg_stat_add(&stats->avg_queue_size_sum,
 588		      blkg_rwstat_total(&stats->queued));
 589	blkg_stat_add(&stats->avg_queue_size_samples, 1);
 590	cfqg_stats_update_group_wait_time(stats);
 591}
 592
 593#else	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
 594
 595static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
 596static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
 597static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
 598static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
 599static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
 600static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
 601static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
 602
 603#endif	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
 604
 605#ifdef CONFIG_CFQ_GROUP_IOSCHED
 606
 607static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
 608{
 609	return pd ? container_of(pd, struct cfq_group, pd) : NULL;
 610}
 611
 612static struct cfq_group_data
 613*cpd_to_cfqgd(struct blkcg_policy_data *cpd)
 614{
 615	return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL;
 616}
 617
 618static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
 619{
 620	return pd_to_blkg(&cfqg->pd);
 621}
 622
 623static struct blkcg_policy blkcg_policy_cfq;
 624
 625static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
 626{
 627	return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
 628}
 629
 630static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
 631{
 632	return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
 633}
 634
 635static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
 636{
 637	struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
 638
 639	return pblkg ? blkg_to_cfqg(pblkg) : NULL;
 640}
 641
 642static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
 643				      struct cfq_group *ancestor)
 644{
 645	return cgroup_is_descendant(cfqg_to_blkg(cfqg)->blkcg->css.cgroup,
 646				    cfqg_to_blkg(ancestor)->blkcg->css.cgroup);
 647}
 648
 649static inline void cfqg_get(struct cfq_group *cfqg)
 650{
 651	return blkg_get(cfqg_to_blkg(cfqg));
 652}
 653
 654static inline void cfqg_put(struct cfq_group *cfqg)
 655{
 656	return blkg_put(cfqg_to_blkg(cfqg));
 657}
 658
 659#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	do {			\
 660	blk_add_cgroup_trace_msg((cfqd)->queue,				\
 661			cfqg_to_blkg((cfqq)->cfqg)->blkcg,		\
 662			"cfq%d%c%c " fmt, (cfqq)->pid,			\
 663			cfq_cfqq_sync((cfqq)) ? 'S' : 'A',		\
 664			cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
 665			  ##args);					\
 666} while (0)
 667
 668#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)	do {			\
 669	blk_add_cgroup_trace_msg((cfqd)->queue,				\
 670			cfqg_to_blkg(cfqg)->blkcg, fmt, ##args);	\
 
 
 671} while (0)
 672
 673static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
 674					    struct cfq_group *curr_cfqg,
 675					    unsigned int op)
 676{
 677	blkg_rwstat_add(&cfqg->stats.queued, op, 1);
 678	cfqg_stats_end_empty_time(&cfqg->stats);
 679	cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
 680}
 681
 682static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
 683			uint64_t time, unsigned long unaccounted_time)
 684{
 685	blkg_stat_add(&cfqg->stats.time, time);
 686#ifdef CONFIG_DEBUG_BLK_CGROUP
 687	blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
 688#endif
 689}
 690
 691static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg,
 692					       unsigned int op)
 693{
 694	blkg_rwstat_add(&cfqg->stats.queued, op, -1);
 695}
 696
 697static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg,
 698					       unsigned int op)
 699{
 700	blkg_rwstat_add(&cfqg->stats.merged, op, 1);
 
 
 
 
 
 
 
 
 701}
 702
 703static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
 704			uint64_t start_time, uint64_t io_start_time,
 705			unsigned int op)
 706{
 707	struct cfqg_stats *stats = &cfqg->stats;
 708	unsigned long long now = sched_clock();
 709
 710	if (time_after64(now, io_start_time))
 711		blkg_rwstat_add(&stats->service_time, op, now - io_start_time);
 712	if (time_after64(io_start_time, start_time))
 713		blkg_rwstat_add(&stats->wait_time, op,
 714				io_start_time - start_time);
 715}
 716
 717/* @stats = 0 */
 718static void cfqg_stats_reset(struct cfqg_stats *stats)
 719{
 
 
 
 720	/* queued stats shouldn't be cleared */
 
 
 721	blkg_rwstat_reset(&stats->merged);
 722	blkg_rwstat_reset(&stats->service_time);
 723	blkg_rwstat_reset(&stats->wait_time);
 724	blkg_stat_reset(&stats->time);
 725#ifdef CONFIG_DEBUG_BLK_CGROUP
 726	blkg_stat_reset(&stats->unaccounted_time);
 727	blkg_stat_reset(&stats->avg_queue_size_sum);
 728	blkg_stat_reset(&stats->avg_queue_size_samples);
 729	blkg_stat_reset(&stats->dequeue);
 730	blkg_stat_reset(&stats->group_wait_time);
 731	blkg_stat_reset(&stats->idle_time);
 732	blkg_stat_reset(&stats->empty_time);
 733#endif
 734}
 735
 736/* @to += @from */
 737static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from)
 738{
 739	/* queued stats shouldn't be cleared */
 740	blkg_rwstat_add_aux(&to->merged, &from->merged);
 741	blkg_rwstat_add_aux(&to->service_time, &from->service_time);
 742	blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
 743	blkg_stat_add_aux(&from->time, &from->time);
 744#ifdef CONFIG_DEBUG_BLK_CGROUP
 745	blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
 746	blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
 747	blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
 748	blkg_stat_add_aux(&to->dequeue, &from->dequeue);
 749	blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
 750	blkg_stat_add_aux(&to->idle_time, &from->idle_time);
 751	blkg_stat_add_aux(&to->empty_time, &from->empty_time);
 752#endif
 753}
 754
 755/*
 756 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
 757 * recursive stats can still account for the amount used by this cfqg after
 758 * it's gone.
 759 */
 760static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
 761{
 762	struct cfq_group *parent = cfqg_parent(cfqg);
 763
 764	lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
 765
 766	if (unlikely(!parent))
 767		return;
 768
 769	cfqg_stats_add_aux(&parent->stats, &cfqg->stats);
 770	cfqg_stats_reset(&cfqg->stats);
 771}
 772
 773#else	/* CONFIG_CFQ_GROUP_IOSCHED */
 774
 775static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
 776static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
 777				      struct cfq_group *ancestor)
 778{
 779	return true;
 780}
 781static inline void cfqg_get(struct cfq_group *cfqg) { }
 782static inline void cfqg_put(struct cfq_group *cfqg) { }
 783
 784#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
 785	blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid,	\
 786			cfq_cfqq_sync((cfqq)) ? 'S' : 'A',		\
 787			cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
 788				##args)
 789#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0)
 790
 791static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
 792			struct cfq_group *curr_cfqg, unsigned int op) { }
 793static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
 794			uint64_t time, unsigned long unaccounted_time) { }
 795static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg,
 796			unsigned int op) { }
 797static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg,
 798			unsigned int op) { }
 799static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
 800			uint64_t start_time, uint64_t io_start_time,
 801			unsigned int op) { }
 802
 803#endif	/* CONFIG_CFQ_GROUP_IOSCHED */
 804
 805#define cfq_log(cfqd, fmt, args...)	\
 806	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
 807
 808/* Traverses through cfq group service trees */
 809#define for_each_cfqg_st(cfqg, i, j, st) \
 810	for (i = 0; i <= IDLE_WORKLOAD; i++) \
 811		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
 812			: &cfqg->service_tree_idle; \
 813			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
 814			(i == IDLE_WORKLOAD && j == 0); \
 815			j++, st = i < IDLE_WORKLOAD ? \
 816			&cfqg->service_trees[i][j]: NULL) \
 817
 818static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
 819	struct cfq_ttime *ttime, bool group_idle)
 820{
 821	u64 slice;
 822	if (!sample_valid(ttime->ttime_samples))
 823		return false;
 824	if (group_idle)
 825		slice = cfqd->cfq_group_idle;
 826	else
 827		slice = cfqd->cfq_slice_idle;
 828	return ttime->ttime_mean > slice;
 829}
 830
 831static inline bool iops_mode(struct cfq_data *cfqd)
 832{
 833	/*
 834	 * If we are not idling on queues and it is a NCQ drive, parallel
 835	 * execution of requests is on and measuring time is not possible
 836	 * in most of the cases until and unless we drive shallower queue
 837	 * depths and that becomes a performance bottleneck. In such cases
 838	 * switch to start providing fairness in terms of number of IOs.
 839	 */
 840	if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
 841		return true;
 842	else
 843		return false;
 844}
 845
 846static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
 847{
 848	if (cfq_class_idle(cfqq))
 849		return IDLE_WORKLOAD;
 850	if (cfq_class_rt(cfqq))
 851		return RT_WORKLOAD;
 852	return BE_WORKLOAD;
 853}
 854
 855
 856static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
 857{
 858	if (!cfq_cfqq_sync(cfqq))
 859		return ASYNC_WORKLOAD;
 860	if (!cfq_cfqq_idle_window(cfqq))
 861		return SYNC_NOIDLE_WORKLOAD;
 862	return SYNC_WORKLOAD;
 863}
 864
 865static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
 866					struct cfq_data *cfqd,
 867					struct cfq_group *cfqg)
 868{
 869	if (wl_class == IDLE_WORKLOAD)
 870		return cfqg->service_tree_idle.count;
 871
 872	return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
 873		cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
 874		cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
 875}
 876
 877static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
 878					struct cfq_group *cfqg)
 879{
 880	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
 881		cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
 882}
 883
 884static void cfq_dispatch_insert(struct request_queue *, struct request *);
 885static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
 886				       struct cfq_io_cq *cic, struct bio *bio);
 
 887
 888static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
 889{
 890	/* cic->icq is the first member, %NULL will convert to %NULL */
 891	return container_of(icq, struct cfq_io_cq, icq);
 892}
 893
 894static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
 895					       struct io_context *ioc)
 896{
 897	if (ioc)
 898		return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
 899	return NULL;
 900}
 901
 902static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
 903{
 904	return cic->cfqq[is_sync];
 905}
 906
 907static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
 908				bool is_sync)
 909{
 910	cic->cfqq[is_sync] = cfqq;
 911}
 912
 913static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
 914{
 915	return cic->icq.q->elevator->elevator_data;
 916}
 917
 918/*
 
 
 
 
 
 
 
 
 
 919 * scheduler run of queue, if there are requests pending and no one in the
 920 * driver that will restart queueing
 921 */
 922static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
 923{
 924	if (cfqd->busy_queues) {
 925		cfq_log(cfqd, "schedule dispatch");
 926		kblockd_schedule_work(&cfqd->unplug_work);
 927	}
 928}
 929
 930/*
 931 * Scale schedule slice based on io priority. Use the sync time slice only
 932 * if a queue is marked sync and has sync io queued. A sync queue with async
 933 * io only, should not get full sync slice length.
 934 */
 935static inline u64 cfq_prio_slice(struct cfq_data *cfqd, bool sync,
 936				 unsigned short prio)
 937{
 938	u64 base_slice = cfqd->cfq_slice[sync];
 939	u64 slice = div_u64(base_slice, CFQ_SLICE_SCALE);
 940
 941	WARN_ON(prio >= IOPRIO_BE_NR);
 942
 943	return base_slice + (slice * (4 - prio));
 944}
 945
 946static inline u64
 947cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 948{
 949	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
 950}
 951
 952/**
 953 * cfqg_scale_charge - scale disk time charge according to cfqg weight
 954 * @charge: disk time being charged
 955 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
 956 *
 957 * Scale @charge according to @vfraction, which is in range (0, 1].  The
 958 * scaling is inversely proportional.
 959 *
 960 * scaled = charge / vfraction
 961 *
 962 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
 963 */
 964static inline u64 cfqg_scale_charge(u64 charge,
 965				    unsigned int vfraction)
 966{
 967	u64 c = charge << CFQ_SERVICE_SHIFT;	/* make it fixed point */
 968
 969	/* charge / vfraction */
 970	c <<= CFQ_SERVICE_SHIFT;
 971	return div_u64(c, vfraction);
 972}
 973
 974static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
 975{
 976	s64 delta = (s64)(vdisktime - min_vdisktime);
 977	if (delta > 0)
 978		min_vdisktime = vdisktime;
 979
 980	return min_vdisktime;
 981}
 982
 
 
 
 
 
 
 
 
 
 983static void update_min_vdisktime(struct cfq_rb_root *st)
 984{
 985	if (!RB_EMPTY_ROOT(&st->rb.rb_root)) {
 986		struct cfq_group *cfqg = rb_entry_cfqg(st->rb.rb_leftmost);
 987
 
 
 988		st->min_vdisktime = max_vdisktime(st->min_vdisktime,
 989						  cfqg->vdisktime);
 990	}
 991}
 992
 993/*
 994 * get averaged number of queues of RT/BE priority.
 995 * average is updated, with a formula that gives more weight to higher numbers,
 996 * to quickly follows sudden increases and decrease slowly
 997 */
 998
 999static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
1000					struct cfq_group *cfqg, bool rt)
1001{
1002	unsigned min_q, max_q;
1003	unsigned mult  = cfq_hist_divisor - 1;
1004	unsigned round = cfq_hist_divisor / 2;
1005	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1006
1007	min_q = min(cfqg->busy_queues_avg[rt], busy);
1008	max_q = max(cfqg->busy_queues_avg[rt], busy);
1009	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1010		cfq_hist_divisor;
1011	return cfqg->busy_queues_avg[rt];
1012}
1013
1014static inline u64
1015cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1016{
1017	return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
 
 
1018}
1019
1020static inline u64
1021cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1022{
1023	u64 slice = cfq_prio_to_slice(cfqd, cfqq);
1024	if (cfqd->cfq_latency) {
1025		/*
1026		 * interested queues (we consider only the ones with the same
1027		 * priority class in the cfq group)
1028		 */
1029		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1030						cfq_class_rt(cfqq));
1031		u64 sync_slice = cfqd->cfq_slice[1];
1032		u64 expect_latency = sync_slice * iq;
1033		u64 group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1034
1035		if (expect_latency > group_slice) {
1036			u64 base_low_slice = 2 * cfqd->cfq_slice_idle;
1037			u64 low_slice;
1038
1039			/* scale low_slice according to IO priority
1040			 * and sync vs async */
1041			low_slice = div64_u64(base_low_slice*slice, sync_slice);
1042			low_slice = min(slice, low_slice);
1043			/* the adapted slice value is scaled to fit all iqs
1044			 * into the target latency */
1045			slice = div64_u64(slice*group_slice, expect_latency);
1046			slice = max(slice, low_slice);
1047		}
1048	}
1049	return slice;
1050}
1051
1052static inline void
1053cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1054{
1055	u64 slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1056	u64 now = ktime_get_ns();
1057
1058	cfqq->slice_start = now;
1059	cfqq->slice_end = now + slice;
1060	cfqq->allocated_slice = slice;
1061	cfq_log_cfqq(cfqd, cfqq, "set_slice=%llu", cfqq->slice_end - now);
1062}
1063
1064/*
1065 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1066 * isn't valid until the first request from the dispatch is activated
1067 * and the slice time set.
1068 */
1069static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1070{
1071	if (cfq_cfqq_slice_new(cfqq))
1072		return false;
1073	if (ktime_get_ns() < cfqq->slice_end)
1074		return false;
1075
1076	return true;
1077}
1078
1079/*
1080 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1081 * We choose the request that is closest to the head right now. Distance
1082 * behind the head is penalized and only allowed to a certain extent.
1083 */
1084static struct request *
1085cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1086{
1087	sector_t s1, s2, d1 = 0, d2 = 0;
1088	unsigned long back_max;
1089#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
1090#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
1091	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1092
1093	if (rq1 == NULL || rq1 == rq2)
1094		return rq2;
1095	if (rq2 == NULL)
1096		return rq1;
1097
1098	if (rq_is_sync(rq1) != rq_is_sync(rq2))
1099		return rq_is_sync(rq1) ? rq1 : rq2;
1100
1101	if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1102		return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1103
1104	s1 = blk_rq_pos(rq1);
1105	s2 = blk_rq_pos(rq2);
1106
1107	/*
1108	 * by definition, 1KiB is 2 sectors
1109	 */
1110	back_max = cfqd->cfq_back_max * 2;
1111
1112	/*
1113	 * Strict one way elevator _except_ in the case where we allow
1114	 * short backward seeks which are biased as twice the cost of a
1115	 * similar forward seek.
1116	 */
1117	if (s1 >= last)
1118		d1 = s1 - last;
1119	else if (s1 + back_max >= last)
1120		d1 = (last - s1) * cfqd->cfq_back_penalty;
1121	else
1122		wrap |= CFQ_RQ1_WRAP;
1123
1124	if (s2 >= last)
1125		d2 = s2 - last;
1126	else if (s2 + back_max >= last)
1127		d2 = (last - s2) * cfqd->cfq_back_penalty;
1128	else
1129		wrap |= CFQ_RQ2_WRAP;
1130
1131	/* Found required data */
1132
1133	/*
1134	 * By doing switch() on the bit mask "wrap" we avoid having to
1135	 * check two variables for all permutations: --> faster!
1136	 */
1137	switch (wrap) {
1138	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1139		if (d1 < d2)
1140			return rq1;
1141		else if (d2 < d1)
1142			return rq2;
1143		else {
1144			if (s1 >= s2)
1145				return rq1;
1146			else
1147				return rq2;
1148		}
1149
1150	case CFQ_RQ2_WRAP:
1151		return rq1;
1152	case CFQ_RQ1_WRAP:
1153		return rq2;
1154	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1155	default:
1156		/*
1157		 * Since both rqs are wrapped,
1158		 * start with the one that's further behind head
1159		 * (--> only *one* back seek required),
1160		 * since back seek takes more time than forward.
1161		 */
1162		if (s1 <= s2)
1163			return rq1;
1164		else
1165			return rq2;
1166	}
1167}
1168
 
 
 
1169static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1170{
1171	/* Service tree is empty */
1172	if (!root->count)
1173		return NULL;
1174
1175	return rb_entry(rb_first_cached(&root->rb), struct cfq_queue, rb_node);
 
 
 
 
 
 
1176}
1177
1178static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1179{
1180	return rb_entry_cfqg(rb_first_cached(&root->rb));
 
 
 
 
 
 
1181}
1182
1183static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1184{
1185	if (root->rb_rightmost == n)
1186		root->rb_rightmost = rb_prev(n);
1187
1188	rb_erase_cached(n, &root->rb);
1189	RB_CLEAR_NODE(n);
 
1190
 
 
 
 
 
1191	--root->count;
1192}
1193
1194/*
1195 * would be nice to take fifo expire time into account as well
1196 */
1197static struct request *
1198cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1199		  struct request *last)
1200{
1201	struct rb_node *rbnext = rb_next(&last->rb_node);
1202	struct rb_node *rbprev = rb_prev(&last->rb_node);
1203	struct request *next = NULL, *prev = NULL;
1204
1205	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1206
1207	if (rbprev)
1208		prev = rb_entry_rq(rbprev);
1209
1210	if (rbnext)
1211		next = rb_entry_rq(rbnext);
1212	else {
1213		rbnext = rb_first(&cfqq->sort_list);
1214		if (rbnext && rbnext != &last->rb_node)
1215			next = rb_entry_rq(rbnext);
1216	}
1217
1218	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1219}
1220
1221static u64 cfq_slice_offset(struct cfq_data *cfqd,
1222			    struct cfq_queue *cfqq)
1223{
1224	/*
1225	 * just an approximation, should be ok.
1226	 */
1227	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1228		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1229}
1230
1231static inline s64
1232cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1233{
1234	return cfqg->vdisktime - st->min_vdisktime;
1235}
1236
1237static void
1238__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1239{
1240	struct rb_node **node = &st->rb.rb_root.rb_node;
1241	struct rb_node *parent = NULL;
1242	struct cfq_group *__cfqg;
1243	s64 key = cfqg_key(st, cfqg);
1244	bool leftmost = true, rightmost = true;
1245
1246	while (*node != NULL) {
1247		parent = *node;
1248		__cfqg = rb_entry_cfqg(parent);
1249
1250		if (key < cfqg_key(st, __cfqg)) {
1251			node = &parent->rb_left;
1252			rightmost = false;
1253		} else {
1254			node = &parent->rb_right;
1255			leftmost = false;
1256		}
1257	}
1258
1259	if (rightmost)
1260		st->rb_rightmost = &cfqg->rb_node;
1261
1262	rb_link_node(&cfqg->rb_node, parent, node);
1263	rb_insert_color_cached(&cfqg->rb_node, &st->rb, leftmost);
1264}
1265
1266/*
1267 * This has to be called only on activation of cfqg
1268 */
1269static void
1270cfq_update_group_weight(struct cfq_group *cfqg)
1271{
 
1272	if (cfqg->new_weight) {
1273		cfqg->weight = cfqg->new_weight;
1274		cfqg->new_weight = 0;
1275	}
1276}
1277
1278static void
1279cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1280{
1281	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1282
1283	if (cfqg->new_leaf_weight) {
1284		cfqg->leaf_weight = cfqg->new_leaf_weight;
1285		cfqg->new_leaf_weight = 0;
1286	}
1287}
1288
1289static void
1290cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1291{
1292	unsigned int vfr = 1 << CFQ_SERVICE_SHIFT;	/* start with 1 */
1293	struct cfq_group *pos = cfqg;
1294	struct cfq_group *parent;
1295	bool propagate;
1296
1297	/* add to the service tree */
1298	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1299
1300	/*
1301	 * Update leaf_weight.  We cannot update weight at this point
1302	 * because cfqg might already have been activated and is
1303	 * contributing its current weight to the parent's child_weight.
1304	 */
1305	cfq_update_group_leaf_weight(cfqg);
1306	__cfq_group_service_tree_add(st, cfqg);
1307
1308	/*
1309	 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1310	 * entitled to.  vfraction is calculated by walking the tree
1311	 * towards the root calculating the fraction it has at each level.
1312	 * The compounded ratio is how much vfraction @cfqg owns.
1313	 *
1314	 * Start with the proportion tasks in this cfqg has against active
1315	 * children cfqgs - its leaf_weight against children_weight.
1316	 */
1317	propagate = !pos->nr_active++;
1318	pos->children_weight += pos->leaf_weight;
1319	vfr = vfr * pos->leaf_weight / pos->children_weight;
1320
1321	/*
1322	 * Compound ->weight walking up the tree.  Both activation and
1323	 * vfraction calculation are done in the same loop.  Propagation
1324	 * stops once an already activated node is met.  vfraction
1325	 * calculation should always continue to the root.
1326	 */
1327	while ((parent = cfqg_parent(pos))) {
1328		if (propagate) {
1329			cfq_update_group_weight(pos);
1330			propagate = !parent->nr_active++;
1331			parent->children_weight += pos->weight;
1332		}
1333		vfr = vfr * pos->weight / parent->children_weight;
1334		pos = parent;
1335	}
1336
1337	cfqg->vfraction = max_t(unsigned, vfr, 1);
1338}
1339
1340static inline u64 cfq_get_cfqg_vdisktime_delay(struct cfq_data *cfqd)
1341{
1342	if (!iops_mode(cfqd))
1343		return CFQ_SLICE_MODE_GROUP_DELAY;
1344	else
1345		return CFQ_IOPS_MODE_GROUP_DELAY;
1346}
1347
1348static void
1349cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1350{
1351	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1352	struct cfq_group *__cfqg;
1353	struct rb_node *n;
1354
1355	cfqg->nr_cfqq++;
1356	if (!RB_EMPTY_NODE(&cfqg->rb_node))
1357		return;
1358
1359	/*
1360	 * Currently put the group at the end. Later implement something
1361	 * so that groups get lesser vtime based on their weights, so that
1362	 * if group does not loose all if it was not continuously backlogged.
1363	 */
1364	n = st->rb_rightmost;
1365	if (n) {
1366		__cfqg = rb_entry_cfqg(n);
1367		cfqg->vdisktime = __cfqg->vdisktime +
1368			cfq_get_cfqg_vdisktime_delay(cfqd);
1369	} else
1370		cfqg->vdisktime = st->min_vdisktime;
1371	cfq_group_service_tree_add(st, cfqg);
1372}
1373
1374static void
1375cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1376{
1377	struct cfq_group *pos = cfqg;
1378	bool propagate;
1379
1380	/*
1381	 * Undo activation from cfq_group_service_tree_add().  Deactivate
1382	 * @cfqg and propagate deactivation upwards.
1383	 */
1384	propagate = !--pos->nr_active;
1385	pos->children_weight -= pos->leaf_weight;
1386
1387	while (propagate) {
1388		struct cfq_group *parent = cfqg_parent(pos);
1389
1390		/* @pos has 0 nr_active at this point */
1391		WARN_ON_ONCE(pos->children_weight);
1392		pos->vfraction = 0;
1393
1394		if (!parent)
1395			break;
1396
1397		propagate = !--parent->nr_active;
1398		parent->children_weight -= pos->weight;
1399		pos = parent;
1400	}
1401
1402	/* remove from the service tree */
1403	if (!RB_EMPTY_NODE(&cfqg->rb_node))
1404		cfq_rb_erase(&cfqg->rb_node, st);
1405}
1406
1407static void
1408cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1409{
1410	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1411
1412	BUG_ON(cfqg->nr_cfqq < 1);
1413	cfqg->nr_cfqq--;
1414
1415	/* If there are other cfq queues under this group, don't delete it */
1416	if (cfqg->nr_cfqq)
1417		return;
1418
1419	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1420	cfq_group_service_tree_del(st, cfqg);
1421	cfqg->saved_wl_slice = 0;
1422	cfqg_stats_update_dequeue(cfqg);
1423}
1424
1425static inline u64 cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1426				       u64 *unaccounted_time)
1427{
1428	u64 slice_used;
1429	u64 now = ktime_get_ns();
1430
1431	/*
1432	 * Queue got expired before even a single request completed or
1433	 * got expired immediately after first request completion.
1434	 */
1435	if (!cfqq->slice_start || cfqq->slice_start == now) {
1436		/*
1437		 * Also charge the seek time incurred to the group, otherwise
1438		 * if there are mutiple queues in the group, each can dispatch
1439		 * a single request on seeky media and cause lots of seek time
1440		 * and group will never know it.
1441		 */
1442		slice_used = max_t(u64, (now - cfqq->dispatch_start),
1443					jiffies_to_nsecs(1));
1444	} else {
1445		slice_used = now - cfqq->slice_start;
1446		if (slice_used > cfqq->allocated_slice) {
1447			*unaccounted_time = slice_used - cfqq->allocated_slice;
1448			slice_used = cfqq->allocated_slice;
1449		}
1450		if (cfqq->slice_start > cfqq->dispatch_start)
1451			*unaccounted_time += cfqq->slice_start -
1452					cfqq->dispatch_start;
1453	}
1454
1455	return slice_used;
1456}
1457
1458static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1459				struct cfq_queue *cfqq)
1460{
1461	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1462	u64 used_sl, charge, unaccounted_sl = 0;
1463	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1464			- cfqg->service_tree_idle.count;
1465	unsigned int vfr;
1466	u64 now = ktime_get_ns();
1467
1468	BUG_ON(nr_sync < 0);
1469	used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1470
1471	if (iops_mode(cfqd))
1472		charge = cfqq->slice_dispatch;
1473	else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1474		charge = cfqq->allocated_slice;
1475
1476	/*
1477	 * Can't update vdisktime while on service tree and cfqg->vfraction
1478	 * is valid only while on it.  Cache vfr, leave the service tree,
1479	 * update vdisktime and go back on.  The re-addition to the tree
1480	 * will also update the weights as necessary.
1481	 */
1482	vfr = cfqg->vfraction;
1483	cfq_group_service_tree_del(st, cfqg);
1484	cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
 
1485	cfq_group_service_tree_add(st, cfqg);
1486
1487	/* This group is being expired. Save the context */
1488	if (cfqd->workload_expires > now) {
1489		cfqg->saved_wl_slice = cfqd->workload_expires - now;
1490		cfqg->saved_wl_type = cfqd->serving_wl_type;
1491		cfqg->saved_wl_class = cfqd->serving_wl_class;
 
1492	} else
1493		cfqg->saved_wl_slice = 0;
1494
1495	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1496					st->min_vdisktime);
1497	cfq_log_cfqq(cfqq->cfqd, cfqq,
1498		     "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu",
1499		     used_sl, cfqq->slice_dispatch, charge,
1500		     iops_mode(cfqd), cfqq->nr_sectors);
1501	cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1502	cfqg_stats_set_start_empty_time(cfqg);
1503}
1504
1505/**
1506 * cfq_init_cfqg_base - initialize base part of a cfq_group
1507 * @cfqg: cfq_group to initialize
1508 *
1509 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1510 * is enabled or not.
1511 */
1512static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1513{
1514	struct cfq_rb_root *st;
1515	int i, j;
1516
1517	for_each_cfqg_st(cfqg, i, j, st)
1518		*st = CFQ_RB_ROOT;
1519	RB_CLEAR_NODE(&cfqg->rb_node);
1520
1521	cfqg->ttime.last_end_request = ktime_get_ns();
1522}
1523
1524#ifdef CONFIG_CFQ_GROUP_IOSCHED
1525static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1526			    bool on_dfl, bool reset_dev, bool is_leaf_weight);
1527
1528static void cfqg_stats_exit(struct cfqg_stats *stats)
1529{
1530	blkg_rwstat_exit(&stats->merged);
1531	blkg_rwstat_exit(&stats->service_time);
1532	blkg_rwstat_exit(&stats->wait_time);
1533	blkg_rwstat_exit(&stats->queued);
1534	blkg_stat_exit(&stats->time);
1535#ifdef CONFIG_DEBUG_BLK_CGROUP
1536	blkg_stat_exit(&stats->unaccounted_time);
1537	blkg_stat_exit(&stats->avg_queue_size_sum);
1538	blkg_stat_exit(&stats->avg_queue_size_samples);
1539	blkg_stat_exit(&stats->dequeue);
1540	blkg_stat_exit(&stats->group_wait_time);
1541	blkg_stat_exit(&stats->idle_time);
1542	blkg_stat_exit(&stats->empty_time);
1543#endif
1544}
1545
1546static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp)
1547{
1548	if (blkg_rwstat_init(&stats->merged, gfp) ||
1549	    blkg_rwstat_init(&stats->service_time, gfp) ||
1550	    blkg_rwstat_init(&stats->wait_time, gfp) ||
1551	    blkg_rwstat_init(&stats->queued, gfp) ||
1552	    blkg_stat_init(&stats->time, gfp))
1553		goto err;
1554
1555#ifdef CONFIG_DEBUG_BLK_CGROUP
1556	if (blkg_stat_init(&stats->unaccounted_time, gfp) ||
1557	    blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
1558	    blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
1559	    blkg_stat_init(&stats->dequeue, gfp) ||
1560	    blkg_stat_init(&stats->group_wait_time, gfp) ||
1561	    blkg_stat_init(&stats->idle_time, gfp) ||
1562	    blkg_stat_init(&stats->empty_time, gfp))
1563		goto err;
1564#endif
1565	return 0;
1566err:
1567	cfqg_stats_exit(stats);
1568	return -ENOMEM;
1569}
1570
1571static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp)
1572{
1573	struct cfq_group_data *cgd;
1574
1575	cgd = kzalloc(sizeof(*cgd), gfp);
1576	if (!cgd)
1577		return NULL;
1578	return &cgd->cpd;
1579}
1580
1581static void cfq_cpd_init(struct blkcg_policy_data *cpd)
1582{
1583	struct cfq_group_data *cgd = cpd_to_cfqgd(cpd);
1584	unsigned int weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
1585			      CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1586
1587	if (cpd_to_blkcg(cpd) == &blkcg_root)
1588		weight *= 2;
1589
1590	cgd->weight = weight;
1591	cgd->leaf_weight = weight;
1592}
1593
1594static void cfq_cpd_free(struct blkcg_policy_data *cpd)
1595{
1596	kfree(cpd_to_cfqgd(cpd));
1597}
1598
1599static void cfq_cpd_bind(struct blkcg_policy_data *cpd)
1600{
1601	struct blkcg *blkcg = cpd_to_blkcg(cpd);
1602	bool on_dfl = cgroup_subsys_on_dfl(io_cgrp_subsys);
1603	unsigned int weight = on_dfl ? CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1604
1605	if (blkcg == &blkcg_root)
1606		weight *= 2;
1607
1608	WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, false));
1609	WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, true));
1610}
1611
1612static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node)
1613{
1614	struct cfq_group *cfqg;
1615
1616	cfqg = kzalloc_node(sizeof(*cfqg), gfp, node);
1617	if (!cfqg)
1618		return NULL;
1619
1620	cfq_init_cfqg_base(cfqg);
1621	if (cfqg_stats_init(&cfqg->stats, gfp)) {
1622		kfree(cfqg);
1623		return NULL;
1624	}
1625
1626	return &cfqg->pd;
1627}
1628
1629static void cfq_pd_init(struct blkg_policy_data *pd)
 
 
 
 
 
1630{
1631	struct cfq_group *cfqg = pd_to_cfqg(pd);
1632	struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg);
1633
1634	cfqg->weight = cgd->weight;
1635	cfqg->leaf_weight = cgd->leaf_weight;
1636}
 
 
1637
1638static void cfq_pd_offline(struct blkg_policy_data *pd)
1639{
1640	struct cfq_group *cfqg = pd_to_cfqg(pd);
1641	int i;
1642
1643	for (i = 0; i < IOPRIO_BE_NR; i++) {
1644		if (cfqg->async_cfqq[0][i])
1645			cfq_put_queue(cfqg->async_cfqq[0][i]);
1646		if (cfqg->async_cfqq[1][i])
1647			cfq_put_queue(cfqg->async_cfqq[1][i]);
1648	}
1649
1650	if (cfqg->async_idle_cfqq)
1651		cfq_put_queue(cfqg->async_idle_cfqq);
1652
1653	/*
1654	 * @blkg is going offline and will be ignored by
1655	 * blkg_[rw]stat_recursive_sum().  Transfer stats to the parent so
1656	 * that they don't get lost.  If IOs complete after this point, the
1657	 * stats for them will be lost.  Oh well...
1658	 */
1659	cfqg_stats_xfer_dead(cfqg);
1660}
1661
1662static void cfq_pd_free(struct blkg_policy_data *pd)
1663{
1664	struct cfq_group *cfqg = pd_to_cfqg(pd);
1665
1666	cfqg_stats_exit(&cfqg->stats);
1667	return kfree(cfqg);
1668}
1669
1670static void cfq_pd_reset_stats(struct blkg_policy_data *pd)
1671{
1672	struct cfq_group *cfqg = pd_to_cfqg(pd);
1673
1674	cfqg_stats_reset(&cfqg->stats);
1675}
1676
1677static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
1678					 struct blkcg *blkcg)
1679{
1680	struct blkcg_gq *blkg;
1681
1682	blkg = blkg_lookup(blkcg, cfqd->queue);
1683	if (likely(blkg))
1684		return blkg_to_cfqg(blkg);
1685	return NULL;
1686}
1687
1688static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1689{
1690	cfqq->cfqg = cfqg;
1691	/* cfqq reference on cfqg */
1692	cfqg_get(cfqg);
1693}
1694
1695static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1696				     struct blkg_policy_data *pd, int off)
1697{
1698	struct cfq_group *cfqg = pd_to_cfqg(pd);
1699
1700	if (!cfqg->dev_weight)
1701		return 0;
1702	return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1703}
1704
1705static int cfqg_print_weight_device(struct seq_file *sf, void *v)
 
1706{
1707	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1708			  cfqg_prfill_weight_device, &blkcg_policy_cfq,
1709			  0, false);
1710	return 0;
1711}
1712
1713static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1714					  struct blkg_policy_data *pd, int off)
1715{
1716	struct cfq_group *cfqg = pd_to_cfqg(pd);
1717
1718	if (!cfqg->dev_leaf_weight)
1719		return 0;
1720	return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1721}
1722
1723static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1724{
1725	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1726			  cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1727			  0, false);
1728	return 0;
1729}
1730
1731static int cfq_print_weight(struct seq_file *sf, void *v)
1732{
1733	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1734	struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1735	unsigned int val = 0;
1736
1737	if (cgd)
1738		val = cgd->weight;
1739
1740	seq_printf(sf, "%u\n", val);
1741	return 0;
1742}
1743
1744static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
 
1745{
1746	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1747	struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1748	unsigned int val = 0;
1749
1750	if (cgd)
1751		val = cgd->leaf_weight;
1752
1753	seq_printf(sf, "%u\n", val);
1754	return 0;
1755}
1756
1757static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1758					char *buf, size_t nbytes, loff_t off,
1759					bool on_dfl, bool is_leaf_weight)
1760{
1761	unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1762	unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1763	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1764	struct blkg_conf_ctx ctx;
1765	struct cfq_group *cfqg;
1766	struct cfq_group_data *cfqgd;
1767	int ret;
1768	u64 v;
1769
1770	ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1771	if (ret)
1772		return ret;
1773
1774	if (sscanf(ctx.body, "%llu", &v) == 1) {
1775		/* require "default" on dfl */
1776		ret = -ERANGE;
1777		if (!v && on_dfl)
1778			goto out_finish;
1779	} else if (!strcmp(strim(ctx.body), "default")) {
1780		v = 0;
1781	} else {
1782		ret = -EINVAL;
1783		goto out_finish;
1784	}
1785
1786	cfqg = blkg_to_cfqg(ctx.blkg);
1787	cfqgd = blkcg_to_cfqgd(blkcg);
1788
1789	ret = -ERANGE;
1790	if (!v || (v >= min && v <= max)) {
1791		if (!is_leaf_weight) {
1792			cfqg->dev_weight = v;
1793			cfqg->new_weight = v ?: cfqgd->weight;
1794		} else {
1795			cfqg->dev_leaf_weight = v;
1796			cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight;
1797		}
1798		ret = 0;
1799	}
1800out_finish:
1801	blkg_conf_finish(&ctx);
1802	return ret ?: nbytes;
1803}
1804
1805static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1806				      char *buf, size_t nbytes, loff_t off)
1807{
1808	return __cfqg_set_weight_device(of, buf, nbytes, off, false, false);
1809}
1810
1811static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1812					   char *buf, size_t nbytes, loff_t off)
1813{
1814	return __cfqg_set_weight_device(of, buf, nbytes, off, false, true);
1815}
1816
1817static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1818			    bool on_dfl, bool reset_dev, bool is_leaf_weight)
1819{
1820	unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1821	unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1822	struct blkcg *blkcg = css_to_blkcg(css);
1823	struct blkcg_gq *blkg;
1824	struct cfq_group_data *cfqgd;
1825	int ret = 0;
1826
1827	if (val < min || val > max)
1828		return -ERANGE;
1829
1830	spin_lock_irq(&blkcg->lock);
1831	cfqgd = blkcg_to_cfqgd(blkcg);
1832	if (!cfqgd) {
1833		ret = -EINVAL;
1834		goto out;
1835	}
1836
1837	if (!is_leaf_weight)
1838		cfqgd->weight = val;
1839	else
1840		cfqgd->leaf_weight = val;
1841
1842	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1843		struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1844
1845		if (!cfqg)
1846			continue;
1847
1848		if (!is_leaf_weight) {
1849			if (reset_dev)
1850				cfqg->dev_weight = 0;
1851			if (!cfqg->dev_weight)
1852				cfqg->new_weight = cfqgd->weight;
1853		} else {
1854			if (reset_dev)
1855				cfqg->dev_leaf_weight = 0;
1856			if (!cfqg->dev_leaf_weight)
1857				cfqg->new_leaf_weight = cfqgd->leaf_weight;
1858		}
1859	}
1860
1861out:
1862	spin_unlock_irq(&blkcg->lock);
1863	return ret;
1864}
1865
1866static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1867			  u64 val)
1868{
1869	return __cfq_set_weight(css, val, false, false, false);
1870}
1871
1872static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1873			       struct cftype *cft, u64 val)
1874{
1875	return __cfq_set_weight(css, val, false, false, true);
1876}
1877
1878static int cfqg_print_stat(struct seq_file *sf, void *v)
1879{
1880	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1881			  &blkcg_policy_cfq, seq_cft(sf)->private, false);
1882	return 0;
1883}
1884
1885static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1886{
1887	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1888			  &blkcg_policy_cfq, seq_cft(sf)->private, true);
1889	return 0;
1890}
1891
1892static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1893				      struct blkg_policy_data *pd, int off)
1894{
1895	u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
1896					  &blkcg_policy_cfq, off);
1897	return __blkg_prfill_u64(sf, pd, sum);
1898}
1899
1900static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1901					struct blkg_policy_data *pd, int off)
1902{
1903	struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
1904							&blkcg_policy_cfq, off);
1905	return __blkg_prfill_rwstat(sf, pd, &sum);
1906}
1907
1908static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1909{
1910	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1911			  cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1912			  seq_cft(sf)->private, false);
1913	return 0;
1914}
1915
1916static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1917{
1918	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1919			  cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1920			  seq_cft(sf)->private, true);
1921	return 0;
1922}
1923
1924static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
1925			       int off)
1926{
1927	u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
1928
1929	return __blkg_prfill_u64(sf, pd, sum >> 9);
1930}
1931
1932static int cfqg_print_stat_sectors(struct seq_file *sf, void *v)
1933{
1934	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1935			  cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false);
1936	return 0;
1937}
1938
1939static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf,
1940					 struct blkg_policy_data *pd, int off)
1941{
1942	struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
1943					offsetof(struct blkcg_gq, stat_bytes));
1944	u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
1945		atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
1946
1947	return __blkg_prfill_u64(sf, pd, sum >> 9);
1948}
1949
1950static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
1951{
1952	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1953			  cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0,
1954			  false);
1955	return 0;
1956}
1957
1958#ifdef CONFIG_DEBUG_BLK_CGROUP
1959static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1960				      struct blkg_policy_data *pd, int off)
1961{
1962	struct cfq_group *cfqg = pd_to_cfqg(pd);
1963	u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1964	u64 v = 0;
1965
1966	if (samples) {
1967		v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1968		v = div64_u64(v, samples);
1969	}
1970	__blkg_prfill_u64(sf, pd, v);
1971	return 0;
1972}
1973
1974/* print avg_queue_size */
1975static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
 
1976{
1977	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1978			  cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1979			  0, false);
 
1980	return 0;
1981}
1982#endif	/* CONFIG_DEBUG_BLK_CGROUP */
1983
1984static struct cftype cfq_blkcg_legacy_files[] = {
1985	/* on root, weight is mapped to leaf_weight */
1986	{
1987		.name = "weight_device",
1988		.flags = CFTYPE_ONLY_ON_ROOT,
1989		.seq_show = cfqg_print_leaf_weight_device,
1990		.write = cfqg_set_leaf_weight_device,
1991	},
1992	{
1993		.name = "weight",
1994		.flags = CFTYPE_ONLY_ON_ROOT,
1995		.seq_show = cfq_print_leaf_weight,
1996		.write_u64 = cfq_set_leaf_weight,
1997	},
1998
1999	/* no such mapping necessary for !roots */
2000	{
2001		.name = "weight_device",
2002		.flags = CFTYPE_NOT_ON_ROOT,
2003		.seq_show = cfqg_print_weight_device,
2004		.write = cfqg_set_weight_device,
2005	},
2006	{
2007		.name = "weight",
2008		.flags = CFTYPE_NOT_ON_ROOT,
2009		.seq_show = cfq_print_weight,
2010		.write_u64 = cfq_set_weight,
2011	},
2012
2013	{
2014		.name = "leaf_weight_device",
2015		.seq_show = cfqg_print_leaf_weight_device,
2016		.write = cfqg_set_leaf_weight_device,
2017	},
2018	{
2019		.name = "leaf_weight",
2020		.seq_show = cfq_print_leaf_weight,
2021		.write_u64 = cfq_set_leaf_weight,
2022	},
2023
2024	/* statistics, covers only the tasks in the cfqg */
2025	{
2026		.name = "time",
2027		.private = offsetof(struct cfq_group, stats.time),
2028		.seq_show = cfqg_print_stat,
2029	},
2030	{
2031		.name = "sectors",
2032		.seq_show = cfqg_print_stat_sectors,
 
2033	},
2034	{
2035		.name = "io_service_bytes",
2036		.private = (unsigned long)&blkcg_policy_cfq,
2037		.seq_show = blkg_print_stat_bytes,
2038	},
2039	{
2040		.name = "io_serviced",
2041		.private = (unsigned long)&blkcg_policy_cfq,
2042		.seq_show = blkg_print_stat_ios,
2043	},
2044	{
2045		.name = "io_service_time",
2046		.private = offsetof(struct cfq_group, stats.service_time),
2047		.seq_show = cfqg_print_rwstat,
2048	},
2049	{
2050		.name = "io_wait_time",
2051		.private = offsetof(struct cfq_group, stats.wait_time),
2052		.seq_show = cfqg_print_rwstat,
2053	},
2054	{
2055		.name = "io_merged",
2056		.private = offsetof(struct cfq_group, stats.merged),
2057		.seq_show = cfqg_print_rwstat,
2058	},
2059	{
2060		.name = "io_queued",
2061		.private = offsetof(struct cfq_group, stats.queued),
2062		.seq_show = cfqg_print_rwstat,
2063	},
2064
2065	/* the same statictics which cover the cfqg and its descendants */
2066	{
2067		.name = "time_recursive",
2068		.private = offsetof(struct cfq_group, stats.time),
2069		.seq_show = cfqg_print_stat_recursive,
2070	},
2071	{
2072		.name = "sectors_recursive",
2073		.seq_show = cfqg_print_stat_sectors_recursive,
2074	},
2075	{
2076		.name = "io_service_bytes_recursive",
2077		.private = (unsigned long)&blkcg_policy_cfq,
2078		.seq_show = blkg_print_stat_bytes_recursive,
2079	},
2080	{
2081		.name = "io_serviced_recursive",
2082		.private = (unsigned long)&blkcg_policy_cfq,
2083		.seq_show = blkg_print_stat_ios_recursive,
2084	},
2085	{
2086		.name = "io_service_time_recursive",
2087		.private = offsetof(struct cfq_group, stats.service_time),
2088		.seq_show = cfqg_print_rwstat_recursive,
2089	},
2090	{
2091		.name = "io_wait_time_recursive",
2092		.private = offsetof(struct cfq_group, stats.wait_time),
2093		.seq_show = cfqg_print_rwstat_recursive,
2094	},
2095	{
2096		.name = "io_merged_recursive",
2097		.private = offsetof(struct cfq_group, stats.merged),
2098		.seq_show = cfqg_print_rwstat_recursive,
2099	},
2100	{
2101		.name = "io_queued_recursive",
2102		.private = offsetof(struct cfq_group, stats.queued),
2103		.seq_show = cfqg_print_rwstat_recursive,
2104	},
2105#ifdef CONFIG_DEBUG_BLK_CGROUP
2106	{
2107		.name = "avg_queue_size",
2108		.seq_show = cfqg_print_avg_queue_size,
2109	},
2110	{
2111		.name = "group_wait_time",
2112		.private = offsetof(struct cfq_group, stats.group_wait_time),
2113		.seq_show = cfqg_print_stat,
2114	},
2115	{
2116		.name = "idle_time",
2117		.private = offsetof(struct cfq_group, stats.idle_time),
2118		.seq_show = cfqg_print_stat,
2119	},
2120	{
2121		.name = "empty_time",
2122		.private = offsetof(struct cfq_group, stats.empty_time),
2123		.seq_show = cfqg_print_stat,
2124	},
2125	{
2126		.name = "dequeue",
2127		.private = offsetof(struct cfq_group, stats.dequeue),
2128		.seq_show = cfqg_print_stat,
2129	},
2130	{
2131		.name = "unaccounted_time",
2132		.private = offsetof(struct cfq_group, stats.unaccounted_time),
2133		.seq_show = cfqg_print_stat,
2134	},
2135#endif	/* CONFIG_DEBUG_BLK_CGROUP */
2136	{ }	/* terminate */
2137};
2138
2139static int cfq_print_weight_on_dfl(struct seq_file *sf, void *v)
2140{
2141	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2142	struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
2143
2144	seq_printf(sf, "default %u\n", cgd->weight);
2145	blkcg_print_blkgs(sf, blkcg, cfqg_prfill_weight_device,
2146			  &blkcg_policy_cfq, 0, false);
2147	return 0;
2148}
2149
2150static ssize_t cfq_set_weight_on_dfl(struct kernfs_open_file *of,
2151				     char *buf, size_t nbytes, loff_t off)
2152{
2153	char *endp;
2154	int ret;
2155	u64 v;
2156
2157	buf = strim(buf);
2158
2159	/* "WEIGHT" or "default WEIGHT" sets the default weight */
2160	v = simple_strtoull(buf, &endp, 0);
2161	if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) {
2162		ret = __cfq_set_weight(of_css(of), v, true, false, false);
2163		return ret ?: nbytes;
2164	}
2165
2166	/* "MAJ:MIN WEIGHT" */
2167	return __cfqg_set_weight_device(of, buf, nbytes, off, true, false);
2168}
2169
2170static struct cftype cfq_blkcg_files[] = {
2171	{
2172		.name = "weight",
2173		.flags = CFTYPE_NOT_ON_ROOT,
2174		.seq_show = cfq_print_weight_on_dfl,
2175		.write = cfq_set_weight_on_dfl,
2176	},
2177	{ }	/* terminate */
2178};
2179
2180#else /* GROUP_IOSCHED */
2181static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
2182					 struct blkcg *blkcg)
2183{
2184	return cfqd->root_group;
2185}
2186
2187static inline void
2188cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2189	cfqq->cfqg = cfqg;
2190}
2191
2192#endif /* GROUP_IOSCHED */
2193
2194/*
2195 * The cfqd->service_trees holds all pending cfq_queue's that have
2196 * requests waiting to be processed. It is sorted in the order that
2197 * we will service the queues.
2198 */
2199static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2200				 bool add_front)
2201{
2202	struct rb_node **p, *parent;
2203	struct cfq_queue *__cfqq;
2204	u64 rb_key;
2205	struct cfq_rb_root *st;
2206	bool leftmost = true;
2207	int new_cfqq = 1;
2208	u64 now = ktime_get_ns();
2209
2210	st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
 
2211	if (cfq_class_idle(cfqq)) {
2212		rb_key = CFQ_IDLE_DELAY;
2213		parent = st->rb_rightmost;
2214		if (parent && parent != &cfqq->rb_node) {
2215			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2216			rb_key += __cfqq->rb_key;
2217		} else
2218			rb_key += now;
2219	} else if (!add_front) {
2220		/*
2221		 * Get our rb key offset. Subtract any residual slice
2222		 * value carried from last service. A negative resid
2223		 * count indicates slice overrun, and this should position
2224		 * the next service time further away in the tree.
2225		 */
2226		rb_key = cfq_slice_offset(cfqd, cfqq) + now;
2227		rb_key -= cfqq->slice_resid;
2228		cfqq->slice_resid = 0;
2229	} else {
2230		rb_key = -NSEC_PER_SEC;
2231		__cfqq = cfq_rb_first(st);
2232		rb_key += __cfqq ? __cfqq->rb_key : now;
2233	}
2234
2235	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2236		new_cfqq = 0;
2237		/*
2238		 * same position, nothing more to do
2239		 */
2240		if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
 
2241			return;
2242
2243		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2244		cfqq->service_tree = NULL;
2245	}
2246
 
2247	parent = NULL;
2248	cfqq->service_tree = st;
2249	p = &st->rb.rb_root.rb_node;
2250	while (*p) {
 
 
2251		parent = *p;
2252		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2253
2254		/*
2255		 * sort by key, that represents service time.
2256		 */
2257		if (rb_key < __cfqq->rb_key)
2258			p = &parent->rb_left;
2259		else {
2260			p = &parent->rb_right;
2261			leftmost = false;
2262		}
 
 
2263	}
2264
 
 
 
2265	cfqq->rb_key = rb_key;
2266	rb_link_node(&cfqq->rb_node, parent, p);
2267	rb_insert_color_cached(&cfqq->rb_node, &st->rb, leftmost);
2268	st->count++;
2269	if (add_front || !new_cfqq)
2270		return;
2271	cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2272}
2273
2274static struct cfq_queue *
2275cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2276		     sector_t sector, struct rb_node **ret_parent,
2277		     struct rb_node ***rb_link)
2278{
2279	struct rb_node **p, *parent;
2280	struct cfq_queue *cfqq = NULL;
2281
2282	parent = NULL;
2283	p = &root->rb_node;
2284	while (*p) {
2285		struct rb_node **n;
2286
2287		parent = *p;
2288		cfqq = rb_entry(parent, struct cfq_queue, p_node);
2289
2290		/*
2291		 * Sort strictly based on sector.  Smallest to the left,
2292		 * largest to the right.
2293		 */
2294		if (sector > blk_rq_pos(cfqq->next_rq))
2295			n = &(*p)->rb_right;
2296		else if (sector < blk_rq_pos(cfqq->next_rq))
2297			n = &(*p)->rb_left;
2298		else
2299			break;
2300		p = n;
2301		cfqq = NULL;
2302	}
2303
2304	*ret_parent = parent;
2305	if (rb_link)
2306		*rb_link = p;
2307	return cfqq;
2308}
2309
2310static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2311{
2312	struct rb_node **p, *parent;
2313	struct cfq_queue *__cfqq;
2314
2315	if (cfqq->p_root) {
2316		rb_erase(&cfqq->p_node, cfqq->p_root);
2317		cfqq->p_root = NULL;
2318	}
2319
2320	if (cfq_class_idle(cfqq))
2321		return;
2322	if (!cfqq->next_rq)
2323		return;
2324
2325	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2326	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2327				      blk_rq_pos(cfqq->next_rq), &parent, &p);
2328	if (!__cfqq) {
2329		rb_link_node(&cfqq->p_node, parent, p);
2330		rb_insert_color(&cfqq->p_node, cfqq->p_root);
2331	} else
2332		cfqq->p_root = NULL;
2333}
2334
2335/*
2336 * Update cfqq's position in the service tree.
2337 */
2338static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2339{
2340	/*
2341	 * Resorting requires the cfqq to be on the RR list already.
2342	 */
2343	if (cfq_cfqq_on_rr(cfqq)) {
2344		cfq_service_tree_add(cfqd, cfqq, 0);
2345		cfq_prio_tree_add(cfqd, cfqq);
2346	}
2347}
2348
2349/*
2350 * add to busy list of queues for service, trying to be fair in ordering
2351 * the pending list according to last request service
2352 */
2353static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2354{
2355	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2356	BUG_ON(cfq_cfqq_on_rr(cfqq));
2357	cfq_mark_cfqq_on_rr(cfqq);
2358	cfqd->busy_queues++;
2359	if (cfq_cfqq_sync(cfqq))
2360		cfqd->busy_sync_queues++;
2361
2362	cfq_resort_rr_list(cfqd, cfqq);
2363}
2364
2365/*
2366 * Called when the cfqq no longer has requests pending, remove it from
2367 * the service tree.
2368 */
2369static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2370{
2371	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2372	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2373	cfq_clear_cfqq_on_rr(cfqq);
2374
2375	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2376		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2377		cfqq->service_tree = NULL;
2378	}
2379	if (cfqq->p_root) {
2380		rb_erase(&cfqq->p_node, cfqq->p_root);
2381		cfqq->p_root = NULL;
2382	}
2383
2384	cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2385	BUG_ON(!cfqd->busy_queues);
2386	cfqd->busy_queues--;
2387	if (cfq_cfqq_sync(cfqq))
2388		cfqd->busy_sync_queues--;
2389}
2390
2391/*
2392 * rb tree support functions
2393 */
2394static void cfq_del_rq_rb(struct request *rq)
2395{
2396	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2397	const int sync = rq_is_sync(rq);
2398
2399	BUG_ON(!cfqq->queued[sync]);
2400	cfqq->queued[sync]--;
2401
2402	elv_rb_del(&cfqq->sort_list, rq);
2403
2404	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2405		/*
2406		 * Queue will be deleted from service tree when we actually
2407		 * expire it later. Right now just remove it from prio tree
2408		 * as it is empty.
2409		 */
2410		if (cfqq->p_root) {
2411			rb_erase(&cfqq->p_node, cfqq->p_root);
2412			cfqq->p_root = NULL;
2413		}
2414	}
2415}
2416
2417static void cfq_add_rq_rb(struct request *rq)
2418{
2419	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2420	struct cfq_data *cfqd = cfqq->cfqd;
2421	struct request *prev;
2422
2423	cfqq->queued[rq_is_sync(rq)]++;
2424
2425	elv_rb_add(&cfqq->sort_list, rq);
2426
2427	if (!cfq_cfqq_on_rr(cfqq))
2428		cfq_add_cfqq_rr(cfqd, cfqq);
2429
2430	/*
2431	 * check if this request is a better next-serve candidate
2432	 */
2433	prev = cfqq->next_rq;
2434	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2435
2436	/*
2437	 * adjust priority tree position, if ->next_rq changes
2438	 */
2439	if (prev != cfqq->next_rq)
2440		cfq_prio_tree_add(cfqd, cfqq);
2441
2442	BUG_ON(!cfqq->next_rq);
2443}
2444
2445static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2446{
2447	elv_rb_del(&cfqq->sort_list, rq);
2448	cfqq->queued[rq_is_sync(rq)]--;
2449	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2450	cfq_add_rq_rb(rq);
2451	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2452				 rq->cmd_flags);
2453}
2454
2455static struct request *
2456cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2457{
2458	struct task_struct *tsk = current;
2459	struct cfq_io_cq *cic;
2460	struct cfq_queue *cfqq;
2461
2462	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2463	if (!cic)
2464		return NULL;
2465
2466	cfqq = cic_to_cfqq(cic, op_is_sync(bio->bi_opf));
2467	if (cfqq)
2468		return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
 
 
 
2469
2470	return NULL;
2471}
2472
2473static void cfq_activate_request(struct request_queue *q, struct request *rq)
2474{
2475	struct cfq_data *cfqd = q->elevator->elevator_data;
2476
2477	cfqd->rq_in_driver++;
2478	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2479						cfqd->rq_in_driver);
2480
2481	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2482}
2483
2484static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2485{
2486	struct cfq_data *cfqd = q->elevator->elevator_data;
2487
2488	WARN_ON(!cfqd->rq_in_driver);
2489	cfqd->rq_in_driver--;
2490	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2491						cfqd->rq_in_driver);
2492}
2493
2494static void cfq_remove_request(struct request *rq)
2495{
2496	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2497
2498	if (cfqq->next_rq == rq)
2499		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2500
2501	list_del_init(&rq->queuelist);
2502	cfq_del_rq_rb(rq);
2503
2504	cfqq->cfqd->rq_queued--;
2505	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2506	if (rq->cmd_flags & REQ_PRIO) {
2507		WARN_ON(!cfqq->prio_pending);
2508		cfqq->prio_pending--;
2509	}
2510}
2511
2512static enum elv_merge cfq_merge(struct request_queue *q, struct request **req,
2513		     struct bio *bio)
2514{
2515	struct cfq_data *cfqd = q->elevator->elevator_data;
2516	struct request *__rq;
2517
2518	__rq = cfq_find_rq_fmerge(cfqd, bio);
2519	if (__rq && elv_bio_merge_ok(__rq, bio)) {
2520		*req = __rq;
2521		return ELEVATOR_FRONT_MERGE;
2522	}
2523
2524	return ELEVATOR_NO_MERGE;
2525}
2526
2527static void cfq_merged_request(struct request_queue *q, struct request *req,
2528			       enum elv_merge type)
2529{
2530	if (type == ELEVATOR_FRONT_MERGE) {
2531		struct cfq_queue *cfqq = RQ_CFQQ(req);
2532
2533		cfq_reposition_rq_rb(cfqq, req);
2534	}
2535}
2536
2537static void cfq_bio_merged(struct request_queue *q, struct request *req,
2538				struct bio *bio)
2539{
2540	cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_opf);
2541}
2542
2543static void
2544cfq_merged_requests(struct request_queue *q, struct request *rq,
2545		    struct request *next)
2546{
2547	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2548	struct cfq_data *cfqd = q->elevator->elevator_data;
2549
2550	/*
2551	 * reposition in fifo if next is older than rq
2552	 */
2553	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2554	    next->fifo_time < rq->fifo_time &&
2555	    cfqq == RQ_CFQQ(next)) {
2556		list_move(&rq->queuelist, &next->queuelist);
2557		rq->fifo_time = next->fifo_time;
2558	}
2559
2560	if (cfqq->next_rq == next)
2561		cfqq->next_rq = rq;
2562	cfq_remove_request(next);
2563	cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2564
2565	cfqq = RQ_CFQQ(next);
2566	/*
2567	 * all requests of this queue are merged to other queues, delete it
2568	 * from the service tree. If it's the active_queue,
2569	 * cfq_dispatch_requests() will choose to expire it or do idle
2570	 */
2571	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2572	    cfqq != cfqd->active_queue)
2573		cfq_del_cfqq_rr(cfqd, cfqq);
2574}
2575
2576static int cfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2577			       struct bio *bio)
2578{
2579	struct cfq_data *cfqd = q->elevator->elevator_data;
2580	bool is_sync = op_is_sync(bio->bi_opf);
2581	struct cfq_io_cq *cic;
2582	struct cfq_queue *cfqq;
2583
2584	/*
2585	 * Disallow merge of a sync bio into an async request.
2586	 */
2587	if (is_sync && !rq_is_sync(rq))
2588		return false;
2589
2590	/*
2591	 * Lookup the cfqq that this bio will be queued with and allow
2592	 * merge only if rq is queued there.
2593	 */
2594	cic = cfq_cic_lookup(cfqd, current->io_context);
2595	if (!cic)
2596		return false;
2597
2598	cfqq = cic_to_cfqq(cic, is_sync);
2599	return cfqq == RQ_CFQQ(rq);
2600}
2601
2602static int cfq_allow_rq_merge(struct request_queue *q, struct request *rq,
2603			      struct request *next)
2604{
2605	return RQ_CFQQ(rq) == RQ_CFQQ(next);
2606}
2607
2608static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2609{
2610	hrtimer_try_to_cancel(&cfqd->idle_slice_timer);
2611	cfqg_stats_update_idle_time(cfqq->cfqg);
2612}
2613
2614static void __cfq_set_active_queue(struct cfq_data *cfqd,
2615				   struct cfq_queue *cfqq)
2616{
2617	if (cfqq) {
2618		cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2619				cfqd->serving_wl_class, cfqd->serving_wl_type);
2620		cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2621		cfqq->slice_start = 0;
2622		cfqq->dispatch_start = ktime_get_ns();
2623		cfqq->allocated_slice = 0;
2624		cfqq->slice_end = 0;
2625		cfqq->slice_dispatch = 0;
2626		cfqq->nr_sectors = 0;
2627
2628		cfq_clear_cfqq_wait_request(cfqq);
2629		cfq_clear_cfqq_must_dispatch(cfqq);
2630		cfq_clear_cfqq_must_alloc_slice(cfqq);
2631		cfq_clear_cfqq_fifo_expire(cfqq);
2632		cfq_mark_cfqq_slice_new(cfqq);
2633
2634		cfq_del_timer(cfqd, cfqq);
2635	}
2636
2637	cfqd->active_queue = cfqq;
2638}
2639
2640/*
2641 * current cfqq expired its slice (or was too idle), select new one
2642 */
2643static void
2644__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2645		    bool timed_out)
2646{
2647	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2648
2649	if (cfq_cfqq_wait_request(cfqq))
2650		cfq_del_timer(cfqd, cfqq);
2651
2652	cfq_clear_cfqq_wait_request(cfqq);
2653	cfq_clear_cfqq_wait_busy(cfqq);
2654
2655	/*
2656	 * If this cfqq is shared between multiple processes, check to
2657	 * make sure that those processes are still issuing I/Os within
2658	 * the mean seek distance.  If not, it may be time to break the
2659	 * queues apart again.
2660	 */
2661	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2662		cfq_mark_cfqq_split_coop(cfqq);
2663
2664	/*
2665	 * store what was left of this slice, if the queue idled/timed out
2666	 */
2667	if (timed_out) {
2668		if (cfq_cfqq_slice_new(cfqq))
2669			cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2670		else
2671			cfqq->slice_resid = cfqq->slice_end - ktime_get_ns();
2672		cfq_log_cfqq(cfqd, cfqq, "resid=%lld", cfqq->slice_resid);
2673	}
2674
2675	cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2676
2677	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2678		cfq_del_cfqq_rr(cfqd, cfqq);
2679
2680	cfq_resort_rr_list(cfqd, cfqq);
2681
2682	if (cfqq == cfqd->active_queue)
2683		cfqd->active_queue = NULL;
2684
2685	if (cfqd->active_cic) {
2686		put_io_context(cfqd->active_cic->icq.ioc);
2687		cfqd->active_cic = NULL;
2688	}
2689}
2690
2691static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2692{
2693	struct cfq_queue *cfqq = cfqd->active_queue;
2694
2695	if (cfqq)
2696		__cfq_slice_expired(cfqd, cfqq, timed_out);
2697}
2698
2699/*
2700 * Get next queue for service. Unless we have a queue preemption,
2701 * we'll simply select the first cfqq in the service tree.
2702 */
2703static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2704{
2705	struct cfq_rb_root *st = st_for(cfqd->serving_group,
2706			cfqd->serving_wl_class, cfqd->serving_wl_type);
 
2707
2708	if (!cfqd->rq_queued)
2709		return NULL;
2710
2711	/* There is nothing to dispatch */
2712	if (!st)
2713		return NULL;
2714	if (RB_EMPTY_ROOT(&st->rb.rb_root))
2715		return NULL;
2716	return cfq_rb_first(st);
2717}
2718
2719static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2720{
2721	struct cfq_group *cfqg;
2722	struct cfq_queue *cfqq;
2723	int i, j;
2724	struct cfq_rb_root *st;
2725
2726	if (!cfqd->rq_queued)
2727		return NULL;
2728
2729	cfqg = cfq_get_next_cfqg(cfqd);
2730	if (!cfqg)
2731		return NULL;
2732
2733	for_each_cfqg_st(cfqg, i, j, st) {
2734		cfqq = cfq_rb_first(st);
2735		if (cfqq)
2736			return cfqq;
2737	}
2738	return NULL;
2739}
2740
2741/*
2742 * Get and set a new active queue for service.
2743 */
2744static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2745					      struct cfq_queue *cfqq)
2746{
2747	if (!cfqq)
2748		cfqq = cfq_get_next_queue(cfqd);
2749
2750	__cfq_set_active_queue(cfqd, cfqq);
2751	return cfqq;
2752}
2753
2754static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2755					  struct request *rq)
2756{
2757	if (blk_rq_pos(rq) >= cfqd->last_position)
2758		return blk_rq_pos(rq) - cfqd->last_position;
2759	else
2760		return cfqd->last_position - blk_rq_pos(rq);
2761}
2762
2763static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2764			       struct request *rq)
2765{
2766	return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2767}
2768
2769static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2770				    struct cfq_queue *cur_cfqq)
2771{
2772	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2773	struct rb_node *parent, *node;
2774	struct cfq_queue *__cfqq;
2775	sector_t sector = cfqd->last_position;
2776
2777	if (RB_EMPTY_ROOT(root))
2778		return NULL;
2779
2780	/*
2781	 * First, if we find a request starting at the end of the last
2782	 * request, choose it.
2783	 */
2784	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2785	if (__cfqq)
2786		return __cfqq;
2787
2788	/*
2789	 * If the exact sector wasn't found, the parent of the NULL leaf
2790	 * will contain the closest sector.
2791	 */
2792	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
2793	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2794		return __cfqq;
2795
2796	if (blk_rq_pos(__cfqq->next_rq) < sector)
2797		node = rb_next(&__cfqq->p_node);
2798	else
2799		node = rb_prev(&__cfqq->p_node);
2800	if (!node)
2801		return NULL;
2802
2803	__cfqq = rb_entry(node, struct cfq_queue, p_node);
2804	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2805		return __cfqq;
2806
2807	return NULL;
2808}
2809
2810/*
2811 * cfqd - obvious
2812 * cur_cfqq - passed in so that we don't decide that the current queue is
2813 * 	      closely cooperating with itself.
2814 *
2815 * So, basically we're assuming that that cur_cfqq has dispatched at least
2816 * one request, and that cfqd->last_position reflects a position on the disk
2817 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
2818 * assumption.
2819 */
2820static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2821					      struct cfq_queue *cur_cfqq)
2822{
2823	struct cfq_queue *cfqq;
2824
2825	if (cfq_class_idle(cur_cfqq))
2826		return NULL;
2827	if (!cfq_cfqq_sync(cur_cfqq))
2828		return NULL;
2829	if (CFQQ_SEEKY(cur_cfqq))
2830		return NULL;
2831
2832	/*
2833	 * Don't search priority tree if it's the only queue in the group.
2834	 */
2835	if (cur_cfqq->cfqg->nr_cfqq == 1)
2836		return NULL;
2837
2838	/*
2839	 * We should notice if some of the queues are cooperating, eg
2840	 * working closely on the same area of the disk. In that case,
2841	 * we can group them together and don't waste time idling.
2842	 */
2843	cfqq = cfqq_close(cfqd, cur_cfqq);
2844	if (!cfqq)
2845		return NULL;
2846
2847	/* If new queue belongs to different cfq_group, don't choose it */
2848	if (cur_cfqq->cfqg != cfqq->cfqg)
2849		return NULL;
2850
2851	/*
2852	 * It only makes sense to merge sync queues.
2853	 */
2854	if (!cfq_cfqq_sync(cfqq))
2855		return NULL;
2856	if (CFQQ_SEEKY(cfqq))
2857		return NULL;
2858
2859	/*
2860	 * Do not merge queues of different priority classes
2861	 */
2862	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2863		return NULL;
2864
2865	return cfqq;
2866}
2867
2868/*
2869 * Determine whether we should enforce idle window for this queue.
2870 */
2871
2872static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2873{
2874	enum wl_class_t wl_class = cfqq_class(cfqq);
2875	struct cfq_rb_root *st = cfqq->service_tree;
2876
2877	BUG_ON(!st);
2878	BUG_ON(!st->count);
2879
2880	if (!cfqd->cfq_slice_idle)
2881		return false;
2882
2883	/* We never do for idle class queues. */
2884	if (wl_class == IDLE_WORKLOAD)
2885		return false;
2886
2887	/* We do for queues that were marked with idle window flag. */
2888	if (cfq_cfqq_idle_window(cfqq) &&
2889	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2890		return true;
2891
2892	/*
2893	 * Otherwise, we do only if they are the last ones
2894	 * in their service tree.
2895	 */
2896	if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2897	   !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2898		return true;
2899	cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
 
2900	return false;
2901}
2902
2903static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2904{
2905	struct cfq_queue *cfqq = cfqd->active_queue;
2906	struct cfq_rb_root *st = cfqq->service_tree;
2907	struct cfq_io_cq *cic;
2908	u64 sl, group_idle = 0;
2909	u64 now = ktime_get_ns();
2910
2911	/*
2912	 * SSD device without seek penalty, disable idling. But only do so
2913	 * for devices that support queuing, otherwise we still have a problem
2914	 * with sync vs async workloads.
2915	 */
2916	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag &&
2917		!cfqd->cfq_group_idle)
2918		return;
2919
2920	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2921	WARN_ON(cfq_cfqq_slice_new(cfqq));
2922
2923	/*
2924	 * idle is disabled, either manually or by past process history
2925	 */
2926	if (!cfq_should_idle(cfqd, cfqq)) {
2927		/* no queue idling. Check for group idling */
2928		if (cfqd->cfq_group_idle)
2929			group_idle = cfqd->cfq_group_idle;
2930		else
2931			return;
2932	}
2933
2934	/*
2935	 * still active requests from this queue, don't idle
2936	 */
2937	if (cfqq->dispatched)
2938		return;
2939
2940	/*
2941	 * task has exited, don't wait
2942	 */
2943	cic = cfqd->active_cic;
2944	if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2945		return;
2946
2947	/*
2948	 * If our average think time is larger than the remaining time
2949	 * slice, then don't idle. This avoids overrunning the allotted
2950	 * time slice.
2951	 */
2952	if (sample_valid(cic->ttime.ttime_samples) &&
2953	    (cfqq->slice_end - now < cic->ttime.ttime_mean)) {
2954		cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%llu",
2955			     cic->ttime.ttime_mean);
2956		return;
2957	}
2958
2959	/*
2960	 * There are other queues in the group or this is the only group and
2961	 * it has too big thinktime, don't do group idle.
2962	 */
2963	if (group_idle &&
2964	    (cfqq->cfqg->nr_cfqq > 1 ||
2965	     cfq_io_thinktime_big(cfqd, &st->ttime, true)))
2966		return;
2967
2968	cfq_mark_cfqq_wait_request(cfqq);
2969
2970	if (group_idle)
2971		sl = cfqd->cfq_group_idle;
2972	else
2973		sl = cfqd->cfq_slice_idle;
2974
2975	hrtimer_start(&cfqd->idle_slice_timer, ns_to_ktime(sl),
2976		      HRTIMER_MODE_REL);
2977	cfqg_stats_set_start_idle_time(cfqq->cfqg);
2978	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %llu group_idle: %d", sl,
2979			group_idle ? 1 : 0);
2980}
2981
2982/*
2983 * Move request from internal lists to the request queue dispatch list.
2984 */
2985static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2986{
2987	struct cfq_data *cfqd = q->elevator->elevator_data;
2988	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2989
2990	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2991
2992	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2993	cfq_remove_request(rq);
2994	cfqq->dispatched++;
2995	(RQ_CFQG(rq))->dispatched++;
2996	elv_dispatch_sort(q, rq);
2997
2998	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2999	cfqq->nr_sectors += blk_rq_sectors(rq);
 
3000}
3001
3002/*
3003 * return expired entry, or NULL to just start from scratch in rbtree
3004 */
3005static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
3006{
3007	struct request *rq = NULL;
3008
3009	if (cfq_cfqq_fifo_expire(cfqq))
3010		return NULL;
3011
3012	cfq_mark_cfqq_fifo_expire(cfqq);
3013
3014	if (list_empty(&cfqq->fifo))
3015		return NULL;
3016
3017	rq = rq_entry_fifo(cfqq->fifo.next);
3018	if (ktime_get_ns() < rq->fifo_time)
3019		rq = NULL;
3020
 
3021	return rq;
3022}
3023
3024static inline int
3025cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3026{
3027	const int base_rq = cfqd->cfq_slice_async_rq;
3028
3029	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
3030
3031	return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
3032}
3033
3034/*
3035 * Must be called with the queue_lock held.
3036 */
3037static int cfqq_process_refs(struct cfq_queue *cfqq)
3038{
3039	int process_refs, io_refs;
3040
3041	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
3042	process_refs = cfqq->ref - io_refs;
3043	BUG_ON(process_refs < 0);
3044	return process_refs;
3045}
3046
3047static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
3048{
3049	int process_refs, new_process_refs;
3050	struct cfq_queue *__cfqq;
3051
3052	/*
3053	 * If there are no process references on the new_cfqq, then it is
3054	 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3055	 * chain may have dropped their last reference (not just their
3056	 * last process reference).
3057	 */
3058	if (!cfqq_process_refs(new_cfqq))
3059		return;
3060
3061	/* Avoid a circular list and skip interim queue merges */
3062	while ((__cfqq = new_cfqq->new_cfqq)) {
3063		if (__cfqq == cfqq)
3064			return;
3065		new_cfqq = __cfqq;
3066	}
3067
3068	process_refs = cfqq_process_refs(cfqq);
3069	new_process_refs = cfqq_process_refs(new_cfqq);
3070	/*
3071	 * If the process for the cfqq has gone away, there is no
3072	 * sense in merging the queues.
3073	 */
3074	if (process_refs == 0 || new_process_refs == 0)
3075		return;
3076
3077	/*
3078	 * Merge in the direction of the lesser amount of work.
3079	 */
3080	if (new_process_refs >= process_refs) {
3081		cfqq->new_cfqq = new_cfqq;
3082		new_cfqq->ref += process_refs;
3083	} else {
3084		new_cfqq->new_cfqq = cfqq;
3085		cfqq->ref += new_process_refs;
3086	}
3087}
3088
3089static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
3090			struct cfq_group *cfqg, enum wl_class_t wl_class)
3091{
3092	struct cfq_queue *queue;
3093	int i;
3094	bool key_valid = false;
3095	u64 lowest_key = 0;
3096	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
3097
3098	for (i = 0; i <= SYNC_WORKLOAD; ++i) {
3099		/* select the one with lowest rb_key */
3100		queue = cfq_rb_first(st_for(cfqg, wl_class, i));
3101		if (queue &&
3102		    (!key_valid || queue->rb_key < lowest_key)) {
3103			lowest_key = queue->rb_key;
3104			cur_best = i;
3105			key_valid = true;
3106		}
3107	}
3108
3109	return cur_best;
3110}
3111
3112static void
3113choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
3114{
3115	u64 slice;
3116	unsigned count;
3117	struct cfq_rb_root *st;
3118	u64 group_slice;
3119	enum wl_class_t original_class = cfqd->serving_wl_class;
3120	u64 now = ktime_get_ns();
3121
3122	/* Choose next priority. RT > BE > IDLE */
3123	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3124		cfqd->serving_wl_class = RT_WORKLOAD;
3125	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3126		cfqd->serving_wl_class = BE_WORKLOAD;
3127	else {
3128		cfqd->serving_wl_class = IDLE_WORKLOAD;
3129		cfqd->workload_expires = now + jiffies_to_nsecs(1);
3130		return;
3131	}
3132
3133	if (original_class != cfqd->serving_wl_class)
3134		goto new_workload;
3135
3136	/*
3137	 * For RT and BE, we have to choose also the type
3138	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3139	 * expiration time
3140	 */
3141	st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3142	count = st->count;
3143
3144	/*
3145	 * check workload expiration, and that we still have other queues ready
3146	 */
3147	if (count && !(now > cfqd->workload_expires))
3148		return;
3149
3150new_workload:
3151	/* otherwise select new workload type */
3152	cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3153					cfqd->serving_wl_class);
3154	st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3155	count = st->count;
3156
3157	/*
3158	 * the workload slice is computed as a fraction of target latency
3159	 * proportional to the number of queues in that workload, over
3160	 * all the queues in the same priority class
3161	 */
3162	group_slice = cfq_group_slice(cfqd, cfqg);
3163
3164	slice = div_u64(group_slice * count,
3165		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3166		      cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3167					cfqg)));
3168
3169	if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3170		u64 tmp;
3171
3172		/*
3173		 * Async queues are currently system wide. Just taking
3174		 * proportion of queues with-in same group will lead to higher
3175		 * async ratio system wide as generally root group is going
3176		 * to have higher weight. A more accurate thing would be to
3177		 * calculate system wide asnc/sync ratio.
3178		 */
3179		tmp = cfqd->cfq_target_latency *
3180			cfqg_busy_async_queues(cfqd, cfqg);
3181		tmp = div_u64(tmp, cfqd->busy_queues);
3182		slice = min_t(u64, slice, tmp);
3183
3184		/* async workload slice is scaled down according to
3185		 * the sync/async slice ratio. */
3186		slice = div64_u64(slice*cfqd->cfq_slice[0], cfqd->cfq_slice[1]);
3187	} else
3188		/* sync workload slice is at least 2 * cfq_slice_idle */
3189		slice = max(slice, 2 * cfqd->cfq_slice_idle);
3190
3191	slice = max_t(u64, slice, CFQ_MIN_TT);
3192	cfq_log(cfqd, "workload slice:%llu", slice);
3193	cfqd->workload_expires = now + slice;
3194}
3195
3196static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3197{
3198	struct cfq_rb_root *st = &cfqd->grp_service_tree;
3199	struct cfq_group *cfqg;
3200
3201	if (RB_EMPTY_ROOT(&st->rb.rb_root))
3202		return NULL;
3203	cfqg = cfq_rb_first_group(st);
3204	update_min_vdisktime(st);
3205	return cfqg;
3206}
3207
3208static void cfq_choose_cfqg(struct cfq_data *cfqd)
3209{
3210	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3211	u64 now = ktime_get_ns();
3212
3213	cfqd->serving_group = cfqg;
3214
3215	/* Restore the workload type data */
3216	if (cfqg->saved_wl_slice) {
3217		cfqd->workload_expires = now + cfqg->saved_wl_slice;
3218		cfqd->serving_wl_type = cfqg->saved_wl_type;
3219		cfqd->serving_wl_class = cfqg->saved_wl_class;
3220	} else
3221		cfqd->workload_expires = now - 1;
3222
3223	choose_wl_class_and_type(cfqd, cfqg);
3224}
3225
3226/*
3227 * Select a queue for service. If we have a current active queue,
3228 * check whether to continue servicing it, or retrieve and set a new one.
3229 */
3230static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3231{
3232	struct cfq_queue *cfqq, *new_cfqq = NULL;
3233	u64 now = ktime_get_ns();
3234
3235	cfqq = cfqd->active_queue;
3236	if (!cfqq)
3237		goto new_queue;
3238
3239	if (!cfqd->rq_queued)
3240		return NULL;
3241
3242	/*
3243	 * We were waiting for group to get backlogged. Expire the queue
3244	 */
3245	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3246		goto expire;
3247
3248	/*
3249	 * The active queue has run out of time, expire it and select new.
3250	 */
3251	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3252		/*
3253		 * If slice had not expired at the completion of last request
3254		 * we might not have turned on wait_busy flag. Don't expire
3255		 * the queue yet. Allow the group to get backlogged.
3256		 *
3257		 * The very fact that we have used the slice, that means we
3258		 * have been idling all along on this queue and it should be
3259		 * ok to wait for this request to complete.
3260		 */
3261		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3262		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3263			cfqq = NULL;
3264			goto keep_queue;
3265		} else
3266			goto check_group_idle;
3267	}
3268
3269	/*
3270	 * The active queue has requests and isn't expired, allow it to
3271	 * dispatch.
3272	 */
3273	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3274		goto keep_queue;
3275
3276	/*
3277	 * If another queue has a request waiting within our mean seek
3278	 * distance, let it run.  The expire code will check for close
3279	 * cooperators and put the close queue at the front of the service
3280	 * tree.  If possible, merge the expiring queue with the new cfqq.
3281	 */
3282	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3283	if (new_cfqq) {
3284		if (!cfqq->new_cfqq)
3285			cfq_setup_merge(cfqq, new_cfqq);
3286		goto expire;
3287	}
3288
3289	/*
3290	 * No requests pending. If the active queue still has requests in
3291	 * flight or is idling for a new request, allow either of these
3292	 * conditions to happen (or time out) before selecting a new queue.
3293	 */
3294	if (hrtimer_active(&cfqd->idle_slice_timer)) {
3295		cfqq = NULL;
3296		goto keep_queue;
3297	}
3298
3299	/*
3300	 * This is a deep seek queue, but the device is much faster than
3301	 * the queue can deliver, don't idle
3302	 **/
3303	if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3304	    (cfq_cfqq_slice_new(cfqq) ||
3305	    (cfqq->slice_end - now > now - cfqq->slice_start))) {
3306		cfq_clear_cfqq_deep(cfqq);
3307		cfq_clear_cfqq_idle_window(cfqq);
3308	}
3309
3310	if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3311		cfqq = NULL;
3312		goto keep_queue;
3313	}
3314
3315	/*
3316	 * If group idle is enabled and there are requests dispatched from
3317	 * this group, wait for requests to complete.
3318	 */
3319check_group_idle:
3320	if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3321	    cfqq->cfqg->dispatched &&
3322	    !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3323		cfqq = NULL;
3324		goto keep_queue;
3325	}
3326
3327expire:
3328	cfq_slice_expired(cfqd, 0);
3329new_queue:
3330	/*
3331	 * Current queue expired. Check if we have to switch to a new
3332	 * service tree
3333	 */
3334	if (!new_cfqq)
3335		cfq_choose_cfqg(cfqd);
3336
3337	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3338keep_queue:
3339	return cfqq;
3340}
3341
3342static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3343{
3344	int dispatched = 0;
3345
3346	while (cfqq->next_rq) {
3347		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3348		dispatched++;
3349	}
3350
3351	BUG_ON(!list_empty(&cfqq->fifo));
3352
3353	/* By default cfqq is not expired if it is empty. Do it explicitly */
3354	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3355	return dispatched;
3356}
3357
3358/*
3359 * Drain our current requests. Used for barriers and when switching
3360 * io schedulers on-the-fly.
3361 */
3362static int cfq_forced_dispatch(struct cfq_data *cfqd)
3363{
3364	struct cfq_queue *cfqq;
3365	int dispatched = 0;
3366
3367	/* Expire the timeslice of the current active queue first */
3368	cfq_slice_expired(cfqd, 0);
3369	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3370		__cfq_set_active_queue(cfqd, cfqq);
3371		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3372	}
3373
3374	BUG_ON(cfqd->busy_queues);
3375
3376	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3377	return dispatched;
3378}
3379
3380static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3381	struct cfq_queue *cfqq)
3382{
3383	u64 now = ktime_get_ns();
3384
3385	/* the queue hasn't finished any request, can't estimate */
3386	if (cfq_cfqq_slice_new(cfqq))
3387		return true;
3388	if (now + cfqd->cfq_slice_idle * cfqq->dispatched > cfqq->slice_end)
 
3389		return true;
3390
3391	return false;
3392}
3393
3394static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3395{
3396	unsigned int max_dispatch;
3397
3398	if (cfq_cfqq_must_dispatch(cfqq))
3399		return true;
3400
3401	/*
3402	 * Drain async requests before we start sync IO
3403	 */
3404	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3405		return false;
3406
3407	/*
3408	 * If this is an async queue and we have sync IO in flight, let it wait
3409	 */
3410	if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3411		return false;
3412
3413	max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3414	if (cfq_class_idle(cfqq))
3415		max_dispatch = 1;
3416
3417	/*
3418	 * Does this cfqq already have too much IO in flight?
3419	 */
3420	if (cfqq->dispatched >= max_dispatch) {
3421		bool promote_sync = false;
3422		/*
3423		 * idle queue must always only have a single IO in flight
3424		 */
3425		if (cfq_class_idle(cfqq))
3426			return false;
3427
3428		/*
3429		 * If there is only one sync queue
3430		 * we can ignore async queue here and give the sync
3431		 * queue no dispatch limit. The reason is a sync queue can
3432		 * preempt async queue, limiting the sync queue doesn't make
3433		 * sense. This is useful for aiostress test.
3434		 */
3435		if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3436			promote_sync = true;
3437
3438		/*
3439		 * We have other queues, don't allow more IO from this one
3440		 */
3441		if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3442				!promote_sync)
3443			return false;
3444
3445		/*
3446		 * Sole queue user, no limit
3447		 */
3448		if (cfqd->busy_queues == 1 || promote_sync)
3449			max_dispatch = -1;
3450		else
3451			/*
3452			 * Normally we start throttling cfqq when cfq_quantum/2
3453			 * requests have been dispatched. But we can drive
3454			 * deeper queue depths at the beginning of slice
3455			 * subjected to upper limit of cfq_quantum.
3456			 * */
3457			max_dispatch = cfqd->cfq_quantum;
3458	}
3459
3460	/*
3461	 * Async queues must wait a bit before being allowed dispatch.
3462	 * We also ramp up the dispatch depth gradually for async IO,
3463	 * based on the last sync IO we serviced
3464	 */
3465	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3466		u64 last_sync = ktime_get_ns() - cfqd->last_delayed_sync;
3467		unsigned int depth;
3468
3469		depth = div64_u64(last_sync, cfqd->cfq_slice[1]);
3470		if (!depth && !cfqq->dispatched)
3471			depth = 1;
3472		if (depth < max_dispatch)
3473			max_dispatch = depth;
3474	}
3475
3476	/*
3477	 * If we're below the current max, allow a dispatch
3478	 */
3479	return cfqq->dispatched < max_dispatch;
3480}
3481
3482/*
3483 * Dispatch a request from cfqq, moving them to the request queue
3484 * dispatch list.
3485 */
3486static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3487{
3488	struct request *rq;
3489
3490	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3491
3492	rq = cfq_check_fifo(cfqq);
3493	if (rq)
3494		cfq_mark_cfqq_must_dispatch(cfqq);
3495
3496	if (!cfq_may_dispatch(cfqd, cfqq))
3497		return false;
3498
3499	/*
3500	 * follow expired path, else get first next available
3501	 */
 
3502	if (!rq)
3503		rq = cfqq->next_rq;
3504	else
3505		cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
3506
3507	/*
3508	 * insert request into driver dispatch list
3509	 */
3510	cfq_dispatch_insert(cfqd->queue, rq);
3511
3512	if (!cfqd->active_cic) {
3513		struct cfq_io_cq *cic = RQ_CIC(rq);
3514
3515		atomic_long_inc(&cic->icq.ioc->refcount);
3516		cfqd->active_cic = cic;
3517	}
3518
3519	return true;
3520}
3521
3522/*
3523 * Find the cfqq that we need to service and move a request from that to the
3524 * dispatch list
3525 */
3526static int cfq_dispatch_requests(struct request_queue *q, int force)
3527{
3528	struct cfq_data *cfqd = q->elevator->elevator_data;
3529	struct cfq_queue *cfqq;
3530
3531	if (!cfqd->busy_queues)
3532		return 0;
3533
3534	if (unlikely(force))
3535		return cfq_forced_dispatch(cfqd);
3536
3537	cfqq = cfq_select_queue(cfqd);
3538	if (!cfqq)
3539		return 0;
3540
3541	/*
3542	 * Dispatch a request from this cfqq, if it is allowed
3543	 */
3544	if (!cfq_dispatch_request(cfqd, cfqq))
3545		return 0;
3546
3547	cfqq->slice_dispatch++;
3548	cfq_clear_cfqq_must_dispatch(cfqq);
3549
3550	/*
3551	 * expire an async queue immediately if it has used up its slice. idle
3552	 * queue always expire after 1 dispatch round.
3553	 */
3554	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3555	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3556	    cfq_class_idle(cfqq))) {
3557		cfqq->slice_end = ktime_get_ns() + 1;
3558		cfq_slice_expired(cfqd, 0);
3559	}
3560
3561	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3562	return 1;
3563}
3564
3565/*
3566 * task holds one reference to the queue, dropped when task exits. each rq
3567 * in-flight on this queue also holds a reference, dropped when rq is freed.
3568 *
3569 * Each cfq queue took a reference on the parent group. Drop it now.
3570 * queue lock must be held here.
3571 */
3572static void cfq_put_queue(struct cfq_queue *cfqq)
3573{
3574	struct cfq_data *cfqd = cfqq->cfqd;
3575	struct cfq_group *cfqg;
3576
3577	BUG_ON(cfqq->ref <= 0);
3578
3579	cfqq->ref--;
3580	if (cfqq->ref)
3581		return;
3582
3583	cfq_log_cfqq(cfqd, cfqq, "put_queue");
3584	BUG_ON(rb_first(&cfqq->sort_list));
3585	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3586	cfqg = cfqq->cfqg;
3587
3588	if (unlikely(cfqd->active_queue == cfqq)) {
3589		__cfq_slice_expired(cfqd, cfqq, 0);
3590		cfq_schedule_dispatch(cfqd);
3591	}
3592
3593	BUG_ON(cfq_cfqq_on_rr(cfqq));
3594	kmem_cache_free(cfq_pool, cfqq);
3595	cfqg_put(cfqg);
3596}
3597
3598static void cfq_put_cooperator(struct cfq_queue *cfqq)
3599{
3600	struct cfq_queue *__cfqq, *next;
3601
3602	/*
3603	 * If this queue was scheduled to merge with another queue, be
3604	 * sure to drop the reference taken on that queue (and others in
3605	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
3606	 */
3607	__cfqq = cfqq->new_cfqq;
3608	while (__cfqq) {
3609		if (__cfqq == cfqq) {
3610			WARN(1, "cfqq->new_cfqq loop detected\n");
3611			break;
3612		}
3613		next = __cfqq->new_cfqq;
3614		cfq_put_queue(__cfqq);
3615		__cfqq = next;
3616	}
3617}
3618
3619static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3620{
3621	if (unlikely(cfqq == cfqd->active_queue)) {
3622		__cfq_slice_expired(cfqd, cfqq, 0);
3623		cfq_schedule_dispatch(cfqd);
3624	}
3625
3626	cfq_put_cooperator(cfqq);
3627
3628	cfq_put_queue(cfqq);
3629}
3630
3631static void cfq_init_icq(struct io_cq *icq)
3632{
3633	struct cfq_io_cq *cic = icq_to_cic(icq);
3634
3635	cic->ttime.last_end_request = ktime_get_ns();
3636}
3637
3638static void cfq_exit_icq(struct io_cq *icq)
3639{
3640	struct cfq_io_cq *cic = icq_to_cic(icq);
3641	struct cfq_data *cfqd = cic_to_cfqd(cic);
3642
3643	if (cic_to_cfqq(cic, false)) {
3644		cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3645		cic_set_cfqq(cic, NULL, false);
3646	}
3647
3648	if (cic_to_cfqq(cic, true)) {
3649		cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3650		cic_set_cfqq(cic, NULL, true);
3651	}
3652}
3653
3654static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3655{
3656	struct task_struct *tsk = current;
3657	int ioprio_class;
3658
3659	if (!cfq_cfqq_prio_changed(cfqq))
3660		return;
3661
3662	ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3663	switch (ioprio_class) {
3664	default:
3665		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3666	case IOPRIO_CLASS_NONE:
3667		/*
3668		 * no prio set, inherit CPU scheduling settings
3669		 */
3670		cfqq->ioprio = task_nice_ioprio(tsk);
3671		cfqq->ioprio_class = task_nice_ioclass(tsk);
3672		break;
3673	case IOPRIO_CLASS_RT:
3674		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3675		cfqq->ioprio_class = IOPRIO_CLASS_RT;
3676		break;
3677	case IOPRIO_CLASS_BE:
3678		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3679		cfqq->ioprio_class = IOPRIO_CLASS_BE;
3680		break;
3681	case IOPRIO_CLASS_IDLE:
3682		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3683		cfqq->ioprio = 7;
3684		cfq_clear_cfqq_idle_window(cfqq);
3685		break;
3686	}
3687
3688	/*
3689	 * keep track of original prio settings in case we have to temporarily
3690	 * elevate the priority of this queue
3691	 */
3692	cfqq->org_ioprio = cfqq->ioprio;
3693	cfqq->org_ioprio_class = cfqq->ioprio_class;
3694	cfq_clear_cfqq_prio_changed(cfqq);
3695}
3696
3697static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3698{
3699	int ioprio = cic->icq.ioc->ioprio;
3700	struct cfq_data *cfqd = cic_to_cfqd(cic);
3701	struct cfq_queue *cfqq;
3702
3703	/*
3704	 * Check whether ioprio has changed.  The condition may trigger
3705	 * spuriously on a newly created cic but there's no harm.
3706	 */
3707	if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3708		return;
3709
3710	cfqq = cic_to_cfqq(cic, false);
3711	if (cfqq) {
3712		cfq_put_queue(cfqq);
3713		cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio);
3714		cic_set_cfqq(cic, cfqq, false);
 
 
 
 
3715	}
3716
3717	cfqq = cic_to_cfqq(cic, true);
3718	if (cfqq)
3719		cfq_mark_cfqq_prio_changed(cfqq);
3720
3721	cic->ioprio = ioprio;
3722}
3723
3724static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3725			  pid_t pid, bool is_sync)
3726{
3727	RB_CLEAR_NODE(&cfqq->rb_node);
3728	RB_CLEAR_NODE(&cfqq->p_node);
3729	INIT_LIST_HEAD(&cfqq->fifo);
3730
3731	cfqq->ref = 0;
3732	cfqq->cfqd = cfqd;
3733
3734	cfq_mark_cfqq_prio_changed(cfqq);
3735
3736	if (is_sync) {
3737		if (!cfq_class_idle(cfqq))
3738			cfq_mark_cfqq_idle_window(cfqq);
3739		cfq_mark_cfqq_sync(cfqq);
3740	}
3741	cfqq->pid = pid;
3742}
3743
3744#ifdef CONFIG_CFQ_GROUP_IOSCHED
3745static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3746{
3747	struct cfq_data *cfqd = cic_to_cfqd(cic);
3748	struct cfq_queue *cfqq;
3749	uint64_t serial_nr;
3750
3751	rcu_read_lock();
3752	serial_nr = bio_blkcg(bio)->css.serial_nr;
3753	rcu_read_unlock();
3754
3755	/*
3756	 * Check whether blkcg has changed.  The condition may trigger
3757	 * spuriously on a newly created cic but there's no harm.
3758	 */
3759	if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3760		return;
3761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3762	/*
3763	 * Drop reference to queues.  New queues will be assigned in new
3764	 * group upon arrival of fresh requests.
3765	 */
3766	cfqq = cic_to_cfqq(cic, false);
3767	if (cfqq) {
3768		cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3769		cic_set_cfqq(cic, NULL, false);
3770		cfq_put_queue(cfqq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3771	}
3772
3773	cfqq = cic_to_cfqq(cic, true);
3774	if (cfqq) {
3775		cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3776		cic_set_cfqq(cic, NULL, true);
3777		cfq_put_queue(cfqq);
3778	}
3779
3780	cic->blkcg_serial_nr = serial_nr;
3781}
3782#else
3783static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3784{
3785}
3786#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
3787
3788static struct cfq_queue **
3789cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio)
3790{
3791	switch (ioprio_class) {
3792	case IOPRIO_CLASS_RT:
3793		return &cfqg->async_cfqq[0][ioprio];
3794	case IOPRIO_CLASS_NONE:
3795		ioprio = IOPRIO_NORM;
3796		/* fall through */
3797	case IOPRIO_CLASS_BE:
3798		return &cfqg->async_cfqq[1][ioprio];
3799	case IOPRIO_CLASS_IDLE:
3800		return &cfqg->async_idle_cfqq;
3801	default:
3802		BUG();
3803	}
3804}
3805
3806static struct cfq_queue *
3807cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3808	      struct bio *bio)
3809{
3810	int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3811	int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3812	struct cfq_queue **async_cfqq = NULL;
3813	struct cfq_queue *cfqq;
3814	struct cfq_group *cfqg;
3815
3816	rcu_read_lock();
3817	cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio));
3818	if (!cfqg) {
3819		cfqq = &cfqd->oom_cfqq;
3820		goto out;
3821	}
3822
3823	if (!is_sync) {
3824		if (!ioprio_valid(cic->ioprio)) {
3825			struct task_struct *tsk = current;
3826			ioprio = task_nice_ioprio(tsk);
3827			ioprio_class = task_nice_ioclass(tsk);
3828		}
3829		async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio);
3830		cfqq = *async_cfqq;
3831		if (cfqq)
3832			goto out;
3833	}
3834
3835	cfqq = kmem_cache_alloc_node(cfq_pool,
3836				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
3837				     cfqd->queue->node);
3838	if (!cfqq) {
3839		cfqq = &cfqd->oom_cfqq;
3840		goto out;
3841	}
3842
3843	/* cfq_init_cfqq() assumes cfqq->ioprio_class is initialized. */
3844	cfqq->ioprio_class = IOPRIO_CLASS_NONE;
3845	cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3846	cfq_init_prio_data(cfqq, cic);
3847	cfq_link_cfqq_cfqg(cfqq, cfqg);
3848	cfq_log_cfqq(cfqd, cfqq, "alloced");
3849
3850	if (async_cfqq) {
3851		/* a new async queue is created, pin and remember */
 
 
3852		cfqq->ref++;
3853		*async_cfqq = cfqq;
3854	}
3855out:
3856	cfqq->ref++;
3857	rcu_read_unlock();
3858	return cfqq;
3859}
3860
3861static void
3862__cfq_update_io_thinktime(struct cfq_ttime *ttime, u64 slice_idle)
3863{
3864	u64 elapsed = ktime_get_ns() - ttime->last_end_request;
3865	elapsed = min(elapsed, 2UL * slice_idle);
3866
3867	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3868	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
3869	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
3870				     ttime->ttime_samples);
3871}
3872
3873static void
3874cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3875			struct cfq_io_cq *cic)
3876{
3877	if (cfq_cfqq_sync(cfqq)) {
3878		__cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3879		__cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3880			cfqd->cfq_slice_idle);
3881	}
3882#ifdef CONFIG_CFQ_GROUP_IOSCHED
3883	__cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3884#endif
3885}
3886
3887static void
3888cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3889		       struct request *rq)
3890{
3891	sector_t sdist = 0;
3892	sector_t n_sec = blk_rq_sectors(rq);
3893	if (cfqq->last_request_pos) {
3894		if (cfqq->last_request_pos < blk_rq_pos(rq))
3895			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3896		else
3897			sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3898	}
3899
3900	cfqq->seek_history <<= 1;
3901	if (blk_queue_nonrot(cfqd->queue))
3902		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3903	else
3904		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3905}
3906
3907static inline bool req_noidle(struct request *req)
3908{
3909	return req_op(req) == REQ_OP_WRITE &&
3910		(req->cmd_flags & (REQ_SYNC | REQ_IDLE)) == REQ_SYNC;
3911}
3912
3913/*
3914 * Disable idle window if the process thinks too long or seeks so much that
3915 * it doesn't matter
3916 */
3917static void
3918cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3919		       struct cfq_io_cq *cic)
3920{
3921	int old_idle, enable_idle;
3922
3923	/*
3924	 * Don't idle for async or idle io prio class
3925	 */
3926	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3927		return;
3928
3929	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3930
3931	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3932		cfq_mark_cfqq_deep(cfqq);
3933
3934	if (cfqq->next_rq && req_noidle(cfqq->next_rq))
3935		enable_idle = 0;
3936	else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3937		 !cfqd->cfq_slice_idle ||
3938		 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3939		enable_idle = 0;
3940	else if (sample_valid(cic->ttime.ttime_samples)) {
3941		if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3942			enable_idle = 0;
3943		else
3944			enable_idle = 1;
3945	}
3946
3947	if (old_idle != enable_idle) {
3948		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3949		if (enable_idle)
3950			cfq_mark_cfqq_idle_window(cfqq);
3951		else
3952			cfq_clear_cfqq_idle_window(cfqq);
3953	}
3954}
3955
3956/*
3957 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3958 * no or if we aren't sure, a 1 will cause a preempt.
3959 */
3960static bool
3961cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3962		   struct request *rq)
3963{
3964	struct cfq_queue *cfqq;
3965
3966	cfqq = cfqd->active_queue;
3967	if (!cfqq)
3968		return false;
3969
3970	if (cfq_class_idle(new_cfqq))
3971		return false;
3972
3973	if (cfq_class_idle(cfqq))
3974		return true;
3975
3976	/*
3977	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3978	 */
3979	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3980		return false;
3981
3982	/*
3983	 * if the new request is sync, but the currently running queue is
3984	 * not, let the sync request have priority.
3985	 */
3986	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3987		return true;
3988
3989	/*
3990	 * Treat ancestors of current cgroup the same way as current cgroup.
3991	 * For anybody else we disallow preemption to guarantee service
3992	 * fairness among cgroups.
3993	 */
3994	if (!cfqg_is_descendant(cfqq->cfqg, new_cfqq->cfqg))
3995		return false;
3996
3997	if (cfq_slice_used(cfqq))
3998		return true;
3999
4000	/*
4001	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
4002	 */
4003	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
4004		return true;
4005
4006	WARN_ON_ONCE(cfqq->ioprio_class != new_cfqq->ioprio_class);
4007	/* Allow preemption only if we are idling on sync-noidle tree */
4008	if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
4009	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
 
4010	    RB_EMPTY_ROOT(&cfqq->sort_list))
4011		return true;
4012
4013	/*
4014	 * So both queues are sync. Let the new request get disk time if
4015	 * it's a metadata request and the current queue is doing regular IO.
4016	 */
4017	if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
4018		return true;
4019
 
 
 
 
 
 
4020	/* An idle queue should not be idle now for some reason */
4021	if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
4022		return true;
4023
4024	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
4025		return false;
4026
4027	/*
4028	 * if this request is as-good as one we would expect from the
4029	 * current cfqq, let it preempt
4030	 */
4031	if (cfq_rq_close(cfqd, cfqq, rq))
4032		return true;
4033
4034	return false;
4035}
4036
4037/*
4038 * cfqq preempts the active queue. if we allowed preempt with no slice left,
4039 * let it have half of its nominal slice.
4040 */
4041static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4042{
4043	enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
4044
4045	cfq_log_cfqq(cfqd, cfqq, "preempt");
4046	cfq_slice_expired(cfqd, 1);
4047
4048	/*
4049	 * workload type is changed, don't save slice, otherwise preempt
4050	 * doesn't happen
4051	 */
4052	if (old_type != cfqq_type(cfqq))
4053		cfqq->cfqg->saved_wl_slice = 0;
4054
4055	/*
4056	 * Put the new queue at the front of the of the current list,
4057	 * so we know that it will be selected next.
4058	 */
4059	BUG_ON(!cfq_cfqq_on_rr(cfqq));
4060
4061	cfq_service_tree_add(cfqd, cfqq, 1);
4062
4063	cfqq->slice_end = 0;
4064	cfq_mark_cfqq_slice_new(cfqq);
4065}
4066
4067/*
4068 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4069 * something we should do about it
4070 */
4071static void
4072cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
4073		struct request *rq)
4074{
4075	struct cfq_io_cq *cic = RQ_CIC(rq);
4076
4077	cfqd->rq_queued++;
4078	if (rq->cmd_flags & REQ_PRIO)
4079		cfqq->prio_pending++;
4080
4081	cfq_update_io_thinktime(cfqd, cfqq, cic);
4082	cfq_update_io_seektime(cfqd, cfqq, rq);
4083	cfq_update_idle_window(cfqd, cfqq, cic);
4084
4085	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4086
4087	if (cfqq == cfqd->active_queue) {
4088		/*
4089		 * Remember that we saw a request from this process, but
4090		 * don't start queuing just yet. Otherwise we risk seeing lots
4091		 * of tiny requests, because we disrupt the normal plugging
4092		 * and merging. If the request is already larger than a single
4093		 * page, let it rip immediately. For that case we assume that
4094		 * merging is already done. Ditto for a busy system that
4095		 * has other work pending, don't risk delaying until the
4096		 * idle timer unplug to continue working.
4097		 */
4098		if (cfq_cfqq_wait_request(cfqq)) {
4099			if (blk_rq_bytes(rq) > PAGE_SIZE ||
4100			    cfqd->busy_queues > 1) {
4101				cfq_del_timer(cfqd, cfqq);
4102				cfq_clear_cfqq_wait_request(cfqq);
4103				__blk_run_queue(cfqd->queue);
4104			} else {
4105				cfqg_stats_update_idle_time(cfqq->cfqg);
4106				cfq_mark_cfqq_must_dispatch(cfqq);
4107			}
4108		}
4109	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
4110		/*
4111		 * not the active queue - expire current slice if it is
4112		 * idle and has expired it's mean thinktime or this new queue
4113		 * has some old slice time left and is of higher priority or
4114		 * this new queue is RT and the current one is BE
4115		 */
4116		cfq_preempt_queue(cfqd, cfqq);
4117		__blk_run_queue(cfqd->queue);
4118	}
4119}
4120
4121static void cfq_insert_request(struct request_queue *q, struct request *rq)
4122{
4123	struct cfq_data *cfqd = q->elevator->elevator_data;
4124	struct cfq_queue *cfqq = RQ_CFQQ(rq);
4125
4126	cfq_log_cfqq(cfqd, cfqq, "insert_request");
4127	cfq_init_prio_data(cfqq, RQ_CIC(rq));
4128
4129	rq->fifo_time = ktime_get_ns() + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4130	list_add_tail(&rq->queuelist, &cfqq->fifo);
4131	cfq_add_rq_rb(rq);
4132	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
4133				 rq->cmd_flags);
4134	cfq_rq_enqueued(cfqd, cfqq, rq);
4135}
4136
4137/*
4138 * Update hw_tag based on peak queue depth over 50 samples under
4139 * sufficient load.
4140 */
4141static void cfq_update_hw_tag(struct cfq_data *cfqd)
4142{
4143	struct cfq_queue *cfqq = cfqd->active_queue;
4144
4145	if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4146		cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4147
4148	if (cfqd->hw_tag == 1)
4149		return;
4150
4151	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4152	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4153		return;
4154
4155	/*
4156	 * If active queue hasn't enough requests and can idle, cfq might not
4157	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4158	 * case
4159	 */
4160	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4161	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4162	    CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4163		return;
4164
4165	if (cfqd->hw_tag_samples++ < 50)
4166		return;
4167
4168	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4169		cfqd->hw_tag = 1;
4170	else
4171		cfqd->hw_tag = 0;
4172}
4173
4174static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4175{
4176	struct cfq_io_cq *cic = cfqd->active_cic;
4177	u64 now = ktime_get_ns();
4178
4179	/* If the queue already has requests, don't wait */
4180	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4181		return false;
4182
4183	/* If there are other queues in the group, don't wait */
4184	if (cfqq->cfqg->nr_cfqq > 1)
4185		return false;
4186
4187	/* the only queue in the group, but think time is big */
4188	if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4189		return false;
4190
4191	if (cfq_slice_used(cfqq))
4192		return true;
4193
4194	/* if slice left is less than think time, wait busy */
4195	if (cic && sample_valid(cic->ttime.ttime_samples)
4196	    && (cfqq->slice_end - now < cic->ttime.ttime_mean))
4197		return true;
4198
4199	/*
4200	 * If think times is less than a jiffy than ttime_mean=0 and above
4201	 * will not be true. It might happen that slice has not expired yet
4202	 * but will expire soon (4-5 ns) during select_queue(). To cover the
4203	 * case where think time is less than a jiffy, mark the queue wait
4204	 * busy if only 1 jiffy is left in the slice.
4205	 */
4206	if (cfqq->slice_end - now <= jiffies_to_nsecs(1))
4207		return true;
4208
4209	return false;
4210}
4211
4212static void cfq_completed_request(struct request_queue *q, struct request *rq)
4213{
4214	struct cfq_queue *cfqq = RQ_CFQQ(rq);
4215	struct cfq_data *cfqd = cfqq->cfqd;
4216	const int sync = rq_is_sync(rq);
4217	u64 now = ktime_get_ns();
4218
4219	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", req_noidle(rq));
 
 
4220
4221	cfq_update_hw_tag(cfqd);
4222
4223	WARN_ON(!cfqd->rq_in_driver);
4224	WARN_ON(!cfqq->dispatched);
4225	cfqd->rq_in_driver--;
4226	cfqq->dispatched--;
4227	(RQ_CFQG(rq))->dispatched--;
4228	cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4229				     rq_io_start_time_ns(rq), rq->cmd_flags);
4230
4231	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4232
4233	if (sync) {
4234		struct cfq_rb_root *st;
4235
4236		RQ_CIC(rq)->ttime.last_end_request = now;
4237
4238		if (cfq_cfqq_on_rr(cfqq))
4239			st = cfqq->service_tree;
4240		else
4241			st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4242					cfqq_type(cfqq));
4243
4244		st->ttime.last_end_request = now;
4245		/*
4246		 * We have to do this check in jiffies since start_time is in
4247		 * jiffies and it is not trivial to convert to ns. If
4248		 * cfq_fifo_expire[1] ever comes close to 1 jiffie, this test
4249		 * will become problematic but so far we are fine (the default
4250		 * is 128 ms).
4251		 */
4252		if (!time_after(rq->start_time +
4253				  nsecs_to_jiffies(cfqd->cfq_fifo_expire[1]),
4254				jiffies))
4255			cfqd->last_delayed_sync = now;
4256	}
4257
4258#ifdef CONFIG_CFQ_GROUP_IOSCHED
4259	cfqq->cfqg->ttime.last_end_request = now;
4260#endif
4261
4262	/*
4263	 * If this is the active queue, check if it needs to be expired,
4264	 * or if we want to idle in case it has no pending requests.
4265	 */
4266	if (cfqd->active_queue == cfqq) {
4267		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4268
4269		if (cfq_cfqq_slice_new(cfqq)) {
4270			cfq_set_prio_slice(cfqd, cfqq);
4271			cfq_clear_cfqq_slice_new(cfqq);
4272		}
4273
4274		/*
4275		 * Should we wait for next request to come in before we expire
4276		 * the queue.
4277		 */
4278		if (cfq_should_wait_busy(cfqd, cfqq)) {
4279			u64 extend_sl = cfqd->cfq_slice_idle;
4280			if (!cfqd->cfq_slice_idle)
4281				extend_sl = cfqd->cfq_group_idle;
4282			cfqq->slice_end = now + extend_sl;
4283			cfq_mark_cfqq_wait_busy(cfqq);
4284			cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4285		}
4286
4287		/*
4288		 * Idling is not enabled on:
4289		 * - expired queues
4290		 * - idle-priority queues
4291		 * - async queues
4292		 * - queues with still some requests queued
4293		 * - when there is a close cooperator
4294		 */
4295		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4296			cfq_slice_expired(cfqd, 1);
4297		else if (sync && cfqq_empty &&
4298			 !cfq_close_cooperator(cfqd, cfqq)) {
4299			cfq_arm_slice_timer(cfqd);
4300		}
4301	}
4302
4303	if (!cfqd->rq_in_driver)
4304		cfq_schedule_dispatch(cfqd);
4305}
4306
4307static void cfqq_boost_on_prio(struct cfq_queue *cfqq, unsigned int op)
4308{
4309	/*
4310	 * If REQ_PRIO is set, boost class and prio level, if it's below
4311	 * BE/NORM. If prio is not set, restore the potentially boosted
4312	 * class/prio level.
4313	 */
4314	if (!(op & REQ_PRIO)) {
4315		cfqq->ioprio_class = cfqq->org_ioprio_class;
4316		cfqq->ioprio = cfqq->org_ioprio;
4317	} else {
4318		if (cfq_class_idle(cfqq))
4319			cfqq->ioprio_class = IOPRIO_CLASS_BE;
4320		if (cfqq->ioprio > IOPRIO_NORM)
4321			cfqq->ioprio = IOPRIO_NORM;
4322	}
4323}
4324
4325static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4326{
4327	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4328		cfq_mark_cfqq_must_alloc_slice(cfqq);
4329		return ELV_MQUEUE_MUST;
4330	}
4331
4332	return ELV_MQUEUE_MAY;
4333}
4334
4335static int cfq_may_queue(struct request_queue *q, unsigned int op)
4336{
4337	struct cfq_data *cfqd = q->elevator->elevator_data;
4338	struct task_struct *tsk = current;
4339	struct cfq_io_cq *cic;
4340	struct cfq_queue *cfqq;
4341
4342	/*
4343	 * don't force setup of a queue from here, as a call to may_queue
4344	 * does not necessarily imply that a request actually will be queued.
4345	 * so just lookup a possibly existing queue, or return 'may queue'
4346	 * if that fails
4347	 */
4348	cic = cfq_cic_lookup(cfqd, tsk->io_context);
4349	if (!cic)
4350		return ELV_MQUEUE_MAY;
4351
4352	cfqq = cic_to_cfqq(cic, op_is_sync(op));
4353	if (cfqq) {
4354		cfq_init_prio_data(cfqq, cic);
4355		cfqq_boost_on_prio(cfqq, op);
4356
4357		return __cfq_may_queue(cfqq);
4358	}
4359
4360	return ELV_MQUEUE_MAY;
4361}
4362
4363/*
4364 * queue lock held here
4365 */
4366static void cfq_put_request(struct request *rq)
4367{
4368	struct cfq_queue *cfqq = RQ_CFQQ(rq);
4369
4370	if (cfqq) {
4371		const int rw = rq_data_dir(rq);
4372
4373		BUG_ON(!cfqq->allocated[rw]);
4374		cfqq->allocated[rw]--;
4375
4376		/* Put down rq reference on cfqg */
4377		cfqg_put(RQ_CFQG(rq));
4378		rq->elv.priv[0] = NULL;
4379		rq->elv.priv[1] = NULL;
4380
4381		cfq_put_queue(cfqq);
4382	}
4383}
4384
4385static struct cfq_queue *
4386cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4387		struct cfq_queue *cfqq)
4388{
4389	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4390	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4391	cfq_mark_cfqq_coop(cfqq->new_cfqq);
4392	cfq_put_queue(cfqq);
4393	return cic_to_cfqq(cic, 1);
4394}
4395
4396/*
4397 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4398 * was the last process referring to said cfqq.
4399 */
4400static struct cfq_queue *
4401split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4402{
4403	if (cfqq_process_refs(cfqq) == 1) {
4404		cfqq->pid = current->pid;
4405		cfq_clear_cfqq_coop(cfqq);
4406		cfq_clear_cfqq_split_coop(cfqq);
4407		return cfqq;
4408	}
4409
4410	cic_set_cfqq(cic, NULL, 1);
4411
4412	cfq_put_cooperator(cfqq);
4413
4414	cfq_put_queue(cfqq);
4415	return NULL;
4416}
4417/*
4418 * Allocate cfq data structures associated with this request.
4419 */
4420static int
4421cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4422		gfp_t gfp_mask)
4423{
4424	struct cfq_data *cfqd = q->elevator->elevator_data;
4425	struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4426	const int rw = rq_data_dir(rq);
4427	const bool is_sync = rq_is_sync(rq);
4428	struct cfq_queue *cfqq;
4429
 
 
4430	spin_lock_irq(q->queue_lock);
4431
4432	check_ioprio_changed(cic, bio);
4433	check_blkcg_changed(cic, bio);
4434new_queue:
4435	cfqq = cic_to_cfqq(cic, is_sync);
4436	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4437		if (cfqq)
4438			cfq_put_queue(cfqq);
4439		cfqq = cfq_get_queue(cfqd, is_sync, cic, bio);
4440		cic_set_cfqq(cic, cfqq, is_sync);
4441	} else {
4442		/*
4443		 * If the queue was seeky for too long, break it apart.
4444		 */
4445		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4446			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4447			cfqq = split_cfqq(cic, cfqq);
4448			if (!cfqq)
4449				goto new_queue;
4450		}
4451
4452		/*
4453		 * Check to see if this queue is scheduled to merge with
4454		 * another, closely cooperating queue.  The merging of
4455		 * queues happens here as it must be done in process context.
4456		 * The reference on new_cfqq was taken in merge_cfqqs.
4457		 */
4458		if (cfqq->new_cfqq)
4459			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4460	}
4461
4462	cfqq->allocated[rw]++;
4463
4464	cfqq->ref++;
4465	cfqg_get(cfqq->cfqg);
4466	rq->elv.priv[0] = cfqq;
4467	rq->elv.priv[1] = cfqq->cfqg;
4468	spin_unlock_irq(q->queue_lock);
4469
4470	return 0;
4471}
4472
4473static void cfq_kick_queue(struct work_struct *work)
4474{
4475	struct cfq_data *cfqd =
4476		container_of(work, struct cfq_data, unplug_work);
4477	struct request_queue *q = cfqd->queue;
4478
4479	spin_lock_irq(q->queue_lock);
4480	__blk_run_queue(cfqd->queue);
4481	spin_unlock_irq(q->queue_lock);
4482}
4483
4484/*
4485 * Timer running if the active_queue is currently idling inside its time slice
4486 */
4487static enum hrtimer_restart cfq_idle_slice_timer(struct hrtimer *timer)
4488{
4489	struct cfq_data *cfqd = container_of(timer, struct cfq_data,
4490					     idle_slice_timer);
4491	struct cfq_queue *cfqq;
4492	unsigned long flags;
4493	int timed_out = 1;
4494
4495	cfq_log(cfqd, "idle timer fired");
4496
4497	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4498
4499	cfqq = cfqd->active_queue;
4500	if (cfqq) {
4501		timed_out = 0;
4502
4503		/*
4504		 * We saw a request before the queue expired, let it through
4505		 */
4506		if (cfq_cfqq_must_dispatch(cfqq))
4507			goto out_kick;
4508
4509		/*
4510		 * expired
4511		 */
4512		if (cfq_slice_used(cfqq))
4513			goto expire;
4514
4515		/*
4516		 * only expire and reinvoke request handler, if there are
4517		 * other queues with pending requests
4518		 */
4519		if (!cfqd->busy_queues)
4520			goto out_cont;
4521
4522		/*
4523		 * not expired and it has a request pending, let it dispatch
4524		 */
4525		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4526			goto out_kick;
4527
4528		/*
4529		 * Queue depth flag is reset only when the idle didn't succeed
4530		 */
4531		cfq_clear_cfqq_deep(cfqq);
4532	}
4533expire:
4534	cfq_slice_expired(cfqd, timed_out);
4535out_kick:
4536	cfq_schedule_dispatch(cfqd);
4537out_cont:
4538	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4539	return HRTIMER_NORESTART;
4540}
4541
4542static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4543{
4544	hrtimer_cancel(&cfqd->idle_slice_timer);
4545	cancel_work_sync(&cfqd->unplug_work);
4546}
4547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4548static void cfq_exit_queue(struct elevator_queue *e)
4549{
4550	struct cfq_data *cfqd = e->elevator_data;
4551	struct request_queue *q = cfqd->queue;
4552
4553	cfq_shutdown_timer_wq(cfqd);
4554
4555	spin_lock_irq(q->queue_lock);
4556
4557	if (cfqd->active_queue)
4558		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4559
 
 
4560	spin_unlock_irq(q->queue_lock);
4561
4562	cfq_shutdown_timer_wq(cfqd);
4563
4564#ifdef CONFIG_CFQ_GROUP_IOSCHED
4565	blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4566#else
4567	kfree(cfqd->root_group);
4568#endif
4569	kfree(cfqd);
4570}
4571
4572static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4573{
4574	struct cfq_data *cfqd;
4575	struct blkcg_gq *blkg __maybe_unused;
4576	int i, ret;
4577	struct elevator_queue *eq;
4578
4579	eq = elevator_alloc(q, e);
4580	if (!eq)
4581		return -ENOMEM;
4582
4583	cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4584	if (!cfqd) {
4585		kobject_put(&eq->kobj);
4586		return -ENOMEM;
4587	}
4588	eq->elevator_data = cfqd;
4589
4590	cfqd->queue = q;
4591	spin_lock_irq(q->queue_lock);
4592	q->elevator = eq;
4593	spin_unlock_irq(q->queue_lock);
4594
4595	/* Init root service tree */
4596	cfqd->grp_service_tree = CFQ_RB_ROOT;
4597
4598	/* Init root group and prefer root group over other groups by default */
4599#ifdef CONFIG_CFQ_GROUP_IOSCHED
4600	ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4601	if (ret)
4602		goto out_free;
4603
4604	cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4605#else
4606	ret = -ENOMEM;
4607	cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4608					GFP_KERNEL, cfqd->queue->node);
4609	if (!cfqd->root_group)
4610		goto out_free;
4611
4612	cfq_init_cfqg_base(cfqd->root_group);
4613	cfqd->root_group->weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4614	cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4615#endif
 
4616
4617	/*
4618	 * Not strictly needed (since RB_ROOT just clears the node and we
4619	 * zeroed cfqd on alloc), but better be safe in case someone decides
4620	 * to add magic to the rb code
4621	 */
4622	for (i = 0; i < CFQ_PRIO_LISTS; i++)
4623		cfqd->prio_trees[i] = RB_ROOT;
4624
4625	/*
4626	 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4627	 * Grab a permanent reference to it, so that the normal code flow
4628	 * will not attempt to free it.  oom_cfqq is linked to root_group
4629	 * but shouldn't hold a reference as it'll never be unlinked.  Lose
4630	 * the reference from linking right away.
4631	 */
4632	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4633	cfqd->oom_cfqq.ref++;
4634
4635	spin_lock_irq(q->queue_lock);
4636	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4637	cfqg_put(cfqd->root_group);
4638	spin_unlock_irq(q->queue_lock);
4639
4640	hrtimer_init(&cfqd->idle_slice_timer, CLOCK_MONOTONIC,
4641		     HRTIMER_MODE_REL);
4642	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
 
4643
4644	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4645
4646	cfqd->cfq_quantum = cfq_quantum;
4647	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4648	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4649	cfqd->cfq_back_max = cfq_back_max;
4650	cfqd->cfq_back_penalty = cfq_back_penalty;
4651	cfqd->cfq_slice[0] = cfq_slice_async;
4652	cfqd->cfq_slice[1] = cfq_slice_sync;
4653	cfqd->cfq_target_latency = cfq_target_latency;
4654	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4655	cfqd->cfq_slice_idle = cfq_slice_idle;
4656	cfqd->cfq_group_idle = cfq_group_idle;
4657	cfqd->cfq_latency = 1;
4658	cfqd->hw_tag = -1;
4659	/*
4660	 * we optimistically start assuming sync ops weren't delayed in last
4661	 * second, in order to have larger depth for async operations.
4662	 */
4663	cfqd->last_delayed_sync = ktime_get_ns() - NSEC_PER_SEC;
4664	return 0;
4665
4666out_free:
4667	kfree(cfqd);
4668	kobject_put(&eq->kobj);
4669	return ret;
4670}
4671
4672static void cfq_registered_queue(struct request_queue *q)
4673{
4674	struct elevator_queue *e = q->elevator;
4675	struct cfq_data *cfqd = e->elevator_data;
4676
4677	/*
4678	 * Default to IOPS mode with no idling for SSDs
4679	 */
4680	if (blk_queue_nonrot(q))
4681		cfqd->cfq_slice_idle = 0;
4682	wbt_disable_default(q);
4683}
4684
4685/*
4686 * sysfs parts below -->
4687 */
4688static ssize_t
4689cfq_var_show(unsigned int var, char *page)
4690{
4691	return sprintf(page, "%u\n", var);
4692}
4693
4694static void
4695cfq_var_store(unsigned int *var, const char *page)
4696{
4697	char *p = (char *) page;
4698
4699	*var = simple_strtoul(p, &p, 10);
 
4700}
4701
4702#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
4703static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4704{									\
4705	struct cfq_data *cfqd = e->elevator_data;			\
4706	u64 __data = __VAR;						\
4707	if (__CONV)							\
4708		__data = div_u64(__data, NSEC_PER_MSEC);			\
4709	return cfq_var_show(__data, (page));				\
4710}
4711SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4712SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4713SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4714SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4715SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4716SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4717SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4718SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4719SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4720SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4721SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4722SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4723#undef SHOW_FUNCTION
4724
4725#define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
4726static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4727{									\
4728	struct cfq_data *cfqd = e->elevator_data;			\
4729	u64 __data = __VAR;						\
4730	__data = div_u64(__data, NSEC_PER_USEC);			\
4731	return cfq_var_show(__data, (page));				\
4732}
4733USEC_SHOW_FUNCTION(cfq_slice_idle_us_show, cfqd->cfq_slice_idle);
4734USEC_SHOW_FUNCTION(cfq_group_idle_us_show, cfqd->cfq_group_idle);
4735USEC_SHOW_FUNCTION(cfq_slice_sync_us_show, cfqd->cfq_slice[1]);
4736USEC_SHOW_FUNCTION(cfq_slice_async_us_show, cfqd->cfq_slice[0]);
4737USEC_SHOW_FUNCTION(cfq_target_latency_us_show, cfqd->cfq_target_latency);
4738#undef USEC_SHOW_FUNCTION
4739
4740#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
4741static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
4742{									\
4743	struct cfq_data *cfqd = e->elevator_data;			\
4744	unsigned int __data;						\
4745	cfq_var_store(&__data, (page));					\
4746	if (__data < (MIN))						\
4747		__data = (MIN);						\
4748	else if (__data > (MAX))					\
4749		__data = (MAX);						\
4750	if (__CONV)							\
4751		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
4752	else								\
4753		*(__PTR) = __data;					\
4754	return count;							\
4755}
4756STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4757STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4758		UINT_MAX, 1);
4759STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4760		UINT_MAX, 1);
4761STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4762STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4763		UINT_MAX, 0);
4764STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4765STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4766STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4767STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4768STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4769		UINT_MAX, 0);
4770STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4771STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4772#undef STORE_FUNCTION
4773
4774#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
4775static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
4776{									\
4777	struct cfq_data *cfqd = e->elevator_data;			\
4778	unsigned int __data;						\
4779	cfq_var_store(&__data, (page));					\
4780	if (__data < (MIN))						\
4781		__data = (MIN);						\
4782	else if (__data > (MAX))					\
4783		__data = (MAX);						\
4784	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
4785	return count;							\
4786}
4787USEC_STORE_FUNCTION(cfq_slice_idle_us_store, &cfqd->cfq_slice_idle, 0, UINT_MAX);
4788USEC_STORE_FUNCTION(cfq_group_idle_us_store, &cfqd->cfq_group_idle, 0, UINT_MAX);
4789USEC_STORE_FUNCTION(cfq_slice_sync_us_store, &cfqd->cfq_slice[1], 1, UINT_MAX);
4790USEC_STORE_FUNCTION(cfq_slice_async_us_store, &cfqd->cfq_slice[0], 1, UINT_MAX);
4791USEC_STORE_FUNCTION(cfq_target_latency_us_store, &cfqd->cfq_target_latency, 1, UINT_MAX);
4792#undef USEC_STORE_FUNCTION
4793
4794#define CFQ_ATTR(name) \
4795	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4796
4797static struct elv_fs_entry cfq_attrs[] = {
4798	CFQ_ATTR(quantum),
4799	CFQ_ATTR(fifo_expire_sync),
4800	CFQ_ATTR(fifo_expire_async),
4801	CFQ_ATTR(back_seek_max),
4802	CFQ_ATTR(back_seek_penalty),
4803	CFQ_ATTR(slice_sync),
4804	CFQ_ATTR(slice_sync_us),
4805	CFQ_ATTR(slice_async),
4806	CFQ_ATTR(slice_async_us),
4807	CFQ_ATTR(slice_async_rq),
4808	CFQ_ATTR(slice_idle),
4809	CFQ_ATTR(slice_idle_us),
4810	CFQ_ATTR(group_idle),
4811	CFQ_ATTR(group_idle_us),
4812	CFQ_ATTR(low_latency),
4813	CFQ_ATTR(target_latency),
4814	CFQ_ATTR(target_latency_us),
4815	__ATTR_NULL
4816};
4817
4818static struct elevator_type iosched_cfq = {
4819	.ops.sq = {
4820		.elevator_merge_fn = 		cfq_merge,
4821		.elevator_merged_fn =		cfq_merged_request,
4822		.elevator_merge_req_fn =	cfq_merged_requests,
4823		.elevator_allow_bio_merge_fn =	cfq_allow_bio_merge,
4824		.elevator_allow_rq_merge_fn =	cfq_allow_rq_merge,
4825		.elevator_bio_merged_fn =	cfq_bio_merged,
4826		.elevator_dispatch_fn =		cfq_dispatch_requests,
4827		.elevator_add_req_fn =		cfq_insert_request,
4828		.elevator_activate_req_fn =	cfq_activate_request,
4829		.elevator_deactivate_req_fn =	cfq_deactivate_request,
4830		.elevator_completed_req_fn =	cfq_completed_request,
4831		.elevator_former_req_fn =	elv_rb_former_request,
4832		.elevator_latter_req_fn =	elv_rb_latter_request,
4833		.elevator_init_icq_fn =		cfq_init_icq,
4834		.elevator_exit_icq_fn =		cfq_exit_icq,
4835		.elevator_set_req_fn =		cfq_set_request,
4836		.elevator_put_req_fn =		cfq_put_request,
4837		.elevator_may_queue_fn =	cfq_may_queue,
4838		.elevator_init_fn =		cfq_init_queue,
4839		.elevator_exit_fn =		cfq_exit_queue,
4840		.elevator_registered_fn =	cfq_registered_queue,
4841	},
4842	.icq_size	=	sizeof(struct cfq_io_cq),
4843	.icq_align	=	__alignof__(struct cfq_io_cq),
4844	.elevator_attrs =	cfq_attrs,
4845	.elevator_name	=	"cfq",
4846	.elevator_owner =	THIS_MODULE,
4847};
4848
4849#ifdef CONFIG_CFQ_GROUP_IOSCHED
4850static struct blkcg_policy blkcg_policy_cfq = {
4851	.dfl_cftypes		= cfq_blkcg_files,
4852	.legacy_cftypes		= cfq_blkcg_legacy_files,
4853
4854	.cpd_alloc_fn		= cfq_cpd_alloc,
4855	.cpd_init_fn		= cfq_cpd_init,
4856	.cpd_free_fn		= cfq_cpd_free,
4857	.cpd_bind_fn		= cfq_cpd_bind,
4858
4859	.pd_alloc_fn		= cfq_pd_alloc,
4860	.pd_init_fn		= cfq_pd_init,
4861	.pd_offline_fn		= cfq_pd_offline,
4862	.pd_free_fn		= cfq_pd_free,
4863	.pd_reset_stats_fn	= cfq_pd_reset_stats,
4864};
4865#endif
4866
4867static int __init cfq_init(void)
4868{
4869	int ret;
4870
 
 
 
 
 
 
 
 
4871#ifdef CONFIG_CFQ_GROUP_IOSCHED
 
 
 
4872	ret = blkcg_policy_register(&blkcg_policy_cfq);
4873	if (ret)
4874		return ret;
4875#else
4876	cfq_group_idle = 0;
4877#endif
4878
4879	ret = -ENOMEM;
4880	cfq_pool = KMEM_CACHE(cfq_queue, 0);
4881	if (!cfq_pool)
4882		goto err_pol_unreg;
4883
4884	ret = elv_register(&iosched_cfq);
4885	if (ret)
4886		goto err_free_pool;
4887
4888	return 0;
4889
4890err_free_pool:
4891	kmem_cache_destroy(cfq_pool);
4892err_pol_unreg:
4893#ifdef CONFIG_CFQ_GROUP_IOSCHED
4894	blkcg_policy_unregister(&blkcg_policy_cfq);
4895#endif
4896	return ret;
4897}
4898
4899static void __exit cfq_exit(void)
4900{
4901#ifdef CONFIG_CFQ_GROUP_IOSCHED
4902	blkcg_policy_unregister(&blkcg_policy_cfq);
4903#endif
4904	elv_unregister(&iosched_cfq);
4905	kmem_cache_destroy(cfq_pool);
4906}
4907
4908module_init(cfq_init);
4909module_exit(cfq_exit);
4910
4911MODULE_AUTHOR("Jens Axboe");
4912MODULE_LICENSE("GPL");
4913MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");