Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS MMU handling in the KVM module.
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
  12#include <linux/highmem.h>
  13#include <linux/kvm_host.h>
  14#include <linux/uaccess.h>
  15#include <asm/mmu_context.h>
  16#include <asm/pgalloc.h>
  17
  18/*
  19 * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
  20 * for which pages need to be cached.
  21 */
  22#if defined(__PAGETABLE_PMD_FOLDED)
  23#define KVM_MMU_CACHE_MIN_PAGES 1
  24#else
  25#define KVM_MMU_CACHE_MIN_PAGES 2
  26#endif
  27
  28static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  29				  int min, int max)
  30{
  31	void *page;
  32
  33	BUG_ON(max > KVM_NR_MEM_OBJS);
  34	if (cache->nobjs >= min)
  35		return 0;
  36	while (cache->nobjs < max) {
  37		page = (void *)__get_free_page(GFP_KERNEL);
  38		if (!page)
  39			return -ENOMEM;
  40		cache->objects[cache->nobjs++] = page;
  41	}
  42	return 0;
  43}
  44
  45static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  46{
  47	while (mc->nobjs)
  48		free_page((unsigned long)mc->objects[--mc->nobjs]);
  49}
  50
  51static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  52{
  53	void *p;
  54
  55	BUG_ON(!mc || !mc->nobjs);
  56	p = mc->objects[--mc->nobjs];
  57	return p;
  58}
  59
  60void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  61{
  62	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
  63}
  64
  65/**
  66 * kvm_pgd_init() - Initialise KVM GPA page directory.
  67 * @page:	Pointer to page directory (PGD) for KVM GPA.
  68 *
  69 * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
  70 * representing no mappings. This is similar to pgd_init(), however it
  71 * initialises all the page directory pointers, not just the ones corresponding
  72 * to the userland address space (since it is for the guest physical address
  73 * space rather than a virtual address space).
  74 */
  75static void kvm_pgd_init(void *page)
  76{
  77	unsigned long *p, *end;
  78	unsigned long entry;
  79
  80#ifdef __PAGETABLE_PMD_FOLDED
  81	entry = (unsigned long)invalid_pte_table;
  82#else
  83	entry = (unsigned long)invalid_pmd_table;
  84#endif
  85
  86	p = (unsigned long *)page;
  87	end = p + PTRS_PER_PGD;
  88
  89	do {
  90		p[0] = entry;
  91		p[1] = entry;
  92		p[2] = entry;
  93		p[3] = entry;
  94		p[4] = entry;
  95		p += 8;
  96		p[-3] = entry;
  97		p[-2] = entry;
  98		p[-1] = entry;
  99	} while (p != end);
 100}
 101
 102/**
 103 * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
 104 *
 105 * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
 106 * to host physical page mappings.
 107 *
 108 * Returns:	Pointer to new KVM GPA page directory.
 109 *		NULL on allocation failure.
 110 */
 111pgd_t *kvm_pgd_alloc(void)
 112{
 113	pgd_t *ret;
 114
 115	ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER);
 116	if (ret)
 117		kvm_pgd_init(ret);
 118
 119	return ret;
 120}
 121
 122/**
 123 * kvm_mips_walk_pgd() - Walk page table with optional allocation.
 124 * @pgd:	Page directory pointer.
 125 * @addr:	Address to index page table using.
 126 * @cache:	MMU page cache to allocate new page tables from, or NULL.
 127 *
 128 * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
 129 * address @addr. If page tables don't exist for @addr, they will be created
 130 * from the MMU cache if @cache is not NULL.
 131 *
 132 * Returns:	Pointer to pte_t corresponding to @addr.
 133 *		NULL if a page table doesn't exist for @addr and !@cache.
 134 *		NULL if a page table allocation failed.
 135 */
 136static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
 137				unsigned long addr)
 138{
 139	pud_t *pud;
 140	pmd_t *pmd;
 141
 142	pgd += pgd_index(addr);
 143	if (pgd_none(*pgd)) {
 144		/* Not used on MIPS yet */
 145		BUG();
 146		return NULL;
 147	}
 148	pud = pud_offset(pgd, addr);
 149	if (pud_none(*pud)) {
 150		pmd_t *new_pmd;
 151
 152		if (!cache)
 153			return NULL;
 154		new_pmd = mmu_memory_cache_alloc(cache);
 155		pmd_init((unsigned long)new_pmd,
 156			 (unsigned long)invalid_pte_table);
 157		pud_populate(NULL, pud, new_pmd);
 158	}
 159	pmd = pmd_offset(pud, addr);
 160	if (pmd_none(*pmd)) {
 161		pte_t *new_pte;
 162
 163		if (!cache)
 164			return NULL;
 165		new_pte = mmu_memory_cache_alloc(cache);
 166		clear_page(new_pte);
 167		pmd_populate_kernel(NULL, pmd, new_pte);
 168	}
 169	return pte_offset(pmd, addr);
 170}
 171
 172/* Caller must hold kvm->mm_lock */
 173static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
 174				   struct kvm_mmu_memory_cache *cache,
 175				   unsigned long addr)
 176{
 177	return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
 178}
 179
 180/*
 181 * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
 182 * Flush a range of guest physical address space from the VM's GPA page tables.
 183 */
 184
 185static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
 186				   unsigned long end_gpa)
 187{
 188	int i_min = __pte_offset(start_gpa);
 189	int i_max = __pte_offset(end_gpa);
 190	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
 191	int i;
 192
 193	for (i = i_min; i <= i_max; ++i) {
 194		if (!pte_present(pte[i]))
 195			continue;
 196
 197		set_pte(pte + i, __pte(0));
 198	}
 199	return safe_to_remove;
 200}
 201
 202static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
 203				   unsigned long end_gpa)
 204{
 205	pte_t *pte;
 206	unsigned long end = ~0ul;
 207	int i_min = __pmd_offset(start_gpa);
 208	int i_max = __pmd_offset(end_gpa);
 209	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
 210	int i;
 211
 212	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
 213		if (!pmd_present(pmd[i]))
 214			continue;
 215
 216		pte = pte_offset(pmd + i, 0);
 217		if (i == i_max)
 218			end = end_gpa;
 219
 220		if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
 221			pmd_clear(pmd + i);
 222			pte_free_kernel(NULL, pte);
 223		} else {
 224			safe_to_remove = false;
 225		}
 226	}
 227	return safe_to_remove;
 228}
 229
 230static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
 231				   unsigned long end_gpa)
 232{
 233	pmd_t *pmd;
 234	unsigned long end = ~0ul;
 235	int i_min = __pud_offset(start_gpa);
 236	int i_max = __pud_offset(end_gpa);
 237	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
 238	int i;
 239
 240	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
 241		if (!pud_present(pud[i]))
 242			continue;
 243
 244		pmd = pmd_offset(pud + i, 0);
 245		if (i == i_max)
 246			end = end_gpa;
 247
 248		if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
 249			pud_clear(pud + i);
 250			pmd_free(NULL, pmd);
 251		} else {
 252			safe_to_remove = false;
 253		}
 254	}
 255	return safe_to_remove;
 256}
 257
 258static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
 259				   unsigned long end_gpa)
 260{
 261	pud_t *pud;
 262	unsigned long end = ~0ul;
 263	int i_min = pgd_index(start_gpa);
 264	int i_max = pgd_index(end_gpa);
 265	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
 266	int i;
 267
 268	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
 269		if (!pgd_present(pgd[i]))
 270			continue;
 271
 272		pud = pud_offset(pgd + i, 0);
 273		if (i == i_max)
 274			end = end_gpa;
 275
 276		if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
 277			pgd_clear(pgd + i);
 278			pud_free(NULL, pud);
 279		} else {
 280			safe_to_remove = false;
 281		}
 282	}
 283	return safe_to_remove;
 284}
 285
 286/**
 287 * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
 288 * @kvm:	KVM pointer.
 289 * @start_gfn:	Guest frame number of first page in GPA range to flush.
 290 * @end_gfn:	Guest frame number of last page in GPA range to flush.
 291 *
 292 * Flushes a range of GPA mappings from the GPA page tables.
 293 *
 294 * The caller must hold the @kvm->mmu_lock spinlock.
 295 *
 296 * Returns:	Whether its safe to remove the top level page directory because
 297 *		all lower levels have been removed.
 298 */
 299bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
 300{
 301	return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
 302				      start_gfn << PAGE_SHIFT,
 303				      end_gfn << PAGE_SHIFT);
 304}
 305
 306#define BUILD_PTE_RANGE_OP(name, op)					\
 307static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start,	\
 308				 unsigned long end)			\
 309{									\
 310	int ret = 0;							\
 311	int i_min = __pte_offset(start);				\
 312	int i_max = __pte_offset(end);					\
 313	int i;								\
 314	pte_t old, new;							\
 315									\
 316	for (i = i_min; i <= i_max; ++i) {				\
 317		if (!pte_present(pte[i]))				\
 318			continue;					\
 319									\
 320		old = pte[i];						\
 321		new = op(old);						\
 322		if (pte_val(new) == pte_val(old))			\
 323			continue;					\
 324		set_pte(pte + i, new);					\
 325		ret = 1;						\
 326	}								\
 327	return ret;							\
 328}									\
 329									\
 330/* returns true if anything was done */					\
 331static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start,	\
 332				 unsigned long end)			\
 333{									\
 334	int ret = 0;							\
 335	pte_t *pte;							\
 336	unsigned long cur_end = ~0ul;					\
 337	int i_min = __pmd_offset(start);				\
 338	int i_max = __pmd_offset(end);					\
 339	int i;								\
 340									\
 341	for (i = i_min; i <= i_max; ++i, start = 0) {			\
 342		if (!pmd_present(pmd[i]))				\
 343			continue;					\
 344									\
 345		pte = pte_offset(pmd + i, 0);				\
 346		if (i == i_max)						\
 347			cur_end = end;					\
 348									\
 349		ret |= kvm_mips_##name##_pte(pte, start, cur_end);	\
 350	}								\
 351	return ret;							\
 352}									\
 353									\
 354static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start,	\
 355				 unsigned long end)			\
 356{									\
 357	int ret = 0;							\
 358	pmd_t *pmd;							\
 359	unsigned long cur_end = ~0ul;					\
 360	int i_min = __pud_offset(start);				\
 361	int i_max = __pud_offset(end);					\
 362	int i;								\
 363									\
 364	for (i = i_min; i <= i_max; ++i, start = 0) {			\
 365		if (!pud_present(pud[i]))				\
 366			continue;					\
 367									\
 368		pmd = pmd_offset(pud + i, 0);				\
 369		if (i == i_max)						\
 370			cur_end = end;					\
 371									\
 372		ret |= kvm_mips_##name##_pmd(pmd, start, cur_end);	\
 373	}								\
 374	return ret;							\
 375}									\
 376									\
 377static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start,	\
 378				 unsigned long end)			\
 379{									\
 380	int ret = 0;							\
 381	pud_t *pud;							\
 382	unsigned long cur_end = ~0ul;					\
 383	int i_min = pgd_index(start);					\
 384	int i_max = pgd_index(end);					\
 385	int i;								\
 386									\
 387	for (i = i_min; i <= i_max; ++i, start = 0) {			\
 388		if (!pgd_present(pgd[i]))				\
 389			continue;					\
 390									\
 391		pud = pud_offset(pgd + i, 0);				\
 392		if (i == i_max)						\
 393			cur_end = end;					\
 394									\
 395		ret |= kvm_mips_##name##_pud(pud, start, cur_end);	\
 396	}								\
 397	return ret;							\
 398}
 399
 400/*
 401 * kvm_mips_mkclean_gpa_pt.
 402 * Mark a range of guest physical address space clean (writes fault) in the VM's
 403 * GPA page table to allow dirty page tracking.
 404 */
 405
 406BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
 407
 408/**
 409 * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
 410 * @kvm:	KVM pointer.
 411 * @start_gfn:	Guest frame number of first page in GPA range to flush.
 412 * @end_gfn:	Guest frame number of last page in GPA range to flush.
 413 *
 414 * Make a range of GPA mappings clean so that guest writes will fault and
 415 * trigger dirty page logging.
 416 *
 417 * The caller must hold the @kvm->mmu_lock spinlock.
 418 *
 419 * Returns:	Whether any GPA mappings were modified, which would require
 420 *		derived mappings (GVA page tables & TLB enties) to be
 421 *		invalidated.
 422 */
 423int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
 424{
 425	return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
 426				    start_gfn << PAGE_SHIFT,
 427				    end_gfn << PAGE_SHIFT);
 428}
 429
 430/**
 431 * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
 432 * @kvm:	The KVM pointer
 433 * @slot:	The memory slot associated with mask
 434 * @gfn_offset:	The gfn offset in memory slot
 435 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 436 *		slot to be write protected
 437 *
 438 * Walks bits set in mask write protects the associated pte's. Caller must
 439 * acquire @kvm->mmu_lock.
 440 */
 441void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
 442		struct kvm_memory_slot *slot,
 443		gfn_t gfn_offset, unsigned long mask)
 444{
 445	gfn_t base_gfn = slot->base_gfn + gfn_offset;
 446	gfn_t start = base_gfn +  __ffs(mask);
 447	gfn_t end = base_gfn + __fls(mask);
 448
 449	kvm_mips_mkclean_gpa_pt(kvm, start, end);
 450}
 451
 452/*
 453 * kvm_mips_mkold_gpa_pt.
 454 * Mark a range of guest physical address space old (all accesses fault) in the
 455 * VM's GPA page table to allow detection of commonly used pages.
 456 */
 457
 458BUILD_PTE_RANGE_OP(mkold, pte_mkold)
 459
 460static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
 461				 gfn_t end_gfn)
 462{
 463	return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
 464				  start_gfn << PAGE_SHIFT,
 465				  end_gfn << PAGE_SHIFT);
 466}
 467
 468static int handle_hva_to_gpa(struct kvm *kvm,
 469			     unsigned long start,
 470			     unsigned long end,
 471			     int (*handler)(struct kvm *kvm, gfn_t gfn,
 472					    gpa_t gfn_end,
 473					    struct kvm_memory_slot *memslot,
 474					    void *data),
 475			     void *data)
 476{
 477	struct kvm_memslots *slots;
 478	struct kvm_memory_slot *memslot;
 479	int ret = 0;
 480
 481	slots = kvm_memslots(kvm);
 482
 483	/* we only care about the pages that the guest sees */
 484	kvm_for_each_memslot(memslot, slots) {
 485		unsigned long hva_start, hva_end;
 486		gfn_t gfn, gfn_end;
 487
 488		hva_start = max(start, memslot->userspace_addr);
 489		hva_end = min(end, memslot->userspace_addr +
 490					(memslot->npages << PAGE_SHIFT));
 491		if (hva_start >= hva_end)
 492			continue;
 493
 494		/*
 495		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
 496		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
 497		 */
 498		gfn = hva_to_gfn_memslot(hva_start, memslot);
 499		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
 500
 501		ret |= handler(kvm, gfn, gfn_end, memslot, data);
 502	}
 503
 504	return ret;
 505}
 506
 507
 508static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
 509				 struct kvm_memory_slot *memslot, void *data)
 510{
 511	kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end);
 512	return 1;
 513}
 514
 515int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
 516{
 517	unsigned long end = hva + PAGE_SIZE;
 518
 519	handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
 520
 521	kvm_mips_callbacks->flush_shadow_all(kvm);
 522	return 0;
 523}
 524
 525int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
 526{
 527	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
 528
 529	kvm_mips_callbacks->flush_shadow_all(kvm);
 530	return 0;
 531}
 532
 533static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
 534				struct kvm_memory_slot *memslot, void *data)
 535{
 536	gpa_t gpa = gfn << PAGE_SHIFT;
 537	pte_t hva_pte = *(pte_t *)data;
 538	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
 539	pte_t old_pte;
 540
 541	if (!gpa_pte)
 542		return 0;
 543
 544	/* Mapping may need adjusting depending on memslot flags */
 545	old_pte = *gpa_pte;
 546	if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
 547		hva_pte = pte_mkclean(hva_pte);
 548	else if (memslot->flags & KVM_MEM_READONLY)
 549		hva_pte = pte_wrprotect(hva_pte);
 550
 551	set_pte(gpa_pte, hva_pte);
 552
 553	/* Replacing an absent or old page doesn't need flushes */
 554	if (!pte_present(old_pte) || !pte_young(old_pte))
 555		return 0;
 556
 557	/* Pages swapped, aged, moved, or cleaned require flushes */
 558	return !pte_present(hva_pte) ||
 559	       !pte_young(hva_pte) ||
 560	       pte_pfn(old_pte) != pte_pfn(hva_pte) ||
 561	       (pte_dirty(old_pte) && !pte_dirty(hva_pte));
 562}
 563
 564void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
 565{
 566	unsigned long end = hva + PAGE_SIZE;
 567	int ret;
 568
 569	ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte);
 570	if (ret)
 571		kvm_mips_callbacks->flush_shadow_all(kvm);
 572}
 573
 574static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
 575			       struct kvm_memory_slot *memslot, void *data)
 576{
 577	return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end);
 578}
 579
 580static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
 581				    struct kvm_memory_slot *memslot, void *data)
 582{
 583	gpa_t gpa = gfn << PAGE_SHIFT;
 584	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
 585
 586	if (!gpa_pte)
 587		return 0;
 588	return pte_young(*gpa_pte);
 589}
 590
 591int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
 592{
 593	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
 594}
 595
 596int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
 597{
 598	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
 599}
 600
 601/**
 602 * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
 603 * @vcpu:		VCPU pointer.
 604 * @gpa:		Guest physical address of fault.
 605 * @write_fault:	Whether the fault was due to a write.
 606 * @out_entry:		New PTE for @gpa (written on success unless NULL).
 607 * @out_buddy:		New PTE for @gpa's buddy (written on success unless
 608 *			NULL).
 609 *
 610 * Perform fast path GPA fault handling, doing all that can be done without
 611 * calling into KVM. This handles marking old pages young (for idle page
 612 * tracking), and dirtying of clean pages (for dirty page logging).
 613 *
 614 * Returns:	0 on success, in which case we can update derived mappings and
 615 *		resume guest execution.
 616 *		-EFAULT on failure due to absent GPA mapping or write to
 617 *		read-only page, in which case KVM must be consulted.
 618 */
 619static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
 620				   bool write_fault,
 621				   pte_t *out_entry, pte_t *out_buddy)
 622{
 623	struct kvm *kvm = vcpu->kvm;
 624	gfn_t gfn = gpa >> PAGE_SHIFT;
 625	pte_t *ptep;
 626	kvm_pfn_t pfn = 0;	/* silence bogus GCC warning */
 627	bool pfn_valid = false;
 628	int ret = 0;
 629
 630	spin_lock(&kvm->mmu_lock);
 631
 632	/* Fast path - just check GPA page table for an existing entry */
 633	ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
 634	if (!ptep || !pte_present(*ptep)) {
 635		ret = -EFAULT;
 636		goto out;
 637	}
 638
 639	/* Track access to pages marked old */
 640	if (!pte_young(*ptep)) {
 641		set_pte(ptep, pte_mkyoung(*ptep));
 642		pfn = pte_pfn(*ptep);
 643		pfn_valid = true;
 644		/* call kvm_set_pfn_accessed() after unlock */
 645	}
 646	if (write_fault && !pte_dirty(*ptep)) {
 647		if (!pte_write(*ptep)) {
 648			ret = -EFAULT;
 649			goto out;
 650		}
 651
 652		/* Track dirtying of writeable pages */
 653		set_pte(ptep, pte_mkdirty(*ptep));
 654		pfn = pte_pfn(*ptep);
 655		mark_page_dirty(kvm, gfn);
 656		kvm_set_pfn_dirty(pfn);
 657	}
 658
 659	if (out_entry)
 660		*out_entry = *ptep;
 661	if (out_buddy)
 662		*out_buddy = *ptep_buddy(ptep);
 663
 664out:
 665	spin_unlock(&kvm->mmu_lock);
 666	if (pfn_valid)
 667		kvm_set_pfn_accessed(pfn);
 668	return ret;
 669}
 670
 671/**
 672 * kvm_mips_map_page() - Map a guest physical page.
 673 * @vcpu:		VCPU pointer.
 674 * @gpa:		Guest physical address of fault.
 675 * @write_fault:	Whether the fault was due to a write.
 676 * @out_entry:		New PTE for @gpa (written on success unless NULL).
 677 * @out_buddy:		New PTE for @gpa's buddy (written on success unless
 678 *			NULL).
 679 *
 680 * Handle GPA faults by creating a new GPA mapping (or updating an existing
 681 * one).
 682 *
 683 * This takes care of marking pages young or dirty (idle/dirty page tracking),
 684 * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
 685 * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
 686 * caller.
 687 *
 688 * Returns:	0 on success, in which case the caller may use the @out_entry
 689 *		and @out_buddy PTEs to update derived mappings and resume guest
 690 *		execution.
 691 *		-EFAULT if there is no memory region at @gpa or a write was
 692 *		attempted to a read-only memory region. This is usually handled
 693 *		as an MMIO access.
 694 */
 695static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
 696			     bool write_fault,
 697			     pte_t *out_entry, pte_t *out_buddy)
 698{
 699	struct kvm *kvm = vcpu->kvm;
 700	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
 701	gfn_t gfn = gpa >> PAGE_SHIFT;
 702	int srcu_idx, err;
 703	kvm_pfn_t pfn;
 704	pte_t *ptep, entry, old_pte;
 705	bool writeable;
 706	unsigned long prot_bits;
 707	unsigned long mmu_seq;
 708
 709	/* Try the fast path to handle old / clean pages */
 710	srcu_idx = srcu_read_lock(&kvm->srcu);
 711	err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
 712				      out_buddy);
 713	if (!err)
 714		goto out;
 715
 716	/* We need a minimum of cached pages ready for page table creation */
 717	err = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
 718				     KVM_NR_MEM_OBJS);
 719	if (err)
 720		goto out;
 721
 722retry:
 723	/*
 724	 * Used to check for invalidations in progress, of the pfn that is
 725	 * returned by pfn_to_pfn_prot below.
 726	 */
 727	mmu_seq = kvm->mmu_notifier_seq;
 728	/*
 729	 * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in
 730	 * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
 731	 * risk the page we get a reference to getting unmapped before we have a
 732	 * chance to grab the mmu_lock without mmu_notifier_retry() noticing.
 733	 *
 734	 * This smp_rmb() pairs with the effective smp_wmb() of the combination
 735	 * of the pte_unmap_unlock() after the PTE is zapped, and the
 736	 * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
 737	 * mmu_notifier_seq is incremented.
 738	 */
 739	smp_rmb();
 740
 741	/* Slow path - ask KVM core whether we can access this GPA */
 742	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
 743	if (is_error_noslot_pfn(pfn)) {
 744		err = -EFAULT;
 745		goto out;
 746	}
 747
 748	spin_lock(&kvm->mmu_lock);
 749	/* Check if an invalidation has taken place since we got pfn */
 750	if (mmu_notifier_retry(kvm, mmu_seq)) {
 751		/*
 752		 * This can happen when mappings are changed asynchronously, but
 753		 * also synchronously if a COW is triggered by
 754		 * gfn_to_pfn_prot().
 755		 */
 756		spin_unlock(&kvm->mmu_lock);
 757		kvm_release_pfn_clean(pfn);
 758		goto retry;
 759	}
 760
 761	/* Ensure page tables are allocated */
 762	ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
 763
 764	/* Set up the PTE */
 765	prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
 766	if (writeable) {
 767		prot_bits |= _PAGE_WRITE;
 768		if (write_fault) {
 769			prot_bits |= __WRITEABLE;
 770			mark_page_dirty(kvm, gfn);
 771			kvm_set_pfn_dirty(pfn);
 772		}
 773	}
 774	entry = pfn_pte(pfn, __pgprot(prot_bits));
 775
 776	/* Write the PTE */
 777	old_pte = *ptep;
 778	set_pte(ptep, entry);
 779
 780	err = 0;
 781	if (out_entry)
 782		*out_entry = *ptep;
 783	if (out_buddy)
 784		*out_buddy = *ptep_buddy(ptep);
 785
 786	spin_unlock(&kvm->mmu_lock);
 787	kvm_release_pfn_clean(pfn);
 788	kvm_set_pfn_accessed(pfn);
 789out:
 790	srcu_read_unlock(&kvm->srcu, srcu_idx);
 791	return err;
 792}
 793
 794static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu,
 795					unsigned long addr)
 796{
 797	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
 798	pgd_t *pgdp;
 799	int ret;
 800
 801	/* We need a minimum of cached pages ready for page table creation */
 802	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
 803				     KVM_NR_MEM_OBJS);
 804	if (ret)
 805		return NULL;
 806
 807	if (KVM_GUEST_KERNEL_MODE(vcpu))
 808		pgdp = vcpu->arch.guest_kernel_mm.pgd;
 809	else
 810		pgdp = vcpu->arch.guest_user_mm.pgd;
 811
 812	return kvm_mips_walk_pgd(pgdp, memcache, addr);
 813}
 814
 815void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr,
 816				  bool user)
 817{
 818	pgd_t *pgdp;
 819	pte_t *ptep;
 820
 821	addr &= PAGE_MASK << 1;
 822
 823	pgdp = vcpu->arch.guest_kernel_mm.pgd;
 824	ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
 825	if (ptep) {
 826		ptep[0] = pfn_pte(0, __pgprot(0));
 827		ptep[1] = pfn_pte(0, __pgprot(0));
 828	}
 829
 830	if (user) {
 831		pgdp = vcpu->arch.guest_user_mm.pgd;
 832		ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
 833		if (ptep) {
 834			ptep[0] = pfn_pte(0, __pgprot(0));
 835			ptep[1] = pfn_pte(0, __pgprot(0));
 836		}
 837	}
 838}
 839
 840/*
 841 * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
 842 * Flush a range of guest physical address space from the VM's GPA page tables.
 843 */
 844
 845static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
 846				   unsigned long end_gva)
 847{
 848	int i_min = __pte_offset(start_gva);
 849	int i_max = __pte_offset(end_gva);
 850	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
 851	int i;
 852
 853	/*
 854	 * There's no freeing to do, so there's no point clearing individual
 855	 * entries unless only part of the last level page table needs flushing.
 856	 */
 857	if (safe_to_remove)
 858		return true;
 859
 860	for (i = i_min; i <= i_max; ++i) {
 861		if (!pte_present(pte[i]))
 862			continue;
 863
 864		set_pte(pte + i, __pte(0));
 865	}
 866	return false;
 867}
 868
 869static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
 870				   unsigned long end_gva)
 871{
 872	pte_t *pte;
 873	unsigned long end = ~0ul;
 874	int i_min = __pmd_offset(start_gva);
 875	int i_max = __pmd_offset(end_gva);
 876	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
 877	int i;
 878
 879	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
 880		if (!pmd_present(pmd[i]))
 881			continue;
 882
 883		pte = pte_offset(pmd + i, 0);
 884		if (i == i_max)
 885			end = end_gva;
 886
 887		if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
 888			pmd_clear(pmd + i);
 889			pte_free_kernel(NULL, pte);
 890		} else {
 891			safe_to_remove = false;
 892		}
 893	}
 894	return safe_to_remove;
 895}
 896
 897static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
 898				   unsigned long end_gva)
 899{
 900	pmd_t *pmd;
 901	unsigned long end = ~0ul;
 902	int i_min = __pud_offset(start_gva);
 903	int i_max = __pud_offset(end_gva);
 904	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
 905	int i;
 906
 907	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
 908		if (!pud_present(pud[i]))
 909			continue;
 910
 911		pmd = pmd_offset(pud + i, 0);
 912		if (i == i_max)
 913			end = end_gva;
 914
 915		if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
 916			pud_clear(pud + i);
 917			pmd_free(NULL, pmd);
 918		} else {
 919			safe_to_remove = false;
 920		}
 921	}
 922	return safe_to_remove;
 923}
 924
 925static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
 926				   unsigned long end_gva)
 927{
 928	pud_t *pud;
 929	unsigned long end = ~0ul;
 930	int i_min = pgd_index(start_gva);
 931	int i_max = pgd_index(end_gva);
 932	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
 933	int i;
 934
 935	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
 936		if (!pgd_present(pgd[i]))
 937			continue;
 938
 939		pud = pud_offset(pgd + i, 0);
 940		if (i == i_max)
 941			end = end_gva;
 942
 943		if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
 944			pgd_clear(pgd + i);
 945			pud_free(NULL, pud);
 946		} else {
 947			safe_to_remove = false;
 948		}
 949	}
 950	return safe_to_remove;
 951}
 952
 953void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
 954{
 955	if (flags & KMF_GPA) {
 956		/* all of guest virtual address space could be affected */
 957		if (flags & KMF_KERN)
 958			/* useg, kseg0, seg2/3 */
 959			kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
 960		else
 961			/* useg */
 962			kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
 963	} else {
 964		/* useg */
 965		kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
 966
 967		/* kseg2/3 */
 968		if (flags & KMF_KERN)
 969			kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
 970	}
 971}
 972
 973static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte)
 974{
 975	/*
 976	 * Don't leak writeable but clean entries from GPA page tables. We don't
 977	 * want the normal Linux tlbmod handler to handle dirtying when KVM
 978	 * accesses guest memory.
 979	 */
 980	if (!pte_dirty(pte))
 981		pte = pte_wrprotect(pte);
 982
 983	return pte;
 984}
 985
 986static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo)
 987{
 988	/* Guest EntryLo overrides host EntryLo */
 989	if (!(entrylo & ENTRYLO_D))
 990		pte = pte_mkclean(pte);
 991
 992	return kvm_mips_gpa_pte_to_gva_unmapped(pte);
 993}
 994
 995#ifdef CONFIG_KVM_MIPS_VZ
 996int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
 997				      struct kvm_vcpu *vcpu,
 998				      bool write_fault)
 999{
1000	int ret;
1001
1002	ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
1003	if (ret)
1004		return ret;
1005
1006	/* Invalidate this entry in the TLB */
1007	return kvm_vz_host_tlb_inv(vcpu, badvaddr);
1008}
1009#endif
1010
1011/* XXXKYMA: Must be called with interrupts disabled */
1012int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
1013				    struct kvm_vcpu *vcpu,
1014				    bool write_fault)
1015{
1016	unsigned long gpa;
1017	pte_t pte_gpa[2], *ptep_gva;
1018	int idx;
1019
1020	if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
1021		kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
1022		kvm_mips_dump_host_tlbs();
1023		return -1;
1024	}
1025
1026	/* Get the GPA page table entry */
1027	gpa = KVM_GUEST_CPHYSADDR(badvaddr);
1028	idx = (badvaddr >> PAGE_SHIFT) & 1;
1029	if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx],
1030			      &pte_gpa[!idx]) < 0)
1031		return -1;
1032
1033	/* Get the GVA page table entry */
1034	ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE);
1035	if (!ptep_gva) {
1036		kvm_err("No ptep for gva %lx\n", badvaddr);
1037		return -1;
1038	}
1039
1040	/* Copy a pair of entries from GPA page table to GVA page table */
1041	ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]);
1042	ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]);
1043
1044	/* Invalidate this entry in the TLB, guest kernel ASID only */
1045	kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1046	return 0;
1047}
1048
1049int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
1050					 struct kvm_mips_tlb *tlb,
1051					 unsigned long gva,
1052					 bool write_fault)
1053{
1054	struct kvm *kvm = vcpu->kvm;
1055	long tlb_lo[2];
1056	pte_t pte_gpa[2], *ptep_buddy, *ptep_gva;
1057	unsigned int idx = TLB_LO_IDX(*tlb, gva);
1058	bool kernel = KVM_GUEST_KERNEL_MODE(vcpu);
1059
1060	tlb_lo[0] = tlb->tlb_lo[0];
1061	tlb_lo[1] = tlb->tlb_lo[1];
1062
1063	/*
1064	 * The commpage address must not be mapped to anything else if the guest
1065	 * TLB contains entries nearby, or commpage accesses will break.
1066	 */
1067	if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1)))
1068		tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0;
1069
1070	/* Get the GPA page table entry */
1071	if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]),
1072			      write_fault, &pte_gpa[idx], NULL) < 0)
1073		return -1;
1074
1075	/* And its GVA buddy's GPA page table entry if it also exists */
1076	pte_gpa[!idx] = pfn_pte(0, __pgprot(0));
1077	if (tlb_lo[!idx] & ENTRYLO_V) {
1078		spin_lock(&kvm->mmu_lock);
1079		ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL,
1080					mips3_tlbpfn_to_paddr(tlb_lo[!idx]));
1081		if (ptep_buddy)
1082			pte_gpa[!idx] = *ptep_buddy;
1083		spin_unlock(&kvm->mmu_lock);
1084	}
1085
1086	/* Get the GVA page table entry pair */
1087	ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE);
1088	if (!ptep_gva) {
1089		kvm_err("No ptep for gva %lx\n", gva);
1090		return -1;
1091	}
1092
1093	/* Copy a pair of entries from GPA page table to GVA page table */
1094	ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]);
1095	ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]);
1096
1097	/* Invalidate this entry in the TLB, current guest mode ASID only */
1098	kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel);
1099
1100	kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
1101		  tlb->tlb_lo[0], tlb->tlb_lo[1]);
1102
1103	return 0;
1104}
1105
1106int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr,
1107				       struct kvm_vcpu *vcpu)
1108{
1109	kvm_pfn_t pfn;
1110	pte_t *ptep;
1111
1112	ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr);
1113	if (!ptep) {
1114		kvm_err("No ptep for commpage %lx\n", badvaddr);
1115		return -1;
1116	}
1117
1118	pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage));
1119	/* Also set valid and dirty, so refill handler doesn't have to */
1120	*ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED)));
1121
1122	/* Invalidate this entry in the TLB, guest kernel ASID only */
1123	kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1124	return 0;
1125}
1126
1127/**
1128 * kvm_mips_migrate_count() - Migrate timer.
1129 * @vcpu:	Virtual CPU.
1130 *
1131 * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
1132 * if it was running prior to being cancelled.
1133 *
1134 * Must be called when the VCPU is migrated to a different CPU to ensure that
1135 * timer expiry during guest execution interrupts the guest and causes the
1136 * interrupt to be delivered in a timely manner.
1137 */
1138static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
1139{
1140	if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
1141		hrtimer_restart(&vcpu->arch.comparecount_timer);
1142}
1143
1144/* Restore ASID once we are scheduled back after preemption */
1145void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1146{
1147	unsigned long flags;
1148
1149	kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
1150
1151	local_irq_save(flags);
1152
1153	vcpu->cpu = cpu;
1154	if (vcpu->arch.last_sched_cpu != cpu) {
1155		kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
1156			  vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
1157		/*
1158		 * Migrate the timer interrupt to the current CPU so that it
1159		 * always interrupts the guest and synchronously triggers a
1160		 * guest timer interrupt.
1161		 */
1162		kvm_mips_migrate_count(vcpu);
1163	}
1164
1165	/* restore guest state to registers */
1166	kvm_mips_callbacks->vcpu_load(vcpu, cpu);
1167
1168	local_irq_restore(flags);
1169}
1170
1171/* ASID can change if another task is scheduled during preemption */
1172void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1173{
1174	unsigned long flags;
1175	int cpu;
1176
1177	local_irq_save(flags);
1178
1179	cpu = smp_processor_id();
1180	vcpu->arch.last_sched_cpu = cpu;
1181	vcpu->cpu = -1;
1182
1183	/* save guest state in registers */
1184	kvm_mips_callbacks->vcpu_put(vcpu, cpu);
1185
1186	local_irq_restore(flags);
1187}
1188
1189/**
1190 * kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault.
1191 * @vcpu:	Virtual CPU.
1192 * @gva:	Guest virtual address to be accessed.
1193 * @write:	True if write attempted (must be dirtied and made writable).
1194 *
1195 * Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and
1196 * dirtying the page if @write so that guest instructions can be modified.
1197 *
1198 * Returns:	KVM_MIPS_MAPPED on success.
1199 *		KVM_MIPS_GVA if bad guest virtual address.
1200 *		KVM_MIPS_GPA if bad guest physical address.
1201 *		KVM_MIPS_TLB if guest TLB not present.
1202 *		KVM_MIPS_TLBINV if guest TLB present but not valid.
1203 *		KVM_MIPS_TLBMOD if guest TLB read only.
1204 */
1205enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu,
1206						   unsigned long gva,
1207						   bool write)
1208{
1209	struct mips_coproc *cop0 = vcpu->arch.cop0;
1210	struct kvm_mips_tlb *tlb;
1211	int index;
1212
1213	if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) {
1214		if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0)
1215			return KVM_MIPS_GPA;
1216	} else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) ||
1217		   KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) {
1218		/* Address should be in the guest TLB */
1219		index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) |
1220			  (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID));
1221		if (index < 0)
1222			return KVM_MIPS_TLB;
1223		tlb = &vcpu->arch.guest_tlb[index];
1224
1225		/* Entry should be valid, and dirty for writes */
1226		if (!TLB_IS_VALID(*tlb, gva))
1227			return KVM_MIPS_TLBINV;
1228		if (write && !TLB_IS_DIRTY(*tlb, gva))
1229			return KVM_MIPS_TLBMOD;
1230
1231		if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write))
1232			return KVM_MIPS_GPA;
1233	} else {
1234		return KVM_MIPS_GVA;
1235	}
1236
1237	return KVM_MIPS_MAPPED;
1238}
1239
1240int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
1241{
1242	int err;
1243
1244	if (WARN(IS_ENABLED(CONFIG_KVM_MIPS_VZ),
1245		 "Expect BadInstr/BadInstrP registers to be used with VZ\n"))
1246		return -EINVAL;
1247
1248retry:
1249	kvm_trap_emul_gva_lockless_begin(vcpu);
1250	err = get_user(*out, opc);
1251	kvm_trap_emul_gva_lockless_end(vcpu);
1252
1253	if (unlikely(err)) {
1254		/*
1255		 * Try to handle the fault, maybe we just raced with a GVA
1256		 * invalidation.
1257		 */
1258		err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc,
1259					      false);
1260		if (unlikely(err)) {
1261			kvm_err("%s: illegal address: %p\n",
1262				__func__, opc);
1263			return -EFAULT;
1264		}
1265
1266		/* Hopefully it'll work now */
1267		goto retry;
1268	}
1269	return 0;
1270}