Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *  linux/arch/x86_64/entry.S
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
   7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
   8 *
   9 * entry.S contains the system-call and fault low-level handling routines.
  10 *
  11 * Some of this is documented in Documentation/x86/entry_64.txt
  12 *
  13 * A note on terminology:
  14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
  15 *			at the top of the kernel process stack.
  16 *
  17 * Some macro usage:
  18 * - ENTRY/END:		Define functions in the symbol table.
  19 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
  20 * - idtentry:		Define exception entry points.
  21 */
  22#include <linux/linkage.h>
  23#include <asm/segment.h>
  24#include <asm/cache.h>
  25#include <asm/errno.h>
  26#include <asm/asm-offsets.h>
  27#include <asm/msr.h>
  28#include <asm/unistd.h>
  29#include <asm/thread_info.h>
  30#include <asm/hw_irq.h>
  31#include <asm/page_types.h>
  32#include <asm/irqflags.h>
  33#include <asm/paravirt.h>
  34#include <asm/percpu.h>
  35#include <asm/asm.h>
  36#include <asm/smap.h>
  37#include <asm/pgtable_types.h>
  38#include <asm/export.h>
  39#include <asm/frame.h>
  40#include <asm/nospec-branch.h>
  41#include <linux/err.h>
  42
  43#include "calling.h"
  44
  45.code64
  46.section .entry.text, "ax"
  47
  48#ifdef CONFIG_PARAVIRT
  49ENTRY(native_usergs_sysret64)
  50	UNWIND_HINT_EMPTY
  51	swapgs
  52	sysretq
  53END(native_usergs_sysret64)
  54#endif /* CONFIG_PARAVIRT */
  55
  56.macro TRACE_IRQS_FLAGS flags:req
  57#ifdef CONFIG_TRACE_IRQFLAGS
  58	btl	$9, \flags		/* interrupts off? */
  59	jnc	1f
  60	TRACE_IRQS_ON
  611:
  62#endif
  63.endm
  64
  65.macro TRACE_IRQS_IRETQ
  66	TRACE_IRQS_FLAGS EFLAGS(%rsp)
  67.endm
  68
  69/*
  70 * When dynamic function tracer is enabled it will add a breakpoint
  71 * to all locations that it is about to modify, sync CPUs, update
  72 * all the code, sync CPUs, then remove the breakpoints. In this time
  73 * if lockdep is enabled, it might jump back into the debug handler
  74 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
  75 *
  76 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
  77 * make sure the stack pointer does not get reset back to the top
  78 * of the debug stack, and instead just reuses the current stack.
  79 */
  80#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
  81
  82.macro TRACE_IRQS_OFF_DEBUG
  83	call	debug_stack_set_zero
  84	TRACE_IRQS_OFF
  85	call	debug_stack_reset
  86.endm
  87
  88.macro TRACE_IRQS_ON_DEBUG
  89	call	debug_stack_set_zero
  90	TRACE_IRQS_ON
  91	call	debug_stack_reset
  92.endm
  93
  94.macro TRACE_IRQS_IRETQ_DEBUG
  95	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
  96	jnc	1f
  97	TRACE_IRQS_ON_DEBUG
  981:
  99.endm
 100
 101#else
 102# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
 103# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
 104# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
 105#endif
 106
 107/*
 108 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
 109 *
 110 * This is the only entry point used for 64-bit system calls.  The
 111 * hardware interface is reasonably well designed and the register to
 112 * argument mapping Linux uses fits well with the registers that are
 113 * available when SYSCALL is used.
 114 *
 115 * SYSCALL instructions can be found inlined in libc implementations as
 116 * well as some other programs and libraries.  There are also a handful
 117 * of SYSCALL instructions in the vDSO used, for example, as a
 118 * clock_gettimeofday fallback.
 119 *
 120 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
 121 * then loads new ss, cs, and rip from previously programmed MSRs.
 122 * rflags gets masked by a value from another MSR (so CLD and CLAC
 123 * are not needed). SYSCALL does not save anything on the stack
 124 * and does not change rsp.
 125 *
 126 * Registers on entry:
 127 * rax  system call number
 128 * rcx  return address
 129 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
 130 * rdi  arg0
 131 * rsi  arg1
 132 * rdx  arg2
 133 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
 134 * r8   arg4
 135 * r9   arg5
 136 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
 137 *
 138 * Only called from user space.
 139 *
 140 * When user can change pt_regs->foo always force IRET. That is because
 141 * it deals with uncanonical addresses better. SYSRET has trouble
 142 * with them due to bugs in both AMD and Intel CPUs.
 143 */
 144
 145	.pushsection .entry_trampoline, "ax"
 146
 147/*
 148 * The code in here gets remapped into cpu_entry_area's trampoline.  This means
 149 * that the assembler and linker have the wrong idea as to where this code
 150 * lives (and, in fact, it's mapped more than once, so it's not even at a
 151 * fixed address).  So we can't reference any symbols outside the entry
 152 * trampoline and expect it to work.
 153 *
 154 * Instead, we carefully abuse %rip-relative addressing.
 155 * _entry_trampoline(%rip) refers to the start of the remapped) entry
 156 * trampoline.  We can thus find cpu_entry_area with this macro:
 157 */
 158
 159#define CPU_ENTRY_AREA \
 160	_entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)
 161
 162/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
 163#define RSP_SCRATCH	CPU_ENTRY_AREA_entry_stack + \
 164			SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
 165
 166ENTRY(entry_SYSCALL_64_trampoline)
 167	UNWIND_HINT_EMPTY
 168	swapgs
 169
 170	/* Stash the user RSP. */
 171	movq	%rsp, RSP_SCRATCH
 172
 173	/* Note: using %rsp as a scratch reg. */
 174	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
 175
 176	/* Load the top of the task stack into RSP */
 177	movq	CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp
 178
 179	/* Start building the simulated IRET frame. */
 180	pushq	$__USER_DS			/* pt_regs->ss */
 181	pushq	RSP_SCRATCH			/* pt_regs->sp */
 182	pushq	%r11				/* pt_regs->flags */
 183	pushq	$__USER_CS			/* pt_regs->cs */
 184	pushq	%rcx				/* pt_regs->ip */
 185
 186	/*
 187	 * x86 lacks a near absolute jump, and we can't jump to the real
 188	 * entry text with a relative jump.  We could push the target
 189	 * address and then use retq, but this destroys the pipeline on
 190	 * many CPUs (wasting over 20 cycles on Sandy Bridge).  Instead,
 191	 * spill RDI and restore it in a second-stage trampoline.
 192	 */
 193	pushq	%rdi
 194	movq	$entry_SYSCALL_64_stage2, %rdi
 195	JMP_NOSPEC %rdi
 196END(entry_SYSCALL_64_trampoline)
 197
 198	.popsection
 199
 200ENTRY(entry_SYSCALL_64_stage2)
 201	UNWIND_HINT_EMPTY
 202	popq	%rdi
 203	jmp	entry_SYSCALL_64_after_hwframe
 204END(entry_SYSCALL_64_stage2)
 205
 206ENTRY(entry_SYSCALL_64)
 207	UNWIND_HINT_EMPTY
 208	/*
 209	 * Interrupts are off on entry.
 210	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
 211	 * it is too small to ever cause noticeable irq latency.
 212	 */
 213
 214	swapgs
 215	/*
 216	 * This path is only taken when PAGE_TABLE_ISOLATION is disabled so it
 217	 * is not required to switch CR3.
 218	 */
 219	movq	%rsp, PER_CPU_VAR(rsp_scratch)
 220	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
 221
 222	/* Construct struct pt_regs on stack */
 223	pushq	$__USER_DS			/* pt_regs->ss */
 224	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
 225	pushq	%r11				/* pt_regs->flags */
 226	pushq	$__USER_CS			/* pt_regs->cs */
 227	pushq	%rcx				/* pt_regs->ip */
 228GLOBAL(entry_SYSCALL_64_after_hwframe)
 229	pushq	%rax				/* pt_regs->orig_ax */
 230
 231	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
 232
 233	TRACE_IRQS_OFF
 234
 235	/* IRQs are off. */
 236	movq	%rax, %rdi
 237	movq	%rsp, %rsi
 238	call	do_syscall_64		/* returns with IRQs disabled */
 239
 240	TRACE_IRQS_IRETQ		/* we're about to change IF */
 241
 242	/*
 243	 * Try to use SYSRET instead of IRET if we're returning to
 244	 * a completely clean 64-bit userspace context.  If we're not,
 245	 * go to the slow exit path.
 246	 */
 247	movq	RCX(%rsp), %rcx
 248	movq	RIP(%rsp), %r11
 249
 250	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
 251	jne	swapgs_restore_regs_and_return_to_usermode
 252
 253	/*
 254	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
 255	 * in kernel space.  This essentially lets the user take over
 256	 * the kernel, since userspace controls RSP.
 257	 *
 258	 * If width of "canonical tail" ever becomes variable, this will need
 259	 * to be updated to remain correct on both old and new CPUs.
 260	 *
 261	 * Change top bits to match most significant bit (47th or 56th bit
 262	 * depending on paging mode) in the address.
 263	 */
 264#ifdef CONFIG_X86_5LEVEL
 265	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
 266		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
 267#else
 268	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
 269	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
 270#endif
 271
 272	/* If this changed %rcx, it was not canonical */
 273	cmpq	%rcx, %r11
 274	jne	swapgs_restore_regs_and_return_to_usermode
 275
 276	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
 277	jne	swapgs_restore_regs_and_return_to_usermode
 278
 279	movq	R11(%rsp), %r11
 280	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
 281	jne	swapgs_restore_regs_and_return_to_usermode
 282
 283	/*
 284	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
 285	 * restore RF properly. If the slowpath sets it for whatever reason, we
 286	 * need to restore it correctly.
 287	 *
 288	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
 289	 * trap from userspace immediately after SYSRET.  This would cause an
 290	 * infinite loop whenever #DB happens with register state that satisfies
 291	 * the opportunistic SYSRET conditions.  For example, single-stepping
 292	 * this user code:
 293	 *
 294	 *           movq	$stuck_here, %rcx
 295	 *           pushfq
 296	 *           popq %r11
 297	 *   stuck_here:
 298	 *
 299	 * would never get past 'stuck_here'.
 300	 */
 301	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
 302	jnz	swapgs_restore_regs_and_return_to_usermode
 303
 304	/* nothing to check for RSP */
 305
 306	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
 307	jne	swapgs_restore_regs_and_return_to_usermode
 308
 309	/*
 310	 * We win! This label is here just for ease of understanding
 311	 * perf profiles. Nothing jumps here.
 312	 */
 313syscall_return_via_sysret:
 314	/* rcx and r11 are already restored (see code above) */
 315	UNWIND_HINT_EMPTY
 316	POP_REGS pop_rdi=0 skip_r11rcx=1
 317
 318	/*
 319	 * Now all regs are restored except RSP and RDI.
 320	 * Save old stack pointer and switch to trampoline stack.
 321	 */
 322	movq	%rsp, %rdi
 323	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
 324
 325	pushq	RSP-RDI(%rdi)	/* RSP */
 326	pushq	(%rdi)		/* RDI */
 327
 328	/*
 329	 * We are on the trampoline stack.  All regs except RDI are live.
 330	 * We can do future final exit work right here.
 331	 */
 332	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
 333
 334	popq	%rdi
 335	popq	%rsp
 336	USERGS_SYSRET64
 337END(entry_SYSCALL_64)
 338
 339/*
 340 * %rdi: prev task
 341 * %rsi: next task
 342 */
 343ENTRY(__switch_to_asm)
 344	UNWIND_HINT_FUNC
 345	/*
 346	 * Save callee-saved registers
 347	 * This must match the order in inactive_task_frame
 348	 */
 349	pushq	%rbp
 350	pushq	%rbx
 351	pushq	%r12
 352	pushq	%r13
 353	pushq	%r14
 354	pushq	%r15
 355
 356	/* switch stack */
 357	movq	%rsp, TASK_threadsp(%rdi)
 358	movq	TASK_threadsp(%rsi), %rsp
 359
 360#ifdef CONFIG_CC_STACKPROTECTOR
 361	movq	TASK_stack_canary(%rsi), %rbx
 362	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
 363#endif
 364
 365#ifdef CONFIG_RETPOLINE
 366	/*
 367	 * When switching from a shallower to a deeper call stack
 368	 * the RSB may either underflow or use entries populated
 369	 * with userspace addresses. On CPUs where those concerns
 370	 * exist, overwrite the RSB with entries which capture
 371	 * speculative execution to prevent attack.
 372	 */
 373	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
 374#endif
 375
 376	/* restore callee-saved registers */
 377	popq	%r15
 378	popq	%r14
 379	popq	%r13
 380	popq	%r12
 381	popq	%rbx
 382	popq	%rbp
 383
 384	jmp	__switch_to
 385END(__switch_to_asm)
 386
 387/*
 388 * A newly forked process directly context switches into this address.
 389 *
 390 * rax: prev task we switched from
 391 * rbx: kernel thread func (NULL for user thread)
 392 * r12: kernel thread arg
 393 */
 394ENTRY(ret_from_fork)
 395	UNWIND_HINT_EMPTY
 396	movq	%rax, %rdi
 397	call	schedule_tail			/* rdi: 'prev' task parameter */
 398
 399	testq	%rbx, %rbx			/* from kernel_thread? */
 400	jnz	1f				/* kernel threads are uncommon */
 401
 4022:
 403	UNWIND_HINT_REGS
 404	movq	%rsp, %rdi
 405	call	syscall_return_slowpath	/* returns with IRQs disabled */
 406	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
 407	jmp	swapgs_restore_regs_and_return_to_usermode
 408
 4091:
 410	/* kernel thread */
 411	movq	%r12, %rdi
 412	CALL_NOSPEC %rbx
 413	/*
 414	 * A kernel thread is allowed to return here after successfully
 415	 * calling do_execve().  Exit to userspace to complete the execve()
 416	 * syscall.
 417	 */
 418	movq	$0, RAX(%rsp)
 419	jmp	2b
 420END(ret_from_fork)
 421
 422/*
 423 * Build the entry stubs with some assembler magic.
 424 * We pack 1 stub into every 8-byte block.
 425 */
 426	.align 8
 427ENTRY(irq_entries_start)
 428    vector=FIRST_EXTERNAL_VECTOR
 429    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
 430	UNWIND_HINT_IRET_REGS
 431	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
 432	jmp	common_interrupt
 433	.align	8
 434	vector=vector+1
 435    .endr
 436END(irq_entries_start)
 437
 438.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
 439#ifdef CONFIG_DEBUG_ENTRY
 440	pushq %rax
 441	SAVE_FLAGS(CLBR_RAX)
 442	testl $X86_EFLAGS_IF, %eax
 443	jz .Lokay_\@
 444	ud2
 445.Lokay_\@:
 446	popq %rax
 447#endif
 448.endm
 449
 450/*
 451 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 452 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 453 * Requires kernel GSBASE.
 454 *
 455 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 456 */
 457.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
 458	DEBUG_ENTRY_ASSERT_IRQS_OFF
 459
 460	.if \save_ret
 461	/*
 462	 * If save_ret is set, the original stack contains one additional
 463	 * entry -- the return address. Therefore, move the address one
 464	 * entry below %rsp to \old_rsp.
 465	 */
 466	leaq	8(%rsp), \old_rsp
 467	.else
 468	movq	%rsp, \old_rsp
 469	.endif
 470
 471	.if \regs
 472	UNWIND_HINT_REGS base=\old_rsp
 473	.endif
 474
 475	incl	PER_CPU_VAR(irq_count)
 476	jnz	.Lirq_stack_push_old_rsp_\@
 477
 478	/*
 479	 * Right now, if we just incremented irq_count to zero, we've
 480	 * claimed the IRQ stack but we haven't switched to it yet.
 481	 *
 482	 * If anything is added that can interrupt us here without using IST,
 483	 * it must be *extremely* careful to limit its stack usage.  This
 484	 * could include kprobes and a hypothetical future IST-less #DB
 485	 * handler.
 486	 *
 487	 * The OOPS unwinder relies on the word at the top of the IRQ
 488	 * stack linking back to the previous RSP for the entire time we're
 489	 * on the IRQ stack.  For this to work reliably, we need to write
 490	 * it before we actually move ourselves to the IRQ stack.
 491	 */
 492
 493	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
 494	movq	PER_CPU_VAR(irq_stack_ptr), %rsp
 495
 496#ifdef CONFIG_DEBUG_ENTRY
 497	/*
 498	 * If the first movq above becomes wrong due to IRQ stack layout
 499	 * changes, the only way we'll notice is if we try to unwind right
 500	 * here.  Assert that we set up the stack right to catch this type
 501	 * of bug quickly.
 502	 */
 503	cmpq	-8(%rsp), \old_rsp
 504	je	.Lirq_stack_okay\@
 505	ud2
 506	.Lirq_stack_okay\@:
 507#endif
 508
 509.Lirq_stack_push_old_rsp_\@:
 510	pushq	\old_rsp
 511
 512	.if \regs
 513	UNWIND_HINT_REGS indirect=1
 514	.endif
 515
 516	.if \save_ret
 517	/*
 518	 * Push the return address to the stack. This return address can
 519	 * be found at the "real" original RSP, which was offset by 8 at
 520	 * the beginning of this macro.
 521	 */
 522	pushq	-8(\old_rsp)
 523	.endif
 524.endm
 525
 526/*
 527 * Undoes ENTER_IRQ_STACK.
 528 */
 529.macro LEAVE_IRQ_STACK regs=1
 530	DEBUG_ENTRY_ASSERT_IRQS_OFF
 531	/* We need to be off the IRQ stack before decrementing irq_count. */
 532	popq	%rsp
 533
 534	.if \regs
 535	UNWIND_HINT_REGS
 536	.endif
 537
 538	/*
 539	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
 540	 * the irq stack but we're not on it.
 541	 */
 542
 543	decl	PER_CPU_VAR(irq_count)
 544.endm
 545
 546/*
 547 * Interrupt entry helper function.
 548 *
 549 * Entry runs with interrupts off. Stack layout at entry:
 550 * +----------------------------------------------------+
 551 * | regs->ss						|
 552 * | regs->rsp						|
 553 * | regs->eflags					|
 554 * | regs->cs						|
 555 * | regs->ip						|
 556 * +----------------------------------------------------+
 557 * | regs->orig_ax = ~(interrupt number)		|
 558 * +----------------------------------------------------+
 559 * | return address					|
 560 * +----------------------------------------------------+
 561 */
 562ENTRY(interrupt_entry)
 563	UNWIND_HINT_FUNC
 564	ASM_CLAC
 565	cld
 566
 567	testb	$3, CS-ORIG_RAX+8(%rsp)
 568	jz	1f
 569	SWAPGS
 570
 571	/*
 572	 * Switch to the thread stack. The IRET frame and orig_ax are
 573	 * on the stack, as well as the return address. RDI..R12 are
 574	 * not (yet) on the stack and space has not (yet) been
 575	 * allocated for them.
 576	 */
 577	pushq	%rdi
 578
 579	/* Need to switch before accessing the thread stack. */
 580	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
 581	movq	%rsp, %rdi
 582	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
 583
 584	 /*
 585	  * We have RDI, return address, and orig_ax on the stack on
 586	  * top of the IRET frame. That means offset=24
 587	  */
 588	UNWIND_HINT_IRET_REGS base=%rdi offset=24
 589
 590	pushq	7*8(%rdi)		/* regs->ss */
 591	pushq	6*8(%rdi)		/* regs->rsp */
 592	pushq	5*8(%rdi)		/* regs->eflags */
 593	pushq	4*8(%rdi)		/* regs->cs */
 594	pushq	3*8(%rdi)		/* regs->ip */
 595	pushq	2*8(%rdi)		/* regs->orig_ax */
 596	pushq	8(%rdi)			/* return address */
 597	UNWIND_HINT_FUNC
 598
 599	movq	(%rdi), %rdi
 6001:
 601
 602	PUSH_AND_CLEAR_REGS save_ret=1
 603	ENCODE_FRAME_POINTER 8
 604
 605	testb	$3, CS+8(%rsp)
 606	jz	1f
 607
 608	/*
 609	 * IRQ from user mode.
 610	 *
 611	 * We need to tell lockdep that IRQs are off.  We can't do this until
 612	 * we fix gsbase, and we should do it before enter_from_user_mode
 613	 * (which can take locks).  Since TRACE_IRQS_OFF is idempotent,
 614	 * the simplest way to handle it is to just call it twice if
 615	 * we enter from user mode.  There's no reason to optimize this since
 616	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
 617	 */
 618	TRACE_IRQS_OFF
 619
 620	CALL_enter_from_user_mode
 621
 6221:
 623	ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
 624	/* We entered an interrupt context - irqs are off: */
 625	TRACE_IRQS_OFF
 626
 627	ret
 628END(interrupt_entry)
 629
 630
 631/* Interrupt entry/exit. */
 632
 633	/*
 634	 * The interrupt stubs push (~vector+0x80) onto the stack and
 635	 * then jump to common_interrupt.
 636	 */
 637	.p2align CONFIG_X86_L1_CACHE_SHIFT
 638common_interrupt:
 639	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
 640	call	interrupt_entry
 641	UNWIND_HINT_REGS indirect=1
 642	call	do_IRQ	/* rdi points to pt_regs */
 643	/* 0(%rsp): old RSP */
 644ret_from_intr:
 645	DISABLE_INTERRUPTS(CLBR_ANY)
 646	TRACE_IRQS_OFF
 647
 648	LEAVE_IRQ_STACK
 649
 650	testb	$3, CS(%rsp)
 651	jz	retint_kernel
 652
 653	/* Interrupt came from user space */
 654GLOBAL(retint_user)
 655	mov	%rsp,%rdi
 656	call	prepare_exit_to_usermode
 657	TRACE_IRQS_IRETQ
 658
 659GLOBAL(swapgs_restore_regs_and_return_to_usermode)
 660#ifdef CONFIG_DEBUG_ENTRY
 661	/* Assert that pt_regs indicates user mode. */
 662	testb	$3, CS(%rsp)
 663	jnz	1f
 664	ud2
 6651:
 666#endif
 667	POP_REGS pop_rdi=0
 668
 669	/*
 670	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
 671	 * Save old stack pointer and switch to trampoline stack.
 672	 */
 673	movq	%rsp, %rdi
 674	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
 675
 676	/* Copy the IRET frame to the trampoline stack. */
 677	pushq	6*8(%rdi)	/* SS */
 678	pushq	5*8(%rdi)	/* RSP */
 679	pushq	4*8(%rdi)	/* EFLAGS */
 680	pushq	3*8(%rdi)	/* CS */
 681	pushq	2*8(%rdi)	/* RIP */
 682
 683	/* Push user RDI on the trampoline stack. */
 684	pushq	(%rdi)
 685
 686	/*
 687	 * We are on the trampoline stack.  All regs except RDI are live.
 688	 * We can do future final exit work right here.
 689	 */
 690
 691	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
 692
 693	/* Restore RDI. */
 694	popq	%rdi
 695	SWAPGS
 696	INTERRUPT_RETURN
 697
 698
 699/* Returning to kernel space */
 700retint_kernel:
 701#ifdef CONFIG_PREEMPT
 702	/* Interrupts are off */
 703	/* Check if we need preemption */
 704	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
 705	jnc	1f
 7060:	cmpl	$0, PER_CPU_VAR(__preempt_count)
 707	jnz	1f
 708	call	preempt_schedule_irq
 709	jmp	0b
 7101:
 711#endif
 712	/*
 713	 * The iretq could re-enable interrupts:
 714	 */
 715	TRACE_IRQS_IRETQ
 716
 717GLOBAL(restore_regs_and_return_to_kernel)
 718#ifdef CONFIG_DEBUG_ENTRY
 719	/* Assert that pt_regs indicates kernel mode. */
 720	testb	$3, CS(%rsp)
 721	jz	1f
 722	ud2
 7231:
 724#endif
 725	POP_REGS
 726	addq	$8, %rsp	/* skip regs->orig_ax */
 727	/*
 728	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
 729	 * when returning from IPI handler.
 730	 */
 731	INTERRUPT_RETURN
 732
 733ENTRY(native_iret)
 734	UNWIND_HINT_IRET_REGS
 735	/*
 736	 * Are we returning to a stack segment from the LDT?  Note: in
 737	 * 64-bit mode SS:RSP on the exception stack is always valid.
 738	 */
 739#ifdef CONFIG_X86_ESPFIX64
 740	testb	$4, (SS-RIP)(%rsp)
 741	jnz	native_irq_return_ldt
 742#endif
 743
 744.global native_irq_return_iret
 745native_irq_return_iret:
 746	/*
 747	 * This may fault.  Non-paranoid faults on return to userspace are
 748	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
 749	 * Double-faults due to espfix64 are handled in do_double_fault.
 750	 * Other faults here are fatal.
 751	 */
 752	iretq
 753
 754#ifdef CONFIG_X86_ESPFIX64
 755native_irq_return_ldt:
 756	/*
 757	 * We are running with user GSBASE.  All GPRs contain their user
 758	 * values.  We have a percpu ESPFIX stack that is eight slots
 759	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
 760	 * of the ESPFIX stack.
 761	 *
 762	 * We clobber RAX and RDI in this code.  We stash RDI on the
 763	 * normal stack and RAX on the ESPFIX stack.
 764	 *
 765	 * The ESPFIX stack layout we set up looks like this:
 766	 *
 767	 * --- top of ESPFIX stack ---
 768	 * SS
 769	 * RSP
 770	 * RFLAGS
 771	 * CS
 772	 * RIP  <-- RSP points here when we're done
 773	 * RAX  <-- espfix_waddr points here
 774	 * --- bottom of ESPFIX stack ---
 775	 */
 776
 777	pushq	%rdi				/* Stash user RDI */
 778	SWAPGS					/* to kernel GS */
 779	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */
 780
 781	movq	PER_CPU_VAR(espfix_waddr), %rdi
 782	movq	%rax, (0*8)(%rdi)		/* user RAX */
 783	movq	(1*8)(%rsp), %rax		/* user RIP */
 784	movq	%rax, (1*8)(%rdi)
 785	movq	(2*8)(%rsp), %rax		/* user CS */
 786	movq	%rax, (2*8)(%rdi)
 787	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
 788	movq	%rax, (3*8)(%rdi)
 789	movq	(5*8)(%rsp), %rax		/* user SS */
 790	movq	%rax, (5*8)(%rdi)
 791	movq	(4*8)(%rsp), %rax		/* user RSP */
 792	movq	%rax, (4*8)(%rdi)
 793	/* Now RAX == RSP. */
 794
 795	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
 796
 797	/*
 798	 * espfix_stack[31:16] == 0.  The page tables are set up such that
 799	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
 800	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
 801	 * the same page.  Set up RSP so that RSP[31:16] contains the
 802	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
 803	 * still points to an RO alias of the ESPFIX stack.
 804	 */
 805	orq	PER_CPU_VAR(espfix_stack), %rax
 806
 807	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
 808	SWAPGS					/* to user GS */
 809	popq	%rdi				/* Restore user RDI */
 810
 811	movq	%rax, %rsp
 812	UNWIND_HINT_IRET_REGS offset=8
 813
 814	/*
 815	 * At this point, we cannot write to the stack any more, but we can
 816	 * still read.
 817	 */
 818	popq	%rax				/* Restore user RAX */
 819
 820	/*
 821	 * RSP now points to an ordinary IRET frame, except that the page
 822	 * is read-only and RSP[31:16] are preloaded with the userspace
 823	 * values.  We can now IRET back to userspace.
 824	 */
 825	jmp	native_irq_return_iret
 826#endif
 827END(common_interrupt)
 828
 829/*
 830 * APIC interrupts.
 831 */
 832.macro apicinterrupt3 num sym do_sym
 833ENTRY(\sym)
 834	UNWIND_HINT_IRET_REGS
 835	pushq	$~(\num)
 836.Lcommon_\sym:
 837	call	interrupt_entry
 838	UNWIND_HINT_REGS indirect=1
 839	call	\do_sym	/* rdi points to pt_regs */
 840	jmp	ret_from_intr
 841END(\sym)
 842.endm
 843
 844/* Make sure APIC interrupt handlers end up in the irqentry section: */
 845#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
 846#define POP_SECTION_IRQENTRY	.popsection
 847
 848.macro apicinterrupt num sym do_sym
 849PUSH_SECTION_IRQENTRY
 850apicinterrupt3 \num \sym \do_sym
 851POP_SECTION_IRQENTRY
 852.endm
 853
 854#ifdef CONFIG_SMP
 855apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
 856apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
 857#endif
 858
 859#ifdef CONFIG_X86_UV
 860apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
 861#endif
 862
 863apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
 864apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
 865
 866#ifdef CONFIG_HAVE_KVM
 867apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
 868apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
 869apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
 870#endif
 871
 872#ifdef CONFIG_X86_MCE_THRESHOLD
 873apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
 874#endif
 875
 876#ifdef CONFIG_X86_MCE_AMD
 877apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
 878#endif
 879
 880#ifdef CONFIG_X86_THERMAL_VECTOR
 881apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
 882#endif
 883
 884#ifdef CONFIG_SMP
 885apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
 886apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
 887apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
 888#endif
 889
 890apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
 891apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
 892
 893#ifdef CONFIG_IRQ_WORK
 894apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
 895#endif
 896
 897/*
 898 * Exception entry points.
 899 */
 900#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
 901
 902.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
 903ENTRY(\sym)
 904	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
 905
 906	/* Sanity check */
 907	.if \shift_ist != -1 && \paranoid == 0
 908	.error "using shift_ist requires paranoid=1"
 909	.endif
 910
 911	ASM_CLAC
 912
 913	.if \has_error_code == 0
 914	pushq	$-1				/* ORIG_RAX: no syscall to restart */
 915	.endif
 916
 917	.if \paranoid == 1
 918	testb	$3, CS-ORIG_RAX(%rsp)		/* If coming from userspace, switch stacks */
 919	jnz	.Lfrom_usermode_switch_stack_\@
 920	.endif
 921
 922	.if \paranoid
 923	call	paranoid_entry
 924	.else
 925	call	error_entry
 926	.endif
 927	UNWIND_HINT_REGS
 928	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
 929
 930	.if \paranoid
 931	.if \shift_ist != -1
 932	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
 933	.else
 934	TRACE_IRQS_OFF
 935	.endif
 936	.endif
 937
 938	movq	%rsp, %rdi			/* pt_regs pointer */
 939
 940	.if \has_error_code
 941	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
 942	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
 943	.else
 944	xorl	%esi, %esi			/* no error code */
 945	.endif
 946
 947	.if \shift_ist != -1
 948	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
 949	.endif
 950
 951	call	\do_sym
 952
 953	.if \shift_ist != -1
 954	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
 955	.endif
 956
 957	/* these procedures expect "no swapgs" flag in ebx */
 958	.if \paranoid
 959	jmp	paranoid_exit
 960	.else
 961	jmp	error_exit
 962	.endif
 963
 964	.if \paranoid == 1
 965	/*
 966	 * Entry from userspace.  Switch stacks and treat it
 967	 * as a normal entry.  This means that paranoid handlers
 968	 * run in real process context if user_mode(regs).
 969	 */
 970.Lfrom_usermode_switch_stack_\@:
 971	call	error_entry
 972
 973	movq	%rsp, %rdi			/* pt_regs pointer */
 974
 975	.if \has_error_code
 976	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
 977	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
 978	.else
 979	xorl	%esi, %esi			/* no error code */
 980	.endif
 981
 982	call	\do_sym
 983
 984	jmp	error_exit			/* %ebx: no swapgs flag */
 985	.endif
 986END(\sym)
 987.endm
 988
 989idtentry divide_error			do_divide_error			has_error_code=0
 990idtentry overflow			do_overflow			has_error_code=0
 991idtentry bounds				do_bounds			has_error_code=0
 992idtentry invalid_op			do_invalid_op			has_error_code=0
 993idtentry device_not_available		do_device_not_available		has_error_code=0
 994idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
 995idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
 996idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
 997idtentry segment_not_present		do_segment_not_present		has_error_code=1
 998idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
 999idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
1000idtentry alignment_check		do_alignment_check		has_error_code=1
1001idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0
1002
1003
1004	/*
1005	 * Reload gs selector with exception handling
1006	 * edi:  new selector
1007	 */
1008ENTRY(native_load_gs_index)
1009	FRAME_BEGIN
1010	pushfq
1011	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1012	TRACE_IRQS_OFF
1013	SWAPGS
1014.Lgs_change:
1015	movl	%edi, %gs
10162:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1017	SWAPGS
1018	TRACE_IRQS_FLAGS (%rsp)
1019	popfq
1020	FRAME_END
1021	ret
1022ENDPROC(native_load_gs_index)
1023EXPORT_SYMBOL(native_load_gs_index)
1024
1025	_ASM_EXTABLE(.Lgs_change, bad_gs)
1026	.section .fixup, "ax"
1027	/* running with kernelgs */
1028bad_gs:
1029	SWAPGS					/* switch back to user gs */
1030.macro ZAP_GS
1031	/* This can't be a string because the preprocessor needs to see it. */
1032	movl $__USER_DS, %eax
1033	movl %eax, %gs
1034.endm
1035	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1036	xorl	%eax, %eax
1037	movl	%eax, %gs
1038	jmp	2b
1039	.previous
1040
1041/* Call softirq on interrupt stack. Interrupts are off. */
1042ENTRY(do_softirq_own_stack)
1043	pushq	%rbp
1044	mov	%rsp, %rbp
1045	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1046	call	__do_softirq
1047	LEAVE_IRQ_STACK regs=0
1048	leaveq
1049	ret
1050ENDPROC(do_softirq_own_stack)
1051
1052#ifdef CONFIG_XEN
1053idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1054
1055/*
1056 * A note on the "critical region" in our callback handler.
1057 * We want to avoid stacking callback handlers due to events occurring
1058 * during handling of the last event. To do this, we keep events disabled
1059 * until we've done all processing. HOWEVER, we must enable events before
1060 * popping the stack frame (can't be done atomically) and so it would still
1061 * be possible to get enough handler activations to overflow the stack.
1062 * Although unlikely, bugs of that kind are hard to track down, so we'd
1063 * like to avoid the possibility.
1064 * So, on entry to the handler we detect whether we interrupted an
1065 * existing activation in its critical region -- if so, we pop the current
1066 * activation and restart the handler using the previous one.
1067 */
1068ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */
1069
1070/*
1071 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1072 * see the correct pointer to the pt_regs
1073 */
1074	UNWIND_HINT_FUNC
1075	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1076	UNWIND_HINT_REGS
1077
1078	ENTER_IRQ_STACK old_rsp=%r10
1079	call	xen_evtchn_do_upcall
1080	LEAVE_IRQ_STACK
1081
1082#ifndef CONFIG_PREEMPT
1083	call	xen_maybe_preempt_hcall
1084#endif
1085	jmp	error_exit
1086END(xen_do_hypervisor_callback)
1087
1088/*
1089 * Hypervisor uses this for application faults while it executes.
1090 * We get here for two reasons:
1091 *  1. Fault while reloading DS, ES, FS or GS
1092 *  2. Fault while executing IRET
1093 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1094 * registers that could be reloaded and zeroed the others.
1095 * Category 2 we fix up by killing the current process. We cannot use the
1096 * normal Linux return path in this case because if we use the IRET hypercall
1097 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1098 * We distinguish between categories by comparing each saved segment register
1099 * with its current contents: any discrepancy means we in category 1.
1100 */
1101ENTRY(xen_failsafe_callback)
1102	UNWIND_HINT_EMPTY
1103	movl	%ds, %ecx
1104	cmpw	%cx, 0x10(%rsp)
1105	jne	1f
1106	movl	%es, %ecx
1107	cmpw	%cx, 0x18(%rsp)
1108	jne	1f
1109	movl	%fs, %ecx
1110	cmpw	%cx, 0x20(%rsp)
1111	jne	1f
1112	movl	%gs, %ecx
1113	cmpw	%cx, 0x28(%rsp)
1114	jne	1f
1115	/* All segments match their saved values => Category 2 (Bad IRET). */
1116	movq	(%rsp), %rcx
1117	movq	8(%rsp), %r11
1118	addq	$0x30, %rsp
1119	pushq	$0				/* RIP */
1120	UNWIND_HINT_IRET_REGS offset=8
1121	jmp	general_protection
11221:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1123	movq	(%rsp), %rcx
1124	movq	8(%rsp), %r11
1125	addq	$0x30, %rsp
1126	UNWIND_HINT_IRET_REGS
1127	pushq	$-1 /* orig_ax = -1 => not a system call */
1128	PUSH_AND_CLEAR_REGS
1129	ENCODE_FRAME_POINTER
1130	jmp	error_exit
1131END(xen_failsafe_callback)
1132
1133apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1134	xen_hvm_callback_vector xen_evtchn_do_upcall
1135
1136#endif /* CONFIG_XEN */
1137
1138#if IS_ENABLED(CONFIG_HYPERV)
1139apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1140	hyperv_callback_vector hyperv_vector_handler
1141
1142apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
1143	hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1144
1145apicinterrupt3 HYPERV_STIMER0_VECTOR \
1146	hv_stimer0_callback_vector hv_stimer0_vector_handler
1147#endif /* CONFIG_HYPERV */
1148
1149idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
1150idtentry int3			do_int3			has_error_code=0
1151idtentry stack_segment		do_stack_segment	has_error_code=1
1152
1153#ifdef CONFIG_XEN
1154idtentry xennmi			do_nmi			has_error_code=0
1155idtentry xendebug		do_debug		has_error_code=0
1156idtentry xenint3		do_int3			has_error_code=0
1157#endif
1158
1159idtentry general_protection	do_general_protection	has_error_code=1
1160idtentry page_fault		do_page_fault		has_error_code=1
1161
1162#ifdef CONFIG_KVM_GUEST
1163idtentry async_page_fault	do_async_page_fault	has_error_code=1
1164#endif
1165
1166#ifdef CONFIG_X86_MCE
1167idtentry machine_check		do_mce			has_error_code=0	paranoid=1
1168#endif
1169
1170/*
1171 * Save all registers in pt_regs, and switch gs if needed.
1172 * Use slow, but surefire "are we in kernel?" check.
1173 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1174 */
1175ENTRY(paranoid_entry)
1176	UNWIND_HINT_FUNC
1177	cld
1178	PUSH_AND_CLEAR_REGS save_ret=1
1179	ENCODE_FRAME_POINTER 8
1180	movl	$1, %ebx
1181	movl	$MSR_GS_BASE, %ecx
1182	rdmsr
1183	testl	%edx, %edx
1184	js	1f				/* negative -> in kernel */
1185	SWAPGS
1186	xorl	%ebx, %ebx
1187
11881:
1189	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1190
1191	ret
1192END(paranoid_entry)
1193
1194/*
1195 * "Paranoid" exit path from exception stack.  This is invoked
1196 * only on return from non-NMI IST interrupts that came
1197 * from kernel space.
1198 *
1199 * We may be returning to very strange contexts (e.g. very early
1200 * in syscall entry), so checking for preemption here would
1201 * be complicated.  Fortunately, we there's no good reason
1202 * to try to handle preemption here.
1203 *
1204 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1205 */
1206ENTRY(paranoid_exit)
1207	UNWIND_HINT_REGS
1208	DISABLE_INTERRUPTS(CLBR_ANY)
1209	TRACE_IRQS_OFF_DEBUG
1210	testl	%ebx, %ebx			/* swapgs needed? */
1211	jnz	.Lparanoid_exit_no_swapgs
1212	TRACE_IRQS_IRETQ
1213	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1214	SWAPGS_UNSAFE_STACK
1215	jmp	.Lparanoid_exit_restore
1216.Lparanoid_exit_no_swapgs:
1217	TRACE_IRQS_IRETQ_DEBUG
1218	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1219.Lparanoid_exit_restore:
1220	jmp restore_regs_and_return_to_kernel
1221END(paranoid_exit)
1222
1223/*
1224 * Save all registers in pt_regs, and switch GS if needed.
1225 * Return: EBX=0: came from user mode; EBX=1: otherwise
1226 */
1227ENTRY(error_entry)
1228	UNWIND_HINT_FUNC
1229	cld
1230	PUSH_AND_CLEAR_REGS save_ret=1
1231	ENCODE_FRAME_POINTER 8
1232	testb	$3, CS+8(%rsp)
1233	jz	.Lerror_kernelspace
1234
1235	/*
1236	 * We entered from user mode or we're pretending to have entered
1237	 * from user mode due to an IRET fault.
1238	 */
1239	SWAPGS
1240	/* We have user CR3.  Change to kernel CR3. */
1241	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1242
1243.Lerror_entry_from_usermode_after_swapgs:
1244	/* Put us onto the real thread stack. */
1245	popq	%r12				/* save return addr in %12 */
1246	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
1247	call	sync_regs
1248	movq	%rax, %rsp			/* switch stack */
1249	ENCODE_FRAME_POINTER
1250	pushq	%r12
1251
1252	/*
1253	 * We need to tell lockdep that IRQs are off.  We can't do this until
1254	 * we fix gsbase, and we should do it before enter_from_user_mode
1255	 * (which can take locks).
1256	 */
1257	TRACE_IRQS_OFF
1258	CALL_enter_from_user_mode
1259	ret
1260
1261.Lerror_entry_done:
1262	TRACE_IRQS_OFF
1263	ret
1264
1265	/*
1266	 * There are two places in the kernel that can potentially fault with
1267	 * usergs. Handle them here.  B stepping K8s sometimes report a
1268	 * truncated RIP for IRET exceptions returning to compat mode. Check
1269	 * for these here too.
1270	 */
1271.Lerror_kernelspace:
1272	incl	%ebx
1273	leaq	native_irq_return_iret(%rip), %rcx
1274	cmpq	%rcx, RIP+8(%rsp)
1275	je	.Lerror_bad_iret
1276	movl	%ecx, %eax			/* zero extend */
1277	cmpq	%rax, RIP+8(%rsp)
1278	je	.Lbstep_iret
1279	cmpq	$.Lgs_change, RIP+8(%rsp)
1280	jne	.Lerror_entry_done
1281
1282	/*
1283	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1284	 * gsbase and proceed.  We'll fix up the exception and land in
1285	 * .Lgs_change's error handler with kernel gsbase.
1286	 */
1287	SWAPGS
1288	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1289	jmp .Lerror_entry_done
1290
1291.Lbstep_iret:
1292	/* Fix truncated RIP */
1293	movq	%rcx, RIP+8(%rsp)
1294	/* fall through */
1295
1296.Lerror_bad_iret:
1297	/*
1298	 * We came from an IRET to user mode, so we have user
1299	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1300	 */
1301	SWAPGS
1302	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1303
1304	/*
1305	 * Pretend that the exception came from user mode: set up pt_regs
1306	 * as if we faulted immediately after IRET and clear EBX so that
1307	 * error_exit knows that we will be returning to user mode.
1308	 */
1309	mov	%rsp, %rdi
1310	call	fixup_bad_iret
1311	mov	%rax, %rsp
1312	decl	%ebx
1313	jmp	.Lerror_entry_from_usermode_after_swapgs
1314END(error_entry)
1315
1316
1317/*
1318 * On entry, EBX is a "return to kernel mode" flag:
1319 *   1: already in kernel mode, don't need SWAPGS
1320 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1321 */
1322ENTRY(error_exit)
1323	UNWIND_HINT_REGS
1324	DISABLE_INTERRUPTS(CLBR_ANY)
1325	TRACE_IRQS_OFF
1326	testl	%ebx, %ebx
1327	jnz	retint_kernel
1328	jmp	retint_user
1329END(error_exit)
1330
1331/*
1332 * Runs on exception stack.  Xen PV does not go through this path at all,
1333 * so we can use real assembly here.
1334 *
1335 * Registers:
1336 *	%r14: Used to save/restore the CR3 of the interrupted context
1337 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1338 */
1339ENTRY(nmi)
1340	UNWIND_HINT_IRET_REGS
1341
1342	/*
1343	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1344	 * the iretq it performs will take us out of NMI context.
1345	 * This means that we can have nested NMIs where the next
1346	 * NMI is using the top of the stack of the previous NMI. We
1347	 * can't let it execute because the nested NMI will corrupt the
1348	 * stack of the previous NMI. NMI handlers are not re-entrant
1349	 * anyway.
1350	 *
1351	 * To handle this case we do the following:
1352	 *  Check the a special location on the stack that contains
1353	 *  a variable that is set when NMIs are executing.
1354	 *  The interrupted task's stack is also checked to see if it
1355	 *  is an NMI stack.
1356	 *  If the variable is not set and the stack is not the NMI
1357	 *  stack then:
1358	 *    o Set the special variable on the stack
1359	 *    o Copy the interrupt frame into an "outermost" location on the
1360	 *      stack
1361	 *    o Copy the interrupt frame into an "iret" location on the stack
1362	 *    o Continue processing the NMI
1363	 *  If the variable is set or the previous stack is the NMI stack:
1364	 *    o Modify the "iret" location to jump to the repeat_nmi
1365	 *    o return back to the first NMI
1366	 *
1367	 * Now on exit of the first NMI, we first clear the stack variable
1368	 * The NMI stack will tell any nested NMIs at that point that it is
1369	 * nested. Then we pop the stack normally with iret, and if there was
1370	 * a nested NMI that updated the copy interrupt stack frame, a
1371	 * jump will be made to the repeat_nmi code that will handle the second
1372	 * NMI.
1373	 *
1374	 * However, espfix prevents us from directly returning to userspace
1375	 * with a single IRET instruction.  Similarly, IRET to user mode
1376	 * can fault.  We therefore handle NMIs from user space like
1377	 * other IST entries.
1378	 */
1379
1380	ASM_CLAC
1381
1382	/* Use %rdx as our temp variable throughout */
1383	pushq	%rdx
1384
1385	testb	$3, CS-RIP+8(%rsp)
1386	jz	.Lnmi_from_kernel
1387
1388	/*
1389	 * NMI from user mode.  We need to run on the thread stack, but we
1390	 * can't go through the normal entry paths: NMIs are masked, and
1391	 * we don't want to enable interrupts, because then we'll end
1392	 * up in an awkward situation in which IRQs are on but NMIs
1393	 * are off.
1394	 *
1395	 * We also must not push anything to the stack before switching
1396	 * stacks lest we corrupt the "NMI executing" variable.
1397	 */
1398
1399	swapgs
1400	cld
1401	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1402	movq	%rsp, %rdx
1403	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1404	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1405	pushq	5*8(%rdx)	/* pt_regs->ss */
1406	pushq	4*8(%rdx)	/* pt_regs->rsp */
1407	pushq	3*8(%rdx)	/* pt_regs->flags */
1408	pushq	2*8(%rdx)	/* pt_regs->cs */
1409	pushq	1*8(%rdx)	/* pt_regs->rip */
1410	UNWIND_HINT_IRET_REGS
1411	pushq   $-1		/* pt_regs->orig_ax */
1412	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1413	ENCODE_FRAME_POINTER
1414
1415	/*
1416	 * At this point we no longer need to worry about stack damage
1417	 * due to nesting -- we're on the normal thread stack and we're
1418	 * done with the NMI stack.
1419	 */
1420
1421	movq	%rsp, %rdi
1422	movq	$-1, %rsi
1423	call	do_nmi
1424
1425	/*
1426	 * Return back to user mode.  We must *not* do the normal exit
1427	 * work, because we don't want to enable interrupts.
1428	 */
1429	jmp	swapgs_restore_regs_and_return_to_usermode
1430
1431.Lnmi_from_kernel:
1432	/*
1433	 * Here's what our stack frame will look like:
1434	 * +---------------------------------------------------------+
1435	 * | original SS                                             |
1436	 * | original Return RSP                                     |
1437	 * | original RFLAGS                                         |
1438	 * | original CS                                             |
1439	 * | original RIP                                            |
1440	 * +---------------------------------------------------------+
1441	 * | temp storage for rdx                                    |
1442	 * +---------------------------------------------------------+
1443	 * | "NMI executing" variable                                |
1444	 * +---------------------------------------------------------+
1445	 * | iret SS          } Copied from "outermost" frame        |
1446	 * | iret Return RSP  } on each loop iteration; overwritten  |
1447	 * | iret RFLAGS      } by a nested NMI to force another     |
1448	 * | iret CS          } iteration if needed.                 |
1449	 * | iret RIP         }                                      |
1450	 * +---------------------------------------------------------+
1451	 * | outermost SS          } initialized in first_nmi;       |
1452	 * | outermost Return RSP  } will not be changed before      |
1453	 * | outermost RFLAGS      } NMI processing is done.         |
1454	 * | outermost CS          } Copied to "iret" frame on each  |
1455	 * | outermost RIP         } iteration.                      |
1456	 * +---------------------------------------------------------+
1457	 * | pt_regs                                                 |
1458	 * +---------------------------------------------------------+
1459	 *
1460	 * The "original" frame is used by hardware.  Before re-enabling
1461	 * NMIs, we need to be done with it, and we need to leave enough
1462	 * space for the asm code here.
1463	 *
1464	 * We return by executing IRET while RSP points to the "iret" frame.
1465	 * That will either return for real or it will loop back into NMI
1466	 * processing.
1467	 *
1468	 * The "outermost" frame is copied to the "iret" frame on each
1469	 * iteration of the loop, so each iteration starts with the "iret"
1470	 * frame pointing to the final return target.
1471	 */
1472
1473	/*
1474	 * Determine whether we're a nested NMI.
1475	 *
1476	 * If we interrupted kernel code between repeat_nmi and
1477	 * end_repeat_nmi, then we are a nested NMI.  We must not
1478	 * modify the "iret" frame because it's being written by
1479	 * the outer NMI.  That's okay; the outer NMI handler is
1480	 * about to about to call do_nmi anyway, so we can just
1481	 * resume the outer NMI.
1482	 */
1483
1484	movq	$repeat_nmi, %rdx
1485	cmpq	8(%rsp), %rdx
1486	ja	1f
1487	movq	$end_repeat_nmi, %rdx
1488	cmpq	8(%rsp), %rdx
1489	ja	nested_nmi_out
14901:
1491
1492	/*
1493	 * Now check "NMI executing".  If it's set, then we're nested.
1494	 * This will not detect if we interrupted an outer NMI just
1495	 * before IRET.
1496	 */
1497	cmpl	$1, -8(%rsp)
1498	je	nested_nmi
1499
1500	/*
1501	 * Now test if the previous stack was an NMI stack.  This covers
1502	 * the case where we interrupt an outer NMI after it clears
1503	 * "NMI executing" but before IRET.  We need to be careful, though:
1504	 * there is one case in which RSP could point to the NMI stack
1505	 * despite there being no NMI active: naughty userspace controls
1506	 * RSP at the very beginning of the SYSCALL targets.  We can
1507	 * pull a fast one on naughty userspace, though: we program
1508	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1509	 * if it controls the kernel's RSP.  We set DF before we clear
1510	 * "NMI executing".
1511	 */
1512	lea	6*8(%rsp), %rdx
1513	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1514	cmpq	%rdx, 4*8(%rsp)
1515	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1516	ja	first_nmi
1517
1518	subq	$EXCEPTION_STKSZ, %rdx
1519	cmpq	%rdx, 4*8(%rsp)
1520	/* If it is below the NMI stack, it is a normal NMI */
1521	jb	first_nmi
1522
1523	/* Ah, it is within the NMI stack. */
1524
1525	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1526	jz	first_nmi	/* RSP was user controlled. */
1527
1528	/* This is a nested NMI. */
1529
1530nested_nmi:
1531	/*
1532	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1533	 * iteration of NMI handling.
1534	 */
1535	subq	$8, %rsp
1536	leaq	-10*8(%rsp), %rdx
1537	pushq	$__KERNEL_DS
1538	pushq	%rdx
1539	pushfq
1540	pushq	$__KERNEL_CS
1541	pushq	$repeat_nmi
1542
1543	/* Put stack back */
1544	addq	$(6*8), %rsp
1545
1546nested_nmi_out:
1547	popq	%rdx
1548
1549	/* We are returning to kernel mode, so this cannot result in a fault. */
1550	iretq
1551
1552first_nmi:
1553	/* Restore rdx. */
1554	movq	(%rsp), %rdx
1555
1556	/* Make room for "NMI executing". */
1557	pushq	$0
1558
1559	/* Leave room for the "iret" frame */
1560	subq	$(5*8), %rsp
1561
1562	/* Copy the "original" frame to the "outermost" frame */
1563	.rept 5
1564	pushq	11*8(%rsp)
1565	.endr
1566	UNWIND_HINT_IRET_REGS
1567
1568	/* Everything up to here is safe from nested NMIs */
1569
1570#ifdef CONFIG_DEBUG_ENTRY
1571	/*
1572	 * For ease of testing, unmask NMIs right away.  Disabled by
1573	 * default because IRET is very expensive.
1574	 */
1575	pushq	$0		/* SS */
1576	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1577	addq	$8, (%rsp)	/* Fix up RSP */
1578	pushfq			/* RFLAGS */
1579	pushq	$__KERNEL_CS	/* CS */
1580	pushq	$1f		/* RIP */
1581	iretq			/* continues at repeat_nmi below */
1582	UNWIND_HINT_IRET_REGS
15831:
1584#endif
1585
1586repeat_nmi:
1587	/*
1588	 * If there was a nested NMI, the first NMI's iret will return
1589	 * here. But NMIs are still enabled and we can take another
1590	 * nested NMI. The nested NMI checks the interrupted RIP to see
1591	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1592	 * it will just return, as we are about to repeat an NMI anyway.
1593	 * This makes it safe to copy to the stack frame that a nested
1594	 * NMI will update.
1595	 *
1596	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1597	 * we're repeating an NMI, gsbase has the same value that it had on
1598	 * the first iteration.  paranoid_entry will load the kernel
1599	 * gsbase if needed before we call do_nmi.  "NMI executing"
1600	 * is zero.
1601	 */
1602	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1603
1604	/*
1605	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1606	 * here must not modify the "iret" frame while we're writing to
1607	 * it or it will end up containing garbage.
1608	 */
1609	addq	$(10*8), %rsp
1610	.rept 5
1611	pushq	-6*8(%rsp)
1612	.endr
1613	subq	$(5*8), %rsp
1614end_repeat_nmi:
1615
1616	/*
1617	 * Everything below this point can be preempted by a nested NMI.
1618	 * If this happens, then the inner NMI will change the "iret"
1619	 * frame to point back to repeat_nmi.
1620	 */
1621	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1622
1623	/*
1624	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1625	 * as we should not be calling schedule in NMI context.
1626	 * Even with normal interrupts enabled. An NMI should not be
1627	 * setting NEED_RESCHED or anything that normal interrupts and
1628	 * exceptions might do.
1629	 */
1630	call	paranoid_entry
1631	UNWIND_HINT_REGS
1632
1633	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1634	movq	%rsp, %rdi
1635	movq	$-1, %rsi
1636	call	do_nmi
1637
1638	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1639
1640	testl	%ebx, %ebx			/* swapgs needed? */
1641	jnz	nmi_restore
1642nmi_swapgs:
1643	SWAPGS_UNSAFE_STACK
1644nmi_restore:
1645	POP_REGS
1646
1647	/*
1648	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1649	 * at the "iret" frame.
1650	 */
1651	addq	$6*8, %rsp
1652
1653	/*
1654	 * Clear "NMI executing".  Set DF first so that we can easily
1655	 * distinguish the remaining code between here and IRET from
1656	 * the SYSCALL entry and exit paths.
1657	 *
1658	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1659	 * this code when I had the misapprehension that Xen PV supported
1660	 * NMIs, and Xen PV would break that approach.
1661	 */
1662	std
1663	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1664
1665	/*
1666	 * iretq reads the "iret" frame and exits the NMI stack in a
1667	 * single instruction.  We are returning to kernel mode, so this
1668	 * cannot result in a fault.  Similarly, we don't need to worry
1669	 * about espfix64 on the way back to kernel mode.
1670	 */
1671	iretq
1672END(nmi)
1673
1674ENTRY(ignore_sysret)
1675	UNWIND_HINT_EMPTY
1676	mov	$-ENOSYS, %eax
1677	sysret
1678END(ignore_sysret)
1679
1680ENTRY(rewind_stack_do_exit)
1681	UNWIND_HINT_FUNC
1682	/* Prevent any naive code from trying to unwind to our caller. */
1683	xorl	%ebp, %ebp
1684
1685	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1686	leaq	-PTREGS_SIZE(%rax), %rsp
1687	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1688
1689	call	do_exit
1690END(rewind_stack_do_exit)