Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 *  linux/arch/arm/kernel/setup.c
   3 *
   4 *  Copyright (C) 1995-2001 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
 
  10#include <linux/export.h>
  11#include <linux/kernel.h>
  12#include <linux/stddef.h>
  13#include <linux/ioport.h>
  14#include <linux/delay.h>
  15#include <linux/utsname.h>
  16#include <linux/initrd.h>
  17#include <linux/console.h>
  18#include <linux/bootmem.h>
  19#include <linux/seq_file.h>
  20#include <linux/screen_info.h>
 
  21#include <linux/init.h>
  22#include <linux/kexec.h>
  23#include <linux/of_fdt.h>
  24#include <linux/root_dev.h>
  25#include <linux/cpu.h>
  26#include <linux/interrupt.h>
  27#include <linux/smp.h>
  28#include <linux/fs.h>
  29#include <linux/proc_fs.h>
  30#include <linux/memblock.h>
  31#include <linux/bug.h>
  32#include <linux/compiler.h>
  33#include <linux/sort.h>
 
  34
  35#include <asm/unified.h>
  36#include <asm/cp15.h>
  37#include <asm/cpu.h>
  38#include <asm/cputype.h>
 
  39#include <asm/elf.h>
 
 
  40#include <asm/procinfo.h>
 
  41#include <asm/sections.h>
  42#include <asm/setup.h>
  43#include <asm/smp_plat.h>
  44#include <asm/mach-types.h>
  45#include <asm/cacheflush.h>
  46#include <asm/cachetype.h>
  47#include <asm/tlbflush.h>
 
  48
  49#include <asm/prom.h>
  50#include <asm/mach/arch.h>
  51#include <asm/mach/irq.h>
  52#include <asm/mach/time.h>
  53#include <asm/system_info.h>
  54#include <asm/system_misc.h>
  55#include <asm/traps.h>
  56#include <asm/unwind.h>
  57#include <asm/memblock.h>
 
  58
  59#if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
  60#include "compat.h"
  61#endif
  62#include "atags.h"
  63#include "tcm.h"
  64
  65#ifndef MEM_SIZE
  66#define MEM_SIZE	(16*1024*1024)
  67#endif
  68
  69#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  70char fpe_type[8];
  71
  72static int __init fpe_setup(char *line)
  73{
  74	memcpy(fpe_type, line, 8);
  75	return 1;
  76}
  77
  78__setup("fpe=", fpe_setup);
  79#endif
  80
  81extern void paging_init(struct machine_desc *desc);
 
 
  82extern void sanity_check_meminfo(void);
  83extern void reboot_setup(char *str);
  84extern void setup_dma_zone(struct machine_desc *desc);
  85
  86unsigned int processor_id;
  87EXPORT_SYMBOL(processor_id);
  88unsigned int __machine_arch_type __read_mostly;
  89EXPORT_SYMBOL(__machine_arch_type);
  90unsigned int cacheid __read_mostly;
  91EXPORT_SYMBOL(cacheid);
  92
  93unsigned int __atags_pointer __initdata;
  94
  95unsigned int system_rev;
  96EXPORT_SYMBOL(system_rev);
  97
 
 
 
  98unsigned int system_serial_low;
  99EXPORT_SYMBOL(system_serial_low);
 100
 101unsigned int system_serial_high;
 102EXPORT_SYMBOL(system_serial_high);
 103
 104unsigned int elf_hwcap __read_mostly;
 105EXPORT_SYMBOL(elf_hwcap);
 106
 
 
 
 107
 108#ifdef MULTI_CPU
 109struct processor processor __read_mostly;
 110#endif
 111#ifdef MULTI_TLB
 112struct cpu_tlb_fns cpu_tlb __read_mostly;
 113#endif
 114#ifdef MULTI_USER
 115struct cpu_user_fns cpu_user __read_mostly;
 116#endif
 117#ifdef MULTI_CACHE
 118struct cpu_cache_fns cpu_cache __read_mostly;
 119#endif
 120#ifdef CONFIG_OUTER_CACHE
 121struct outer_cache_fns outer_cache __read_mostly;
 122EXPORT_SYMBOL(outer_cache);
 123#endif
 124
 125/*
 126 * Cached cpu_architecture() result for use by assembler code.
 127 * C code should use the cpu_architecture() function instead of accessing this
 128 * variable directly.
 129 */
 130int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 131
 132struct stack {
 133	u32 irq[3];
 134	u32 abt[3];
 135	u32 und[3];
 
 136} ____cacheline_aligned;
 137
 
 138static struct stack stacks[NR_CPUS];
 
 139
 140char elf_platform[ELF_PLATFORM_SIZE];
 141EXPORT_SYMBOL(elf_platform);
 142
 143static const char *cpu_name;
 144static const char *machine_name;
 145static char __initdata cmd_line[COMMAND_LINE_SIZE];
 146struct machine_desc *machine_desc __initdata;
 147
 148static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
 149static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 150#define ENDIANNESS ((char)endian_test.l)
 151
 152DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 153
 154/*
 155 * Standard memory resources
 156 */
 157static struct resource mem_res[] = {
 158	{
 159		.name = "Video RAM",
 160		.start = 0,
 161		.end = 0,
 162		.flags = IORESOURCE_MEM
 163	},
 164	{
 165		.name = "Kernel code",
 166		.start = 0,
 167		.end = 0,
 168		.flags = IORESOURCE_MEM
 169	},
 170	{
 171		.name = "Kernel data",
 172		.start = 0,
 173		.end = 0,
 174		.flags = IORESOURCE_MEM
 175	}
 176};
 177
 178#define video_ram   mem_res[0]
 179#define kernel_code mem_res[1]
 180#define kernel_data mem_res[2]
 181
 182static struct resource io_res[] = {
 183	{
 184		.name = "reserved",
 185		.start = 0x3bc,
 186		.end = 0x3be,
 187		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 188	},
 189	{
 190		.name = "reserved",
 191		.start = 0x378,
 192		.end = 0x37f,
 193		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 194	},
 195	{
 196		.name = "reserved",
 197		.start = 0x278,
 198		.end = 0x27f,
 199		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 200	}
 201};
 202
 203#define lp0 io_res[0]
 204#define lp1 io_res[1]
 205#define lp2 io_res[2]
 206
 207static const char *proc_arch[] = {
 208	"undefined/unknown",
 209	"3",
 210	"4",
 211	"4T",
 212	"5",
 213	"5T",
 214	"5TE",
 215	"5TEJ",
 216	"6TEJ",
 217	"7",
 218	"?(11)",
 219	"?(12)",
 220	"?(13)",
 221	"?(14)",
 222	"?(15)",
 223	"?(16)",
 224	"?(17)",
 225};
 226
 
 
 
 
 
 
 227static int __get_cpu_architecture(void)
 228{
 229	int cpu_arch;
 230
 231	if ((read_cpuid_id() & 0x0008f000) == 0) {
 232		cpu_arch = CPU_ARCH_UNKNOWN;
 233	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 234		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 235	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 236		cpu_arch = (read_cpuid_id() >> 16) & 7;
 237		if (cpu_arch)
 238			cpu_arch += CPU_ARCH_ARMv3;
 239	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 240		unsigned int mmfr0;
 241
 242		/* Revised CPUID format. Read the Memory Model Feature
 243		 * Register 0 and check for VMSAv7 or PMSAv7 */
 244		asm("mrc	p15, 0, %0, c0, c1, 4"
 245		    : "=r" (mmfr0));
 246		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 247		    (mmfr0 & 0x000000f0) >= 0x00000030)
 248			cpu_arch = CPU_ARCH_ARMv7;
 249		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 250			 (mmfr0 & 0x000000f0) == 0x00000020)
 251			cpu_arch = CPU_ARCH_ARMv6;
 252		else
 253			cpu_arch = CPU_ARCH_UNKNOWN;
 254	} else
 255		cpu_arch = CPU_ARCH_UNKNOWN;
 256
 257	return cpu_arch;
 258}
 
 259
 260int __pure cpu_architecture(void)
 261{
 262	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 263
 264	return __cpu_architecture;
 265}
 266
 267static int cpu_has_aliasing_icache(unsigned int arch)
 268{
 269	int aliasing_icache;
 270	unsigned int id_reg, num_sets, line_size;
 271
 272	/* PIPT caches never alias. */
 273	if (icache_is_pipt())
 274		return 0;
 275
 276	/* arch specifies the register format */
 277	switch (arch) {
 278	case CPU_ARCH_ARMv7:
 279		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
 280		    : /* No output operands */
 281		    : "r" (1));
 282		isb();
 283		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
 284		    : "=r" (id_reg));
 285		line_size = 4 << ((id_reg & 0x7) + 2);
 286		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 287		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 288		break;
 289	case CPU_ARCH_ARMv6:
 290		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 291		break;
 292	default:
 293		/* I-cache aliases will be handled by D-cache aliasing code */
 294		aliasing_icache = 0;
 295	}
 296
 297	return aliasing_icache;
 298}
 299
 300static void __init cacheid_init(void)
 301{
 302	unsigned int cachetype = read_cpuid_cachetype();
 303	unsigned int arch = cpu_architecture();
 304
 305	if (arch >= CPU_ARCH_ARMv6) {
 306		if ((cachetype & (7 << 29)) == 4 << 29) {
 
 
 
 
 307			/* ARMv7 register format */
 308			arch = CPU_ARCH_ARMv7;
 309			cacheid = CACHEID_VIPT_NONALIASING;
 310			switch (cachetype & (3 << 14)) {
 311			case (1 << 14):
 312				cacheid |= CACHEID_ASID_TAGGED;
 313				break;
 314			case (3 << 14):
 315				cacheid |= CACHEID_PIPT;
 316				break;
 317			}
 318		} else {
 319			arch = CPU_ARCH_ARMv6;
 320			if (cachetype & (1 << 23))
 321				cacheid = CACHEID_VIPT_ALIASING;
 322			else
 323				cacheid = CACHEID_VIPT_NONALIASING;
 324		}
 325		if (cpu_has_aliasing_icache(arch))
 326			cacheid |= CACHEID_VIPT_I_ALIASING;
 327	} else {
 328		cacheid = CACHEID_VIVT;
 329	}
 330
 331	printk("CPU: %s data cache, %s instruction cache\n",
 332		cache_is_vivt() ? "VIVT" :
 333		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 334		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 335		cache_is_vivt() ? "VIVT" :
 336		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 337		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 338		icache_is_pipt() ? "PIPT" :
 339		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 340}
 341
 342/*
 343 * These functions re-use the assembly code in head.S, which
 344 * already provide the required functionality.
 345 */
 346extern struct proc_info_list *lookup_processor_type(unsigned int);
 347
 348void __init early_print(const char *str, ...)
 349{
 350	extern void printascii(const char *);
 351	char buf[256];
 352	va_list ap;
 353
 354	va_start(ap, str);
 355	vsnprintf(buf, sizeof(buf), str, ap);
 356	va_end(ap);
 357
 358#ifdef CONFIG_DEBUG_LL
 359	printascii(buf);
 360#endif
 361	printk("%s", buf);
 362}
 363
 364static void __init feat_v6_fixup(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 365{
 366	int id = read_cpuid_id();
 
 
 
 367
 368	if ((id & 0xff0f0000) != 0x41070000)
 
 369		return;
 370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 371	/*
 372	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 373	 * see also kuser_get_tls_init.
 374	 */
 375	if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
 
 376		elf_hwcap &= ~HWCAP_TLS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377}
 378
 379/*
 380 * cpu_init - initialise one CPU.
 381 *
 382 * cpu_init sets up the per-CPU stacks.
 383 */
 384void cpu_init(void)
 385{
 
 386	unsigned int cpu = smp_processor_id();
 387	struct stack *stk = &stacks[cpu];
 388
 389	if (cpu >= NR_CPUS) {
 390		printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
 391		BUG();
 392	}
 393
 
 
 
 
 
 
 394	cpu_proc_init();
 395
 396	/*
 397	 * Define the placement constraint for the inline asm directive below.
 398	 * In Thumb-2, msr with an immediate value is not allowed.
 399	 */
 400#ifdef CONFIG_THUMB2_KERNEL
 401#define PLC	"r"
 402#else
 403#define PLC	"I"
 404#endif
 405
 406	/*
 407	 * setup stacks for re-entrant exception handlers
 408	 */
 409	__asm__ (
 410	"msr	cpsr_c, %1\n\t"
 411	"add	r14, %0, %2\n\t"
 412	"mov	sp, r14\n\t"
 413	"msr	cpsr_c, %3\n\t"
 414	"add	r14, %0, %4\n\t"
 415	"mov	sp, r14\n\t"
 416	"msr	cpsr_c, %5\n\t"
 417	"add	r14, %0, %6\n\t"
 418	"mov	sp, r14\n\t"
 419	"msr	cpsr_c, %7"
 
 
 
 420	    :
 421	    : "r" (stk),
 422	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 423	      "I" (offsetof(struct stack, irq[0])),
 424	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 425	      "I" (offsetof(struct stack, abt[0])),
 426	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 427	      "I" (offsetof(struct stack, und[0])),
 
 
 428	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 429	    : "r14");
 
 430}
 431
 432int __cpu_logical_map[NR_CPUS];
 433
 434void __init smp_setup_processor_id(void)
 435{
 436	int i;
 437	u32 cpu = is_smp() ? read_cpuid_mpidr() & 0xff : 0;
 
 438
 439	cpu_logical_map(0) = cpu;
 440	for (i = 1; i < NR_CPUS; ++i)
 441		cpu_logical_map(i) = i == cpu ? 0 : i;
 442
 443	printk(KERN_INFO "Booting Linux on physical CPU %d\n", cpu);
 
 
 
 
 
 
 
 444}
 445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446static void __init setup_processor(void)
 447{
 448	struct proc_info_list *list;
 449
 450	/*
 451	 * locate processor in the list of supported processor
 452	 * types.  The linker builds this table for us from the
 453	 * entries in arch/arm/mm/proc-*.S
 454	 */
 455	list = lookup_processor_type(read_cpuid_id());
 456	if (!list) {
 457		printk("CPU configuration botched (ID %08x), unable "
 458		       "to continue.\n", read_cpuid_id());
 459		while (1);
 460	}
 461
 462	cpu_name = list->cpu_name;
 463	__cpu_architecture = __get_cpu_architecture();
 464
 465#ifdef MULTI_CPU
 466	processor = *list->proc;
 467#endif
 468#ifdef MULTI_TLB
 469	cpu_tlb = *list->tlb;
 470#endif
 471#ifdef MULTI_USER
 472	cpu_user = *list->user;
 473#endif
 474#ifdef MULTI_CACHE
 475	cpu_cache = *list->cache;
 476#endif
 477
 478	printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 479	       cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
 480	       proc_arch[cpu_architecture()], cr_alignment);
 481
 482	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 483		 list->arch_name, ENDIANNESS);
 484	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 485		 list->elf_name, ENDIANNESS);
 486	elf_hwcap = list->elf_hwcap;
 
 
 
 
 487#ifndef CONFIG_ARM_THUMB
 488	elf_hwcap &= ~HWCAP_THUMB;
 489#endif
 
 
 
 
 490
 491	feat_v6_fixup();
 492
 493	cacheid_init();
 494	cpu_init();
 495}
 496
 497void __init dump_machine_table(void)
 498{
 499	struct machine_desc *p;
 500
 501	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 502	for_each_machine_desc(p)
 503		early_print("%08x\t%s\n", p->nr, p->name);
 504
 505	early_print("\nPlease check your kernel config and/or bootloader.\n");
 506
 507	while (true)
 508		/* can't use cpu_relax() here as it may require MMU setup */;
 509}
 510
 511int __init arm_add_memory(phys_addr_t start, unsigned long size)
 512{
 513	struct membank *bank = &meminfo.bank[meminfo.nr_banks];
 514
 515	if (meminfo.nr_banks >= NR_BANKS) {
 516		printk(KERN_CRIT "NR_BANKS too low, "
 517			"ignoring memory at 0x%08llx\n", (long long)start);
 518		return -EINVAL;
 519	}
 520
 521	/*
 522	 * Ensure that start/size are aligned to a page boundary.
 523	 * Size is appropriately rounded down, start is rounded up.
 524	 */
 525	size -= start & ~PAGE_MASK;
 526	bank->start = PAGE_ALIGN(start);
 
 
 
 
 
 
 
 
 
 
 527
 528#ifndef CONFIG_LPAE
 529	if (bank->start + size < bank->start) {
 530		printk(KERN_CRIT "Truncating memory at 0x%08llx to fit in "
 531			"32-bit physical address space\n", (long long)start);
 532		/*
 533		 * To ensure bank->start + bank->size is representable in
 534		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 535		 * This means we lose a page after masking.
 536		 */
 537		size = ULONG_MAX - bank->start;
 538	}
 539#endif
 540
 541	bank->size = size & PAGE_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 542
 543	/*
 544	 * Check whether this memory region has non-zero size or
 545	 * invalid node number.
 546	 */
 547	if (bank->size == 0)
 548		return -EINVAL;
 549
 550	meminfo.nr_banks++;
 551	return 0;
 552}
 553
 554/*
 555 * Pick out the memory size.  We look for mem=size@start,
 556 * where start and size are "size[KkMm]"
 557 */
 
 558static int __init early_mem(char *p)
 559{
 560	static int usermem __initdata = 0;
 561	unsigned long size;
 562	phys_addr_t start;
 563	char *endp;
 564
 565	/*
 566	 * If the user specifies memory size, we
 567	 * blow away any automatically generated
 568	 * size.
 569	 */
 570	if (usermem == 0) {
 571		usermem = 1;
 572		meminfo.nr_banks = 0;
 
 573	}
 574
 575	start = PHYS_OFFSET;
 576	size  = memparse(p, &endp);
 577	if (*endp == '@')
 578		start = memparse(endp + 1, NULL);
 579
 580	arm_add_memory(start, size);
 581
 582	return 0;
 583}
 584early_param("mem", early_mem);
 585
 586static void __init
 587setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
 588{
 589#ifdef CONFIG_BLK_DEV_RAM
 590	extern int rd_size, rd_image_start, rd_prompt, rd_doload;
 591
 592	rd_image_start = image_start;
 593	rd_prompt = prompt;
 594	rd_doload = doload;
 595
 596	if (rd_sz)
 597		rd_size = rd_sz;
 598#endif
 599}
 600
 601static void __init request_standard_resources(struct machine_desc *mdesc)
 602{
 603	struct memblock_region *region;
 604	struct resource *res;
 605
 606	kernel_code.start   = virt_to_phys(_text);
 607	kernel_code.end     = virt_to_phys(_etext - 1);
 608	kernel_data.start   = virt_to_phys(_sdata);
 609	kernel_data.end     = virt_to_phys(_end - 1);
 610
 611	for_each_memblock(memory, region) {
 612		res = alloc_bootmem_low(sizeof(*res));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 613		res->name  = "System RAM";
 614		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 615		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 616		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 617
 618		request_resource(&iomem_resource, res);
 619
 620		if (kernel_code.start >= res->start &&
 621		    kernel_code.end <= res->end)
 622			request_resource(res, &kernel_code);
 623		if (kernel_data.start >= res->start &&
 624		    kernel_data.end <= res->end)
 625			request_resource(res, &kernel_data);
 626	}
 627
 628	if (mdesc->video_start) {
 629		video_ram.start = mdesc->video_start;
 630		video_ram.end   = mdesc->video_end;
 631		request_resource(&iomem_resource, &video_ram);
 632	}
 633
 634	/*
 635	 * Some machines don't have the possibility of ever
 636	 * possessing lp0, lp1 or lp2
 637	 */
 638	if (mdesc->reserve_lp0)
 639		request_resource(&ioport_resource, &lp0);
 640	if (mdesc->reserve_lp1)
 641		request_resource(&ioport_resource, &lp1);
 642	if (mdesc->reserve_lp2)
 643		request_resource(&ioport_resource, &lp2);
 644}
 645
 646/*
 647 *  Tag parsing.
 648 *
 649 * This is the new way of passing data to the kernel at boot time.  Rather
 650 * than passing a fixed inflexible structure to the kernel, we pass a list
 651 * of variable-sized tags to the kernel.  The first tag must be a ATAG_CORE
 652 * tag for the list to be recognised (to distinguish the tagged list from
 653 * a param_struct).  The list is terminated with a zero-length tag (this tag
 654 * is not parsed in any way).
 655 */
 656static int __init parse_tag_core(const struct tag *tag)
 657{
 658	if (tag->hdr.size > 2) {
 659		if ((tag->u.core.flags & 1) == 0)
 660			root_mountflags &= ~MS_RDONLY;
 661		ROOT_DEV = old_decode_dev(tag->u.core.rootdev);
 662	}
 663	return 0;
 664}
 665
 666__tagtable(ATAG_CORE, parse_tag_core);
 667
 668static int __init parse_tag_mem32(const struct tag *tag)
 669{
 670	return arm_add_memory(tag->u.mem.start, tag->u.mem.size);
 671}
 672
 673__tagtable(ATAG_MEM, parse_tag_mem32);
 674
 675#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
 676struct screen_info screen_info = {
 677 .orig_video_lines	= 30,
 678 .orig_video_cols	= 80,
 679 .orig_video_mode	= 0,
 680 .orig_video_ega_bx	= 0,
 681 .orig_video_isVGA	= 1,
 682 .orig_video_points	= 8
 683};
 684
 685static int __init parse_tag_videotext(const struct tag *tag)
 686{
 687	screen_info.orig_x            = tag->u.videotext.x;
 688	screen_info.orig_y            = tag->u.videotext.y;
 689	screen_info.orig_video_page   = tag->u.videotext.video_page;
 690	screen_info.orig_video_mode   = tag->u.videotext.video_mode;
 691	screen_info.orig_video_cols   = tag->u.videotext.video_cols;
 692	screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
 693	screen_info.orig_video_lines  = tag->u.videotext.video_lines;
 694	screen_info.orig_video_isVGA  = tag->u.videotext.video_isvga;
 695	screen_info.orig_video_points = tag->u.videotext.video_points;
 696	return 0;
 697}
 698
 699__tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
 700#endif
 701
 702static int __init parse_tag_ramdisk(const struct tag *tag)
 703{
 704	setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
 705		      (tag->u.ramdisk.flags & 2) == 0,
 706		      tag->u.ramdisk.start, tag->u.ramdisk.size);
 707	return 0;
 708}
 709
 710__tagtable(ATAG_RAMDISK, parse_tag_ramdisk);
 711
 712static int __init parse_tag_serialnr(const struct tag *tag)
 713{
 714	system_serial_low = tag->u.serialnr.low;
 715	system_serial_high = tag->u.serialnr.high;
 716	return 0;
 717}
 718
 719__tagtable(ATAG_SERIAL, parse_tag_serialnr);
 720
 721static int __init parse_tag_revision(const struct tag *tag)
 722{
 723	system_rev = tag->u.revision.rev;
 724	return 0;
 725}
 726
 727__tagtable(ATAG_REVISION, parse_tag_revision);
 728
 729static int __init parse_tag_cmdline(const struct tag *tag)
 730{
 731#if defined(CONFIG_CMDLINE_EXTEND)
 732	strlcat(default_command_line, " ", COMMAND_LINE_SIZE);
 733	strlcat(default_command_line, tag->u.cmdline.cmdline,
 734		COMMAND_LINE_SIZE);
 735#elif defined(CONFIG_CMDLINE_FORCE)
 736	pr_warning("Ignoring tag cmdline (using the default kernel command line)\n");
 737#else
 738	strlcpy(default_command_line, tag->u.cmdline.cmdline,
 739		COMMAND_LINE_SIZE);
 740#endif
 741	return 0;
 742}
 743
 744__tagtable(ATAG_CMDLINE, parse_tag_cmdline);
 745
 746/*
 747 * Scan the tag table for this tag, and call its parse function.
 748 * The tag table is built by the linker from all the __tagtable
 749 * declarations.
 750 */
 751static int __init parse_tag(const struct tag *tag)
 752{
 753	extern struct tagtable __tagtable_begin, __tagtable_end;
 754	struct tagtable *t;
 755
 756	for (t = &__tagtable_begin; t < &__tagtable_end; t++)
 757		if (tag->hdr.tag == t->tag) {
 758			t->parse(tag);
 759			break;
 760		}
 761
 762	return t < &__tagtable_end;
 763}
 764
 765/*
 766 * Parse all tags in the list, checking both the global and architecture
 767 * specific tag tables.
 768 */
 769static void __init parse_tags(const struct tag *t)
 770{
 771	for (; t->hdr.size; t = tag_next(t))
 772		if (!parse_tag(t))
 773			printk(KERN_WARNING
 774				"Ignoring unrecognised tag 0x%08x\n",
 775				t->hdr.tag);
 776}
 777
 778/*
 779 * This holds our defaults.
 780 */
 781static struct init_tags {
 782	struct tag_header hdr1;
 783	struct tag_core   core;
 784	struct tag_header hdr2;
 785	struct tag_mem32  mem;
 786	struct tag_header hdr3;
 787} init_tags __initdata = {
 788	{ tag_size(tag_core), ATAG_CORE },
 789	{ 1, PAGE_SIZE, 0xff },
 790	{ tag_size(tag_mem32), ATAG_MEM },
 791	{ MEM_SIZE },
 792	{ 0, ATAG_NONE }
 793};
 794
 795static int __init customize_machine(void)
 796{
 797	/* customizes platform devices, or adds new ones */
 
 
 
 
 
 798	if (machine_desc->init_machine)
 799		machine_desc->init_machine();
 
 800	return 0;
 801}
 802arch_initcall(customize_machine);
 803
 804static int __init init_machine_late(void)
 805{
 
 
 
 806	if (machine_desc->init_late)
 807		machine_desc->init_late();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 808	return 0;
 809}
 810late_initcall(init_machine_late);
 811
 812#ifdef CONFIG_KEXEC
 
 
 
 
 
 
 813static inline unsigned long long get_total_mem(void)
 814{
 815	unsigned long total;
 816
 817	total = max_low_pfn - min_low_pfn;
 818	return total << PAGE_SHIFT;
 819}
 820
 821/**
 822 * reserve_crashkernel() - reserves memory are for crash kernel
 823 *
 824 * This function reserves memory area given in "crashkernel=" kernel command
 825 * line parameter. The memory reserved is used by a dump capture kernel when
 826 * primary kernel is crashing.
 827 */
 828static void __init reserve_crashkernel(void)
 829{
 830	unsigned long long crash_size, crash_base;
 831	unsigned long long total_mem;
 832	int ret;
 833
 834	total_mem = get_total_mem();
 835	ret = parse_crashkernel(boot_command_line, total_mem,
 836				&crash_size, &crash_base);
 837	if (ret)
 838		return;
 839
 840	ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841	if (ret < 0) {
 842		printk(KERN_WARNING "crashkernel reservation failed - "
 843		       "memory is in use (0x%lx)\n", (unsigned long)crash_base);
 844		return;
 845	}
 846
 847	printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
 848	       "for crashkernel (System RAM: %ldMB)\n",
 849	       (unsigned long)(crash_size >> 20),
 850	       (unsigned long)(crash_base >> 20),
 851	       (unsigned long)(total_mem >> 20));
 852
 
 853	crashk_res.start = crash_base;
 854	crashk_res.end = crash_base + crash_size - 1;
 855	insert_resource(&iomem_resource, &crashk_res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856}
 857#else
 858static inline void reserve_crashkernel(void) {}
 859#endif /* CONFIG_KEXEC */
 860
 861static void __init squash_mem_tags(struct tag *tag)
 862{
 863	for (; tag->hdr.size; tag = tag_next(tag))
 864		if (tag->hdr.tag == ATAG_MEM)
 865			tag->hdr.tag = ATAG_NONE;
 866}
 867
 868static struct machine_desc * __init setup_machine_tags(unsigned int nr)
 869{
 870	struct tag *tags = (struct tag *)&init_tags;
 871	struct machine_desc *mdesc = NULL, *p;
 872	char *from = default_command_line;
 873
 874	init_tags.mem.start = PHYS_OFFSET;
 875
 876	/*
 877	 * locate machine in the list of supported machines.
 878	 */
 879	for_each_machine_desc(p)
 880		if (nr == p->nr) {
 881			printk("Machine: %s\n", p->name);
 882			mdesc = p;
 883			break;
 884		}
 885
 886	if (!mdesc) {
 887		early_print("\nError: unrecognized/unsupported machine ID"
 888			" (r1 = 0x%08x).\n\n", nr);
 889		dump_machine_table(); /* does not return */
 890	}
 891
 892	if (__atags_pointer)
 893		tags = phys_to_virt(__atags_pointer);
 894	else if (mdesc->atag_offset)
 895		tags = (void *)(PAGE_OFFSET + mdesc->atag_offset);
 896
 897#if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
 898	/*
 899	 * If we have the old style parameters, convert them to
 900	 * a tag list.
 901	 */
 902	if (tags->hdr.tag != ATAG_CORE)
 903		convert_to_tag_list(tags);
 904#endif
 905
 906	if (tags->hdr.tag != ATAG_CORE) {
 907#if defined(CONFIG_OF)
 908		/*
 909		 * If CONFIG_OF is set, then assume this is a reasonably
 910		 * modern system that should pass boot parameters
 911		 */
 912		early_print("Warning: Neither atags nor dtb found\n");
 
 
 913#endif
 914		tags = (struct tag *)&init_tags;
 915	}
 916
 917	if (mdesc->fixup)
 918		mdesc->fixup(tags, &from, &meminfo);
 919
 920	if (tags->hdr.tag == ATAG_CORE) {
 921		if (meminfo.nr_banks != 0)
 922			squash_mem_tags(tags);
 923		save_atags(tags);
 924		parse_tags(tags);
 925	}
 926
 927	/* parse_early_param needs a boot_command_line */
 928	strlcpy(boot_command_line, from, COMMAND_LINE_SIZE);
 929
 930	return mdesc;
 931}
 932
 933static int __init meminfo_cmp(const void *_a, const void *_b)
 934{
 935	const struct membank *a = _a, *b = _b;
 936	long cmp = bank_pfn_start(a) - bank_pfn_start(b);
 937	return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
 938}
 939
 940void __init setup_arch(char **cmdline_p)
 941{
 942	struct machine_desc *mdesc;
 943
 944	setup_processor();
 945	mdesc = setup_machine_fdt(__atags_pointer);
 946	if (!mdesc)
 947		mdesc = setup_machine_tags(machine_arch_type);
 948	machine_desc = mdesc;
 949	machine_name = mdesc->name;
 
 950
 951	setup_dma_zone(mdesc);
 952
 953	if (mdesc->restart_mode)
 954		reboot_setup(&mdesc->restart_mode);
 955
 956	init_mm.start_code = (unsigned long) _text;
 957	init_mm.end_code   = (unsigned long) _etext;
 958	init_mm.end_data   = (unsigned long) _edata;
 959	init_mm.brk	   = (unsigned long) _end;
 960
 961	/* populate cmd_line too for later use, preserving boot_command_line */
 962	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
 963	*cmdline_p = cmd_line;
 964
 
 
 
 965	parse_early_param();
 966
 967	sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
 
 
 
 
 
 968	sanity_check_meminfo();
 969	arm_memblock_init(&meminfo, mdesc);
 
 
 970
 971	paging_init(mdesc);
 972	request_standard_resources(mdesc);
 973
 974	if (mdesc->restart)
 975		arm_pm_restart = mdesc->restart;
 976
 977	unflatten_device_tree();
 978
 
 
 979#ifdef CONFIG_SMP
 980	if (is_smp())
 
 
 
 
 
 
 981		smp_init_cpus();
 
 
 982#endif
 983	reserve_crashkernel();
 984
 985	tcm_init();
 
 
 
 986
 987#ifdef CONFIG_MULTI_IRQ_HANDLER
 988	handle_arch_irq = mdesc->handle_irq;
 989#endif
 990
 991#ifdef CONFIG_VT
 992#if defined(CONFIG_VGA_CONSOLE)
 993	conswitchp = &vga_con;
 994#elif defined(CONFIG_DUMMY_CONSOLE)
 995	conswitchp = &dummy_con;
 996#endif
 997#endif
 998
 999	if (mdesc->init_early)
1000		mdesc->init_early();
1001}
1002
1003
1004static int __init topology_init(void)
1005{
1006	int cpu;
1007
1008	for_each_possible_cpu(cpu) {
1009		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1010		cpuinfo->cpu.hotpluggable = 1;
1011		register_cpu(&cpuinfo->cpu, cpu);
1012	}
1013
1014	return 0;
1015}
1016subsys_initcall(topology_init);
1017
1018#ifdef CONFIG_HAVE_PROC_CPU
1019static int __init proc_cpu_init(void)
1020{
1021	struct proc_dir_entry *res;
1022
1023	res = proc_mkdir("cpu", NULL);
1024	if (!res)
1025		return -ENOMEM;
1026	return 0;
1027}
1028fs_initcall(proc_cpu_init);
1029#endif
1030
1031static const char *hwcap_str[] = {
1032	"swp",
1033	"half",
1034	"thumb",
1035	"26bit",
1036	"fastmult",
1037	"fpa",
1038	"vfp",
1039	"edsp",
1040	"java",
1041	"iwmmxt",
1042	"crunch",
1043	"thumbee",
1044	"neon",
1045	"vfpv3",
1046	"vfpv3d16",
1047	"tls",
1048	"vfpv4",
1049	"idiva",
1050	"idivt",
 
 
 
 
 
 
 
 
 
 
 
 
1051	NULL
1052};
1053
1054static int c_show(struct seq_file *m, void *v)
1055{
1056	int i;
 
1057
1058	seq_printf(m, "Processor\t: %s rev %d (%s)\n",
1059		   cpu_name, read_cpuid_id() & 15, elf_platform);
1060
1061#if defined(CONFIG_SMP)
1062	for_each_online_cpu(i) {
1063		/*
1064		 * glibc reads /proc/cpuinfo to determine the number of
1065		 * online processors, looking for lines beginning with
1066		 * "processor".  Give glibc what it expects.
1067		 */
1068		seq_printf(m, "processor\t: %d\n", i);
1069		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
 
 
 
 
 
1070			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1071			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1072	}
1073#else /* CONFIG_SMP */
1074	seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1075		   loops_per_jiffy / (500000/HZ),
1076		   (loops_per_jiffy / (5000/HZ)) % 100);
1077#endif
1078
1079	/* dump out the processor features */
1080	seq_puts(m, "Features\t: ");
1081
1082	for (i = 0; hwcap_str[i]; i++)
1083		if (elf_hwcap & (1 << i))
1084			seq_printf(m, "%s ", hwcap_str[i]);
1085
1086	seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
1087	seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
1088
1089	if ((read_cpuid_id() & 0x0008f000) == 0x00000000) {
1090		/* pre-ARM7 */
1091		seq_printf(m, "CPU part\t: %07x\n", read_cpuid_id() >> 4);
1092	} else {
1093		if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
1094			/* ARM7 */
1095			seq_printf(m, "CPU variant\t: 0x%02x\n",
1096				   (read_cpuid_id() >> 16) & 127);
1097		} else {
1098			/* post-ARM7 */
1099			seq_printf(m, "CPU variant\t: 0x%x\n",
1100				   (read_cpuid_id() >> 20) & 15);
 
 
 
 
 
 
 
 
1101		}
1102		seq_printf(m, "CPU part\t: 0x%03x\n",
1103			   (read_cpuid_id() >> 4) & 0xfff);
1104	}
1105	seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
1106
1107	seq_puts(m, "\n");
1108
1109	seq_printf(m, "Hardware\t: %s\n", machine_name);
1110	seq_printf(m, "Revision\t: %04x\n", system_rev);
1111	seq_printf(m, "Serial\t\t: %08x%08x\n",
1112		   system_serial_high, system_serial_low);
1113
1114	return 0;
1115}
1116
1117static void *c_start(struct seq_file *m, loff_t *pos)
1118{
1119	return *pos < 1 ? (void *)1 : NULL;
1120}
1121
1122static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1123{
1124	++*pos;
1125	return NULL;
1126}
1127
1128static void c_stop(struct seq_file *m, void *v)
1129{
1130}
1131
1132const struct seq_operations cpuinfo_op = {
1133	.start	= c_start,
1134	.next	= c_next,
1135	.stop	= c_stop,
1136	.show	= c_show
1137};
v4.10.11
   1/*
   2 *  linux/arch/arm/kernel/setup.c
   3 *
   4 *  Copyright (C) 1995-2001 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/efi.h>
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/stddef.h>
  14#include <linux/ioport.h>
  15#include <linux/delay.h>
  16#include <linux/utsname.h>
  17#include <linux/initrd.h>
  18#include <linux/console.h>
  19#include <linux/bootmem.h>
  20#include <linux/seq_file.h>
  21#include <linux/screen_info.h>
  22#include <linux/of_platform.h>
  23#include <linux/init.h>
  24#include <linux/kexec.h>
  25#include <linux/of_fdt.h>
 
  26#include <linux/cpu.h>
  27#include <linux/interrupt.h>
  28#include <linux/smp.h>
 
  29#include <linux/proc_fs.h>
  30#include <linux/memblock.h>
  31#include <linux/bug.h>
  32#include <linux/compiler.h>
  33#include <linux/sort.h>
  34#include <linux/psci.h>
  35
  36#include <asm/unified.h>
  37#include <asm/cp15.h>
  38#include <asm/cpu.h>
  39#include <asm/cputype.h>
  40#include <asm/efi.h>
  41#include <asm/elf.h>
  42#include <asm/early_ioremap.h>
  43#include <asm/fixmap.h>
  44#include <asm/procinfo.h>
  45#include <asm/psci.h>
  46#include <asm/sections.h>
  47#include <asm/setup.h>
  48#include <asm/smp_plat.h>
  49#include <asm/mach-types.h>
  50#include <asm/cacheflush.h>
  51#include <asm/cachetype.h>
  52#include <asm/tlbflush.h>
  53#include <asm/xen/hypervisor.h>
  54
  55#include <asm/prom.h>
  56#include <asm/mach/arch.h>
  57#include <asm/mach/irq.h>
  58#include <asm/mach/time.h>
  59#include <asm/system_info.h>
  60#include <asm/system_misc.h>
  61#include <asm/traps.h>
  62#include <asm/unwind.h>
  63#include <asm/memblock.h>
  64#include <asm/virt.h>
  65
 
 
 
  66#include "atags.h"
 
  67
 
 
 
  68
  69#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  70char fpe_type[8];
  71
  72static int __init fpe_setup(char *line)
  73{
  74	memcpy(fpe_type, line, 8);
  75	return 1;
  76}
  77
  78__setup("fpe=", fpe_setup);
  79#endif
  80
  81extern void init_default_cache_policy(unsigned long);
  82extern void paging_init(const struct machine_desc *desc);
  83extern void early_paging_init(const struct machine_desc *);
  84extern void sanity_check_meminfo(void);
  85extern enum reboot_mode reboot_mode;
  86extern void setup_dma_zone(const struct machine_desc *desc);
  87
  88unsigned int processor_id;
  89EXPORT_SYMBOL(processor_id);
  90unsigned int __machine_arch_type __read_mostly;
  91EXPORT_SYMBOL(__machine_arch_type);
  92unsigned int cacheid __read_mostly;
  93EXPORT_SYMBOL(cacheid);
  94
  95unsigned int __atags_pointer __initdata;
  96
  97unsigned int system_rev;
  98EXPORT_SYMBOL(system_rev);
  99
 100const char *system_serial;
 101EXPORT_SYMBOL(system_serial);
 102
 103unsigned int system_serial_low;
 104EXPORT_SYMBOL(system_serial_low);
 105
 106unsigned int system_serial_high;
 107EXPORT_SYMBOL(system_serial_high);
 108
 109unsigned int elf_hwcap __read_mostly;
 110EXPORT_SYMBOL(elf_hwcap);
 111
 112unsigned int elf_hwcap2 __read_mostly;
 113EXPORT_SYMBOL(elf_hwcap2);
 114
 115
 116#ifdef MULTI_CPU
 117struct processor processor __ro_after_init;
 118#endif
 119#ifdef MULTI_TLB
 120struct cpu_tlb_fns cpu_tlb __ro_after_init;
 121#endif
 122#ifdef MULTI_USER
 123struct cpu_user_fns cpu_user __ro_after_init;
 124#endif
 125#ifdef MULTI_CACHE
 126struct cpu_cache_fns cpu_cache __ro_after_init;
 127#endif
 128#ifdef CONFIG_OUTER_CACHE
 129struct outer_cache_fns outer_cache __ro_after_init;
 130EXPORT_SYMBOL(outer_cache);
 131#endif
 132
 133/*
 134 * Cached cpu_architecture() result for use by assembler code.
 135 * C code should use the cpu_architecture() function instead of accessing this
 136 * variable directly.
 137 */
 138int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 139
 140struct stack {
 141	u32 irq[3];
 142	u32 abt[3];
 143	u32 und[3];
 144	u32 fiq[3];
 145} ____cacheline_aligned;
 146
 147#ifndef CONFIG_CPU_V7M
 148static struct stack stacks[NR_CPUS];
 149#endif
 150
 151char elf_platform[ELF_PLATFORM_SIZE];
 152EXPORT_SYMBOL(elf_platform);
 153
 154static const char *cpu_name;
 155static const char *machine_name;
 156static char __initdata cmd_line[COMMAND_LINE_SIZE];
 157const struct machine_desc *machine_desc __initdata;
 158
 
 159static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 160#define ENDIANNESS ((char)endian_test.l)
 161
 162DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 163
 164/*
 165 * Standard memory resources
 166 */
 167static struct resource mem_res[] = {
 168	{
 169		.name = "Video RAM",
 170		.start = 0,
 171		.end = 0,
 172		.flags = IORESOURCE_MEM
 173	},
 174	{
 175		.name = "Kernel code",
 176		.start = 0,
 177		.end = 0,
 178		.flags = IORESOURCE_SYSTEM_RAM
 179	},
 180	{
 181		.name = "Kernel data",
 182		.start = 0,
 183		.end = 0,
 184		.flags = IORESOURCE_SYSTEM_RAM
 185	}
 186};
 187
 188#define video_ram   mem_res[0]
 189#define kernel_code mem_res[1]
 190#define kernel_data mem_res[2]
 191
 192static struct resource io_res[] = {
 193	{
 194		.name = "reserved",
 195		.start = 0x3bc,
 196		.end = 0x3be,
 197		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 198	},
 199	{
 200		.name = "reserved",
 201		.start = 0x378,
 202		.end = 0x37f,
 203		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 204	},
 205	{
 206		.name = "reserved",
 207		.start = 0x278,
 208		.end = 0x27f,
 209		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 210	}
 211};
 212
 213#define lp0 io_res[0]
 214#define lp1 io_res[1]
 215#define lp2 io_res[2]
 216
 217static const char *proc_arch[] = {
 218	"undefined/unknown",
 219	"3",
 220	"4",
 221	"4T",
 222	"5",
 223	"5T",
 224	"5TE",
 225	"5TEJ",
 226	"6TEJ",
 227	"7",
 228	"7M",
 229	"?(12)",
 230	"?(13)",
 231	"?(14)",
 232	"?(15)",
 233	"?(16)",
 234	"?(17)",
 235};
 236
 237#ifdef CONFIG_CPU_V7M
 238static int __get_cpu_architecture(void)
 239{
 240	return CPU_ARCH_ARMv7M;
 241}
 242#else
 243static int __get_cpu_architecture(void)
 244{
 245	int cpu_arch;
 246
 247	if ((read_cpuid_id() & 0x0008f000) == 0) {
 248		cpu_arch = CPU_ARCH_UNKNOWN;
 249	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 250		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 251	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 252		cpu_arch = (read_cpuid_id() >> 16) & 7;
 253		if (cpu_arch)
 254			cpu_arch += CPU_ARCH_ARMv3;
 255	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 
 
 256		/* Revised CPUID format. Read the Memory Model Feature
 257		 * Register 0 and check for VMSAv7 or PMSAv7 */
 258		unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
 
 259		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 260		    (mmfr0 & 0x000000f0) >= 0x00000030)
 261			cpu_arch = CPU_ARCH_ARMv7;
 262		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 263			 (mmfr0 & 0x000000f0) == 0x00000020)
 264			cpu_arch = CPU_ARCH_ARMv6;
 265		else
 266			cpu_arch = CPU_ARCH_UNKNOWN;
 267	} else
 268		cpu_arch = CPU_ARCH_UNKNOWN;
 269
 270	return cpu_arch;
 271}
 272#endif
 273
 274int __pure cpu_architecture(void)
 275{
 276	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 277
 278	return __cpu_architecture;
 279}
 280
 281static int cpu_has_aliasing_icache(unsigned int arch)
 282{
 283	int aliasing_icache;
 284	unsigned int id_reg, num_sets, line_size;
 285
 286	/* PIPT caches never alias. */
 287	if (icache_is_pipt())
 288		return 0;
 289
 290	/* arch specifies the register format */
 291	switch (arch) {
 292	case CPU_ARCH_ARMv7:
 293		set_csselr(CSSELR_ICACHE | CSSELR_L1);
 
 
 294		isb();
 295		id_reg = read_ccsidr();
 
 296		line_size = 4 << ((id_reg & 0x7) + 2);
 297		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 298		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 299		break;
 300	case CPU_ARCH_ARMv6:
 301		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 302		break;
 303	default:
 304		/* I-cache aliases will be handled by D-cache aliasing code */
 305		aliasing_icache = 0;
 306	}
 307
 308	return aliasing_icache;
 309}
 310
 311static void __init cacheid_init(void)
 312{
 
 313	unsigned int arch = cpu_architecture();
 314
 315	if (arch >= CPU_ARCH_ARMv6) {
 316		unsigned int cachetype = read_cpuid_cachetype();
 317
 318		if ((arch == CPU_ARCH_ARMv7M) && !cachetype) {
 319			cacheid = 0;
 320		} else if ((cachetype & (7 << 29)) == 4 << 29) {
 321			/* ARMv7 register format */
 322			arch = CPU_ARCH_ARMv7;
 323			cacheid = CACHEID_VIPT_NONALIASING;
 324			switch (cachetype & (3 << 14)) {
 325			case (1 << 14):
 326				cacheid |= CACHEID_ASID_TAGGED;
 327				break;
 328			case (3 << 14):
 329				cacheid |= CACHEID_PIPT;
 330				break;
 331			}
 332		} else {
 333			arch = CPU_ARCH_ARMv6;
 334			if (cachetype & (1 << 23))
 335				cacheid = CACHEID_VIPT_ALIASING;
 336			else
 337				cacheid = CACHEID_VIPT_NONALIASING;
 338		}
 339		if (cpu_has_aliasing_icache(arch))
 340			cacheid |= CACHEID_VIPT_I_ALIASING;
 341	} else {
 342		cacheid = CACHEID_VIVT;
 343	}
 344
 345	pr_info("CPU: %s data cache, %s instruction cache\n",
 346		cache_is_vivt() ? "VIVT" :
 347		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 348		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 349		cache_is_vivt() ? "VIVT" :
 350		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 351		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 352		icache_is_pipt() ? "PIPT" :
 353		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 354}
 355
 356/*
 357 * These functions re-use the assembly code in head.S, which
 358 * already provide the required functionality.
 359 */
 360extern struct proc_info_list *lookup_processor_type(unsigned int);
 361
 362void __init early_print(const char *str, ...)
 363{
 364	extern void printascii(const char *);
 365	char buf[256];
 366	va_list ap;
 367
 368	va_start(ap, str);
 369	vsnprintf(buf, sizeof(buf), str, ap);
 370	va_end(ap);
 371
 372#ifdef CONFIG_DEBUG_LL
 373	printascii(buf);
 374#endif
 375	printk("%s", buf);
 376}
 377
 378#ifdef CONFIG_ARM_PATCH_IDIV
 379
 380static inline u32 __attribute_const__ sdiv_instruction(void)
 381{
 382	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 383		/* "sdiv r0, r0, r1" */
 384		u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
 385		return __opcode_to_mem_thumb32(insn);
 386	}
 387
 388	/* "sdiv r0, r0, r1" */
 389	return __opcode_to_mem_arm(0xe710f110);
 390}
 391
 392static inline u32 __attribute_const__ udiv_instruction(void)
 393{
 394	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 395		/* "udiv r0, r0, r1" */
 396		u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
 397		return __opcode_to_mem_thumb32(insn);
 398	}
 399
 400	/* "udiv r0, r0, r1" */
 401	return __opcode_to_mem_arm(0xe730f110);
 402}
 403
 404static inline u32 __attribute_const__ bx_lr_instruction(void)
 405{
 406	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 407		/* "bx lr; nop" */
 408		u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
 409		return __opcode_to_mem_thumb32(insn);
 410	}
 411
 412	/* "bx lr" */
 413	return __opcode_to_mem_arm(0xe12fff1e);
 414}
 415
 416static void __init patch_aeabi_idiv(void)
 417{
 418	extern void __aeabi_uidiv(void);
 419	extern void __aeabi_idiv(void);
 420	uintptr_t fn_addr;
 421	unsigned int mask;
 422
 423	mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
 424	if (!(elf_hwcap & mask))
 425		return;
 426
 427	pr_info("CPU: div instructions available: patching division code\n");
 428
 429	fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
 430	asm ("" : "+g" (fn_addr));
 431	((u32 *)fn_addr)[0] = udiv_instruction();
 432	((u32 *)fn_addr)[1] = bx_lr_instruction();
 433	flush_icache_range(fn_addr, fn_addr + 8);
 434
 435	fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
 436	asm ("" : "+g" (fn_addr));
 437	((u32 *)fn_addr)[0] = sdiv_instruction();
 438	((u32 *)fn_addr)[1] = bx_lr_instruction();
 439	flush_icache_range(fn_addr, fn_addr + 8);
 440}
 441
 442#else
 443static inline void patch_aeabi_idiv(void) { }
 444#endif
 445
 446static void __init cpuid_init_hwcaps(void)
 447{
 448	int block;
 449	u32 isar5;
 450
 451	if (cpu_architecture() < CPU_ARCH_ARMv7)
 452		return;
 453
 454	block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
 455	if (block >= 2)
 456		elf_hwcap |= HWCAP_IDIVA;
 457	if (block >= 1)
 458		elf_hwcap |= HWCAP_IDIVT;
 459
 460	/* LPAE implies atomic ldrd/strd instructions */
 461	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
 462	if (block >= 5)
 463		elf_hwcap |= HWCAP_LPAE;
 464
 465	/* check for supported v8 Crypto instructions */
 466	isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
 467
 468	block = cpuid_feature_extract_field(isar5, 4);
 469	if (block >= 2)
 470		elf_hwcap2 |= HWCAP2_PMULL;
 471	if (block >= 1)
 472		elf_hwcap2 |= HWCAP2_AES;
 473
 474	block = cpuid_feature_extract_field(isar5, 8);
 475	if (block >= 1)
 476		elf_hwcap2 |= HWCAP2_SHA1;
 477
 478	block = cpuid_feature_extract_field(isar5, 12);
 479	if (block >= 1)
 480		elf_hwcap2 |= HWCAP2_SHA2;
 481
 482	block = cpuid_feature_extract_field(isar5, 16);
 483	if (block >= 1)
 484		elf_hwcap2 |= HWCAP2_CRC32;
 485}
 486
 487static void __init elf_hwcap_fixup(void)
 488{
 489	unsigned id = read_cpuid_id();
 490
 491	/*
 492	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 493	 * see also kuser_get_tls_init.
 494	 */
 495	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
 496	    ((id >> 20) & 3) == 0) {
 497		elf_hwcap &= ~HWCAP_TLS;
 498		return;
 499	}
 500
 501	/* Verify if CPUID scheme is implemented */
 502	if ((id & 0x000f0000) != 0x000f0000)
 503		return;
 504
 505	/*
 506	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
 507	 * avoid advertising SWP; it may not be atomic with
 508	 * multiprocessing cores.
 509	 */
 510	if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
 511	    (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
 512	     cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
 513		elf_hwcap &= ~HWCAP_SWP;
 514}
 515
 516/*
 517 * cpu_init - initialise one CPU.
 518 *
 519 * cpu_init sets up the per-CPU stacks.
 520 */
 521void notrace cpu_init(void)
 522{
 523#ifndef CONFIG_CPU_V7M
 524	unsigned int cpu = smp_processor_id();
 525	struct stack *stk = &stacks[cpu];
 526
 527	if (cpu >= NR_CPUS) {
 528		pr_crit("CPU%u: bad primary CPU number\n", cpu);
 529		BUG();
 530	}
 531
 532	/*
 533	 * This only works on resume and secondary cores. For booting on the
 534	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
 535	 */
 536	set_my_cpu_offset(per_cpu_offset(cpu));
 537
 538	cpu_proc_init();
 539
 540	/*
 541	 * Define the placement constraint for the inline asm directive below.
 542	 * In Thumb-2, msr with an immediate value is not allowed.
 543	 */
 544#ifdef CONFIG_THUMB2_KERNEL
 545#define PLC	"r"
 546#else
 547#define PLC	"I"
 548#endif
 549
 550	/*
 551	 * setup stacks for re-entrant exception handlers
 552	 */
 553	__asm__ (
 554	"msr	cpsr_c, %1\n\t"
 555	"add	r14, %0, %2\n\t"
 556	"mov	sp, r14\n\t"
 557	"msr	cpsr_c, %3\n\t"
 558	"add	r14, %0, %4\n\t"
 559	"mov	sp, r14\n\t"
 560	"msr	cpsr_c, %5\n\t"
 561	"add	r14, %0, %6\n\t"
 562	"mov	sp, r14\n\t"
 563	"msr	cpsr_c, %7\n\t"
 564	"add	r14, %0, %8\n\t"
 565	"mov	sp, r14\n\t"
 566	"msr	cpsr_c, %9"
 567	    :
 568	    : "r" (stk),
 569	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 570	      "I" (offsetof(struct stack, irq[0])),
 571	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 572	      "I" (offsetof(struct stack, abt[0])),
 573	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 574	      "I" (offsetof(struct stack, und[0])),
 575	      PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
 576	      "I" (offsetof(struct stack, fiq[0])),
 577	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 578	    : "r14");
 579#endif
 580}
 581
 582u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
 583
 584void __init smp_setup_processor_id(void)
 585{
 586	int i;
 587	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
 588	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 589
 590	cpu_logical_map(0) = cpu;
 591	for (i = 1; i < nr_cpu_ids; ++i)
 592		cpu_logical_map(i) = i == cpu ? 0 : i;
 593
 594	/*
 595	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
 596	 * using percpu variable early, for example, lockdep will
 597	 * access percpu variable inside lock_release
 598	 */
 599	set_my_cpu_offset(0);
 600
 601	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
 602}
 603
 604struct mpidr_hash mpidr_hash;
 605#ifdef CONFIG_SMP
 606/**
 607 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 608 *			  level in order to build a linear index from an
 609 *			  MPIDR value. Resulting algorithm is a collision
 610 *			  free hash carried out through shifting and ORing
 611 */
 612static void __init smp_build_mpidr_hash(void)
 613{
 614	u32 i, affinity;
 615	u32 fs[3], bits[3], ls, mask = 0;
 616	/*
 617	 * Pre-scan the list of MPIDRS and filter out bits that do
 618	 * not contribute to affinity levels, ie they never toggle.
 619	 */
 620	for_each_possible_cpu(i)
 621		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 622	pr_debug("mask of set bits 0x%x\n", mask);
 623	/*
 624	 * Find and stash the last and first bit set at all affinity levels to
 625	 * check how many bits are required to represent them.
 626	 */
 627	for (i = 0; i < 3; i++) {
 628		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 629		/*
 630		 * Find the MSB bit and LSB bits position
 631		 * to determine how many bits are required
 632		 * to express the affinity level.
 633		 */
 634		ls = fls(affinity);
 635		fs[i] = affinity ? ffs(affinity) - 1 : 0;
 636		bits[i] = ls - fs[i];
 637	}
 638	/*
 639	 * An index can be created from the MPIDR by isolating the
 640	 * significant bits at each affinity level and by shifting
 641	 * them in order to compress the 24 bits values space to a
 642	 * compressed set of values. This is equivalent to hashing
 643	 * the MPIDR through shifting and ORing. It is a collision free
 644	 * hash though not minimal since some levels might contain a number
 645	 * of CPUs that is not an exact power of 2 and their bit
 646	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
 647	 */
 648	mpidr_hash.shift_aff[0] = fs[0];
 649	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
 650	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
 651						(bits[1] + bits[0]);
 652	mpidr_hash.mask = mask;
 653	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
 654	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
 655				mpidr_hash.shift_aff[0],
 656				mpidr_hash.shift_aff[1],
 657				mpidr_hash.shift_aff[2],
 658				mpidr_hash.mask,
 659				mpidr_hash.bits);
 660	/*
 661	 * 4x is an arbitrary value used to warn on a hash table much bigger
 662	 * than expected on most systems.
 663	 */
 664	if (mpidr_hash_size() > 4 * num_possible_cpus())
 665		pr_warn("Large number of MPIDR hash buckets detected\n");
 666	sync_cache_w(&mpidr_hash);
 667}
 668#endif
 669
 670static void __init setup_processor(void)
 671{
 672	struct proc_info_list *list;
 673
 674	/*
 675	 * locate processor in the list of supported processor
 676	 * types.  The linker builds this table for us from the
 677	 * entries in arch/arm/mm/proc-*.S
 678	 */
 679	list = lookup_processor_type(read_cpuid_id());
 680	if (!list) {
 681		pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
 682		       read_cpuid_id());
 683		while (1);
 684	}
 685
 686	cpu_name = list->cpu_name;
 687	__cpu_architecture = __get_cpu_architecture();
 688
 689#ifdef MULTI_CPU
 690	processor = *list->proc;
 691#endif
 692#ifdef MULTI_TLB
 693	cpu_tlb = *list->tlb;
 694#endif
 695#ifdef MULTI_USER
 696	cpu_user = *list->user;
 697#endif
 698#ifdef MULTI_CACHE
 699	cpu_cache = *list->cache;
 700#endif
 701
 702	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 703		cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
 704		proc_arch[cpu_architecture()], get_cr());
 705
 706	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 707		 list->arch_name, ENDIANNESS);
 708	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 709		 list->elf_name, ENDIANNESS);
 710	elf_hwcap = list->elf_hwcap;
 711
 712	cpuid_init_hwcaps();
 713	patch_aeabi_idiv();
 714
 715#ifndef CONFIG_ARM_THUMB
 716	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
 717#endif
 718#ifdef CONFIG_MMU
 719	init_default_cache_policy(list->__cpu_mm_mmu_flags);
 720#endif
 721	erratum_a15_798181_init();
 722
 723	elf_hwcap_fixup();
 724
 725	cacheid_init();
 726	cpu_init();
 727}
 728
 729void __init dump_machine_table(void)
 730{
 731	const struct machine_desc *p;
 732
 733	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 734	for_each_machine_desc(p)
 735		early_print("%08x\t%s\n", p->nr, p->name);
 736
 737	early_print("\nPlease check your kernel config and/or bootloader.\n");
 738
 739	while (true)
 740		/* can't use cpu_relax() here as it may require MMU setup */;
 741}
 742
 743int __init arm_add_memory(u64 start, u64 size)
 744{
 745	u64 aligned_start;
 
 
 
 
 
 
 746
 747	/*
 748	 * Ensure that start/size are aligned to a page boundary.
 749	 * Size is rounded down, start is rounded up.
 750	 */
 751	aligned_start = PAGE_ALIGN(start);
 752	if (aligned_start > start + size)
 753		size = 0;
 754	else
 755		size -= aligned_start - start;
 756
 757#ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
 758	if (aligned_start > ULONG_MAX) {
 759		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
 760			(long long)start);
 761		return -EINVAL;
 762	}
 763
 764	if (aligned_start + size > ULONG_MAX) {
 765		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
 766			(long long)start);
 
 767		/*
 768		 * To ensure bank->start + bank->size is representable in
 769		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 770		 * This means we lose a page after masking.
 771		 */
 772		size = ULONG_MAX - aligned_start;
 773	}
 774#endif
 775
 776	if (aligned_start < PHYS_OFFSET) {
 777		if (aligned_start + size <= PHYS_OFFSET) {
 778			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 779				aligned_start, aligned_start + size);
 780			return -EINVAL;
 781		}
 782
 783		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 784			aligned_start, (u64)PHYS_OFFSET);
 785
 786		size -= PHYS_OFFSET - aligned_start;
 787		aligned_start = PHYS_OFFSET;
 788	}
 789
 790	start = aligned_start;
 791	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
 792
 793	/*
 794	 * Check whether this memory region has non-zero size or
 795	 * invalid node number.
 796	 */
 797	if (size == 0)
 798		return -EINVAL;
 799
 800	memblock_add(start, size);
 801	return 0;
 802}
 803
 804/*
 805 * Pick out the memory size.  We look for mem=size@start,
 806 * where start and size are "size[KkMm]"
 807 */
 808
 809static int __init early_mem(char *p)
 810{
 811	static int usermem __initdata = 0;
 812	u64 size;
 813	u64 start;
 814	char *endp;
 815
 816	/*
 817	 * If the user specifies memory size, we
 818	 * blow away any automatically generated
 819	 * size.
 820	 */
 821	if (usermem == 0) {
 822		usermem = 1;
 823		memblock_remove(memblock_start_of_DRAM(),
 824			memblock_end_of_DRAM() - memblock_start_of_DRAM());
 825	}
 826
 827	start = PHYS_OFFSET;
 828	size  = memparse(p, &endp);
 829	if (*endp == '@')
 830		start = memparse(endp + 1, NULL);
 831
 832	arm_add_memory(start, size);
 833
 834	return 0;
 835}
 836early_param("mem", early_mem);
 837
 838static void __init request_standard_resources(const struct machine_desc *mdesc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 839{
 840	struct memblock_region *region;
 841	struct resource *res;
 842
 843	kernel_code.start   = virt_to_phys(_text);
 844	kernel_code.end     = virt_to_phys(__init_begin - 1);
 845	kernel_data.start   = virt_to_phys(_sdata);
 846	kernel_data.end     = virt_to_phys(_end - 1);
 847
 848	for_each_memblock(memory, region) {
 849		phys_addr_t start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 850		phys_addr_t end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 851		unsigned long boot_alias_start;
 852
 853		/*
 854		 * Some systems have a special memory alias which is only
 855		 * used for booting.  We need to advertise this region to
 856		 * kexec-tools so they know where bootable RAM is located.
 857		 */
 858		boot_alias_start = phys_to_idmap(start);
 859		if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
 860			res = memblock_virt_alloc(sizeof(*res), 0);
 861			res->name = "System RAM (boot alias)";
 862			res->start = boot_alias_start;
 863			res->end = phys_to_idmap(end);
 864			res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 865			request_resource(&iomem_resource, res);
 866		}
 867
 868		res = memblock_virt_alloc(sizeof(*res), 0);
 869		res->name  = "System RAM";
 870		res->start = start;
 871		res->end = end;
 872		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 873
 874		request_resource(&iomem_resource, res);
 875
 876		if (kernel_code.start >= res->start &&
 877		    kernel_code.end <= res->end)
 878			request_resource(res, &kernel_code);
 879		if (kernel_data.start >= res->start &&
 880		    kernel_data.end <= res->end)
 881			request_resource(res, &kernel_data);
 882	}
 883
 884	if (mdesc->video_start) {
 885		video_ram.start = mdesc->video_start;
 886		video_ram.end   = mdesc->video_end;
 887		request_resource(&iomem_resource, &video_ram);
 888	}
 889
 890	/*
 891	 * Some machines don't have the possibility of ever
 892	 * possessing lp0, lp1 or lp2
 893	 */
 894	if (mdesc->reserve_lp0)
 895		request_resource(&ioport_resource, &lp0);
 896	if (mdesc->reserve_lp1)
 897		request_resource(&ioport_resource, &lp1);
 898	if (mdesc->reserve_lp2)
 899		request_resource(&ioport_resource, &lp2);
 900}
 901
 902#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
 903    defined(CONFIG_EFI)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 904struct screen_info screen_info = {
 905 .orig_video_lines	= 30,
 906 .orig_video_cols	= 80,
 907 .orig_video_mode	= 0,
 908 .orig_video_ega_bx	= 0,
 909 .orig_video_isVGA	= 1,
 910 .orig_video_points	= 8
 911};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 913
 914static int __init customize_machine(void)
 915{
 916	/*
 917	 * customizes platform devices, or adds new ones
 918	 * On DT based machines, we fall back to populating the
 919	 * machine from the device tree, if no callback is provided,
 920	 * otherwise we would always need an init_machine callback.
 921	 */
 922	if (machine_desc->init_machine)
 923		machine_desc->init_machine();
 924
 925	return 0;
 926}
 927arch_initcall(customize_machine);
 928
 929static int __init init_machine_late(void)
 930{
 931	struct device_node *root;
 932	int ret;
 933
 934	if (machine_desc->init_late)
 935		machine_desc->init_late();
 936
 937	root = of_find_node_by_path("/");
 938	if (root) {
 939		ret = of_property_read_string(root, "serial-number",
 940					      &system_serial);
 941		if (ret)
 942			system_serial = NULL;
 943	}
 944
 945	if (!system_serial)
 946		system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
 947					  system_serial_high,
 948					  system_serial_low);
 949
 950	return 0;
 951}
 952late_initcall(init_machine_late);
 953
 954#ifdef CONFIG_KEXEC
 955/*
 956 * The crash region must be aligned to 128MB to avoid
 957 * zImage relocating below the reserved region.
 958 */
 959#define CRASH_ALIGN	(128 << 20)
 960
 961static inline unsigned long long get_total_mem(void)
 962{
 963	unsigned long total;
 964
 965	total = max_low_pfn - min_low_pfn;
 966	return total << PAGE_SHIFT;
 967}
 968
 969/**
 970 * reserve_crashkernel() - reserves memory are for crash kernel
 971 *
 972 * This function reserves memory area given in "crashkernel=" kernel command
 973 * line parameter. The memory reserved is used by a dump capture kernel when
 974 * primary kernel is crashing.
 975 */
 976static void __init reserve_crashkernel(void)
 977{
 978	unsigned long long crash_size, crash_base;
 979	unsigned long long total_mem;
 980	int ret;
 981
 982	total_mem = get_total_mem();
 983	ret = parse_crashkernel(boot_command_line, total_mem,
 984				&crash_size, &crash_base);
 985	if (ret)
 986		return;
 987
 988	if (crash_base <= 0) {
 989		unsigned long long crash_max = idmap_to_phys((u32)~0);
 990		crash_base = memblock_find_in_range(CRASH_ALIGN, crash_max,
 991						    crash_size, CRASH_ALIGN);
 992		if (!crash_base) {
 993			pr_err("crashkernel reservation failed - No suitable area found.\n");
 994			return;
 995		}
 996	} else {
 997		unsigned long long start;
 998
 999		start = memblock_find_in_range(crash_base,
1000					       crash_base + crash_size,
1001					       crash_size, SECTION_SIZE);
1002		if (start != crash_base) {
1003			pr_err("crashkernel reservation failed - memory is in use.\n");
1004			return;
1005		}
1006	}
1007
1008	ret = memblock_reserve(crash_base, crash_size);
1009	if (ret < 0) {
1010		pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
1011			(unsigned long)crash_base);
1012		return;
1013	}
1014
1015	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1016		(unsigned long)(crash_size >> 20),
1017		(unsigned long)(crash_base >> 20),
1018		(unsigned long)(total_mem >> 20));
 
1019
1020	/* The crashk resource must always be located in normal mem */
1021	crashk_res.start = crash_base;
1022	crashk_res.end = crash_base + crash_size - 1;
1023	insert_resource(&iomem_resource, &crashk_res);
1024
1025	if (arm_has_idmap_alias()) {
1026		/*
1027		 * If we have a special RAM alias for use at boot, we
1028		 * need to advertise to kexec tools where the alias is.
1029		 */
1030		static struct resource crashk_boot_res = {
1031			.name = "Crash kernel (boot alias)",
1032			.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1033		};
1034
1035		crashk_boot_res.start = phys_to_idmap(crash_base);
1036		crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1037		insert_resource(&iomem_resource, &crashk_boot_res);
1038	}
1039}
1040#else
1041static inline void reserve_crashkernel(void) {}
1042#endif /* CONFIG_KEXEC */
1043
1044void __init hyp_mode_check(void)
 
 
 
 
 
 
 
1045{
1046#ifdef CONFIG_ARM_VIRT_EXT
1047	sync_boot_mode();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1048
1049	if (is_hyp_mode_available()) {
1050		pr_info("CPU: All CPU(s) started in HYP mode.\n");
1051		pr_info("CPU: Virtualization extensions available.\n");
1052	} else if (is_hyp_mode_mismatched()) {
1053		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1054			__boot_cpu_mode & MODE_MASK);
1055		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1056	} else
1057		pr_info("CPU: All CPU(s) started in SVC mode.\n");
1058#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1059}
1060
1061void __init setup_arch(char **cmdline_p)
1062{
1063	const struct machine_desc *mdesc;
1064
1065	setup_processor();
1066	mdesc = setup_machine_fdt(__atags_pointer);
1067	if (!mdesc)
1068		mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
1069	machine_desc = mdesc;
1070	machine_name = mdesc->name;
1071	dump_stack_set_arch_desc("%s", mdesc->name);
1072
1073	if (mdesc->reboot_mode != REBOOT_HARD)
1074		reboot_mode = mdesc->reboot_mode;
 
 
1075
1076	init_mm.start_code = (unsigned long) _text;
1077	init_mm.end_code   = (unsigned long) _etext;
1078	init_mm.end_data   = (unsigned long) _edata;
1079	init_mm.brk	   = (unsigned long) _end;
1080
1081	/* populate cmd_line too for later use, preserving boot_command_line */
1082	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1083	*cmdline_p = cmd_line;
1084
1085	early_fixmap_init();
1086	early_ioremap_init();
1087
1088	parse_early_param();
1089
1090#ifdef CONFIG_MMU
1091	early_paging_init(mdesc);
1092#endif
1093	setup_dma_zone(mdesc);
1094	xen_early_init();
1095	efi_init();
1096	sanity_check_meminfo();
1097	arm_memblock_init(mdesc);
1098
1099	early_ioremap_reset();
1100
1101	paging_init(mdesc);
1102	request_standard_resources(mdesc);
1103
1104	if (mdesc->restart)
1105		arm_pm_restart = mdesc->restart;
1106
1107	unflatten_device_tree();
1108
1109	arm_dt_init_cpu_maps();
1110	psci_dt_init();
1111#ifdef CONFIG_SMP
1112	if (is_smp()) {
1113		if (!mdesc->smp_init || !mdesc->smp_init()) {
1114			if (psci_smp_available())
1115				smp_set_ops(&psci_smp_ops);
1116			else if (mdesc->smp)
1117				smp_set_ops(mdesc->smp);
1118		}
1119		smp_init_cpus();
1120		smp_build_mpidr_hash();
1121	}
1122#endif
 
1123
1124	if (!is_smp())
1125		hyp_mode_check();
1126
1127	reserve_crashkernel();
1128
1129#ifdef CONFIG_MULTI_IRQ_HANDLER
1130	handle_arch_irq = mdesc->handle_irq;
1131#endif
1132
1133#ifdef CONFIG_VT
1134#if defined(CONFIG_VGA_CONSOLE)
1135	conswitchp = &vga_con;
1136#elif defined(CONFIG_DUMMY_CONSOLE)
1137	conswitchp = &dummy_con;
1138#endif
1139#endif
1140
1141	if (mdesc->init_early)
1142		mdesc->init_early();
1143}
1144
1145
1146static int __init topology_init(void)
1147{
1148	int cpu;
1149
1150	for_each_possible_cpu(cpu) {
1151		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1152		cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1153		register_cpu(&cpuinfo->cpu, cpu);
1154	}
1155
1156	return 0;
1157}
1158subsys_initcall(topology_init);
1159
1160#ifdef CONFIG_HAVE_PROC_CPU
1161static int __init proc_cpu_init(void)
1162{
1163	struct proc_dir_entry *res;
1164
1165	res = proc_mkdir("cpu", NULL);
1166	if (!res)
1167		return -ENOMEM;
1168	return 0;
1169}
1170fs_initcall(proc_cpu_init);
1171#endif
1172
1173static const char *hwcap_str[] = {
1174	"swp",
1175	"half",
1176	"thumb",
1177	"26bit",
1178	"fastmult",
1179	"fpa",
1180	"vfp",
1181	"edsp",
1182	"java",
1183	"iwmmxt",
1184	"crunch",
1185	"thumbee",
1186	"neon",
1187	"vfpv3",
1188	"vfpv3d16",
1189	"tls",
1190	"vfpv4",
1191	"idiva",
1192	"idivt",
1193	"vfpd32",
1194	"lpae",
1195	"evtstrm",
1196	NULL
1197};
1198
1199static const char *hwcap2_str[] = {
1200	"aes",
1201	"pmull",
1202	"sha1",
1203	"sha2",
1204	"crc32",
1205	NULL
1206};
1207
1208static int c_show(struct seq_file *m, void *v)
1209{
1210	int i, j;
1211	u32 cpuid;
1212
 
 
 
 
1213	for_each_online_cpu(i) {
1214		/*
1215		 * glibc reads /proc/cpuinfo to determine the number of
1216		 * online processors, looking for lines beginning with
1217		 * "processor".  Give glibc what it expects.
1218		 */
1219		seq_printf(m, "processor\t: %d\n", i);
1220		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1221		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1222			   cpu_name, cpuid & 15, elf_platform);
1223
1224#if defined(CONFIG_SMP)
1225		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1226			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1227			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1228#else
1229		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1230			   loops_per_jiffy / (500000/HZ),
1231			   (loops_per_jiffy / (5000/HZ)) % 100);
1232#endif
1233		/* dump out the processor features */
1234		seq_puts(m, "Features\t: ");
1235
1236		for (j = 0; hwcap_str[j]; j++)
1237			if (elf_hwcap & (1 << j))
1238				seq_printf(m, "%s ", hwcap_str[j]);
1239
1240		for (j = 0; hwcap2_str[j]; j++)
1241			if (elf_hwcap2 & (1 << j))
1242				seq_printf(m, "%s ", hwcap2_str[j]);
1243
1244		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1245		seq_printf(m, "CPU architecture: %s\n",
1246			   proc_arch[cpu_architecture()]);
1247
1248		if ((cpuid & 0x0008f000) == 0x00000000) {
1249			/* pre-ARM7 */
1250			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
 
 
1251		} else {
1252			if ((cpuid & 0x0008f000) == 0x00007000) {
1253				/* ARM7 */
1254				seq_printf(m, "CPU variant\t: 0x%02x\n",
1255					   (cpuid >> 16) & 127);
1256			} else {
1257				/* post-ARM7 */
1258				seq_printf(m, "CPU variant\t: 0x%x\n",
1259					   (cpuid >> 20) & 15);
1260			}
1261			seq_printf(m, "CPU part\t: 0x%03x\n",
1262				   (cpuid >> 4) & 0xfff);
1263		}
1264		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
 
1265	}
 
 
 
1266
1267	seq_printf(m, "Hardware\t: %s\n", machine_name);
1268	seq_printf(m, "Revision\t: %04x\n", system_rev);
1269	seq_printf(m, "Serial\t\t: %s\n", system_serial);
 
1270
1271	return 0;
1272}
1273
1274static void *c_start(struct seq_file *m, loff_t *pos)
1275{
1276	return *pos < 1 ? (void *)1 : NULL;
1277}
1278
1279static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1280{
1281	++*pos;
1282	return NULL;
1283}
1284
1285static void c_stop(struct seq_file *m, void *v)
1286{
1287}
1288
1289const struct seq_operations cpuinfo_op = {
1290	.start	= c_start,
1291	.next	= c_next,
1292	.stop	= c_stop,
1293	.show	= c_show
1294};