Loading...
1/*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10#include <linux/kernel.h>
11#include <linux/delay.h>
12#include <linux/init.h>
13#include <linux/pci.h>
14#include <linux/pm.h>
15#include <linux/slab.h>
16#include <linux/module.h>
17#include <linux/spinlock.h>
18#include <linux/string.h>
19#include <linux/log2.h>
20#include <linux/pci-aspm.h>
21#include <linux/pm_wakeup.h>
22#include <linux/interrupt.h>
23#include <linux/device.h>
24#include <linux/pm_runtime.h>
25#include <asm-generic/pci-bridge.h>
26#include <asm/setup.h>
27#include "pci.h"
28
29const char *pci_power_names[] = {
30 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
31};
32EXPORT_SYMBOL_GPL(pci_power_names);
33
34int isa_dma_bridge_buggy;
35EXPORT_SYMBOL(isa_dma_bridge_buggy);
36
37int pci_pci_problems;
38EXPORT_SYMBOL(pci_pci_problems);
39
40unsigned int pci_pm_d3_delay;
41
42static void pci_pme_list_scan(struct work_struct *work);
43
44static LIST_HEAD(pci_pme_list);
45static DEFINE_MUTEX(pci_pme_list_mutex);
46static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
47
48struct pci_pme_device {
49 struct list_head list;
50 struct pci_dev *dev;
51};
52
53#define PME_TIMEOUT 1000 /* How long between PME checks */
54
55static void pci_dev_d3_sleep(struct pci_dev *dev)
56{
57 unsigned int delay = dev->d3_delay;
58
59 if (delay < pci_pm_d3_delay)
60 delay = pci_pm_d3_delay;
61
62 msleep(delay);
63}
64
65#ifdef CONFIG_PCI_DOMAINS
66int pci_domains_supported = 1;
67#endif
68
69#define DEFAULT_CARDBUS_IO_SIZE (256)
70#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
71/* pci=cbmemsize=nnM,cbiosize=nn can override this */
72unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
73unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
74
75#define DEFAULT_HOTPLUG_IO_SIZE (256)
76#define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
77/* pci=hpmemsize=nnM,hpiosize=nn can override this */
78unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
79unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
80
81enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
82
83/*
84 * The default CLS is used if arch didn't set CLS explicitly and not
85 * all pci devices agree on the same value. Arch can override either
86 * the dfl or actual value as it sees fit. Don't forget this is
87 * measured in 32-bit words, not bytes.
88 */
89u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
90u8 pci_cache_line_size;
91
92/*
93 * If we set up a device for bus mastering, we need to check the latency
94 * timer as certain BIOSes forget to set it properly.
95 */
96unsigned int pcibios_max_latency = 255;
97
98/* If set, the PCIe ARI capability will not be used. */
99static bool pcie_ari_disabled;
100
101/**
102 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
103 * @bus: pointer to PCI bus structure to search
104 *
105 * Given a PCI bus, returns the highest PCI bus number present in the set
106 * including the given PCI bus and its list of child PCI buses.
107 */
108unsigned char pci_bus_max_busnr(struct pci_bus* bus)
109{
110 struct list_head *tmp;
111 unsigned char max, n;
112
113 max = bus->subordinate;
114 list_for_each(tmp, &bus->children) {
115 n = pci_bus_max_busnr(pci_bus_b(tmp));
116 if(n > max)
117 max = n;
118 }
119 return max;
120}
121EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
122
123#ifdef CONFIG_HAS_IOMEM
124void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
125{
126 /*
127 * Make sure the BAR is actually a memory resource, not an IO resource
128 */
129 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
130 WARN_ON(1);
131 return NULL;
132 }
133 return ioremap_nocache(pci_resource_start(pdev, bar),
134 pci_resource_len(pdev, bar));
135}
136EXPORT_SYMBOL_GPL(pci_ioremap_bar);
137#endif
138
139#if 0
140/**
141 * pci_max_busnr - returns maximum PCI bus number
142 *
143 * Returns the highest PCI bus number present in the system global list of
144 * PCI buses.
145 */
146unsigned char __devinit
147pci_max_busnr(void)
148{
149 struct pci_bus *bus = NULL;
150 unsigned char max, n;
151
152 max = 0;
153 while ((bus = pci_find_next_bus(bus)) != NULL) {
154 n = pci_bus_max_busnr(bus);
155 if(n > max)
156 max = n;
157 }
158 return max;
159}
160
161#endif /* 0 */
162
163#define PCI_FIND_CAP_TTL 48
164
165static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
166 u8 pos, int cap, int *ttl)
167{
168 u8 id;
169
170 while ((*ttl)--) {
171 pci_bus_read_config_byte(bus, devfn, pos, &pos);
172 if (pos < 0x40)
173 break;
174 pos &= ~3;
175 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
176 &id);
177 if (id == 0xff)
178 break;
179 if (id == cap)
180 return pos;
181 pos += PCI_CAP_LIST_NEXT;
182 }
183 return 0;
184}
185
186static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
187 u8 pos, int cap)
188{
189 int ttl = PCI_FIND_CAP_TTL;
190
191 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
192}
193
194int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
195{
196 return __pci_find_next_cap(dev->bus, dev->devfn,
197 pos + PCI_CAP_LIST_NEXT, cap);
198}
199EXPORT_SYMBOL_GPL(pci_find_next_capability);
200
201static int __pci_bus_find_cap_start(struct pci_bus *bus,
202 unsigned int devfn, u8 hdr_type)
203{
204 u16 status;
205
206 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
207 if (!(status & PCI_STATUS_CAP_LIST))
208 return 0;
209
210 switch (hdr_type) {
211 case PCI_HEADER_TYPE_NORMAL:
212 case PCI_HEADER_TYPE_BRIDGE:
213 return PCI_CAPABILITY_LIST;
214 case PCI_HEADER_TYPE_CARDBUS:
215 return PCI_CB_CAPABILITY_LIST;
216 default:
217 return 0;
218 }
219
220 return 0;
221}
222
223/**
224 * pci_find_capability - query for devices' capabilities
225 * @dev: PCI device to query
226 * @cap: capability code
227 *
228 * Tell if a device supports a given PCI capability.
229 * Returns the address of the requested capability structure within the
230 * device's PCI configuration space or 0 in case the device does not
231 * support it. Possible values for @cap:
232 *
233 * %PCI_CAP_ID_PM Power Management
234 * %PCI_CAP_ID_AGP Accelerated Graphics Port
235 * %PCI_CAP_ID_VPD Vital Product Data
236 * %PCI_CAP_ID_SLOTID Slot Identification
237 * %PCI_CAP_ID_MSI Message Signalled Interrupts
238 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
239 * %PCI_CAP_ID_PCIX PCI-X
240 * %PCI_CAP_ID_EXP PCI Express
241 */
242int pci_find_capability(struct pci_dev *dev, int cap)
243{
244 int pos;
245
246 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
247 if (pos)
248 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
249
250 return pos;
251}
252
253/**
254 * pci_bus_find_capability - query for devices' capabilities
255 * @bus: the PCI bus to query
256 * @devfn: PCI device to query
257 * @cap: capability code
258 *
259 * Like pci_find_capability() but works for pci devices that do not have a
260 * pci_dev structure set up yet.
261 *
262 * Returns the address of the requested capability structure within the
263 * device's PCI configuration space or 0 in case the device does not
264 * support it.
265 */
266int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
267{
268 int pos;
269 u8 hdr_type;
270
271 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
272
273 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
274 if (pos)
275 pos = __pci_find_next_cap(bus, devfn, pos, cap);
276
277 return pos;
278}
279
280/**
281 * pci_find_ext_capability - Find an extended capability
282 * @dev: PCI device to query
283 * @cap: capability code
284 *
285 * Returns the address of the requested extended capability structure
286 * within the device's PCI configuration space or 0 if the device does
287 * not support it. Possible values for @cap:
288 *
289 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
290 * %PCI_EXT_CAP_ID_VC Virtual Channel
291 * %PCI_EXT_CAP_ID_DSN Device Serial Number
292 * %PCI_EXT_CAP_ID_PWR Power Budgeting
293 */
294int pci_find_ext_capability(struct pci_dev *dev, int cap)
295{
296 u32 header;
297 int ttl;
298 int pos = PCI_CFG_SPACE_SIZE;
299
300 /* minimum 8 bytes per capability */
301 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
302
303 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
304 return 0;
305
306 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
307 return 0;
308
309 /*
310 * If we have no capabilities, this is indicated by cap ID,
311 * cap version and next pointer all being 0.
312 */
313 if (header == 0)
314 return 0;
315
316 while (ttl-- > 0) {
317 if (PCI_EXT_CAP_ID(header) == cap)
318 return pos;
319
320 pos = PCI_EXT_CAP_NEXT(header);
321 if (pos < PCI_CFG_SPACE_SIZE)
322 break;
323
324 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
325 break;
326 }
327
328 return 0;
329}
330EXPORT_SYMBOL_GPL(pci_find_ext_capability);
331
332/**
333 * pci_bus_find_ext_capability - find an extended capability
334 * @bus: the PCI bus to query
335 * @devfn: PCI device to query
336 * @cap: capability code
337 *
338 * Like pci_find_ext_capability() but works for pci devices that do not have a
339 * pci_dev structure set up yet.
340 *
341 * Returns the address of the requested capability structure within the
342 * device's PCI configuration space or 0 in case the device does not
343 * support it.
344 */
345int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn,
346 int cap)
347{
348 u32 header;
349 int ttl;
350 int pos = PCI_CFG_SPACE_SIZE;
351
352 /* minimum 8 bytes per capability */
353 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
354
355 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
356 return 0;
357 if (header == 0xffffffff || header == 0)
358 return 0;
359
360 while (ttl-- > 0) {
361 if (PCI_EXT_CAP_ID(header) == cap)
362 return pos;
363
364 pos = PCI_EXT_CAP_NEXT(header);
365 if (pos < PCI_CFG_SPACE_SIZE)
366 break;
367
368 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
369 break;
370 }
371
372 return 0;
373}
374
375static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
376{
377 int rc, ttl = PCI_FIND_CAP_TTL;
378 u8 cap, mask;
379
380 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
381 mask = HT_3BIT_CAP_MASK;
382 else
383 mask = HT_5BIT_CAP_MASK;
384
385 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
386 PCI_CAP_ID_HT, &ttl);
387 while (pos) {
388 rc = pci_read_config_byte(dev, pos + 3, &cap);
389 if (rc != PCIBIOS_SUCCESSFUL)
390 return 0;
391
392 if ((cap & mask) == ht_cap)
393 return pos;
394
395 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
396 pos + PCI_CAP_LIST_NEXT,
397 PCI_CAP_ID_HT, &ttl);
398 }
399
400 return 0;
401}
402/**
403 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
404 * @dev: PCI device to query
405 * @pos: Position from which to continue searching
406 * @ht_cap: Hypertransport capability code
407 *
408 * To be used in conjunction with pci_find_ht_capability() to search for
409 * all capabilities matching @ht_cap. @pos should always be a value returned
410 * from pci_find_ht_capability().
411 *
412 * NB. To be 100% safe against broken PCI devices, the caller should take
413 * steps to avoid an infinite loop.
414 */
415int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
416{
417 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
418}
419EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
420
421/**
422 * pci_find_ht_capability - query a device's Hypertransport capabilities
423 * @dev: PCI device to query
424 * @ht_cap: Hypertransport capability code
425 *
426 * Tell if a device supports a given Hypertransport capability.
427 * Returns an address within the device's PCI configuration space
428 * or 0 in case the device does not support the request capability.
429 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
430 * which has a Hypertransport capability matching @ht_cap.
431 */
432int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
433{
434 int pos;
435
436 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
437 if (pos)
438 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
439
440 return pos;
441}
442EXPORT_SYMBOL_GPL(pci_find_ht_capability);
443
444/**
445 * pci_find_parent_resource - return resource region of parent bus of given region
446 * @dev: PCI device structure contains resources to be searched
447 * @res: child resource record for which parent is sought
448 *
449 * For given resource region of given device, return the resource
450 * region of parent bus the given region is contained in or where
451 * it should be allocated from.
452 */
453struct resource *
454pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
455{
456 const struct pci_bus *bus = dev->bus;
457 int i;
458 struct resource *best = NULL, *r;
459
460 pci_bus_for_each_resource(bus, r, i) {
461 if (!r)
462 continue;
463 if (res->start && !(res->start >= r->start && res->end <= r->end))
464 continue; /* Not contained */
465 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
466 continue; /* Wrong type */
467 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
468 return r; /* Exact match */
469 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
470 if (r->flags & IORESOURCE_PREFETCH)
471 continue;
472 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
473 if (!best)
474 best = r;
475 }
476 return best;
477}
478
479/**
480 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
481 * @dev: PCI device to have its BARs restored
482 *
483 * Restore the BAR values for a given device, so as to make it
484 * accessible by its driver.
485 */
486static void
487pci_restore_bars(struct pci_dev *dev)
488{
489 int i;
490
491 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
492 pci_update_resource(dev, i);
493}
494
495static struct pci_platform_pm_ops *pci_platform_pm;
496
497int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
498{
499 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
500 || !ops->sleep_wake || !ops->can_wakeup)
501 return -EINVAL;
502 pci_platform_pm = ops;
503 return 0;
504}
505
506static inline bool platform_pci_power_manageable(struct pci_dev *dev)
507{
508 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
509}
510
511static inline int platform_pci_set_power_state(struct pci_dev *dev,
512 pci_power_t t)
513{
514 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
515}
516
517static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
518{
519 return pci_platform_pm ?
520 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
521}
522
523static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
524{
525 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
526}
527
528static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
529{
530 return pci_platform_pm ?
531 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
532}
533
534static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
535{
536 return pci_platform_pm ?
537 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
538}
539
540/**
541 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
542 * given PCI device
543 * @dev: PCI device to handle.
544 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
545 *
546 * RETURN VALUE:
547 * -EINVAL if the requested state is invalid.
548 * -EIO if device does not support PCI PM or its PM capabilities register has a
549 * wrong version, or device doesn't support the requested state.
550 * 0 if device already is in the requested state.
551 * 0 if device's power state has been successfully changed.
552 */
553static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
554{
555 u16 pmcsr;
556 bool need_restore = false;
557
558 /* Check if we're already there */
559 if (dev->current_state == state)
560 return 0;
561
562 if (!dev->pm_cap)
563 return -EIO;
564
565 if (state < PCI_D0 || state > PCI_D3hot)
566 return -EINVAL;
567
568 /* Validate current state:
569 * Can enter D0 from any state, but if we can only go deeper
570 * to sleep if we're already in a low power state
571 */
572 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
573 && dev->current_state > state) {
574 dev_err(&dev->dev, "invalid power transition "
575 "(from state %d to %d)\n", dev->current_state, state);
576 return -EINVAL;
577 }
578
579 /* check if this device supports the desired state */
580 if ((state == PCI_D1 && !dev->d1_support)
581 || (state == PCI_D2 && !dev->d2_support))
582 return -EIO;
583
584 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
585
586 /* If we're (effectively) in D3, force entire word to 0.
587 * This doesn't affect PME_Status, disables PME_En, and
588 * sets PowerState to 0.
589 */
590 switch (dev->current_state) {
591 case PCI_D0:
592 case PCI_D1:
593 case PCI_D2:
594 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
595 pmcsr |= state;
596 break;
597 case PCI_D3hot:
598 case PCI_D3cold:
599 case PCI_UNKNOWN: /* Boot-up */
600 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
601 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
602 need_restore = true;
603 /* Fall-through: force to D0 */
604 default:
605 pmcsr = 0;
606 break;
607 }
608
609 /* enter specified state */
610 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
611
612 /* Mandatory power management transition delays */
613 /* see PCI PM 1.1 5.6.1 table 18 */
614 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
615 pci_dev_d3_sleep(dev);
616 else if (state == PCI_D2 || dev->current_state == PCI_D2)
617 udelay(PCI_PM_D2_DELAY);
618
619 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
620 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
621 if (dev->current_state != state && printk_ratelimit())
622 dev_info(&dev->dev, "Refused to change power state, "
623 "currently in D%d\n", dev->current_state);
624
625 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
626 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
627 * from D3hot to D0 _may_ perform an internal reset, thereby
628 * going to "D0 Uninitialized" rather than "D0 Initialized".
629 * For example, at least some versions of the 3c905B and the
630 * 3c556B exhibit this behaviour.
631 *
632 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
633 * devices in a D3hot state at boot. Consequently, we need to
634 * restore at least the BARs so that the device will be
635 * accessible to its driver.
636 */
637 if (need_restore)
638 pci_restore_bars(dev);
639
640 if (dev->bus->self)
641 pcie_aspm_pm_state_change(dev->bus->self);
642
643 return 0;
644}
645
646/**
647 * pci_update_current_state - Read PCI power state of given device from its
648 * PCI PM registers and cache it
649 * @dev: PCI device to handle.
650 * @state: State to cache in case the device doesn't have the PM capability
651 */
652void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
653{
654 if (dev->pm_cap) {
655 u16 pmcsr;
656
657 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
658 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
659 } else {
660 dev->current_state = state;
661 }
662}
663
664/**
665 * pci_platform_power_transition - Use platform to change device power state
666 * @dev: PCI device to handle.
667 * @state: State to put the device into.
668 */
669static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
670{
671 int error;
672
673 if (platform_pci_power_manageable(dev)) {
674 error = platform_pci_set_power_state(dev, state);
675 if (!error)
676 pci_update_current_state(dev, state);
677 /* Fall back to PCI_D0 if native PM is not supported */
678 if (!dev->pm_cap)
679 dev->current_state = PCI_D0;
680 } else {
681 error = -ENODEV;
682 /* Fall back to PCI_D0 if native PM is not supported */
683 if (!dev->pm_cap)
684 dev->current_state = PCI_D0;
685 }
686
687 return error;
688}
689
690/**
691 * __pci_start_power_transition - Start power transition of a PCI device
692 * @dev: PCI device to handle.
693 * @state: State to put the device into.
694 */
695static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
696{
697 if (state == PCI_D0)
698 pci_platform_power_transition(dev, PCI_D0);
699}
700
701/**
702 * __pci_complete_power_transition - Complete power transition of a PCI device
703 * @dev: PCI device to handle.
704 * @state: State to put the device into.
705 *
706 * This function should not be called directly by device drivers.
707 */
708int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
709{
710 return state >= PCI_D0 ?
711 pci_platform_power_transition(dev, state) : -EINVAL;
712}
713EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
714
715/**
716 * pci_set_power_state - Set the power state of a PCI device
717 * @dev: PCI device to handle.
718 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
719 *
720 * Transition a device to a new power state, using the platform firmware and/or
721 * the device's PCI PM registers.
722 *
723 * RETURN VALUE:
724 * -EINVAL if the requested state is invalid.
725 * -EIO if device does not support PCI PM or its PM capabilities register has a
726 * wrong version, or device doesn't support the requested state.
727 * 0 if device already is in the requested state.
728 * 0 if device's power state has been successfully changed.
729 */
730int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
731{
732 int error;
733
734 /* bound the state we're entering */
735 if (state > PCI_D3hot)
736 state = PCI_D3hot;
737 else if (state < PCI_D0)
738 state = PCI_D0;
739 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
740 /*
741 * If the device or the parent bridge do not support PCI PM,
742 * ignore the request if we're doing anything other than putting
743 * it into D0 (which would only happen on boot).
744 */
745 return 0;
746
747 __pci_start_power_transition(dev, state);
748
749 /* This device is quirked not to be put into D3, so
750 don't put it in D3 */
751 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
752 return 0;
753
754 error = pci_raw_set_power_state(dev, state);
755
756 if (!__pci_complete_power_transition(dev, state))
757 error = 0;
758 /*
759 * When aspm_policy is "powersave" this call ensures
760 * that ASPM is configured.
761 */
762 if (!error && dev->bus->self)
763 pcie_aspm_powersave_config_link(dev->bus->self);
764
765 return error;
766}
767
768/**
769 * pci_choose_state - Choose the power state of a PCI device
770 * @dev: PCI device to be suspended
771 * @state: target sleep state for the whole system. This is the value
772 * that is passed to suspend() function.
773 *
774 * Returns PCI power state suitable for given device and given system
775 * message.
776 */
777
778pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
779{
780 pci_power_t ret;
781
782 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
783 return PCI_D0;
784
785 ret = platform_pci_choose_state(dev);
786 if (ret != PCI_POWER_ERROR)
787 return ret;
788
789 switch (state.event) {
790 case PM_EVENT_ON:
791 return PCI_D0;
792 case PM_EVENT_FREEZE:
793 case PM_EVENT_PRETHAW:
794 /* REVISIT both freeze and pre-thaw "should" use D0 */
795 case PM_EVENT_SUSPEND:
796 case PM_EVENT_HIBERNATE:
797 return PCI_D3hot;
798 default:
799 dev_info(&dev->dev, "unrecognized suspend event %d\n",
800 state.event);
801 BUG();
802 }
803 return PCI_D0;
804}
805
806EXPORT_SYMBOL(pci_choose_state);
807
808#define PCI_EXP_SAVE_REGS 7
809
810#define pcie_cap_has_devctl(type, flags) 1
811#define pcie_cap_has_lnkctl(type, flags) \
812 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
813 (type == PCI_EXP_TYPE_ROOT_PORT || \
814 type == PCI_EXP_TYPE_ENDPOINT || \
815 type == PCI_EXP_TYPE_LEG_END))
816#define pcie_cap_has_sltctl(type, flags) \
817 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
818 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
819 (type == PCI_EXP_TYPE_DOWNSTREAM && \
820 (flags & PCI_EXP_FLAGS_SLOT))))
821#define pcie_cap_has_rtctl(type, flags) \
822 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
823 (type == PCI_EXP_TYPE_ROOT_PORT || \
824 type == PCI_EXP_TYPE_RC_EC))
825#define pcie_cap_has_devctl2(type, flags) \
826 ((flags & PCI_EXP_FLAGS_VERS) > 1)
827#define pcie_cap_has_lnkctl2(type, flags) \
828 ((flags & PCI_EXP_FLAGS_VERS) > 1)
829#define pcie_cap_has_sltctl2(type, flags) \
830 ((flags & PCI_EXP_FLAGS_VERS) > 1)
831
832static struct pci_cap_saved_state *pci_find_saved_cap(
833 struct pci_dev *pci_dev, char cap)
834{
835 struct pci_cap_saved_state *tmp;
836 struct hlist_node *pos;
837
838 hlist_for_each_entry(tmp, pos, &pci_dev->saved_cap_space, next) {
839 if (tmp->cap.cap_nr == cap)
840 return tmp;
841 }
842 return NULL;
843}
844
845static int pci_save_pcie_state(struct pci_dev *dev)
846{
847 int pos, i = 0;
848 struct pci_cap_saved_state *save_state;
849 u16 *cap;
850 u16 flags;
851
852 pos = pci_pcie_cap(dev);
853 if (!pos)
854 return 0;
855
856 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
857 if (!save_state) {
858 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
859 return -ENOMEM;
860 }
861 cap = (u16 *)&save_state->cap.data[0];
862
863 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
864
865 if (pcie_cap_has_devctl(dev->pcie_type, flags))
866 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
867 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
868 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
869 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
870 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
871 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
872 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
873 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
874 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
875 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
876 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
877 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
878 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
879
880 return 0;
881}
882
883static void pci_restore_pcie_state(struct pci_dev *dev)
884{
885 int i = 0, pos;
886 struct pci_cap_saved_state *save_state;
887 u16 *cap;
888 u16 flags;
889
890 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
891 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
892 if (!save_state || pos <= 0)
893 return;
894 cap = (u16 *)&save_state->cap.data[0];
895
896 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
897
898 if (pcie_cap_has_devctl(dev->pcie_type, flags))
899 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
900 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
901 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
902 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
903 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
904 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
905 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
906 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
907 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
908 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
909 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
910 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
911 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
912}
913
914
915static int pci_save_pcix_state(struct pci_dev *dev)
916{
917 int pos;
918 struct pci_cap_saved_state *save_state;
919
920 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
921 if (pos <= 0)
922 return 0;
923
924 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
925 if (!save_state) {
926 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
927 return -ENOMEM;
928 }
929
930 pci_read_config_word(dev, pos + PCI_X_CMD,
931 (u16 *)save_state->cap.data);
932
933 return 0;
934}
935
936static void pci_restore_pcix_state(struct pci_dev *dev)
937{
938 int i = 0, pos;
939 struct pci_cap_saved_state *save_state;
940 u16 *cap;
941
942 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
943 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
944 if (!save_state || pos <= 0)
945 return;
946 cap = (u16 *)&save_state->cap.data[0];
947
948 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
949}
950
951
952/**
953 * pci_save_state - save the PCI configuration space of a device before suspending
954 * @dev: - PCI device that we're dealing with
955 */
956int
957pci_save_state(struct pci_dev *dev)
958{
959 int i;
960 /* XXX: 100% dword access ok here? */
961 for (i = 0; i < 16; i++)
962 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
963 dev->state_saved = true;
964 if ((i = pci_save_pcie_state(dev)) != 0)
965 return i;
966 if ((i = pci_save_pcix_state(dev)) != 0)
967 return i;
968 return 0;
969}
970
971static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
972 u32 saved_val, int retry)
973{
974 u32 val;
975
976 pci_read_config_dword(pdev, offset, &val);
977 if (val == saved_val)
978 return;
979
980 for (;;) {
981 dev_dbg(&pdev->dev, "restoring config space at offset "
982 "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
983 pci_write_config_dword(pdev, offset, saved_val);
984 if (retry-- <= 0)
985 return;
986
987 pci_read_config_dword(pdev, offset, &val);
988 if (val == saved_val)
989 return;
990
991 mdelay(1);
992 }
993}
994
995static void pci_restore_config_space_range(struct pci_dev *pdev,
996 int start, int end, int retry)
997{
998 int index;
999
1000 for (index = end; index >= start; index--)
1001 pci_restore_config_dword(pdev, 4 * index,
1002 pdev->saved_config_space[index],
1003 retry);
1004}
1005
1006static void pci_restore_config_space(struct pci_dev *pdev)
1007{
1008 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1009 pci_restore_config_space_range(pdev, 10, 15, 0);
1010 /* Restore BARs before the command register. */
1011 pci_restore_config_space_range(pdev, 4, 9, 10);
1012 pci_restore_config_space_range(pdev, 0, 3, 0);
1013 } else {
1014 pci_restore_config_space_range(pdev, 0, 15, 0);
1015 }
1016}
1017
1018/**
1019 * pci_restore_state - Restore the saved state of a PCI device
1020 * @dev: - PCI device that we're dealing with
1021 */
1022void pci_restore_state(struct pci_dev *dev)
1023{
1024 if (!dev->state_saved)
1025 return;
1026
1027 /* PCI Express register must be restored first */
1028 pci_restore_pcie_state(dev);
1029 pci_restore_ats_state(dev);
1030
1031 pci_restore_config_space(dev);
1032
1033 pci_restore_pcix_state(dev);
1034 pci_restore_msi_state(dev);
1035 pci_restore_iov_state(dev);
1036
1037 dev->state_saved = false;
1038}
1039
1040struct pci_saved_state {
1041 u32 config_space[16];
1042 struct pci_cap_saved_data cap[0];
1043};
1044
1045/**
1046 * pci_store_saved_state - Allocate and return an opaque struct containing
1047 * the device saved state.
1048 * @dev: PCI device that we're dealing with
1049 *
1050 * Rerturn NULL if no state or error.
1051 */
1052struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1053{
1054 struct pci_saved_state *state;
1055 struct pci_cap_saved_state *tmp;
1056 struct pci_cap_saved_data *cap;
1057 struct hlist_node *pos;
1058 size_t size;
1059
1060 if (!dev->state_saved)
1061 return NULL;
1062
1063 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1064
1065 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next)
1066 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1067
1068 state = kzalloc(size, GFP_KERNEL);
1069 if (!state)
1070 return NULL;
1071
1072 memcpy(state->config_space, dev->saved_config_space,
1073 sizeof(state->config_space));
1074
1075 cap = state->cap;
1076 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) {
1077 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1078 memcpy(cap, &tmp->cap, len);
1079 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1080 }
1081 /* Empty cap_save terminates list */
1082
1083 return state;
1084}
1085EXPORT_SYMBOL_GPL(pci_store_saved_state);
1086
1087/**
1088 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1089 * @dev: PCI device that we're dealing with
1090 * @state: Saved state returned from pci_store_saved_state()
1091 */
1092int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1093{
1094 struct pci_cap_saved_data *cap;
1095
1096 dev->state_saved = false;
1097
1098 if (!state)
1099 return 0;
1100
1101 memcpy(dev->saved_config_space, state->config_space,
1102 sizeof(state->config_space));
1103
1104 cap = state->cap;
1105 while (cap->size) {
1106 struct pci_cap_saved_state *tmp;
1107
1108 tmp = pci_find_saved_cap(dev, cap->cap_nr);
1109 if (!tmp || tmp->cap.size != cap->size)
1110 return -EINVAL;
1111
1112 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1113 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1114 sizeof(struct pci_cap_saved_data) + cap->size);
1115 }
1116
1117 dev->state_saved = true;
1118 return 0;
1119}
1120EXPORT_SYMBOL_GPL(pci_load_saved_state);
1121
1122/**
1123 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1124 * and free the memory allocated for it.
1125 * @dev: PCI device that we're dealing with
1126 * @state: Pointer to saved state returned from pci_store_saved_state()
1127 */
1128int pci_load_and_free_saved_state(struct pci_dev *dev,
1129 struct pci_saved_state **state)
1130{
1131 int ret = pci_load_saved_state(dev, *state);
1132 kfree(*state);
1133 *state = NULL;
1134 return ret;
1135}
1136EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1137
1138static int do_pci_enable_device(struct pci_dev *dev, int bars)
1139{
1140 int err;
1141
1142 err = pci_set_power_state(dev, PCI_D0);
1143 if (err < 0 && err != -EIO)
1144 return err;
1145 err = pcibios_enable_device(dev, bars);
1146 if (err < 0)
1147 return err;
1148 pci_fixup_device(pci_fixup_enable, dev);
1149
1150 return 0;
1151}
1152
1153/**
1154 * pci_reenable_device - Resume abandoned device
1155 * @dev: PCI device to be resumed
1156 *
1157 * Note this function is a backend of pci_default_resume and is not supposed
1158 * to be called by normal code, write proper resume handler and use it instead.
1159 */
1160int pci_reenable_device(struct pci_dev *dev)
1161{
1162 if (pci_is_enabled(dev))
1163 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1164 return 0;
1165}
1166
1167static int __pci_enable_device_flags(struct pci_dev *dev,
1168 resource_size_t flags)
1169{
1170 int err;
1171 int i, bars = 0;
1172
1173 /*
1174 * Power state could be unknown at this point, either due to a fresh
1175 * boot or a device removal call. So get the current power state
1176 * so that things like MSI message writing will behave as expected
1177 * (e.g. if the device really is in D0 at enable time).
1178 */
1179 if (dev->pm_cap) {
1180 u16 pmcsr;
1181 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1182 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1183 }
1184
1185 if (atomic_add_return(1, &dev->enable_cnt) > 1)
1186 return 0; /* already enabled */
1187
1188 /* only skip sriov related */
1189 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1190 if (dev->resource[i].flags & flags)
1191 bars |= (1 << i);
1192 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1193 if (dev->resource[i].flags & flags)
1194 bars |= (1 << i);
1195
1196 err = do_pci_enable_device(dev, bars);
1197 if (err < 0)
1198 atomic_dec(&dev->enable_cnt);
1199 return err;
1200}
1201
1202/**
1203 * pci_enable_device_io - Initialize a device for use with IO space
1204 * @dev: PCI device to be initialized
1205 *
1206 * Initialize device before it's used by a driver. Ask low-level code
1207 * to enable I/O resources. Wake up the device if it was suspended.
1208 * Beware, this function can fail.
1209 */
1210int pci_enable_device_io(struct pci_dev *dev)
1211{
1212 return __pci_enable_device_flags(dev, IORESOURCE_IO);
1213}
1214
1215/**
1216 * pci_enable_device_mem - Initialize a device for use with Memory space
1217 * @dev: PCI device to be initialized
1218 *
1219 * Initialize device before it's used by a driver. Ask low-level code
1220 * to enable Memory resources. Wake up the device if it was suspended.
1221 * Beware, this function can fail.
1222 */
1223int pci_enable_device_mem(struct pci_dev *dev)
1224{
1225 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1226}
1227
1228/**
1229 * pci_enable_device - Initialize device before it's used by a driver.
1230 * @dev: PCI device to be initialized
1231 *
1232 * Initialize device before it's used by a driver. Ask low-level code
1233 * to enable I/O and memory. Wake up the device if it was suspended.
1234 * Beware, this function can fail.
1235 *
1236 * Note we don't actually enable the device many times if we call
1237 * this function repeatedly (we just increment the count).
1238 */
1239int pci_enable_device(struct pci_dev *dev)
1240{
1241 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1242}
1243
1244/*
1245 * Managed PCI resources. This manages device on/off, intx/msi/msix
1246 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1247 * there's no need to track it separately. pci_devres is initialized
1248 * when a device is enabled using managed PCI device enable interface.
1249 */
1250struct pci_devres {
1251 unsigned int enabled:1;
1252 unsigned int pinned:1;
1253 unsigned int orig_intx:1;
1254 unsigned int restore_intx:1;
1255 u32 region_mask;
1256};
1257
1258static void pcim_release(struct device *gendev, void *res)
1259{
1260 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1261 struct pci_devres *this = res;
1262 int i;
1263
1264 if (dev->msi_enabled)
1265 pci_disable_msi(dev);
1266 if (dev->msix_enabled)
1267 pci_disable_msix(dev);
1268
1269 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1270 if (this->region_mask & (1 << i))
1271 pci_release_region(dev, i);
1272
1273 if (this->restore_intx)
1274 pci_intx(dev, this->orig_intx);
1275
1276 if (this->enabled && !this->pinned)
1277 pci_disable_device(dev);
1278}
1279
1280static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1281{
1282 struct pci_devres *dr, *new_dr;
1283
1284 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1285 if (dr)
1286 return dr;
1287
1288 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1289 if (!new_dr)
1290 return NULL;
1291 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1292}
1293
1294static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1295{
1296 if (pci_is_managed(pdev))
1297 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1298 return NULL;
1299}
1300
1301/**
1302 * pcim_enable_device - Managed pci_enable_device()
1303 * @pdev: PCI device to be initialized
1304 *
1305 * Managed pci_enable_device().
1306 */
1307int pcim_enable_device(struct pci_dev *pdev)
1308{
1309 struct pci_devres *dr;
1310 int rc;
1311
1312 dr = get_pci_dr(pdev);
1313 if (unlikely(!dr))
1314 return -ENOMEM;
1315 if (dr->enabled)
1316 return 0;
1317
1318 rc = pci_enable_device(pdev);
1319 if (!rc) {
1320 pdev->is_managed = 1;
1321 dr->enabled = 1;
1322 }
1323 return rc;
1324}
1325
1326/**
1327 * pcim_pin_device - Pin managed PCI device
1328 * @pdev: PCI device to pin
1329 *
1330 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1331 * driver detach. @pdev must have been enabled with
1332 * pcim_enable_device().
1333 */
1334void pcim_pin_device(struct pci_dev *pdev)
1335{
1336 struct pci_devres *dr;
1337
1338 dr = find_pci_dr(pdev);
1339 WARN_ON(!dr || !dr->enabled);
1340 if (dr)
1341 dr->pinned = 1;
1342}
1343
1344/**
1345 * pcibios_disable_device - disable arch specific PCI resources for device dev
1346 * @dev: the PCI device to disable
1347 *
1348 * Disables architecture specific PCI resources for the device. This
1349 * is the default implementation. Architecture implementations can
1350 * override this.
1351 */
1352void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1353
1354static void do_pci_disable_device(struct pci_dev *dev)
1355{
1356 u16 pci_command;
1357
1358 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1359 if (pci_command & PCI_COMMAND_MASTER) {
1360 pci_command &= ~PCI_COMMAND_MASTER;
1361 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1362 }
1363
1364 pcibios_disable_device(dev);
1365}
1366
1367/**
1368 * pci_disable_enabled_device - Disable device without updating enable_cnt
1369 * @dev: PCI device to disable
1370 *
1371 * NOTE: This function is a backend of PCI power management routines and is
1372 * not supposed to be called drivers.
1373 */
1374void pci_disable_enabled_device(struct pci_dev *dev)
1375{
1376 if (pci_is_enabled(dev))
1377 do_pci_disable_device(dev);
1378}
1379
1380/**
1381 * pci_disable_device - Disable PCI device after use
1382 * @dev: PCI device to be disabled
1383 *
1384 * Signal to the system that the PCI device is not in use by the system
1385 * anymore. This only involves disabling PCI bus-mastering, if active.
1386 *
1387 * Note we don't actually disable the device until all callers of
1388 * pci_enable_device() have called pci_disable_device().
1389 */
1390void
1391pci_disable_device(struct pci_dev *dev)
1392{
1393 struct pci_devres *dr;
1394
1395 dr = find_pci_dr(dev);
1396 if (dr)
1397 dr->enabled = 0;
1398
1399 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1400 return;
1401
1402 do_pci_disable_device(dev);
1403
1404 dev->is_busmaster = 0;
1405}
1406
1407/**
1408 * pcibios_set_pcie_reset_state - set reset state for device dev
1409 * @dev: the PCIe device reset
1410 * @state: Reset state to enter into
1411 *
1412 *
1413 * Sets the PCIe reset state for the device. This is the default
1414 * implementation. Architecture implementations can override this.
1415 */
1416int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1417 enum pcie_reset_state state)
1418{
1419 return -EINVAL;
1420}
1421
1422/**
1423 * pci_set_pcie_reset_state - set reset state for device dev
1424 * @dev: the PCIe device reset
1425 * @state: Reset state to enter into
1426 *
1427 *
1428 * Sets the PCI reset state for the device.
1429 */
1430int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1431{
1432 return pcibios_set_pcie_reset_state(dev, state);
1433}
1434
1435/**
1436 * pci_check_pme_status - Check if given device has generated PME.
1437 * @dev: Device to check.
1438 *
1439 * Check the PME status of the device and if set, clear it and clear PME enable
1440 * (if set). Return 'true' if PME status and PME enable were both set or
1441 * 'false' otherwise.
1442 */
1443bool pci_check_pme_status(struct pci_dev *dev)
1444{
1445 int pmcsr_pos;
1446 u16 pmcsr;
1447 bool ret = false;
1448
1449 if (!dev->pm_cap)
1450 return false;
1451
1452 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1453 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1454 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1455 return false;
1456
1457 /* Clear PME status. */
1458 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1459 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1460 /* Disable PME to avoid interrupt flood. */
1461 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1462 ret = true;
1463 }
1464
1465 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1466
1467 return ret;
1468}
1469
1470/**
1471 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1472 * @dev: Device to handle.
1473 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1474 *
1475 * Check if @dev has generated PME and queue a resume request for it in that
1476 * case.
1477 */
1478static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1479{
1480 if (pme_poll_reset && dev->pme_poll)
1481 dev->pme_poll = false;
1482
1483 if (pci_check_pme_status(dev)) {
1484 pci_wakeup_event(dev);
1485 pm_request_resume(&dev->dev);
1486 }
1487 return 0;
1488}
1489
1490/**
1491 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1492 * @bus: Top bus of the subtree to walk.
1493 */
1494void pci_pme_wakeup_bus(struct pci_bus *bus)
1495{
1496 if (bus)
1497 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1498}
1499
1500/**
1501 * pci_pme_capable - check the capability of PCI device to generate PME#
1502 * @dev: PCI device to handle.
1503 * @state: PCI state from which device will issue PME#.
1504 */
1505bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1506{
1507 if (!dev->pm_cap)
1508 return false;
1509
1510 return !!(dev->pme_support & (1 << state));
1511}
1512
1513static void pci_pme_list_scan(struct work_struct *work)
1514{
1515 struct pci_pme_device *pme_dev, *n;
1516
1517 mutex_lock(&pci_pme_list_mutex);
1518 if (!list_empty(&pci_pme_list)) {
1519 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1520 if (pme_dev->dev->pme_poll) {
1521 pci_pme_wakeup(pme_dev->dev, NULL);
1522 } else {
1523 list_del(&pme_dev->list);
1524 kfree(pme_dev);
1525 }
1526 }
1527 if (!list_empty(&pci_pme_list))
1528 schedule_delayed_work(&pci_pme_work,
1529 msecs_to_jiffies(PME_TIMEOUT));
1530 }
1531 mutex_unlock(&pci_pme_list_mutex);
1532}
1533
1534/**
1535 * pci_pme_active - enable or disable PCI device's PME# function
1536 * @dev: PCI device to handle.
1537 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1538 *
1539 * The caller must verify that the device is capable of generating PME# before
1540 * calling this function with @enable equal to 'true'.
1541 */
1542void pci_pme_active(struct pci_dev *dev, bool enable)
1543{
1544 u16 pmcsr;
1545
1546 if (!dev->pm_cap)
1547 return;
1548
1549 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1550 /* Clear PME_Status by writing 1 to it and enable PME# */
1551 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1552 if (!enable)
1553 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1554
1555 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1556
1557 /* PCI (as opposed to PCIe) PME requires that the device have
1558 its PME# line hooked up correctly. Not all hardware vendors
1559 do this, so the PME never gets delivered and the device
1560 remains asleep. The easiest way around this is to
1561 periodically walk the list of suspended devices and check
1562 whether any have their PME flag set. The assumption is that
1563 we'll wake up often enough anyway that this won't be a huge
1564 hit, and the power savings from the devices will still be a
1565 win. */
1566
1567 if (dev->pme_poll) {
1568 struct pci_pme_device *pme_dev;
1569 if (enable) {
1570 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1571 GFP_KERNEL);
1572 if (!pme_dev)
1573 goto out;
1574 pme_dev->dev = dev;
1575 mutex_lock(&pci_pme_list_mutex);
1576 list_add(&pme_dev->list, &pci_pme_list);
1577 if (list_is_singular(&pci_pme_list))
1578 schedule_delayed_work(&pci_pme_work,
1579 msecs_to_jiffies(PME_TIMEOUT));
1580 mutex_unlock(&pci_pme_list_mutex);
1581 } else {
1582 mutex_lock(&pci_pme_list_mutex);
1583 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1584 if (pme_dev->dev == dev) {
1585 list_del(&pme_dev->list);
1586 kfree(pme_dev);
1587 break;
1588 }
1589 }
1590 mutex_unlock(&pci_pme_list_mutex);
1591 }
1592 }
1593
1594out:
1595 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1596}
1597
1598/**
1599 * __pci_enable_wake - enable PCI device as wakeup event source
1600 * @dev: PCI device affected
1601 * @state: PCI state from which device will issue wakeup events
1602 * @runtime: True if the events are to be generated at run time
1603 * @enable: True to enable event generation; false to disable
1604 *
1605 * This enables the device as a wakeup event source, or disables it.
1606 * When such events involves platform-specific hooks, those hooks are
1607 * called automatically by this routine.
1608 *
1609 * Devices with legacy power management (no standard PCI PM capabilities)
1610 * always require such platform hooks.
1611 *
1612 * RETURN VALUE:
1613 * 0 is returned on success
1614 * -EINVAL is returned if device is not supposed to wake up the system
1615 * Error code depending on the platform is returned if both the platform and
1616 * the native mechanism fail to enable the generation of wake-up events
1617 */
1618int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1619 bool runtime, bool enable)
1620{
1621 int ret = 0;
1622
1623 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1624 return -EINVAL;
1625
1626 /* Don't do the same thing twice in a row for one device. */
1627 if (!!enable == !!dev->wakeup_prepared)
1628 return 0;
1629
1630 /*
1631 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1632 * Anderson we should be doing PME# wake enable followed by ACPI wake
1633 * enable. To disable wake-up we call the platform first, for symmetry.
1634 */
1635
1636 if (enable) {
1637 int error;
1638
1639 if (pci_pme_capable(dev, state))
1640 pci_pme_active(dev, true);
1641 else
1642 ret = 1;
1643 error = runtime ? platform_pci_run_wake(dev, true) :
1644 platform_pci_sleep_wake(dev, true);
1645 if (ret)
1646 ret = error;
1647 if (!ret)
1648 dev->wakeup_prepared = true;
1649 } else {
1650 if (runtime)
1651 platform_pci_run_wake(dev, false);
1652 else
1653 platform_pci_sleep_wake(dev, false);
1654 pci_pme_active(dev, false);
1655 dev->wakeup_prepared = false;
1656 }
1657
1658 return ret;
1659}
1660EXPORT_SYMBOL(__pci_enable_wake);
1661
1662/**
1663 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1664 * @dev: PCI device to prepare
1665 * @enable: True to enable wake-up event generation; false to disable
1666 *
1667 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1668 * and this function allows them to set that up cleanly - pci_enable_wake()
1669 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1670 * ordering constraints.
1671 *
1672 * This function only returns error code if the device is not capable of
1673 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1674 * enable wake-up power for it.
1675 */
1676int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1677{
1678 return pci_pme_capable(dev, PCI_D3cold) ?
1679 pci_enable_wake(dev, PCI_D3cold, enable) :
1680 pci_enable_wake(dev, PCI_D3hot, enable);
1681}
1682
1683/**
1684 * pci_target_state - find an appropriate low power state for a given PCI dev
1685 * @dev: PCI device
1686 *
1687 * Use underlying platform code to find a supported low power state for @dev.
1688 * If the platform can't manage @dev, return the deepest state from which it
1689 * can generate wake events, based on any available PME info.
1690 */
1691pci_power_t pci_target_state(struct pci_dev *dev)
1692{
1693 pci_power_t target_state = PCI_D3hot;
1694
1695 if (platform_pci_power_manageable(dev)) {
1696 /*
1697 * Call the platform to choose the target state of the device
1698 * and enable wake-up from this state if supported.
1699 */
1700 pci_power_t state = platform_pci_choose_state(dev);
1701
1702 switch (state) {
1703 case PCI_POWER_ERROR:
1704 case PCI_UNKNOWN:
1705 break;
1706 case PCI_D1:
1707 case PCI_D2:
1708 if (pci_no_d1d2(dev))
1709 break;
1710 default:
1711 target_state = state;
1712 }
1713 } else if (!dev->pm_cap) {
1714 target_state = PCI_D0;
1715 } else if (device_may_wakeup(&dev->dev)) {
1716 /*
1717 * Find the deepest state from which the device can generate
1718 * wake-up events, make it the target state and enable device
1719 * to generate PME#.
1720 */
1721 if (dev->pme_support) {
1722 while (target_state
1723 && !(dev->pme_support & (1 << target_state)))
1724 target_state--;
1725 }
1726 }
1727
1728 return target_state;
1729}
1730
1731/**
1732 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1733 * @dev: Device to handle.
1734 *
1735 * Choose the power state appropriate for the device depending on whether
1736 * it can wake up the system and/or is power manageable by the platform
1737 * (PCI_D3hot is the default) and put the device into that state.
1738 */
1739int pci_prepare_to_sleep(struct pci_dev *dev)
1740{
1741 pci_power_t target_state = pci_target_state(dev);
1742 int error;
1743
1744 if (target_state == PCI_POWER_ERROR)
1745 return -EIO;
1746
1747 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1748
1749 error = pci_set_power_state(dev, target_state);
1750
1751 if (error)
1752 pci_enable_wake(dev, target_state, false);
1753
1754 return error;
1755}
1756
1757/**
1758 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1759 * @dev: Device to handle.
1760 *
1761 * Disable device's system wake-up capability and put it into D0.
1762 */
1763int pci_back_from_sleep(struct pci_dev *dev)
1764{
1765 pci_enable_wake(dev, PCI_D0, false);
1766 return pci_set_power_state(dev, PCI_D0);
1767}
1768
1769/**
1770 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1771 * @dev: PCI device being suspended.
1772 *
1773 * Prepare @dev to generate wake-up events at run time and put it into a low
1774 * power state.
1775 */
1776int pci_finish_runtime_suspend(struct pci_dev *dev)
1777{
1778 pci_power_t target_state = pci_target_state(dev);
1779 int error;
1780
1781 if (target_state == PCI_POWER_ERROR)
1782 return -EIO;
1783
1784 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1785
1786 error = pci_set_power_state(dev, target_state);
1787
1788 if (error)
1789 __pci_enable_wake(dev, target_state, true, false);
1790
1791 return error;
1792}
1793
1794/**
1795 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1796 * @dev: Device to check.
1797 *
1798 * Return true if the device itself is cabable of generating wake-up events
1799 * (through the platform or using the native PCIe PME) or if the device supports
1800 * PME and one of its upstream bridges can generate wake-up events.
1801 */
1802bool pci_dev_run_wake(struct pci_dev *dev)
1803{
1804 struct pci_bus *bus = dev->bus;
1805
1806 if (device_run_wake(&dev->dev))
1807 return true;
1808
1809 if (!dev->pme_support)
1810 return false;
1811
1812 while (bus->parent) {
1813 struct pci_dev *bridge = bus->self;
1814
1815 if (device_run_wake(&bridge->dev))
1816 return true;
1817
1818 bus = bus->parent;
1819 }
1820
1821 /* We have reached the root bus. */
1822 if (bus->bridge)
1823 return device_run_wake(bus->bridge);
1824
1825 return false;
1826}
1827EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1828
1829/**
1830 * pci_pm_init - Initialize PM functions of given PCI device
1831 * @dev: PCI device to handle.
1832 */
1833void pci_pm_init(struct pci_dev *dev)
1834{
1835 int pm;
1836 u16 pmc;
1837
1838 pm_runtime_forbid(&dev->dev);
1839 device_enable_async_suspend(&dev->dev);
1840 dev->wakeup_prepared = false;
1841
1842 dev->pm_cap = 0;
1843
1844 /* find PCI PM capability in list */
1845 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1846 if (!pm)
1847 return;
1848 /* Check device's ability to generate PME# */
1849 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1850
1851 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1852 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1853 pmc & PCI_PM_CAP_VER_MASK);
1854 return;
1855 }
1856
1857 dev->pm_cap = pm;
1858 dev->d3_delay = PCI_PM_D3_WAIT;
1859
1860 dev->d1_support = false;
1861 dev->d2_support = false;
1862 if (!pci_no_d1d2(dev)) {
1863 if (pmc & PCI_PM_CAP_D1)
1864 dev->d1_support = true;
1865 if (pmc & PCI_PM_CAP_D2)
1866 dev->d2_support = true;
1867
1868 if (dev->d1_support || dev->d2_support)
1869 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1870 dev->d1_support ? " D1" : "",
1871 dev->d2_support ? " D2" : "");
1872 }
1873
1874 pmc &= PCI_PM_CAP_PME_MASK;
1875 if (pmc) {
1876 dev_printk(KERN_DEBUG, &dev->dev,
1877 "PME# supported from%s%s%s%s%s\n",
1878 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1879 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1880 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1881 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1882 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1883 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1884 dev->pme_poll = true;
1885 /*
1886 * Make device's PM flags reflect the wake-up capability, but
1887 * let the user space enable it to wake up the system as needed.
1888 */
1889 device_set_wakeup_capable(&dev->dev, true);
1890 /* Disable the PME# generation functionality */
1891 pci_pme_active(dev, false);
1892 } else {
1893 dev->pme_support = 0;
1894 }
1895}
1896
1897/**
1898 * platform_pci_wakeup_init - init platform wakeup if present
1899 * @dev: PCI device
1900 *
1901 * Some devices don't have PCI PM caps but can still generate wakeup
1902 * events through platform methods (like ACPI events). If @dev supports
1903 * platform wakeup events, set the device flag to indicate as much. This
1904 * may be redundant if the device also supports PCI PM caps, but double
1905 * initialization should be safe in that case.
1906 */
1907void platform_pci_wakeup_init(struct pci_dev *dev)
1908{
1909 if (!platform_pci_can_wakeup(dev))
1910 return;
1911
1912 device_set_wakeup_capable(&dev->dev, true);
1913 platform_pci_sleep_wake(dev, false);
1914}
1915
1916static void pci_add_saved_cap(struct pci_dev *pci_dev,
1917 struct pci_cap_saved_state *new_cap)
1918{
1919 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
1920}
1921
1922/**
1923 * pci_add_save_buffer - allocate buffer for saving given capability registers
1924 * @dev: the PCI device
1925 * @cap: the capability to allocate the buffer for
1926 * @size: requested size of the buffer
1927 */
1928static int pci_add_cap_save_buffer(
1929 struct pci_dev *dev, char cap, unsigned int size)
1930{
1931 int pos;
1932 struct pci_cap_saved_state *save_state;
1933
1934 pos = pci_find_capability(dev, cap);
1935 if (pos <= 0)
1936 return 0;
1937
1938 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1939 if (!save_state)
1940 return -ENOMEM;
1941
1942 save_state->cap.cap_nr = cap;
1943 save_state->cap.size = size;
1944 pci_add_saved_cap(dev, save_state);
1945
1946 return 0;
1947}
1948
1949/**
1950 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1951 * @dev: the PCI device
1952 */
1953void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1954{
1955 int error;
1956
1957 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1958 PCI_EXP_SAVE_REGS * sizeof(u16));
1959 if (error)
1960 dev_err(&dev->dev,
1961 "unable to preallocate PCI Express save buffer\n");
1962
1963 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1964 if (error)
1965 dev_err(&dev->dev,
1966 "unable to preallocate PCI-X save buffer\n");
1967}
1968
1969void pci_free_cap_save_buffers(struct pci_dev *dev)
1970{
1971 struct pci_cap_saved_state *tmp;
1972 struct hlist_node *pos, *n;
1973
1974 hlist_for_each_entry_safe(tmp, pos, n, &dev->saved_cap_space, next)
1975 kfree(tmp);
1976}
1977
1978/**
1979 * pci_enable_ari - enable ARI forwarding if hardware support it
1980 * @dev: the PCI device
1981 */
1982void pci_enable_ari(struct pci_dev *dev)
1983{
1984 int pos;
1985 u32 cap;
1986 u16 flags, ctrl;
1987 struct pci_dev *bridge;
1988
1989 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
1990 return;
1991
1992 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1993 if (!pos)
1994 return;
1995
1996 bridge = dev->bus->self;
1997 if (!bridge || !pci_is_pcie(bridge))
1998 return;
1999
2000 pos = pci_pcie_cap(bridge);
2001 if (!pos)
2002 return;
2003
2004 /* ARI is a PCIe v2 feature */
2005 pci_read_config_word(bridge, pos + PCI_EXP_FLAGS, &flags);
2006 if ((flags & PCI_EXP_FLAGS_VERS) < 2)
2007 return;
2008
2009 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
2010 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2011 return;
2012
2013 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
2014 ctrl |= PCI_EXP_DEVCTL2_ARI;
2015 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
2016
2017 bridge->ari_enabled = 1;
2018}
2019
2020/**
2021 * pci_enable_ido - enable ID-based ordering on a device
2022 * @dev: the PCI device
2023 * @type: which types of IDO to enable
2024 *
2025 * Enable ID-based ordering on @dev. @type can contain the bits
2026 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2027 * which types of transactions are allowed to be re-ordered.
2028 */
2029void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2030{
2031 int pos;
2032 u16 ctrl;
2033
2034 pos = pci_pcie_cap(dev);
2035 if (!pos)
2036 return;
2037
2038 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2039 if (type & PCI_EXP_IDO_REQUEST)
2040 ctrl |= PCI_EXP_IDO_REQ_EN;
2041 if (type & PCI_EXP_IDO_COMPLETION)
2042 ctrl |= PCI_EXP_IDO_CMP_EN;
2043 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2044}
2045EXPORT_SYMBOL(pci_enable_ido);
2046
2047/**
2048 * pci_disable_ido - disable ID-based ordering on a device
2049 * @dev: the PCI device
2050 * @type: which types of IDO to disable
2051 */
2052void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2053{
2054 int pos;
2055 u16 ctrl;
2056
2057 if (!pci_is_pcie(dev))
2058 return;
2059
2060 pos = pci_pcie_cap(dev);
2061 if (!pos)
2062 return;
2063
2064 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2065 if (type & PCI_EXP_IDO_REQUEST)
2066 ctrl &= ~PCI_EXP_IDO_REQ_EN;
2067 if (type & PCI_EXP_IDO_COMPLETION)
2068 ctrl &= ~PCI_EXP_IDO_CMP_EN;
2069 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2070}
2071EXPORT_SYMBOL(pci_disable_ido);
2072
2073/**
2074 * pci_enable_obff - enable optimized buffer flush/fill
2075 * @dev: PCI device
2076 * @type: type of signaling to use
2077 *
2078 * Try to enable @type OBFF signaling on @dev. It will try using WAKE#
2079 * signaling if possible, falling back to message signaling only if
2080 * WAKE# isn't supported. @type should indicate whether the PCIe link
2081 * be brought out of L0s or L1 to send the message. It should be either
2082 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2083 *
2084 * If your device can benefit from receiving all messages, even at the
2085 * power cost of bringing the link back up from a low power state, use
2086 * %PCI_EXP_OBFF_SIGNAL_ALWAYS. Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2087 * preferred type).
2088 *
2089 * RETURNS:
2090 * Zero on success, appropriate error number on failure.
2091 */
2092int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2093{
2094 int pos;
2095 u32 cap;
2096 u16 ctrl;
2097 int ret;
2098
2099 if (!pci_is_pcie(dev))
2100 return -ENOTSUPP;
2101
2102 pos = pci_pcie_cap(dev);
2103 if (!pos)
2104 return -ENOTSUPP;
2105
2106 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2107 if (!(cap & PCI_EXP_OBFF_MASK))
2108 return -ENOTSUPP; /* no OBFF support at all */
2109
2110 /* Make sure the topology supports OBFF as well */
2111 if (dev->bus) {
2112 ret = pci_enable_obff(dev->bus->self, type);
2113 if (ret)
2114 return ret;
2115 }
2116
2117 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2118 if (cap & PCI_EXP_OBFF_WAKE)
2119 ctrl |= PCI_EXP_OBFF_WAKE_EN;
2120 else {
2121 switch (type) {
2122 case PCI_EXP_OBFF_SIGNAL_L0:
2123 if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2124 ctrl |= PCI_EXP_OBFF_MSGA_EN;
2125 break;
2126 case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2127 ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2128 ctrl |= PCI_EXP_OBFF_MSGB_EN;
2129 break;
2130 default:
2131 WARN(1, "bad OBFF signal type\n");
2132 return -ENOTSUPP;
2133 }
2134 }
2135 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2136
2137 return 0;
2138}
2139EXPORT_SYMBOL(pci_enable_obff);
2140
2141/**
2142 * pci_disable_obff - disable optimized buffer flush/fill
2143 * @dev: PCI device
2144 *
2145 * Disable OBFF on @dev.
2146 */
2147void pci_disable_obff(struct pci_dev *dev)
2148{
2149 int pos;
2150 u16 ctrl;
2151
2152 if (!pci_is_pcie(dev))
2153 return;
2154
2155 pos = pci_pcie_cap(dev);
2156 if (!pos)
2157 return;
2158
2159 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2160 ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2161 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2162}
2163EXPORT_SYMBOL(pci_disable_obff);
2164
2165/**
2166 * pci_ltr_supported - check whether a device supports LTR
2167 * @dev: PCI device
2168 *
2169 * RETURNS:
2170 * True if @dev supports latency tolerance reporting, false otherwise.
2171 */
2172bool pci_ltr_supported(struct pci_dev *dev)
2173{
2174 int pos;
2175 u32 cap;
2176
2177 if (!pci_is_pcie(dev))
2178 return false;
2179
2180 pos = pci_pcie_cap(dev);
2181 if (!pos)
2182 return false;
2183
2184 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2185
2186 return cap & PCI_EXP_DEVCAP2_LTR;
2187}
2188EXPORT_SYMBOL(pci_ltr_supported);
2189
2190/**
2191 * pci_enable_ltr - enable latency tolerance reporting
2192 * @dev: PCI device
2193 *
2194 * Enable LTR on @dev if possible, which means enabling it first on
2195 * upstream ports.
2196 *
2197 * RETURNS:
2198 * Zero on success, errno on failure.
2199 */
2200int pci_enable_ltr(struct pci_dev *dev)
2201{
2202 int pos;
2203 u16 ctrl;
2204 int ret;
2205
2206 if (!pci_ltr_supported(dev))
2207 return -ENOTSUPP;
2208
2209 pos = pci_pcie_cap(dev);
2210 if (!pos)
2211 return -ENOTSUPP;
2212
2213 /* Only primary function can enable/disable LTR */
2214 if (PCI_FUNC(dev->devfn) != 0)
2215 return -EINVAL;
2216
2217 /* Enable upstream ports first */
2218 if (dev->bus) {
2219 ret = pci_enable_ltr(dev->bus->self);
2220 if (ret)
2221 return ret;
2222 }
2223
2224 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2225 ctrl |= PCI_EXP_LTR_EN;
2226 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2227
2228 return 0;
2229}
2230EXPORT_SYMBOL(pci_enable_ltr);
2231
2232/**
2233 * pci_disable_ltr - disable latency tolerance reporting
2234 * @dev: PCI device
2235 */
2236void pci_disable_ltr(struct pci_dev *dev)
2237{
2238 int pos;
2239 u16 ctrl;
2240
2241 if (!pci_ltr_supported(dev))
2242 return;
2243
2244 pos = pci_pcie_cap(dev);
2245 if (!pos)
2246 return;
2247
2248 /* Only primary function can enable/disable LTR */
2249 if (PCI_FUNC(dev->devfn) != 0)
2250 return;
2251
2252 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2253 ctrl &= ~PCI_EXP_LTR_EN;
2254 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2255}
2256EXPORT_SYMBOL(pci_disable_ltr);
2257
2258static int __pci_ltr_scale(int *val)
2259{
2260 int scale = 0;
2261
2262 while (*val > 1023) {
2263 *val = (*val + 31) / 32;
2264 scale++;
2265 }
2266 return scale;
2267}
2268
2269/**
2270 * pci_set_ltr - set LTR latency values
2271 * @dev: PCI device
2272 * @snoop_lat_ns: snoop latency in nanoseconds
2273 * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2274 *
2275 * Figure out the scale and set the LTR values accordingly.
2276 */
2277int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2278{
2279 int pos, ret, snoop_scale, nosnoop_scale;
2280 u16 val;
2281
2282 if (!pci_ltr_supported(dev))
2283 return -ENOTSUPP;
2284
2285 snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2286 nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2287
2288 if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2289 nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2290 return -EINVAL;
2291
2292 if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2293 (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2294 return -EINVAL;
2295
2296 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2297 if (!pos)
2298 return -ENOTSUPP;
2299
2300 val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2301 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2302 if (ret != 4)
2303 return -EIO;
2304
2305 val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2306 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2307 if (ret != 4)
2308 return -EIO;
2309
2310 return 0;
2311}
2312EXPORT_SYMBOL(pci_set_ltr);
2313
2314static int pci_acs_enable;
2315
2316/**
2317 * pci_request_acs - ask for ACS to be enabled if supported
2318 */
2319void pci_request_acs(void)
2320{
2321 pci_acs_enable = 1;
2322}
2323
2324/**
2325 * pci_enable_acs - enable ACS if hardware support it
2326 * @dev: the PCI device
2327 */
2328void pci_enable_acs(struct pci_dev *dev)
2329{
2330 int pos;
2331 u16 cap;
2332 u16 ctrl;
2333
2334 if (!pci_acs_enable)
2335 return;
2336
2337 if (!pci_is_pcie(dev))
2338 return;
2339
2340 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2341 if (!pos)
2342 return;
2343
2344 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2345 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2346
2347 /* Source Validation */
2348 ctrl |= (cap & PCI_ACS_SV);
2349
2350 /* P2P Request Redirect */
2351 ctrl |= (cap & PCI_ACS_RR);
2352
2353 /* P2P Completion Redirect */
2354 ctrl |= (cap & PCI_ACS_CR);
2355
2356 /* Upstream Forwarding */
2357 ctrl |= (cap & PCI_ACS_UF);
2358
2359 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2360}
2361
2362/**
2363 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2364 * @dev: the PCI device
2365 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2366 *
2367 * Perform INTx swizzling for a device behind one level of bridge. This is
2368 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2369 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2370 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2371 * the PCI Express Base Specification, Revision 2.1)
2372 */
2373u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2374{
2375 int slot;
2376
2377 if (pci_ari_enabled(dev->bus))
2378 slot = 0;
2379 else
2380 slot = PCI_SLOT(dev->devfn);
2381
2382 return (((pin - 1) + slot) % 4) + 1;
2383}
2384
2385int
2386pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2387{
2388 u8 pin;
2389
2390 pin = dev->pin;
2391 if (!pin)
2392 return -1;
2393
2394 while (!pci_is_root_bus(dev->bus)) {
2395 pin = pci_swizzle_interrupt_pin(dev, pin);
2396 dev = dev->bus->self;
2397 }
2398 *bridge = dev;
2399 return pin;
2400}
2401
2402/**
2403 * pci_common_swizzle - swizzle INTx all the way to root bridge
2404 * @dev: the PCI device
2405 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2406 *
2407 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2408 * bridges all the way up to a PCI root bus.
2409 */
2410u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2411{
2412 u8 pin = *pinp;
2413
2414 while (!pci_is_root_bus(dev->bus)) {
2415 pin = pci_swizzle_interrupt_pin(dev, pin);
2416 dev = dev->bus->self;
2417 }
2418 *pinp = pin;
2419 return PCI_SLOT(dev->devfn);
2420}
2421
2422/**
2423 * pci_release_region - Release a PCI bar
2424 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2425 * @bar: BAR to release
2426 *
2427 * Releases the PCI I/O and memory resources previously reserved by a
2428 * successful call to pci_request_region. Call this function only
2429 * after all use of the PCI regions has ceased.
2430 */
2431void pci_release_region(struct pci_dev *pdev, int bar)
2432{
2433 struct pci_devres *dr;
2434
2435 if (pci_resource_len(pdev, bar) == 0)
2436 return;
2437 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2438 release_region(pci_resource_start(pdev, bar),
2439 pci_resource_len(pdev, bar));
2440 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2441 release_mem_region(pci_resource_start(pdev, bar),
2442 pci_resource_len(pdev, bar));
2443
2444 dr = find_pci_dr(pdev);
2445 if (dr)
2446 dr->region_mask &= ~(1 << bar);
2447}
2448
2449/**
2450 * __pci_request_region - Reserved PCI I/O and memory resource
2451 * @pdev: PCI device whose resources are to be reserved
2452 * @bar: BAR to be reserved
2453 * @res_name: Name to be associated with resource.
2454 * @exclusive: whether the region access is exclusive or not
2455 *
2456 * Mark the PCI region associated with PCI device @pdev BR @bar as
2457 * being reserved by owner @res_name. Do not access any
2458 * address inside the PCI regions unless this call returns
2459 * successfully.
2460 *
2461 * If @exclusive is set, then the region is marked so that userspace
2462 * is explicitly not allowed to map the resource via /dev/mem or
2463 * sysfs MMIO access.
2464 *
2465 * Returns 0 on success, or %EBUSY on error. A warning
2466 * message is also printed on failure.
2467 */
2468static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2469 int exclusive)
2470{
2471 struct pci_devres *dr;
2472
2473 if (pci_resource_len(pdev, bar) == 0)
2474 return 0;
2475
2476 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2477 if (!request_region(pci_resource_start(pdev, bar),
2478 pci_resource_len(pdev, bar), res_name))
2479 goto err_out;
2480 }
2481 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2482 if (!__request_mem_region(pci_resource_start(pdev, bar),
2483 pci_resource_len(pdev, bar), res_name,
2484 exclusive))
2485 goto err_out;
2486 }
2487
2488 dr = find_pci_dr(pdev);
2489 if (dr)
2490 dr->region_mask |= 1 << bar;
2491
2492 return 0;
2493
2494err_out:
2495 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2496 &pdev->resource[bar]);
2497 return -EBUSY;
2498}
2499
2500/**
2501 * pci_request_region - Reserve PCI I/O and memory resource
2502 * @pdev: PCI device whose resources are to be reserved
2503 * @bar: BAR to be reserved
2504 * @res_name: Name to be associated with resource
2505 *
2506 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2507 * being reserved by owner @res_name. Do not access any
2508 * address inside the PCI regions unless this call returns
2509 * successfully.
2510 *
2511 * Returns 0 on success, or %EBUSY on error. A warning
2512 * message is also printed on failure.
2513 */
2514int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2515{
2516 return __pci_request_region(pdev, bar, res_name, 0);
2517}
2518
2519/**
2520 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2521 * @pdev: PCI device whose resources are to be reserved
2522 * @bar: BAR to be reserved
2523 * @res_name: Name to be associated with resource.
2524 *
2525 * Mark the PCI region associated with PCI device @pdev BR @bar as
2526 * being reserved by owner @res_name. Do not access any
2527 * address inside the PCI regions unless this call returns
2528 * successfully.
2529 *
2530 * Returns 0 on success, or %EBUSY on error. A warning
2531 * message is also printed on failure.
2532 *
2533 * The key difference that _exclusive makes it that userspace is
2534 * explicitly not allowed to map the resource via /dev/mem or
2535 * sysfs.
2536 */
2537int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2538{
2539 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2540}
2541/**
2542 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2543 * @pdev: PCI device whose resources were previously reserved
2544 * @bars: Bitmask of BARs to be released
2545 *
2546 * Release selected PCI I/O and memory resources previously reserved.
2547 * Call this function only after all use of the PCI regions has ceased.
2548 */
2549void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2550{
2551 int i;
2552
2553 for (i = 0; i < 6; i++)
2554 if (bars & (1 << i))
2555 pci_release_region(pdev, i);
2556}
2557
2558int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2559 const char *res_name, int excl)
2560{
2561 int i;
2562
2563 for (i = 0; i < 6; i++)
2564 if (bars & (1 << i))
2565 if (__pci_request_region(pdev, i, res_name, excl))
2566 goto err_out;
2567 return 0;
2568
2569err_out:
2570 while(--i >= 0)
2571 if (bars & (1 << i))
2572 pci_release_region(pdev, i);
2573
2574 return -EBUSY;
2575}
2576
2577
2578/**
2579 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2580 * @pdev: PCI device whose resources are to be reserved
2581 * @bars: Bitmask of BARs to be requested
2582 * @res_name: Name to be associated with resource
2583 */
2584int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2585 const char *res_name)
2586{
2587 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2588}
2589
2590int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2591 int bars, const char *res_name)
2592{
2593 return __pci_request_selected_regions(pdev, bars, res_name,
2594 IORESOURCE_EXCLUSIVE);
2595}
2596
2597/**
2598 * pci_release_regions - Release reserved PCI I/O and memory resources
2599 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2600 *
2601 * Releases all PCI I/O and memory resources previously reserved by a
2602 * successful call to pci_request_regions. Call this function only
2603 * after all use of the PCI regions has ceased.
2604 */
2605
2606void pci_release_regions(struct pci_dev *pdev)
2607{
2608 pci_release_selected_regions(pdev, (1 << 6) - 1);
2609}
2610
2611/**
2612 * pci_request_regions - Reserved PCI I/O and memory resources
2613 * @pdev: PCI device whose resources are to be reserved
2614 * @res_name: Name to be associated with resource.
2615 *
2616 * Mark all PCI regions associated with PCI device @pdev as
2617 * being reserved by owner @res_name. Do not access any
2618 * address inside the PCI regions unless this call returns
2619 * successfully.
2620 *
2621 * Returns 0 on success, or %EBUSY on error. A warning
2622 * message is also printed on failure.
2623 */
2624int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2625{
2626 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2627}
2628
2629/**
2630 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2631 * @pdev: PCI device whose resources are to be reserved
2632 * @res_name: Name to be associated with resource.
2633 *
2634 * Mark all PCI regions associated with PCI device @pdev as
2635 * being reserved by owner @res_name. Do not access any
2636 * address inside the PCI regions unless this call returns
2637 * successfully.
2638 *
2639 * pci_request_regions_exclusive() will mark the region so that
2640 * /dev/mem and the sysfs MMIO access will not be allowed.
2641 *
2642 * Returns 0 on success, or %EBUSY on error. A warning
2643 * message is also printed on failure.
2644 */
2645int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2646{
2647 return pci_request_selected_regions_exclusive(pdev,
2648 ((1 << 6) - 1), res_name);
2649}
2650
2651static void __pci_set_master(struct pci_dev *dev, bool enable)
2652{
2653 u16 old_cmd, cmd;
2654
2655 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2656 if (enable)
2657 cmd = old_cmd | PCI_COMMAND_MASTER;
2658 else
2659 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2660 if (cmd != old_cmd) {
2661 dev_dbg(&dev->dev, "%s bus mastering\n",
2662 enable ? "enabling" : "disabling");
2663 pci_write_config_word(dev, PCI_COMMAND, cmd);
2664 }
2665 dev->is_busmaster = enable;
2666}
2667
2668/**
2669 * pcibios_set_master - enable PCI bus-mastering for device dev
2670 * @dev: the PCI device to enable
2671 *
2672 * Enables PCI bus-mastering for the device. This is the default
2673 * implementation. Architecture specific implementations can override
2674 * this if necessary.
2675 */
2676void __weak pcibios_set_master(struct pci_dev *dev)
2677{
2678 u8 lat;
2679
2680 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2681 if (pci_is_pcie(dev))
2682 return;
2683
2684 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2685 if (lat < 16)
2686 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2687 else if (lat > pcibios_max_latency)
2688 lat = pcibios_max_latency;
2689 else
2690 return;
2691 dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2692 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2693}
2694
2695/**
2696 * pci_set_master - enables bus-mastering for device dev
2697 * @dev: the PCI device to enable
2698 *
2699 * Enables bus-mastering on the device and calls pcibios_set_master()
2700 * to do the needed arch specific settings.
2701 */
2702void pci_set_master(struct pci_dev *dev)
2703{
2704 __pci_set_master(dev, true);
2705 pcibios_set_master(dev);
2706}
2707
2708/**
2709 * pci_clear_master - disables bus-mastering for device dev
2710 * @dev: the PCI device to disable
2711 */
2712void pci_clear_master(struct pci_dev *dev)
2713{
2714 __pci_set_master(dev, false);
2715}
2716
2717/**
2718 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2719 * @dev: the PCI device for which MWI is to be enabled
2720 *
2721 * Helper function for pci_set_mwi.
2722 * Originally copied from drivers/net/acenic.c.
2723 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2724 *
2725 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2726 */
2727int pci_set_cacheline_size(struct pci_dev *dev)
2728{
2729 u8 cacheline_size;
2730
2731 if (!pci_cache_line_size)
2732 return -EINVAL;
2733
2734 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2735 equal to or multiple of the right value. */
2736 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2737 if (cacheline_size >= pci_cache_line_size &&
2738 (cacheline_size % pci_cache_line_size) == 0)
2739 return 0;
2740
2741 /* Write the correct value. */
2742 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2743 /* Read it back. */
2744 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2745 if (cacheline_size == pci_cache_line_size)
2746 return 0;
2747
2748 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2749 "supported\n", pci_cache_line_size << 2);
2750
2751 return -EINVAL;
2752}
2753EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2754
2755#ifdef PCI_DISABLE_MWI
2756int pci_set_mwi(struct pci_dev *dev)
2757{
2758 return 0;
2759}
2760
2761int pci_try_set_mwi(struct pci_dev *dev)
2762{
2763 return 0;
2764}
2765
2766void pci_clear_mwi(struct pci_dev *dev)
2767{
2768}
2769
2770#else
2771
2772/**
2773 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2774 * @dev: the PCI device for which MWI is enabled
2775 *
2776 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2777 *
2778 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2779 */
2780int
2781pci_set_mwi(struct pci_dev *dev)
2782{
2783 int rc;
2784 u16 cmd;
2785
2786 rc = pci_set_cacheline_size(dev);
2787 if (rc)
2788 return rc;
2789
2790 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2791 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2792 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2793 cmd |= PCI_COMMAND_INVALIDATE;
2794 pci_write_config_word(dev, PCI_COMMAND, cmd);
2795 }
2796
2797 return 0;
2798}
2799
2800/**
2801 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2802 * @dev: the PCI device for which MWI is enabled
2803 *
2804 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2805 * Callers are not required to check the return value.
2806 *
2807 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2808 */
2809int pci_try_set_mwi(struct pci_dev *dev)
2810{
2811 int rc = pci_set_mwi(dev);
2812 return rc;
2813}
2814
2815/**
2816 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2817 * @dev: the PCI device to disable
2818 *
2819 * Disables PCI Memory-Write-Invalidate transaction on the device
2820 */
2821void
2822pci_clear_mwi(struct pci_dev *dev)
2823{
2824 u16 cmd;
2825
2826 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2827 if (cmd & PCI_COMMAND_INVALIDATE) {
2828 cmd &= ~PCI_COMMAND_INVALIDATE;
2829 pci_write_config_word(dev, PCI_COMMAND, cmd);
2830 }
2831}
2832#endif /* ! PCI_DISABLE_MWI */
2833
2834/**
2835 * pci_intx - enables/disables PCI INTx for device dev
2836 * @pdev: the PCI device to operate on
2837 * @enable: boolean: whether to enable or disable PCI INTx
2838 *
2839 * Enables/disables PCI INTx for device dev
2840 */
2841void
2842pci_intx(struct pci_dev *pdev, int enable)
2843{
2844 u16 pci_command, new;
2845
2846 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2847
2848 if (enable) {
2849 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2850 } else {
2851 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2852 }
2853
2854 if (new != pci_command) {
2855 struct pci_devres *dr;
2856
2857 pci_write_config_word(pdev, PCI_COMMAND, new);
2858
2859 dr = find_pci_dr(pdev);
2860 if (dr && !dr->restore_intx) {
2861 dr->restore_intx = 1;
2862 dr->orig_intx = !enable;
2863 }
2864 }
2865}
2866
2867/**
2868 * pci_intx_mask_supported - probe for INTx masking support
2869 * @dev: the PCI device to operate on
2870 *
2871 * Check if the device dev support INTx masking via the config space
2872 * command word.
2873 */
2874bool pci_intx_mask_supported(struct pci_dev *dev)
2875{
2876 bool mask_supported = false;
2877 u16 orig, new;
2878
2879 pci_cfg_access_lock(dev);
2880
2881 pci_read_config_word(dev, PCI_COMMAND, &orig);
2882 pci_write_config_word(dev, PCI_COMMAND,
2883 orig ^ PCI_COMMAND_INTX_DISABLE);
2884 pci_read_config_word(dev, PCI_COMMAND, &new);
2885
2886 /*
2887 * There's no way to protect against hardware bugs or detect them
2888 * reliably, but as long as we know what the value should be, let's
2889 * go ahead and check it.
2890 */
2891 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2892 dev_err(&dev->dev, "Command register changed from "
2893 "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2894 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2895 mask_supported = true;
2896 pci_write_config_word(dev, PCI_COMMAND, orig);
2897 }
2898
2899 pci_cfg_access_unlock(dev);
2900 return mask_supported;
2901}
2902EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2903
2904static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2905{
2906 struct pci_bus *bus = dev->bus;
2907 bool mask_updated = true;
2908 u32 cmd_status_dword;
2909 u16 origcmd, newcmd;
2910 unsigned long flags;
2911 bool irq_pending;
2912
2913 /*
2914 * We do a single dword read to retrieve both command and status.
2915 * Document assumptions that make this possible.
2916 */
2917 BUILD_BUG_ON(PCI_COMMAND % 4);
2918 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2919
2920 raw_spin_lock_irqsave(&pci_lock, flags);
2921
2922 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2923
2924 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2925
2926 /*
2927 * Check interrupt status register to see whether our device
2928 * triggered the interrupt (when masking) or the next IRQ is
2929 * already pending (when unmasking).
2930 */
2931 if (mask != irq_pending) {
2932 mask_updated = false;
2933 goto done;
2934 }
2935
2936 origcmd = cmd_status_dword;
2937 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
2938 if (mask)
2939 newcmd |= PCI_COMMAND_INTX_DISABLE;
2940 if (newcmd != origcmd)
2941 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
2942
2943done:
2944 raw_spin_unlock_irqrestore(&pci_lock, flags);
2945
2946 return mask_updated;
2947}
2948
2949/**
2950 * pci_check_and_mask_intx - mask INTx on pending interrupt
2951 * @dev: the PCI device to operate on
2952 *
2953 * Check if the device dev has its INTx line asserted, mask it and
2954 * return true in that case. False is returned if not interrupt was
2955 * pending.
2956 */
2957bool pci_check_and_mask_intx(struct pci_dev *dev)
2958{
2959 return pci_check_and_set_intx_mask(dev, true);
2960}
2961EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
2962
2963/**
2964 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
2965 * @dev: the PCI device to operate on
2966 *
2967 * Check if the device dev has its INTx line asserted, unmask it if not
2968 * and return true. False is returned and the mask remains active if
2969 * there was still an interrupt pending.
2970 */
2971bool pci_check_and_unmask_intx(struct pci_dev *dev)
2972{
2973 return pci_check_and_set_intx_mask(dev, false);
2974}
2975EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
2976
2977/**
2978 * pci_msi_off - disables any msi or msix capabilities
2979 * @dev: the PCI device to operate on
2980 *
2981 * If you want to use msi see pci_enable_msi and friends.
2982 * This is a lower level primitive that allows us to disable
2983 * msi operation at the device level.
2984 */
2985void pci_msi_off(struct pci_dev *dev)
2986{
2987 int pos;
2988 u16 control;
2989
2990 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2991 if (pos) {
2992 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2993 control &= ~PCI_MSI_FLAGS_ENABLE;
2994 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2995 }
2996 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2997 if (pos) {
2998 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2999 control &= ~PCI_MSIX_FLAGS_ENABLE;
3000 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3001 }
3002}
3003EXPORT_SYMBOL_GPL(pci_msi_off);
3004
3005int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3006{
3007 return dma_set_max_seg_size(&dev->dev, size);
3008}
3009EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3010
3011int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3012{
3013 return dma_set_seg_boundary(&dev->dev, mask);
3014}
3015EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3016
3017static int pcie_flr(struct pci_dev *dev, int probe)
3018{
3019 int i;
3020 int pos;
3021 u32 cap;
3022 u16 status, control;
3023
3024 pos = pci_pcie_cap(dev);
3025 if (!pos)
3026 return -ENOTTY;
3027
3028 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
3029 if (!(cap & PCI_EXP_DEVCAP_FLR))
3030 return -ENOTTY;
3031
3032 if (probe)
3033 return 0;
3034
3035 /* Wait for Transaction Pending bit clean */
3036 for (i = 0; i < 4; i++) {
3037 if (i)
3038 msleep((1 << (i - 1)) * 100);
3039
3040 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
3041 if (!(status & PCI_EXP_DEVSTA_TRPND))
3042 goto clear;
3043 }
3044
3045 dev_err(&dev->dev, "transaction is not cleared; "
3046 "proceeding with reset anyway\n");
3047
3048clear:
3049 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
3050 control |= PCI_EXP_DEVCTL_BCR_FLR;
3051 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
3052
3053 msleep(100);
3054
3055 return 0;
3056}
3057
3058static int pci_af_flr(struct pci_dev *dev, int probe)
3059{
3060 int i;
3061 int pos;
3062 u8 cap;
3063 u8 status;
3064
3065 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3066 if (!pos)
3067 return -ENOTTY;
3068
3069 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3070 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3071 return -ENOTTY;
3072
3073 if (probe)
3074 return 0;
3075
3076 /* Wait for Transaction Pending bit clean */
3077 for (i = 0; i < 4; i++) {
3078 if (i)
3079 msleep((1 << (i - 1)) * 100);
3080
3081 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3082 if (!(status & PCI_AF_STATUS_TP))
3083 goto clear;
3084 }
3085
3086 dev_err(&dev->dev, "transaction is not cleared; "
3087 "proceeding with reset anyway\n");
3088
3089clear:
3090 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3091 msleep(100);
3092
3093 return 0;
3094}
3095
3096/**
3097 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3098 * @dev: Device to reset.
3099 * @probe: If set, only check if the device can be reset this way.
3100 *
3101 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3102 * unset, it will be reinitialized internally when going from PCI_D3hot to
3103 * PCI_D0. If that's the case and the device is not in a low-power state
3104 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3105 *
3106 * NOTE: This causes the caller to sleep for twice the device power transition
3107 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3108 * by devault (i.e. unless the @dev's d3_delay field has a different value).
3109 * Moreover, only devices in D0 can be reset by this function.
3110 */
3111static int pci_pm_reset(struct pci_dev *dev, int probe)
3112{
3113 u16 csr;
3114
3115 if (!dev->pm_cap)
3116 return -ENOTTY;
3117
3118 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3119 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3120 return -ENOTTY;
3121
3122 if (probe)
3123 return 0;
3124
3125 if (dev->current_state != PCI_D0)
3126 return -EINVAL;
3127
3128 csr &= ~PCI_PM_CTRL_STATE_MASK;
3129 csr |= PCI_D3hot;
3130 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3131 pci_dev_d3_sleep(dev);
3132
3133 csr &= ~PCI_PM_CTRL_STATE_MASK;
3134 csr |= PCI_D0;
3135 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3136 pci_dev_d3_sleep(dev);
3137
3138 return 0;
3139}
3140
3141static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3142{
3143 u16 ctrl;
3144 struct pci_dev *pdev;
3145
3146 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3147 return -ENOTTY;
3148
3149 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3150 if (pdev != dev)
3151 return -ENOTTY;
3152
3153 if (probe)
3154 return 0;
3155
3156 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
3157 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3158 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3159 msleep(100);
3160
3161 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3162 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3163 msleep(100);
3164
3165 return 0;
3166}
3167
3168static int __pci_dev_reset(struct pci_dev *dev, int probe)
3169{
3170 int rc;
3171
3172 might_sleep();
3173
3174 rc = pci_dev_specific_reset(dev, probe);
3175 if (rc != -ENOTTY)
3176 goto done;
3177
3178 rc = pcie_flr(dev, probe);
3179 if (rc != -ENOTTY)
3180 goto done;
3181
3182 rc = pci_af_flr(dev, probe);
3183 if (rc != -ENOTTY)
3184 goto done;
3185
3186 rc = pci_pm_reset(dev, probe);
3187 if (rc != -ENOTTY)
3188 goto done;
3189
3190 rc = pci_parent_bus_reset(dev, probe);
3191done:
3192 return rc;
3193}
3194
3195static int pci_dev_reset(struct pci_dev *dev, int probe)
3196{
3197 int rc;
3198
3199 if (!probe) {
3200 pci_cfg_access_lock(dev);
3201 /* block PM suspend, driver probe, etc. */
3202 device_lock(&dev->dev);
3203 }
3204
3205 rc = __pci_dev_reset(dev, probe);
3206
3207 if (!probe) {
3208 device_unlock(&dev->dev);
3209 pci_cfg_access_unlock(dev);
3210 }
3211 return rc;
3212}
3213/**
3214 * __pci_reset_function - reset a PCI device function
3215 * @dev: PCI device to reset
3216 *
3217 * Some devices allow an individual function to be reset without affecting
3218 * other functions in the same device. The PCI device must be responsive
3219 * to PCI config space in order to use this function.
3220 *
3221 * The device function is presumed to be unused when this function is called.
3222 * Resetting the device will make the contents of PCI configuration space
3223 * random, so any caller of this must be prepared to reinitialise the
3224 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3225 * etc.
3226 *
3227 * Returns 0 if the device function was successfully reset or negative if the
3228 * device doesn't support resetting a single function.
3229 */
3230int __pci_reset_function(struct pci_dev *dev)
3231{
3232 return pci_dev_reset(dev, 0);
3233}
3234EXPORT_SYMBOL_GPL(__pci_reset_function);
3235
3236/**
3237 * __pci_reset_function_locked - reset a PCI device function while holding
3238 * the @dev mutex lock.
3239 * @dev: PCI device to reset
3240 *
3241 * Some devices allow an individual function to be reset without affecting
3242 * other functions in the same device. The PCI device must be responsive
3243 * to PCI config space in order to use this function.
3244 *
3245 * The device function is presumed to be unused and the caller is holding
3246 * the device mutex lock when this function is called.
3247 * Resetting the device will make the contents of PCI configuration space
3248 * random, so any caller of this must be prepared to reinitialise the
3249 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3250 * etc.
3251 *
3252 * Returns 0 if the device function was successfully reset or negative if the
3253 * device doesn't support resetting a single function.
3254 */
3255int __pci_reset_function_locked(struct pci_dev *dev)
3256{
3257 return __pci_dev_reset(dev, 0);
3258}
3259EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3260
3261/**
3262 * pci_probe_reset_function - check whether the device can be safely reset
3263 * @dev: PCI device to reset
3264 *
3265 * Some devices allow an individual function to be reset without affecting
3266 * other functions in the same device. The PCI device must be responsive
3267 * to PCI config space in order to use this function.
3268 *
3269 * Returns 0 if the device function can be reset or negative if the
3270 * device doesn't support resetting a single function.
3271 */
3272int pci_probe_reset_function(struct pci_dev *dev)
3273{
3274 return pci_dev_reset(dev, 1);
3275}
3276
3277/**
3278 * pci_reset_function - quiesce and reset a PCI device function
3279 * @dev: PCI device to reset
3280 *
3281 * Some devices allow an individual function to be reset without affecting
3282 * other functions in the same device. The PCI device must be responsive
3283 * to PCI config space in order to use this function.
3284 *
3285 * This function does not just reset the PCI portion of a device, but
3286 * clears all the state associated with the device. This function differs
3287 * from __pci_reset_function in that it saves and restores device state
3288 * over the reset.
3289 *
3290 * Returns 0 if the device function was successfully reset or negative if the
3291 * device doesn't support resetting a single function.
3292 */
3293int pci_reset_function(struct pci_dev *dev)
3294{
3295 int rc;
3296
3297 rc = pci_dev_reset(dev, 1);
3298 if (rc)
3299 return rc;
3300
3301 pci_save_state(dev);
3302
3303 /*
3304 * both INTx and MSI are disabled after the Interrupt Disable bit
3305 * is set and the Bus Master bit is cleared.
3306 */
3307 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3308
3309 rc = pci_dev_reset(dev, 0);
3310
3311 pci_restore_state(dev);
3312
3313 return rc;
3314}
3315EXPORT_SYMBOL_GPL(pci_reset_function);
3316
3317/**
3318 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3319 * @dev: PCI device to query
3320 *
3321 * Returns mmrbc: maximum designed memory read count in bytes
3322 * or appropriate error value.
3323 */
3324int pcix_get_max_mmrbc(struct pci_dev *dev)
3325{
3326 int cap;
3327 u32 stat;
3328
3329 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3330 if (!cap)
3331 return -EINVAL;
3332
3333 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3334 return -EINVAL;
3335
3336 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3337}
3338EXPORT_SYMBOL(pcix_get_max_mmrbc);
3339
3340/**
3341 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3342 * @dev: PCI device to query
3343 *
3344 * Returns mmrbc: maximum memory read count in bytes
3345 * or appropriate error value.
3346 */
3347int pcix_get_mmrbc(struct pci_dev *dev)
3348{
3349 int cap;
3350 u16 cmd;
3351
3352 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3353 if (!cap)
3354 return -EINVAL;
3355
3356 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3357 return -EINVAL;
3358
3359 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3360}
3361EXPORT_SYMBOL(pcix_get_mmrbc);
3362
3363/**
3364 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3365 * @dev: PCI device to query
3366 * @mmrbc: maximum memory read count in bytes
3367 * valid values are 512, 1024, 2048, 4096
3368 *
3369 * If possible sets maximum memory read byte count, some bridges have erratas
3370 * that prevent this.
3371 */
3372int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3373{
3374 int cap;
3375 u32 stat, v, o;
3376 u16 cmd;
3377
3378 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3379 return -EINVAL;
3380
3381 v = ffs(mmrbc) - 10;
3382
3383 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3384 if (!cap)
3385 return -EINVAL;
3386
3387 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3388 return -EINVAL;
3389
3390 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3391 return -E2BIG;
3392
3393 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3394 return -EINVAL;
3395
3396 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3397 if (o != v) {
3398 if (v > o && dev->bus &&
3399 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3400 return -EIO;
3401
3402 cmd &= ~PCI_X_CMD_MAX_READ;
3403 cmd |= v << 2;
3404 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3405 return -EIO;
3406 }
3407 return 0;
3408}
3409EXPORT_SYMBOL(pcix_set_mmrbc);
3410
3411/**
3412 * pcie_get_readrq - get PCI Express read request size
3413 * @dev: PCI device to query
3414 *
3415 * Returns maximum memory read request in bytes
3416 * or appropriate error value.
3417 */
3418int pcie_get_readrq(struct pci_dev *dev)
3419{
3420 int ret, cap;
3421 u16 ctl;
3422
3423 cap = pci_pcie_cap(dev);
3424 if (!cap)
3425 return -EINVAL;
3426
3427 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3428 if (!ret)
3429 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3430
3431 return ret;
3432}
3433EXPORT_SYMBOL(pcie_get_readrq);
3434
3435/**
3436 * pcie_set_readrq - set PCI Express maximum memory read request
3437 * @dev: PCI device to query
3438 * @rq: maximum memory read count in bytes
3439 * valid values are 128, 256, 512, 1024, 2048, 4096
3440 *
3441 * If possible sets maximum memory read request in bytes
3442 */
3443int pcie_set_readrq(struct pci_dev *dev, int rq)
3444{
3445 int cap, err = -EINVAL;
3446 u16 ctl, v;
3447
3448 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3449 goto out;
3450
3451 cap = pci_pcie_cap(dev);
3452 if (!cap)
3453 goto out;
3454
3455 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3456 if (err)
3457 goto out;
3458 /*
3459 * If using the "performance" PCIe config, we clamp the
3460 * read rq size to the max packet size to prevent the
3461 * host bridge generating requests larger than we can
3462 * cope with
3463 */
3464 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3465 int mps = pcie_get_mps(dev);
3466
3467 if (mps < 0)
3468 return mps;
3469 if (mps < rq)
3470 rq = mps;
3471 }
3472
3473 v = (ffs(rq) - 8) << 12;
3474
3475 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
3476 ctl &= ~PCI_EXP_DEVCTL_READRQ;
3477 ctl |= v;
3478 err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3479 }
3480
3481out:
3482 return err;
3483}
3484EXPORT_SYMBOL(pcie_set_readrq);
3485
3486/**
3487 * pcie_get_mps - get PCI Express maximum payload size
3488 * @dev: PCI device to query
3489 *
3490 * Returns maximum payload size in bytes
3491 * or appropriate error value.
3492 */
3493int pcie_get_mps(struct pci_dev *dev)
3494{
3495 int ret, cap;
3496 u16 ctl;
3497
3498 cap = pci_pcie_cap(dev);
3499 if (!cap)
3500 return -EINVAL;
3501
3502 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3503 if (!ret)
3504 ret = 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3505
3506 return ret;
3507}
3508
3509/**
3510 * pcie_set_mps - set PCI Express maximum payload size
3511 * @dev: PCI device to query
3512 * @mps: maximum payload size in bytes
3513 * valid values are 128, 256, 512, 1024, 2048, 4096
3514 *
3515 * If possible sets maximum payload size
3516 */
3517int pcie_set_mps(struct pci_dev *dev, int mps)
3518{
3519 int cap, err = -EINVAL;
3520 u16 ctl, v;
3521
3522 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3523 goto out;
3524
3525 v = ffs(mps) - 8;
3526 if (v > dev->pcie_mpss)
3527 goto out;
3528 v <<= 5;
3529
3530 cap = pci_pcie_cap(dev);
3531 if (!cap)
3532 goto out;
3533
3534 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3535 if (err)
3536 goto out;
3537
3538 if ((ctl & PCI_EXP_DEVCTL_PAYLOAD) != v) {
3539 ctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
3540 ctl |= v;
3541 err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3542 }
3543out:
3544 return err;
3545}
3546
3547/**
3548 * pci_select_bars - Make BAR mask from the type of resource
3549 * @dev: the PCI device for which BAR mask is made
3550 * @flags: resource type mask to be selected
3551 *
3552 * This helper routine makes bar mask from the type of resource.
3553 */
3554int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3555{
3556 int i, bars = 0;
3557 for (i = 0; i < PCI_NUM_RESOURCES; i++)
3558 if (pci_resource_flags(dev, i) & flags)
3559 bars |= (1 << i);
3560 return bars;
3561}
3562
3563/**
3564 * pci_resource_bar - get position of the BAR associated with a resource
3565 * @dev: the PCI device
3566 * @resno: the resource number
3567 * @type: the BAR type to be filled in
3568 *
3569 * Returns BAR position in config space, or 0 if the BAR is invalid.
3570 */
3571int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3572{
3573 int reg;
3574
3575 if (resno < PCI_ROM_RESOURCE) {
3576 *type = pci_bar_unknown;
3577 return PCI_BASE_ADDRESS_0 + 4 * resno;
3578 } else if (resno == PCI_ROM_RESOURCE) {
3579 *type = pci_bar_mem32;
3580 return dev->rom_base_reg;
3581 } else if (resno < PCI_BRIDGE_RESOURCES) {
3582 /* device specific resource */
3583 reg = pci_iov_resource_bar(dev, resno, type);
3584 if (reg)
3585 return reg;
3586 }
3587
3588 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3589 return 0;
3590}
3591
3592/* Some architectures require additional programming to enable VGA */
3593static arch_set_vga_state_t arch_set_vga_state;
3594
3595void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3596{
3597 arch_set_vga_state = func; /* NULL disables */
3598}
3599
3600static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3601 unsigned int command_bits, u32 flags)
3602{
3603 if (arch_set_vga_state)
3604 return arch_set_vga_state(dev, decode, command_bits,
3605 flags);
3606 return 0;
3607}
3608
3609/**
3610 * pci_set_vga_state - set VGA decode state on device and parents if requested
3611 * @dev: the PCI device
3612 * @decode: true = enable decoding, false = disable decoding
3613 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3614 * @flags: traverse ancestors and change bridges
3615 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3616 */
3617int pci_set_vga_state(struct pci_dev *dev, bool decode,
3618 unsigned int command_bits, u32 flags)
3619{
3620 struct pci_bus *bus;
3621 struct pci_dev *bridge;
3622 u16 cmd;
3623 int rc;
3624
3625 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3626
3627 /* ARCH specific VGA enables */
3628 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3629 if (rc)
3630 return rc;
3631
3632 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3633 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3634 if (decode == true)
3635 cmd |= command_bits;
3636 else
3637 cmd &= ~command_bits;
3638 pci_write_config_word(dev, PCI_COMMAND, cmd);
3639 }
3640
3641 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3642 return 0;
3643
3644 bus = dev->bus;
3645 while (bus) {
3646 bridge = bus->self;
3647 if (bridge) {
3648 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3649 &cmd);
3650 if (decode == true)
3651 cmd |= PCI_BRIDGE_CTL_VGA;
3652 else
3653 cmd &= ~PCI_BRIDGE_CTL_VGA;
3654 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3655 cmd);
3656 }
3657 bus = bus->parent;
3658 }
3659 return 0;
3660}
3661
3662#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3663static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3664static DEFINE_SPINLOCK(resource_alignment_lock);
3665
3666/**
3667 * pci_specified_resource_alignment - get resource alignment specified by user.
3668 * @dev: the PCI device to get
3669 *
3670 * RETURNS: Resource alignment if it is specified.
3671 * Zero if it is not specified.
3672 */
3673resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3674{
3675 int seg, bus, slot, func, align_order, count;
3676 resource_size_t align = 0;
3677 char *p;
3678
3679 spin_lock(&resource_alignment_lock);
3680 p = resource_alignment_param;
3681 while (*p) {
3682 count = 0;
3683 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3684 p[count] == '@') {
3685 p += count + 1;
3686 } else {
3687 align_order = -1;
3688 }
3689 if (sscanf(p, "%x:%x:%x.%x%n",
3690 &seg, &bus, &slot, &func, &count) != 4) {
3691 seg = 0;
3692 if (sscanf(p, "%x:%x.%x%n",
3693 &bus, &slot, &func, &count) != 3) {
3694 /* Invalid format */
3695 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3696 p);
3697 break;
3698 }
3699 }
3700 p += count;
3701 if (seg == pci_domain_nr(dev->bus) &&
3702 bus == dev->bus->number &&
3703 slot == PCI_SLOT(dev->devfn) &&
3704 func == PCI_FUNC(dev->devfn)) {
3705 if (align_order == -1) {
3706 align = PAGE_SIZE;
3707 } else {
3708 align = 1 << align_order;
3709 }
3710 /* Found */
3711 break;
3712 }
3713 if (*p != ';' && *p != ',') {
3714 /* End of param or invalid format */
3715 break;
3716 }
3717 p++;
3718 }
3719 spin_unlock(&resource_alignment_lock);
3720 return align;
3721}
3722
3723/**
3724 * pci_is_reassigndev - check if specified PCI is target device to reassign
3725 * @dev: the PCI device to check
3726 *
3727 * RETURNS: non-zero for PCI device is a target device to reassign,
3728 * or zero is not.
3729 */
3730int pci_is_reassigndev(struct pci_dev *dev)
3731{
3732 return (pci_specified_resource_alignment(dev) != 0);
3733}
3734
3735/*
3736 * This function disables memory decoding and releases memory resources
3737 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
3738 * It also rounds up size to specified alignment.
3739 * Later on, the kernel will assign page-aligned memory resource back
3740 * to the device.
3741 */
3742void pci_reassigndev_resource_alignment(struct pci_dev *dev)
3743{
3744 int i;
3745 struct resource *r;
3746 resource_size_t align, size;
3747 u16 command;
3748
3749 if (!pci_is_reassigndev(dev))
3750 return;
3751
3752 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
3753 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
3754 dev_warn(&dev->dev,
3755 "Can't reassign resources to host bridge.\n");
3756 return;
3757 }
3758
3759 dev_info(&dev->dev,
3760 "Disabling memory decoding and releasing memory resources.\n");
3761 pci_read_config_word(dev, PCI_COMMAND, &command);
3762 command &= ~PCI_COMMAND_MEMORY;
3763 pci_write_config_word(dev, PCI_COMMAND, command);
3764
3765 align = pci_specified_resource_alignment(dev);
3766 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
3767 r = &dev->resource[i];
3768 if (!(r->flags & IORESOURCE_MEM))
3769 continue;
3770 size = resource_size(r);
3771 if (size < align) {
3772 size = align;
3773 dev_info(&dev->dev,
3774 "Rounding up size of resource #%d to %#llx.\n",
3775 i, (unsigned long long)size);
3776 }
3777 r->end = size - 1;
3778 r->start = 0;
3779 }
3780 /* Need to disable bridge's resource window,
3781 * to enable the kernel to reassign new resource
3782 * window later on.
3783 */
3784 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
3785 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
3786 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
3787 r = &dev->resource[i];
3788 if (!(r->flags & IORESOURCE_MEM))
3789 continue;
3790 r->end = resource_size(r) - 1;
3791 r->start = 0;
3792 }
3793 pci_disable_bridge_window(dev);
3794 }
3795}
3796
3797ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3798{
3799 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3800 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3801 spin_lock(&resource_alignment_lock);
3802 strncpy(resource_alignment_param, buf, count);
3803 resource_alignment_param[count] = '\0';
3804 spin_unlock(&resource_alignment_lock);
3805 return count;
3806}
3807
3808ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3809{
3810 size_t count;
3811 spin_lock(&resource_alignment_lock);
3812 count = snprintf(buf, size, "%s", resource_alignment_param);
3813 spin_unlock(&resource_alignment_lock);
3814 return count;
3815}
3816
3817static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3818{
3819 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3820}
3821
3822static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3823 const char *buf, size_t count)
3824{
3825 return pci_set_resource_alignment_param(buf, count);
3826}
3827
3828BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3829 pci_resource_alignment_store);
3830
3831static int __init pci_resource_alignment_sysfs_init(void)
3832{
3833 return bus_create_file(&pci_bus_type,
3834 &bus_attr_resource_alignment);
3835}
3836
3837late_initcall(pci_resource_alignment_sysfs_init);
3838
3839static void __devinit pci_no_domains(void)
3840{
3841#ifdef CONFIG_PCI_DOMAINS
3842 pci_domains_supported = 0;
3843#endif
3844}
3845
3846/**
3847 * pci_ext_cfg_enabled - can we access extended PCI config space?
3848 * @dev: The PCI device of the root bridge.
3849 *
3850 * Returns 1 if we can access PCI extended config space (offsets
3851 * greater than 0xff). This is the default implementation. Architecture
3852 * implementations can override this.
3853 */
3854int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
3855{
3856 return 1;
3857}
3858
3859void __weak pci_fixup_cardbus(struct pci_bus *bus)
3860{
3861}
3862EXPORT_SYMBOL(pci_fixup_cardbus);
3863
3864static int __init pci_setup(char *str)
3865{
3866 while (str) {
3867 char *k = strchr(str, ',');
3868 if (k)
3869 *k++ = 0;
3870 if (*str && (str = pcibios_setup(str)) && *str) {
3871 if (!strcmp(str, "nomsi")) {
3872 pci_no_msi();
3873 } else if (!strcmp(str, "noaer")) {
3874 pci_no_aer();
3875 } else if (!strncmp(str, "realloc=", 8)) {
3876 pci_realloc_get_opt(str + 8);
3877 } else if (!strncmp(str, "realloc", 7)) {
3878 pci_realloc_get_opt("on");
3879 } else if (!strcmp(str, "nodomains")) {
3880 pci_no_domains();
3881 } else if (!strncmp(str, "noari", 5)) {
3882 pcie_ari_disabled = true;
3883 } else if (!strncmp(str, "cbiosize=", 9)) {
3884 pci_cardbus_io_size = memparse(str + 9, &str);
3885 } else if (!strncmp(str, "cbmemsize=", 10)) {
3886 pci_cardbus_mem_size = memparse(str + 10, &str);
3887 } else if (!strncmp(str, "resource_alignment=", 19)) {
3888 pci_set_resource_alignment_param(str + 19,
3889 strlen(str + 19));
3890 } else if (!strncmp(str, "ecrc=", 5)) {
3891 pcie_ecrc_get_policy(str + 5);
3892 } else if (!strncmp(str, "hpiosize=", 9)) {
3893 pci_hotplug_io_size = memparse(str + 9, &str);
3894 } else if (!strncmp(str, "hpmemsize=", 10)) {
3895 pci_hotplug_mem_size = memparse(str + 10, &str);
3896 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3897 pcie_bus_config = PCIE_BUS_TUNE_OFF;
3898 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
3899 pcie_bus_config = PCIE_BUS_SAFE;
3900 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
3901 pcie_bus_config = PCIE_BUS_PERFORMANCE;
3902 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3903 pcie_bus_config = PCIE_BUS_PEER2PEER;
3904 } else if (!strncmp(str, "pcie_scan_all", 13)) {
3905 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
3906 } else {
3907 printk(KERN_ERR "PCI: Unknown option `%s'\n",
3908 str);
3909 }
3910 }
3911 str = k;
3912 }
3913 return 0;
3914}
3915early_param("pci", pci_setup);
3916
3917EXPORT_SYMBOL(pci_reenable_device);
3918EXPORT_SYMBOL(pci_enable_device_io);
3919EXPORT_SYMBOL(pci_enable_device_mem);
3920EXPORT_SYMBOL(pci_enable_device);
3921EXPORT_SYMBOL(pcim_enable_device);
3922EXPORT_SYMBOL(pcim_pin_device);
3923EXPORT_SYMBOL(pci_disable_device);
3924EXPORT_SYMBOL(pci_find_capability);
3925EXPORT_SYMBOL(pci_bus_find_capability);
3926EXPORT_SYMBOL(pci_release_regions);
3927EXPORT_SYMBOL(pci_request_regions);
3928EXPORT_SYMBOL(pci_request_regions_exclusive);
3929EXPORT_SYMBOL(pci_release_region);
3930EXPORT_SYMBOL(pci_request_region);
3931EXPORT_SYMBOL(pci_request_region_exclusive);
3932EXPORT_SYMBOL(pci_release_selected_regions);
3933EXPORT_SYMBOL(pci_request_selected_regions);
3934EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3935EXPORT_SYMBOL(pci_set_master);
3936EXPORT_SYMBOL(pci_clear_master);
3937EXPORT_SYMBOL(pci_set_mwi);
3938EXPORT_SYMBOL(pci_try_set_mwi);
3939EXPORT_SYMBOL(pci_clear_mwi);
3940EXPORT_SYMBOL_GPL(pci_intx);
3941EXPORT_SYMBOL(pci_assign_resource);
3942EXPORT_SYMBOL(pci_find_parent_resource);
3943EXPORT_SYMBOL(pci_select_bars);
3944
3945EXPORT_SYMBOL(pci_set_power_state);
3946EXPORT_SYMBOL(pci_save_state);
3947EXPORT_SYMBOL(pci_restore_state);
3948EXPORT_SYMBOL(pci_pme_capable);
3949EXPORT_SYMBOL(pci_pme_active);
3950EXPORT_SYMBOL(pci_wake_from_d3);
3951EXPORT_SYMBOL(pci_target_state);
3952EXPORT_SYMBOL(pci_prepare_to_sleep);
3953EXPORT_SYMBOL(pci_back_from_sleep);
3954EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1/*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10#include <linux/acpi.h>
11#include <linux/kernel.h>
12#include <linux/delay.h>
13#include <linux/dmi.h>
14#include <linux/init.h>
15#include <linux/of.h>
16#include <linux/of_pci.h>
17#include <linux/pci.h>
18#include <linux/pm.h>
19#include <linux/slab.h>
20#include <linux/module.h>
21#include <linux/spinlock.h>
22#include <linux/string.h>
23#include <linux/log2.h>
24#include <linux/pci-aspm.h>
25#include <linux/pm_wakeup.h>
26#include <linux/interrupt.h>
27#include <linux/device.h>
28#include <linux/pm_runtime.h>
29#include <linux/pci_hotplug.h>
30#include <linux/vmalloc.h>
31#include <asm/setup.h>
32#include <asm/dma.h>
33#include <linux/aer.h>
34#include "pci.h"
35
36const char *pci_power_names[] = {
37 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
38};
39EXPORT_SYMBOL_GPL(pci_power_names);
40
41int isa_dma_bridge_buggy;
42EXPORT_SYMBOL(isa_dma_bridge_buggy);
43
44int pci_pci_problems;
45EXPORT_SYMBOL(pci_pci_problems);
46
47unsigned int pci_pm_d3_delay;
48
49static void pci_pme_list_scan(struct work_struct *work);
50
51static LIST_HEAD(pci_pme_list);
52static DEFINE_MUTEX(pci_pme_list_mutex);
53static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
54
55struct pci_pme_device {
56 struct list_head list;
57 struct pci_dev *dev;
58};
59
60#define PME_TIMEOUT 1000 /* How long between PME checks */
61
62static void pci_dev_d3_sleep(struct pci_dev *dev)
63{
64 unsigned int delay = dev->d3_delay;
65
66 if (delay < pci_pm_d3_delay)
67 delay = pci_pm_d3_delay;
68
69 msleep(delay);
70}
71
72#ifdef CONFIG_PCI_DOMAINS
73int pci_domains_supported = 1;
74#endif
75
76#define DEFAULT_CARDBUS_IO_SIZE (256)
77#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
78/* pci=cbmemsize=nnM,cbiosize=nn can override this */
79unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
80unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
81
82#define DEFAULT_HOTPLUG_IO_SIZE (256)
83#define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
84/* pci=hpmemsize=nnM,hpiosize=nn can override this */
85unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
86unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
87
88#define DEFAULT_HOTPLUG_BUS_SIZE 1
89unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
90
91enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
92
93/*
94 * The default CLS is used if arch didn't set CLS explicitly and not
95 * all pci devices agree on the same value. Arch can override either
96 * the dfl or actual value as it sees fit. Don't forget this is
97 * measured in 32-bit words, not bytes.
98 */
99u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
100u8 pci_cache_line_size;
101
102/*
103 * If we set up a device for bus mastering, we need to check the latency
104 * timer as certain BIOSes forget to set it properly.
105 */
106unsigned int pcibios_max_latency = 255;
107
108/* If set, the PCIe ARI capability will not be used. */
109static bool pcie_ari_disabled;
110
111/* Disable bridge_d3 for all PCIe ports */
112static bool pci_bridge_d3_disable;
113/* Force bridge_d3 for all PCIe ports */
114static bool pci_bridge_d3_force;
115
116static int __init pcie_port_pm_setup(char *str)
117{
118 if (!strcmp(str, "off"))
119 pci_bridge_d3_disable = true;
120 else if (!strcmp(str, "force"))
121 pci_bridge_d3_force = true;
122 return 1;
123}
124__setup("pcie_port_pm=", pcie_port_pm_setup);
125
126/**
127 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
128 * @bus: pointer to PCI bus structure to search
129 *
130 * Given a PCI bus, returns the highest PCI bus number present in the set
131 * including the given PCI bus and its list of child PCI buses.
132 */
133unsigned char pci_bus_max_busnr(struct pci_bus *bus)
134{
135 struct pci_bus *tmp;
136 unsigned char max, n;
137
138 max = bus->busn_res.end;
139 list_for_each_entry(tmp, &bus->children, node) {
140 n = pci_bus_max_busnr(tmp);
141 if (n > max)
142 max = n;
143 }
144 return max;
145}
146EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
147
148#ifdef CONFIG_HAS_IOMEM
149void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
150{
151 struct resource *res = &pdev->resource[bar];
152
153 /*
154 * Make sure the BAR is actually a memory resource, not an IO resource
155 */
156 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
157 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
158 return NULL;
159 }
160 return ioremap_nocache(res->start, resource_size(res));
161}
162EXPORT_SYMBOL_GPL(pci_ioremap_bar);
163
164void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
165{
166 /*
167 * Make sure the BAR is actually a memory resource, not an IO resource
168 */
169 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
170 WARN_ON(1);
171 return NULL;
172 }
173 return ioremap_wc(pci_resource_start(pdev, bar),
174 pci_resource_len(pdev, bar));
175}
176EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
177#endif
178
179
180static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
181 u8 pos, int cap, int *ttl)
182{
183 u8 id;
184 u16 ent;
185
186 pci_bus_read_config_byte(bus, devfn, pos, &pos);
187
188 while ((*ttl)--) {
189 if (pos < 0x40)
190 break;
191 pos &= ~3;
192 pci_bus_read_config_word(bus, devfn, pos, &ent);
193
194 id = ent & 0xff;
195 if (id == 0xff)
196 break;
197 if (id == cap)
198 return pos;
199 pos = (ent >> 8);
200 }
201 return 0;
202}
203
204static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
205 u8 pos, int cap)
206{
207 int ttl = PCI_FIND_CAP_TTL;
208
209 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
210}
211
212int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
213{
214 return __pci_find_next_cap(dev->bus, dev->devfn,
215 pos + PCI_CAP_LIST_NEXT, cap);
216}
217EXPORT_SYMBOL_GPL(pci_find_next_capability);
218
219static int __pci_bus_find_cap_start(struct pci_bus *bus,
220 unsigned int devfn, u8 hdr_type)
221{
222 u16 status;
223
224 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
225 if (!(status & PCI_STATUS_CAP_LIST))
226 return 0;
227
228 switch (hdr_type) {
229 case PCI_HEADER_TYPE_NORMAL:
230 case PCI_HEADER_TYPE_BRIDGE:
231 return PCI_CAPABILITY_LIST;
232 case PCI_HEADER_TYPE_CARDBUS:
233 return PCI_CB_CAPABILITY_LIST;
234 }
235
236 return 0;
237}
238
239/**
240 * pci_find_capability - query for devices' capabilities
241 * @dev: PCI device to query
242 * @cap: capability code
243 *
244 * Tell if a device supports a given PCI capability.
245 * Returns the address of the requested capability structure within the
246 * device's PCI configuration space or 0 in case the device does not
247 * support it. Possible values for @cap:
248 *
249 * %PCI_CAP_ID_PM Power Management
250 * %PCI_CAP_ID_AGP Accelerated Graphics Port
251 * %PCI_CAP_ID_VPD Vital Product Data
252 * %PCI_CAP_ID_SLOTID Slot Identification
253 * %PCI_CAP_ID_MSI Message Signalled Interrupts
254 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
255 * %PCI_CAP_ID_PCIX PCI-X
256 * %PCI_CAP_ID_EXP PCI Express
257 */
258int pci_find_capability(struct pci_dev *dev, int cap)
259{
260 int pos;
261
262 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
263 if (pos)
264 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
265
266 return pos;
267}
268EXPORT_SYMBOL(pci_find_capability);
269
270/**
271 * pci_bus_find_capability - query for devices' capabilities
272 * @bus: the PCI bus to query
273 * @devfn: PCI device to query
274 * @cap: capability code
275 *
276 * Like pci_find_capability() but works for pci devices that do not have a
277 * pci_dev structure set up yet.
278 *
279 * Returns the address of the requested capability structure within the
280 * device's PCI configuration space or 0 in case the device does not
281 * support it.
282 */
283int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
284{
285 int pos;
286 u8 hdr_type;
287
288 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
289
290 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
291 if (pos)
292 pos = __pci_find_next_cap(bus, devfn, pos, cap);
293
294 return pos;
295}
296EXPORT_SYMBOL(pci_bus_find_capability);
297
298/**
299 * pci_find_next_ext_capability - Find an extended capability
300 * @dev: PCI device to query
301 * @start: address at which to start looking (0 to start at beginning of list)
302 * @cap: capability code
303 *
304 * Returns the address of the next matching extended capability structure
305 * within the device's PCI configuration space or 0 if the device does
306 * not support it. Some capabilities can occur several times, e.g., the
307 * vendor-specific capability, and this provides a way to find them all.
308 */
309int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
310{
311 u32 header;
312 int ttl;
313 int pos = PCI_CFG_SPACE_SIZE;
314
315 /* minimum 8 bytes per capability */
316 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
317
318 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
319 return 0;
320
321 if (start)
322 pos = start;
323
324 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
325 return 0;
326
327 /*
328 * If we have no capabilities, this is indicated by cap ID,
329 * cap version and next pointer all being 0.
330 */
331 if (header == 0)
332 return 0;
333
334 while (ttl-- > 0) {
335 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
336 return pos;
337
338 pos = PCI_EXT_CAP_NEXT(header);
339 if (pos < PCI_CFG_SPACE_SIZE)
340 break;
341
342 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
343 break;
344 }
345
346 return 0;
347}
348EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
349
350/**
351 * pci_find_ext_capability - Find an extended capability
352 * @dev: PCI device to query
353 * @cap: capability code
354 *
355 * Returns the address of the requested extended capability structure
356 * within the device's PCI configuration space or 0 if the device does
357 * not support it. Possible values for @cap:
358 *
359 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
360 * %PCI_EXT_CAP_ID_VC Virtual Channel
361 * %PCI_EXT_CAP_ID_DSN Device Serial Number
362 * %PCI_EXT_CAP_ID_PWR Power Budgeting
363 */
364int pci_find_ext_capability(struct pci_dev *dev, int cap)
365{
366 return pci_find_next_ext_capability(dev, 0, cap);
367}
368EXPORT_SYMBOL_GPL(pci_find_ext_capability);
369
370static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
371{
372 int rc, ttl = PCI_FIND_CAP_TTL;
373 u8 cap, mask;
374
375 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
376 mask = HT_3BIT_CAP_MASK;
377 else
378 mask = HT_5BIT_CAP_MASK;
379
380 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
381 PCI_CAP_ID_HT, &ttl);
382 while (pos) {
383 rc = pci_read_config_byte(dev, pos + 3, &cap);
384 if (rc != PCIBIOS_SUCCESSFUL)
385 return 0;
386
387 if ((cap & mask) == ht_cap)
388 return pos;
389
390 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
391 pos + PCI_CAP_LIST_NEXT,
392 PCI_CAP_ID_HT, &ttl);
393 }
394
395 return 0;
396}
397/**
398 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
399 * @dev: PCI device to query
400 * @pos: Position from which to continue searching
401 * @ht_cap: Hypertransport capability code
402 *
403 * To be used in conjunction with pci_find_ht_capability() to search for
404 * all capabilities matching @ht_cap. @pos should always be a value returned
405 * from pci_find_ht_capability().
406 *
407 * NB. To be 100% safe against broken PCI devices, the caller should take
408 * steps to avoid an infinite loop.
409 */
410int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
411{
412 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
413}
414EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
415
416/**
417 * pci_find_ht_capability - query a device's Hypertransport capabilities
418 * @dev: PCI device to query
419 * @ht_cap: Hypertransport capability code
420 *
421 * Tell if a device supports a given Hypertransport capability.
422 * Returns an address within the device's PCI configuration space
423 * or 0 in case the device does not support the request capability.
424 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
425 * which has a Hypertransport capability matching @ht_cap.
426 */
427int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
428{
429 int pos;
430
431 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
432 if (pos)
433 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
434
435 return pos;
436}
437EXPORT_SYMBOL_GPL(pci_find_ht_capability);
438
439/**
440 * pci_find_parent_resource - return resource region of parent bus of given region
441 * @dev: PCI device structure contains resources to be searched
442 * @res: child resource record for which parent is sought
443 *
444 * For given resource region of given device, return the resource
445 * region of parent bus the given region is contained in.
446 */
447struct resource *pci_find_parent_resource(const struct pci_dev *dev,
448 struct resource *res)
449{
450 const struct pci_bus *bus = dev->bus;
451 struct resource *r;
452 int i;
453
454 pci_bus_for_each_resource(bus, r, i) {
455 if (!r)
456 continue;
457 if (res->start && resource_contains(r, res)) {
458
459 /*
460 * If the window is prefetchable but the BAR is
461 * not, the allocator made a mistake.
462 */
463 if (r->flags & IORESOURCE_PREFETCH &&
464 !(res->flags & IORESOURCE_PREFETCH))
465 return NULL;
466
467 /*
468 * If we're below a transparent bridge, there may
469 * be both a positively-decoded aperture and a
470 * subtractively-decoded region that contain the BAR.
471 * We want the positively-decoded one, so this depends
472 * on pci_bus_for_each_resource() giving us those
473 * first.
474 */
475 return r;
476 }
477 }
478 return NULL;
479}
480EXPORT_SYMBOL(pci_find_parent_resource);
481
482/**
483 * pci_find_resource - Return matching PCI device resource
484 * @dev: PCI device to query
485 * @res: Resource to look for
486 *
487 * Goes over standard PCI resources (BARs) and checks if the given resource
488 * is partially or fully contained in any of them. In that case the
489 * matching resource is returned, %NULL otherwise.
490 */
491struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
492{
493 int i;
494
495 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
496 struct resource *r = &dev->resource[i];
497
498 if (r->start && resource_contains(r, res))
499 return r;
500 }
501
502 return NULL;
503}
504EXPORT_SYMBOL(pci_find_resource);
505
506/**
507 * pci_find_pcie_root_port - return PCIe Root Port
508 * @dev: PCI device to query
509 *
510 * Traverse up the parent chain and return the PCIe Root Port PCI Device
511 * for a given PCI Device.
512 */
513struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
514{
515 struct pci_dev *bridge, *highest_pcie_bridge = NULL;
516
517 bridge = pci_upstream_bridge(dev);
518 while (bridge && pci_is_pcie(bridge)) {
519 highest_pcie_bridge = bridge;
520 bridge = pci_upstream_bridge(bridge);
521 }
522
523 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
524 return NULL;
525
526 return highest_pcie_bridge;
527}
528EXPORT_SYMBOL(pci_find_pcie_root_port);
529
530/**
531 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
532 * @dev: the PCI device to operate on
533 * @pos: config space offset of status word
534 * @mask: mask of bit(s) to care about in status word
535 *
536 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
537 */
538int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
539{
540 int i;
541
542 /* Wait for Transaction Pending bit clean */
543 for (i = 0; i < 4; i++) {
544 u16 status;
545 if (i)
546 msleep((1 << (i - 1)) * 100);
547
548 pci_read_config_word(dev, pos, &status);
549 if (!(status & mask))
550 return 1;
551 }
552
553 return 0;
554}
555
556/**
557 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
558 * @dev: PCI device to have its BARs restored
559 *
560 * Restore the BAR values for a given device, so as to make it
561 * accessible by its driver.
562 */
563static void pci_restore_bars(struct pci_dev *dev)
564{
565 int i;
566
567 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
568 pci_update_resource(dev, i);
569}
570
571static const struct pci_platform_pm_ops *pci_platform_pm;
572
573int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
574{
575 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
576 !ops->choose_state || !ops->sleep_wake || !ops->run_wake ||
577 !ops->need_resume)
578 return -EINVAL;
579 pci_platform_pm = ops;
580 return 0;
581}
582
583static inline bool platform_pci_power_manageable(struct pci_dev *dev)
584{
585 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
586}
587
588static inline int platform_pci_set_power_state(struct pci_dev *dev,
589 pci_power_t t)
590{
591 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
592}
593
594static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
595{
596 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
597}
598
599static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
600{
601 return pci_platform_pm ?
602 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
603}
604
605static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
606{
607 return pci_platform_pm ?
608 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
609}
610
611static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
612{
613 return pci_platform_pm ?
614 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
615}
616
617static inline bool platform_pci_need_resume(struct pci_dev *dev)
618{
619 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
620}
621
622/**
623 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
624 * given PCI device
625 * @dev: PCI device to handle.
626 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
627 *
628 * RETURN VALUE:
629 * -EINVAL if the requested state is invalid.
630 * -EIO if device does not support PCI PM or its PM capabilities register has a
631 * wrong version, or device doesn't support the requested state.
632 * 0 if device already is in the requested state.
633 * 0 if device's power state has been successfully changed.
634 */
635static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
636{
637 u16 pmcsr;
638 bool need_restore = false;
639
640 /* Check if we're already there */
641 if (dev->current_state == state)
642 return 0;
643
644 if (!dev->pm_cap)
645 return -EIO;
646
647 if (state < PCI_D0 || state > PCI_D3hot)
648 return -EINVAL;
649
650 /* Validate current state:
651 * Can enter D0 from any state, but if we can only go deeper
652 * to sleep if we're already in a low power state
653 */
654 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
655 && dev->current_state > state) {
656 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
657 dev->current_state, state);
658 return -EINVAL;
659 }
660
661 /* check if this device supports the desired state */
662 if ((state == PCI_D1 && !dev->d1_support)
663 || (state == PCI_D2 && !dev->d2_support))
664 return -EIO;
665
666 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
667
668 /* If we're (effectively) in D3, force entire word to 0.
669 * This doesn't affect PME_Status, disables PME_En, and
670 * sets PowerState to 0.
671 */
672 switch (dev->current_state) {
673 case PCI_D0:
674 case PCI_D1:
675 case PCI_D2:
676 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
677 pmcsr |= state;
678 break;
679 case PCI_D3hot:
680 case PCI_D3cold:
681 case PCI_UNKNOWN: /* Boot-up */
682 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
683 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
684 need_restore = true;
685 /* Fall-through: force to D0 */
686 default:
687 pmcsr = 0;
688 break;
689 }
690
691 /* enter specified state */
692 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
693
694 /* Mandatory power management transition delays */
695 /* see PCI PM 1.1 5.6.1 table 18 */
696 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
697 pci_dev_d3_sleep(dev);
698 else if (state == PCI_D2 || dev->current_state == PCI_D2)
699 udelay(PCI_PM_D2_DELAY);
700
701 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
702 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
703 if (dev->current_state != state && printk_ratelimit())
704 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
705 dev->current_state);
706
707 /*
708 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
709 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
710 * from D3hot to D0 _may_ perform an internal reset, thereby
711 * going to "D0 Uninitialized" rather than "D0 Initialized".
712 * For example, at least some versions of the 3c905B and the
713 * 3c556B exhibit this behaviour.
714 *
715 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
716 * devices in a D3hot state at boot. Consequently, we need to
717 * restore at least the BARs so that the device will be
718 * accessible to its driver.
719 */
720 if (need_restore)
721 pci_restore_bars(dev);
722
723 if (dev->bus->self)
724 pcie_aspm_pm_state_change(dev->bus->self);
725
726 return 0;
727}
728
729/**
730 * pci_update_current_state - Read power state of given device and cache it
731 * @dev: PCI device to handle.
732 * @state: State to cache in case the device doesn't have the PM capability
733 *
734 * The power state is read from the PMCSR register, which however is
735 * inaccessible in D3cold. The platform firmware is therefore queried first
736 * to detect accessibility of the register. In case the platform firmware
737 * reports an incorrect state or the device isn't power manageable by the
738 * platform at all, we try to detect D3cold by testing accessibility of the
739 * vendor ID in config space.
740 */
741void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
742{
743 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
744 !pci_device_is_present(dev)) {
745 dev->current_state = PCI_D3cold;
746 } else if (dev->pm_cap) {
747 u16 pmcsr;
748
749 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
750 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
751 } else {
752 dev->current_state = state;
753 }
754}
755
756/**
757 * pci_power_up - Put the given device into D0 forcibly
758 * @dev: PCI device to power up
759 */
760void pci_power_up(struct pci_dev *dev)
761{
762 if (platform_pci_power_manageable(dev))
763 platform_pci_set_power_state(dev, PCI_D0);
764
765 pci_raw_set_power_state(dev, PCI_D0);
766 pci_update_current_state(dev, PCI_D0);
767}
768
769/**
770 * pci_platform_power_transition - Use platform to change device power state
771 * @dev: PCI device to handle.
772 * @state: State to put the device into.
773 */
774static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
775{
776 int error;
777
778 if (platform_pci_power_manageable(dev)) {
779 error = platform_pci_set_power_state(dev, state);
780 if (!error)
781 pci_update_current_state(dev, state);
782 } else
783 error = -ENODEV;
784
785 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
786 dev->current_state = PCI_D0;
787
788 return error;
789}
790
791/**
792 * pci_wakeup - Wake up a PCI device
793 * @pci_dev: Device to handle.
794 * @ign: ignored parameter
795 */
796static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
797{
798 pci_wakeup_event(pci_dev);
799 pm_request_resume(&pci_dev->dev);
800 return 0;
801}
802
803/**
804 * pci_wakeup_bus - Walk given bus and wake up devices on it
805 * @bus: Top bus of the subtree to walk.
806 */
807static void pci_wakeup_bus(struct pci_bus *bus)
808{
809 if (bus)
810 pci_walk_bus(bus, pci_wakeup, NULL);
811}
812
813/**
814 * __pci_start_power_transition - Start power transition of a PCI device
815 * @dev: PCI device to handle.
816 * @state: State to put the device into.
817 */
818static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
819{
820 if (state == PCI_D0) {
821 pci_platform_power_transition(dev, PCI_D0);
822 /*
823 * Mandatory power management transition delays, see
824 * PCI Express Base Specification Revision 2.0 Section
825 * 6.6.1: Conventional Reset. Do not delay for
826 * devices powered on/off by corresponding bridge,
827 * because have already delayed for the bridge.
828 */
829 if (dev->runtime_d3cold) {
830 msleep(dev->d3cold_delay);
831 /*
832 * When powering on a bridge from D3cold, the
833 * whole hierarchy may be powered on into
834 * D0uninitialized state, resume them to give
835 * them a chance to suspend again
836 */
837 pci_wakeup_bus(dev->subordinate);
838 }
839 }
840}
841
842/**
843 * __pci_dev_set_current_state - Set current state of a PCI device
844 * @dev: Device to handle
845 * @data: pointer to state to be set
846 */
847static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
848{
849 pci_power_t state = *(pci_power_t *)data;
850
851 dev->current_state = state;
852 return 0;
853}
854
855/**
856 * __pci_bus_set_current_state - Walk given bus and set current state of devices
857 * @bus: Top bus of the subtree to walk.
858 * @state: state to be set
859 */
860static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
861{
862 if (bus)
863 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
864}
865
866/**
867 * __pci_complete_power_transition - Complete power transition of a PCI device
868 * @dev: PCI device to handle.
869 * @state: State to put the device into.
870 *
871 * This function should not be called directly by device drivers.
872 */
873int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
874{
875 int ret;
876
877 if (state <= PCI_D0)
878 return -EINVAL;
879 ret = pci_platform_power_transition(dev, state);
880 /* Power off the bridge may power off the whole hierarchy */
881 if (!ret && state == PCI_D3cold)
882 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
883 return ret;
884}
885EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
886
887/**
888 * pci_set_power_state - Set the power state of a PCI device
889 * @dev: PCI device to handle.
890 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
891 *
892 * Transition a device to a new power state, using the platform firmware and/or
893 * the device's PCI PM registers.
894 *
895 * RETURN VALUE:
896 * -EINVAL if the requested state is invalid.
897 * -EIO if device does not support PCI PM or its PM capabilities register has a
898 * wrong version, or device doesn't support the requested state.
899 * 0 if device already is in the requested state.
900 * 0 if device's power state has been successfully changed.
901 */
902int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
903{
904 int error;
905
906 /* bound the state we're entering */
907 if (state > PCI_D3cold)
908 state = PCI_D3cold;
909 else if (state < PCI_D0)
910 state = PCI_D0;
911 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
912 /*
913 * If the device or the parent bridge do not support PCI PM,
914 * ignore the request if we're doing anything other than putting
915 * it into D0 (which would only happen on boot).
916 */
917 return 0;
918
919 /* Check if we're already there */
920 if (dev->current_state == state)
921 return 0;
922
923 __pci_start_power_transition(dev, state);
924
925 /* This device is quirked not to be put into D3, so
926 don't put it in D3 */
927 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
928 return 0;
929
930 /*
931 * To put device in D3cold, we put device into D3hot in native
932 * way, then put device into D3cold with platform ops
933 */
934 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
935 PCI_D3hot : state);
936
937 if (!__pci_complete_power_transition(dev, state))
938 error = 0;
939
940 return error;
941}
942EXPORT_SYMBOL(pci_set_power_state);
943
944/**
945 * pci_choose_state - Choose the power state of a PCI device
946 * @dev: PCI device to be suspended
947 * @state: target sleep state for the whole system. This is the value
948 * that is passed to suspend() function.
949 *
950 * Returns PCI power state suitable for given device and given system
951 * message.
952 */
953
954pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
955{
956 pci_power_t ret;
957
958 if (!dev->pm_cap)
959 return PCI_D0;
960
961 ret = platform_pci_choose_state(dev);
962 if (ret != PCI_POWER_ERROR)
963 return ret;
964
965 switch (state.event) {
966 case PM_EVENT_ON:
967 return PCI_D0;
968 case PM_EVENT_FREEZE:
969 case PM_EVENT_PRETHAW:
970 /* REVISIT both freeze and pre-thaw "should" use D0 */
971 case PM_EVENT_SUSPEND:
972 case PM_EVENT_HIBERNATE:
973 return PCI_D3hot;
974 default:
975 dev_info(&dev->dev, "unrecognized suspend event %d\n",
976 state.event);
977 BUG();
978 }
979 return PCI_D0;
980}
981EXPORT_SYMBOL(pci_choose_state);
982
983#define PCI_EXP_SAVE_REGS 7
984
985static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
986 u16 cap, bool extended)
987{
988 struct pci_cap_saved_state *tmp;
989
990 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
991 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
992 return tmp;
993 }
994 return NULL;
995}
996
997struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
998{
999 return _pci_find_saved_cap(dev, cap, false);
1000}
1001
1002struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1003{
1004 return _pci_find_saved_cap(dev, cap, true);
1005}
1006
1007static int pci_save_pcie_state(struct pci_dev *dev)
1008{
1009 int i = 0;
1010 struct pci_cap_saved_state *save_state;
1011 u16 *cap;
1012
1013 if (!pci_is_pcie(dev))
1014 return 0;
1015
1016 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1017 if (!save_state) {
1018 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1019 return -ENOMEM;
1020 }
1021
1022 cap = (u16 *)&save_state->cap.data[0];
1023 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1024 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1025 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1026 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1027 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1028 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1029 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1030
1031 return 0;
1032}
1033
1034static void pci_restore_pcie_state(struct pci_dev *dev)
1035{
1036 int i = 0;
1037 struct pci_cap_saved_state *save_state;
1038 u16 *cap;
1039
1040 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1041 if (!save_state)
1042 return;
1043
1044 cap = (u16 *)&save_state->cap.data[0];
1045 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1046 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1047 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1048 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1049 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1050 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1051 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1052}
1053
1054
1055static int pci_save_pcix_state(struct pci_dev *dev)
1056{
1057 int pos;
1058 struct pci_cap_saved_state *save_state;
1059
1060 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1061 if (!pos)
1062 return 0;
1063
1064 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1065 if (!save_state) {
1066 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1067 return -ENOMEM;
1068 }
1069
1070 pci_read_config_word(dev, pos + PCI_X_CMD,
1071 (u16 *)save_state->cap.data);
1072
1073 return 0;
1074}
1075
1076static void pci_restore_pcix_state(struct pci_dev *dev)
1077{
1078 int i = 0, pos;
1079 struct pci_cap_saved_state *save_state;
1080 u16 *cap;
1081
1082 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1083 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1084 if (!save_state || !pos)
1085 return;
1086 cap = (u16 *)&save_state->cap.data[0];
1087
1088 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1089}
1090
1091
1092/**
1093 * pci_save_state - save the PCI configuration space of a device before suspending
1094 * @dev: - PCI device that we're dealing with
1095 */
1096int pci_save_state(struct pci_dev *dev)
1097{
1098 int i;
1099 /* XXX: 100% dword access ok here? */
1100 for (i = 0; i < 16; i++)
1101 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1102 dev->state_saved = true;
1103
1104 i = pci_save_pcie_state(dev);
1105 if (i != 0)
1106 return i;
1107
1108 i = pci_save_pcix_state(dev);
1109 if (i != 0)
1110 return i;
1111
1112 return pci_save_vc_state(dev);
1113}
1114EXPORT_SYMBOL(pci_save_state);
1115
1116static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1117 u32 saved_val, int retry)
1118{
1119 u32 val;
1120
1121 pci_read_config_dword(pdev, offset, &val);
1122 if (val == saved_val)
1123 return;
1124
1125 for (;;) {
1126 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1127 offset, val, saved_val);
1128 pci_write_config_dword(pdev, offset, saved_val);
1129 if (retry-- <= 0)
1130 return;
1131
1132 pci_read_config_dword(pdev, offset, &val);
1133 if (val == saved_val)
1134 return;
1135
1136 mdelay(1);
1137 }
1138}
1139
1140static void pci_restore_config_space_range(struct pci_dev *pdev,
1141 int start, int end, int retry)
1142{
1143 int index;
1144
1145 for (index = end; index >= start; index--)
1146 pci_restore_config_dword(pdev, 4 * index,
1147 pdev->saved_config_space[index],
1148 retry);
1149}
1150
1151static void pci_restore_config_space(struct pci_dev *pdev)
1152{
1153 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1154 pci_restore_config_space_range(pdev, 10, 15, 0);
1155 /* Restore BARs before the command register. */
1156 pci_restore_config_space_range(pdev, 4, 9, 10);
1157 pci_restore_config_space_range(pdev, 0, 3, 0);
1158 } else {
1159 pci_restore_config_space_range(pdev, 0, 15, 0);
1160 }
1161}
1162
1163/**
1164 * pci_restore_state - Restore the saved state of a PCI device
1165 * @dev: - PCI device that we're dealing with
1166 */
1167void pci_restore_state(struct pci_dev *dev)
1168{
1169 if (!dev->state_saved)
1170 return;
1171
1172 /* PCI Express register must be restored first */
1173 pci_restore_pcie_state(dev);
1174 pci_restore_ats_state(dev);
1175 pci_restore_vc_state(dev);
1176
1177 pci_cleanup_aer_error_status_regs(dev);
1178
1179 pci_restore_config_space(dev);
1180
1181 pci_restore_pcix_state(dev);
1182 pci_restore_msi_state(dev);
1183
1184 /* Restore ACS and IOV configuration state */
1185 pci_enable_acs(dev);
1186 pci_restore_iov_state(dev);
1187
1188 dev->state_saved = false;
1189}
1190EXPORT_SYMBOL(pci_restore_state);
1191
1192struct pci_saved_state {
1193 u32 config_space[16];
1194 struct pci_cap_saved_data cap[0];
1195};
1196
1197/**
1198 * pci_store_saved_state - Allocate and return an opaque struct containing
1199 * the device saved state.
1200 * @dev: PCI device that we're dealing with
1201 *
1202 * Return NULL if no state or error.
1203 */
1204struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1205{
1206 struct pci_saved_state *state;
1207 struct pci_cap_saved_state *tmp;
1208 struct pci_cap_saved_data *cap;
1209 size_t size;
1210
1211 if (!dev->state_saved)
1212 return NULL;
1213
1214 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1215
1216 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1217 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1218
1219 state = kzalloc(size, GFP_KERNEL);
1220 if (!state)
1221 return NULL;
1222
1223 memcpy(state->config_space, dev->saved_config_space,
1224 sizeof(state->config_space));
1225
1226 cap = state->cap;
1227 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1228 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1229 memcpy(cap, &tmp->cap, len);
1230 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1231 }
1232 /* Empty cap_save terminates list */
1233
1234 return state;
1235}
1236EXPORT_SYMBOL_GPL(pci_store_saved_state);
1237
1238/**
1239 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1240 * @dev: PCI device that we're dealing with
1241 * @state: Saved state returned from pci_store_saved_state()
1242 */
1243int pci_load_saved_state(struct pci_dev *dev,
1244 struct pci_saved_state *state)
1245{
1246 struct pci_cap_saved_data *cap;
1247
1248 dev->state_saved = false;
1249
1250 if (!state)
1251 return 0;
1252
1253 memcpy(dev->saved_config_space, state->config_space,
1254 sizeof(state->config_space));
1255
1256 cap = state->cap;
1257 while (cap->size) {
1258 struct pci_cap_saved_state *tmp;
1259
1260 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1261 if (!tmp || tmp->cap.size != cap->size)
1262 return -EINVAL;
1263
1264 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1265 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1266 sizeof(struct pci_cap_saved_data) + cap->size);
1267 }
1268
1269 dev->state_saved = true;
1270 return 0;
1271}
1272EXPORT_SYMBOL_GPL(pci_load_saved_state);
1273
1274/**
1275 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1276 * and free the memory allocated for it.
1277 * @dev: PCI device that we're dealing with
1278 * @state: Pointer to saved state returned from pci_store_saved_state()
1279 */
1280int pci_load_and_free_saved_state(struct pci_dev *dev,
1281 struct pci_saved_state **state)
1282{
1283 int ret = pci_load_saved_state(dev, *state);
1284 kfree(*state);
1285 *state = NULL;
1286 return ret;
1287}
1288EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1289
1290int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1291{
1292 return pci_enable_resources(dev, bars);
1293}
1294
1295static int do_pci_enable_device(struct pci_dev *dev, int bars)
1296{
1297 int err;
1298 struct pci_dev *bridge;
1299 u16 cmd;
1300 u8 pin;
1301
1302 err = pci_set_power_state(dev, PCI_D0);
1303 if (err < 0 && err != -EIO)
1304 return err;
1305
1306 bridge = pci_upstream_bridge(dev);
1307 if (bridge)
1308 pcie_aspm_powersave_config_link(bridge);
1309
1310 err = pcibios_enable_device(dev, bars);
1311 if (err < 0)
1312 return err;
1313 pci_fixup_device(pci_fixup_enable, dev);
1314
1315 if (dev->msi_enabled || dev->msix_enabled)
1316 return 0;
1317
1318 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1319 if (pin) {
1320 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1321 if (cmd & PCI_COMMAND_INTX_DISABLE)
1322 pci_write_config_word(dev, PCI_COMMAND,
1323 cmd & ~PCI_COMMAND_INTX_DISABLE);
1324 }
1325
1326 return 0;
1327}
1328
1329/**
1330 * pci_reenable_device - Resume abandoned device
1331 * @dev: PCI device to be resumed
1332 *
1333 * Note this function is a backend of pci_default_resume and is not supposed
1334 * to be called by normal code, write proper resume handler and use it instead.
1335 */
1336int pci_reenable_device(struct pci_dev *dev)
1337{
1338 if (pci_is_enabled(dev))
1339 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1340 return 0;
1341}
1342EXPORT_SYMBOL(pci_reenable_device);
1343
1344static void pci_enable_bridge(struct pci_dev *dev)
1345{
1346 struct pci_dev *bridge;
1347 int retval;
1348
1349 bridge = pci_upstream_bridge(dev);
1350 if (bridge)
1351 pci_enable_bridge(bridge);
1352
1353 if (pci_is_enabled(dev)) {
1354 if (!dev->is_busmaster)
1355 pci_set_master(dev);
1356 return;
1357 }
1358
1359 retval = pci_enable_device(dev);
1360 if (retval)
1361 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1362 retval);
1363 pci_set_master(dev);
1364}
1365
1366static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1367{
1368 struct pci_dev *bridge;
1369 int err;
1370 int i, bars = 0;
1371
1372 /*
1373 * Power state could be unknown at this point, either due to a fresh
1374 * boot or a device removal call. So get the current power state
1375 * so that things like MSI message writing will behave as expected
1376 * (e.g. if the device really is in D0 at enable time).
1377 */
1378 if (dev->pm_cap) {
1379 u16 pmcsr;
1380 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1381 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1382 }
1383
1384 if (atomic_inc_return(&dev->enable_cnt) > 1)
1385 return 0; /* already enabled */
1386
1387 bridge = pci_upstream_bridge(dev);
1388 if (bridge)
1389 pci_enable_bridge(bridge);
1390
1391 /* only skip sriov related */
1392 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1393 if (dev->resource[i].flags & flags)
1394 bars |= (1 << i);
1395 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1396 if (dev->resource[i].flags & flags)
1397 bars |= (1 << i);
1398
1399 err = do_pci_enable_device(dev, bars);
1400 if (err < 0)
1401 atomic_dec(&dev->enable_cnt);
1402 return err;
1403}
1404
1405/**
1406 * pci_enable_device_io - Initialize a device for use with IO space
1407 * @dev: PCI device to be initialized
1408 *
1409 * Initialize device before it's used by a driver. Ask low-level code
1410 * to enable I/O resources. Wake up the device if it was suspended.
1411 * Beware, this function can fail.
1412 */
1413int pci_enable_device_io(struct pci_dev *dev)
1414{
1415 return pci_enable_device_flags(dev, IORESOURCE_IO);
1416}
1417EXPORT_SYMBOL(pci_enable_device_io);
1418
1419/**
1420 * pci_enable_device_mem - Initialize a device for use with Memory space
1421 * @dev: PCI device to be initialized
1422 *
1423 * Initialize device before it's used by a driver. Ask low-level code
1424 * to enable Memory resources. Wake up the device if it was suspended.
1425 * Beware, this function can fail.
1426 */
1427int pci_enable_device_mem(struct pci_dev *dev)
1428{
1429 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1430}
1431EXPORT_SYMBOL(pci_enable_device_mem);
1432
1433/**
1434 * pci_enable_device - Initialize device before it's used by a driver.
1435 * @dev: PCI device to be initialized
1436 *
1437 * Initialize device before it's used by a driver. Ask low-level code
1438 * to enable I/O and memory. Wake up the device if it was suspended.
1439 * Beware, this function can fail.
1440 *
1441 * Note we don't actually enable the device many times if we call
1442 * this function repeatedly (we just increment the count).
1443 */
1444int pci_enable_device(struct pci_dev *dev)
1445{
1446 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1447}
1448EXPORT_SYMBOL(pci_enable_device);
1449
1450/*
1451 * Managed PCI resources. This manages device on/off, intx/msi/msix
1452 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1453 * there's no need to track it separately. pci_devres is initialized
1454 * when a device is enabled using managed PCI device enable interface.
1455 */
1456struct pci_devres {
1457 unsigned int enabled:1;
1458 unsigned int pinned:1;
1459 unsigned int orig_intx:1;
1460 unsigned int restore_intx:1;
1461 u32 region_mask;
1462};
1463
1464static void pcim_release(struct device *gendev, void *res)
1465{
1466 struct pci_dev *dev = to_pci_dev(gendev);
1467 struct pci_devres *this = res;
1468 int i;
1469
1470 if (dev->msi_enabled)
1471 pci_disable_msi(dev);
1472 if (dev->msix_enabled)
1473 pci_disable_msix(dev);
1474
1475 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1476 if (this->region_mask & (1 << i))
1477 pci_release_region(dev, i);
1478
1479 if (this->restore_intx)
1480 pci_intx(dev, this->orig_intx);
1481
1482 if (this->enabled && !this->pinned)
1483 pci_disable_device(dev);
1484}
1485
1486static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1487{
1488 struct pci_devres *dr, *new_dr;
1489
1490 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1491 if (dr)
1492 return dr;
1493
1494 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1495 if (!new_dr)
1496 return NULL;
1497 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1498}
1499
1500static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1501{
1502 if (pci_is_managed(pdev))
1503 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1504 return NULL;
1505}
1506
1507/**
1508 * pcim_enable_device - Managed pci_enable_device()
1509 * @pdev: PCI device to be initialized
1510 *
1511 * Managed pci_enable_device().
1512 */
1513int pcim_enable_device(struct pci_dev *pdev)
1514{
1515 struct pci_devres *dr;
1516 int rc;
1517
1518 dr = get_pci_dr(pdev);
1519 if (unlikely(!dr))
1520 return -ENOMEM;
1521 if (dr->enabled)
1522 return 0;
1523
1524 rc = pci_enable_device(pdev);
1525 if (!rc) {
1526 pdev->is_managed = 1;
1527 dr->enabled = 1;
1528 }
1529 return rc;
1530}
1531EXPORT_SYMBOL(pcim_enable_device);
1532
1533/**
1534 * pcim_pin_device - Pin managed PCI device
1535 * @pdev: PCI device to pin
1536 *
1537 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1538 * driver detach. @pdev must have been enabled with
1539 * pcim_enable_device().
1540 */
1541void pcim_pin_device(struct pci_dev *pdev)
1542{
1543 struct pci_devres *dr;
1544
1545 dr = find_pci_dr(pdev);
1546 WARN_ON(!dr || !dr->enabled);
1547 if (dr)
1548 dr->pinned = 1;
1549}
1550EXPORT_SYMBOL(pcim_pin_device);
1551
1552/*
1553 * pcibios_add_device - provide arch specific hooks when adding device dev
1554 * @dev: the PCI device being added
1555 *
1556 * Permits the platform to provide architecture specific functionality when
1557 * devices are added. This is the default implementation. Architecture
1558 * implementations can override this.
1559 */
1560int __weak pcibios_add_device(struct pci_dev *dev)
1561{
1562 return 0;
1563}
1564
1565/**
1566 * pcibios_release_device - provide arch specific hooks when releasing device dev
1567 * @dev: the PCI device being released
1568 *
1569 * Permits the platform to provide architecture specific functionality when
1570 * devices are released. This is the default implementation. Architecture
1571 * implementations can override this.
1572 */
1573void __weak pcibios_release_device(struct pci_dev *dev) {}
1574
1575/**
1576 * pcibios_disable_device - disable arch specific PCI resources for device dev
1577 * @dev: the PCI device to disable
1578 *
1579 * Disables architecture specific PCI resources for the device. This
1580 * is the default implementation. Architecture implementations can
1581 * override this.
1582 */
1583void __weak pcibios_disable_device(struct pci_dev *dev) {}
1584
1585/**
1586 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1587 * @irq: ISA IRQ to penalize
1588 * @active: IRQ active or not
1589 *
1590 * Permits the platform to provide architecture-specific functionality when
1591 * penalizing ISA IRQs. This is the default implementation. Architecture
1592 * implementations can override this.
1593 */
1594void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1595
1596static void do_pci_disable_device(struct pci_dev *dev)
1597{
1598 u16 pci_command;
1599
1600 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1601 if (pci_command & PCI_COMMAND_MASTER) {
1602 pci_command &= ~PCI_COMMAND_MASTER;
1603 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1604 }
1605
1606 pcibios_disable_device(dev);
1607}
1608
1609/**
1610 * pci_disable_enabled_device - Disable device without updating enable_cnt
1611 * @dev: PCI device to disable
1612 *
1613 * NOTE: This function is a backend of PCI power management routines and is
1614 * not supposed to be called drivers.
1615 */
1616void pci_disable_enabled_device(struct pci_dev *dev)
1617{
1618 if (pci_is_enabled(dev))
1619 do_pci_disable_device(dev);
1620}
1621
1622/**
1623 * pci_disable_device - Disable PCI device after use
1624 * @dev: PCI device to be disabled
1625 *
1626 * Signal to the system that the PCI device is not in use by the system
1627 * anymore. This only involves disabling PCI bus-mastering, if active.
1628 *
1629 * Note we don't actually disable the device until all callers of
1630 * pci_enable_device() have called pci_disable_device().
1631 */
1632void pci_disable_device(struct pci_dev *dev)
1633{
1634 struct pci_devres *dr;
1635
1636 dr = find_pci_dr(dev);
1637 if (dr)
1638 dr->enabled = 0;
1639
1640 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1641 "disabling already-disabled device");
1642
1643 if (atomic_dec_return(&dev->enable_cnt) != 0)
1644 return;
1645
1646 do_pci_disable_device(dev);
1647
1648 dev->is_busmaster = 0;
1649}
1650EXPORT_SYMBOL(pci_disable_device);
1651
1652/**
1653 * pcibios_set_pcie_reset_state - set reset state for device dev
1654 * @dev: the PCIe device reset
1655 * @state: Reset state to enter into
1656 *
1657 *
1658 * Sets the PCIe reset state for the device. This is the default
1659 * implementation. Architecture implementations can override this.
1660 */
1661int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1662 enum pcie_reset_state state)
1663{
1664 return -EINVAL;
1665}
1666
1667/**
1668 * pci_set_pcie_reset_state - set reset state for device dev
1669 * @dev: the PCIe device reset
1670 * @state: Reset state to enter into
1671 *
1672 *
1673 * Sets the PCI reset state for the device.
1674 */
1675int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1676{
1677 return pcibios_set_pcie_reset_state(dev, state);
1678}
1679EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1680
1681/**
1682 * pci_check_pme_status - Check if given device has generated PME.
1683 * @dev: Device to check.
1684 *
1685 * Check the PME status of the device and if set, clear it and clear PME enable
1686 * (if set). Return 'true' if PME status and PME enable were both set or
1687 * 'false' otherwise.
1688 */
1689bool pci_check_pme_status(struct pci_dev *dev)
1690{
1691 int pmcsr_pos;
1692 u16 pmcsr;
1693 bool ret = false;
1694
1695 if (!dev->pm_cap)
1696 return false;
1697
1698 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1699 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1700 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1701 return false;
1702
1703 /* Clear PME status. */
1704 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1705 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1706 /* Disable PME to avoid interrupt flood. */
1707 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1708 ret = true;
1709 }
1710
1711 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1712
1713 return ret;
1714}
1715
1716/**
1717 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1718 * @dev: Device to handle.
1719 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1720 *
1721 * Check if @dev has generated PME and queue a resume request for it in that
1722 * case.
1723 */
1724static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1725{
1726 if (pme_poll_reset && dev->pme_poll)
1727 dev->pme_poll = false;
1728
1729 if (pci_check_pme_status(dev)) {
1730 pci_wakeup_event(dev);
1731 pm_request_resume(&dev->dev);
1732 }
1733 return 0;
1734}
1735
1736/**
1737 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1738 * @bus: Top bus of the subtree to walk.
1739 */
1740void pci_pme_wakeup_bus(struct pci_bus *bus)
1741{
1742 if (bus)
1743 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1744}
1745
1746
1747/**
1748 * pci_pme_capable - check the capability of PCI device to generate PME#
1749 * @dev: PCI device to handle.
1750 * @state: PCI state from which device will issue PME#.
1751 */
1752bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1753{
1754 if (!dev->pm_cap)
1755 return false;
1756
1757 return !!(dev->pme_support & (1 << state));
1758}
1759EXPORT_SYMBOL(pci_pme_capable);
1760
1761static void pci_pme_list_scan(struct work_struct *work)
1762{
1763 struct pci_pme_device *pme_dev, *n;
1764
1765 mutex_lock(&pci_pme_list_mutex);
1766 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1767 if (pme_dev->dev->pme_poll) {
1768 struct pci_dev *bridge;
1769
1770 bridge = pme_dev->dev->bus->self;
1771 /*
1772 * If bridge is in low power state, the
1773 * configuration space of subordinate devices
1774 * may be not accessible
1775 */
1776 if (bridge && bridge->current_state != PCI_D0)
1777 continue;
1778 pci_pme_wakeup(pme_dev->dev, NULL);
1779 } else {
1780 list_del(&pme_dev->list);
1781 kfree(pme_dev);
1782 }
1783 }
1784 if (!list_empty(&pci_pme_list))
1785 schedule_delayed_work(&pci_pme_work,
1786 msecs_to_jiffies(PME_TIMEOUT));
1787 mutex_unlock(&pci_pme_list_mutex);
1788}
1789
1790static void __pci_pme_active(struct pci_dev *dev, bool enable)
1791{
1792 u16 pmcsr;
1793
1794 if (!dev->pme_support)
1795 return;
1796
1797 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1798 /* Clear PME_Status by writing 1 to it and enable PME# */
1799 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1800 if (!enable)
1801 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1802
1803 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1804}
1805
1806/**
1807 * pci_pme_active - enable or disable PCI device's PME# function
1808 * @dev: PCI device to handle.
1809 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1810 *
1811 * The caller must verify that the device is capable of generating PME# before
1812 * calling this function with @enable equal to 'true'.
1813 */
1814void pci_pme_active(struct pci_dev *dev, bool enable)
1815{
1816 __pci_pme_active(dev, enable);
1817
1818 /*
1819 * PCI (as opposed to PCIe) PME requires that the device have
1820 * its PME# line hooked up correctly. Not all hardware vendors
1821 * do this, so the PME never gets delivered and the device
1822 * remains asleep. The easiest way around this is to
1823 * periodically walk the list of suspended devices and check
1824 * whether any have their PME flag set. The assumption is that
1825 * we'll wake up often enough anyway that this won't be a huge
1826 * hit, and the power savings from the devices will still be a
1827 * win.
1828 *
1829 * Although PCIe uses in-band PME message instead of PME# line
1830 * to report PME, PME does not work for some PCIe devices in
1831 * reality. For example, there are devices that set their PME
1832 * status bits, but don't really bother to send a PME message;
1833 * there are PCI Express Root Ports that don't bother to
1834 * trigger interrupts when they receive PME messages from the
1835 * devices below. So PME poll is used for PCIe devices too.
1836 */
1837
1838 if (dev->pme_poll) {
1839 struct pci_pme_device *pme_dev;
1840 if (enable) {
1841 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1842 GFP_KERNEL);
1843 if (!pme_dev) {
1844 dev_warn(&dev->dev, "can't enable PME#\n");
1845 return;
1846 }
1847 pme_dev->dev = dev;
1848 mutex_lock(&pci_pme_list_mutex);
1849 list_add(&pme_dev->list, &pci_pme_list);
1850 if (list_is_singular(&pci_pme_list))
1851 schedule_delayed_work(&pci_pme_work,
1852 msecs_to_jiffies(PME_TIMEOUT));
1853 mutex_unlock(&pci_pme_list_mutex);
1854 } else {
1855 mutex_lock(&pci_pme_list_mutex);
1856 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1857 if (pme_dev->dev == dev) {
1858 list_del(&pme_dev->list);
1859 kfree(pme_dev);
1860 break;
1861 }
1862 }
1863 mutex_unlock(&pci_pme_list_mutex);
1864 }
1865 }
1866
1867 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1868}
1869EXPORT_SYMBOL(pci_pme_active);
1870
1871/**
1872 * __pci_enable_wake - enable PCI device as wakeup event source
1873 * @dev: PCI device affected
1874 * @state: PCI state from which device will issue wakeup events
1875 * @runtime: True if the events are to be generated at run time
1876 * @enable: True to enable event generation; false to disable
1877 *
1878 * This enables the device as a wakeup event source, or disables it.
1879 * When such events involves platform-specific hooks, those hooks are
1880 * called automatically by this routine.
1881 *
1882 * Devices with legacy power management (no standard PCI PM capabilities)
1883 * always require such platform hooks.
1884 *
1885 * RETURN VALUE:
1886 * 0 is returned on success
1887 * -EINVAL is returned if device is not supposed to wake up the system
1888 * Error code depending on the platform is returned if both the platform and
1889 * the native mechanism fail to enable the generation of wake-up events
1890 */
1891int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1892 bool runtime, bool enable)
1893{
1894 int ret = 0;
1895
1896 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1897 return -EINVAL;
1898
1899 /* Don't do the same thing twice in a row for one device. */
1900 if (!!enable == !!dev->wakeup_prepared)
1901 return 0;
1902
1903 /*
1904 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1905 * Anderson we should be doing PME# wake enable followed by ACPI wake
1906 * enable. To disable wake-up we call the platform first, for symmetry.
1907 */
1908
1909 if (enable) {
1910 int error;
1911
1912 if (pci_pme_capable(dev, state))
1913 pci_pme_active(dev, true);
1914 else
1915 ret = 1;
1916 error = runtime ? platform_pci_run_wake(dev, true) :
1917 platform_pci_sleep_wake(dev, true);
1918 if (ret)
1919 ret = error;
1920 if (!ret)
1921 dev->wakeup_prepared = true;
1922 } else {
1923 if (runtime)
1924 platform_pci_run_wake(dev, false);
1925 else
1926 platform_pci_sleep_wake(dev, false);
1927 pci_pme_active(dev, false);
1928 dev->wakeup_prepared = false;
1929 }
1930
1931 return ret;
1932}
1933EXPORT_SYMBOL(__pci_enable_wake);
1934
1935/**
1936 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1937 * @dev: PCI device to prepare
1938 * @enable: True to enable wake-up event generation; false to disable
1939 *
1940 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1941 * and this function allows them to set that up cleanly - pci_enable_wake()
1942 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1943 * ordering constraints.
1944 *
1945 * This function only returns error code if the device is not capable of
1946 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1947 * enable wake-up power for it.
1948 */
1949int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1950{
1951 return pci_pme_capable(dev, PCI_D3cold) ?
1952 pci_enable_wake(dev, PCI_D3cold, enable) :
1953 pci_enable_wake(dev, PCI_D3hot, enable);
1954}
1955EXPORT_SYMBOL(pci_wake_from_d3);
1956
1957/**
1958 * pci_target_state - find an appropriate low power state for a given PCI dev
1959 * @dev: PCI device
1960 *
1961 * Use underlying platform code to find a supported low power state for @dev.
1962 * If the platform can't manage @dev, return the deepest state from which it
1963 * can generate wake events, based on any available PME info.
1964 */
1965static pci_power_t pci_target_state(struct pci_dev *dev)
1966{
1967 pci_power_t target_state = PCI_D3hot;
1968
1969 if (platform_pci_power_manageable(dev)) {
1970 /*
1971 * Call the platform to choose the target state of the device
1972 * and enable wake-up from this state if supported.
1973 */
1974 pci_power_t state = platform_pci_choose_state(dev);
1975
1976 switch (state) {
1977 case PCI_POWER_ERROR:
1978 case PCI_UNKNOWN:
1979 break;
1980 case PCI_D1:
1981 case PCI_D2:
1982 if (pci_no_d1d2(dev))
1983 break;
1984 default:
1985 target_state = state;
1986 }
1987
1988 return target_state;
1989 }
1990
1991 if (!dev->pm_cap)
1992 target_state = PCI_D0;
1993
1994 /*
1995 * If the device is in D3cold even though it's not power-manageable by
1996 * the platform, it may have been powered down by non-standard means.
1997 * Best to let it slumber.
1998 */
1999 if (dev->current_state == PCI_D3cold)
2000 target_state = PCI_D3cold;
2001
2002 if (device_may_wakeup(&dev->dev)) {
2003 /*
2004 * Find the deepest state from which the device can generate
2005 * wake-up events, make it the target state and enable device
2006 * to generate PME#.
2007 */
2008 if (dev->pme_support) {
2009 while (target_state
2010 && !(dev->pme_support & (1 << target_state)))
2011 target_state--;
2012 }
2013 }
2014
2015 return target_state;
2016}
2017
2018/**
2019 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2020 * @dev: Device to handle.
2021 *
2022 * Choose the power state appropriate for the device depending on whether
2023 * it can wake up the system and/or is power manageable by the platform
2024 * (PCI_D3hot is the default) and put the device into that state.
2025 */
2026int pci_prepare_to_sleep(struct pci_dev *dev)
2027{
2028 pci_power_t target_state = pci_target_state(dev);
2029 int error;
2030
2031 if (target_state == PCI_POWER_ERROR)
2032 return -EIO;
2033
2034 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
2035
2036 error = pci_set_power_state(dev, target_state);
2037
2038 if (error)
2039 pci_enable_wake(dev, target_state, false);
2040
2041 return error;
2042}
2043EXPORT_SYMBOL(pci_prepare_to_sleep);
2044
2045/**
2046 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2047 * @dev: Device to handle.
2048 *
2049 * Disable device's system wake-up capability and put it into D0.
2050 */
2051int pci_back_from_sleep(struct pci_dev *dev)
2052{
2053 pci_enable_wake(dev, PCI_D0, false);
2054 return pci_set_power_state(dev, PCI_D0);
2055}
2056EXPORT_SYMBOL(pci_back_from_sleep);
2057
2058/**
2059 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2060 * @dev: PCI device being suspended.
2061 *
2062 * Prepare @dev to generate wake-up events at run time and put it into a low
2063 * power state.
2064 */
2065int pci_finish_runtime_suspend(struct pci_dev *dev)
2066{
2067 pci_power_t target_state = pci_target_state(dev);
2068 int error;
2069
2070 if (target_state == PCI_POWER_ERROR)
2071 return -EIO;
2072
2073 dev->runtime_d3cold = target_state == PCI_D3cold;
2074
2075 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2076
2077 error = pci_set_power_state(dev, target_state);
2078
2079 if (error) {
2080 __pci_enable_wake(dev, target_state, true, false);
2081 dev->runtime_d3cold = false;
2082 }
2083
2084 return error;
2085}
2086
2087/**
2088 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2089 * @dev: Device to check.
2090 *
2091 * Return true if the device itself is capable of generating wake-up events
2092 * (through the platform or using the native PCIe PME) or if the device supports
2093 * PME and one of its upstream bridges can generate wake-up events.
2094 */
2095bool pci_dev_run_wake(struct pci_dev *dev)
2096{
2097 struct pci_bus *bus = dev->bus;
2098
2099 if (device_run_wake(&dev->dev))
2100 return true;
2101
2102 if (!dev->pme_support)
2103 return false;
2104
2105 /* PME-capable in principle, but not from the intended sleep state */
2106 if (!pci_pme_capable(dev, pci_target_state(dev)))
2107 return false;
2108
2109 while (bus->parent) {
2110 struct pci_dev *bridge = bus->self;
2111
2112 if (device_run_wake(&bridge->dev))
2113 return true;
2114
2115 bus = bus->parent;
2116 }
2117
2118 /* We have reached the root bus. */
2119 if (bus->bridge)
2120 return device_run_wake(bus->bridge);
2121
2122 return false;
2123}
2124EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2125
2126/**
2127 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2128 * @pci_dev: Device to check.
2129 *
2130 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2131 * reconfigured due to wakeup settings difference between system and runtime
2132 * suspend and the current power state of it is suitable for the upcoming
2133 * (system) transition.
2134 *
2135 * If the device is not configured for system wakeup, disable PME for it before
2136 * returning 'true' to prevent it from waking up the system unnecessarily.
2137 */
2138bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2139{
2140 struct device *dev = &pci_dev->dev;
2141
2142 if (!pm_runtime_suspended(dev)
2143 || pci_target_state(pci_dev) != pci_dev->current_state
2144 || platform_pci_need_resume(pci_dev))
2145 return false;
2146
2147 /*
2148 * At this point the device is good to go unless it's been configured
2149 * to generate PME at the runtime suspend time, but it is not supposed
2150 * to wake up the system. In that case, simply disable PME for it
2151 * (it will have to be re-enabled on exit from system resume).
2152 *
2153 * If the device's power state is D3cold and the platform check above
2154 * hasn't triggered, the device's configuration is suitable and we don't
2155 * need to manipulate it at all.
2156 */
2157 spin_lock_irq(&dev->power.lock);
2158
2159 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2160 !device_may_wakeup(dev))
2161 __pci_pme_active(pci_dev, false);
2162
2163 spin_unlock_irq(&dev->power.lock);
2164 return true;
2165}
2166
2167/**
2168 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2169 * @pci_dev: Device to handle.
2170 *
2171 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2172 * it might have been disabled during the prepare phase of system suspend if
2173 * the device was not configured for system wakeup.
2174 */
2175void pci_dev_complete_resume(struct pci_dev *pci_dev)
2176{
2177 struct device *dev = &pci_dev->dev;
2178
2179 if (!pci_dev_run_wake(pci_dev))
2180 return;
2181
2182 spin_lock_irq(&dev->power.lock);
2183
2184 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2185 __pci_pme_active(pci_dev, true);
2186
2187 spin_unlock_irq(&dev->power.lock);
2188}
2189
2190void pci_config_pm_runtime_get(struct pci_dev *pdev)
2191{
2192 struct device *dev = &pdev->dev;
2193 struct device *parent = dev->parent;
2194
2195 if (parent)
2196 pm_runtime_get_sync(parent);
2197 pm_runtime_get_noresume(dev);
2198 /*
2199 * pdev->current_state is set to PCI_D3cold during suspending,
2200 * so wait until suspending completes
2201 */
2202 pm_runtime_barrier(dev);
2203 /*
2204 * Only need to resume devices in D3cold, because config
2205 * registers are still accessible for devices suspended but
2206 * not in D3cold.
2207 */
2208 if (pdev->current_state == PCI_D3cold)
2209 pm_runtime_resume(dev);
2210}
2211
2212void pci_config_pm_runtime_put(struct pci_dev *pdev)
2213{
2214 struct device *dev = &pdev->dev;
2215 struct device *parent = dev->parent;
2216
2217 pm_runtime_put(dev);
2218 if (parent)
2219 pm_runtime_put_sync(parent);
2220}
2221
2222/**
2223 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2224 * @bridge: Bridge to check
2225 *
2226 * This function checks if it is possible to move the bridge to D3.
2227 * Currently we only allow D3 for recent enough PCIe ports.
2228 */
2229bool pci_bridge_d3_possible(struct pci_dev *bridge)
2230{
2231 unsigned int year;
2232
2233 if (!pci_is_pcie(bridge))
2234 return false;
2235
2236 switch (pci_pcie_type(bridge)) {
2237 case PCI_EXP_TYPE_ROOT_PORT:
2238 case PCI_EXP_TYPE_UPSTREAM:
2239 case PCI_EXP_TYPE_DOWNSTREAM:
2240 if (pci_bridge_d3_disable)
2241 return false;
2242
2243 /*
2244 * Hotplug interrupts cannot be delivered if the link is down,
2245 * so parents of a hotplug port must stay awake. In addition,
2246 * hotplug ports handled by firmware in System Management Mode
2247 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2248 * For simplicity, disallow in general for now.
2249 */
2250 if (bridge->is_hotplug_bridge)
2251 return false;
2252
2253 if (pci_bridge_d3_force)
2254 return true;
2255
2256 /*
2257 * It should be safe to put PCIe ports from 2015 or newer
2258 * to D3.
2259 */
2260 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2261 year >= 2015) {
2262 return true;
2263 }
2264 break;
2265 }
2266
2267 return false;
2268}
2269
2270static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2271{
2272 bool *d3cold_ok = data;
2273
2274 if (/* The device needs to be allowed to go D3cold ... */
2275 dev->no_d3cold || !dev->d3cold_allowed ||
2276
2277 /* ... and if it is wakeup capable to do so from D3cold. */
2278 (device_may_wakeup(&dev->dev) &&
2279 !pci_pme_capable(dev, PCI_D3cold)) ||
2280
2281 /* If it is a bridge it must be allowed to go to D3. */
2282 !pci_power_manageable(dev))
2283
2284 *d3cold_ok = false;
2285
2286 return !*d3cold_ok;
2287}
2288
2289/*
2290 * pci_bridge_d3_update - Update bridge D3 capabilities
2291 * @dev: PCI device which is changed
2292 *
2293 * Update upstream bridge PM capabilities accordingly depending on if the
2294 * device PM configuration was changed or the device is being removed. The
2295 * change is also propagated upstream.
2296 */
2297void pci_bridge_d3_update(struct pci_dev *dev)
2298{
2299 bool remove = !device_is_registered(&dev->dev);
2300 struct pci_dev *bridge;
2301 bool d3cold_ok = true;
2302
2303 bridge = pci_upstream_bridge(dev);
2304 if (!bridge || !pci_bridge_d3_possible(bridge))
2305 return;
2306
2307 /*
2308 * If D3 is currently allowed for the bridge, removing one of its
2309 * children won't change that.
2310 */
2311 if (remove && bridge->bridge_d3)
2312 return;
2313
2314 /*
2315 * If D3 is currently allowed for the bridge and a child is added or
2316 * changed, disallowance of D3 can only be caused by that child, so
2317 * we only need to check that single device, not any of its siblings.
2318 *
2319 * If D3 is currently not allowed for the bridge, checking the device
2320 * first may allow us to skip checking its siblings.
2321 */
2322 if (!remove)
2323 pci_dev_check_d3cold(dev, &d3cold_ok);
2324
2325 /*
2326 * If D3 is currently not allowed for the bridge, this may be caused
2327 * either by the device being changed/removed or any of its siblings,
2328 * so we need to go through all children to find out if one of them
2329 * continues to block D3.
2330 */
2331 if (d3cold_ok && !bridge->bridge_d3)
2332 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2333 &d3cold_ok);
2334
2335 if (bridge->bridge_d3 != d3cold_ok) {
2336 bridge->bridge_d3 = d3cold_ok;
2337 /* Propagate change to upstream bridges */
2338 pci_bridge_d3_update(bridge);
2339 }
2340}
2341
2342/**
2343 * pci_d3cold_enable - Enable D3cold for device
2344 * @dev: PCI device to handle
2345 *
2346 * This function can be used in drivers to enable D3cold from the device
2347 * they handle. It also updates upstream PCI bridge PM capabilities
2348 * accordingly.
2349 */
2350void pci_d3cold_enable(struct pci_dev *dev)
2351{
2352 if (dev->no_d3cold) {
2353 dev->no_d3cold = false;
2354 pci_bridge_d3_update(dev);
2355 }
2356}
2357EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2358
2359/**
2360 * pci_d3cold_disable - Disable D3cold for device
2361 * @dev: PCI device to handle
2362 *
2363 * This function can be used in drivers to disable D3cold from the device
2364 * they handle. It also updates upstream PCI bridge PM capabilities
2365 * accordingly.
2366 */
2367void pci_d3cold_disable(struct pci_dev *dev)
2368{
2369 if (!dev->no_d3cold) {
2370 dev->no_d3cold = true;
2371 pci_bridge_d3_update(dev);
2372 }
2373}
2374EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2375
2376/**
2377 * pci_pm_init - Initialize PM functions of given PCI device
2378 * @dev: PCI device to handle.
2379 */
2380void pci_pm_init(struct pci_dev *dev)
2381{
2382 int pm;
2383 u16 pmc;
2384
2385 pm_runtime_forbid(&dev->dev);
2386 pm_runtime_set_active(&dev->dev);
2387 pm_runtime_enable(&dev->dev);
2388 device_enable_async_suspend(&dev->dev);
2389 dev->wakeup_prepared = false;
2390
2391 dev->pm_cap = 0;
2392 dev->pme_support = 0;
2393
2394 /* find PCI PM capability in list */
2395 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2396 if (!pm)
2397 return;
2398 /* Check device's ability to generate PME# */
2399 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2400
2401 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2402 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2403 pmc & PCI_PM_CAP_VER_MASK);
2404 return;
2405 }
2406
2407 dev->pm_cap = pm;
2408 dev->d3_delay = PCI_PM_D3_WAIT;
2409 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2410 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2411 dev->d3cold_allowed = true;
2412
2413 dev->d1_support = false;
2414 dev->d2_support = false;
2415 if (!pci_no_d1d2(dev)) {
2416 if (pmc & PCI_PM_CAP_D1)
2417 dev->d1_support = true;
2418 if (pmc & PCI_PM_CAP_D2)
2419 dev->d2_support = true;
2420
2421 if (dev->d1_support || dev->d2_support)
2422 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2423 dev->d1_support ? " D1" : "",
2424 dev->d2_support ? " D2" : "");
2425 }
2426
2427 pmc &= PCI_PM_CAP_PME_MASK;
2428 if (pmc) {
2429 dev_printk(KERN_DEBUG, &dev->dev,
2430 "PME# supported from%s%s%s%s%s\n",
2431 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2432 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2433 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2434 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2435 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2436 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2437 dev->pme_poll = true;
2438 /*
2439 * Make device's PM flags reflect the wake-up capability, but
2440 * let the user space enable it to wake up the system as needed.
2441 */
2442 device_set_wakeup_capable(&dev->dev, true);
2443 /* Disable the PME# generation functionality */
2444 pci_pme_active(dev, false);
2445 }
2446}
2447
2448static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2449{
2450 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2451
2452 switch (prop) {
2453 case PCI_EA_P_MEM:
2454 case PCI_EA_P_VF_MEM:
2455 flags |= IORESOURCE_MEM;
2456 break;
2457 case PCI_EA_P_MEM_PREFETCH:
2458 case PCI_EA_P_VF_MEM_PREFETCH:
2459 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2460 break;
2461 case PCI_EA_P_IO:
2462 flags |= IORESOURCE_IO;
2463 break;
2464 default:
2465 return 0;
2466 }
2467
2468 return flags;
2469}
2470
2471static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2472 u8 prop)
2473{
2474 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2475 return &dev->resource[bei];
2476#ifdef CONFIG_PCI_IOV
2477 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2478 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2479 return &dev->resource[PCI_IOV_RESOURCES +
2480 bei - PCI_EA_BEI_VF_BAR0];
2481#endif
2482 else if (bei == PCI_EA_BEI_ROM)
2483 return &dev->resource[PCI_ROM_RESOURCE];
2484 else
2485 return NULL;
2486}
2487
2488/* Read an Enhanced Allocation (EA) entry */
2489static int pci_ea_read(struct pci_dev *dev, int offset)
2490{
2491 struct resource *res;
2492 int ent_size, ent_offset = offset;
2493 resource_size_t start, end;
2494 unsigned long flags;
2495 u32 dw0, bei, base, max_offset;
2496 u8 prop;
2497 bool support_64 = (sizeof(resource_size_t) >= 8);
2498
2499 pci_read_config_dword(dev, ent_offset, &dw0);
2500 ent_offset += 4;
2501
2502 /* Entry size field indicates DWORDs after 1st */
2503 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2504
2505 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2506 goto out;
2507
2508 bei = (dw0 & PCI_EA_BEI) >> 4;
2509 prop = (dw0 & PCI_EA_PP) >> 8;
2510
2511 /*
2512 * If the Property is in the reserved range, try the Secondary
2513 * Property instead.
2514 */
2515 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2516 prop = (dw0 & PCI_EA_SP) >> 16;
2517 if (prop > PCI_EA_P_BRIDGE_IO)
2518 goto out;
2519
2520 res = pci_ea_get_resource(dev, bei, prop);
2521 if (!res) {
2522 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2523 goto out;
2524 }
2525
2526 flags = pci_ea_flags(dev, prop);
2527 if (!flags) {
2528 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2529 goto out;
2530 }
2531
2532 /* Read Base */
2533 pci_read_config_dword(dev, ent_offset, &base);
2534 start = (base & PCI_EA_FIELD_MASK);
2535 ent_offset += 4;
2536
2537 /* Read MaxOffset */
2538 pci_read_config_dword(dev, ent_offset, &max_offset);
2539 ent_offset += 4;
2540
2541 /* Read Base MSBs (if 64-bit entry) */
2542 if (base & PCI_EA_IS_64) {
2543 u32 base_upper;
2544
2545 pci_read_config_dword(dev, ent_offset, &base_upper);
2546 ent_offset += 4;
2547
2548 flags |= IORESOURCE_MEM_64;
2549
2550 /* entry starts above 32-bit boundary, can't use */
2551 if (!support_64 && base_upper)
2552 goto out;
2553
2554 if (support_64)
2555 start |= ((u64)base_upper << 32);
2556 }
2557
2558 end = start + (max_offset | 0x03);
2559
2560 /* Read MaxOffset MSBs (if 64-bit entry) */
2561 if (max_offset & PCI_EA_IS_64) {
2562 u32 max_offset_upper;
2563
2564 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2565 ent_offset += 4;
2566
2567 flags |= IORESOURCE_MEM_64;
2568
2569 /* entry too big, can't use */
2570 if (!support_64 && max_offset_upper)
2571 goto out;
2572
2573 if (support_64)
2574 end += ((u64)max_offset_upper << 32);
2575 }
2576
2577 if (end < start) {
2578 dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2579 goto out;
2580 }
2581
2582 if (ent_size != ent_offset - offset) {
2583 dev_err(&dev->dev,
2584 "EA Entry Size (%d) does not match length read (%d)\n",
2585 ent_size, ent_offset - offset);
2586 goto out;
2587 }
2588
2589 res->name = pci_name(dev);
2590 res->start = start;
2591 res->end = end;
2592 res->flags = flags;
2593
2594 if (bei <= PCI_EA_BEI_BAR5)
2595 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2596 bei, res, prop);
2597 else if (bei == PCI_EA_BEI_ROM)
2598 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2599 res, prop);
2600 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2601 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2602 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2603 else
2604 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2605 bei, res, prop);
2606
2607out:
2608 return offset + ent_size;
2609}
2610
2611/* Enhanced Allocation Initialization */
2612void pci_ea_init(struct pci_dev *dev)
2613{
2614 int ea;
2615 u8 num_ent;
2616 int offset;
2617 int i;
2618
2619 /* find PCI EA capability in list */
2620 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2621 if (!ea)
2622 return;
2623
2624 /* determine the number of entries */
2625 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2626 &num_ent);
2627 num_ent &= PCI_EA_NUM_ENT_MASK;
2628
2629 offset = ea + PCI_EA_FIRST_ENT;
2630
2631 /* Skip DWORD 2 for type 1 functions */
2632 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2633 offset += 4;
2634
2635 /* parse each EA entry */
2636 for (i = 0; i < num_ent; ++i)
2637 offset = pci_ea_read(dev, offset);
2638}
2639
2640static void pci_add_saved_cap(struct pci_dev *pci_dev,
2641 struct pci_cap_saved_state *new_cap)
2642{
2643 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2644}
2645
2646/**
2647 * _pci_add_cap_save_buffer - allocate buffer for saving given
2648 * capability registers
2649 * @dev: the PCI device
2650 * @cap: the capability to allocate the buffer for
2651 * @extended: Standard or Extended capability ID
2652 * @size: requested size of the buffer
2653 */
2654static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2655 bool extended, unsigned int size)
2656{
2657 int pos;
2658 struct pci_cap_saved_state *save_state;
2659
2660 if (extended)
2661 pos = pci_find_ext_capability(dev, cap);
2662 else
2663 pos = pci_find_capability(dev, cap);
2664
2665 if (!pos)
2666 return 0;
2667
2668 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2669 if (!save_state)
2670 return -ENOMEM;
2671
2672 save_state->cap.cap_nr = cap;
2673 save_state->cap.cap_extended = extended;
2674 save_state->cap.size = size;
2675 pci_add_saved_cap(dev, save_state);
2676
2677 return 0;
2678}
2679
2680int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2681{
2682 return _pci_add_cap_save_buffer(dev, cap, false, size);
2683}
2684
2685int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2686{
2687 return _pci_add_cap_save_buffer(dev, cap, true, size);
2688}
2689
2690/**
2691 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2692 * @dev: the PCI device
2693 */
2694void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2695{
2696 int error;
2697
2698 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2699 PCI_EXP_SAVE_REGS * sizeof(u16));
2700 if (error)
2701 dev_err(&dev->dev,
2702 "unable to preallocate PCI Express save buffer\n");
2703
2704 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2705 if (error)
2706 dev_err(&dev->dev,
2707 "unable to preallocate PCI-X save buffer\n");
2708
2709 pci_allocate_vc_save_buffers(dev);
2710}
2711
2712void pci_free_cap_save_buffers(struct pci_dev *dev)
2713{
2714 struct pci_cap_saved_state *tmp;
2715 struct hlist_node *n;
2716
2717 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2718 kfree(tmp);
2719}
2720
2721/**
2722 * pci_configure_ari - enable or disable ARI forwarding
2723 * @dev: the PCI device
2724 *
2725 * If @dev and its upstream bridge both support ARI, enable ARI in the
2726 * bridge. Otherwise, disable ARI in the bridge.
2727 */
2728void pci_configure_ari(struct pci_dev *dev)
2729{
2730 u32 cap;
2731 struct pci_dev *bridge;
2732
2733 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2734 return;
2735
2736 bridge = dev->bus->self;
2737 if (!bridge)
2738 return;
2739
2740 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2741 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2742 return;
2743
2744 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2745 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2746 PCI_EXP_DEVCTL2_ARI);
2747 bridge->ari_enabled = 1;
2748 } else {
2749 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2750 PCI_EXP_DEVCTL2_ARI);
2751 bridge->ari_enabled = 0;
2752 }
2753}
2754
2755static int pci_acs_enable;
2756
2757/**
2758 * pci_request_acs - ask for ACS to be enabled if supported
2759 */
2760void pci_request_acs(void)
2761{
2762 pci_acs_enable = 1;
2763}
2764
2765/**
2766 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2767 * @dev: the PCI device
2768 */
2769static void pci_std_enable_acs(struct pci_dev *dev)
2770{
2771 int pos;
2772 u16 cap;
2773 u16 ctrl;
2774
2775 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2776 if (!pos)
2777 return;
2778
2779 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2780 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2781
2782 /* Source Validation */
2783 ctrl |= (cap & PCI_ACS_SV);
2784
2785 /* P2P Request Redirect */
2786 ctrl |= (cap & PCI_ACS_RR);
2787
2788 /* P2P Completion Redirect */
2789 ctrl |= (cap & PCI_ACS_CR);
2790
2791 /* Upstream Forwarding */
2792 ctrl |= (cap & PCI_ACS_UF);
2793
2794 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2795}
2796
2797/**
2798 * pci_enable_acs - enable ACS if hardware support it
2799 * @dev: the PCI device
2800 */
2801void pci_enable_acs(struct pci_dev *dev)
2802{
2803 if (!pci_acs_enable)
2804 return;
2805
2806 if (!pci_dev_specific_enable_acs(dev))
2807 return;
2808
2809 pci_std_enable_acs(dev);
2810}
2811
2812static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2813{
2814 int pos;
2815 u16 cap, ctrl;
2816
2817 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2818 if (!pos)
2819 return false;
2820
2821 /*
2822 * Except for egress control, capabilities are either required
2823 * or only required if controllable. Features missing from the
2824 * capability field can therefore be assumed as hard-wired enabled.
2825 */
2826 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2827 acs_flags &= (cap | PCI_ACS_EC);
2828
2829 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2830 return (ctrl & acs_flags) == acs_flags;
2831}
2832
2833/**
2834 * pci_acs_enabled - test ACS against required flags for a given device
2835 * @pdev: device to test
2836 * @acs_flags: required PCI ACS flags
2837 *
2838 * Return true if the device supports the provided flags. Automatically
2839 * filters out flags that are not implemented on multifunction devices.
2840 *
2841 * Note that this interface checks the effective ACS capabilities of the
2842 * device rather than the actual capabilities. For instance, most single
2843 * function endpoints are not required to support ACS because they have no
2844 * opportunity for peer-to-peer access. We therefore return 'true'
2845 * regardless of whether the device exposes an ACS capability. This makes
2846 * it much easier for callers of this function to ignore the actual type
2847 * or topology of the device when testing ACS support.
2848 */
2849bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2850{
2851 int ret;
2852
2853 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2854 if (ret >= 0)
2855 return ret > 0;
2856
2857 /*
2858 * Conventional PCI and PCI-X devices never support ACS, either
2859 * effectively or actually. The shared bus topology implies that
2860 * any device on the bus can receive or snoop DMA.
2861 */
2862 if (!pci_is_pcie(pdev))
2863 return false;
2864
2865 switch (pci_pcie_type(pdev)) {
2866 /*
2867 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2868 * but since their primary interface is PCI/X, we conservatively
2869 * handle them as we would a non-PCIe device.
2870 */
2871 case PCI_EXP_TYPE_PCIE_BRIDGE:
2872 /*
2873 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2874 * applicable... must never implement an ACS Extended Capability...".
2875 * This seems arbitrary, but we take a conservative interpretation
2876 * of this statement.
2877 */
2878 case PCI_EXP_TYPE_PCI_BRIDGE:
2879 case PCI_EXP_TYPE_RC_EC:
2880 return false;
2881 /*
2882 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2883 * implement ACS in order to indicate their peer-to-peer capabilities,
2884 * regardless of whether they are single- or multi-function devices.
2885 */
2886 case PCI_EXP_TYPE_DOWNSTREAM:
2887 case PCI_EXP_TYPE_ROOT_PORT:
2888 return pci_acs_flags_enabled(pdev, acs_flags);
2889 /*
2890 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2891 * implemented by the remaining PCIe types to indicate peer-to-peer
2892 * capabilities, but only when they are part of a multifunction
2893 * device. The footnote for section 6.12 indicates the specific
2894 * PCIe types included here.
2895 */
2896 case PCI_EXP_TYPE_ENDPOINT:
2897 case PCI_EXP_TYPE_UPSTREAM:
2898 case PCI_EXP_TYPE_LEG_END:
2899 case PCI_EXP_TYPE_RC_END:
2900 if (!pdev->multifunction)
2901 break;
2902
2903 return pci_acs_flags_enabled(pdev, acs_flags);
2904 }
2905
2906 /*
2907 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2908 * to single function devices with the exception of downstream ports.
2909 */
2910 return true;
2911}
2912
2913/**
2914 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2915 * @start: starting downstream device
2916 * @end: ending upstream device or NULL to search to the root bus
2917 * @acs_flags: required flags
2918 *
2919 * Walk up a device tree from start to end testing PCI ACS support. If
2920 * any step along the way does not support the required flags, return false.
2921 */
2922bool pci_acs_path_enabled(struct pci_dev *start,
2923 struct pci_dev *end, u16 acs_flags)
2924{
2925 struct pci_dev *pdev, *parent = start;
2926
2927 do {
2928 pdev = parent;
2929
2930 if (!pci_acs_enabled(pdev, acs_flags))
2931 return false;
2932
2933 if (pci_is_root_bus(pdev->bus))
2934 return (end == NULL);
2935
2936 parent = pdev->bus->self;
2937 } while (pdev != end);
2938
2939 return true;
2940}
2941
2942/**
2943 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2944 * @dev: the PCI device
2945 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2946 *
2947 * Perform INTx swizzling for a device behind one level of bridge. This is
2948 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2949 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2950 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2951 * the PCI Express Base Specification, Revision 2.1)
2952 */
2953u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2954{
2955 int slot;
2956
2957 if (pci_ari_enabled(dev->bus))
2958 slot = 0;
2959 else
2960 slot = PCI_SLOT(dev->devfn);
2961
2962 return (((pin - 1) + slot) % 4) + 1;
2963}
2964
2965int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2966{
2967 u8 pin;
2968
2969 pin = dev->pin;
2970 if (!pin)
2971 return -1;
2972
2973 while (!pci_is_root_bus(dev->bus)) {
2974 pin = pci_swizzle_interrupt_pin(dev, pin);
2975 dev = dev->bus->self;
2976 }
2977 *bridge = dev;
2978 return pin;
2979}
2980
2981/**
2982 * pci_common_swizzle - swizzle INTx all the way to root bridge
2983 * @dev: the PCI device
2984 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2985 *
2986 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2987 * bridges all the way up to a PCI root bus.
2988 */
2989u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2990{
2991 u8 pin = *pinp;
2992
2993 while (!pci_is_root_bus(dev->bus)) {
2994 pin = pci_swizzle_interrupt_pin(dev, pin);
2995 dev = dev->bus->self;
2996 }
2997 *pinp = pin;
2998 return PCI_SLOT(dev->devfn);
2999}
3000EXPORT_SYMBOL_GPL(pci_common_swizzle);
3001
3002/**
3003 * pci_release_region - Release a PCI bar
3004 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3005 * @bar: BAR to release
3006 *
3007 * Releases the PCI I/O and memory resources previously reserved by a
3008 * successful call to pci_request_region. Call this function only
3009 * after all use of the PCI regions has ceased.
3010 */
3011void pci_release_region(struct pci_dev *pdev, int bar)
3012{
3013 struct pci_devres *dr;
3014
3015 if (pci_resource_len(pdev, bar) == 0)
3016 return;
3017 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3018 release_region(pci_resource_start(pdev, bar),
3019 pci_resource_len(pdev, bar));
3020 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3021 release_mem_region(pci_resource_start(pdev, bar),
3022 pci_resource_len(pdev, bar));
3023
3024 dr = find_pci_dr(pdev);
3025 if (dr)
3026 dr->region_mask &= ~(1 << bar);
3027}
3028EXPORT_SYMBOL(pci_release_region);
3029
3030/**
3031 * __pci_request_region - Reserved PCI I/O and memory resource
3032 * @pdev: PCI device whose resources are to be reserved
3033 * @bar: BAR to be reserved
3034 * @res_name: Name to be associated with resource.
3035 * @exclusive: whether the region access is exclusive or not
3036 *
3037 * Mark the PCI region associated with PCI device @pdev BR @bar as
3038 * being reserved by owner @res_name. Do not access any
3039 * address inside the PCI regions unless this call returns
3040 * successfully.
3041 *
3042 * If @exclusive is set, then the region is marked so that userspace
3043 * is explicitly not allowed to map the resource via /dev/mem or
3044 * sysfs MMIO access.
3045 *
3046 * Returns 0 on success, or %EBUSY on error. A warning
3047 * message is also printed on failure.
3048 */
3049static int __pci_request_region(struct pci_dev *pdev, int bar,
3050 const char *res_name, int exclusive)
3051{
3052 struct pci_devres *dr;
3053
3054 if (pci_resource_len(pdev, bar) == 0)
3055 return 0;
3056
3057 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3058 if (!request_region(pci_resource_start(pdev, bar),
3059 pci_resource_len(pdev, bar), res_name))
3060 goto err_out;
3061 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3062 if (!__request_mem_region(pci_resource_start(pdev, bar),
3063 pci_resource_len(pdev, bar), res_name,
3064 exclusive))
3065 goto err_out;
3066 }
3067
3068 dr = find_pci_dr(pdev);
3069 if (dr)
3070 dr->region_mask |= 1 << bar;
3071
3072 return 0;
3073
3074err_out:
3075 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3076 &pdev->resource[bar]);
3077 return -EBUSY;
3078}
3079
3080/**
3081 * pci_request_region - Reserve PCI I/O and memory resource
3082 * @pdev: PCI device whose resources are to be reserved
3083 * @bar: BAR to be reserved
3084 * @res_name: Name to be associated with resource
3085 *
3086 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3087 * being reserved by owner @res_name. Do not access any
3088 * address inside the PCI regions unless this call returns
3089 * successfully.
3090 *
3091 * Returns 0 on success, or %EBUSY on error. A warning
3092 * message is also printed on failure.
3093 */
3094int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3095{
3096 return __pci_request_region(pdev, bar, res_name, 0);
3097}
3098EXPORT_SYMBOL(pci_request_region);
3099
3100/**
3101 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3102 * @pdev: PCI device whose resources are to be reserved
3103 * @bar: BAR to be reserved
3104 * @res_name: Name to be associated with resource.
3105 *
3106 * Mark the PCI region associated with PCI device @pdev BR @bar as
3107 * being reserved by owner @res_name. Do not access any
3108 * address inside the PCI regions unless this call returns
3109 * successfully.
3110 *
3111 * Returns 0 on success, or %EBUSY on error. A warning
3112 * message is also printed on failure.
3113 *
3114 * The key difference that _exclusive makes it that userspace is
3115 * explicitly not allowed to map the resource via /dev/mem or
3116 * sysfs.
3117 */
3118int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3119 const char *res_name)
3120{
3121 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3122}
3123EXPORT_SYMBOL(pci_request_region_exclusive);
3124
3125/**
3126 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3127 * @pdev: PCI device whose resources were previously reserved
3128 * @bars: Bitmask of BARs to be released
3129 *
3130 * Release selected PCI I/O and memory resources previously reserved.
3131 * Call this function only after all use of the PCI regions has ceased.
3132 */
3133void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3134{
3135 int i;
3136
3137 for (i = 0; i < 6; i++)
3138 if (bars & (1 << i))
3139 pci_release_region(pdev, i);
3140}
3141EXPORT_SYMBOL(pci_release_selected_regions);
3142
3143static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3144 const char *res_name, int excl)
3145{
3146 int i;
3147
3148 for (i = 0; i < 6; i++)
3149 if (bars & (1 << i))
3150 if (__pci_request_region(pdev, i, res_name, excl))
3151 goto err_out;
3152 return 0;
3153
3154err_out:
3155 while (--i >= 0)
3156 if (bars & (1 << i))
3157 pci_release_region(pdev, i);
3158
3159 return -EBUSY;
3160}
3161
3162
3163/**
3164 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3165 * @pdev: PCI device whose resources are to be reserved
3166 * @bars: Bitmask of BARs to be requested
3167 * @res_name: Name to be associated with resource
3168 */
3169int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3170 const char *res_name)
3171{
3172 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3173}
3174EXPORT_SYMBOL(pci_request_selected_regions);
3175
3176int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3177 const char *res_name)
3178{
3179 return __pci_request_selected_regions(pdev, bars, res_name,
3180 IORESOURCE_EXCLUSIVE);
3181}
3182EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3183
3184/**
3185 * pci_release_regions - Release reserved PCI I/O and memory resources
3186 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3187 *
3188 * Releases all PCI I/O and memory resources previously reserved by a
3189 * successful call to pci_request_regions. Call this function only
3190 * after all use of the PCI regions has ceased.
3191 */
3192
3193void pci_release_regions(struct pci_dev *pdev)
3194{
3195 pci_release_selected_regions(pdev, (1 << 6) - 1);
3196}
3197EXPORT_SYMBOL(pci_release_regions);
3198
3199/**
3200 * pci_request_regions - Reserved PCI I/O and memory resources
3201 * @pdev: PCI device whose resources are to be reserved
3202 * @res_name: Name to be associated with resource.
3203 *
3204 * Mark all PCI regions associated with PCI device @pdev as
3205 * being reserved by owner @res_name. Do not access any
3206 * address inside the PCI regions unless this call returns
3207 * successfully.
3208 *
3209 * Returns 0 on success, or %EBUSY on error. A warning
3210 * message is also printed on failure.
3211 */
3212int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3213{
3214 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3215}
3216EXPORT_SYMBOL(pci_request_regions);
3217
3218/**
3219 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3220 * @pdev: PCI device whose resources are to be reserved
3221 * @res_name: Name to be associated with resource.
3222 *
3223 * Mark all PCI regions associated with PCI device @pdev as
3224 * being reserved by owner @res_name. Do not access any
3225 * address inside the PCI regions unless this call returns
3226 * successfully.
3227 *
3228 * pci_request_regions_exclusive() will mark the region so that
3229 * /dev/mem and the sysfs MMIO access will not be allowed.
3230 *
3231 * Returns 0 on success, or %EBUSY on error. A warning
3232 * message is also printed on failure.
3233 */
3234int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3235{
3236 return pci_request_selected_regions_exclusive(pdev,
3237 ((1 << 6) - 1), res_name);
3238}
3239EXPORT_SYMBOL(pci_request_regions_exclusive);
3240
3241#ifdef PCI_IOBASE
3242struct io_range {
3243 struct list_head list;
3244 phys_addr_t start;
3245 resource_size_t size;
3246};
3247
3248static LIST_HEAD(io_range_list);
3249static DEFINE_SPINLOCK(io_range_lock);
3250#endif
3251
3252/*
3253 * Record the PCI IO range (expressed as CPU physical address + size).
3254 * Return a negative value if an error has occured, zero otherwise
3255 */
3256int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3257{
3258 int err = 0;
3259
3260#ifdef PCI_IOBASE
3261 struct io_range *range;
3262 resource_size_t allocated_size = 0;
3263
3264 /* check if the range hasn't been previously recorded */
3265 spin_lock(&io_range_lock);
3266 list_for_each_entry(range, &io_range_list, list) {
3267 if (addr >= range->start && addr + size <= range->start + size) {
3268 /* range already registered, bail out */
3269 goto end_register;
3270 }
3271 allocated_size += range->size;
3272 }
3273
3274 /* range not registed yet, check for available space */
3275 if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3276 /* if it's too big check if 64K space can be reserved */
3277 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3278 err = -E2BIG;
3279 goto end_register;
3280 }
3281
3282 size = SZ_64K;
3283 pr_warn("Requested IO range too big, new size set to 64K\n");
3284 }
3285
3286 /* add the range to the list */
3287 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3288 if (!range) {
3289 err = -ENOMEM;
3290 goto end_register;
3291 }
3292
3293 range->start = addr;
3294 range->size = size;
3295
3296 list_add_tail(&range->list, &io_range_list);
3297
3298end_register:
3299 spin_unlock(&io_range_lock);
3300#endif
3301
3302 return err;
3303}
3304
3305phys_addr_t pci_pio_to_address(unsigned long pio)
3306{
3307 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3308
3309#ifdef PCI_IOBASE
3310 struct io_range *range;
3311 resource_size_t allocated_size = 0;
3312
3313 if (pio > IO_SPACE_LIMIT)
3314 return address;
3315
3316 spin_lock(&io_range_lock);
3317 list_for_each_entry(range, &io_range_list, list) {
3318 if (pio >= allocated_size && pio < allocated_size + range->size) {
3319 address = range->start + pio - allocated_size;
3320 break;
3321 }
3322 allocated_size += range->size;
3323 }
3324 spin_unlock(&io_range_lock);
3325#endif
3326
3327 return address;
3328}
3329
3330unsigned long __weak pci_address_to_pio(phys_addr_t address)
3331{
3332#ifdef PCI_IOBASE
3333 struct io_range *res;
3334 resource_size_t offset = 0;
3335 unsigned long addr = -1;
3336
3337 spin_lock(&io_range_lock);
3338 list_for_each_entry(res, &io_range_list, list) {
3339 if (address >= res->start && address < res->start + res->size) {
3340 addr = address - res->start + offset;
3341 break;
3342 }
3343 offset += res->size;
3344 }
3345 spin_unlock(&io_range_lock);
3346
3347 return addr;
3348#else
3349 if (address > IO_SPACE_LIMIT)
3350 return (unsigned long)-1;
3351
3352 return (unsigned long) address;
3353#endif
3354}
3355
3356/**
3357 * pci_remap_iospace - Remap the memory mapped I/O space
3358 * @res: Resource describing the I/O space
3359 * @phys_addr: physical address of range to be mapped
3360 *
3361 * Remap the memory mapped I/O space described by the @res
3362 * and the CPU physical address @phys_addr into virtual address space.
3363 * Only architectures that have memory mapped IO functions defined
3364 * (and the PCI_IOBASE value defined) should call this function.
3365 */
3366int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3367{
3368#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3369 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3370
3371 if (!(res->flags & IORESOURCE_IO))
3372 return -EINVAL;
3373
3374 if (res->end > IO_SPACE_LIMIT)
3375 return -EINVAL;
3376
3377 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3378 pgprot_device(PAGE_KERNEL));
3379#else
3380 /* this architecture does not have memory mapped I/O space,
3381 so this function should never be called */
3382 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3383 return -ENODEV;
3384#endif
3385}
3386
3387/**
3388 * pci_unmap_iospace - Unmap the memory mapped I/O space
3389 * @res: resource to be unmapped
3390 *
3391 * Unmap the CPU virtual address @res from virtual address space.
3392 * Only architectures that have memory mapped IO functions defined
3393 * (and the PCI_IOBASE value defined) should call this function.
3394 */
3395void pci_unmap_iospace(struct resource *res)
3396{
3397#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3398 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3399
3400 unmap_kernel_range(vaddr, resource_size(res));
3401#endif
3402}
3403
3404static void __pci_set_master(struct pci_dev *dev, bool enable)
3405{
3406 u16 old_cmd, cmd;
3407
3408 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3409 if (enable)
3410 cmd = old_cmd | PCI_COMMAND_MASTER;
3411 else
3412 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3413 if (cmd != old_cmd) {
3414 dev_dbg(&dev->dev, "%s bus mastering\n",
3415 enable ? "enabling" : "disabling");
3416 pci_write_config_word(dev, PCI_COMMAND, cmd);
3417 }
3418 dev->is_busmaster = enable;
3419}
3420
3421/**
3422 * pcibios_setup - process "pci=" kernel boot arguments
3423 * @str: string used to pass in "pci=" kernel boot arguments
3424 *
3425 * Process kernel boot arguments. This is the default implementation.
3426 * Architecture specific implementations can override this as necessary.
3427 */
3428char * __weak __init pcibios_setup(char *str)
3429{
3430 return str;
3431}
3432
3433/**
3434 * pcibios_set_master - enable PCI bus-mastering for device dev
3435 * @dev: the PCI device to enable
3436 *
3437 * Enables PCI bus-mastering for the device. This is the default
3438 * implementation. Architecture specific implementations can override
3439 * this if necessary.
3440 */
3441void __weak pcibios_set_master(struct pci_dev *dev)
3442{
3443 u8 lat;
3444
3445 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3446 if (pci_is_pcie(dev))
3447 return;
3448
3449 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3450 if (lat < 16)
3451 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3452 else if (lat > pcibios_max_latency)
3453 lat = pcibios_max_latency;
3454 else
3455 return;
3456
3457 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3458}
3459
3460/**
3461 * pci_set_master - enables bus-mastering for device dev
3462 * @dev: the PCI device to enable
3463 *
3464 * Enables bus-mastering on the device and calls pcibios_set_master()
3465 * to do the needed arch specific settings.
3466 */
3467void pci_set_master(struct pci_dev *dev)
3468{
3469 __pci_set_master(dev, true);
3470 pcibios_set_master(dev);
3471}
3472EXPORT_SYMBOL(pci_set_master);
3473
3474/**
3475 * pci_clear_master - disables bus-mastering for device dev
3476 * @dev: the PCI device to disable
3477 */
3478void pci_clear_master(struct pci_dev *dev)
3479{
3480 __pci_set_master(dev, false);
3481}
3482EXPORT_SYMBOL(pci_clear_master);
3483
3484/**
3485 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3486 * @dev: the PCI device for which MWI is to be enabled
3487 *
3488 * Helper function for pci_set_mwi.
3489 * Originally copied from drivers/net/acenic.c.
3490 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3491 *
3492 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3493 */
3494int pci_set_cacheline_size(struct pci_dev *dev)
3495{
3496 u8 cacheline_size;
3497
3498 if (!pci_cache_line_size)
3499 return -EINVAL;
3500
3501 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3502 equal to or multiple of the right value. */
3503 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3504 if (cacheline_size >= pci_cache_line_size &&
3505 (cacheline_size % pci_cache_line_size) == 0)
3506 return 0;
3507
3508 /* Write the correct value. */
3509 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3510 /* Read it back. */
3511 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3512 if (cacheline_size == pci_cache_line_size)
3513 return 0;
3514
3515 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3516 pci_cache_line_size << 2);
3517
3518 return -EINVAL;
3519}
3520EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3521
3522/**
3523 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3524 * @dev: the PCI device for which MWI is enabled
3525 *
3526 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3527 *
3528 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3529 */
3530int pci_set_mwi(struct pci_dev *dev)
3531{
3532#ifdef PCI_DISABLE_MWI
3533 return 0;
3534#else
3535 int rc;
3536 u16 cmd;
3537
3538 rc = pci_set_cacheline_size(dev);
3539 if (rc)
3540 return rc;
3541
3542 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3543 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3544 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3545 cmd |= PCI_COMMAND_INVALIDATE;
3546 pci_write_config_word(dev, PCI_COMMAND, cmd);
3547 }
3548 return 0;
3549#endif
3550}
3551EXPORT_SYMBOL(pci_set_mwi);
3552
3553/**
3554 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3555 * @dev: the PCI device for which MWI is enabled
3556 *
3557 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3558 * Callers are not required to check the return value.
3559 *
3560 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3561 */
3562int pci_try_set_mwi(struct pci_dev *dev)
3563{
3564#ifdef PCI_DISABLE_MWI
3565 return 0;
3566#else
3567 return pci_set_mwi(dev);
3568#endif
3569}
3570EXPORT_SYMBOL(pci_try_set_mwi);
3571
3572/**
3573 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3574 * @dev: the PCI device to disable
3575 *
3576 * Disables PCI Memory-Write-Invalidate transaction on the device
3577 */
3578void pci_clear_mwi(struct pci_dev *dev)
3579{
3580#ifndef PCI_DISABLE_MWI
3581 u16 cmd;
3582
3583 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3584 if (cmd & PCI_COMMAND_INVALIDATE) {
3585 cmd &= ~PCI_COMMAND_INVALIDATE;
3586 pci_write_config_word(dev, PCI_COMMAND, cmd);
3587 }
3588#endif
3589}
3590EXPORT_SYMBOL(pci_clear_mwi);
3591
3592/**
3593 * pci_intx - enables/disables PCI INTx for device dev
3594 * @pdev: the PCI device to operate on
3595 * @enable: boolean: whether to enable or disable PCI INTx
3596 *
3597 * Enables/disables PCI INTx for device dev
3598 */
3599void pci_intx(struct pci_dev *pdev, int enable)
3600{
3601 u16 pci_command, new;
3602
3603 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3604
3605 if (enable)
3606 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3607 else
3608 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3609
3610 if (new != pci_command) {
3611 struct pci_devres *dr;
3612
3613 pci_write_config_word(pdev, PCI_COMMAND, new);
3614
3615 dr = find_pci_dr(pdev);
3616 if (dr && !dr->restore_intx) {
3617 dr->restore_intx = 1;
3618 dr->orig_intx = !enable;
3619 }
3620 }
3621}
3622EXPORT_SYMBOL_GPL(pci_intx);
3623
3624/**
3625 * pci_intx_mask_supported - probe for INTx masking support
3626 * @dev: the PCI device to operate on
3627 *
3628 * Check if the device dev support INTx masking via the config space
3629 * command word.
3630 */
3631bool pci_intx_mask_supported(struct pci_dev *dev)
3632{
3633 bool mask_supported = false;
3634 u16 orig, new;
3635
3636 if (dev->broken_intx_masking)
3637 return false;
3638
3639 pci_cfg_access_lock(dev);
3640
3641 pci_read_config_word(dev, PCI_COMMAND, &orig);
3642 pci_write_config_word(dev, PCI_COMMAND,
3643 orig ^ PCI_COMMAND_INTX_DISABLE);
3644 pci_read_config_word(dev, PCI_COMMAND, &new);
3645
3646 /*
3647 * There's no way to protect against hardware bugs or detect them
3648 * reliably, but as long as we know what the value should be, let's
3649 * go ahead and check it.
3650 */
3651 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3652 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3653 orig, new);
3654 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3655 mask_supported = true;
3656 pci_write_config_word(dev, PCI_COMMAND, orig);
3657 }
3658
3659 pci_cfg_access_unlock(dev);
3660 return mask_supported;
3661}
3662EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3663
3664static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3665{
3666 struct pci_bus *bus = dev->bus;
3667 bool mask_updated = true;
3668 u32 cmd_status_dword;
3669 u16 origcmd, newcmd;
3670 unsigned long flags;
3671 bool irq_pending;
3672
3673 /*
3674 * We do a single dword read to retrieve both command and status.
3675 * Document assumptions that make this possible.
3676 */
3677 BUILD_BUG_ON(PCI_COMMAND % 4);
3678 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3679
3680 raw_spin_lock_irqsave(&pci_lock, flags);
3681
3682 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3683
3684 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3685
3686 /*
3687 * Check interrupt status register to see whether our device
3688 * triggered the interrupt (when masking) or the next IRQ is
3689 * already pending (when unmasking).
3690 */
3691 if (mask != irq_pending) {
3692 mask_updated = false;
3693 goto done;
3694 }
3695
3696 origcmd = cmd_status_dword;
3697 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3698 if (mask)
3699 newcmd |= PCI_COMMAND_INTX_DISABLE;
3700 if (newcmd != origcmd)
3701 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3702
3703done:
3704 raw_spin_unlock_irqrestore(&pci_lock, flags);
3705
3706 return mask_updated;
3707}
3708
3709/**
3710 * pci_check_and_mask_intx - mask INTx on pending interrupt
3711 * @dev: the PCI device to operate on
3712 *
3713 * Check if the device dev has its INTx line asserted, mask it and
3714 * return true in that case. False is returned if not interrupt was
3715 * pending.
3716 */
3717bool pci_check_and_mask_intx(struct pci_dev *dev)
3718{
3719 return pci_check_and_set_intx_mask(dev, true);
3720}
3721EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3722
3723/**
3724 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3725 * @dev: the PCI device to operate on
3726 *
3727 * Check if the device dev has its INTx line asserted, unmask it if not
3728 * and return true. False is returned and the mask remains active if
3729 * there was still an interrupt pending.
3730 */
3731bool pci_check_and_unmask_intx(struct pci_dev *dev)
3732{
3733 return pci_check_and_set_intx_mask(dev, false);
3734}
3735EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3736
3737/**
3738 * pci_wait_for_pending_transaction - waits for pending transaction
3739 * @dev: the PCI device to operate on
3740 *
3741 * Return 0 if transaction is pending 1 otherwise.
3742 */
3743int pci_wait_for_pending_transaction(struct pci_dev *dev)
3744{
3745 if (!pci_is_pcie(dev))
3746 return 1;
3747
3748 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3749 PCI_EXP_DEVSTA_TRPND);
3750}
3751EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3752
3753/*
3754 * We should only need to wait 100ms after FLR, but some devices take longer.
3755 * Wait for up to 1000ms for config space to return something other than -1.
3756 * Intel IGD requires this when an LCD panel is attached. We read the 2nd
3757 * dword because VFs don't implement the 1st dword.
3758 */
3759static void pci_flr_wait(struct pci_dev *dev)
3760{
3761 int i = 0;
3762 u32 id;
3763
3764 do {
3765 msleep(100);
3766 pci_read_config_dword(dev, PCI_COMMAND, &id);
3767 } while (i++ < 10 && id == ~0);
3768
3769 if (id == ~0)
3770 dev_warn(&dev->dev, "Failed to return from FLR\n");
3771 else if (i > 1)
3772 dev_info(&dev->dev, "Required additional %dms to return from FLR\n",
3773 (i - 1) * 100);
3774}
3775
3776static int pcie_flr(struct pci_dev *dev, int probe)
3777{
3778 u32 cap;
3779
3780 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3781 if (!(cap & PCI_EXP_DEVCAP_FLR))
3782 return -ENOTTY;
3783
3784 if (probe)
3785 return 0;
3786
3787 if (!pci_wait_for_pending_transaction(dev))
3788 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3789
3790 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3791 pci_flr_wait(dev);
3792 return 0;
3793}
3794
3795static int pci_af_flr(struct pci_dev *dev, int probe)
3796{
3797 int pos;
3798 u8 cap;
3799
3800 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3801 if (!pos)
3802 return -ENOTTY;
3803
3804 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3805 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3806 return -ENOTTY;
3807
3808 if (probe)
3809 return 0;
3810
3811 /*
3812 * Wait for Transaction Pending bit to clear. A word-aligned test
3813 * is used, so we use the conrol offset rather than status and shift
3814 * the test bit to match.
3815 */
3816 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3817 PCI_AF_STATUS_TP << 8))
3818 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3819
3820 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3821 pci_flr_wait(dev);
3822 return 0;
3823}
3824
3825/**
3826 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3827 * @dev: Device to reset.
3828 * @probe: If set, only check if the device can be reset this way.
3829 *
3830 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3831 * unset, it will be reinitialized internally when going from PCI_D3hot to
3832 * PCI_D0. If that's the case and the device is not in a low-power state
3833 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3834 *
3835 * NOTE: This causes the caller to sleep for twice the device power transition
3836 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3837 * by default (i.e. unless the @dev's d3_delay field has a different value).
3838 * Moreover, only devices in D0 can be reset by this function.
3839 */
3840static int pci_pm_reset(struct pci_dev *dev, int probe)
3841{
3842 u16 csr;
3843
3844 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3845 return -ENOTTY;
3846
3847 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3848 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3849 return -ENOTTY;
3850
3851 if (probe)
3852 return 0;
3853
3854 if (dev->current_state != PCI_D0)
3855 return -EINVAL;
3856
3857 csr &= ~PCI_PM_CTRL_STATE_MASK;
3858 csr |= PCI_D3hot;
3859 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3860 pci_dev_d3_sleep(dev);
3861
3862 csr &= ~PCI_PM_CTRL_STATE_MASK;
3863 csr |= PCI_D0;
3864 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3865 pci_dev_d3_sleep(dev);
3866
3867 return 0;
3868}
3869
3870void pci_reset_secondary_bus(struct pci_dev *dev)
3871{
3872 u16 ctrl;
3873
3874 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3875 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3876 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3877 /*
3878 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3879 * this to 2ms to ensure that we meet the minimum requirement.
3880 */
3881 msleep(2);
3882
3883 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3884 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3885
3886 /*
3887 * Trhfa for conventional PCI is 2^25 clock cycles.
3888 * Assuming a minimum 33MHz clock this results in a 1s
3889 * delay before we can consider subordinate devices to
3890 * be re-initialized. PCIe has some ways to shorten this,
3891 * but we don't make use of them yet.
3892 */
3893 ssleep(1);
3894}
3895
3896void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3897{
3898 pci_reset_secondary_bus(dev);
3899}
3900
3901/**
3902 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3903 * @dev: Bridge device
3904 *
3905 * Use the bridge control register to assert reset on the secondary bus.
3906 * Devices on the secondary bus are left in power-on state.
3907 */
3908void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3909{
3910 pcibios_reset_secondary_bus(dev);
3911}
3912EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3913
3914static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3915{
3916 struct pci_dev *pdev;
3917
3918 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3919 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3920 return -ENOTTY;
3921
3922 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3923 if (pdev != dev)
3924 return -ENOTTY;
3925
3926 if (probe)
3927 return 0;
3928
3929 pci_reset_bridge_secondary_bus(dev->bus->self);
3930
3931 return 0;
3932}
3933
3934static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3935{
3936 int rc = -ENOTTY;
3937
3938 if (!hotplug || !try_module_get(hotplug->ops->owner))
3939 return rc;
3940
3941 if (hotplug->ops->reset_slot)
3942 rc = hotplug->ops->reset_slot(hotplug, probe);
3943
3944 module_put(hotplug->ops->owner);
3945
3946 return rc;
3947}
3948
3949static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3950{
3951 struct pci_dev *pdev;
3952
3953 if (dev->subordinate || !dev->slot ||
3954 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3955 return -ENOTTY;
3956
3957 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3958 if (pdev != dev && pdev->slot == dev->slot)
3959 return -ENOTTY;
3960
3961 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3962}
3963
3964static int __pci_dev_reset(struct pci_dev *dev, int probe)
3965{
3966 int rc;
3967
3968 might_sleep();
3969
3970 rc = pci_dev_specific_reset(dev, probe);
3971 if (rc != -ENOTTY)
3972 goto done;
3973
3974 rc = pcie_flr(dev, probe);
3975 if (rc != -ENOTTY)
3976 goto done;
3977
3978 rc = pci_af_flr(dev, probe);
3979 if (rc != -ENOTTY)
3980 goto done;
3981
3982 rc = pci_pm_reset(dev, probe);
3983 if (rc != -ENOTTY)
3984 goto done;
3985
3986 rc = pci_dev_reset_slot_function(dev, probe);
3987 if (rc != -ENOTTY)
3988 goto done;
3989
3990 rc = pci_parent_bus_reset(dev, probe);
3991done:
3992 return rc;
3993}
3994
3995static void pci_dev_lock(struct pci_dev *dev)
3996{
3997 pci_cfg_access_lock(dev);
3998 /* block PM suspend, driver probe, etc. */
3999 device_lock(&dev->dev);
4000}
4001
4002/* Return 1 on successful lock, 0 on contention */
4003static int pci_dev_trylock(struct pci_dev *dev)
4004{
4005 if (pci_cfg_access_trylock(dev)) {
4006 if (device_trylock(&dev->dev))
4007 return 1;
4008 pci_cfg_access_unlock(dev);
4009 }
4010
4011 return 0;
4012}
4013
4014static void pci_dev_unlock(struct pci_dev *dev)
4015{
4016 device_unlock(&dev->dev);
4017 pci_cfg_access_unlock(dev);
4018}
4019
4020/**
4021 * pci_reset_notify - notify device driver of reset
4022 * @dev: device to be notified of reset
4023 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
4024 * completed
4025 *
4026 * Must be called prior to device access being disabled and after device
4027 * access is restored.
4028 */
4029static void pci_reset_notify(struct pci_dev *dev, bool prepare)
4030{
4031 const struct pci_error_handlers *err_handler =
4032 dev->driver ? dev->driver->err_handler : NULL;
4033 if (err_handler && err_handler->reset_notify)
4034 err_handler->reset_notify(dev, prepare);
4035}
4036
4037static void pci_dev_save_and_disable(struct pci_dev *dev)
4038{
4039 pci_reset_notify(dev, true);
4040
4041 /*
4042 * Wake-up device prior to save. PM registers default to D0 after
4043 * reset and a simple register restore doesn't reliably return
4044 * to a non-D0 state anyway.
4045 */
4046 pci_set_power_state(dev, PCI_D0);
4047
4048 pci_save_state(dev);
4049 /*
4050 * Disable the device by clearing the Command register, except for
4051 * INTx-disable which is set. This not only disables MMIO and I/O port
4052 * BARs, but also prevents the device from being Bus Master, preventing
4053 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4054 * compliant devices, INTx-disable prevents legacy interrupts.
4055 */
4056 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4057}
4058
4059static void pci_dev_restore(struct pci_dev *dev)
4060{
4061 pci_restore_state(dev);
4062 pci_reset_notify(dev, false);
4063}
4064
4065static int pci_dev_reset(struct pci_dev *dev, int probe)
4066{
4067 int rc;
4068
4069 if (!probe)
4070 pci_dev_lock(dev);
4071
4072 rc = __pci_dev_reset(dev, probe);
4073
4074 if (!probe)
4075 pci_dev_unlock(dev);
4076
4077 return rc;
4078}
4079
4080/**
4081 * __pci_reset_function - reset a PCI device function
4082 * @dev: PCI device to reset
4083 *
4084 * Some devices allow an individual function to be reset without affecting
4085 * other functions in the same device. The PCI device must be responsive
4086 * to PCI config space in order to use this function.
4087 *
4088 * The device function is presumed to be unused when this function is called.
4089 * Resetting the device will make the contents of PCI configuration space
4090 * random, so any caller of this must be prepared to reinitialise the
4091 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4092 * etc.
4093 *
4094 * Returns 0 if the device function was successfully reset or negative if the
4095 * device doesn't support resetting a single function.
4096 */
4097int __pci_reset_function(struct pci_dev *dev)
4098{
4099 return pci_dev_reset(dev, 0);
4100}
4101EXPORT_SYMBOL_GPL(__pci_reset_function);
4102
4103/**
4104 * __pci_reset_function_locked - reset a PCI device function while holding
4105 * the @dev mutex lock.
4106 * @dev: PCI device to reset
4107 *
4108 * Some devices allow an individual function to be reset without affecting
4109 * other functions in the same device. The PCI device must be responsive
4110 * to PCI config space in order to use this function.
4111 *
4112 * The device function is presumed to be unused and the caller is holding
4113 * the device mutex lock when this function is called.
4114 * Resetting the device will make the contents of PCI configuration space
4115 * random, so any caller of this must be prepared to reinitialise the
4116 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4117 * etc.
4118 *
4119 * Returns 0 if the device function was successfully reset or negative if the
4120 * device doesn't support resetting a single function.
4121 */
4122int __pci_reset_function_locked(struct pci_dev *dev)
4123{
4124 return __pci_dev_reset(dev, 0);
4125}
4126EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4127
4128/**
4129 * pci_probe_reset_function - check whether the device can be safely reset
4130 * @dev: PCI device to reset
4131 *
4132 * Some devices allow an individual function to be reset without affecting
4133 * other functions in the same device. The PCI device must be responsive
4134 * to PCI config space in order to use this function.
4135 *
4136 * Returns 0 if the device function can be reset or negative if the
4137 * device doesn't support resetting a single function.
4138 */
4139int pci_probe_reset_function(struct pci_dev *dev)
4140{
4141 return pci_dev_reset(dev, 1);
4142}
4143
4144/**
4145 * pci_reset_function - quiesce and reset a PCI device function
4146 * @dev: PCI device to reset
4147 *
4148 * Some devices allow an individual function to be reset without affecting
4149 * other functions in the same device. The PCI device must be responsive
4150 * to PCI config space in order to use this function.
4151 *
4152 * This function does not just reset the PCI portion of a device, but
4153 * clears all the state associated with the device. This function differs
4154 * from __pci_reset_function in that it saves and restores device state
4155 * over the reset.
4156 *
4157 * Returns 0 if the device function was successfully reset or negative if the
4158 * device doesn't support resetting a single function.
4159 */
4160int pci_reset_function(struct pci_dev *dev)
4161{
4162 int rc;
4163
4164 rc = pci_dev_reset(dev, 1);
4165 if (rc)
4166 return rc;
4167
4168 pci_dev_save_and_disable(dev);
4169
4170 rc = pci_dev_reset(dev, 0);
4171
4172 pci_dev_restore(dev);
4173
4174 return rc;
4175}
4176EXPORT_SYMBOL_GPL(pci_reset_function);
4177
4178/**
4179 * pci_try_reset_function - quiesce and reset a PCI device function
4180 * @dev: PCI device to reset
4181 *
4182 * Same as above, except return -EAGAIN if unable to lock device.
4183 */
4184int pci_try_reset_function(struct pci_dev *dev)
4185{
4186 int rc;
4187
4188 rc = pci_dev_reset(dev, 1);
4189 if (rc)
4190 return rc;
4191
4192 pci_dev_save_and_disable(dev);
4193
4194 if (pci_dev_trylock(dev)) {
4195 rc = __pci_dev_reset(dev, 0);
4196 pci_dev_unlock(dev);
4197 } else
4198 rc = -EAGAIN;
4199
4200 pci_dev_restore(dev);
4201
4202 return rc;
4203}
4204EXPORT_SYMBOL_GPL(pci_try_reset_function);
4205
4206/* Do any devices on or below this bus prevent a bus reset? */
4207static bool pci_bus_resetable(struct pci_bus *bus)
4208{
4209 struct pci_dev *dev;
4210
4211 list_for_each_entry(dev, &bus->devices, bus_list) {
4212 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4213 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4214 return false;
4215 }
4216
4217 return true;
4218}
4219
4220/* Lock devices from the top of the tree down */
4221static void pci_bus_lock(struct pci_bus *bus)
4222{
4223 struct pci_dev *dev;
4224
4225 list_for_each_entry(dev, &bus->devices, bus_list) {
4226 pci_dev_lock(dev);
4227 if (dev->subordinate)
4228 pci_bus_lock(dev->subordinate);
4229 }
4230}
4231
4232/* Unlock devices from the bottom of the tree up */
4233static void pci_bus_unlock(struct pci_bus *bus)
4234{
4235 struct pci_dev *dev;
4236
4237 list_for_each_entry(dev, &bus->devices, bus_list) {
4238 if (dev->subordinate)
4239 pci_bus_unlock(dev->subordinate);
4240 pci_dev_unlock(dev);
4241 }
4242}
4243
4244/* Return 1 on successful lock, 0 on contention */
4245static int pci_bus_trylock(struct pci_bus *bus)
4246{
4247 struct pci_dev *dev;
4248
4249 list_for_each_entry(dev, &bus->devices, bus_list) {
4250 if (!pci_dev_trylock(dev))
4251 goto unlock;
4252 if (dev->subordinate) {
4253 if (!pci_bus_trylock(dev->subordinate)) {
4254 pci_dev_unlock(dev);
4255 goto unlock;
4256 }
4257 }
4258 }
4259 return 1;
4260
4261unlock:
4262 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4263 if (dev->subordinate)
4264 pci_bus_unlock(dev->subordinate);
4265 pci_dev_unlock(dev);
4266 }
4267 return 0;
4268}
4269
4270/* Do any devices on or below this slot prevent a bus reset? */
4271static bool pci_slot_resetable(struct pci_slot *slot)
4272{
4273 struct pci_dev *dev;
4274
4275 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4276 if (!dev->slot || dev->slot != slot)
4277 continue;
4278 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4279 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4280 return false;
4281 }
4282
4283 return true;
4284}
4285
4286/* Lock devices from the top of the tree down */
4287static void pci_slot_lock(struct pci_slot *slot)
4288{
4289 struct pci_dev *dev;
4290
4291 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4292 if (!dev->slot || dev->slot != slot)
4293 continue;
4294 pci_dev_lock(dev);
4295 if (dev->subordinate)
4296 pci_bus_lock(dev->subordinate);
4297 }
4298}
4299
4300/* Unlock devices from the bottom of the tree up */
4301static void pci_slot_unlock(struct pci_slot *slot)
4302{
4303 struct pci_dev *dev;
4304
4305 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4306 if (!dev->slot || dev->slot != slot)
4307 continue;
4308 if (dev->subordinate)
4309 pci_bus_unlock(dev->subordinate);
4310 pci_dev_unlock(dev);
4311 }
4312}
4313
4314/* Return 1 on successful lock, 0 on contention */
4315static int pci_slot_trylock(struct pci_slot *slot)
4316{
4317 struct pci_dev *dev;
4318
4319 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4320 if (!dev->slot || dev->slot != slot)
4321 continue;
4322 if (!pci_dev_trylock(dev))
4323 goto unlock;
4324 if (dev->subordinate) {
4325 if (!pci_bus_trylock(dev->subordinate)) {
4326 pci_dev_unlock(dev);
4327 goto unlock;
4328 }
4329 }
4330 }
4331 return 1;
4332
4333unlock:
4334 list_for_each_entry_continue_reverse(dev,
4335 &slot->bus->devices, bus_list) {
4336 if (!dev->slot || dev->slot != slot)
4337 continue;
4338 if (dev->subordinate)
4339 pci_bus_unlock(dev->subordinate);
4340 pci_dev_unlock(dev);
4341 }
4342 return 0;
4343}
4344
4345/* Save and disable devices from the top of the tree down */
4346static void pci_bus_save_and_disable(struct pci_bus *bus)
4347{
4348 struct pci_dev *dev;
4349
4350 list_for_each_entry(dev, &bus->devices, bus_list) {
4351 pci_dev_save_and_disable(dev);
4352 if (dev->subordinate)
4353 pci_bus_save_and_disable(dev->subordinate);
4354 }
4355}
4356
4357/*
4358 * Restore devices from top of the tree down - parent bridges need to be
4359 * restored before we can get to subordinate devices.
4360 */
4361static void pci_bus_restore(struct pci_bus *bus)
4362{
4363 struct pci_dev *dev;
4364
4365 list_for_each_entry(dev, &bus->devices, bus_list) {
4366 pci_dev_restore(dev);
4367 if (dev->subordinate)
4368 pci_bus_restore(dev->subordinate);
4369 }
4370}
4371
4372/* Save and disable devices from the top of the tree down */
4373static void pci_slot_save_and_disable(struct pci_slot *slot)
4374{
4375 struct pci_dev *dev;
4376
4377 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4378 if (!dev->slot || dev->slot != slot)
4379 continue;
4380 pci_dev_save_and_disable(dev);
4381 if (dev->subordinate)
4382 pci_bus_save_and_disable(dev->subordinate);
4383 }
4384}
4385
4386/*
4387 * Restore devices from top of the tree down - parent bridges need to be
4388 * restored before we can get to subordinate devices.
4389 */
4390static void pci_slot_restore(struct pci_slot *slot)
4391{
4392 struct pci_dev *dev;
4393
4394 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4395 if (!dev->slot || dev->slot != slot)
4396 continue;
4397 pci_dev_restore(dev);
4398 if (dev->subordinate)
4399 pci_bus_restore(dev->subordinate);
4400 }
4401}
4402
4403static int pci_slot_reset(struct pci_slot *slot, int probe)
4404{
4405 int rc;
4406
4407 if (!slot || !pci_slot_resetable(slot))
4408 return -ENOTTY;
4409
4410 if (!probe)
4411 pci_slot_lock(slot);
4412
4413 might_sleep();
4414
4415 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4416
4417 if (!probe)
4418 pci_slot_unlock(slot);
4419
4420 return rc;
4421}
4422
4423/**
4424 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4425 * @slot: PCI slot to probe
4426 *
4427 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4428 */
4429int pci_probe_reset_slot(struct pci_slot *slot)
4430{
4431 return pci_slot_reset(slot, 1);
4432}
4433EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4434
4435/**
4436 * pci_reset_slot - reset a PCI slot
4437 * @slot: PCI slot to reset
4438 *
4439 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4440 * independent of other slots. For instance, some slots may support slot power
4441 * control. In the case of a 1:1 bus to slot architecture, this function may
4442 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4443 * Generally a slot reset should be attempted before a bus reset. All of the
4444 * function of the slot and any subordinate buses behind the slot are reset
4445 * through this function. PCI config space of all devices in the slot and
4446 * behind the slot is saved before and restored after reset.
4447 *
4448 * Return 0 on success, non-zero on error.
4449 */
4450int pci_reset_slot(struct pci_slot *slot)
4451{
4452 int rc;
4453
4454 rc = pci_slot_reset(slot, 1);
4455 if (rc)
4456 return rc;
4457
4458 pci_slot_save_and_disable(slot);
4459
4460 rc = pci_slot_reset(slot, 0);
4461
4462 pci_slot_restore(slot);
4463
4464 return rc;
4465}
4466EXPORT_SYMBOL_GPL(pci_reset_slot);
4467
4468/**
4469 * pci_try_reset_slot - Try to reset a PCI slot
4470 * @slot: PCI slot to reset
4471 *
4472 * Same as above except return -EAGAIN if the slot cannot be locked
4473 */
4474int pci_try_reset_slot(struct pci_slot *slot)
4475{
4476 int rc;
4477
4478 rc = pci_slot_reset(slot, 1);
4479 if (rc)
4480 return rc;
4481
4482 pci_slot_save_and_disable(slot);
4483
4484 if (pci_slot_trylock(slot)) {
4485 might_sleep();
4486 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4487 pci_slot_unlock(slot);
4488 } else
4489 rc = -EAGAIN;
4490
4491 pci_slot_restore(slot);
4492
4493 return rc;
4494}
4495EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4496
4497static int pci_bus_reset(struct pci_bus *bus, int probe)
4498{
4499 if (!bus->self || !pci_bus_resetable(bus))
4500 return -ENOTTY;
4501
4502 if (probe)
4503 return 0;
4504
4505 pci_bus_lock(bus);
4506
4507 might_sleep();
4508
4509 pci_reset_bridge_secondary_bus(bus->self);
4510
4511 pci_bus_unlock(bus);
4512
4513 return 0;
4514}
4515
4516/**
4517 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4518 * @bus: PCI bus to probe
4519 *
4520 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4521 */
4522int pci_probe_reset_bus(struct pci_bus *bus)
4523{
4524 return pci_bus_reset(bus, 1);
4525}
4526EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4527
4528/**
4529 * pci_reset_bus - reset a PCI bus
4530 * @bus: top level PCI bus to reset
4531 *
4532 * Do a bus reset on the given bus and any subordinate buses, saving
4533 * and restoring state of all devices.
4534 *
4535 * Return 0 on success, non-zero on error.
4536 */
4537int pci_reset_bus(struct pci_bus *bus)
4538{
4539 int rc;
4540
4541 rc = pci_bus_reset(bus, 1);
4542 if (rc)
4543 return rc;
4544
4545 pci_bus_save_and_disable(bus);
4546
4547 rc = pci_bus_reset(bus, 0);
4548
4549 pci_bus_restore(bus);
4550
4551 return rc;
4552}
4553EXPORT_SYMBOL_GPL(pci_reset_bus);
4554
4555/**
4556 * pci_try_reset_bus - Try to reset a PCI bus
4557 * @bus: top level PCI bus to reset
4558 *
4559 * Same as above except return -EAGAIN if the bus cannot be locked
4560 */
4561int pci_try_reset_bus(struct pci_bus *bus)
4562{
4563 int rc;
4564
4565 rc = pci_bus_reset(bus, 1);
4566 if (rc)
4567 return rc;
4568
4569 pci_bus_save_and_disable(bus);
4570
4571 if (pci_bus_trylock(bus)) {
4572 might_sleep();
4573 pci_reset_bridge_secondary_bus(bus->self);
4574 pci_bus_unlock(bus);
4575 } else
4576 rc = -EAGAIN;
4577
4578 pci_bus_restore(bus);
4579
4580 return rc;
4581}
4582EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4583
4584/**
4585 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4586 * @dev: PCI device to query
4587 *
4588 * Returns mmrbc: maximum designed memory read count in bytes
4589 * or appropriate error value.
4590 */
4591int pcix_get_max_mmrbc(struct pci_dev *dev)
4592{
4593 int cap;
4594 u32 stat;
4595
4596 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4597 if (!cap)
4598 return -EINVAL;
4599
4600 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4601 return -EINVAL;
4602
4603 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4604}
4605EXPORT_SYMBOL(pcix_get_max_mmrbc);
4606
4607/**
4608 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4609 * @dev: PCI device to query
4610 *
4611 * Returns mmrbc: maximum memory read count in bytes
4612 * or appropriate error value.
4613 */
4614int pcix_get_mmrbc(struct pci_dev *dev)
4615{
4616 int cap;
4617 u16 cmd;
4618
4619 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4620 if (!cap)
4621 return -EINVAL;
4622
4623 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4624 return -EINVAL;
4625
4626 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4627}
4628EXPORT_SYMBOL(pcix_get_mmrbc);
4629
4630/**
4631 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4632 * @dev: PCI device to query
4633 * @mmrbc: maximum memory read count in bytes
4634 * valid values are 512, 1024, 2048, 4096
4635 *
4636 * If possible sets maximum memory read byte count, some bridges have erratas
4637 * that prevent this.
4638 */
4639int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4640{
4641 int cap;
4642 u32 stat, v, o;
4643 u16 cmd;
4644
4645 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4646 return -EINVAL;
4647
4648 v = ffs(mmrbc) - 10;
4649
4650 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4651 if (!cap)
4652 return -EINVAL;
4653
4654 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4655 return -EINVAL;
4656
4657 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4658 return -E2BIG;
4659
4660 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4661 return -EINVAL;
4662
4663 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4664 if (o != v) {
4665 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4666 return -EIO;
4667
4668 cmd &= ~PCI_X_CMD_MAX_READ;
4669 cmd |= v << 2;
4670 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4671 return -EIO;
4672 }
4673 return 0;
4674}
4675EXPORT_SYMBOL(pcix_set_mmrbc);
4676
4677/**
4678 * pcie_get_readrq - get PCI Express read request size
4679 * @dev: PCI device to query
4680 *
4681 * Returns maximum memory read request in bytes
4682 * or appropriate error value.
4683 */
4684int pcie_get_readrq(struct pci_dev *dev)
4685{
4686 u16 ctl;
4687
4688 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4689
4690 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4691}
4692EXPORT_SYMBOL(pcie_get_readrq);
4693
4694/**
4695 * pcie_set_readrq - set PCI Express maximum memory read request
4696 * @dev: PCI device to query
4697 * @rq: maximum memory read count in bytes
4698 * valid values are 128, 256, 512, 1024, 2048, 4096
4699 *
4700 * If possible sets maximum memory read request in bytes
4701 */
4702int pcie_set_readrq(struct pci_dev *dev, int rq)
4703{
4704 u16 v;
4705
4706 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4707 return -EINVAL;
4708
4709 /*
4710 * If using the "performance" PCIe config, we clamp the
4711 * read rq size to the max packet size to prevent the
4712 * host bridge generating requests larger than we can
4713 * cope with
4714 */
4715 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4716 int mps = pcie_get_mps(dev);
4717
4718 if (mps < rq)
4719 rq = mps;
4720 }
4721
4722 v = (ffs(rq) - 8) << 12;
4723
4724 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4725 PCI_EXP_DEVCTL_READRQ, v);
4726}
4727EXPORT_SYMBOL(pcie_set_readrq);
4728
4729/**
4730 * pcie_get_mps - get PCI Express maximum payload size
4731 * @dev: PCI device to query
4732 *
4733 * Returns maximum payload size in bytes
4734 */
4735int pcie_get_mps(struct pci_dev *dev)
4736{
4737 u16 ctl;
4738
4739 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4740
4741 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4742}
4743EXPORT_SYMBOL(pcie_get_mps);
4744
4745/**
4746 * pcie_set_mps - set PCI Express maximum payload size
4747 * @dev: PCI device to query
4748 * @mps: maximum payload size in bytes
4749 * valid values are 128, 256, 512, 1024, 2048, 4096
4750 *
4751 * If possible sets maximum payload size
4752 */
4753int pcie_set_mps(struct pci_dev *dev, int mps)
4754{
4755 u16 v;
4756
4757 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4758 return -EINVAL;
4759
4760 v = ffs(mps) - 8;
4761 if (v > dev->pcie_mpss)
4762 return -EINVAL;
4763 v <<= 5;
4764
4765 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4766 PCI_EXP_DEVCTL_PAYLOAD, v);
4767}
4768EXPORT_SYMBOL(pcie_set_mps);
4769
4770/**
4771 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4772 * @dev: PCI device to query
4773 * @speed: storage for minimum speed
4774 * @width: storage for minimum width
4775 *
4776 * This function will walk up the PCI device chain and determine the minimum
4777 * link width and speed of the device.
4778 */
4779int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4780 enum pcie_link_width *width)
4781{
4782 int ret;
4783
4784 *speed = PCI_SPEED_UNKNOWN;
4785 *width = PCIE_LNK_WIDTH_UNKNOWN;
4786
4787 while (dev) {
4788 u16 lnksta;
4789 enum pci_bus_speed next_speed;
4790 enum pcie_link_width next_width;
4791
4792 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4793 if (ret)
4794 return ret;
4795
4796 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4797 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4798 PCI_EXP_LNKSTA_NLW_SHIFT;
4799
4800 if (next_speed < *speed)
4801 *speed = next_speed;
4802
4803 if (next_width < *width)
4804 *width = next_width;
4805
4806 dev = dev->bus->self;
4807 }
4808
4809 return 0;
4810}
4811EXPORT_SYMBOL(pcie_get_minimum_link);
4812
4813/**
4814 * pci_select_bars - Make BAR mask from the type of resource
4815 * @dev: the PCI device for which BAR mask is made
4816 * @flags: resource type mask to be selected
4817 *
4818 * This helper routine makes bar mask from the type of resource.
4819 */
4820int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4821{
4822 int i, bars = 0;
4823 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4824 if (pci_resource_flags(dev, i) & flags)
4825 bars |= (1 << i);
4826 return bars;
4827}
4828EXPORT_SYMBOL(pci_select_bars);
4829
4830/* Some architectures require additional programming to enable VGA */
4831static arch_set_vga_state_t arch_set_vga_state;
4832
4833void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4834{
4835 arch_set_vga_state = func; /* NULL disables */
4836}
4837
4838static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4839 unsigned int command_bits, u32 flags)
4840{
4841 if (arch_set_vga_state)
4842 return arch_set_vga_state(dev, decode, command_bits,
4843 flags);
4844 return 0;
4845}
4846
4847/**
4848 * pci_set_vga_state - set VGA decode state on device and parents if requested
4849 * @dev: the PCI device
4850 * @decode: true = enable decoding, false = disable decoding
4851 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4852 * @flags: traverse ancestors and change bridges
4853 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4854 */
4855int pci_set_vga_state(struct pci_dev *dev, bool decode,
4856 unsigned int command_bits, u32 flags)
4857{
4858 struct pci_bus *bus;
4859 struct pci_dev *bridge;
4860 u16 cmd;
4861 int rc;
4862
4863 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4864
4865 /* ARCH specific VGA enables */
4866 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4867 if (rc)
4868 return rc;
4869
4870 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4871 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4872 if (decode == true)
4873 cmd |= command_bits;
4874 else
4875 cmd &= ~command_bits;
4876 pci_write_config_word(dev, PCI_COMMAND, cmd);
4877 }
4878
4879 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4880 return 0;
4881
4882 bus = dev->bus;
4883 while (bus) {
4884 bridge = bus->self;
4885 if (bridge) {
4886 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4887 &cmd);
4888 if (decode == true)
4889 cmd |= PCI_BRIDGE_CTL_VGA;
4890 else
4891 cmd &= ~PCI_BRIDGE_CTL_VGA;
4892 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4893 cmd);
4894 }
4895 bus = bus->parent;
4896 }
4897 return 0;
4898}
4899
4900/**
4901 * pci_add_dma_alias - Add a DMA devfn alias for a device
4902 * @dev: the PCI device for which alias is added
4903 * @devfn: alias slot and function
4904 *
4905 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
4906 * It should be called early, preferably as PCI fixup header quirk.
4907 */
4908void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
4909{
4910 if (!dev->dma_alias_mask)
4911 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
4912 sizeof(long), GFP_KERNEL);
4913 if (!dev->dma_alias_mask) {
4914 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
4915 return;
4916 }
4917
4918 set_bit(devfn, dev->dma_alias_mask);
4919 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
4920 PCI_SLOT(devfn), PCI_FUNC(devfn));
4921}
4922
4923bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
4924{
4925 return (dev1->dma_alias_mask &&
4926 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
4927 (dev2->dma_alias_mask &&
4928 test_bit(dev1->devfn, dev2->dma_alias_mask));
4929}
4930
4931bool pci_device_is_present(struct pci_dev *pdev)
4932{
4933 u32 v;
4934
4935 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4936}
4937EXPORT_SYMBOL_GPL(pci_device_is_present);
4938
4939void pci_ignore_hotplug(struct pci_dev *dev)
4940{
4941 struct pci_dev *bridge = dev->bus->self;
4942
4943 dev->ignore_hotplug = 1;
4944 /* Propagate the "ignore hotplug" setting to the parent bridge. */
4945 if (bridge)
4946 bridge->ignore_hotplug = 1;
4947}
4948EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4949
4950#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4951static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4952static DEFINE_SPINLOCK(resource_alignment_lock);
4953
4954/**
4955 * pci_specified_resource_alignment - get resource alignment specified by user.
4956 * @dev: the PCI device to get
4957 *
4958 * RETURNS: Resource alignment if it is specified.
4959 * Zero if it is not specified.
4960 */
4961static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4962{
4963 int seg, bus, slot, func, align_order, count;
4964 unsigned short vendor, device, subsystem_vendor, subsystem_device;
4965 resource_size_t align = 0;
4966 char *p;
4967
4968 spin_lock(&resource_alignment_lock);
4969 p = resource_alignment_param;
4970 if (!*p)
4971 goto out;
4972 if (pci_has_flag(PCI_PROBE_ONLY)) {
4973 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
4974 goto out;
4975 }
4976
4977 while (*p) {
4978 count = 0;
4979 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4980 p[count] == '@') {
4981 p += count + 1;
4982 } else {
4983 align_order = -1;
4984 }
4985 if (strncmp(p, "pci:", 4) == 0) {
4986 /* PCI vendor/device (subvendor/subdevice) ids are specified */
4987 p += 4;
4988 if (sscanf(p, "%hx:%hx:%hx:%hx%n",
4989 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
4990 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
4991 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
4992 p);
4993 break;
4994 }
4995 subsystem_vendor = subsystem_device = 0;
4996 }
4997 p += count;
4998 if ((!vendor || (vendor == dev->vendor)) &&
4999 (!device || (device == dev->device)) &&
5000 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5001 (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5002 if (align_order == -1)
5003 align = PAGE_SIZE;
5004 else
5005 align = 1 << align_order;
5006 /* Found */
5007 break;
5008 }
5009 }
5010 else {
5011 if (sscanf(p, "%x:%x:%x.%x%n",
5012 &seg, &bus, &slot, &func, &count) != 4) {
5013 seg = 0;
5014 if (sscanf(p, "%x:%x.%x%n",
5015 &bus, &slot, &func, &count) != 3) {
5016 /* Invalid format */
5017 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5018 p);
5019 break;
5020 }
5021 }
5022 p += count;
5023 if (seg == pci_domain_nr(dev->bus) &&
5024 bus == dev->bus->number &&
5025 slot == PCI_SLOT(dev->devfn) &&
5026 func == PCI_FUNC(dev->devfn)) {
5027 if (align_order == -1)
5028 align = PAGE_SIZE;
5029 else
5030 align = 1 << align_order;
5031 /* Found */
5032 break;
5033 }
5034 }
5035 if (*p != ';' && *p != ',') {
5036 /* End of param or invalid format */
5037 break;
5038 }
5039 p++;
5040 }
5041out:
5042 spin_unlock(&resource_alignment_lock);
5043 return align;
5044}
5045
5046/*
5047 * This function disables memory decoding and releases memory resources
5048 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5049 * It also rounds up size to specified alignment.
5050 * Later on, the kernel will assign page-aligned memory resource back
5051 * to the device.
5052 */
5053void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5054{
5055 int i;
5056 struct resource *r;
5057 resource_size_t align, size;
5058 u16 command;
5059
5060 /*
5061 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5062 * 3.4.1.11. Their resources are allocated from the space
5063 * described by the VF BARx register in the PF's SR-IOV capability.
5064 * We can't influence their alignment here.
5065 */
5066 if (dev->is_virtfn)
5067 return;
5068
5069 /* check if specified PCI is target device to reassign */
5070 align = pci_specified_resource_alignment(dev);
5071 if (!align)
5072 return;
5073
5074 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5075 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5076 dev_warn(&dev->dev,
5077 "Can't reassign resources to host bridge.\n");
5078 return;
5079 }
5080
5081 dev_info(&dev->dev,
5082 "Disabling memory decoding and releasing memory resources.\n");
5083 pci_read_config_word(dev, PCI_COMMAND, &command);
5084 command &= ~PCI_COMMAND_MEMORY;
5085 pci_write_config_word(dev, PCI_COMMAND, command);
5086
5087 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
5088 r = &dev->resource[i];
5089 if (!(r->flags & IORESOURCE_MEM))
5090 continue;
5091 if (r->flags & IORESOURCE_PCI_FIXED) {
5092 dev_info(&dev->dev, "Ignoring requested alignment for BAR%d: %pR\n",
5093 i, r);
5094 continue;
5095 }
5096
5097 size = resource_size(r);
5098 if (size < align) {
5099 size = align;
5100 dev_info(&dev->dev,
5101 "Rounding up size of resource #%d to %#llx.\n",
5102 i, (unsigned long long)size);
5103 }
5104 r->flags |= IORESOURCE_UNSET;
5105 r->end = size - 1;
5106 r->start = 0;
5107 }
5108 /* Need to disable bridge's resource window,
5109 * to enable the kernel to reassign new resource
5110 * window later on.
5111 */
5112 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5113 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5114 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5115 r = &dev->resource[i];
5116 if (!(r->flags & IORESOURCE_MEM))
5117 continue;
5118 r->flags |= IORESOURCE_UNSET;
5119 r->end = resource_size(r) - 1;
5120 r->start = 0;
5121 }
5122 pci_disable_bridge_window(dev);
5123 }
5124}
5125
5126static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5127{
5128 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5129 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5130 spin_lock(&resource_alignment_lock);
5131 strncpy(resource_alignment_param, buf, count);
5132 resource_alignment_param[count] = '\0';
5133 spin_unlock(&resource_alignment_lock);
5134 return count;
5135}
5136
5137static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5138{
5139 size_t count;
5140 spin_lock(&resource_alignment_lock);
5141 count = snprintf(buf, size, "%s", resource_alignment_param);
5142 spin_unlock(&resource_alignment_lock);
5143 return count;
5144}
5145
5146static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5147{
5148 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5149}
5150
5151static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5152 const char *buf, size_t count)
5153{
5154 return pci_set_resource_alignment_param(buf, count);
5155}
5156
5157static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5158 pci_resource_alignment_store);
5159
5160static int __init pci_resource_alignment_sysfs_init(void)
5161{
5162 return bus_create_file(&pci_bus_type,
5163 &bus_attr_resource_alignment);
5164}
5165late_initcall(pci_resource_alignment_sysfs_init);
5166
5167static void pci_no_domains(void)
5168{
5169#ifdef CONFIG_PCI_DOMAINS
5170 pci_domains_supported = 0;
5171#endif
5172}
5173
5174#ifdef CONFIG_PCI_DOMAINS
5175static atomic_t __domain_nr = ATOMIC_INIT(-1);
5176
5177int pci_get_new_domain_nr(void)
5178{
5179 return atomic_inc_return(&__domain_nr);
5180}
5181
5182#ifdef CONFIG_PCI_DOMAINS_GENERIC
5183static int of_pci_bus_find_domain_nr(struct device *parent)
5184{
5185 static int use_dt_domains = -1;
5186 int domain = -1;
5187
5188 if (parent)
5189 domain = of_get_pci_domain_nr(parent->of_node);
5190 /*
5191 * Check DT domain and use_dt_domains values.
5192 *
5193 * If DT domain property is valid (domain >= 0) and
5194 * use_dt_domains != 0, the DT assignment is valid since this means
5195 * we have not previously allocated a domain number by using
5196 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5197 * 1, to indicate that we have just assigned a domain number from
5198 * DT.
5199 *
5200 * If DT domain property value is not valid (ie domain < 0), and we
5201 * have not previously assigned a domain number from DT
5202 * (use_dt_domains != 1) we should assign a domain number by
5203 * using the:
5204 *
5205 * pci_get_new_domain_nr()
5206 *
5207 * API and update the use_dt_domains value to keep track of method we
5208 * are using to assign domain numbers (use_dt_domains = 0).
5209 *
5210 * All other combinations imply we have a platform that is trying
5211 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5212 * which is a recipe for domain mishandling and it is prevented by
5213 * invalidating the domain value (domain = -1) and printing a
5214 * corresponding error.
5215 */
5216 if (domain >= 0 && use_dt_domains) {
5217 use_dt_domains = 1;
5218 } else if (domain < 0 && use_dt_domains != 1) {
5219 use_dt_domains = 0;
5220 domain = pci_get_new_domain_nr();
5221 } else {
5222 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
5223 parent->of_node->full_name);
5224 domain = -1;
5225 }
5226
5227 return domain;
5228}
5229
5230int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5231{
5232 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5233 acpi_pci_bus_find_domain_nr(bus);
5234}
5235#endif
5236#endif
5237
5238/**
5239 * pci_ext_cfg_avail - can we access extended PCI config space?
5240 *
5241 * Returns 1 if we can access PCI extended config space (offsets
5242 * greater than 0xff). This is the default implementation. Architecture
5243 * implementations can override this.
5244 */
5245int __weak pci_ext_cfg_avail(void)
5246{
5247 return 1;
5248}
5249
5250void __weak pci_fixup_cardbus(struct pci_bus *bus)
5251{
5252}
5253EXPORT_SYMBOL(pci_fixup_cardbus);
5254
5255static int __init pci_setup(char *str)
5256{
5257 while (str) {
5258 char *k = strchr(str, ',');
5259 if (k)
5260 *k++ = 0;
5261 if (*str && (str = pcibios_setup(str)) && *str) {
5262 if (!strcmp(str, "nomsi")) {
5263 pci_no_msi();
5264 } else if (!strcmp(str, "noaer")) {
5265 pci_no_aer();
5266 } else if (!strncmp(str, "realloc=", 8)) {
5267 pci_realloc_get_opt(str + 8);
5268 } else if (!strncmp(str, "realloc", 7)) {
5269 pci_realloc_get_opt("on");
5270 } else if (!strcmp(str, "nodomains")) {
5271 pci_no_domains();
5272 } else if (!strncmp(str, "noari", 5)) {
5273 pcie_ari_disabled = true;
5274 } else if (!strncmp(str, "cbiosize=", 9)) {
5275 pci_cardbus_io_size = memparse(str + 9, &str);
5276 } else if (!strncmp(str, "cbmemsize=", 10)) {
5277 pci_cardbus_mem_size = memparse(str + 10, &str);
5278 } else if (!strncmp(str, "resource_alignment=", 19)) {
5279 pci_set_resource_alignment_param(str + 19,
5280 strlen(str + 19));
5281 } else if (!strncmp(str, "ecrc=", 5)) {
5282 pcie_ecrc_get_policy(str + 5);
5283 } else if (!strncmp(str, "hpiosize=", 9)) {
5284 pci_hotplug_io_size = memparse(str + 9, &str);
5285 } else if (!strncmp(str, "hpmemsize=", 10)) {
5286 pci_hotplug_mem_size = memparse(str + 10, &str);
5287 } else if (!strncmp(str, "hpbussize=", 10)) {
5288 pci_hotplug_bus_size =
5289 simple_strtoul(str + 10, &str, 0);
5290 if (pci_hotplug_bus_size > 0xff)
5291 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5292 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5293 pcie_bus_config = PCIE_BUS_TUNE_OFF;
5294 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5295 pcie_bus_config = PCIE_BUS_SAFE;
5296 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5297 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5298 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5299 pcie_bus_config = PCIE_BUS_PEER2PEER;
5300 } else if (!strncmp(str, "pcie_scan_all", 13)) {
5301 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5302 } else {
5303 printk(KERN_ERR "PCI: Unknown option `%s'\n",
5304 str);
5305 }
5306 }
5307 str = k;
5308 }
5309 return 0;
5310}
5311early_param("pci", pci_setup);