Linux Audio

Check our new training course

Loading...
   1/*
   2 *  CFQ, or complete fairness queueing, disk scheduler.
   3 *
   4 *  Based on ideas from a previously unfinished io
   5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
   6 *
   7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
   8 */
   9#include <linux/module.h>
  10#include <linux/slab.h>
  11#include <linux/blkdev.h>
  12#include <linux/elevator.h>
  13#include <linux/jiffies.h>
  14#include <linux/rbtree.h>
  15#include <linux/ioprio.h>
  16#include <linux/blktrace_api.h>
  17#include "blk.h"
  18#include "blk-cgroup.h"
  19
  20/*
  21 * tunables
  22 */
  23/* max queue in one round of service */
  24static const int cfq_quantum = 8;
  25static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  26/* maximum backwards seek, in KiB */
  27static const int cfq_back_max = 16 * 1024;
  28/* penalty of a backwards seek */
  29static const int cfq_back_penalty = 2;
  30static const int cfq_slice_sync = HZ / 10;
  31static int cfq_slice_async = HZ / 25;
  32static const int cfq_slice_async_rq = 2;
  33static int cfq_slice_idle = HZ / 125;
  34static int cfq_group_idle = HZ / 125;
  35static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  36static const int cfq_hist_divisor = 4;
  37
  38/*
  39 * offset from end of service tree
  40 */
  41#define CFQ_IDLE_DELAY		(HZ / 5)
  42
  43/*
  44 * below this threshold, we consider thinktime immediate
  45 */
  46#define CFQ_MIN_TT		(2)
  47
  48#define CFQ_SLICE_SCALE		(5)
  49#define CFQ_HW_QUEUE_MIN	(5)
  50#define CFQ_SERVICE_SHIFT       12
  51
  52#define CFQQ_SEEK_THR		(sector_t)(8 * 100)
  53#define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)
  54#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
  55#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
  56
  57#define RQ_CIC(rq)		icq_to_cic((rq)->elv.icq)
  58#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elv.priv[0])
  59#define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elv.priv[1])
  60
  61static struct kmem_cache *cfq_pool;
  62
  63#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
  64#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  65#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  66
  67#define sample_valid(samples)	((samples) > 80)
  68#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
  69
  70struct cfq_ttime {
  71	unsigned long last_end_request;
  72
  73	unsigned long ttime_total;
  74	unsigned long ttime_samples;
  75	unsigned long ttime_mean;
  76};
  77
  78/*
  79 * Most of our rbtree usage is for sorting with min extraction, so
  80 * if we cache the leftmost node we don't have to walk down the tree
  81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  82 * move this into the elevator for the rq sorting as well.
  83 */
  84struct cfq_rb_root {
  85	struct rb_root rb;
  86	struct rb_node *left;
  87	unsigned count;
  88	unsigned total_weight;
  89	u64 min_vdisktime;
  90	struct cfq_ttime ttime;
  91};
  92#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, \
  93			.ttime = {.last_end_request = jiffies,},}
  94
  95/*
  96 * Per process-grouping structure
  97 */
  98struct cfq_queue {
  99	/* reference count */
 100	int ref;
 101	/* various state flags, see below */
 102	unsigned int flags;
 103	/* parent cfq_data */
 104	struct cfq_data *cfqd;
 105	/* service_tree member */
 106	struct rb_node rb_node;
 107	/* service_tree key */
 108	unsigned long rb_key;
 109	/* prio tree member */
 110	struct rb_node p_node;
 111	/* prio tree root we belong to, if any */
 112	struct rb_root *p_root;
 113	/* sorted list of pending requests */
 114	struct rb_root sort_list;
 115	/* if fifo isn't expired, next request to serve */
 116	struct request *next_rq;
 117	/* requests queued in sort_list */
 118	int queued[2];
 119	/* currently allocated requests */
 120	int allocated[2];
 121	/* fifo list of requests in sort_list */
 122	struct list_head fifo;
 123
 124	/* time when queue got scheduled in to dispatch first request. */
 125	unsigned long dispatch_start;
 126	unsigned int allocated_slice;
 127	unsigned int slice_dispatch;
 128	/* time when first request from queue completed and slice started. */
 129	unsigned long slice_start;
 130	unsigned long slice_end;
 131	long slice_resid;
 132
 133	/* pending priority requests */
 134	int prio_pending;
 135	/* number of requests that are on the dispatch list or inside driver */
 136	int dispatched;
 137
 138	/* io prio of this group */
 139	unsigned short ioprio, org_ioprio;
 140	unsigned short ioprio_class;
 141
 142	pid_t pid;
 143
 144	u32 seek_history;
 145	sector_t last_request_pos;
 146
 147	struct cfq_rb_root *service_tree;
 148	struct cfq_queue *new_cfqq;
 149	struct cfq_group *cfqg;
 150	/* Number of sectors dispatched from queue in single dispatch round */
 151	unsigned long nr_sectors;
 152};
 153
 154/*
 155 * First index in the service_trees.
 156 * IDLE is handled separately, so it has negative index
 157 */
 158enum wl_prio_t {
 159	BE_WORKLOAD = 0,
 160	RT_WORKLOAD = 1,
 161	IDLE_WORKLOAD = 2,
 162	CFQ_PRIO_NR,
 163};
 164
 165/*
 166 * Second index in the service_trees.
 167 */
 168enum wl_type_t {
 169	ASYNC_WORKLOAD = 0,
 170	SYNC_NOIDLE_WORKLOAD = 1,
 171	SYNC_WORKLOAD = 2
 172};
 173
 174struct cfqg_stats {
 175#ifdef CONFIG_CFQ_GROUP_IOSCHED
 176	/* total bytes transferred */
 177	struct blkg_rwstat		service_bytes;
 178	/* total IOs serviced, post merge */
 179	struct blkg_rwstat		serviced;
 180	/* number of ios merged */
 181	struct blkg_rwstat		merged;
 182	/* total time spent on device in ns, may not be accurate w/ queueing */
 183	struct blkg_rwstat		service_time;
 184	/* total time spent waiting in scheduler queue in ns */
 185	struct blkg_rwstat		wait_time;
 186	/* number of IOs queued up */
 187	struct blkg_rwstat		queued;
 188	/* total sectors transferred */
 189	struct blkg_stat		sectors;
 190	/* total disk time and nr sectors dispatched by this group */
 191	struct blkg_stat		time;
 192#ifdef CONFIG_DEBUG_BLK_CGROUP
 193	/* time not charged to this cgroup */
 194	struct blkg_stat		unaccounted_time;
 195	/* sum of number of ios queued across all samples */
 196	struct blkg_stat		avg_queue_size_sum;
 197	/* count of samples taken for average */
 198	struct blkg_stat		avg_queue_size_samples;
 199	/* how many times this group has been removed from service tree */
 200	struct blkg_stat		dequeue;
 201	/* total time spent waiting for it to be assigned a timeslice. */
 202	struct blkg_stat		group_wait_time;
 203	/* time spent idling for this blkcg_gq */
 204	struct blkg_stat		idle_time;
 205	/* total time with empty current active q with other requests queued */
 206	struct blkg_stat		empty_time;
 207	/* fields after this shouldn't be cleared on stat reset */
 208	uint64_t			start_group_wait_time;
 209	uint64_t			start_idle_time;
 210	uint64_t			start_empty_time;
 211	uint16_t			flags;
 212#endif	/* CONFIG_DEBUG_BLK_CGROUP */
 213#endif	/* CONFIG_CFQ_GROUP_IOSCHED */
 214};
 215
 216/* This is per cgroup per device grouping structure */
 217struct cfq_group {
 218	/* must be the first member */
 219	struct blkg_policy_data pd;
 220
 221	/* group service_tree member */
 222	struct rb_node rb_node;
 223
 224	/* group service_tree key */
 225	u64 vdisktime;
 226	unsigned int weight;
 227	unsigned int new_weight;
 228	unsigned int dev_weight;
 229
 230	/* number of cfqq currently on this group */
 231	int nr_cfqq;
 232
 233	/*
 234	 * Per group busy queues average. Useful for workload slice calc. We
 235	 * create the array for each prio class but at run time it is used
 236	 * only for RT and BE class and slot for IDLE class remains unused.
 237	 * This is primarily done to avoid confusion and a gcc warning.
 238	 */
 239	unsigned int busy_queues_avg[CFQ_PRIO_NR];
 240	/*
 241	 * rr lists of queues with requests. We maintain service trees for
 242	 * RT and BE classes. These trees are subdivided in subclasses
 243	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
 244	 * class there is no subclassification and all the cfq queues go on
 245	 * a single tree service_tree_idle.
 246	 * Counts are embedded in the cfq_rb_root
 247	 */
 248	struct cfq_rb_root service_trees[2][3];
 249	struct cfq_rb_root service_tree_idle;
 250
 251	unsigned long saved_workload_slice;
 252	enum wl_type_t saved_workload;
 253	enum wl_prio_t saved_serving_prio;
 254
 255	/* number of requests that are on the dispatch list or inside driver */
 256	int dispatched;
 257	struct cfq_ttime ttime;
 258	struct cfqg_stats stats;
 259};
 260
 261struct cfq_io_cq {
 262	struct io_cq		icq;		/* must be the first member */
 263	struct cfq_queue	*cfqq[2];
 264	struct cfq_ttime	ttime;
 265	int			ioprio;		/* the current ioprio */
 266#ifdef CONFIG_CFQ_GROUP_IOSCHED
 267	uint64_t		blkcg_id;	/* the current blkcg ID */
 268#endif
 269};
 270
 271/*
 272 * Per block device queue structure
 273 */
 274struct cfq_data {
 275	struct request_queue *queue;
 276	/* Root service tree for cfq_groups */
 277	struct cfq_rb_root grp_service_tree;
 278	struct cfq_group *root_group;
 279
 280	/*
 281	 * The priority currently being served
 282	 */
 283	enum wl_prio_t serving_prio;
 284	enum wl_type_t serving_type;
 285	unsigned long workload_expires;
 286	struct cfq_group *serving_group;
 287
 288	/*
 289	 * Each priority tree is sorted by next_request position.  These
 290	 * trees are used when determining if two or more queues are
 291	 * interleaving requests (see cfq_close_cooperator).
 292	 */
 293	struct rb_root prio_trees[CFQ_PRIO_LISTS];
 294
 295	unsigned int busy_queues;
 296	unsigned int busy_sync_queues;
 297
 298	int rq_in_driver;
 299	int rq_in_flight[2];
 300
 301	/*
 302	 * queue-depth detection
 303	 */
 304	int rq_queued;
 305	int hw_tag;
 306	/*
 307	 * hw_tag can be
 308	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
 309	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
 310	 *  0 => no NCQ
 311	 */
 312	int hw_tag_est_depth;
 313	unsigned int hw_tag_samples;
 314
 315	/*
 316	 * idle window management
 317	 */
 318	struct timer_list idle_slice_timer;
 319	struct work_struct unplug_work;
 320
 321	struct cfq_queue *active_queue;
 322	struct cfq_io_cq *active_cic;
 323
 324	/*
 325	 * async queue for each priority case
 326	 */
 327	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
 328	struct cfq_queue *async_idle_cfqq;
 329
 330	sector_t last_position;
 331
 332	/*
 333	 * tunables, see top of file
 334	 */
 335	unsigned int cfq_quantum;
 336	unsigned int cfq_fifo_expire[2];
 337	unsigned int cfq_back_penalty;
 338	unsigned int cfq_back_max;
 339	unsigned int cfq_slice[2];
 340	unsigned int cfq_slice_async_rq;
 341	unsigned int cfq_slice_idle;
 342	unsigned int cfq_group_idle;
 343	unsigned int cfq_latency;
 344	unsigned int cfq_target_latency;
 345
 346	/*
 347	 * Fallback dummy cfqq for extreme OOM conditions
 348	 */
 349	struct cfq_queue oom_cfqq;
 350
 351	unsigned long last_delayed_sync;
 352};
 353
 354static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
 355
 356static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
 357					    enum wl_prio_t prio,
 358					    enum wl_type_t type)
 359{
 360	if (!cfqg)
 361		return NULL;
 362
 363	if (prio == IDLE_WORKLOAD)
 364		return &cfqg->service_tree_idle;
 365
 366	return &cfqg->service_trees[prio][type];
 367}
 368
 369enum cfqq_state_flags {
 370	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
 371	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
 372	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
 373	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
 374	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
 375	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
 376	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
 377	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
 378	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
 379	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
 380	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
 381	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
 382	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
 383};
 384
 385#define CFQ_CFQQ_FNS(name)						\
 386static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
 387{									\
 388	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
 389}									\
 390static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
 391{									\
 392	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
 393}									\
 394static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
 395{									\
 396	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
 397}
 398
 399CFQ_CFQQ_FNS(on_rr);
 400CFQ_CFQQ_FNS(wait_request);
 401CFQ_CFQQ_FNS(must_dispatch);
 402CFQ_CFQQ_FNS(must_alloc_slice);
 403CFQ_CFQQ_FNS(fifo_expire);
 404CFQ_CFQQ_FNS(idle_window);
 405CFQ_CFQQ_FNS(prio_changed);
 406CFQ_CFQQ_FNS(slice_new);
 407CFQ_CFQQ_FNS(sync);
 408CFQ_CFQQ_FNS(coop);
 409CFQ_CFQQ_FNS(split_coop);
 410CFQ_CFQQ_FNS(deep);
 411CFQ_CFQQ_FNS(wait_busy);
 412#undef CFQ_CFQQ_FNS
 413
 414static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
 415{
 416	return pd ? container_of(pd, struct cfq_group, pd) : NULL;
 417}
 418
 419static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
 420{
 421	return pd_to_blkg(&cfqg->pd);
 422}
 423
 424#if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
 425
 426/* cfqg stats flags */
 427enum cfqg_stats_flags {
 428	CFQG_stats_waiting = 0,
 429	CFQG_stats_idling,
 430	CFQG_stats_empty,
 431};
 432
 433#define CFQG_FLAG_FNS(name)						\
 434static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats)	\
 435{									\
 436	stats->flags |= (1 << CFQG_stats_##name);			\
 437}									\
 438static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats)	\
 439{									\
 440	stats->flags &= ~(1 << CFQG_stats_##name);			\
 441}									\
 442static inline int cfqg_stats_##name(struct cfqg_stats *stats)		\
 443{									\
 444	return (stats->flags & (1 << CFQG_stats_##name)) != 0;		\
 445}									\
 446
 447CFQG_FLAG_FNS(waiting)
 448CFQG_FLAG_FNS(idling)
 449CFQG_FLAG_FNS(empty)
 450#undef CFQG_FLAG_FNS
 451
 452/* This should be called with the queue_lock held. */
 453static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
 454{
 455	unsigned long long now;
 456
 457	if (!cfqg_stats_waiting(stats))
 458		return;
 459
 460	now = sched_clock();
 461	if (time_after64(now, stats->start_group_wait_time))
 462		blkg_stat_add(&stats->group_wait_time,
 463			      now - stats->start_group_wait_time);
 464	cfqg_stats_clear_waiting(stats);
 465}
 466
 467/* This should be called with the queue_lock held. */
 468static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
 469						 struct cfq_group *curr_cfqg)
 470{
 471	struct cfqg_stats *stats = &cfqg->stats;
 472
 473	if (cfqg_stats_waiting(stats))
 474		return;
 475	if (cfqg == curr_cfqg)
 476		return;
 477	stats->start_group_wait_time = sched_clock();
 478	cfqg_stats_mark_waiting(stats);
 479}
 480
 481/* This should be called with the queue_lock held. */
 482static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
 483{
 484	unsigned long long now;
 485
 486	if (!cfqg_stats_empty(stats))
 487		return;
 488
 489	now = sched_clock();
 490	if (time_after64(now, stats->start_empty_time))
 491		blkg_stat_add(&stats->empty_time,
 492			      now - stats->start_empty_time);
 493	cfqg_stats_clear_empty(stats);
 494}
 495
 496static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
 497{
 498	blkg_stat_add(&cfqg->stats.dequeue, 1);
 499}
 500
 501static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
 502{
 503	struct cfqg_stats *stats = &cfqg->stats;
 504
 505	if (blkg_rwstat_sum(&stats->queued))
 506		return;
 507
 508	/*
 509	 * group is already marked empty. This can happen if cfqq got new
 510	 * request in parent group and moved to this group while being added
 511	 * to service tree. Just ignore the event and move on.
 512	 */
 513	if (cfqg_stats_empty(stats))
 514		return;
 515
 516	stats->start_empty_time = sched_clock();
 517	cfqg_stats_mark_empty(stats);
 518}
 519
 520static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
 521{
 522	struct cfqg_stats *stats = &cfqg->stats;
 523
 524	if (cfqg_stats_idling(stats)) {
 525		unsigned long long now = sched_clock();
 526
 527		if (time_after64(now, stats->start_idle_time))
 528			blkg_stat_add(&stats->idle_time,
 529				      now - stats->start_idle_time);
 530		cfqg_stats_clear_idling(stats);
 531	}
 532}
 533
 534static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
 535{
 536	struct cfqg_stats *stats = &cfqg->stats;
 537
 538	BUG_ON(cfqg_stats_idling(stats));
 539
 540	stats->start_idle_time = sched_clock();
 541	cfqg_stats_mark_idling(stats);
 542}
 543
 544static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
 545{
 546	struct cfqg_stats *stats = &cfqg->stats;
 547
 548	blkg_stat_add(&stats->avg_queue_size_sum,
 549		      blkg_rwstat_sum(&stats->queued));
 550	blkg_stat_add(&stats->avg_queue_size_samples, 1);
 551	cfqg_stats_update_group_wait_time(stats);
 552}
 553
 554#else	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
 555
 556static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
 557static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
 558static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
 559static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
 560static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
 561static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
 562static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
 563
 564#endif	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
 565
 566#ifdef CONFIG_CFQ_GROUP_IOSCHED
 567
 568static struct blkcg_policy blkcg_policy_cfq;
 569
 570static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
 571{
 572	return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
 573}
 574
 575static inline void cfqg_get(struct cfq_group *cfqg)
 576{
 577	return blkg_get(cfqg_to_blkg(cfqg));
 578}
 579
 580static inline void cfqg_put(struct cfq_group *cfqg)
 581{
 582	return blkg_put(cfqg_to_blkg(cfqg));
 583}
 584
 585#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	do {			\
 586	char __pbuf[128];						\
 587									\
 588	blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf));	\
 589	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
 590			  cfq_cfqq_sync((cfqq)) ? 'S' : 'A',		\
 591			  __pbuf, ##args);				\
 592} while (0)
 593
 594#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)	do {			\
 595	char __pbuf[128];						\
 596									\
 597	blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf));		\
 598	blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args);	\
 599} while (0)
 600
 601static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
 602					    struct cfq_group *curr_cfqg, int rw)
 603{
 604	blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
 605	cfqg_stats_end_empty_time(&cfqg->stats);
 606	cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
 607}
 608
 609static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
 610			unsigned long time, unsigned long unaccounted_time)
 611{
 612	blkg_stat_add(&cfqg->stats.time, time);
 613#ifdef CONFIG_DEBUG_BLK_CGROUP
 614	blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
 615#endif
 616}
 617
 618static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
 619{
 620	blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
 621}
 622
 623static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
 624{
 625	blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
 626}
 627
 628static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
 629					      uint64_t bytes, int rw)
 630{
 631	blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
 632	blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
 633	blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
 634}
 635
 636static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
 637			uint64_t start_time, uint64_t io_start_time, int rw)
 638{
 639	struct cfqg_stats *stats = &cfqg->stats;
 640	unsigned long long now = sched_clock();
 641
 642	if (time_after64(now, io_start_time))
 643		blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
 644	if (time_after64(io_start_time, start_time))
 645		blkg_rwstat_add(&stats->wait_time, rw,
 646				io_start_time - start_time);
 647}
 648
 649static void cfq_pd_reset_stats(struct blkcg_gq *blkg)
 650{
 651	struct cfq_group *cfqg = blkg_to_cfqg(blkg);
 652	struct cfqg_stats *stats = &cfqg->stats;
 653
 654	/* queued stats shouldn't be cleared */
 655	blkg_rwstat_reset(&stats->service_bytes);
 656	blkg_rwstat_reset(&stats->serviced);
 657	blkg_rwstat_reset(&stats->merged);
 658	blkg_rwstat_reset(&stats->service_time);
 659	blkg_rwstat_reset(&stats->wait_time);
 660	blkg_stat_reset(&stats->time);
 661#ifdef CONFIG_DEBUG_BLK_CGROUP
 662	blkg_stat_reset(&stats->unaccounted_time);
 663	blkg_stat_reset(&stats->avg_queue_size_sum);
 664	blkg_stat_reset(&stats->avg_queue_size_samples);
 665	blkg_stat_reset(&stats->dequeue);
 666	blkg_stat_reset(&stats->group_wait_time);
 667	blkg_stat_reset(&stats->idle_time);
 668	blkg_stat_reset(&stats->empty_time);
 669#endif
 670}
 671
 672#else	/* CONFIG_CFQ_GROUP_IOSCHED */
 673
 674static inline void cfqg_get(struct cfq_group *cfqg) { }
 675static inline void cfqg_put(struct cfq_group *cfqg) { }
 676
 677#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
 678	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
 679#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0)
 680
 681static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
 682			struct cfq_group *curr_cfqg, int rw) { }
 683static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
 684			unsigned long time, unsigned long unaccounted_time) { }
 685static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
 686static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
 687static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
 688					      uint64_t bytes, int rw) { }
 689static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
 690			uint64_t start_time, uint64_t io_start_time, int rw) { }
 691
 692#endif	/* CONFIG_CFQ_GROUP_IOSCHED */
 693
 694#define cfq_log(cfqd, fmt, args...)	\
 695	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
 696
 697/* Traverses through cfq group service trees */
 698#define for_each_cfqg_st(cfqg, i, j, st) \
 699	for (i = 0; i <= IDLE_WORKLOAD; i++) \
 700		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
 701			: &cfqg->service_tree_idle; \
 702			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
 703			(i == IDLE_WORKLOAD && j == 0); \
 704			j++, st = i < IDLE_WORKLOAD ? \
 705			&cfqg->service_trees[i][j]: NULL) \
 706
 707static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
 708	struct cfq_ttime *ttime, bool group_idle)
 709{
 710	unsigned long slice;
 711	if (!sample_valid(ttime->ttime_samples))
 712		return false;
 713	if (group_idle)
 714		slice = cfqd->cfq_group_idle;
 715	else
 716		slice = cfqd->cfq_slice_idle;
 717	return ttime->ttime_mean > slice;
 718}
 719
 720static inline bool iops_mode(struct cfq_data *cfqd)
 721{
 722	/*
 723	 * If we are not idling on queues and it is a NCQ drive, parallel
 724	 * execution of requests is on and measuring time is not possible
 725	 * in most of the cases until and unless we drive shallower queue
 726	 * depths and that becomes a performance bottleneck. In such cases
 727	 * switch to start providing fairness in terms of number of IOs.
 728	 */
 729	if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
 730		return true;
 731	else
 732		return false;
 733}
 734
 735static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
 736{
 737	if (cfq_class_idle(cfqq))
 738		return IDLE_WORKLOAD;
 739	if (cfq_class_rt(cfqq))
 740		return RT_WORKLOAD;
 741	return BE_WORKLOAD;
 742}
 743
 744
 745static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
 746{
 747	if (!cfq_cfqq_sync(cfqq))
 748		return ASYNC_WORKLOAD;
 749	if (!cfq_cfqq_idle_window(cfqq))
 750		return SYNC_NOIDLE_WORKLOAD;
 751	return SYNC_WORKLOAD;
 752}
 753
 754static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
 755					struct cfq_data *cfqd,
 756					struct cfq_group *cfqg)
 757{
 758	if (wl == IDLE_WORKLOAD)
 759		return cfqg->service_tree_idle.count;
 760
 761	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
 762		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
 763		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
 764}
 765
 766static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
 767					struct cfq_group *cfqg)
 768{
 769	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
 770		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
 771}
 772
 773static void cfq_dispatch_insert(struct request_queue *, struct request *);
 774static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
 775				       struct cfq_io_cq *cic, struct bio *bio,
 776				       gfp_t gfp_mask);
 777
 778static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
 779{
 780	/* cic->icq is the first member, %NULL will convert to %NULL */
 781	return container_of(icq, struct cfq_io_cq, icq);
 782}
 783
 784static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
 785					       struct io_context *ioc)
 786{
 787	if (ioc)
 788		return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
 789	return NULL;
 790}
 791
 792static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
 793{
 794	return cic->cfqq[is_sync];
 795}
 796
 797static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
 798				bool is_sync)
 799{
 800	cic->cfqq[is_sync] = cfqq;
 801}
 802
 803static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
 804{
 805	return cic->icq.q->elevator->elevator_data;
 806}
 807
 808/*
 809 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 810 * set (in which case it could also be direct WRITE).
 811 */
 812static inline bool cfq_bio_sync(struct bio *bio)
 813{
 814	return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
 815}
 816
 817/*
 818 * scheduler run of queue, if there are requests pending and no one in the
 819 * driver that will restart queueing
 820 */
 821static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
 822{
 823	if (cfqd->busy_queues) {
 824		cfq_log(cfqd, "schedule dispatch");
 825		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
 826	}
 827}
 828
 829/*
 830 * Scale schedule slice based on io priority. Use the sync time slice only
 831 * if a queue is marked sync and has sync io queued. A sync queue with async
 832 * io only, should not get full sync slice length.
 833 */
 834static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
 835				 unsigned short prio)
 836{
 837	const int base_slice = cfqd->cfq_slice[sync];
 838
 839	WARN_ON(prio >= IOPRIO_BE_NR);
 840
 841	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
 842}
 843
 844static inline int
 845cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 846{
 847	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
 848}
 849
 850static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
 851{
 852	u64 d = delta << CFQ_SERVICE_SHIFT;
 853
 854	d = d * CFQ_WEIGHT_DEFAULT;
 855	do_div(d, cfqg->weight);
 856	return d;
 857}
 858
 859static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
 860{
 861	s64 delta = (s64)(vdisktime - min_vdisktime);
 862	if (delta > 0)
 863		min_vdisktime = vdisktime;
 864
 865	return min_vdisktime;
 866}
 867
 868static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
 869{
 870	s64 delta = (s64)(vdisktime - min_vdisktime);
 871	if (delta < 0)
 872		min_vdisktime = vdisktime;
 873
 874	return min_vdisktime;
 875}
 876
 877static void update_min_vdisktime(struct cfq_rb_root *st)
 878{
 879	struct cfq_group *cfqg;
 880
 881	if (st->left) {
 882		cfqg = rb_entry_cfqg(st->left);
 883		st->min_vdisktime = max_vdisktime(st->min_vdisktime,
 884						  cfqg->vdisktime);
 885	}
 886}
 887
 888/*
 889 * get averaged number of queues of RT/BE priority.
 890 * average is updated, with a formula that gives more weight to higher numbers,
 891 * to quickly follows sudden increases and decrease slowly
 892 */
 893
 894static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
 895					struct cfq_group *cfqg, bool rt)
 896{
 897	unsigned min_q, max_q;
 898	unsigned mult  = cfq_hist_divisor - 1;
 899	unsigned round = cfq_hist_divisor / 2;
 900	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
 901
 902	min_q = min(cfqg->busy_queues_avg[rt], busy);
 903	max_q = max(cfqg->busy_queues_avg[rt], busy);
 904	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
 905		cfq_hist_divisor;
 906	return cfqg->busy_queues_avg[rt];
 907}
 908
 909static inline unsigned
 910cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
 911{
 912	struct cfq_rb_root *st = &cfqd->grp_service_tree;
 913
 914	return cfqd->cfq_target_latency * cfqg->weight / st->total_weight;
 915}
 916
 917static inline unsigned
 918cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 919{
 920	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
 921	if (cfqd->cfq_latency) {
 922		/*
 923		 * interested queues (we consider only the ones with the same
 924		 * priority class in the cfq group)
 925		 */
 926		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
 927						cfq_class_rt(cfqq));
 928		unsigned sync_slice = cfqd->cfq_slice[1];
 929		unsigned expect_latency = sync_slice * iq;
 930		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
 931
 932		if (expect_latency > group_slice) {
 933			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
 934			/* scale low_slice according to IO priority
 935			 * and sync vs async */
 936			unsigned low_slice =
 937				min(slice, base_low_slice * slice / sync_slice);
 938			/* the adapted slice value is scaled to fit all iqs
 939			 * into the target latency */
 940			slice = max(slice * group_slice / expect_latency,
 941				    low_slice);
 942		}
 943	}
 944	return slice;
 945}
 946
 947static inline void
 948cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 949{
 950	unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
 951
 952	cfqq->slice_start = jiffies;
 953	cfqq->slice_end = jiffies + slice;
 954	cfqq->allocated_slice = slice;
 955	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
 956}
 957
 958/*
 959 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 960 * isn't valid until the first request from the dispatch is activated
 961 * and the slice time set.
 962 */
 963static inline bool cfq_slice_used(struct cfq_queue *cfqq)
 964{
 965	if (cfq_cfqq_slice_new(cfqq))
 966		return false;
 967	if (time_before(jiffies, cfqq->slice_end))
 968		return false;
 969
 970	return true;
 971}
 972
 973/*
 974 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
 975 * We choose the request that is closest to the head right now. Distance
 976 * behind the head is penalized and only allowed to a certain extent.
 977 */
 978static struct request *
 979cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
 980{
 981	sector_t s1, s2, d1 = 0, d2 = 0;
 982	unsigned long back_max;
 983#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
 984#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
 985	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
 986
 987	if (rq1 == NULL || rq1 == rq2)
 988		return rq2;
 989	if (rq2 == NULL)
 990		return rq1;
 991
 992	if (rq_is_sync(rq1) != rq_is_sync(rq2))
 993		return rq_is_sync(rq1) ? rq1 : rq2;
 994
 995	if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
 996		return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
 997
 998	s1 = blk_rq_pos(rq1);
 999	s2 = blk_rq_pos(rq2);
1000
1001	/*
1002	 * by definition, 1KiB is 2 sectors
1003	 */
1004	back_max = cfqd->cfq_back_max * 2;
1005
1006	/*
1007	 * Strict one way elevator _except_ in the case where we allow
1008	 * short backward seeks which are biased as twice the cost of a
1009	 * similar forward seek.
1010	 */
1011	if (s1 >= last)
1012		d1 = s1 - last;
1013	else if (s1 + back_max >= last)
1014		d1 = (last - s1) * cfqd->cfq_back_penalty;
1015	else
1016		wrap |= CFQ_RQ1_WRAP;
1017
1018	if (s2 >= last)
1019		d2 = s2 - last;
1020	else if (s2 + back_max >= last)
1021		d2 = (last - s2) * cfqd->cfq_back_penalty;
1022	else
1023		wrap |= CFQ_RQ2_WRAP;
1024
1025	/* Found required data */
1026
1027	/*
1028	 * By doing switch() on the bit mask "wrap" we avoid having to
1029	 * check two variables for all permutations: --> faster!
1030	 */
1031	switch (wrap) {
1032	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1033		if (d1 < d2)
1034			return rq1;
1035		else if (d2 < d1)
1036			return rq2;
1037		else {
1038			if (s1 >= s2)
1039				return rq1;
1040			else
1041				return rq2;
1042		}
1043
1044	case CFQ_RQ2_WRAP:
1045		return rq1;
1046	case CFQ_RQ1_WRAP:
1047		return rq2;
1048	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1049	default:
1050		/*
1051		 * Since both rqs are wrapped,
1052		 * start with the one that's further behind head
1053		 * (--> only *one* back seek required),
1054		 * since back seek takes more time than forward.
1055		 */
1056		if (s1 <= s2)
1057			return rq1;
1058		else
1059			return rq2;
1060	}
1061}
1062
1063/*
1064 * The below is leftmost cache rbtree addon
1065 */
1066static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1067{
1068	/* Service tree is empty */
1069	if (!root->count)
1070		return NULL;
1071
1072	if (!root->left)
1073		root->left = rb_first(&root->rb);
1074
1075	if (root->left)
1076		return rb_entry(root->left, struct cfq_queue, rb_node);
1077
1078	return NULL;
1079}
1080
1081static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1082{
1083	if (!root->left)
1084		root->left = rb_first(&root->rb);
1085
1086	if (root->left)
1087		return rb_entry_cfqg(root->left);
1088
1089	return NULL;
1090}
1091
1092static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1093{
1094	rb_erase(n, root);
1095	RB_CLEAR_NODE(n);
1096}
1097
1098static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1099{
1100	if (root->left == n)
1101		root->left = NULL;
1102	rb_erase_init(n, &root->rb);
1103	--root->count;
1104}
1105
1106/*
1107 * would be nice to take fifo expire time into account as well
1108 */
1109static struct request *
1110cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1111		  struct request *last)
1112{
1113	struct rb_node *rbnext = rb_next(&last->rb_node);
1114	struct rb_node *rbprev = rb_prev(&last->rb_node);
1115	struct request *next = NULL, *prev = NULL;
1116
1117	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1118
1119	if (rbprev)
1120		prev = rb_entry_rq(rbprev);
1121
1122	if (rbnext)
1123		next = rb_entry_rq(rbnext);
1124	else {
1125		rbnext = rb_first(&cfqq->sort_list);
1126		if (rbnext && rbnext != &last->rb_node)
1127			next = rb_entry_rq(rbnext);
1128	}
1129
1130	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1131}
1132
1133static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1134				      struct cfq_queue *cfqq)
1135{
1136	/*
1137	 * just an approximation, should be ok.
1138	 */
1139	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1140		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1141}
1142
1143static inline s64
1144cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1145{
1146	return cfqg->vdisktime - st->min_vdisktime;
1147}
1148
1149static void
1150__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1151{
1152	struct rb_node **node = &st->rb.rb_node;
1153	struct rb_node *parent = NULL;
1154	struct cfq_group *__cfqg;
1155	s64 key = cfqg_key(st, cfqg);
1156	int left = 1;
1157
1158	while (*node != NULL) {
1159		parent = *node;
1160		__cfqg = rb_entry_cfqg(parent);
1161
1162		if (key < cfqg_key(st, __cfqg))
1163			node = &parent->rb_left;
1164		else {
1165			node = &parent->rb_right;
1166			left = 0;
1167		}
1168	}
1169
1170	if (left)
1171		st->left = &cfqg->rb_node;
1172
1173	rb_link_node(&cfqg->rb_node, parent, node);
1174	rb_insert_color(&cfqg->rb_node, &st->rb);
1175}
1176
1177static void
1178cfq_update_group_weight(struct cfq_group *cfqg)
1179{
1180	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1181	if (cfqg->new_weight) {
1182		cfqg->weight = cfqg->new_weight;
1183		cfqg->new_weight = 0;
1184	}
1185}
1186
1187static void
1188cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1189{
1190	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1191
1192	cfq_update_group_weight(cfqg);
1193	__cfq_group_service_tree_add(st, cfqg);
1194	st->total_weight += cfqg->weight;
1195}
1196
1197static void
1198cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1199{
1200	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1201	struct cfq_group *__cfqg;
1202	struct rb_node *n;
1203
1204	cfqg->nr_cfqq++;
1205	if (!RB_EMPTY_NODE(&cfqg->rb_node))
1206		return;
1207
1208	/*
1209	 * Currently put the group at the end. Later implement something
1210	 * so that groups get lesser vtime based on their weights, so that
1211	 * if group does not loose all if it was not continuously backlogged.
1212	 */
1213	n = rb_last(&st->rb);
1214	if (n) {
1215		__cfqg = rb_entry_cfqg(n);
1216		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1217	} else
1218		cfqg->vdisktime = st->min_vdisktime;
1219	cfq_group_service_tree_add(st, cfqg);
1220}
1221
1222static void
1223cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1224{
1225	st->total_weight -= cfqg->weight;
1226	if (!RB_EMPTY_NODE(&cfqg->rb_node))
1227		cfq_rb_erase(&cfqg->rb_node, st);
1228}
1229
1230static void
1231cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1232{
1233	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1234
1235	BUG_ON(cfqg->nr_cfqq < 1);
1236	cfqg->nr_cfqq--;
1237
1238	/* If there are other cfq queues under this group, don't delete it */
1239	if (cfqg->nr_cfqq)
1240		return;
1241
1242	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1243	cfq_group_service_tree_del(st, cfqg);
1244	cfqg->saved_workload_slice = 0;
1245	cfqg_stats_update_dequeue(cfqg);
1246}
1247
1248static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1249						unsigned int *unaccounted_time)
1250{
1251	unsigned int slice_used;
1252
1253	/*
1254	 * Queue got expired before even a single request completed or
1255	 * got expired immediately after first request completion.
1256	 */
1257	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1258		/*
1259		 * Also charge the seek time incurred to the group, otherwise
1260		 * if there are mutiple queues in the group, each can dispatch
1261		 * a single request on seeky media and cause lots of seek time
1262		 * and group will never know it.
1263		 */
1264		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1265					1);
1266	} else {
1267		slice_used = jiffies - cfqq->slice_start;
1268		if (slice_used > cfqq->allocated_slice) {
1269			*unaccounted_time = slice_used - cfqq->allocated_slice;
1270			slice_used = cfqq->allocated_slice;
1271		}
1272		if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1273			*unaccounted_time += cfqq->slice_start -
1274					cfqq->dispatch_start;
1275	}
1276
1277	return slice_used;
1278}
1279
1280static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1281				struct cfq_queue *cfqq)
1282{
1283	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1284	unsigned int used_sl, charge, unaccounted_sl = 0;
1285	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1286			- cfqg->service_tree_idle.count;
1287
1288	BUG_ON(nr_sync < 0);
1289	used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1290
1291	if (iops_mode(cfqd))
1292		charge = cfqq->slice_dispatch;
1293	else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1294		charge = cfqq->allocated_slice;
1295
1296	/* Can't update vdisktime while group is on service tree */
1297	cfq_group_service_tree_del(st, cfqg);
1298	cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
1299	/* If a new weight was requested, update now, off tree */
1300	cfq_group_service_tree_add(st, cfqg);
1301
1302	/* This group is being expired. Save the context */
1303	if (time_after(cfqd->workload_expires, jiffies)) {
1304		cfqg->saved_workload_slice = cfqd->workload_expires
1305						- jiffies;
1306		cfqg->saved_workload = cfqd->serving_type;
1307		cfqg->saved_serving_prio = cfqd->serving_prio;
1308	} else
1309		cfqg->saved_workload_slice = 0;
1310
1311	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1312					st->min_vdisktime);
1313	cfq_log_cfqq(cfqq->cfqd, cfqq,
1314		     "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1315		     used_sl, cfqq->slice_dispatch, charge,
1316		     iops_mode(cfqd), cfqq->nr_sectors);
1317	cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1318	cfqg_stats_set_start_empty_time(cfqg);
1319}
1320
1321/**
1322 * cfq_init_cfqg_base - initialize base part of a cfq_group
1323 * @cfqg: cfq_group to initialize
1324 *
1325 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1326 * is enabled or not.
1327 */
1328static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1329{
1330	struct cfq_rb_root *st;
1331	int i, j;
1332
1333	for_each_cfqg_st(cfqg, i, j, st)
1334		*st = CFQ_RB_ROOT;
1335	RB_CLEAR_NODE(&cfqg->rb_node);
1336
1337	cfqg->ttime.last_end_request = jiffies;
1338}
1339
1340#ifdef CONFIG_CFQ_GROUP_IOSCHED
1341static void cfq_pd_init(struct blkcg_gq *blkg)
1342{
1343	struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1344
1345	cfq_init_cfqg_base(cfqg);
1346	cfqg->weight = blkg->blkcg->cfq_weight;
1347}
1348
1349/*
1350 * Search for the cfq group current task belongs to. request_queue lock must
1351 * be held.
1352 */
1353static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1354						struct blkcg *blkcg)
1355{
1356	struct request_queue *q = cfqd->queue;
1357	struct cfq_group *cfqg = NULL;
1358
1359	/* avoid lookup for the common case where there's no blkcg */
1360	if (blkcg == &blkcg_root) {
1361		cfqg = cfqd->root_group;
1362	} else {
1363		struct blkcg_gq *blkg;
1364
1365		blkg = blkg_lookup_create(blkcg, q);
1366		if (!IS_ERR(blkg))
1367			cfqg = blkg_to_cfqg(blkg);
1368	}
1369
1370	return cfqg;
1371}
1372
1373static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1374{
1375	/* Currently, all async queues are mapped to root group */
1376	if (!cfq_cfqq_sync(cfqq))
1377		cfqg = cfqq->cfqd->root_group;
1378
1379	cfqq->cfqg = cfqg;
1380	/* cfqq reference on cfqg */
1381	cfqg_get(cfqg);
1382}
1383
1384static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1385				     struct blkg_policy_data *pd, int off)
1386{
1387	struct cfq_group *cfqg = pd_to_cfqg(pd);
1388
1389	if (!cfqg->dev_weight)
1390		return 0;
1391	return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1392}
1393
1394static int cfqg_print_weight_device(struct cgroup *cgrp, struct cftype *cft,
1395				    struct seq_file *sf)
1396{
1397	blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),
1398			  cfqg_prfill_weight_device, &blkcg_policy_cfq, 0,
1399			  false);
1400	return 0;
1401}
1402
1403static int cfq_print_weight(struct cgroup *cgrp, struct cftype *cft,
1404			    struct seq_file *sf)
1405{
1406	seq_printf(sf, "%u\n", cgroup_to_blkcg(cgrp)->cfq_weight);
1407	return 0;
1408}
1409
1410static int cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
1411				  const char *buf)
1412{
1413	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1414	struct blkg_conf_ctx ctx;
1415	struct cfq_group *cfqg;
1416	int ret;
1417
1418	ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1419	if (ret)
1420		return ret;
1421
1422	ret = -EINVAL;
1423	cfqg = blkg_to_cfqg(ctx.blkg);
1424	if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1425		cfqg->dev_weight = ctx.v;
1426		cfqg->new_weight = cfqg->dev_weight ?: blkcg->cfq_weight;
1427		ret = 0;
1428	}
1429
1430	blkg_conf_finish(&ctx);
1431	return ret;
1432}
1433
1434static int cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
1435{
1436	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1437	struct blkcg_gq *blkg;
1438	struct hlist_node *n;
1439
1440	if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1441		return -EINVAL;
1442
1443	spin_lock_irq(&blkcg->lock);
1444	blkcg->cfq_weight = (unsigned int)val;
1445
1446	hlist_for_each_entry(blkg, n, &blkcg->blkg_list, blkcg_node) {
1447		struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1448
1449		if (cfqg && !cfqg->dev_weight)
1450			cfqg->new_weight = blkcg->cfq_weight;
1451	}
1452
1453	spin_unlock_irq(&blkcg->lock);
1454	return 0;
1455}
1456
1457static int cfqg_print_stat(struct cgroup *cgrp, struct cftype *cft,
1458			   struct seq_file *sf)
1459{
1460	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1461
1462	blkcg_print_blkgs(sf, blkcg, blkg_prfill_stat, &blkcg_policy_cfq,
1463			  cft->private, false);
1464	return 0;
1465}
1466
1467static int cfqg_print_rwstat(struct cgroup *cgrp, struct cftype *cft,
1468			     struct seq_file *sf)
1469{
1470	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1471
1472	blkcg_print_blkgs(sf, blkcg, blkg_prfill_rwstat, &blkcg_policy_cfq,
1473			  cft->private, true);
1474	return 0;
1475}
1476
1477#ifdef CONFIG_DEBUG_BLK_CGROUP
1478static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1479				      struct blkg_policy_data *pd, int off)
1480{
1481	struct cfq_group *cfqg = pd_to_cfqg(pd);
1482	u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1483	u64 v = 0;
1484
1485	if (samples) {
1486		v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1487		do_div(v, samples);
1488	}
1489	__blkg_prfill_u64(sf, pd, v);
1490	return 0;
1491}
1492
1493/* print avg_queue_size */
1494static int cfqg_print_avg_queue_size(struct cgroup *cgrp, struct cftype *cft,
1495				     struct seq_file *sf)
1496{
1497	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1498
1499	blkcg_print_blkgs(sf, blkcg, cfqg_prfill_avg_queue_size,
1500			  &blkcg_policy_cfq, 0, false);
1501	return 0;
1502}
1503#endif	/* CONFIG_DEBUG_BLK_CGROUP */
1504
1505static struct cftype cfq_blkcg_files[] = {
1506	{
1507		.name = "weight_device",
1508		.read_seq_string = cfqg_print_weight_device,
1509		.write_string = cfqg_set_weight_device,
1510		.max_write_len = 256,
1511	},
1512	{
1513		.name = "weight",
1514		.read_seq_string = cfq_print_weight,
1515		.write_u64 = cfq_set_weight,
1516	},
1517	{
1518		.name = "time",
1519		.private = offsetof(struct cfq_group, stats.time),
1520		.read_seq_string = cfqg_print_stat,
1521	},
1522	{
1523		.name = "sectors",
1524		.private = offsetof(struct cfq_group, stats.sectors),
1525		.read_seq_string = cfqg_print_stat,
1526	},
1527	{
1528		.name = "io_service_bytes",
1529		.private = offsetof(struct cfq_group, stats.service_bytes),
1530		.read_seq_string = cfqg_print_rwstat,
1531	},
1532	{
1533		.name = "io_serviced",
1534		.private = offsetof(struct cfq_group, stats.serviced),
1535		.read_seq_string = cfqg_print_rwstat,
1536	},
1537	{
1538		.name = "io_service_time",
1539		.private = offsetof(struct cfq_group, stats.service_time),
1540		.read_seq_string = cfqg_print_rwstat,
1541	},
1542	{
1543		.name = "io_wait_time",
1544		.private = offsetof(struct cfq_group, stats.wait_time),
1545		.read_seq_string = cfqg_print_rwstat,
1546	},
1547	{
1548		.name = "io_merged",
1549		.private = offsetof(struct cfq_group, stats.merged),
1550		.read_seq_string = cfqg_print_rwstat,
1551	},
1552	{
1553		.name = "io_queued",
1554		.private = offsetof(struct cfq_group, stats.queued),
1555		.read_seq_string = cfqg_print_rwstat,
1556	},
1557#ifdef CONFIG_DEBUG_BLK_CGROUP
1558	{
1559		.name = "avg_queue_size",
1560		.read_seq_string = cfqg_print_avg_queue_size,
1561	},
1562	{
1563		.name = "group_wait_time",
1564		.private = offsetof(struct cfq_group, stats.group_wait_time),
1565		.read_seq_string = cfqg_print_stat,
1566	},
1567	{
1568		.name = "idle_time",
1569		.private = offsetof(struct cfq_group, stats.idle_time),
1570		.read_seq_string = cfqg_print_stat,
1571	},
1572	{
1573		.name = "empty_time",
1574		.private = offsetof(struct cfq_group, stats.empty_time),
1575		.read_seq_string = cfqg_print_stat,
1576	},
1577	{
1578		.name = "dequeue",
1579		.private = offsetof(struct cfq_group, stats.dequeue),
1580		.read_seq_string = cfqg_print_stat,
1581	},
1582	{
1583		.name = "unaccounted_time",
1584		.private = offsetof(struct cfq_group, stats.unaccounted_time),
1585		.read_seq_string = cfqg_print_stat,
1586	},
1587#endif	/* CONFIG_DEBUG_BLK_CGROUP */
1588	{ }	/* terminate */
1589};
1590#else /* GROUP_IOSCHED */
1591static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1592						struct blkcg *blkcg)
1593{
1594	return cfqd->root_group;
1595}
1596
1597static inline void
1598cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1599	cfqq->cfqg = cfqg;
1600}
1601
1602#endif /* GROUP_IOSCHED */
1603
1604/*
1605 * The cfqd->service_trees holds all pending cfq_queue's that have
1606 * requests waiting to be processed. It is sorted in the order that
1607 * we will service the queues.
1608 */
1609static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1610				 bool add_front)
1611{
1612	struct rb_node **p, *parent;
1613	struct cfq_queue *__cfqq;
1614	unsigned long rb_key;
1615	struct cfq_rb_root *service_tree;
1616	int left;
1617	int new_cfqq = 1;
1618
1619	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1620						cfqq_type(cfqq));
1621	if (cfq_class_idle(cfqq)) {
1622		rb_key = CFQ_IDLE_DELAY;
1623		parent = rb_last(&service_tree->rb);
1624		if (parent && parent != &cfqq->rb_node) {
1625			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1626			rb_key += __cfqq->rb_key;
1627		} else
1628			rb_key += jiffies;
1629	} else if (!add_front) {
1630		/*
1631		 * Get our rb key offset. Subtract any residual slice
1632		 * value carried from last service. A negative resid
1633		 * count indicates slice overrun, and this should position
1634		 * the next service time further away in the tree.
1635		 */
1636		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1637		rb_key -= cfqq->slice_resid;
1638		cfqq->slice_resid = 0;
1639	} else {
1640		rb_key = -HZ;
1641		__cfqq = cfq_rb_first(service_tree);
1642		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1643	}
1644
1645	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1646		new_cfqq = 0;
1647		/*
1648		 * same position, nothing more to do
1649		 */
1650		if (rb_key == cfqq->rb_key &&
1651		    cfqq->service_tree == service_tree)
1652			return;
1653
1654		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1655		cfqq->service_tree = NULL;
1656	}
1657
1658	left = 1;
1659	parent = NULL;
1660	cfqq->service_tree = service_tree;
1661	p = &service_tree->rb.rb_node;
1662	while (*p) {
1663		struct rb_node **n;
1664
1665		parent = *p;
1666		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1667
1668		/*
1669		 * sort by key, that represents service time.
1670		 */
1671		if (time_before(rb_key, __cfqq->rb_key))
1672			n = &(*p)->rb_left;
1673		else {
1674			n = &(*p)->rb_right;
1675			left = 0;
1676		}
1677
1678		p = n;
1679	}
1680
1681	if (left)
1682		service_tree->left = &cfqq->rb_node;
1683
1684	cfqq->rb_key = rb_key;
1685	rb_link_node(&cfqq->rb_node, parent, p);
1686	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1687	service_tree->count++;
1688	if (add_front || !new_cfqq)
1689		return;
1690	cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1691}
1692
1693static struct cfq_queue *
1694cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1695		     sector_t sector, struct rb_node **ret_parent,
1696		     struct rb_node ***rb_link)
1697{
1698	struct rb_node **p, *parent;
1699	struct cfq_queue *cfqq = NULL;
1700
1701	parent = NULL;
1702	p = &root->rb_node;
1703	while (*p) {
1704		struct rb_node **n;
1705
1706		parent = *p;
1707		cfqq = rb_entry(parent, struct cfq_queue, p_node);
1708
1709		/*
1710		 * Sort strictly based on sector.  Smallest to the left,
1711		 * largest to the right.
1712		 */
1713		if (sector > blk_rq_pos(cfqq->next_rq))
1714			n = &(*p)->rb_right;
1715		else if (sector < blk_rq_pos(cfqq->next_rq))
1716			n = &(*p)->rb_left;
1717		else
1718			break;
1719		p = n;
1720		cfqq = NULL;
1721	}
1722
1723	*ret_parent = parent;
1724	if (rb_link)
1725		*rb_link = p;
1726	return cfqq;
1727}
1728
1729static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1730{
1731	struct rb_node **p, *parent;
1732	struct cfq_queue *__cfqq;
1733
1734	if (cfqq->p_root) {
1735		rb_erase(&cfqq->p_node, cfqq->p_root);
1736		cfqq->p_root = NULL;
1737	}
1738
1739	if (cfq_class_idle(cfqq))
1740		return;
1741	if (!cfqq->next_rq)
1742		return;
1743
1744	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1745	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1746				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1747	if (!__cfqq) {
1748		rb_link_node(&cfqq->p_node, parent, p);
1749		rb_insert_color(&cfqq->p_node, cfqq->p_root);
1750	} else
1751		cfqq->p_root = NULL;
1752}
1753
1754/*
1755 * Update cfqq's position in the service tree.
1756 */
1757static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1758{
1759	/*
1760	 * Resorting requires the cfqq to be on the RR list already.
1761	 */
1762	if (cfq_cfqq_on_rr(cfqq)) {
1763		cfq_service_tree_add(cfqd, cfqq, 0);
1764		cfq_prio_tree_add(cfqd, cfqq);
1765	}
1766}
1767
1768/*
1769 * add to busy list of queues for service, trying to be fair in ordering
1770 * the pending list according to last request service
1771 */
1772static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1773{
1774	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1775	BUG_ON(cfq_cfqq_on_rr(cfqq));
1776	cfq_mark_cfqq_on_rr(cfqq);
1777	cfqd->busy_queues++;
1778	if (cfq_cfqq_sync(cfqq))
1779		cfqd->busy_sync_queues++;
1780
1781	cfq_resort_rr_list(cfqd, cfqq);
1782}
1783
1784/*
1785 * Called when the cfqq no longer has requests pending, remove it from
1786 * the service tree.
1787 */
1788static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1789{
1790	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1791	BUG_ON(!cfq_cfqq_on_rr(cfqq));
1792	cfq_clear_cfqq_on_rr(cfqq);
1793
1794	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1795		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1796		cfqq->service_tree = NULL;
1797	}
1798	if (cfqq->p_root) {
1799		rb_erase(&cfqq->p_node, cfqq->p_root);
1800		cfqq->p_root = NULL;
1801	}
1802
1803	cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1804	BUG_ON(!cfqd->busy_queues);
1805	cfqd->busy_queues--;
1806	if (cfq_cfqq_sync(cfqq))
1807		cfqd->busy_sync_queues--;
1808}
1809
1810/*
1811 * rb tree support functions
1812 */
1813static void cfq_del_rq_rb(struct request *rq)
1814{
1815	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1816	const int sync = rq_is_sync(rq);
1817
1818	BUG_ON(!cfqq->queued[sync]);
1819	cfqq->queued[sync]--;
1820
1821	elv_rb_del(&cfqq->sort_list, rq);
1822
1823	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1824		/*
1825		 * Queue will be deleted from service tree when we actually
1826		 * expire it later. Right now just remove it from prio tree
1827		 * as it is empty.
1828		 */
1829		if (cfqq->p_root) {
1830			rb_erase(&cfqq->p_node, cfqq->p_root);
1831			cfqq->p_root = NULL;
1832		}
1833	}
1834}
1835
1836static void cfq_add_rq_rb(struct request *rq)
1837{
1838	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1839	struct cfq_data *cfqd = cfqq->cfqd;
1840	struct request *prev;
1841
1842	cfqq->queued[rq_is_sync(rq)]++;
1843
1844	elv_rb_add(&cfqq->sort_list, rq);
1845
1846	if (!cfq_cfqq_on_rr(cfqq))
1847		cfq_add_cfqq_rr(cfqd, cfqq);
1848
1849	/*
1850	 * check if this request is a better next-serve candidate
1851	 */
1852	prev = cfqq->next_rq;
1853	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1854
1855	/*
1856	 * adjust priority tree position, if ->next_rq changes
1857	 */
1858	if (prev != cfqq->next_rq)
1859		cfq_prio_tree_add(cfqd, cfqq);
1860
1861	BUG_ON(!cfqq->next_rq);
1862}
1863
1864static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1865{
1866	elv_rb_del(&cfqq->sort_list, rq);
1867	cfqq->queued[rq_is_sync(rq)]--;
1868	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
1869	cfq_add_rq_rb(rq);
1870	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
1871				 rq->cmd_flags);
1872}
1873
1874static struct request *
1875cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1876{
1877	struct task_struct *tsk = current;
1878	struct cfq_io_cq *cic;
1879	struct cfq_queue *cfqq;
1880
1881	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1882	if (!cic)
1883		return NULL;
1884
1885	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1886	if (cfqq) {
1887		sector_t sector = bio->bi_sector + bio_sectors(bio);
1888
1889		return elv_rb_find(&cfqq->sort_list, sector);
1890	}
1891
1892	return NULL;
1893}
1894
1895static void cfq_activate_request(struct request_queue *q, struct request *rq)
1896{
1897	struct cfq_data *cfqd = q->elevator->elevator_data;
1898
1899	cfqd->rq_in_driver++;
1900	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1901						cfqd->rq_in_driver);
1902
1903	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1904}
1905
1906static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1907{
1908	struct cfq_data *cfqd = q->elevator->elevator_data;
1909
1910	WARN_ON(!cfqd->rq_in_driver);
1911	cfqd->rq_in_driver--;
1912	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1913						cfqd->rq_in_driver);
1914}
1915
1916static void cfq_remove_request(struct request *rq)
1917{
1918	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1919
1920	if (cfqq->next_rq == rq)
1921		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1922
1923	list_del_init(&rq->queuelist);
1924	cfq_del_rq_rb(rq);
1925
1926	cfqq->cfqd->rq_queued--;
1927	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
1928	if (rq->cmd_flags & REQ_PRIO) {
1929		WARN_ON(!cfqq->prio_pending);
1930		cfqq->prio_pending--;
1931	}
1932}
1933
1934static int cfq_merge(struct request_queue *q, struct request **req,
1935		     struct bio *bio)
1936{
1937	struct cfq_data *cfqd = q->elevator->elevator_data;
1938	struct request *__rq;
1939
1940	__rq = cfq_find_rq_fmerge(cfqd, bio);
1941	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1942		*req = __rq;
1943		return ELEVATOR_FRONT_MERGE;
1944	}
1945
1946	return ELEVATOR_NO_MERGE;
1947}
1948
1949static void cfq_merged_request(struct request_queue *q, struct request *req,
1950			       int type)
1951{
1952	if (type == ELEVATOR_FRONT_MERGE) {
1953		struct cfq_queue *cfqq = RQ_CFQQ(req);
1954
1955		cfq_reposition_rq_rb(cfqq, req);
1956	}
1957}
1958
1959static void cfq_bio_merged(struct request_queue *q, struct request *req,
1960				struct bio *bio)
1961{
1962	cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
1963}
1964
1965static void
1966cfq_merged_requests(struct request_queue *q, struct request *rq,
1967		    struct request *next)
1968{
1969	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1970	struct cfq_data *cfqd = q->elevator->elevator_data;
1971
1972	/*
1973	 * reposition in fifo if next is older than rq
1974	 */
1975	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1976	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1977		list_move(&rq->queuelist, &next->queuelist);
1978		rq_set_fifo_time(rq, rq_fifo_time(next));
1979	}
1980
1981	if (cfqq->next_rq == next)
1982		cfqq->next_rq = rq;
1983	cfq_remove_request(next);
1984	cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
1985
1986	cfqq = RQ_CFQQ(next);
1987	/*
1988	 * all requests of this queue are merged to other queues, delete it
1989	 * from the service tree. If it's the active_queue,
1990	 * cfq_dispatch_requests() will choose to expire it or do idle
1991	 */
1992	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
1993	    cfqq != cfqd->active_queue)
1994		cfq_del_cfqq_rr(cfqd, cfqq);
1995}
1996
1997static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1998			   struct bio *bio)
1999{
2000	struct cfq_data *cfqd = q->elevator->elevator_data;
2001	struct cfq_io_cq *cic;
2002	struct cfq_queue *cfqq;
2003
2004	/*
2005	 * Disallow merge of a sync bio into an async request.
2006	 */
2007	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2008		return false;
2009
2010	/*
2011	 * Lookup the cfqq that this bio will be queued with and allow
2012	 * merge only if rq is queued there.
2013	 */
2014	cic = cfq_cic_lookup(cfqd, current->io_context);
2015	if (!cic)
2016		return false;
2017
2018	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2019	return cfqq == RQ_CFQQ(rq);
2020}
2021
2022static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2023{
2024	del_timer(&cfqd->idle_slice_timer);
2025	cfqg_stats_update_idle_time(cfqq->cfqg);
2026}
2027
2028static void __cfq_set_active_queue(struct cfq_data *cfqd,
2029				   struct cfq_queue *cfqq)
2030{
2031	if (cfqq) {
2032		cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
2033				cfqd->serving_prio, cfqd->serving_type);
2034		cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2035		cfqq->slice_start = 0;
2036		cfqq->dispatch_start = jiffies;
2037		cfqq->allocated_slice = 0;
2038		cfqq->slice_end = 0;
2039		cfqq->slice_dispatch = 0;
2040		cfqq->nr_sectors = 0;
2041
2042		cfq_clear_cfqq_wait_request(cfqq);
2043		cfq_clear_cfqq_must_dispatch(cfqq);
2044		cfq_clear_cfqq_must_alloc_slice(cfqq);
2045		cfq_clear_cfqq_fifo_expire(cfqq);
2046		cfq_mark_cfqq_slice_new(cfqq);
2047
2048		cfq_del_timer(cfqd, cfqq);
2049	}
2050
2051	cfqd->active_queue = cfqq;
2052}
2053
2054/*
2055 * current cfqq expired its slice (or was too idle), select new one
2056 */
2057static void
2058__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2059		    bool timed_out)
2060{
2061	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2062
2063	if (cfq_cfqq_wait_request(cfqq))
2064		cfq_del_timer(cfqd, cfqq);
2065
2066	cfq_clear_cfqq_wait_request(cfqq);
2067	cfq_clear_cfqq_wait_busy(cfqq);
2068
2069	/*
2070	 * If this cfqq is shared between multiple processes, check to
2071	 * make sure that those processes are still issuing I/Os within
2072	 * the mean seek distance.  If not, it may be time to break the
2073	 * queues apart again.
2074	 */
2075	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2076		cfq_mark_cfqq_split_coop(cfqq);
2077
2078	/*
2079	 * store what was left of this slice, if the queue idled/timed out
2080	 */
2081	if (timed_out) {
2082		if (cfq_cfqq_slice_new(cfqq))
2083			cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2084		else
2085			cfqq->slice_resid = cfqq->slice_end - jiffies;
2086		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2087	}
2088
2089	cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2090
2091	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2092		cfq_del_cfqq_rr(cfqd, cfqq);
2093
2094	cfq_resort_rr_list(cfqd, cfqq);
2095
2096	if (cfqq == cfqd->active_queue)
2097		cfqd->active_queue = NULL;
2098
2099	if (cfqd->active_cic) {
2100		put_io_context(cfqd->active_cic->icq.ioc);
2101		cfqd->active_cic = NULL;
2102	}
2103}
2104
2105static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2106{
2107	struct cfq_queue *cfqq = cfqd->active_queue;
2108
2109	if (cfqq)
2110		__cfq_slice_expired(cfqd, cfqq, timed_out);
2111}
2112
2113/*
2114 * Get next queue for service. Unless we have a queue preemption,
2115 * we'll simply select the first cfqq in the service tree.
2116 */
2117static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2118{
2119	struct cfq_rb_root *service_tree =
2120		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
2121					cfqd->serving_type);
2122
2123	if (!cfqd->rq_queued)
2124		return NULL;
2125
2126	/* There is nothing to dispatch */
2127	if (!service_tree)
2128		return NULL;
2129	if (RB_EMPTY_ROOT(&service_tree->rb))
2130		return NULL;
2131	return cfq_rb_first(service_tree);
2132}
2133
2134static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2135{
2136	struct cfq_group *cfqg;
2137	struct cfq_queue *cfqq;
2138	int i, j;
2139	struct cfq_rb_root *st;
2140
2141	if (!cfqd->rq_queued)
2142		return NULL;
2143
2144	cfqg = cfq_get_next_cfqg(cfqd);
2145	if (!cfqg)
2146		return NULL;
2147
2148	for_each_cfqg_st(cfqg, i, j, st)
2149		if ((cfqq = cfq_rb_first(st)) != NULL)
2150			return cfqq;
2151	return NULL;
2152}
2153
2154/*
2155 * Get and set a new active queue for service.
2156 */
2157static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2158					      struct cfq_queue *cfqq)
2159{
2160	if (!cfqq)
2161		cfqq = cfq_get_next_queue(cfqd);
2162
2163	__cfq_set_active_queue(cfqd, cfqq);
2164	return cfqq;
2165}
2166
2167static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2168					  struct request *rq)
2169{
2170	if (blk_rq_pos(rq) >= cfqd->last_position)
2171		return blk_rq_pos(rq) - cfqd->last_position;
2172	else
2173		return cfqd->last_position - blk_rq_pos(rq);
2174}
2175
2176static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2177			       struct request *rq)
2178{
2179	return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2180}
2181
2182static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2183				    struct cfq_queue *cur_cfqq)
2184{
2185	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2186	struct rb_node *parent, *node;
2187	struct cfq_queue *__cfqq;
2188	sector_t sector = cfqd->last_position;
2189
2190	if (RB_EMPTY_ROOT(root))
2191		return NULL;
2192
2193	/*
2194	 * First, if we find a request starting at the end of the last
2195	 * request, choose it.
2196	 */
2197	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2198	if (__cfqq)
2199		return __cfqq;
2200
2201	/*
2202	 * If the exact sector wasn't found, the parent of the NULL leaf
2203	 * will contain the closest sector.
2204	 */
2205	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
2206	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2207		return __cfqq;
2208
2209	if (blk_rq_pos(__cfqq->next_rq) < sector)
2210		node = rb_next(&__cfqq->p_node);
2211	else
2212		node = rb_prev(&__cfqq->p_node);
2213	if (!node)
2214		return NULL;
2215
2216	__cfqq = rb_entry(node, struct cfq_queue, p_node);
2217	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2218		return __cfqq;
2219
2220	return NULL;
2221}
2222
2223/*
2224 * cfqd - obvious
2225 * cur_cfqq - passed in so that we don't decide that the current queue is
2226 * 	      closely cooperating with itself.
2227 *
2228 * So, basically we're assuming that that cur_cfqq has dispatched at least
2229 * one request, and that cfqd->last_position reflects a position on the disk
2230 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
2231 * assumption.
2232 */
2233static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2234					      struct cfq_queue *cur_cfqq)
2235{
2236	struct cfq_queue *cfqq;
2237
2238	if (cfq_class_idle(cur_cfqq))
2239		return NULL;
2240	if (!cfq_cfqq_sync(cur_cfqq))
2241		return NULL;
2242	if (CFQQ_SEEKY(cur_cfqq))
2243		return NULL;
2244
2245	/*
2246	 * Don't search priority tree if it's the only queue in the group.
2247	 */
2248	if (cur_cfqq->cfqg->nr_cfqq == 1)
2249		return NULL;
2250
2251	/*
2252	 * We should notice if some of the queues are cooperating, eg
2253	 * working closely on the same area of the disk. In that case,
2254	 * we can group them together and don't waste time idling.
2255	 */
2256	cfqq = cfqq_close(cfqd, cur_cfqq);
2257	if (!cfqq)
2258		return NULL;
2259
2260	/* If new queue belongs to different cfq_group, don't choose it */
2261	if (cur_cfqq->cfqg != cfqq->cfqg)
2262		return NULL;
2263
2264	/*
2265	 * It only makes sense to merge sync queues.
2266	 */
2267	if (!cfq_cfqq_sync(cfqq))
2268		return NULL;
2269	if (CFQQ_SEEKY(cfqq))
2270		return NULL;
2271
2272	/*
2273	 * Do not merge queues of different priority classes
2274	 */
2275	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2276		return NULL;
2277
2278	return cfqq;
2279}
2280
2281/*
2282 * Determine whether we should enforce idle window for this queue.
2283 */
2284
2285static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2286{
2287	enum wl_prio_t prio = cfqq_prio(cfqq);
2288	struct cfq_rb_root *service_tree = cfqq->service_tree;
2289
2290	BUG_ON(!service_tree);
2291	BUG_ON(!service_tree->count);
2292
2293	if (!cfqd->cfq_slice_idle)
2294		return false;
2295
2296	/* We never do for idle class queues. */
2297	if (prio == IDLE_WORKLOAD)
2298		return false;
2299
2300	/* We do for queues that were marked with idle window flag. */
2301	if (cfq_cfqq_idle_window(cfqq) &&
2302	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2303		return true;
2304
2305	/*
2306	 * Otherwise, we do only if they are the last ones
2307	 * in their service tree.
2308	 */
2309	if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
2310	   !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
2311		return true;
2312	cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
2313			service_tree->count);
2314	return false;
2315}
2316
2317static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2318{
2319	struct cfq_queue *cfqq = cfqd->active_queue;
2320	struct cfq_io_cq *cic;
2321	unsigned long sl, group_idle = 0;
2322
2323	/*
2324	 * SSD device without seek penalty, disable idling. But only do so
2325	 * for devices that support queuing, otherwise we still have a problem
2326	 * with sync vs async workloads.
2327	 */
2328	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2329		return;
2330
2331	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2332	WARN_ON(cfq_cfqq_slice_new(cfqq));
2333
2334	/*
2335	 * idle is disabled, either manually or by past process history
2336	 */
2337	if (!cfq_should_idle(cfqd, cfqq)) {
2338		/* no queue idling. Check for group idling */
2339		if (cfqd->cfq_group_idle)
2340			group_idle = cfqd->cfq_group_idle;
2341		else
2342			return;
2343	}
2344
2345	/*
2346	 * still active requests from this queue, don't idle
2347	 */
2348	if (cfqq->dispatched)
2349		return;
2350
2351	/*
2352	 * task has exited, don't wait
2353	 */
2354	cic = cfqd->active_cic;
2355	if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2356		return;
2357
2358	/*
2359	 * If our average think time is larger than the remaining time
2360	 * slice, then don't idle. This avoids overrunning the allotted
2361	 * time slice.
2362	 */
2363	if (sample_valid(cic->ttime.ttime_samples) &&
2364	    (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2365		cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2366			     cic->ttime.ttime_mean);
2367		return;
2368	}
2369
2370	/* There are other queues in the group, don't do group idle */
2371	if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2372		return;
2373
2374	cfq_mark_cfqq_wait_request(cfqq);
2375
2376	if (group_idle)
2377		sl = cfqd->cfq_group_idle;
2378	else
2379		sl = cfqd->cfq_slice_idle;
2380
2381	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2382	cfqg_stats_set_start_idle_time(cfqq->cfqg);
2383	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2384			group_idle ? 1 : 0);
2385}
2386
2387/*
2388 * Move request from internal lists to the request queue dispatch list.
2389 */
2390static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2391{
2392	struct cfq_data *cfqd = q->elevator->elevator_data;
2393	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2394
2395	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2396
2397	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2398	cfq_remove_request(rq);
2399	cfqq->dispatched++;
2400	(RQ_CFQG(rq))->dispatched++;
2401	elv_dispatch_sort(q, rq);
2402
2403	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2404	cfqq->nr_sectors += blk_rq_sectors(rq);
2405	cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2406}
2407
2408/*
2409 * return expired entry, or NULL to just start from scratch in rbtree
2410 */
2411static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2412{
2413	struct request *rq = NULL;
2414
2415	if (cfq_cfqq_fifo_expire(cfqq))
2416		return NULL;
2417
2418	cfq_mark_cfqq_fifo_expire(cfqq);
2419
2420	if (list_empty(&cfqq->fifo))
2421		return NULL;
2422
2423	rq = rq_entry_fifo(cfqq->fifo.next);
2424	if (time_before(jiffies, rq_fifo_time(rq)))
2425		rq = NULL;
2426
2427	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2428	return rq;
2429}
2430
2431static inline int
2432cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2433{
2434	const int base_rq = cfqd->cfq_slice_async_rq;
2435
2436	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2437
2438	return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2439}
2440
2441/*
2442 * Must be called with the queue_lock held.
2443 */
2444static int cfqq_process_refs(struct cfq_queue *cfqq)
2445{
2446	int process_refs, io_refs;
2447
2448	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2449	process_refs = cfqq->ref - io_refs;
2450	BUG_ON(process_refs < 0);
2451	return process_refs;
2452}
2453
2454static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2455{
2456	int process_refs, new_process_refs;
2457	struct cfq_queue *__cfqq;
2458
2459	/*
2460	 * If there are no process references on the new_cfqq, then it is
2461	 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2462	 * chain may have dropped their last reference (not just their
2463	 * last process reference).
2464	 */
2465	if (!cfqq_process_refs(new_cfqq))
2466		return;
2467
2468	/* Avoid a circular list and skip interim queue merges */
2469	while ((__cfqq = new_cfqq->new_cfqq)) {
2470		if (__cfqq == cfqq)
2471			return;
2472		new_cfqq = __cfqq;
2473	}
2474
2475	process_refs = cfqq_process_refs(cfqq);
2476	new_process_refs = cfqq_process_refs(new_cfqq);
2477	/*
2478	 * If the process for the cfqq has gone away, there is no
2479	 * sense in merging the queues.
2480	 */
2481	if (process_refs == 0 || new_process_refs == 0)
2482		return;
2483
2484	/*
2485	 * Merge in the direction of the lesser amount of work.
2486	 */
2487	if (new_process_refs >= process_refs) {
2488		cfqq->new_cfqq = new_cfqq;
2489		new_cfqq->ref += process_refs;
2490	} else {
2491		new_cfqq->new_cfqq = cfqq;
2492		cfqq->ref += new_process_refs;
2493	}
2494}
2495
2496static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2497				struct cfq_group *cfqg, enum wl_prio_t prio)
2498{
2499	struct cfq_queue *queue;
2500	int i;
2501	bool key_valid = false;
2502	unsigned long lowest_key = 0;
2503	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2504
2505	for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2506		/* select the one with lowest rb_key */
2507		queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2508		if (queue &&
2509		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
2510			lowest_key = queue->rb_key;
2511			cur_best = i;
2512			key_valid = true;
2513		}
2514	}
2515
2516	return cur_best;
2517}
2518
2519static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2520{
2521	unsigned slice;
2522	unsigned count;
2523	struct cfq_rb_root *st;
2524	unsigned group_slice;
2525	enum wl_prio_t original_prio = cfqd->serving_prio;
2526
2527	/* Choose next priority. RT > BE > IDLE */
2528	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2529		cfqd->serving_prio = RT_WORKLOAD;
2530	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2531		cfqd->serving_prio = BE_WORKLOAD;
2532	else {
2533		cfqd->serving_prio = IDLE_WORKLOAD;
2534		cfqd->workload_expires = jiffies + 1;
2535		return;
2536	}
2537
2538	if (original_prio != cfqd->serving_prio)
2539		goto new_workload;
2540
2541	/*
2542	 * For RT and BE, we have to choose also the type
2543	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2544	 * expiration time
2545	 */
2546	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2547	count = st->count;
2548
2549	/*
2550	 * check workload expiration, and that we still have other queues ready
2551	 */
2552	if (count && !time_after(jiffies, cfqd->workload_expires))
2553		return;
2554
2555new_workload:
2556	/* otherwise select new workload type */
2557	cfqd->serving_type =
2558		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2559	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2560	count = st->count;
2561
2562	/*
2563	 * the workload slice is computed as a fraction of target latency
2564	 * proportional to the number of queues in that workload, over
2565	 * all the queues in the same priority class
2566	 */
2567	group_slice = cfq_group_slice(cfqd, cfqg);
2568
2569	slice = group_slice * count /
2570		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2571		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2572
2573	if (cfqd->serving_type == ASYNC_WORKLOAD) {
2574		unsigned int tmp;
2575
2576		/*
2577		 * Async queues are currently system wide. Just taking
2578		 * proportion of queues with-in same group will lead to higher
2579		 * async ratio system wide as generally root group is going
2580		 * to have higher weight. A more accurate thing would be to
2581		 * calculate system wide asnc/sync ratio.
2582		 */
2583		tmp = cfqd->cfq_target_latency *
2584			cfqg_busy_async_queues(cfqd, cfqg);
2585		tmp = tmp/cfqd->busy_queues;
2586		slice = min_t(unsigned, slice, tmp);
2587
2588		/* async workload slice is scaled down according to
2589		 * the sync/async slice ratio. */
2590		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2591	} else
2592		/* sync workload slice is at least 2 * cfq_slice_idle */
2593		slice = max(slice, 2 * cfqd->cfq_slice_idle);
2594
2595	slice = max_t(unsigned, slice, CFQ_MIN_TT);
2596	cfq_log(cfqd, "workload slice:%d", slice);
2597	cfqd->workload_expires = jiffies + slice;
2598}
2599
2600static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2601{
2602	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2603	struct cfq_group *cfqg;
2604
2605	if (RB_EMPTY_ROOT(&st->rb))
2606		return NULL;
2607	cfqg = cfq_rb_first_group(st);
2608	update_min_vdisktime(st);
2609	return cfqg;
2610}
2611
2612static void cfq_choose_cfqg(struct cfq_data *cfqd)
2613{
2614	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2615
2616	cfqd->serving_group = cfqg;
2617
2618	/* Restore the workload type data */
2619	if (cfqg->saved_workload_slice) {
2620		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2621		cfqd->serving_type = cfqg->saved_workload;
2622		cfqd->serving_prio = cfqg->saved_serving_prio;
2623	} else
2624		cfqd->workload_expires = jiffies - 1;
2625
2626	choose_service_tree(cfqd, cfqg);
2627}
2628
2629/*
2630 * Select a queue for service. If we have a current active queue,
2631 * check whether to continue servicing it, or retrieve and set a new one.
2632 */
2633static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2634{
2635	struct cfq_queue *cfqq, *new_cfqq = NULL;
2636
2637	cfqq = cfqd->active_queue;
2638	if (!cfqq)
2639		goto new_queue;
2640
2641	if (!cfqd->rq_queued)
2642		return NULL;
2643
2644	/*
2645	 * We were waiting for group to get backlogged. Expire the queue
2646	 */
2647	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2648		goto expire;
2649
2650	/*
2651	 * The active queue has run out of time, expire it and select new.
2652	 */
2653	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2654		/*
2655		 * If slice had not expired at the completion of last request
2656		 * we might not have turned on wait_busy flag. Don't expire
2657		 * the queue yet. Allow the group to get backlogged.
2658		 *
2659		 * The very fact that we have used the slice, that means we
2660		 * have been idling all along on this queue and it should be
2661		 * ok to wait for this request to complete.
2662		 */
2663		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2664		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2665			cfqq = NULL;
2666			goto keep_queue;
2667		} else
2668			goto check_group_idle;
2669	}
2670
2671	/*
2672	 * The active queue has requests and isn't expired, allow it to
2673	 * dispatch.
2674	 */
2675	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2676		goto keep_queue;
2677
2678	/*
2679	 * If another queue has a request waiting within our mean seek
2680	 * distance, let it run.  The expire code will check for close
2681	 * cooperators and put the close queue at the front of the service
2682	 * tree.  If possible, merge the expiring queue with the new cfqq.
2683	 */
2684	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2685	if (new_cfqq) {
2686		if (!cfqq->new_cfqq)
2687			cfq_setup_merge(cfqq, new_cfqq);
2688		goto expire;
2689	}
2690
2691	/*
2692	 * No requests pending. If the active queue still has requests in
2693	 * flight or is idling for a new request, allow either of these
2694	 * conditions to happen (or time out) before selecting a new queue.
2695	 */
2696	if (timer_pending(&cfqd->idle_slice_timer)) {
2697		cfqq = NULL;
2698		goto keep_queue;
2699	}
2700
2701	/*
2702	 * This is a deep seek queue, but the device is much faster than
2703	 * the queue can deliver, don't idle
2704	 **/
2705	if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2706	    (cfq_cfqq_slice_new(cfqq) ||
2707	    (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2708		cfq_clear_cfqq_deep(cfqq);
2709		cfq_clear_cfqq_idle_window(cfqq);
2710	}
2711
2712	if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2713		cfqq = NULL;
2714		goto keep_queue;
2715	}
2716
2717	/*
2718	 * If group idle is enabled and there are requests dispatched from
2719	 * this group, wait for requests to complete.
2720	 */
2721check_group_idle:
2722	if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2723	    cfqq->cfqg->dispatched &&
2724	    !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2725		cfqq = NULL;
2726		goto keep_queue;
2727	}
2728
2729expire:
2730	cfq_slice_expired(cfqd, 0);
2731new_queue:
2732	/*
2733	 * Current queue expired. Check if we have to switch to a new
2734	 * service tree
2735	 */
2736	if (!new_cfqq)
2737		cfq_choose_cfqg(cfqd);
2738
2739	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2740keep_queue:
2741	return cfqq;
2742}
2743
2744static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2745{
2746	int dispatched = 0;
2747
2748	while (cfqq->next_rq) {
2749		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2750		dispatched++;
2751	}
2752
2753	BUG_ON(!list_empty(&cfqq->fifo));
2754
2755	/* By default cfqq is not expired if it is empty. Do it explicitly */
2756	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2757	return dispatched;
2758}
2759
2760/*
2761 * Drain our current requests. Used for barriers and when switching
2762 * io schedulers on-the-fly.
2763 */
2764static int cfq_forced_dispatch(struct cfq_data *cfqd)
2765{
2766	struct cfq_queue *cfqq;
2767	int dispatched = 0;
2768
2769	/* Expire the timeslice of the current active queue first */
2770	cfq_slice_expired(cfqd, 0);
2771	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2772		__cfq_set_active_queue(cfqd, cfqq);
2773		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2774	}
2775
2776	BUG_ON(cfqd->busy_queues);
2777
2778	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2779	return dispatched;
2780}
2781
2782static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2783	struct cfq_queue *cfqq)
2784{
2785	/* the queue hasn't finished any request, can't estimate */
2786	if (cfq_cfqq_slice_new(cfqq))
2787		return true;
2788	if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2789		cfqq->slice_end))
2790		return true;
2791
2792	return false;
2793}
2794
2795static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2796{
2797	unsigned int max_dispatch;
2798
2799	/*
2800	 * Drain async requests before we start sync IO
2801	 */
2802	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2803		return false;
2804
2805	/*
2806	 * If this is an async queue and we have sync IO in flight, let it wait
2807	 */
2808	if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2809		return false;
2810
2811	max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2812	if (cfq_class_idle(cfqq))
2813		max_dispatch = 1;
2814
2815	/*
2816	 * Does this cfqq already have too much IO in flight?
2817	 */
2818	if (cfqq->dispatched >= max_dispatch) {
2819		bool promote_sync = false;
2820		/*
2821		 * idle queue must always only have a single IO in flight
2822		 */
2823		if (cfq_class_idle(cfqq))
2824			return false;
2825
2826		/*
2827		 * If there is only one sync queue
2828		 * we can ignore async queue here and give the sync
2829		 * queue no dispatch limit. The reason is a sync queue can
2830		 * preempt async queue, limiting the sync queue doesn't make
2831		 * sense. This is useful for aiostress test.
2832		 */
2833		if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2834			promote_sync = true;
2835
2836		/*
2837		 * We have other queues, don't allow more IO from this one
2838		 */
2839		if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2840				!promote_sync)
2841			return false;
2842
2843		/*
2844		 * Sole queue user, no limit
2845		 */
2846		if (cfqd->busy_queues == 1 || promote_sync)
2847			max_dispatch = -1;
2848		else
2849			/*
2850			 * Normally we start throttling cfqq when cfq_quantum/2
2851			 * requests have been dispatched. But we can drive
2852			 * deeper queue depths at the beginning of slice
2853			 * subjected to upper limit of cfq_quantum.
2854			 * */
2855			max_dispatch = cfqd->cfq_quantum;
2856	}
2857
2858	/*
2859	 * Async queues must wait a bit before being allowed dispatch.
2860	 * We also ramp up the dispatch depth gradually for async IO,
2861	 * based on the last sync IO we serviced
2862	 */
2863	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2864		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2865		unsigned int depth;
2866
2867		depth = last_sync / cfqd->cfq_slice[1];
2868		if (!depth && !cfqq->dispatched)
2869			depth = 1;
2870		if (depth < max_dispatch)
2871			max_dispatch = depth;
2872	}
2873
2874	/*
2875	 * If we're below the current max, allow a dispatch
2876	 */
2877	return cfqq->dispatched < max_dispatch;
2878}
2879
2880/*
2881 * Dispatch a request from cfqq, moving them to the request queue
2882 * dispatch list.
2883 */
2884static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2885{
2886	struct request *rq;
2887
2888	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2889
2890	if (!cfq_may_dispatch(cfqd, cfqq))
2891		return false;
2892
2893	/*
2894	 * follow expired path, else get first next available
2895	 */
2896	rq = cfq_check_fifo(cfqq);
2897	if (!rq)
2898		rq = cfqq->next_rq;
2899
2900	/*
2901	 * insert request into driver dispatch list
2902	 */
2903	cfq_dispatch_insert(cfqd->queue, rq);
2904
2905	if (!cfqd->active_cic) {
2906		struct cfq_io_cq *cic = RQ_CIC(rq);
2907
2908		atomic_long_inc(&cic->icq.ioc->refcount);
2909		cfqd->active_cic = cic;
2910	}
2911
2912	return true;
2913}
2914
2915/*
2916 * Find the cfqq that we need to service and move a request from that to the
2917 * dispatch list
2918 */
2919static int cfq_dispatch_requests(struct request_queue *q, int force)
2920{
2921	struct cfq_data *cfqd = q->elevator->elevator_data;
2922	struct cfq_queue *cfqq;
2923
2924	if (!cfqd->busy_queues)
2925		return 0;
2926
2927	if (unlikely(force))
2928		return cfq_forced_dispatch(cfqd);
2929
2930	cfqq = cfq_select_queue(cfqd);
2931	if (!cfqq)
2932		return 0;
2933
2934	/*
2935	 * Dispatch a request from this cfqq, if it is allowed
2936	 */
2937	if (!cfq_dispatch_request(cfqd, cfqq))
2938		return 0;
2939
2940	cfqq->slice_dispatch++;
2941	cfq_clear_cfqq_must_dispatch(cfqq);
2942
2943	/*
2944	 * expire an async queue immediately if it has used up its slice. idle
2945	 * queue always expire after 1 dispatch round.
2946	 */
2947	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2948	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2949	    cfq_class_idle(cfqq))) {
2950		cfqq->slice_end = jiffies + 1;
2951		cfq_slice_expired(cfqd, 0);
2952	}
2953
2954	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2955	return 1;
2956}
2957
2958/*
2959 * task holds one reference to the queue, dropped when task exits. each rq
2960 * in-flight on this queue also holds a reference, dropped when rq is freed.
2961 *
2962 * Each cfq queue took a reference on the parent group. Drop it now.
2963 * queue lock must be held here.
2964 */
2965static void cfq_put_queue(struct cfq_queue *cfqq)
2966{
2967	struct cfq_data *cfqd = cfqq->cfqd;
2968	struct cfq_group *cfqg;
2969
2970	BUG_ON(cfqq->ref <= 0);
2971
2972	cfqq->ref--;
2973	if (cfqq->ref)
2974		return;
2975
2976	cfq_log_cfqq(cfqd, cfqq, "put_queue");
2977	BUG_ON(rb_first(&cfqq->sort_list));
2978	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2979	cfqg = cfqq->cfqg;
2980
2981	if (unlikely(cfqd->active_queue == cfqq)) {
2982		__cfq_slice_expired(cfqd, cfqq, 0);
2983		cfq_schedule_dispatch(cfqd);
2984	}
2985
2986	BUG_ON(cfq_cfqq_on_rr(cfqq));
2987	kmem_cache_free(cfq_pool, cfqq);
2988	cfqg_put(cfqg);
2989}
2990
2991static void cfq_put_cooperator(struct cfq_queue *cfqq)
2992{
2993	struct cfq_queue *__cfqq, *next;
2994
2995	/*
2996	 * If this queue was scheduled to merge with another queue, be
2997	 * sure to drop the reference taken on that queue (and others in
2998	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2999	 */
3000	__cfqq = cfqq->new_cfqq;
3001	while (__cfqq) {
3002		if (__cfqq == cfqq) {
3003			WARN(1, "cfqq->new_cfqq loop detected\n");
3004			break;
3005		}
3006		next = __cfqq->new_cfqq;
3007		cfq_put_queue(__cfqq);
3008		__cfqq = next;
3009	}
3010}
3011
3012static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3013{
3014	if (unlikely(cfqq == cfqd->active_queue)) {
3015		__cfq_slice_expired(cfqd, cfqq, 0);
3016		cfq_schedule_dispatch(cfqd);
3017	}
3018
3019	cfq_put_cooperator(cfqq);
3020
3021	cfq_put_queue(cfqq);
3022}
3023
3024static void cfq_init_icq(struct io_cq *icq)
3025{
3026	struct cfq_io_cq *cic = icq_to_cic(icq);
3027
3028	cic->ttime.last_end_request = jiffies;
3029}
3030
3031static void cfq_exit_icq(struct io_cq *icq)
3032{
3033	struct cfq_io_cq *cic = icq_to_cic(icq);
3034	struct cfq_data *cfqd = cic_to_cfqd(cic);
3035
3036	if (cic->cfqq[BLK_RW_ASYNC]) {
3037		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
3038		cic->cfqq[BLK_RW_ASYNC] = NULL;
3039	}
3040
3041	if (cic->cfqq[BLK_RW_SYNC]) {
3042		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
3043		cic->cfqq[BLK_RW_SYNC] = NULL;
3044	}
3045}
3046
3047static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3048{
3049	struct task_struct *tsk = current;
3050	int ioprio_class;
3051
3052	if (!cfq_cfqq_prio_changed(cfqq))
3053		return;
3054
3055	ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3056	switch (ioprio_class) {
3057	default:
3058		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3059	case IOPRIO_CLASS_NONE:
3060		/*
3061		 * no prio set, inherit CPU scheduling settings
3062		 */
3063		cfqq->ioprio = task_nice_ioprio(tsk);
3064		cfqq->ioprio_class = task_nice_ioclass(tsk);
3065		break;
3066	case IOPRIO_CLASS_RT:
3067		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3068		cfqq->ioprio_class = IOPRIO_CLASS_RT;
3069		break;
3070	case IOPRIO_CLASS_BE:
3071		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3072		cfqq->ioprio_class = IOPRIO_CLASS_BE;
3073		break;
3074	case IOPRIO_CLASS_IDLE:
3075		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3076		cfqq->ioprio = 7;
3077		cfq_clear_cfqq_idle_window(cfqq);
3078		break;
3079	}
3080
3081	/*
3082	 * keep track of original prio settings in case we have to temporarily
3083	 * elevate the priority of this queue
3084	 */
3085	cfqq->org_ioprio = cfqq->ioprio;
3086	cfq_clear_cfqq_prio_changed(cfqq);
3087}
3088
3089static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3090{
3091	int ioprio = cic->icq.ioc->ioprio;
3092	struct cfq_data *cfqd = cic_to_cfqd(cic);
3093	struct cfq_queue *cfqq;
3094
3095	/*
3096	 * Check whether ioprio has changed.  The condition may trigger
3097	 * spuriously on a newly created cic but there's no harm.
3098	 */
3099	if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3100		return;
3101
3102	cfqq = cic->cfqq[BLK_RW_ASYNC];
3103	if (cfqq) {
3104		struct cfq_queue *new_cfqq;
3105		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
3106					 GFP_ATOMIC);
3107		if (new_cfqq) {
3108			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
3109			cfq_put_queue(cfqq);
3110		}
3111	}
3112
3113	cfqq = cic->cfqq[BLK_RW_SYNC];
3114	if (cfqq)
3115		cfq_mark_cfqq_prio_changed(cfqq);
3116
3117	cic->ioprio = ioprio;
3118}
3119
3120static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3121			  pid_t pid, bool is_sync)
3122{
3123	RB_CLEAR_NODE(&cfqq->rb_node);
3124	RB_CLEAR_NODE(&cfqq->p_node);
3125	INIT_LIST_HEAD(&cfqq->fifo);
3126
3127	cfqq->ref = 0;
3128	cfqq->cfqd = cfqd;
3129
3130	cfq_mark_cfqq_prio_changed(cfqq);
3131
3132	if (is_sync) {
3133		if (!cfq_class_idle(cfqq))
3134			cfq_mark_cfqq_idle_window(cfqq);
3135		cfq_mark_cfqq_sync(cfqq);
3136	}
3137	cfqq->pid = pid;
3138}
3139
3140#ifdef CONFIG_CFQ_GROUP_IOSCHED
3141static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3142{
3143	struct cfq_data *cfqd = cic_to_cfqd(cic);
3144	struct cfq_queue *sync_cfqq;
3145	uint64_t id;
3146
3147	rcu_read_lock();
3148	id = bio_blkcg(bio)->id;
3149	rcu_read_unlock();
3150
3151	/*
3152	 * Check whether blkcg has changed.  The condition may trigger
3153	 * spuriously on a newly created cic but there's no harm.
3154	 */
3155	if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
3156		return;
3157
3158	sync_cfqq = cic_to_cfqq(cic, 1);
3159	if (sync_cfqq) {
3160		/*
3161		 * Drop reference to sync queue. A new sync queue will be
3162		 * assigned in new group upon arrival of a fresh request.
3163		 */
3164		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3165		cic_set_cfqq(cic, NULL, 1);
3166		cfq_put_queue(sync_cfqq);
3167	}
3168
3169	cic->blkcg_id = id;
3170}
3171#else
3172static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3173#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
3174
3175static struct cfq_queue *
3176cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3177		     struct bio *bio, gfp_t gfp_mask)
3178{
3179	struct blkcg *blkcg;
3180	struct cfq_queue *cfqq, *new_cfqq = NULL;
3181	struct cfq_group *cfqg;
3182
3183retry:
3184	rcu_read_lock();
3185
3186	blkcg = bio_blkcg(bio);
3187	cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3188	cfqq = cic_to_cfqq(cic, is_sync);
3189
3190	/*
3191	 * Always try a new alloc if we fell back to the OOM cfqq
3192	 * originally, since it should just be a temporary situation.
3193	 */
3194	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3195		cfqq = NULL;
3196		if (new_cfqq) {
3197			cfqq = new_cfqq;
3198			new_cfqq = NULL;
3199		} else if (gfp_mask & __GFP_WAIT) {
3200			rcu_read_unlock();
3201			spin_unlock_irq(cfqd->queue->queue_lock);
3202			new_cfqq = kmem_cache_alloc_node(cfq_pool,
3203					gfp_mask | __GFP_ZERO,
3204					cfqd->queue->node);
3205			spin_lock_irq(cfqd->queue->queue_lock);
3206			if (new_cfqq)
3207				goto retry;
3208		} else {
3209			cfqq = kmem_cache_alloc_node(cfq_pool,
3210					gfp_mask | __GFP_ZERO,
3211					cfqd->queue->node);
3212		}
3213
3214		if (cfqq) {
3215			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3216			cfq_init_prio_data(cfqq, cic);
3217			cfq_link_cfqq_cfqg(cfqq, cfqg);
3218			cfq_log_cfqq(cfqd, cfqq, "alloced");
3219		} else
3220			cfqq = &cfqd->oom_cfqq;
3221	}
3222
3223	if (new_cfqq)
3224		kmem_cache_free(cfq_pool, new_cfqq);
3225
3226	rcu_read_unlock();
3227	return cfqq;
3228}
3229
3230static struct cfq_queue **
3231cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3232{
3233	switch (ioprio_class) {
3234	case IOPRIO_CLASS_RT:
3235		return &cfqd->async_cfqq[0][ioprio];
3236	case IOPRIO_CLASS_NONE:
3237		ioprio = IOPRIO_NORM;
3238		/* fall through */
3239	case IOPRIO_CLASS_BE:
3240		return &cfqd->async_cfqq[1][ioprio];
3241	case IOPRIO_CLASS_IDLE:
3242		return &cfqd->async_idle_cfqq;
3243	default:
3244		BUG();
3245	}
3246}
3247
3248static struct cfq_queue *
3249cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3250	      struct bio *bio, gfp_t gfp_mask)
3251{
3252	const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3253	const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3254	struct cfq_queue **async_cfqq = NULL;
3255	struct cfq_queue *cfqq = NULL;
3256
3257	if (!is_sync) {
3258		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3259		cfqq = *async_cfqq;
3260	}
3261
3262	if (!cfqq)
3263		cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
3264
3265	/*
3266	 * pin the queue now that it's allocated, scheduler exit will prune it
3267	 */
3268	if (!is_sync && !(*async_cfqq)) {
3269		cfqq->ref++;
3270		*async_cfqq = cfqq;
3271	}
3272
3273	cfqq->ref++;
3274	return cfqq;
3275}
3276
3277static void
3278__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3279{
3280	unsigned long elapsed = jiffies - ttime->last_end_request;
3281	elapsed = min(elapsed, 2UL * slice_idle);
3282
3283	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3284	ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3285	ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3286}
3287
3288static void
3289cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3290			struct cfq_io_cq *cic)
3291{
3292	if (cfq_cfqq_sync(cfqq)) {
3293		__cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3294		__cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3295			cfqd->cfq_slice_idle);
3296	}
3297#ifdef CONFIG_CFQ_GROUP_IOSCHED
3298	__cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3299#endif
3300}
3301
3302static void
3303cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3304		       struct request *rq)
3305{
3306	sector_t sdist = 0;
3307	sector_t n_sec = blk_rq_sectors(rq);
3308	if (cfqq->last_request_pos) {
3309		if (cfqq->last_request_pos < blk_rq_pos(rq))
3310			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3311		else
3312			sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3313	}
3314
3315	cfqq->seek_history <<= 1;
3316	if (blk_queue_nonrot(cfqd->queue))
3317		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3318	else
3319		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3320}
3321
3322/*
3323 * Disable idle window if the process thinks too long or seeks so much that
3324 * it doesn't matter
3325 */
3326static void
3327cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3328		       struct cfq_io_cq *cic)
3329{
3330	int old_idle, enable_idle;
3331
3332	/*
3333	 * Don't idle for async or idle io prio class
3334	 */
3335	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3336		return;
3337
3338	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3339
3340	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3341		cfq_mark_cfqq_deep(cfqq);
3342
3343	if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3344		enable_idle = 0;
3345	else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3346		 !cfqd->cfq_slice_idle ||
3347		 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3348		enable_idle = 0;
3349	else if (sample_valid(cic->ttime.ttime_samples)) {
3350		if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3351			enable_idle = 0;
3352		else
3353			enable_idle = 1;
3354	}
3355
3356	if (old_idle != enable_idle) {
3357		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3358		if (enable_idle)
3359			cfq_mark_cfqq_idle_window(cfqq);
3360		else
3361			cfq_clear_cfqq_idle_window(cfqq);
3362	}
3363}
3364
3365/*
3366 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3367 * no or if we aren't sure, a 1 will cause a preempt.
3368 */
3369static bool
3370cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3371		   struct request *rq)
3372{
3373	struct cfq_queue *cfqq;
3374
3375	cfqq = cfqd->active_queue;
3376	if (!cfqq)
3377		return false;
3378
3379	if (cfq_class_idle(new_cfqq))
3380		return false;
3381
3382	if (cfq_class_idle(cfqq))
3383		return true;
3384
3385	/*
3386	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3387	 */
3388	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3389		return false;
3390
3391	/*
3392	 * if the new request is sync, but the currently running queue is
3393	 * not, let the sync request have priority.
3394	 */
3395	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3396		return true;
3397
3398	if (new_cfqq->cfqg != cfqq->cfqg)
3399		return false;
3400
3401	if (cfq_slice_used(cfqq))
3402		return true;
3403
3404	/* Allow preemption only if we are idling on sync-noidle tree */
3405	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3406	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3407	    new_cfqq->service_tree->count == 2 &&
3408	    RB_EMPTY_ROOT(&cfqq->sort_list))
3409		return true;
3410
3411	/*
3412	 * So both queues are sync. Let the new request get disk time if
3413	 * it's a metadata request and the current queue is doing regular IO.
3414	 */
3415	if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3416		return true;
3417
3418	/*
3419	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3420	 */
3421	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3422		return true;
3423
3424	/* An idle queue should not be idle now for some reason */
3425	if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3426		return true;
3427
3428	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3429		return false;
3430
3431	/*
3432	 * if this request is as-good as one we would expect from the
3433	 * current cfqq, let it preempt
3434	 */
3435	if (cfq_rq_close(cfqd, cfqq, rq))
3436		return true;
3437
3438	return false;
3439}
3440
3441/*
3442 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3443 * let it have half of its nominal slice.
3444 */
3445static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3446{
3447	enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3448
3449	cfq_log_cfqq(cfqd, cfqq, "preempt");
3450	cfq_slice_expired(cfqd, 1);
3451
3452	/*
3453	 * workload type is changed, don't save slice, otherwise preempt
3454	 * doesn't happen
3455	 */
3456	if (old_type != cfqq_type(cfqq))
3457		cfqq->cfqg->saved_workload_slice = 0;
3458
3459	/*
3460	 * Put the new queue at the front of the of the current list,
3461	 * so we know that it will be selected next.
3462	 */
3463	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3464
3465	cfq_service_tree_add(cfqd, cfqq, 1);
3466
3467	cfqq->slice_end = 0;
3468	cfq_mark_cfqq_slice_new(cfqq);
3469}
3470
3471/*
3472 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3473 * something we should do about it
3474 */
3475static void
3476cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3477		struct request *rq)
3478{
3479	struct cfq_io_cq *cic = RQ_CIC(rq);
3480
3481	cfqd->rq_queued++;
3482	if (rq->cmd_flags & REQ_PRIO)
3483		cfqq->prio_pending++;
3484
3485	cfq_update_io_thinktime(cfqd, cfqq, cic);
3486	cfq_update_io_seektime(cfqd, cfqq, rq);
3487	cfq_update_idle_window(cfqd, cfqq, cic);
3488
3489	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3490
3491	if (cfqq == cfqd->active_queue) {
3492		/*
3493		 * Remember that we saw a request from this process, but
3494		 * don't start queuing just yet. Otherwise we risk seeing lots
3495		 * of tiny requests, because we disrupt the normal plugging
3496		 * and merging. If the request is already larger than a single
3497		 * page, let it rip immediately. For that case we assume that
3498		 * merging is already done. Ditto for a busy system that
3499		 * has other work pending, don't risk delaying until the
3500		 * idle timer unplug to continue working.
3501		 */
3502		if (cfq_cfqq_wait_request(cfqq)) {
3503			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3504			    cfqd->busy_queues > 1) {
3505				cfq_del_timer(cfqd, cfqq);
3506				cfq_clear_cfqq_wait_request(cfqq);
3507				__blk_run_queue(cfqd->queue);
3508			} else {
3509				cfqg_stats_update_idle_time(cfqq->cfqg);
3510				cfq_mark_cfqq_must_dispatch(cfqq);
3511			}
3512		}
3513	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3514		/*
3515		 * not the active queue - expire current slice if it is
3516		 * idle and has expired it's mean thinktime or this new queue
3517		 * has some old slice time left and is of higher priority or
3518		 * this new queue is RT and the current one is BE
3519		 */
3520		cfq_preempt_queue(cfqd, cfqq);
3521		__blk_run_queue(cfqd->queue);
3522	}
3523}
3524
3525static void cfq_insert_request(struct request_queue *q, struct request *rq)
3526{
3527	struct cfq_data *cfqd = q->elevator->elevator_data;
3528	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3529
3530	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3531	cfq_init_prio_data(cfqq, RQ_CIC(rq));
3532
3533	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3534	list_add_tail(&rq->queuelist, &cfqq->fifo);
3535	cfq_add_rq_rb(rq);
3536	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
3537				 rq->cmd_flags);
3538	cfq_rq_enqueued(cfqd, cfqq, rq);
3539}
3540
3541/*
3542 * Update hw_tag based on peak queue depth over 50 samples under
3543 * sufficient load.
3544 */
3545static void cfq_update_hw_tag(struct cfq_data *cfqd)
3546{
3547	struct cfq_queue *cfqq = cfqd->active_queue;
3548
3549	if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3550		cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3551
3552	if (cfqd->hw_tag == 1)
3553		return;
3554
3555	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3556	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3557		return;
3558
3559	/*
3560	 * If active queue hasn't enough requests and can idle, cfq might not
3561	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3562	 * case
3563	 */
3564	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3565	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3566	    CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3567		return;
3568
3569	if (cfqd->hw_tag_samples++ < 50)
3570		return;
3571
3572	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3573		cfqd->hw_tag = 1;
3574	else
3575		cfqd->hw_tag = 0;
3576}
3577
3578static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3579{
3580	struct cfq_io_cq *cic = cfqd->active_cic;
3581
3582	/* If the queue already has requests, don't wait */
3583	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3584		return false;
3585
3586	/* If there are other queues in the group, don't wait */
3587	if (cfqq->cfqg->nr_cfqq > 1)
3588		return false;
3589
3590	/* the only queue in the group, but think time is big */
3591	if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3592		return false;
3593
3594	if (cfq_slice_used(cfqq))
3595		return true;
3596
3597	/* if slice left is less than think time, wait busy */
3598	if (cic && sample_valid(cic->ttime.ttime_samples)
3599	    && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3600		return true;
3601
3602	/*
3603	 * If think times is less than a jiffy than ttime_mean=0 and above
3604	 * will not be true. It might happen that slice has not expired yet
3605	 * but will expire soon (4-5 ns) during select_queue(). To cover the
3606	 * case where think time is less than a jiffy, mark the queue wait
3607	 * busy if only 1 jiffy is left in the slice.
3608	 */
3609	if (cfqq->slice_end - jiffies == 1)
3610		return true;
3611
3612	return false;
3613}
3614
3615static void cfq_completed_request(struct request_queue *q, struct request *rq)
3616{
3617	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3618	struct cfq_data *cfqd = cfqq->cfqd;
3619	const int sync = rq_is_sync(rq);
3620	unsigned long now;
3621
3622	now = jiffies;
3623	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3624		     !!(rq->cmd_flags & REQ_NOIDLE));
3625
3626	cfq_update_hw_tag(cfqd);
3627
3628	WARN_ON(!cfqd->rq_in_driver);
3629	WARN_ON(!cfqq->dispatched);
3630	cfqd->rq_in_driver--;
3631	cfqq->dispatched--;
3632	(RQ_CFQG(rq))->dispatched--;
3633	cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
3634				     rq_io_start_time_ns(rq), rq->cmd_flags);
3635
3636	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3637
3638	if (sync) {
3639		struct cfq_rb_root *service_tree;
3640
3641		RQ_CIC(rq)->ttime.last_end_request = now;
3642
3643		if (cfq_cfqq_on_rr(cfqq))
3644			service_tree = cfqq->service_tree;
3645		else
3646			service_tree = service_tree_for(cfqq->cfqg,
3647				cfqq_prio(cfqq), cfqq_type(cfqq));
3648		service_tree->ttime.last_end_request = now;
3649		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3650			cfqd->last_delayed_sync = now;
3651	}
3652
3653#ifdef CONFIG_CFQ_GROUP_IOSCHED
3654	cfqq->cfqg->ttime.last_end_request = now;
3655#endif
3656
3657	/*
3658	 * If this is the active queue, check if it needs to be expired,
3659	 * or if we want to idle in case it has no pending requests.
3660	 */
3661	if (cfqd->active_queue == cfqq) {
3662		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3663
3664		if (cfq_cfqq_slice_new(cfqq)) {
3665			cfq_set_prio_slice(cfqd, cfqq);
3666			cfq_clear_cfqq_slice_new(cfqq);
3667		}
3668
3669		/*
3670		 * Should we wait for next request to come in before we expire
3671		 * the queue.
3672		 */
3673		if (cfq_should_wait_busy(cfqd, cfqq)) {
3674			unsigned long extend_sl = cfqd->cfq_slice_idle;
3675			if (!cfqd->cfq_slice_idle)
3676				extend_sl = cfqd->cfq_group_idle;
3677			cfqq->slice_end = jiffies + extend_sl;
3678			cfq_mark_cfqq_wait_busy(cfqq);
3679			cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3680		}
3681
3682		/*
3683		 * Idling is not enabled on:
3684		 * - expired queues
3685		 * - idle-priority queues
3686		 * - async queues
3687		 * - queues with still some requests queued
3688		 * - when there is a close cooperator
3689		 */
3690		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3691			cfq_slice_expired(cfqd, 1);
3692		else if (sync && cfqq_empty &&
3693			 !cfq_close_cooperator(cfqd, cfqq)) {
3694			cfq_arm_slice_timer(cfqd);
3695		}
3696	}
3697
3698	if (!cfqd->rq_in_driver)
3699		cfq_schedule_dispatch(cfqd);
3700}
3701
3702static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3703{
3704	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3705		cfq_mark_cfqq_must_alloc_slice(cfqq);
3706		return ELV_MQUEUE_MUST;
3707	}
3708
3709	return ELV_MQUEUE_MAY;
3710}
3711
3712static int cfq_may_queue(struct request_queue *q, int rw)
3713{
3714	struct cfq_data *cfqd = q->elevator->elevator_data;
3715	struct task_struct *tsk = current;
3716	struct cfq_io_cq *cic;
3717	struct cfq_queue *cfqq;
3718
3719	/*
3720	 * don't force setup of a queue from here, as a call to may_queue
3721	 * does not necessarily imply that a request actually will be queued.
3722	 * so just lookup a possibly existing queue, or return 'may queue'
3723	 * if that fails
3724	 */
3725	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3726	if (!cic)
3727		return ELV_MQUEUE_MAY;
3728
3729	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3730	if (cfqq) {
3731		cfq_init_prio_data(cfqq, cic);
3732
3733		return __cfq_may_queue(cfqq);
3734	}
3735
3736	return ELV_MQUEUE_MAY;
3737}
3738
3739/*
3740 * queue lock held here
3741 */
3742static void cfq_put_request(struct request *rq)
3743{
3744	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3745
3746	if (cfqq) {
3747		const int rw = rq_data_dir(rq);
3748
3749		BUG_ON(!cfqq->allocated[rw]);
3750		cfqq->allocated[rw]--;
3751
3752		/* Put down rq reference on cfqg */
3753		cfqg_put(RQ_CFQG(rq));
3754		rq->elv.priv[0] = NULL;
3755		rq->elv.priv[1] = NULL;
3756
3757		cfq_put_queue(cfqq);
3758	}
3759}
3760
3761static struct cfq_queue *
3762cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
3763		struct cfq_queue *cfqq)
3764{
3765	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3766	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3767	cfq_mark_cfqq_coop(cfqq->new_cfqq);
3768	cfq_put_queue(cfqq);
3769	return cic_to_cfqq(cic, 1);
3770}
3771
3772/*
3773 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3774 * was the last process referring to said cfqq.
3775 */
3776static struct cfq_queue *
3777split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
3778{
3779	if (cfqq_process_refs(cfqq) == 1) {
3780		cfqq->pid = current->pid;
3781		cfq_clear_cfqq_coop(cfqq);
3782		cfq_clear_cfqq_split_coop(cfqq);
3783		return cfqq;
3784	}
3785
3786	cic_set_cfqq(cic, NULL, 1);
3787
3788	cfq_put_cooperator(cfqq);
3789
3790	cfq_put_queue(cfqq);
3791	return NULL;
3792}
3793/*
3794 * Allocate cfq data structures associated with this request.
3795 */
3796static int
3797cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
3798		gfp_t gfp_mask)
3799{
3800	struct cfq_data *cfqd = q->elevator->elevator_data;
3801	struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
3802	const int rw = rq_data_dir(rq);
3803	const bool is_sync = rq_is_sync(rq);
3804	struct cfq_queue *cfqq;
3805
3806	might_sleep_if(gfp_mask & __GFP_WAIT);
3807
3808	spin_lock_irq(q->queue_lock);
3809
3810	check_ioprio_changed(cic, bio);
3811	check_blkcg_changed(cic, bio);
3812new_queue:
3813	cfqq = cic_to_cfqq(cic, is_sync);
3814	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3815		cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
3816		cic_set_cfqq(cic, cfqq, is_sync);
3817	} else {
3818		/*
3819		 * If the queue was seeky for too long, break it apart.
3820		 */
3821		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3822			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3823			cfqq = split_cfqq(cic, cfqq);
3824			if (!cfqq)
3825				goto new_queue;
3826		}
3827
3828		/*
3829		 * Check to see if this queue is scheduled to merge with
3830		 * another, closely cooperating queue.  The merging of
3831		 * queues happens here as it must be done in process context.
3832		 * The reference on new_cfqq was taken in merge_cfqqs.
3833		 */
3834		if (cfqq->new_cfqq)
3835			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3836	}
3837
3838	cfqq->allocated[rw]++;
3839
3840	cfqq->ref++;
3841	cfqg_get(cfqq->cfqg);
3842	rq->elv.priv[0] = cfqq;
3843	rq->elv.priv[1] = cfqq->cfqg;
3844	spin_unlock_irq(q->queue_lock);
3845	return 0;
3846}
3847
3848static void cfq_kick_queue(struct work_struct *work)
3849{
3850	struct cfq_data *cfqd =
3851		container_of(work, struct cfq_data, unplug_work);
3852	struct request_queue *q = cfqd->queue;
3853
3854	spin_lock_irq(q->queue_lock);
3855	__blk_run_queue(cfqd->queue);
3856	spin_unlock_irq(q->queue_lock);
3857}
3858
3859/*
3860 * Timer running if the active_queue is currently idling inside its time slice
3861 */
3862static void cfq_idle_slice_timer(unsigned long data)
3863{
3864	struct cfq_data *cfqd = (struct cfq_data *) data;
3865	struct cfq_queue *cfqq;
3866	unsigned long flags;
3867	int timed_out = 1;
3868
3869	cfq_log(cfqd, "idle timer fired");
3870
3871	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3872
3873	cfqq = cfqd->active_queue;
3874	if (cfqq) {
3875		timed_out = 0;
3876
3877		/*
3878		 * We saw a request before the queue expired, let it through
3879		 */
3880		if (cfq_cfqq_must_dispatch(cfqq))
3881			goto out_kick;
3882
3883		/*
3884		 * expired
3885		 */
3886		if (cfq_slice_used(cfqq))
3887			goto expire;
3888
3889		/*
3890		 * only expire and reinvoke request handler, if there are
3891		 * other queues with pending requests
3892		 */
3893		if (!cfqd->busy_queues)
3894			goto out_cont;
3895
3896		/*
3897		 * not expired and it has a request pending, let it dispatch
3898		 */
3899		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3900			goto out_kick;
3901
3902		/*
3903		 * Queue depth flag is reset only when the idle didn't succeed
3904		 */
3905		cfq_clear_cfqq_deep(cfqq);
3906	}
3907expire:
3908	cfq_slice_expired(cfqd, timed_out);
3909out_kick:
3910	cfq_schedule_dispatch(cfqd);
3911out_cont:
3912	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3913}
3914
3915static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3916{
3917	del_timer_sync(&cfqd->idle_slice_timer);
3918	cancel_work_sync(&cfqd->unplug_work);
3919}
3920
3921static void cfq_put_async_queues(struct cfq_data *cfqd)
3922{
3923	int i;
3924
3925	for (i = 0; i < IOPRIO_BE_NR; i++) {
3926		if (cfqd->async_cfqq[0][i])
3927			cfq_put_queue(cfqd->async_cfqq[0][i]);
3928		if (cfqd->async_cfqq[1][i])
3929			cfq_put_queue(cfqd->async_cfqq[1][i]);
3930	}
3931
3932	if (cfqd->async_idle_cfqq)
3933		cfq_put_queue(cfqd->async_idle_cfqq);
3934}
3935
3936static void cfq_exit_queue(struct elevator_queue *e)
3937{
3938	struct cfq_data *cfqd = e->elevator_data;
3939	struct request_queue *q = cfqd->queue;
3940
3941	cfq_shutdown_timer_wq(cfqd);
3942
3943	spin_lock_irq(q->queue_lock);
3944
3945	if (cfqd->active_queue)
3946		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3947
3948	cfq_put_async_queues(cfqd);
3949
3950	spin_unlock_irq(q->queue_lock);
3951
3952	cfq_shutdown_timer_wq(cfqd);
3953
3954#ifdef CONFIG_CFQ_GROUP_IOSCHED
3955	blkcg_deactivate_policy(q, &blkcg_policy_cfq);
3956#else
3957	kfree(cfqd->root_group);
3958#endif
3959	kfree(cfqd);
3960}
3961
3962static int cfq_init_queue(struct request_queue *q)
3963{
3964	struct cfq_data *cfqd;
3965	struct blkcg_gq *blkg __maybe_unused;
3966	int i, ret;
3967
3968	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3969	if (!cfqd)
3970		return -ENOMEM;
3971
3972	cfqd->queue = q;
3973	q->elevator->elevator_data = cfqd;
3974
3975	/* Init root service tree */
3976	cfqd->grp_service_tree = CFQ_RB_ROOT;
3977
3978	/* Init root group and prefer root group over other groups by default */
3979#ifdef CONFIG_CFQ_GROUP_IOSCHED
3980	ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
3981	if (ret)
3982		goto out_free;
3983
3984	cfqd->root_group = blkg_to_cfqg(q->root_blkg);
3985#else
3986	ret = -ENOMEM;
3987	cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
3988					GFP_KERNEL, cfqd->queue->node);
3989	if (!cfqd->root_group)
3990		goto out_free;
3991
3992	cfq_init_cfqg_base(cfqd->root_group);
3993#endif
3994	cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
3995
3996	/*
3997	 * Not strictly needed (since RB_ROOT just clears the node and we
3998	 * zeroed cfqd on alloc), but better be safe in case someone decides
3999	 * to add magic to the rb code
4000	 */
4001	for (i = 0; i < CFQ_PRIO_LISTS; i++)
4002		cfqd->prio_trees[i] = RB_ROOT;
4003
4004	/*
4005	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4006	 * Grab a permanent reference to it, so that the normal code flow
4007	 * will not attempt to free it.  oom_cfqq is linked to root_group
4008	 * but shouldn't hold a reference as it'll never be unlinked.  Lose
4009	 * the reference from linking right away.
4010	 */
4011	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4012	cfqd->oom_cfqq.ref++;
4013
4014	spin_lock_irq(q->queue_lock);
4015	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4016	cfqg_put(cfqd->root_group);
4017	spin_unlock_irq(q->queue_lock);
4018
4019	init_timer(&cfqd->idle_slice_timer);
4020	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4021	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4022
4023	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4024
4025	cfqd->cfq_quantum = cfq_quantum;
4026	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4027	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4028	cfqd->cfq_back_max = cfq_back_max;
4029	cfqd->cfq_back_penalty = cfq_back_penalty;
4030	cfqd->cfq_slice[0] = cfq_slice_async;
4031	cfqd->cfq_slice[1] = cfq_slice_sync;
4032	cfqd->cfq_target_latency = cfq_target_latency;
4033	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4034	cfqd->cfq_slice_idle = cfq_slice_idle;
4035	cfqd->cfq_group_idle = cfq_group_idle;
4036	cfqd->cfq_latency = 1;
4037	cfqd->hw_tag = -1;
4038	/*
4039	 * we optimistically start assuming sync ops weren't delayed in last
4040	 * second, in order to have larger depth for async operations.
4041	 */
4042	cfqd->last_delayed_sync = jiffies - HZ;
4043	return 0;
4044
4045out_free:
4046	kfree(cfqd);
4047	return ret;
4048}
4049
4050/*
4051 * sysfs parts below -->
4052 */
4053static ssize_t
4054cfq_var_show(unsigned int var, char *page)
4055{
4056	return sprintf(page, "%d\n", var);
4057}
4058
4059static ssize_t
4060cfq_var_store(unsigned int *var, const char *page, size_t count)
4061{
4062	char *p = (char *) page;
4063
4064	*var = simple_strtoul(p, &p, 10);
4065	return count;
4066}
4067
4068#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
4069static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4070{									\
4071	struct cfq_data *cfqd = e->elevator_data;			\
4072	unsigned int __data = __VAR;					\
4073	if (__CONV)							\
4074		__data = jiffies_to_msecs(__data);			\
4075	return cfq_var_show(__data, (page));				\
4076}
4077SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4078SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4079SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4080SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4081SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4082SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4083SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4084SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4085SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4086SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4087SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4088SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4089#undef SHOW_FUNCTION
4090
4091#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
4092static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
4093{									\
4094	struct cfq_data *cfqd = e->elevator_data;			\
4095	unsigned int __data;						\
4096	int ret = cfq_var_store(&__data, (page), count);		\
4097	if (__data < (MIN))						\
4098		__data = (MIN);						\
4099	else if (__data > (MAX))					\
4100		__data = (MAX);						\
4101	if (__CONV)							\
4102		*(__PTR) = msecs_to_jiffies(__data);			\
4103	else								\
4104		*(__PTR) = __data;					\
4105	return ret;							\
4106}
4107STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4108STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4109		UINT_MAX, 1);
4110STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4111		UINT_MAX, 1);
4112STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4113STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4114		UINT_MAX, 0);
4115STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4116STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4117STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4118STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4119STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4120		UINT_MAX, 0);
4121STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4122STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4123#undef STORE_FUNCTION
4124
4125#define CFQ_ATTR(name) \
4126	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4127
4128static struct elv_fs_entry cfq_attrs[] = {
4129	CFQ_ATTR(quantum),
4130	CFQ_ATTR(fifo_expire_sync),
4131	CFQ_ATTR(fifo_expire_async),
4132	CFQ_ATTR(back_seek_max),
4133	CFQ_ATTR(back_seek_penalty),
4134	CFQ_ATTR(slice_sync),
4135	CFQ_ATTR(slice_async),
4136	CFQ_ATTR(slice_async_rq),
4137	CFQ_ATTR(slice_idle),
4138	CFQ_ATTR(group_idle),
4139	CFQ_ATTR(low_latency),
4140	CFQ_ATTR(target_latency),
4141	__ATTR_NULL
4142};
4143
4144static struct elevator_type iosched_cfq = {
4145	.ops = {
4146		.elevator_merge_fn = 		cfq_merge,
4147		.elevator_merged_fn =		cfq_merged_request,
4148		.elevator_merge_req_fn =	cfq_merged_requests,
4149		.elevator_allow_merge_fn =	cfq_allow_merge,
4150		.elevator_bio_merged_fn =	cfq_bio_merged,
4151		.elevator_dispatch_fn =		cfq_dispatch_requests,
4152		.elevator_add_req_fn =		cfq_insert_request,
4153		.elevator_activate_req_fn =	cfq_activate_request,
4154		.elevator_deactivate_req_fn =	cfq_deactivate_request,
4155		.elevator_completed_req_fn =	cfq_completed_request,
4156		.elevator_former_req_fn =	elv_rb_former_request,
4157		.elevator_latter_req_fn =	elv_rb_latter_request,
4158		.elevator_init_icq_fn =		cfq_init_icq,
4159		.elevator_exit_icq_fn =		cfq_exit_icq,
4160		.elevator_set_req_fn =		cfq_set_request,
4161		.elevator_put_req_fn =		cfq_put_request,
4162		.elevator_may_queue_fn =	cfq_may_queue,
4163		.elevator_init_fn =		cfq_init_queue,
4164		.elevator_exit_fn =		cfq_exit_queue,
4165	},
4166	.icq_size	=	sizeof(struct cfq_io_cq),
4167	.icq_align	=	__alignof__(struct cfq_io_cq),
4168	.elevator_attrs =	cfq_attrs,
4169	.elevator_name	=	"cfq",
4170	.elevator_owner =	THIS_MODULE,
4171};
4172
4173#ifdef CONFIG_CFQ_GROUP_IOSCHED
4174static struct blkcg_policy blkcg_policy_cfq = {
4175	.pd_size		= sizeof(struct cfq_group),
4176	.cftypes		= cfq_blkcg_files,
4177
4178	.pd_init_fn		= cfq_pd_init,
4179	.pd_reset_stats_fn	= cfq_pd_reset_stats,
4180};
4181#endif
4182
4183static int __init cfq_init(void)
4184{
4185	int ret;
4186
4187	/*
4188	 * could be 0 on HZ < 1000 setups
4189	 */
4190	if (!cfq_slice_async)
4191		cfq_slice_async = 1;
4192	if (!cfq_slice_idle)
4193		cfq_slice_idle = 1;
4194
4195#ifdef CONFIG_CFQ_GROUP_IOSCHED
4196	if (!cfq_group_idle)
4197		cfq_group_idle = 1;
4198
4199	ret = blkcg_policy_register(&blkcg_policy_cfq);
4200	if (ret)
4201		return ret;
4202#else
4203	cfq_group_idle = 0;
4204#endif
4205
4206	ret = -ENOMEM;
4207	cfq_pool = KMEM_CACHE(cfq_queue, 0);
4208	if (!cfq_pool)
4209		goto err_pol_unreg;
4210
4211	ret = elv_register(&iosched_cfq);
4212	if (ret)
4213		goto err_free_pool;
4214
4215	return 0;
4216
4217err_free_pool:
4218	kmem_cache_destroy(cfq_pool);
4219err_pol_unreg:
4220#ifdef CONFIG_CFQ_GROUP_IOSCHED
4221	blkcg_policy_unregister(&blkcg_policy_cfq);
4222#endif
4223	return ret;
4224}
4225
4226static void __exit cfq_exit(void)
4227{
4228#ifdef CONFIG_CFQ_GROUP_IOSCHED
4229	blkcg_policy_unregister(&blkcg_policy_cfq);
4230#endif
4231	elv_unregister(&iosched_cfq);
4232	kmem_cache_destroy(cfq_pool);
4233}
4234
4235module_init(cfq_init);
4236module_exit(cfq_exit);
4237
4238MODULE_AUTHOR("Jens Axboe");
4239MODULE_LICENSE("GPL");
4240MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");