Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v3.5.6
   1/*
   2 *	PCI Bus Services, see include/linux/pci.h for further explanation.
   3 *
   4 *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   5 *	David Mosberger-Tang
   6 *
   7 *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/delay.h>
  12#include <linux/init.h>
  13#include <linux/pci.h>
  14#include <linux/pm.h>
  15#include <linux/slab.h>
  16#include <linux/module.h>
  17#include <linux/spinlock.h>
  18#include <linux/string.h>
  19#include <linux/log2.h>
  20#include <linux/pci-aspm.h>
  21#include <linux/pm_wakeup.h>
  22#include <linux/interrupt.h>
  23#include <linux/device.h>
  24#include <linux/pm_runtime.h>
 
  25#include <asm-generic/pci-bridge.h>
  26#include <asm/setup.h>
  27#include "pci.h"
  28
  29const char *pci_power_names[] = {
  30	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  31};
  32EXPORT_SYMBOL_GPL(pci_power_names);
  33
  34int isa_dma_bridge_buggy;
  35EXPORT_SYMBOL(isa_dma_bridge_buggy);
  36
  37int pci_pci_problems;
  38EXPORT_SYMBOL(pci_pci_problems);
  39
  40unsigned int pci_pm_d3_delay;
  41
  42static void pci_pme_list_scan(struct work_struct *work);
  43
  44static LIST_HEAD(pci_pme_list);
  45static DEFINE_MUTEX(pci_pme_list_mutex);
  46static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  47
  48struct pci_pme_device {
  49	struct list_head list;
  50	struct pci_dev *dev;
  51};
  52
  53#define PME_TIMEOUT 1000 /* How long between PME checks */
  54
  55static void pci_dev_d3_sleep(struct pci_dev *dev)
  56{
  57	unsigned int delay = dev->d3_delay;
  58
  59	if (delay < pci_pm_d3_delay)
  60		delay = pci_pm_d3_delay;
  61
  62	msleep(delay);
  63}
  64
  65#ifdef CONFIG_PCI_DOMAINS
  66int pci_domains_supported = 1;
  67#endif
  68
  69#define DEFAULT_CARDBUS_IO_SIZE		(256)
  70#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
  71/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  72unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  73unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  74
  75#define DEFAULT_HOTPLUG_IO_SIZE		(256)
  76#define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
  77/* pci=hpmemsize=nnM,hpiosize=nn can override this */
  78unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  79unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
  80
  81enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
  82
  83/*
  84 * The default CLS is used if arch didn't set CLS explicitly and not
  85 * all pci devices agree on the same value.  Arch can override either
  86 * the dfl or actual value as it sees fit.  Don't forget this is
  87 * measured in 32-bit words, not bytes.
  88 */
  89u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
  90u8 pci_cache_line_size;
  91
  92/*
  93 * If we set up a device for bus mastering, we need to check the latency
  94 * timer as certain BIOSes forget to set it properly.
  95 */
  96unsigned int pcibios_max_latency = 255;
  97
  98/* If set, the PCIe ARI capability will not be used. */
  99static bool pcie_ari_disabled;
 100
 101/**
 102 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 103 * @bus: pointer to PCI bus structure to search
 104 *
 105 * Given a PCI bus, returns the highest PCI bus number present in the set
 106 * including the given PCI bus and its list of child PCI buses.
 107 */
 108unsigned char pci_bus_max_busnr(struct pci_bus* bus)
 109{
 110	struct list_head *tmp;
 111	unsigned char max, n;
 112
 113	max = bus->subordinate;
 114	list_for_each(tmp, &bus->children) {
 115		n = pci_bus_max_busnr(pci_bus_b(tmp));
 116		if(n > max)
 117			max = n;
 118	}
 119	return max;
 120}
 121EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 122
 123#ifdef CONFIG_HAS_IOMEM
 124void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 125{
 126	/*
 127	 * Make sure the BAR is actually a memory resource, not an IO resource
 128	 */
 129	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 130		WARN_ON(1);
 131		return NULL;
 132	}
 133	return ioremap_nocache(pci_resource_start(pdev, bar),
 134				     pci_resource_len(pdev, bar));
 135}
 136EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 137#endif
 138
 139#if 0
 140/**
 141 * pci_max_busnr - returns maximum PCI bus number
 142 *
 143 * Returns the highest PCI bus number present in the system global list of
 144 * PCI buses.
 145 */
 146unsigned char __devinit
 147pci_max_busnr(void)
 148{
 149	struct pci_bus *bus = NULL;
 150	unsigned char max, n;
 151
 152	max = 0;
 153	while ((bus = pci_find_next_bus(bus)) != NULL) {
 154		n = pci_bus_max_busnr(bus);
 155		if(n > max)
 156			max = n;
 157	}
 158	return max;
 159}
 160
 161#endif  /*  0  */
 162
 163#define PCI_FIND_CAP_TTL	48
 164
 165static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 166				   u8 pos, int cap, int *ttl)
 167{
 168	u8 id;
 169
 170	while ((*ttl)--) {
 171		pci_bus_read_config_byte(bus, devfn, pos, &pos);
 172		if (pos < 0x40)
 173			break;
 174		pos &= ~3;
 175		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
 176					 &id);
 177		if (id == 0xff)
 178			break;
 179		if (id == cap)
 180			return pos;
 181		pos += PCI_CAP_LIST_NEXT;
 182	}
 183	return 0;
 184}
 185
 186static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 187			       u8 pos, int cap)
 188{
 189	int ttl = PCI_FIND_CAP_TTL;
 190
 191	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 192}
 193
 194int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 195{
 196	return __pci_find_next_cap(dev->bus, dev->devfn,
 197				   pos + PCI_CAP_LIST_NEXT, cap);
 198}
 199EXPORT_SYMBOL_GPL(pci_find_next_capability);
 200
 201static int __pci_bus_find_cap_start(struct pci_bus *bus,
 202				    unsigned int devfn, u8 hdr_type)
 203{
 204	u16 status;
 205
 206	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 207	if (!(status & PCI_STATUS_CAP_LIST))
 208		return 0;
 209
 210	switch (hdr_type) {
 211	case PCI_HEADER_TYPE_NORMAL:
 212	case PCI_HEADER_TYPE_BRIDGE:
 213		return PCI_CAPABILITY_LIST;
 214	case PCI_HEADER_TYPE_CARDBUS:
 215		return PCI_CB_CAPABILITY_LIST;
 216	default:
 217		return 0;
 218	}
 219
 220	return 0;
 221}
 222
 223/**
 224 * pci_find_capability - query for devices' capabilities 
 225 * @dev: PCI device to query
 226 * @cap: capability code
 227 *
 228 * Tell if a device supports a given PCI capability.
 229 * Returns the address of the requested capability structure within the
 230 * device's PCI configuration space or 0 in case the device does not
 231 * support it.  Possible values for @cap:
 232 *
 233 *  %PCI_CAP_ID_PM           Power Management 
 234 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port 
 235 *  %PCI_CAP_ID_VPD          Vital Product Data 
 236 *  %PCI_CAP_ID_SLOTID       Slot Identification 
 237 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 238 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap 
 239 *  %PCI_CAP_ID_PCIX         PCI-X
 240 *  %PCI_CAP_ID_EXP          PCI Express
 241 */
 242int pci_find_capability(struct pci_dev *dev, int cap)
 243{
 244	int pos;
 245
 246	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 247	if (pos)
 248		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 249
 250	return pos;
 251}
 252
 253/**
 254 * pci_bus_find_capability - query for devices' capabilities 
 255 * @bus:   the PCI bus to query
 256 * @devfn: PCI device to query
 257 * @cap:   capability code
 258 *
 259 * Like pci_find_capability() but works for pci devices that do not have a
 260 * pci_dev structure set up yet. 
 261 *
 262 * Returns the address of the requested capability structure within the
 263 * device's PCI configuration space or 0 in case the device does not
 264 * support it.
 265 */
 266int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 267{
 268	int pos;
 269	u8 hdr_type;
 270
 271	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 272
 273	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 274	if (pos)
 275		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 276
 277	return pos;
 278}
 279
 280/**
 281 * pci_find_ext_capability - Find an extended capability
 282 * @dev: PCI device to query
 
 283 * @cap: capability code
 284 *
 285 * Returns the address of the requested extended capability structure
 286 * within the device's PCI configuration space or 0 if the device does
 287 * not support it.  Possible values for @cap:
 288 *
 289 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 290 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 291 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 292 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 293 */
 294int pci_find_ext_capability(struct pci_dev *dev, int cap)
 295{
 296	u32 header;
 297	int ttl;
 298	int pos = PCI_CFG_SPACE_SIZE;
 299
 300	/* minimum 8 bytes per capability */
 301	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 302
 303	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 304		return 0;
 305
 
 
 
 306	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 307		return 0;
 308
 309	/*
 310	 * If we have no capabilities, this is indicated by cap ID,
 311	 * cap version and next pointer all being 0.
 312	 */
 313	if (header == 0)
 314		return 0;
 315
 316	while (ttl-- > 0) {
 317		if (PCI_EXT_CAP_ID(header) == cap)
 318			return pos;
 319
 320		pos = PCI_EXT_CAP_NEXT(header);
 321		if (pos < PCI_CFG_SPACE_SIZE)
 322			break;
 323
 324		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 325			break;
 326	}
 327
 328	return 0;
 329}
 330EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 331
 332/**
 333 * pci_bus_find_ext_capability - find an extended capability
 334 * @bus:   the PCI bus to query
 335 * @devfn: PCI device to query
 336 * @cap:   capability code
 337 *
 338 * Like pci_find_ext_capability() but works for pci devices that do not have a
 339 * pci_dev structure set up yet.
 
 340 *
 341 * Returns the address of the requested capability structure within the
 342 * device's PCI configuration space or 0 in case the device does not
 343 * support it.
 
 344 */
 345int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn,
 346				int cap)
 347{
 348	u32 header;
 349	int ttl;
 350	int pos = PCI_CFG_SPACE_SIZE;
 351
 352	/* minimum 8 bytes per capability */
 353	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 354
 355	if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
 356		return 0;
 357	if (header == 0xffffffff || header == 0)
 358		return 0;
 359
 360	while (ttl-- > 0) {
 361		if (PCI_EXT_CAP_ID(header) == cap)
 362			return pos;
 363
 364		pos = PCI_EXT_CAP_NEXT(header);
 365		if (pos < PCI_CFG_SPACE_SIZE)
 366			break;
 367
 368		if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
 369			break;
 370	}
 371
 372	return 0;
 373}
 
 374
 375static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 376{
 377	int rc, ttl = PCI_FIND_CAP_TTL;
 378	u8 cap, mask;
 379
 380	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 381		mask = HT_3BIT_CAP_MASK;
 382	else
 383		mask = HT_5BIT_CAP_MASK;
 384
 385	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 386				      PCI_CAP_ID_HT, &ttl);
 387	while (pos) {
 388		rc = pci_read_config_byte(dev, pos + 3, &cap);
 389		if (rc != PCIBIOS_SUCCESSFUL)
 390			return 0;
 391
 392		if ((cap & mask) == ht_cap)
 393			return pos;
 394
 395		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 396					      pos + PCI_CAP_LIST_NEXT,
 397					      PCI_CAP_ID_HT, &ttl);
 398	}
 399
 400	return 0;
 401}
 402/**
 403 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 404 * @dev: PCI device to query
 405 * @pos: Position from which to continue searching
 406 * @ht_cap: Hypertransport capability code
 407 *
 408 * To be used in conjunction with pci_find_ht_capability() to search for
 409 * all capabilities matching @ht_cap. @pos should always be a value returned
 410 * from pci_find_ht_capability().
 411 *
 412 * NB. To be 100% safe against broken PCI devices, the caller should take
 413 * steps to avoid an infinite loop.
 414 */
 415int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 416{
 417	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 418}
 419EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 420
 421/**
 422 * pci_find_ht_capability - query a device's Hypertransport capabilities
 423 * @dev: PCI device to query
 424 * @ht_cap: Hypertransport capability code
 425 *
 426 * Tell if a device supports a given Hypertransport capability.
 427 * Returns an address within the device's PCI configuration space
 428 * or 0 in case the device does not support the request capability.
 429 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 430 * which has a Hypertransport capability matching @ht_cap.
 431 */
 432int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 433{
 434	int pos;
 435
 436	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 437	if (pos)
 438		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 439
 440	return pos;
 441}
 442EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 443
 444/**
 445 * pci_find_parent_resource - return resource region of parent bus of given region
 446 * @dev: PCI device structure contains resources to be searched
 447 * @res: child resource record for which parent is sought
 448 *
 449 *  For given resource region of given device, return the resource
 450 *  region of parent bus the given region is contained in or where
 451 *  it should be allocated from.
 452 */
 453struct resource *
 454pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
 455{
 456	const struct pci_bus *bus = dev->bus;
 
 457	int i;
 458	struct resource *best = NULL, *r;
 459
 460	pci_bus_for_each_resource(bus, r, i) {
 461		if (!r)
 462			continue;
 463		if (res->start && !(res->start >= r->start && res->end <= r->end))
 464			continue;	/* Not contained */
 465		if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
 466			continue;	/* Wrong type */
 467		if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
 468			return r;	/* Exact match */
 469		/* We can't insert a non-prefetch resource inside a prefetchable parent .. */
 470		if (r->flags & IORESOURCE_PREFETCH)
 471			continue;
 472		/* .. but we can put a prefetchable resource inside a non-prefetchable one */
 473		if (!best)
 474			best = r;
 
 
 
 
 
 
 
 
 475	}
 476	return best;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 477}
 478
 479/**
 480 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
 481 * @dev: PCI device to have its BARs restored
 482 *
 483 * Restore the BAR values for a given device, so as to make it
 484 * accessible by its driver.
 485 */
 486static void
 487pci_restore_bars(struct pci_dev *dev)
 488{
 489	int i;
 490
 491	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 492		pci_update_resource(dev, i);
 493}
 494
 495static struct pci_platform_pm_ops *pci_platform_pm;
 496
 497int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
 498{
 499	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
 500	    || !ops->sleep_wake || !ops->can_wakeup)
 501		return -EINVAL;
 502	pci_platform_pm = ops;
 503	return 0;
 504}
 505
 506static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 507{
 508	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 509}
 510
 511static inline int platform_pci_set_power_state(struct pci_dev *dev,
 512                                                pci_power_t t)
 513{
 514	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 515}
 516
 517static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 518{
 519	return pci_platform_pm ?
 520			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 521}
 522
 523static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
 524{
 525	return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
 526}
 527
 528static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
 529{
 530	return pci_platform_pm ?
 531			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
 532}
 533
 534static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
 535{
 536	return pci_platform_pm ?
 537			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
 538}
 539
 540/**
 541 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 542 *                           given PCI device
 543 * @dev: PCI device to handle.
 544 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 545 *
 546 * RETURN VALUE:
 547 * -EINVAL if the requested state is invalid.
 548 * -EIO if device does not support PCI PM or its PM capabilities register has a
 549 * wrong version, or device doesn't support the requested state.
 550 * 0 if device already is in the requested state.
 551 * 0 if device's power state has been successfully changed.
 552 */
 553static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 554{
 555	u16 pmcsr;
 556	bool need_restore = false;
 557
 558	/* Check if we're already there */
 559	if (dev->current_state == state)
 560		return 0;
 561
 562	if (!dev->pm_cap)
 563		return -EIO;
 564
 565	if (state < PCI_D0 || state > PCI_D3hot)
 566		return -EINVAL;
 567
 568	/* Validate current state:
 569	 * Can enter D0 from any state, but if we can only go deeper 
 570	 * to sleep if we're already in a low power state
 571	 */
 572	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 573	    && dev->current_state > state) {
 574		dev_err(&dev->dev, "invalid power transition "
 575			"(from state %d to %d)\n", dev->current_state, state);
 576		return -EINVAL;
 577	}
 578
 579	/* check if this device supports the desired state */
 580	if ((state == PCI_D1 && !dev->d1_support)
 581	   || (state == PCI_D2 && !dev->d2_support))
 582		return -EIO;
 583
 584	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 585
 586	/* If we're (effectively) in D3, force entire word to 0.
 587	 * This doesn't affect PME_Status, disables PME_En, and
 588	 * sets PowerState to 0.
 589	 */
 590	switch (dev->current_state) {
 591	case PCI_D0:
 592	case PCI_D1:
 593	case PCI_D2:
 594		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 595		pmcsr |= state;
 596		break;
 597	case PCI_D3hot:
 598	case PCI_D3cold:
 599	case PCI_UNKNOWN: /* Boot-up */
 600		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 601		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 602			need_restore = true;
 603		/* Fall-through: force to D0 */
 604	default:
 605		pmcsr = 0;
 606		break;
 607	}
 608
 609	/* enter specified state */
 610	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 611
 612	/* Mandatory power management transition delays */
 613	/* see PCI PM 1.1 5.6.1 table 18 */
 614	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 615		pci_dev_d3_sleep(dev);
 616	else if (state == PCI_D2 || dev->current_state == PCI_D2)
 617		udelay(PCI_PM_D2_DELAY);
 618
 619	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 620	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 621	if (dev->current_state != state && printk_ratelimit())
 622		dev_info(&dev->dev, "Refused to change power state, "
 623			"currently in D%d\n", dev->current_state);
 624
 625	/* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 
 626	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 627	 * from D3hot to D0 _may_ perform an internal reset, thereby
 628	 * going to "D0 Uninitialized" rather than "D0 Initialized".
 629	 * For example, at least some versions of the 3c905B and the
 630	 * 3c556B exhibit this behaviour.
 631	 *
 632	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 633	 * devices in a D3hot state at boot.  Consequently, we need to
 634	 * restore at least the BARs so that the device will be
 635	 * accessible to its driver.
 636	 */
 637	if (need_restore)
 638		pci_restore_bars(dev);
 639
 640	if (dev->bus->self)
 641		pcie_aspm_pm_state_change(dev->bus->self);
 642
 643	return 0;
 644}
 645
 646/**
 647 * pci_update_current_state - Read PCI power state of given device from its
 648 *                            PCI PM registers and cache it
 649 * @dev: PCI device to handle.
 650 * @state: State to cache in case the device doesn't have the PM capability
 651 */
 652void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 653{
 654	if (dev->pm_cap) {
 655		u16 pmcsr;
 656
 
 
 
 
 
 
 
 
 
 
 657		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 658		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 659	} else {
 660		dev->current_state = state;
 661	}
 662}
 663
 664/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 665 * pci_platform_power_transition - Use platform to change device power state
 666 * @dev: PCI device to handle.
 667 * @state: State to put the device into.
 668 */
 669static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 670{
 671	int error;
 672
 673	if (platform_pci_power_manageable(dev)) {
 674		error = platform_pci_set_power_state(dev, state);
 675		if (!error)
 676			pci_update_current_state(dev, state);
 677		/* Fall back to PCI_D0 if native PM is not supported */
 678		if (!dev->pm_cap)
 679			dev->current_state = PCI_D0;
 680	} else {
 681		error = -ENODEV;
 682		/* Fall back to PCI_D0 if native PM is not supported */
 683		if (!dev->pm_cap)
 684			dev->current_state = PCI_D0;
 685	}
 686
 687	return error;
 688}
 689
 690/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 691 * __pci_start_power_transition - Start power transition of a PCI device
 692 * @dev: PCI device to handle.
 693 * @state: State to put the device into.
 694 */
 695static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
 696{
 697	if (state == PCI_D0)
 698		pci_platform_power_transition(dev, PCI_D0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699}
 700
 701/**
 702 * __pci_complete_power_transition - Complete power transition of a PCI device
 703 * @dev: PCI device to handle.
 704 * @state: State to put the device into.
 705 *
 706 * This function should not be called directly by device drivers.
 707 */
 708int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
 709{
 710	return state >= PCI_D0 ?
 711			pci_platform_power_transition(dev, state) : -EINVAL;
 
 
 
 
 
 
 
 712}
 713EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
 714
 715/**
 716 * pci_set_power_state - Set the power state of a PCI device
 717 * @dev: PCI device to handle.
 718 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 719 *
 720 * Transition a device to a new power state, using the platform firmware and/or
 721 * the device's PCI PM registers.
 722 *
 723 * RETURN VALUE:
 724 * -EINVAL if the requested state is invalid.
 725 * -EIO if device does not support PCI PM or its PM capabilities register has a
 726 * wrong version, or device doesn't support the requested state.
 727 * 0 if device already is in the requested state.
 728 * 0 if device's power state has been successfully changed.
 729 */
 730int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
 731{
 732	int error;
 733
 734	/* bound the state we're entering */
 735	if (state > PCI_D3hot)
 736		state = PCI_D3hot;
 737	else if (state < PCI_D0)
 738		state = PCI_D0;
 739	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
 740		/*
 741		 * If the device or the parent bridge do not support PCI PM,
 742		 * ignore the request if we're doing anything other than putting
 743		 * it into D0 (which would only happen on boot).
 744		 */
 745		return 0;
 746
 
 
 
 
 747	__pci_start_power_transition(dev, state);
 748
 749	/* This device is quirked not to be put into D3, so
 750	   don't put it in D3 */
 751	if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
 752		return 0;
 753
 754	error = pci_raw_set_power_state(dev, state);
 
 
 
 
 
 755
 756	if (!__pci_complete_power_transition(dev, state))
 757		error = 0;
 758	/*
 759	 * When aspm_policy is "powersave" this call ensures
 760	 * that ASPM is configured.
 761	 */
 762	if (!error && dev->bus->self)
 763		pcie_aspm_powersave_config_link(dev->bus->self);
 764
 765	return error;
 766}
 767
 768/**
 769 * pci_choose_state - Choose the power state of a PCI device
 770 * @dev: PCI device to be suspended
 771 * @state: target sleep state for the whole system. This is the value
 772 *	that is passed to suspend() function.
 773 *
 774 * Returns PCI power state suitable for given device and given system
 775 * message.
 776 */
 777
 778pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
 779{
 780	pci_power_t ret;
 781
 782	if (!pci_find_capability(dev, PCI_CAP_ID_PM))
 783		return PCI_D0;
 784
 785	ret = platform_pci_choose_state(dev);
 786	if (ret != PCI_POWER_ERROR)
 787		return ret;
 788
 789	switch (state.event) {
 790	case PM_EVENT_ON:
 791		return PCI_D0;
 792	case PM_EVENT_FREEZE:
 793	case PM_EVENT_PRETHAW:
 794		/* REVISIT both freeze and pre-thaw "should" use D0 */
 795	case PM_EVENT_SUSPEND:
 796	case PM_EVENT_HIBERNATE:
 797		return PCI_D3hot;
 798	default:
 799		dev_info(&dev->dev, "unrecognized suspend event %d\n",
 800			 state.event);
 801		BUG();
 802	}
 803	return PCI_D0;
 804}
 805
 806EXPORT_SYMBOL(pci_choose_state);
 807
 808#define PCI_EXP_SAVE_REGS	7
 809
 810#define pcie_cap_has_devctl(type, flags)	1
 811#define pcie_cap_has_lnkctl(type, flags)		\
 812		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
 813		 (type == PCI_EXP_TYPE_ROOT_PORT ||	\
 814		  type == PCI_EXP_TYPE_ENDPOINT ||	\
 815		  type == PCI_EXP_TYPE_LEG_END))
 816#define pcie_cap_has_sltctl(type, flags)		\
 817		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
 818		 ((type == PCI_EXP_TYPE_ROOT_PORT) ||	\
 819		  (type == PCI_EXP_TYPE_DOWNSTREAM &&	\
 820		   (flags & PCI_EXP_FLAGS_SLOT))))
 821#define pcie_cap_has_rtctl(type, flags)			\
 822		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
 823		 (type == PCI_EXP_TYPE_ROOT_PORT ||	\
 824		  type == PCI_EXP_TYPE_RC_EC))
 825#define pcie_cap_has_devctl2(type, flags)		\
 826		((flags & PCI_EXP_FLAGS_VERS) > 1)
 827#define pcie_cap_has_lnkctl2(type, flags)		\
 828		((flags & PCI_EXP_FLAGS_VERS) > 1)
 829#define pcie_cap_has_sltctl2(type, flags)		\
 830		((flags & PCI_EXP_FLAGS_VERS) > 1)
 831
 832static struct pci_cap_saved_state *pci_find_saved_cap(
 833	struct pci_dev *pci_dev, char cap)
 834{
 835	struct pci_cap_saved_state *tmp;
 836	struct hlist_node *pos;
 837
 838	hlist_for_each_entry(tmp, pos, &pci_dev->saved_cap_space, next) {
 839		if (tmp->cap.cap_nr == cap)
 840			return tmp;
 841	}
 842	return NULL;
 843}
 844
 
 
 
 
 
 
 
 
 
 
 845static int pci_save_pcie_state(struct pci_dev *dev)
 846{
 847	int pos, i = 0;
 848	struct pci_cap_saved_state *save_state;
 849	u16 *cap;
 850	u16 flags;
 851
 852	pos = pci_pcie_cap(dev);
 853	if (!pos)
 854		return 0;
 855
 856	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 857	if (!save_state) {
 858		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 859		return -ENOMEM;
 860	}
 861	cap = (u16 *)&save_state->cap.data[0];
 862
 863	pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
 864
 865	if (pcie_cap_has_devctl(dev->pcie_type, flags))
 866		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
 867	if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
 868		pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
 869	if (pcie_cap_has_sltctl(dev->pcie_type, flags))
 870		pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
 871	if (pcie_cap_has_rtctl(dev->pcie_type, flags))
 872		pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
 873	if (pcie_cap_has_devctl2(dev->pcie_type, flags))
 874		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
 875	if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
 876		pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
 877	if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
 878		pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
 879
 880	return 0;
 881}
 882
 883static void pci_restore_pcie_state(struct pci_dev *dev)
 884{
 885	int i = 0, pos;
 886	struct pci_cap_saved_state *save_state;
 887	u16 *cap;
 888	u16 flags;
 889
 890	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 891	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
 892	if (!save_state || pos <= 0)
 893		return;
 894	cap = (u16 *)&save_state->cap.data[0];
 895
 896	pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
 897
 898	if (pcie_cap_has_devctl(dev->pcie_type, flags))
 899		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
 900	if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
 901		pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
 902	if (pcie_cap_has_sltctl(dev->pcie_type, flags))
 903		pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
 904	if (pcie_cap_has_rtctl(dev->pcie_type, flags))
 905		pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
 906	if (pcie_cap_has_devctl2(dev->pcie_type, flags))
 907		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
 908	if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
 909		pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
 910	if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
 911		pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
 912}
 913
 914
 915static int pci_save_pcix_state(struct pci_dev *dev)
 916{
 917	int pos;
 918	struct pci_cap_saved_state *save_state;
 919
 920	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 921	if (pos <= 0)
 922		return 0;
 923
 924	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 925	if (!save_state) {
 926		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 927		return -ENOMEM;
 928	}
 929
 930	pci_read_config_word(dev, pos + PCI_X_CMD,
 931			     (u16 *)save_state->cap.data);
 932
 933	return 0;
 934}
 935
 936static void pci_restore_pcix_state(struct pci_dev *dev)
 937{
 938	int i = 0, pos;
 939	struct pci_cap_saved_state *save_state;
 940	u16 *cap;
 941
 942	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 943	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 944	if (!save_state || pos <= 0)
 945		return;
 946	cap = (u16 *)&save_state->cap.data[0];
 947
 948	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
 949}
 950
 951
 952/**
 953 * pci_save_state - save the PCI configuration space of a device before suspending
 954 * @dev: - PCI device that we're dealing with
 955 */
 956int
 957pci_save_state(struct pci_dev *dev)
 958{
 959	int i;
 960	/* XXX: 100% dword access ok here? */
 961	for (i = 0; i < 16; i++)
 962		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
 963	dev->state_saved = true;
 964	if ((i = pci_save_pcie_state(dev)) != 0)
 965		return i;
 966	if ((i = pci_save_pcix_state(dev)) != 0)
 967		return i;
 
 
 968	return 0;
 969}
 970
 971static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
 972				     u32 saved_val, int retry)
 973{
 974	u32 val;
 975
 976	pci_read_config_dword(pdev, offset, &val);
 977	if (val == saved_val)
 978		return;
 979
 980	for (;;) {
 981		dev_dbg(&pdev->dev, "restoring config space at offset "
 982			"%#x (was %#x, writing %#x)\n", offset, val, saved_val);
 983		pci_write_config_dword(pdev, offset, saved_val);
 984		if (retry-- <= 0)
 985			return;
 986
 987		pci_read_config_dword(pdev, offset, &val);
 988		if (val == saved_val)
 989			return;
 990
 991		mdelay(1);
 992	}
 993}
 994
 995static void pci_restore_config_space_range(struct pci_dev *pdev,
 996					   int start, int end, int retry)
 997{
 998	int index;
 999
1000	for (index = end; index >= start; index--)
1001		pci_restore_config_dword(pdev, 4 * index,
1002					 pdev->saved_config_space[index],
1003					 retry);
1004}
1005
1006static void pci_restore_config_space(struct pci_dev *pdev)
1007{
1008	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1009		pci_restore_config_space_range(pdev, 10, 15, 0);
1010		/* Restore BARs before the command register. */
1011		pci_restore_config_space_range(pdev, 4, 9, 10);
1012		pci_restore_config_space_range(pdev, 0, 3, 0);
1013	} else {
1014		pci_restore_config_space_range(pdev, 0, 15, 0);
1015	}
1016}
1017
1018/** 
1019 * pci_restore_state - Restore the saved state of a PCI device
1020 * @dev: - PCI device that we're dealing with
1021 */
1022void pci_restore_state(struct pci_dev *dev)
1023{
1024	if (!dev->state_saved)
1025		return;
1026
1027	/* PCI Express register must be restored first */
1028	pci_restore_pcie_state(dev);
1029	pci_restore_ats_state(dev);
 
1030
1031	pci_restore_config_space(dev);
1032
1033	pci_restore_pcix_state(dev);
1034	pci_restore_msi_state(dev);
1035	pci_restore_iov_state(dev);
1036
1037	dev->state_saved = false;
1038}
1039
1040struct pci_saved_state {
1041	u32 config_space[16];
1042	struct pci_cap_saved_data cap[0];
1043};
1044
1045/**
1046 * pci_store_saved_state - Allocate and return an opaque struct containing
1047 *			   the device saved state.
1048 * @dev: PCI device that we're dealing with
1049 *
1050 * Rerturn NULL if no state or error.
1051 */
1052struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1053{
1054	struct pci_saved_state *state;
1055	struct pci_cap_saved_state *tmp;
1056	struct pci_cap_saved_data *cap;
1057	struct hlist_node *pos;
1058	size_t size;
1059
1060	if (!dev->state_saved)
1061		return NULL;
1062
1063	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1064
1065	hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next)
1066		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1067
1068	state = kzalloc(size, GFP_KERNEL);
1069	if (!state)
1070		return NULL;
1071
1072	memcpy(state->config_space, dev->saved_config_space,
1073	       sizeof(state->config_space));
1074
1075	cap = state->cap;
1076	hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) {
1077		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1078		memcpy(cap, &tmp->cap, len);
1079		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1080	}
1081	/* Empty cap_save terminates list */
1082
1083	return state;
1084}
1085EXPORT_SYMBOL_GPL(pci_store_saved_state);
1086
1087/**
1088 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1089 * @dev: PCI device that we're dealing with
1090 * @state: Saved state returned from pci_store_saved_state()
1091 */
1092int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
 
1093{
1094	struct pci_cap_saved_data *cap;
1095
1096	dev->state_saved = false;
1097
1098	if (!state)
1099		return 0;
1100
1101	memcpy(dev->saved_config_space, state->config_space,
1102	       sizeof(state->config_space));
1103
1104	cap = state->cap;
1105	while (cap->size) {
1106		struct pci_cap_saved_state *tmp;
1107
1108		tmp = pci_find_saved_cap(dev, cap->cap_nr);
1109		if (!tmp || tmp->cap.size != cap->size)
1110			return -EINVAL;
1111
1112		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1113		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1114		       sizeof(struct pci_cap_saved_data) + cap->size);
1115	}
1116
1117	dev->state_saved = true;
1118	return 0;
1119}
1120EXPORT_SYMBOL_GPL(pci_load_saved_state);
1121
1122/**
1123 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1124 *				   and free the memory allocated for it.
1125 * @dev: PCI device that we're dealing with
1126 * @state: Pointer to saved state returned from pci_store_saved_state()
1127 */
1128int pci_load_and_free_saved_state(struct pci_dev *dev,
1129				  struct pci_saved_state **state)
1130{
1131	int ret = pci_load_saved_state(dev, *state);
1132	kfree(*state);
1133	*state = NULL;
1134	return ret;
1135}
1136EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1137
 
 
 
 
 
1138static int do_pci_enable_device(struct pci_dev *dev, int bars)
1139{
1140	int err;
 
 
1141
1142	err = pci_set_power_state(dev, PCI_D0);
1143	if (err < 0 && err != -EIO)
1144		return err;
1145	err = pcibios_enable_device(dev, bars);
1146	if (err < 0)
1147		return err;
1148	pci_fixup_device(pci_fixup_enable, dev);
1149
 
 
 
 
 
 
 
 
 
 
 
1150	return 0;
1151}
1152
1153/**
1154 * pci_reenable_device - Resume abandoned device
1155 * @dev: PCI device to be resumed
1156 *
1157 *  Note this function is a backend of pci_default_resume and is not supposed
1158 *  to be called by normal code, write proper resume handler and use it instead.
1159 */
1160int pci_reenable_device(struct pci_dev *dev)
1161{
1162	if (pci_is_enabled(dev))
1163		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1164	return 0;
1165}
1166
1167static int __pci_enable_device_flags(struct pci_dev *dev,
1168				     resource_size_t flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1169{
 
1170	int err;
1171	int i, bars = 0;
1172
1173	/*
1174	 * Power state could be unknown at this point, either due to a fresh
1175	 * boot or a device removal call.  So get the current power state
1176	 * so that things like MSI message writing will behave as expected
1177	 * (e.g. if the device really is in D0 at enable time).
1178	 */
1179	if (dev->pm_cap) {
1180		u16 pmcsr;
1181		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1182		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1183	}
1184
1185	if (atomic_add_return(1, &dev->enable_cnt) > 1)
1186		return 0;		/* already enabled */
1187
 
 
 
 
1188	/* only skip sriov related */
1189	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1190		if (dev->resource[i].flags & flags)
1191			bars |= (1 << i);
1192	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1193		if (dev->resource[i].flags & flags)
1194			bars |= (1 << i);
1195
1196	err = do_pci_enable_device(dev, bars);
1197	if (err < 0)
1198		atomic_dec(&dev->enable_cnt);
1199	return err;
1200}
1201
1202/**
1203 * pci_enable_device_io - Initialize a device for use with IO space
1204 * @dev: PCI device to be initialized
1205 *
1206 *  Initialize device before it's used by a driver. Ask low-level code
1207 *  to enable I/O resources. Wake up the device if it was suspended.
1208 *  Beware, this function can fail.
1209 */
1210int pci_enable_device_io(struct pci_dev *dev)
1211{
1212	return __pci_enable_device_flags(dev, IORESOURCE_IO);
1213}
1214
1215/**
1216 * pci_enable_device_mem - Initialize a device for use with Memory space
1217 * @dev: PCI device to be initialized
1218 *
1219 *  Initialize device before it's used by a driver. Ask low-level code
1220 *  to enable Memory resources. Wake up the device if it was suspended.
1221 *  Beware, this function can fail.
1222 */
1223int pci_enable_device_mem(struct pci_dev *dev)
1224{
1225	return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1226}
1227
1228/**
1229 * pci_enable_device - Initialize device before it's used by a driver.
1230 * @dev: PCI device to be initialized
1231 *
1232 *  Initialize device before it's used by a driver. Ask low-level code
1233 *  to enable I/O and memory. Wake up the device if it was suspended.
1234 *  Beware, this function can fail.
1235 *
1236 *  Note we don't actually enable the device many times if we call
1237 *  this function repeatedly (we just increment the count).
1238 */
1239int pci_enable_device(struct pci_dev *dev)
1240{
1241	return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1242}
1243
1244/*
1245 * Managed PCI resources.  This manages device on/off, intx/msi/msix
1246 * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1247 * there's no need to track it separately.  pci_devres is initialized
1248 * when a device is enabled using managed PCI device enable interface.
1249 */
1250struct pci_devres {
1251	unsigned int enabled:1;
1252	unsigned int pinned:1;
1253	unsigned int orig_intx:1;
1254	unsigned int restore_intx:1;
1255	u32 region_mask;
1256};
1257
1258static void pcim_release(struct device *gendev, void *res)
1259{
1260	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1261	struct pci_devres *this = res;
1262	int i;
1263
1264	if (dev->msi_enabled)
1265		pci_disable_msi(dev);
1266	if (dev->msix_enabled)
1267		pci_disable_msix(dev);
1268
1269	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1270		if (this->region_mask & (1 << i))
1271			pci_release_region(dev, i);
1272
1273	if (this->restore_intx)
1274		pci_intx(dev, this->orig_intx);
1275
1276	if (this->enabled && !this->pinned)
1277		pci_disable_device(dev);
1278}
1279
1280static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1281{
1282	struct pci_devres *dr, *new_dr;
1283
1284	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1285	if (dr)
1286		return dr;
1287
1288	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1289	if (!new_dr)
1290		return NULL;
1291	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1292}
1293
1294static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1295{
1296	if (pci_is_managed(pdev))
1297		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1298	return NULL;
1299}
1300
1301/**
1302 * pcim_enable_device - Managed pci_enable_device()
1303 * @pdev: PCI device to be initialized
1304 *
1305 * Managed pci_enable_device().
1306 */
1307int pcim_enable_device(struct pci_dev *pdev)
1308{
1309	struct pci_devres *dr;
1310	int rc;
1311
1312	dr = get_pci_dr(pdev);
1313	if (unlikely(!dr))
1314		return -ENOMEM;
1315	if (dr->enabled)
1316		return 0;
1317
1318	rc = pci_enable_device(pdev);
1319	if (!rc) {
1320		pdev->is_managed = 1;
1321		dr->enabled = 1;
1322	}
1323	return rc;
1324}
1325
1326/**
1327 * pcim_pin_device - Pin managed PCI device
1328 * @pdev: PCI device to pin
1329 *
1330 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1331 * driver detach.  @pdev must have been enabled with
1332 * pcim_enable_device().
1333 */
1334void pcim_pin_device(struct pci_dev *pdev)
1335{
1336	struct pci_devres *dr;
1337
1338	dr = find_pci_dr(pdev);
1339	WARN_ON(!dr || !dr->enabled);
1340	if (dr)
1341		dr->pinned = 1;
1342}
1343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1344/**
1345 * pcibios_disable_device - disable arch specific PCI resources for device dev
1346 * @dev: the PCI device to disable
1347 *
1348 * Disables architecture specific PCI resources for the device. This
1349 * is the default implementation. Architecture implementations can
1350 * override this.
1351 */
1352void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1353
1354static void do_pci_disable_device(struct pci_dev *dev)
1355{
1356	u16 pci_command;
1357
1358	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1359	if (pci_command & PCI_COMMAND_MASTER) {
1360		pci_command &= ~PCI_COMMAND_MASTER;
1361		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1362	}
1363
1364	pcibios_disable_device(dev);
1365}
1366
1367/**
1368 * pci_disable_enabled_device - Disable device without updating enable_cnt
1369 * @dev: PCI device to disable
1370 *
1371 * NOTE: This function is a backend of PCI power management routines and is
1372 * not supposed to be called drivers.
1373 */
1374void pci_disable_enabled_device(struct pci_dev *dev)
1375{
1376	if (pci_is_enabled(dev))
1377		do_pci_disable_device(dev);
1378}
1379
1380/**
1381 * pci_disable_device - Disable PCI device after use
1382 * @dev: PCI device to be disabled
1383 *
1384 * Signal to the system that the PCI device is not in use by the system
1385 * anymore.  This only involves disabling PCI bus-mastering, if active.
1386 *
1387 * Note we don't actually disable the device until all callers of
1388 * pci_enable_device() have called pci_disable_device().
1389 */
1390void
1391pci_disable_device(struct pci_dev *dev)
1392{
1393	struct pci_devres *dr;
1394
1395	dr = find_pci_dr(dev);
1396	if (dr)
1397		dr->enabled = 0;
1398
1399	if (atomic_sub_return(1, &dev->enable_cnt) != 0)
 
 
 
1400		return;
1401
1402	do_pci_disable_device(dev);
1403
1404	dev->is_busmaster = 0;
1405}
1406
1407/**
1408 * pcibios_set_pcie_reset_state - set reset state for device dev
1409 * @dev: the PCIe device reset
1410 * @state: Reset state to enter into
1411 *
1412 *
1413 * Sets the PCIe reset state for the device. This is the default
1414 * implementation. Architecture implementations can override this.
1415 */
1416int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1417							enum pcie_reset_state state)
1418{
1419	return -EINVAL;
1420}
1421
1422/**
1423 * pci_set_pcie_reset_state - set reset state for device dev
1424 * @dev: the PCIe device reset
1425 * @state: Reset state to enter into
1426 *
1427 *
1428 * Sets the PCI reset state for the device.
1429 */
1430int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1431{
1432	return pcibios_set_pcie_reset_state(dev, state);
1433}
1434
1435/**
1436 * pci_check_pme_status - Check if given device has generated PME.
1437 * @dev: Device to check.
1438 *
1439 * Check the PME status of the device and if set, clear it and clear PME enable
1440 * (if set).  Return 'true' if PME status and PME enable were both set or
1441 * 'false' otherwise.
1442 */
1443bool pci_check_pme_status(struct pci_dev *dev)
1444{
1445	int pmcsr_pos;
1446	u16 pmcsr;
1447	bool ret = false;
1448
1449	if (!dev->pm_cap)
1450		return false;
1451
1452	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1453	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1454	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1455		return false;
1456
1457	/* Clear PME status. */
1458	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1459	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1460		/* Disable PME to avoid interrupt flood. */
1461		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1462		ret = true;
1463	}
1464
1465	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1466
1467	return ret;
1468}
1469
1470/**
1471 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1472 * @dev: Device to handle.
1473 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1474 *
1475 * Check if @dev has generated PME and queue a resume request for it in that
1476 * case.
1477 */
1478static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1479{
1480	if (pme_poll_reset && dev->pme_poll)
1481		dev->pme_poll = false;
1482
1483	if (pci_check_pme_status(dev)) {
1484		pci_wakeup_event(dev);
1485		pm_request_resume(&dev->dev);
1486	}
1487	return 0;
1488}
1489
1490/**
1491 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1492 * @bus: Top bus of the subtree to walk.
1493 */
1494void pci_pme_wakeup_bus(struct pci_bus *bus)
1495{
1496	if (bus)
1497		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1498}
1499
 
1500/**
1501 * pci_pme_capable - check the capability of PCI device to generate PME#
1502 * @dev: PCI device to handle.
1503 * @state: PCI state from which device will issue PME#.
1504 */
1505bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1506{
1507	if (!dev->pm_cap)
1508		return false;
1509
1510	return !!(dev->pme_support & (1 << state));
1511}
1512
1513static void pci_pme_list_scan(struct work_struct *work)
1514{
1515	struct pci_pme_device *pme_dev, *n;
1516
1517	mutex_lock(&pci_pme_list_mutex);
1518	if (!list_empty(&pci_pme_list)) {
1519		list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1520			if (pme_dev->dev->pme_poll) {
1521				pci_pme_wakeup(pme_dev->dev, NULL);
1522			} else {
1523				list_del(&pme_dev->list);
1524				kfree(pme_dev);
1525			}
 
 
 
 
 
 
 
 
1526		}
1527		if (!list_empty(&pci_pme_list))
1528			schedule_delayed_work(&pci_pme_work,
1529					      msecs_to_jiffies(PME_TIMEOUT));
1530	}
 
 
 
1531	mutex_unlock(&pci_pme_list_mutex);
1532}
1533
1534/**
1535 * pci_pme_active - enable or disable PCI device's PME# function
1536 * @dev: PCI device to handle.
1537 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1538 *
1539 * The caller must verify that the device is capable of generating PME# before
1540 * calling this function with @enable equal to 'true'.
1541 */
1542void pci_pme_active(struct pci_dev *dev, bool enable)
1543{
1544	u16 pmcsr;
1545
1546	if (!dev->pm_cap)
1547		return;
1548
1549	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1550	/* Clear PME_Status by writing 1 to it and enable PME# */
1551	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1552	if (!enable)
1553		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1554
1555	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1556
1557	/* PCI (as opposed to PCIe) PME requires that the device have
1558	   its PME# line hooked up correctly. Not all hardware vendors
1559	   do this, so the PME never gets delivered and the device
1560	   remains asleep. The easiest way around this is to
1561	   periodically walk the list of suspended devices and check
1562	   whether any have their PME flag set. The assumption is that
1563	   we'll wake up often enough anyway that this won't be a huge
1564	   hit, and the power savings from the devices will still be a
1565	   win. */
 
 
 
 
 
 
 
 
 
 
1566
1567	if (dev->pme_poll) {
1568		struct pci_pme_device *pme_dev;
1569		if (enable) {
1570			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1571					  GFP_KERNEL);
1572			if (!pme_dev)
1573				goto out;
 
 
1574			pme_dev->dev = dev;
1575			mutex_lock(&pci_pme_list_mutex);
1576			list_add(&pme_dev->list, &pci_pme_list);
1577			if (list_is_singular(&pci_pme_list))
1578				schedule_delayed_work(&pci_pme_work,
1579						      msecs_to_jiffies(PME_TIMEOUT));
1580			mutex_unlock(&pci_pme_list_mutex);
1581		} else {
1582			mutex_lock(&pci_pme_list_mutex);
1583			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1584				if (pme_dev->dev == dev) {
1585					list_del(&pme_dev->list);
1586					kfree(pme_dev);
1587					break;
1588				}
1589			}
1590			mutex_unlock(&pci_pme_list_mutex);
1591		}
1592	}
1593
1594out:
1595	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1596}
1597
1598/**
1599 * __pci_enable_wake - enable PCI device as wakeup event source
1600 * @dev: PCI device affected
1601 * @state: PCI state from which device will issue wakeup events
1602 * @runtime: True if the events are to be generated at run time
1603 * @enable: True to enable event generation; false to disable
1604 *
1605 * This enables the device as a wakeup event source, or disables it.
1606 * When such events involves platform-specific hooks, those hooks are
1607 * called automatically by this routine.
1608 *
1609 * Devices with legacy power management (no standard PCI PM capabilities)
1610 * always require such platform hooks.
1611 *
1612 * RETURN VALUE:
1613 * 0 is returned on success
1614 * -EINVAL is returned if device is not supposed to wake up the system
1615 * Error code depending on the platform is returned if both the platform and
1616 * the native mechanism fail to enable the generation of wake-up events
1617 */
1618int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1619		      bool runtime, bool enable)
1620{
1621	int ret = 0;
1622
1623	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1624		return -EINVAL;
1625
1626	/* Don't do the same thing twice in a row for one device. */
1627	if (!!enable == !!dev->wakeup_prepared)
1628		return 0;
1629
1630	/*
1631	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1632	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1633	 * enable.  To disable wake-up we call the platform first, for symmetry.
1634	 */
1635
1636	if (enable) {
1637		int error;
1638
1639		if (pci_pme_capable(dev, state))
1640			pci_pme_active(dev, true);
1641		else
1642			ret = 1;
1643		error = runtime ? platform_pci_run_wake(dev, true) :
1644					platform_pci_sleep_wake(dev, true);
1645		if (ret)
1646			ret = error;
1647		if (!ret)
1648			dev->wakeup_prepared = true;
1649	} else {
1650		if (runtime)
1651			platform_pci_run_wake(dev, false);
1652		else
1653			platform_pci_sleep_wake(dev, false);
1654		pci_pme_active(dev, false);
1655		dev->wakeup_prepared = false;
1656	}
1657
1658	return ret;
1659}
1660EXPORT_SYMBOL(__pci_enable_wake);
1661
1662/**
1663 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1664 * @dev: PCI device to prepare
1665 * @enable: True to enable wake-up event generation; false to disable
1666 *
1667 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1668 * and this function allows them to set that up cleanly - pci_enable_wake()
1669 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1670 * ordering constraints.
1671 *
1672 * This function only returns error code if the device is not capable of
1673 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1674 * enable wake-up power for it.
1675 */
1676int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1677{
1678	return pci_pme_capable(dev, PCI_D3cold) ?
1679			pci_enable_wake(dev, PCI_D3cold, enable) :
1680			pci_enable_wake(dev, PCI_D3hot, enable);
1681}
1682
1683/**
1684 * pci_target_state - find an appropriate low power state for a given PCI dev
1685 * @dev: PCI device
1686 *
1687 * Use underlying platform code to find a supported low power state for @dev.
1688 * If the platform can't manage @dev, return the deepest state from which it
1689 * can generate wake events, based on any available PME info.
1690 */
1691pci_power_t pci_target_state(struct pci_dev *dev)
1692{
1693	pci_power_t target_state = PCI_D3hot;
1694
1695	if (platform_pci_power_manageable(dev)) {
1696		/*
1697		 * Call the platform to choose the target state of the device
1698		 * and enable wake-up from this state if supported.
1699		 */
1700		pci_power_t state = platform_pci_choose_state(dev);
1701
1702		switch (state) {
1703		case PCI_POWER_ERROR:
1704		case PCI_UNKNOWN:
1705			break;
1706		case PCI_D1:
1707		case PCI_D2:
1708			if (pci_no_d1d2(dev))
1709				break;
1710		default:
1711			target_state = state;
1712		}
1713	} else if (!dev->pm_cap) {
1714		target_state = PCI_D0;
1715	} else if (device_may_wakeup(&dev->dev)) {
1716		/*
1717		 * Find the deepest state from which the device can generate
1718		 * wake-up events, make it the target state and enable device
1719		 * to generate PME#.
1720		 */
1721		if (dev->pme_support) {
1722			while (target_state
1723			      && !(dev->pme_support & (1 << target_state)))
1724				target_state--;
1725		}
1726	}
1727
1728	return target_state;
1729}
1730
1731/**
1732 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1733 * @dev: Device to handle.
1734 *
1735 * Choose the power state appropriate for the device depending on whether
1736 * it can wake up the system and/or is power manageable by the platform
1737 * (PCI_D3hot is the default) and put the device into that state.
1738 */
1739int pci_prepare_to_sleep(struct pci_dev *dev)
1740{
1741	pci_power_t target_state = pci_target_state(dev);
1742	int error;
1743
1744	if (target_state == PCI_POWER_ERROR)
1745		return -EIO;
1746
 
 
 
 
1747	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1748
1749	error = pci_set_power_state(dev, target_state);
1750
1751	if (error)
1752		pci_enable_wake(dev, target_state, false);
1753
1754	return error;
1755}
1756
1757/**
1758 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1759 * @dev: Device to handle.
1760 *
1761 * Disable device's system wake-up capability and put it into D0.
1762 */
1763int pci_back_from_sleep(struct pci_dev *dev)
1764{
1765	pci_enable_wake(dev, PCI_D0, false);
1766	return pci_set_power_state(dev, PCI_D0);
1767}
1768
1769/**
1770 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1771 * @dev: PCI device being suspended.
1772 *
1773 * Prepare @dev to generate wake-up events at run time and put it into a low
1774 * power state.
1775 */
1776int pci_finish_runtime_suspend(struct pci_dev *dev)
1777{
1778	pci_power_t target_state = pci_target_state(dev);
1779	int error;
1780
1781	if (target_state == PCI_POWER_ERROR)
1782		return -EIO;
1783
 
 
1784	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1785
1786	error = pci_set_power_state(dev, target_state);
1787
1788	if (error)
1789		__pci_enable_wake(dev, target_state, true, false);
 
 
1790
1791	return error;
1792}
1793
1794/**
1795 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1796 * @dev: Device to check.
1797 *
1798 * Return true if the device itself is cabable of generating wake-up events
1799 * (through the platform or using the native PCIe PME) or if the device supports
1800 * PME and one of its upstream bridges can generate wake-up events.
1801 */
1802bool pci_dev_run_wake(struct pci_dev *dev)
1803{
1804	struct pci_bus *bus = dev->bus;
1805
1806	if (device_run_wake(&dev->dev))
1807		return true;
1808
1809	if (!dev->pme_support)
1810		return false;
1811
1812	while (bus->parent) {
1813		struct pci_dev *bridge = bus->self;
1814
1815		if (device_run_wake(&bridge->dev))
1816			return true;
1817
1818		bus = bus->parent;
1819	}
1820
1821	/* We have reached the root bus. */
1822	if (bus->bridge)
1823		return device_run_wake(bus->bridge);
1824
1825	return false;
1826}
1827EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1829/**
1830 * pci_pm_init - Initialize PM functions of given PCI device
1831 * @dev: PCI device to handle.
1832 */
1833void pci_pm_init(struct pci_dev *dev)
1834{
1835	int pm;
1836	u16 pmc;
1837
1838	pm_runtime_forbid(&dev->dev);
 
 
1839	device_enable_async_suspend(&dev->dev);
1840	dev->wakeup_prepared = false;
1841
1842	dev->pm_cap = 0;
 
1843
1844	/* find PCI PM capability in list */
1845	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1846	if (!pm)
1847		return;
1848	/* Check device's ability to generate PME# */
1849	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1850
1851	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1852		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1853			pmc & PCI_PM_CAP_VER_MASK);
1854		return;
1855	}
1856
1857	dev->pm_cap = pm;
1858	dev->d3_delay = PCI_PM_D3_WAIT;
 
 
1859
1860	dev->d1_support = false;
1861	dev->d2_support = false;
1862	if (!pci_no_d1d2(dev)) {
1863		if (pmc & PCI_PM_CAP_D1)
1864			dev->d1_support = true;
1865		if (pmc & PCI_PM_CAP_D2)
1866			dev->d2_support = true;
1867
1868		if (dev->d1_support || dev->d2_support)
1869			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1870				   dev->d1_support ? " D1" : "",
1871				   dev->d2_support ? " D2" : "");
1872	}
1873
1874	pmc &= PCI_PM_CAP_PME_MASK;
1875	if (pmc) {
1876		dev_printk(KERN_DEBUG, &dev->dev,
1877			 "PME# supported from%s%s%s%s%s\n",
1878			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1879			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1880			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1881			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1882			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1883		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1884		dev->pme_poll = true;
1885		/*
1886		 * Make device's PM flags reflect the wake-up capability, but
1887		 * let the user space enable it to wake up the system as needed.
1888		 */
1889		device_set_wakeup_capable(&dev->dev, true);
1890		/* Disable the PME# generation functionality */
1891		pci_pme_active(dev, false);
1892	} else {
1893		dev->pme_support = 0;
1894	}
1895}
1896
1897/**
1898 * platform_pci_wakeup_init - init platform wakeup if present
1899 * @dev: PCI device
1900 *
1901 * Some devices don't have PCI PM caps but can still generate wakeup
1902 * events through platform methods (like ACPI events).  If @dev supports
1903 * platform wakeup events, set the device flag to indicate as much.  This
1904 * may be redundant if the device also supports PCI PM caps, but double
1905 * initialization should be safe in that case.
1906 */
1907void platform_pci_wakeup_init(struct pci_dev *dev)
1908{
1909	if (!platform_pci_can_wakeup(dev))
1910		return;
1911
1912	device_set_wakeup_capable(&dev->dev, true);
1913	platform_pci_sleep_wake(dev, false);
1914}
1915
1916static void pci_add_saved_cap(struct pci_dev *pci_dev,
1917	struct pci_cap_saved_state *new_cap)
1918{
1919	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
1920}
1921
1922/**
1923 * pci_add_save_buffer - allocate buffer for saving given capability registers
 
1924 * @dev: the PCI device
1925 * @cap: the capability to allocate the buffer for
 
1926 * @size: requested size of the buffer
1927 */
1928static int pci_add_cap_save_buffer(
1929	struct pci_dev *dev, char cap, unsigned int size)
1930{
1931	int pos;
1932	struct pci_cap_saved_state *save_state;
1933
1934	pos = pci_find_capability(dev, cap);
 
 
 
 
1935	if (pos <= 0)
1936		return 0;
1937
1938	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1939	if (!save_state)
1940		return -ENOMEM;
1941
1942	save_state->cap.cap_nr = cap;
 
1943	save_state->cap.size = size;
1944	pci_add_saved_cap(dev, save_state);
1945
1946	return 0;
1947}
1948
 
 
 
 
 
 
 
 
 
 
1949/**
1950 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1951 * @dev: the PCI device
1952 */
1953void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1954{
1955	int error;
1956
1957	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1958					PCI_EXP_SAVE_REGS * sizeof(u16));
1959	if (error)
1960		dev_err(&dev->dev,
1961			"unable to preallocate PCI Express save buffer\n");
1962
1963	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1964	if (error)
1965		dev_err(&dev->dev,
1966			"unable to preallocate PCI-X save buffer\n");
 
 
1967}
1968
1969void pci_free_cap_save_buffers(struct pci_dev *dev)
1970{
1971	struct pci_cap_saved_state *tmp;
1972	struct hlist_node *pos, *n;
1973
1974	hlist_for_each_entry_safe(tmp, pos, n, &dev->saved_cap_space, next)
1975		kfree(tmp);
1976}
1977
1978/**
1979 * pci_enable_ari - enable ARI forwarding if hardware support it
1980 * @dev: the PCI device
 
 
 
1981 */
1982void pci_enable_ari(struct pci_dev *dev)
1983{
1984	int pos;
1985	u32 cap;
1986	u16 flags, ctrl;
1987	struct pci_dev *bridge;
1988
1989	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
1990		return;
1991
1992	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1993	if (!pos)
1994		return;
1995
1996	bridge = dev->bus->self;
1997	if (!bridge || !pci_is_pcie(bridge))
1998		return;
1999
2000	pos = pci_pcie_cap(bridge);
2001	if (!pos)
2002		return;
2003
2004	/* ARI is a PCIe v2 feature */
2005	pci_read_config_word(bridge, pos + PCI_EXP_FLAGS, &flags);
2006	if ((flags & PCI_EXP_FLAGS_VERS) < 2)
2007		return;
2008
2009	pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
2010	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2011		return;
2012
2013	pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
2014	ctrl |= PCI_EXP_DEVCTL2_ARI;
2015	pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
2016
2017	bridge->ari_enabled = 1;
 
 
 
 
2018}
2019
 
 
2020/**
2021 * pci_enable_ido - enable ID-based ordering on a device
2022 * @dev: the PCI device
2023 * @type: which types of IDO to enable
2024 *
2025 * Enable ID-based ordering on @dev.  @type can contain the bits
2026 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2027 * which types of transactions are allowed to be re-ordered.
2028 */
2029void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2030{
2031	int pos;
2032	u16 ctrl;
2033
2034	pos = pci_pcie_cap(dev);
2035	if (!pos)
2036		return;
2037
2038	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2039	if (type & PCI_EXP_IDO_REQUEST)
2040		ctrl |= PCI_EXP_IDO_REQ_EN;
2041	if (type & PCI_EXP_IDO_COMPLETION)
2042		ctrl |= PCI_EXP_IDO_CMP_EN;
2043	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2044}
2045EXPORT_SYMBOL(pci_enable_ido);
2046
2047/**
2048 * pci_disable_ido - disable ID-based ordering on a device
2049 * @dev: the PCI device
2050 * @type: which types of IDO to disable
2051 */
2052void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2053{
2054	int pos;
 
2055	u16 ctrl;
2056
2057	if (!pci_is_pcie(dev))
2058		return;
2059
2060	pos = pci_pcie_cap(dev);
2061	if (!pos)
2062		return;
2063
2064	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2065	if (type & PCI_EXP_IDO_REQUEST)
2066		ctrl &= ~PCI_EXP_IDO_REQ_EN;
2067	if (type & PCI_EXP_IDO_COMPLETION)
2068		ctrl &= ~PCI_EXP_IDO_CMP_EN;
2069	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2070}
2071EXPORT_SYMBOL(pci_disable_ido);
2072
2073/**
2074 * pci_enable_obff - enable optimized buffer flush/fill
2075 * @dev: PCI device
2076 * @type: type of signaling to use
2077 *
2078 * Try to enable @type OBFF signaling on @dev.  It will try using WAKE#
2079 * signaling if possible, falling back to message signaling only if
2080 * WAKE# isn't supported.  @type should indicate whether the PCIe link
2081 * be brought out of L0s or L1 to send the message.  It should be either
2082 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2083 *
2084 * If your device can benefit from receiving all messages, even at the
2085 * power cost of bringing the link back up from a low power state, use
2086 * %PCI_EXP_OBFF_SIGNAL_ALWAYS.  Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2087 * preferred type).
2088 *
2089 * RETURNS:
2090 * Zero on success, appropriate error number on failure.
2091 */
2092int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2093{
2094	int pos;
2095	u32 cap;
2096	u16 ctrl;
2097	int ret;
2098
2099	if (!pci_is_pcie(dev))
2100		return -ENOTSUPP;
2101
2102	pos = pci_pcie_cap(dev);
2103	if (!pos)
2104		return -ENOTSUPP;
2105
2106	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2107	if (!(cap & PCI_EXP_OBFF_MASK))
2108		return -ENOTSUPP; /* no OBFF support at all */
2109
2110	/* Make sure the topology supports OBFF as well */
2111	if (dev->bus) {
2112		ret = pci_enable_obff(dev->bus->self, type);
2113		if (ret)
2114			return ret;
2115	}
2116
2117	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2118	if (cap & PCI_EXP_OBFF_WAKE)
2119		ctrl |= PCI_EXP_OBFF_WAKE_EN;
2120	else {
2121		switch (type) {
2122		case PCI_EXP_OBFF_SIGNAL_L0:
2123			if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2124				ctrl |= PCI_EXP_OBFF_MSGA_EN;
2125			break;
2126		case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2127			ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2128			ctrl |= PCI_EXP_OBFF_MSGB_EN;
2129			break;
2130		default:
2131			WARN(1, "bad OBFF signal type\n");
2132			return -ENOTSUPP;
2133		}
2134	}
2135	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2136
2137	return 0;
2138}
2139EXPORT_SYMBOL(pci_enable_obff);
2140
2141/**
2142 * pci_disable_obff - disable optimized buffer flush/fill
2143 * @dev: PCI device
2144 *
2145 * Disable OBFF on @dev.
2146 */
2147void pci_disable_obff(struct pci_dev *dev)
2148{
2149	int pos;
2150	u16 ctrl;
2151
2152	if (!pci_is_pcie(dev))
2153		return;
2154
2155	pos = pci_pcie_cap(dev);
2156	if (!pos)
2157		return;
2158
2159	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2160	ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2161	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2162}
2163EXPORT_SYMBOL(pci_disable_obff);
2164
2165/**
2166 * pci_ltr_supported - check whether a device supports LTR
2167 * @dev: PCI device
2168 *
2169 * RETURNS:
2170 * True if @dev supports latency tolerance reporting, false otherwise.
2171 */
2172bool pci_ltr_supported(struct pci_dev *dev)
2173{
2174	int pos;
2175	u32 cap;
2176
2177	if (!pci_is_pcie(dev))
2178		return false;
2179
2180	pos = pci_pcie_cap(dev);
2181	if (!pos)
2182		return false;
2183
2184	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
 
 
 
 
 
 
2185
2186	return cap & PCI_EXP_DEVCAP2_LTR;
 
2187}
2188EXPORT_SYMBOL(pci_ltr_supported);
2189
2190/**
2191 * pci_enable_ltr - enable latency tolerance reporting
2192 * @dev: PCI device
 
2193 *
2194 * Enable LTR on @dev if possible, which means enabling it first on
2195 * upstream ports.
2196 *
2197 * RETURNS:
2198 * Zero on success, errno on failure.
 
 
 
 
 
2199 */
2200int pci_enable_ltr(struct pci_dev *dev)
2201{
2202	int pos;
2203	u16 ctrl;
2204	int ret;
2205
2206	if (!pci_ltr_supported(dev))
2207		return -ENOTSUPP;
 
2208
2209	pos = pci_pcie_cap(dev);
2210	if (!pos)
2211		return -ENOTSUPP;
 
 
 
 
2212
2213	/* Only primary function can enable/disable LTR */
2214	if (PCI_FUNC(dev->devfn) != 0)
2215		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2216
2217	/* Enable upstream ports first */
2218	if (dev->bus) {
2219		ret = pci_enable_ltr(dev->bus->self);
2220		if (ret)
2221			return ret;
2222	}
2223
2224	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2225	ctrl |= PCI_EXP_LTR_EN;
2226	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2227
2228	return 0;
2229}
2230EXPORT_SYMBOL(pci_enable_ltr);
2231
2232/**
2233 * pci_disable_ltr - disable latency tolerance reporting
2234 * @dev: PCI device
2235 */
2236void pci_disable_ltr(struct pci_dev *dev)
2237{
2238	int pos;
2239	u16 ctrl;
2240
2241	if (!pci_ltr_supported(dev))
2242		return;
2243
2244	pos = pci_pcie_cap(dev);
2245	if (!pos)
2246		return;
2247
2248	/* Only primary function can enable/disable LTR */
2249	if (PCI_FUNC(dev->devfn) != 0)
2250		return;
2251
2252	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2253	ctrl &= ~PCI_EXP_LTR_EN;
2254	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2255}
2256EXPORT_SYMBOL(pci_disable_ltr);
2257
2258static int __pci_ltr_scale(int *val)
2259{
2260	int scale = 0;
2261
2262	while (*val > 1023) {
2263		*val = (*val + 31) / 32;
2264		scale++;
2265	}
2266	return scale;
2267}
2268
2269/**
2270 * pci_set_ltr - set LTR latency values
2271 * @dev: PCI device
2272 * @snoop_lat_ns: snoop latency in nanoseconds
2273 * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2274 *
2275 * Figure out the scale and set the LTR values accordingly.
2276 */
2277int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2278{
2279	int pos, ret, snoop_scale, nosnoop_scale;
2280	u16 val;
2281
2282	if (!pci_ltr_supported(dev))
2283		return -ENOTSUPP;
2284
2285	snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2286	nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2287
2288	if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2289	    nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2290		return -EINVAL;
2291
2292	if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2293	    (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2294		return -EINVAL;
2295
2296	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2297	if (!pos)
2298		return -ENOTSUPP;
2299
2300	val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2301	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2302	if (ret != 4)
2303		return -EIO;
2304
2305	val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2306	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2307	if (ret != 4)
2308		return -EIO;
2309
2310	return 0;
2311}
2312EXPORT_SYMBOL(pci_set_ltr);
2313
2314static int pci_acs_enable;
2315
2316/**
2317 * pci_request_acs - ask for ACS to be enabled if supported
2318 */
2319void pci_request_acs(void)
2320{
2321	pci_acs_enable = 1;
2322}
2323
2324/**
2325 * pci_enable_acs - enable ACS if hardware support it
2326 * @dev: the PCI device
2327 */
2328void pci_enable_acs(struct pci_dev *dev)
 
2329{
2330	int pos;
2331	u16 cap;
2332	u16 ctrl;
2333
2334	if (!pci_acs_enable)
2335		return;
2336
2337	if (!pci_is_pcie(dev))
2338		return;
2339
2340	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2341	if (!pos)
2342		return;
2343
2344	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2345	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2346
2347	/* Source Validation */
2348	ctrl |= (cap & PCI_ACS_SV);
2349
2350	/* P2P Request Redirect */
2351	ctrl |= (cap & PCI_ACS_RR);
2352
2353	/* P2P Completion Redirect */
2354	ctrl |= (cap & PCI_ACS_CR);
2355
2356	/* Upstream Forwarding */
2357	ctrl |= (cap & PCI_ACS_UF);
2358
2359	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2360}
2361
2362/**
2363 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2364 * @dev: the PCI device
2365 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2366 *
2367 * Perform INTx swizzling for a device behind one level of bridge.  This is
2368 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2369 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2370 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2371 * the PCI Express Base Specification, Revision 2.1)
2372 */
2373u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2374{
2375	int slot;
2376
2377	if (pci_ari_enabled(dev->bus))
2378		slot = 0;
2379	else
2380		slot = PCI_SLOT(dev->devfn);
2381
2382	return (((pin - 1) + slot) % 4) + 1;
2383}
2384
2385int
2386pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2387{
2388	u8 pin;
2389
2390	pin = dev->pin;
2391	if (!pin)
2392		return -1;
2393
2394	while (!pci_is_root_bus(dev->bus)) {
2395		pin = pci_swizzle_interrupt_pin(dev, pin);
2396		dev = dev->bus->self;
2397	}
2398	*bridge = dev;
2399	return pin;
2400}
2401
2402/**
2403 * pci_common_swizzle - swizzle INTx all the way to root bridge
2404 * @dev: the PCI device
2405 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2406 *
2407 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2408 * bridges all the way up to a PCI root bus.
2409 */
2410u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2411{
2412	u8 pin = *pinp;
2413
2414	while (!pci_is_root_bus(dev->bus)) {
2415		pin = pci_swizzle_interrupt_pin(dev, pin);
2416		dev = dev->bus->self;
2417	}
2418	*pinp = pin;
2419	return PCI_SLOT(dev->devfn);
2420}
2421
2422/**
2423 *	pci_release_region - Release a PCI bar
2424 *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2425 *	@bar: BAR to release
2426 *
2427 *	Releases the PCI I/O and memory resources previously reserved by a
2428 *	successful call to pci_request_region.  Call this function only
2429 *	after all use of the PCI regions has ceased.
2430 */
2431void pci_release_region(struct pci_dev *pdev, int bar)
2432{
2433	struct pci_devres *dr;
2434
2435	if (pci_resource_len(pdev, bar) == 0)
2436		return;
2437	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2438		release_region(pci_resource_start(pdev, bar),
2439				pci_resource_len(pdev, bar));
2440	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2441		release_mem_region(pci_resource_start(pdev, bar),
2442				pci_resource_len(pdev, bar));
2443
2444	dr = find_pci_dr(pdev);
2445	if (dr)
2446		dr->region_mask &= ~(1 << bar);
2447}
2448
2449/**
2450 *	__pci_request_region - Reserved PCI I/O and memory resource
2451 *	@pdev: PCI device whose resources are to be reserved
2452 *	@bar: BAR to be reserved
2453 *	@res_name: Name to be associated with resource.
2454 *	@exclusive: whether the region access is exclusive or not
2455 *
2456 *	Mark the PCI region associated with PCI device @pdev BR @bar as
2457 *	being reserved by owner @res_name.  Do not access any
2458 *	address inside the PCI regions unless this call returns
2459 *	successfully.
2460 *
2461 *	If @exclusive is set, then the region is marked so that userspace
2462 *	is explicitly not allowed to map the resource via /dev/mem or
2463 * 	sysfs MMIO access.
2464 *
2465 *	Returns 0 on success, or %EBUSY on error.  A warning
2466 *	message is also printed on failure.
2467 */
2468static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2469									int exclusive)
2470{
2471	struct pci_devres *dr;
2472
2473	if (pci_resource_len(pdev, bar) == 0)
2474		return 0;
2475		
2476	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2477		if (!request_region(pci_resource_start(pdev, bar),
2478			    pci_resource_len(pdev, bar), res_name))
2479			goto err_out;
2480	}
2481	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2482		if (!__request_mem_region(pci_resource_start(pdev, bar),
2483					pci_resource_len(pdev, bar), res_name,
2484					exclusive))
2485			goto err_out;
2486	}
2487
2488	dr = find_pci_dr(pdev);
2489	if (dr)
2490		dr->region_mask |= 1 << bar;
2491
2492	return 0;
2493
2494err_out:
2495	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2496		 &pdev->resource[bar]);
2497	return -EBUSY;
2498}
2499
2500/**
2501 *	pci_request_region - Reserve PCI I/O and memory resource
2502 *	@pdev: PCI device whose resources are to be reserved
2503 *	@bar: BAR to be reserved
2504 *	@res_name: Name to be associated with resource
2505 *
2506 *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2507 *	being reserved by owner @res_name.  Do not access any
2508 *	address inside the PCI regions unless this call returns
2509 *	successfully.
2510 *
2511 *	Returns 0 on success, or %EBUSY on error.  A warning
2512 *	message is also printed on failure.
2513 */
2514int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2515{
2516	return __pci_request_region(pdev, bar, res_name, 0);
2517}
2518
2519/**
2520 *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2521 *	@pdev: PCI device whose resources are to be reserved
2522 *	@bar: BAR to be reserved
2523 *	@res_name: Name to be associated with resource.
2524 *
2525 *	Mark the PCI region associated with PCI device @pdev BR @bar as
2526 *	being reserved by owner @res_name.  Do not access any
2527 *	address inside the PCI regions unless this call returns
2528 *	successfully.
2529 *
2530 *	Returns 0 on success, or %EBUSY on error.  A warning
2531 *	message is also printed on failure.
2532 *
2533 *	The key difference that _exclusive makes it that userspace is
2534 *	explicitly not allowed to map the resource via /dev/mem or
2535 * 	sysfs.
2536 */
2537int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2538{
2539	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2540}
2541/**
2542 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2543 * @pdev: PCI device whose resources were previously reserved
2544 * @bars: Bitmask of BARs to be released
2545 *
2546 * Release selected PCI I/O and memory resources previously reserved.
2547 * Call this function only after all use of the PCI regions has ceased.
2548 */
2549void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2550{
2551	int i;
2552
2553	for (i = 0; i < 6; i++)
2554		if (bars & (1 << i))
2555			pci_release_region(pdev, i);
2556}
2557
2558int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2559				 const char *res_name, int excl)
2560{
2561	int i;
2562
2563	for (i = 0; i < 6; i++)
2564		if (bars & (1 << i))
2565			if (__pci_request_region(pdev, i, res_name, excl))
2566				goto err_out;
2567	return 0;
2568
2569err_out:
2570	while(--i >= 0)
2571		if (bars & (1 << i))
2572			pci_release_region(pdev, i);
2573
2574	return -EBUSY;
2575}
2576
2577
2578/**
2579 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2580 * @pdev: PCI device whose resources are to be reserved
2581 * @bars: Bitmask of BARs to be requested
2582 * @res_name: Name to be associated with resource
2583 */
2584int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2585				 const char *res_name)
2586{
2587	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2588}
2589
2590int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2591				 int bars, const char *res_name)
2592{
2593	return __pci_request_selected_regions(pdev, bars, res_name,
2594			IORESOURCE_EXCLUSIVE);
2595}
2596
2597/**
2598 *	pci_release_regions - Release reserved PCI I/O and memory resources
2599 *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2600 *
2601 *	Releases all PCI I/O and memory resources previously reserved by a
2602 *	successful call to pci_request_regions.  Call this function only
2603 *	after all use of the PCI regions has ceased.
2604 */
2605
2606void pci_release_regions(struct pci_dev *pdev)
2607{
2608	pci_release_selected_regions(pdev, (1 << 6) - 1);
2609}
2610
2611/**
2612 *	pci_request_regions - Reserved PCI I/O and memory resources
2613 *	@pdev: PCI device whose resources are to be reserved
2614 *	@res_name: Name to be associated with resource.
2615 *
2616 *	Mark all PCI regions associated with PCI device @pdev as
2617 *	being reserved by owner @res_name.  Do not access any
2618 *	address inside the PCI regions unless this call returns
2619 *	successfully.
2620 *
2621 *	Returns 0 on success, or %EBUSY on error.  A warning
2622 *	message is also printed on failure.
2623 */
2624int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2625{
2626	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2627}
2628
2629/**
2630 *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2631 *	@pdev: PCI device whose resources are to be reserved
2632 *	@res_name: Name to be associated with resource.
2633 *
2634 *	Mark all PCI regions associated with PCI device @pdev as
2635 *	being reserved by owner @res_name.  Do not access any
2636 *	address inside the PCI regions unless this call returns
2637 *	successfully.
2638 *
2639 *	pci_request_regions_exclusive() will mark the region so that
2640 * 	/dev/mem and the sysfs MMIO access will not be allowed.
2641 *
2642 *	Returns 0 on success, or %EBUSY on error.  A warning
2643 *	message is also printed on failure.
2644 */
2645int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2646{
2647	return pci_request_selected_regions_exclusive(pdev,
2648					((1 << 6) - 1), res_name);
2649}
2650
2651static void __pci_set_master(struct pci_dev *dev, bool enable)
2652{
2653	u16 old_cmd, cmd;
2654
2655	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2656	if (enable)
2657		cmd = old_cmd | PCI_COMMAND_MASTER;
2658	else
2659		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2660	if (cmd != old_cmd) {
2661		dev_dbg(&dev->dev, "%s bus mastering\n",
2662			enable ? "enabling" : "disabling");
2663		pci_write_config_word(dev, PCI_COMMAND, cmd);
2664	}
2665	dev->is_busmaster = enable;
2666}
2667
2668/**
 
 
 
 
 
 
 
 
 
 
 
 
2669 * pcibios_set_master - enable PCI bus-mastering for device dev
2670 * @dev: the PCI device to enable
2671 *
2672 * Enables PCI bus-mastering for the device.  This is the default
2673 * implementation.  Architecture specific implementations can override
2674 * this if necessary.
2675 */
2676void __weak pcibios_set_master(struct pci_dev *dev)
2677{
2678	u8 lat;
2679
2680	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2681	if (pci_is_pcie(dev))
2682		return;
2683
2684	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2685	if (lat < 16)
2686		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2687	else if (lat > pcibios_max_latency)
2688		lat = pcibios_max_latency;
2689	else
2690		return;
2691	dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2692	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2693}
2694
2695/**
2696 * pci_set_master - enables bus-mastering for device dev
2697 * @dev: the PCI device to enable
2698 *
2699 * Enables bus-mastering on the device and calls pcibios_set_master()
2700 * to do the needed arch specific settings.
2701 */
2702void pci_set_master(struct pci_dev *dev)
2703{
2704	__pci_set_master(dev, true);
2705	pcibios_set_master(dev);
2706}
2707
2708/**
2709 * pci_clear_master - disables bus-mastering for device dev
2710 * @dev: the PCI device to disable
2711 */
2712void pci_clear_master(struct pci_dev *dev)
2713{
2714	__pci_set_master(dev, false);
2715}
2716
2717/**
2718 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2719 * @dev: the PCI device for which MWI is to be enabled
2720 *
2721 * Helper function for pci_set_mwi.
2722 * Originally copied from drivers/net/acenic.c.
2723 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2724 *
2725 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2726 */
2727int pci_set_cacheline_size(struct pci_dev *dev)
2728{
2729	u8 cacheline_size;
2730
2731	if (!pci_cache_line_size)
2732		return -EINVAL;
2733
2734	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2735	   equal to or multiple of the right value. */
2736	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2737	if (cacheline_size >= pci_cache_line_size &&
2738	    (cacheline_size % pci_cache_line_size) == 0)
2739		return 0;
2740
2741	/* Write the correct value. */
2742	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2743	/* Read it back. */
2744	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2745	if (cacheline_size == pci_cache_line_size)
2746		return 0;
2747
2748	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2749		   "supported\n", pci_cache_line_size << 2);
2750
2751	return -EINVAL;
2752}
2753EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2754
2755#ifdef PCI_DISABLE_MWI
2756int pci_set_mwi(struct pci_dev *dev)
2757{
2758	return 0;
2759}
2760
2761int pci_try_set_mwi(struct pci_dev *dev)
2762{
2763	return 0;
2764}
2765
2766void pci_clear_mwi(struct pci_dev *dev)
2767{
2768}
2769
2770#else
2771
2772/**
2773 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2774 * @dev: the PCI device for which MWI is enabled
2775 *
2776 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2777 *
2778 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2779 */
2780int
2781pci_set_mwi(struct pci_dev *dev)
2782{
2783	int rc;
2784	u16 cmd;
2785
2786	rc = pci_set_cacheline_size(dev);
2787	if (rc)
2788		return rc;
2789
2790	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2791	if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2792		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2793		cmd |= PCI_COMMAND_INVALIDATE;
2794		pci_write_config_word(dev, PCI_COMMAND, cmd);
2795	}
2796	
2797	return 0;
2798}
2799
2800/**
2801 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2802 * @dev: the PCI device for which MWI is enabled
2803 *
2804 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2805 * Callers are not required to check the return value.
2806 *
2807 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2808 */
2809int pci_try_set_mwi(struct pci_dev *dev)
2810{
2811	int rc = pci_set_mwi(dev);
2812	return rc;
2813}
2814
2815/**
2816 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2817 * @dev: the PCI device to disable
2818 *
2819 * Disables PCI Memory-Write-Invalidate transaction on the device
2820 */
2821void
2822pci_clear_mwi(struct pci_dev *dev)
2823{
2824	u16 cmd;
2825
2826	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2827	if (cmd & PCI_COMMAND_INVALIDATE) {
2828		cmd &= ~PCI_COMMAND_INVALIDATE;
2829		pci_write_config_word(dev, PCI_COMMAND, cmd);
2830	}
2831}
2832#endif /* ! PCI_DISABLE_MWI */
2833
2834/**
2835 * pci_intx - enables/disables PCI INTx for device dev
2836 * @pdev: the PCI device to operate on
2837 * @enable: boolean: whether to enable or disable PCI INTx
2838 *
2839 * Enables/disables PCI INTx for device dev
2840 */
2841void
2842pci_intx(struct pci_dev *pdev, int enable)
2843{
2844	u16 pci_command, new;
2845
2846	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2847
2848	if (enable) {
2849		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2850	} else {
2851		new = pci_command | PCI_COMMAND_INTX_DISABLE;
2852	}
2853
2854	if (new != pci_command) {
2855		struct pci_devres *dr;
2856
2857		pci_write_config_word(pdev, PCI_COMMAND, new);
2858
2859		dr = find_pci_dr(pdev);
2860		if (dr && !dr->restore_intx) {
2861			dr->restore_intx = 1;
2862			dr->orig_intx = !enable;
2863		}
2864	}
2865}
2866
2867/**
2868 * pci_intx_mask_supported - probe for INTx masking support
2869 * @dev: the PCI device to operate on
2870 *
2871 * Check if the device dev support INTx masking via the config space
2872 * command word.
2873 */
2874bool pci_intx_mask_supported(struct pci_dev *dev)
2875{
2876	bool mask_supported = false;
2877	u16 orig, new;
2878
 
 
 
2879	pci_cfg_access_lock(dev);
2880
2881	pci_read_config_word(dev, PCI_COMMAND, &orig);
2882	pci_write_config_word(dev, PCI_COMMAND,
2883			      orig ^ PCI_COMMAND_INTX_DISABLE);
2884	pci_read_config_word(dev, PCI_COMMAND, &new);
2885
2886	/*
2887	 * There's no way to protect against hardware bugs or detect them
2888	 * reliably, but as long as we know what the value should be, let's
2889	 * go ahead and check it.
2890	 */
2891	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2892		dev_err(&dev->dev, "Command register changed from "
2893			"0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2894	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2895		mask_supported = true;
2896		pci_write_config_word(dev, PCI_COMMAND, orig);
2897	}
2898
2899	pci_cfg_access_unlock(dev);
2900	return mask_supported;
2901}
2902EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2903
2904static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2905{
2906	struct pci_bus *bus = dev->bus;
2907	bool mask_updated = true;
2908	u32 cmd_status_dword;
2909	u16 origcmd, newcmd;
2910	unsigned long flags;
2911	bool irq_pending;
2912
2913	/*
2914	 * We do a single dword read to retrieve both command and status.
2915	 * Document assumptions that make this possible.
2916	 */
2917	BUILD_BUG_ON(PCI_COMMAND % 4);
2918	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2919
2920	raw_spin_lock_irqsave(&pci_lock, flags);
2921
2922	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2923
2924	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2925
2926	/*
2927	 * Check interrupt status register to see whether our device
2928	 * triggered the interrupt (when masking) or the next IRQ is
2929	 * already pending (when unmasking).
2930	 */
2931	if (mask != irq_pending) {
2932		mask_updated = false;
2933		goto done;
2934	}
2935
2936	origcmd = cmd_status_dword;
2937	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
2938	if (mask)
2939		newcmd |= PCI_COMMAND_INTX_DISABLE;
2940	if (newcmd != origcmd)
2941		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
2942
2943done:
2944	raw_spin_unlock_irqrestore(&pci_lock, flags);
2945
2946	return mask_updated;
2947}
2948
2949/**
2950 * pci_check_and_mask_intx - mask INTx on pending interrupt
2951 * @dev: the PCI device to operate on
2952 *
2953 * Check if the device dev has its INTx line asserted, mask it and
2954 * return true in that case. False is returned if not interrupt was
2955 * pending.
2956 */
2957bool pci_check_and_mask_intx(struct pci_dev *dev)
2958{
2959	return pci_check_and_set_intx_mask(dev, true);
2960}
2961EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
2962
2963/**
2964 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
2965 * @dev: the PCI device to operate on
2966 *
2967 * Check if the device dev has its INTx line asserted, unmask it if not
2968 * and return true. False is returned and the mask remains active if
2969 * there was still an interrupt pending.
2970 */
2971bool pci_check_and_unmask_intx(struct pci_dev *dev)
2972{
2973	return pci_check_and_set_intx_mask(dev, false);
2974}
2975EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
2976
2977/**
2978 * pci_msi_off - disables any msi or msix capabilities
2979 * @dev: the PCI device to operate on
2980 *
2981 * If you want to use msi see pci_enable_msi and friends.
2982 * This is a lower level primitive that allows us to disable
2983 * msi operation at the device level.
2984 */
2985void pci_msi_off(struct pci_dev *dev)
2986{
2987	int pos;
2988	u16 control;
2989
 
 
 
 
 
2990	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2991	if (pos) {
2992		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2993		control &= ~PCI_MSI_FLAGS_ENABLE;
2994		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2995	}
2996	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2997	if (pos) {
2998		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2999		control &= ~PCI_MSIX_FLAGS_ENABLE;
3000		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3001	}
3002}
3003EXPORT_SYMBOL_GPL(pci_msi_off);
3004
3005int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3006{
3007	return dma_set_max_seg_size(&dev->dev, size);
3008}
3009EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3010
3011int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3012{
3013	return dma_set_seg_boundary(&dev->dev, mask);
3014}
3015EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3017static int pcie_flr(struct pci_dev *dev, int probe)
3018{
3019	int i;
3020	int pos;
3021	u32 cap;
3022	u16 status, control;
3023
3024	pos = pci_pcie_cap(dev);
3025	if (!pos)
3026		return -ENOTTY;
3027
3028	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
3029	if (!(cap & PCI_EXP_DEVCAP_FLR))
3030		return -ENOTTY;
3031
3032	if (probe)
3033		return 0;
3034
3035	/* Wait for Transaction Pending bit clean */
3036	for (i = 0; i < 4; i++) {
3037		if (i)
3038			msleep((1 << (i - 1)) * 100);
3039
3040		pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
3041		if (!(status & PCI_EXP_DEVSTA_TRPND))
3042			goto clear;
3043	}
3044
3045	dev_err(&dev->dev, "transaction is not cleared; "
3046			"proceeding with reset anyway\n");
3047
3048clear:
3049	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
3050	control |= PCI_EXP_DEVCTL_BCR_FLR;
3051	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
3052
3053	msleep(100);
3054
3055	return 0;
3056}
3057
3058static int pci_af_flr(struct pci_dev *dev, int probe)
3059{
3060	int i;
3061	int pos;
3062	u8 cap;
3063	u8 status;
3064
3065	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3066	if (!pos)
3067		return -ENOTTY;
3068
3069	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3070	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3071		return -ENOTTY;
3072
3073	if (probe)
3074		return 0;
3075
3076	/* Wait for Transaction Pending bit clean */
3077	for (i = 0; i < 4; i++) {
3078		if (i)
3079			msleep((1 << (i - 1)) * 100);
3080
3081		pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3082		if (!(status & PCI_AF_STATUS_TP))
3083			goto clear;
3084	}
3085
3086	dev_err(&dev->dev, "transaction is not cleared; "
3087			"proceeding with reset anyway\n");
3088
3089clear:
3090	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3091	msleep(100);
3092
3093	return 0;
3094}
3095
3096/**
3097 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3098 * @dev: Device to reset.
3099 * @probe: If set, only check if the device can be reset this way.
3100 *
3101 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3102 * unset, it will be reinitialized internally when going from PCI_D3hot to
3103 * PCI_D0.  If that's the case and the device is not in a low-power state
3104 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3105 *
3106 * NOTE: This causes the caller to sleep for twice the device power transition
3107 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3108 * by devault (i.e. unless the @dev's d3_delay field has a different value).
3109 * Moreover, only devices in D0 can be reset by this function.
3110 */
3111static int pci_pm_reset(struct pci_dev *dev, int probe)
3112{
3113	u16 csr;
3114
3115	if (!dev->pm_cap)
3116		return -ENOTTY;
3117
3118	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3119	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3120		return -ENOTTY;
3121
3122	if (probe)
3123		return 0;
3124
3125	if (dev->current_state != PCI_D0)
3126		return -EINVAL;
3127
3128	csr &= ~PCI_PM_CTRL_STATE_MASK;
3129	csr |= PCI_D3hot;
3130	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3131	pci_dev_d3_sleep(dev);
3132
3133	csr &= ~PCI_PM_CTRL_STATE_MASK;
3134	csr |= PCI_D0;
3135	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3136	pci_dev_d3_sleep(dev);
3137
3138	return 0;
3139}
3140
3141static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
 
 
 
 
 
 
 
3142{
3143	u16 ctrl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3144	struct pci_dev *pdev;
3145
3146	if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3147		return -ENOTTY;
3148
3149	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3150		if (pdev != dev)
3151			return -ENOTTY;
3152
3153	if (probe)
3154		return 0;
3155
3156	pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
3157	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3158	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3159	msleep(100);
3160
3161	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3162	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3163	msleep(100);
3164
3165	return 0;
3166}
3167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3168static int __pci_dev_reset(struct pci_dev *dev, int probe)
3169{
3170	int rc;
3171
3172	might_sleep();
3173
3174	rc = pci_dev_specific_reset(dev, probe);
3175	if (rc != -ENOTTY)
3176		goto done;
3177
3178	rc = pcie_flr(dev, probe);
3179	if (rc != -ENOTTY)
3180		goto done;
3181
3182	rc = pci_af_flr(dev, probe);
3183	if (rc != -ENOTTY)
3184		goto done;
3185
3186	rc = pci_pm_reset(dev, probe);
3187	if (rc != -ENOTTY)
3188		goto done;
3189
 
 
 
 
3190	rc = pci_parent_bus_reset(dev, probe);
3191done:
3192	return rc;
3193}
3194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3195static int pci_dev_reset(struct pci_dev *dev, int probe)
3196{
3197	int rc;
3198
3199	if (!probe) {
3200		pci_cfg_access_lock(dev);
3201		/* block PM suspend, driver probe, etc. */
3202		device_lock(&dev->dev);
3203	}
3204
3205	rc = __pci_dev_reset(dev, probe);
3206
3207	if (!probe) {
3208		device_unlock(&dev->dev);
3209		pci_cfg_access_unlock(dev);
3210	}
3211	return rc;
3212}
3213/**
3214 * __pci_reset_function - reset a PCI device function
3215 * @dev: PCI device to reset
3216 *
3217 * Some devices allow an individual function to be reset without affecting
3218 * other functions in the same device.  The PCI device must be responsive
3219 * to PCI config space in order to use this function.
3220 *
3221 * The device function is presumed to be unused when this function is called.
3222 * Resetting the device will make the contents of PCI configuration space
3223 * random, so any caller of this must be prepared to reinitialise the
3224 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3225 * etc.
3226 *
3227 * Returns 0 if the device function was successfully reset or negative if the
3228 * device doesn't support resetting a single function.
3229 */
3230int __pci_reset_function(struct pci_dev *dev)
3231{
3232	return pci_dev_reset(dev, 0);
3233}
3234EXPORT_SYMBOL_GPL(__pci_reset_function);
3235
3236/**
3237 * __pci_reset_function_locked - reset a PCI device function while holding
3238 * the @dev mutex lock.
3239 * @dev: PCI device to reset
3240 *
3241 * Some devices allow an individual function to be reset without affecting
3242 * other functions in the same device.  The PCI device must be responsive
3243 * to PCI config space in order to use this function.
3244 *
3245 * The device function is presumed to be unused and the caller is holding
3246 * the device mutex lock when this function is called.
3247 * Resetting the device will make the contents of PCI configuration space
3248 * random, so any caller of this must be prepared to reinitialise the
3249 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3250 * etc.
3251 *
3252 * Returns 0 if the device function was successfully reset or negative if the
3253 * device doesn't support resetting a single function.
3254 */
3255int __pci_reset_function_locked(struct pci_dev *dev)
3256{
3257	return __pci_dev_reset(dev, 0);
3258}
3259EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3260
3261/**
3262 * pci_probe_reset_function - check whether the device can be safely reset
3263 * @dev: PCI device to reset
3264 *
3265 * Some devices allow an individual function to be reset without affecting
3266 * other functions in the same device.  The PCI device must be responsive
3267 * to PCI config space in order to use this function.
3268 *
3269 * Returns 0 if the device function can be reset or negative if the
3270 * device doesn't support resetting a single function.
3271 */
3272int pci_probe_reset_function(struct pci_dev *dev)
3273{
3274	return pci_dev_reset(dev, 1);
3275}
3276
3277/**
3278 * pci_reset_function - quiesce and reset a PCI device function
3279 * @dev: PCI device to reset
3280 *
3281 * Some devices allow an individual function to be reset without affecting
3282 * other functions in the same device.  The PCI device must be responsive
3283 * to PCI config space in order to use this function.
3284 *
3285 * This function does not just reset the PCI portion of a device, but
3286 * clears all the state associated with the device.  This function differs
3287 * from __pci_reset_function in that it saves and restores device state
3288 * over the reset.
3289 *
3290 * Returns 0 if the device function was successfully reset or negative if the
3291 * device doesn't support resetting a single function.
3292 */
3293int pci_reset_function(struct pci_dev *dev)
3294{
3295	int rc;
3296
3297	rc = pci_dev_reset(dev, 1);
3298	if (rc)
3299		return rc;
3300
3301	pci_save_state(dev);
3302
3303	/*
3304	 * both INTx and MSI are disabled after the Interrupt Disable bit
3305	 * is set and the Bus Master bit is cleared.
3306	 */
3307	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3308
3309	rc = pci_dev_reset(dev, 0);
3310
3311	pci_restore_state(dev);
3312
3313	return rc;
3314}
3315EXPORT_SYMBOL_GPL(pci_reset_function);
3316
3317/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3318 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3319 * @dev: PCI device to query
3320 *
3321 * Returns mmrbc: maximum designed memory read count in bytes
3322 *    or appropriate error value.
3323 */
3324int pcix_get_max_mmrbc(struct pci_dev *dev)
3325{
3326	int cap;
3327	u32 stat;
3328
3329	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3330	if (!cap)
3331		return -EINVAL;
3332
3333	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3334		return -EINVAL;
3335
3336	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3337}
3338EXPORT_SYMBOL(pcix_get_max_mmrbc);
3339
3340/**
3341 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3342 * @dev: PCI device to query
3343 *
3344 * Returns mmrbc: maximum memory read count in bytes
3345 *    or appropriate error value.
3346 */
3347int pcix_get_mmrbc(struct pci_dev *dev)
3348{
3349	int cap;
3350	u16 cmd;
3351
3352	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3353	if (!cap)
3354		return -EINVAL;
3355
3356	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3357		return -EINVAL;
3358
3359	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3360}
3361EXPORT_SYMBOL(pcix_get_mmrbc);
3362
3363/**
3364 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3365 * @dev: PCI device to query
3366 * @mmrbc: maximum memory read count in bytes
3367 *    valid values are 512, 1024, 2048, 4096
3368 *
3369 * If possible sets maximum memory read byte count, some bridges have erratas
3370 * that prevent this.
3371 */
3372int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3373{
3374	int cap;
3375	u32 stat, v, o;
3376	u16 cmd;
3377
3378	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3379		return -EINVAL;
3380
3381	v = ffs(mmrbc) - 10;
3382
3383	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3384	if (!cap)
3385		return -EINVAL;
3386
3387	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3388		return -EINVAL;
3389
3390	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3391		return -E2BIG;
3392
3393	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3394		return -EINVAL;
3395
3396	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3397	if (o != v) {
3398		if (v > o && dev->bus &&
3399		   (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3400			return -EIO;
3401
3402		cmd &= ~PCI_X_CMD_MAX_READ;
3403		cmd |= v << 2;
3404		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3405			return -EIO;
3406	}
3407	return 0;
3408}
3409EXPORT_SYMBOL(pcix_set_mmrbc);
3410
3411/**
3412 * pcie_get_readrq - get PCI Express read request size
3413 * @dev: PCI device to query
3414 *
3415 * Returns maximum memory read request in bytes
3416 *    or appropriate error value.
3417 */
3418int pcie_get_readrq(struct pci_dev *dev)
3419{
3420	int ret, cap;
3421	u16 ctl;
3422
3423	cap = pci_pcie_cap(dev);
3424	if (!cap)
3425		return -EINVAL;
3426
3427	ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3428	if (!ret)
3429		ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3430
3431	return ret;
3432}
3433EXPORT_SYMBOL(pcie_get_readrq);
3434
3435/**
3436 * pcie_set_readrq - set PCI Express maximum memory read request
3437 * @dev: PCI device to query
3438 * @rq: maximum memory read count in bytes
3439 *    valid values are 128, 256, 512, 1024, 2048, 4096
3440 *
3441 * If possible sets maximum memory read request in bytes
3442 */
3443int pcie_set_readrq(struct pci_dev *dev, int rq)
3444{
3445	int cap, err = -EINVAL;
3446	u16 ctl, v;
3447
3448	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3449		goto out;
3450
3451	cap = pci_pcie_cap(dev);
3452	if (!cap)
3453		goto out;
3454
3455	err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3456	if (err)
3457		goto out;
3458	/*
3459	 * If using the "performance" PCIe config, we clamp the
3460	 * read rq size to the max packet size to prevent the
3461	 * host bridge generating requests larger than we can
3462	 * cope with
3463	 */
3464	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3465		int mps = pcie_get_mps(dev);
3466
3467		if (mps < 0)
3468			return mps;
3469		if (mps < rq)
3470			rq = mps;
3471	}
3472
3473	v = (ffs(rq) - 8) << 12;
3474
3475	if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
3476		ctl &= ~PCI_EXP_DEVCTL_READRQ;
3477		ctl |= v;
3478		err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3479	}
3480
3481out:
3482	return err;
3483}
3484EXPORT_SYMBOL(pcie_set_readrq);
3485
3486/**
3487 * pcie_get_mps - get PCI Express maximum payload size
3488 * @dev: PCI device to query
3489 *
3490 * Returns maximum payload size in bytes
3491 *    or appropriate error value.
3492 */
3493int pcie_get_mps(struct pci_dev *dev)
3494{
3495	int ret, cap;
3496	u16 ctl;
3497
3498	cap = pci_pcie_cap(dev);
3499	if (!cap)
3500		return -EINVAL;
3501
3502	ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3503	if (!ret)
3504		ret = 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3505
3506	return ret;
3507}
 
3508
3509/**
3510 * pcie_set_mps - set PCI Express maximum payload size
3511 * @dev: PCI device to query
3512 * @mps: maximum payload size in bytes
3513 *    valid values are 128, 256, 512, 1024, 2048, 4096
3514 *
3515 * If possible sets maximum payload size
3516 */
3517int pcie_set_mps(struct pci_dev *dev, int mps)
3518{
3519	int cap, err = -EINVAL;
3520	u16 ctl, v;
3521
3522	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3523		goto out;
3524
3525	v = ffs(mps) - 8;
3526	if (v > dev->pcie_mpss) 
3527		goto out;
3528	v <<= 5;
3529
3530	cap = pci_pcie_cap(dev);
3531	if (!cap)
3532		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3533
3534	err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3535	if (err)
3536		goto out;
3537
3538	if ((ctl & PCI_EXP_DEVCTL_PAYLOAD) != v) {
3539		ctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
3540		ctl |= v;
3541		err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3542	}
3543out:
3544	return err;
3545}
 
3546
3547/**
3548 * pci_select_bars - Make BAR mask from the type of resource
3549 * @dev: the PCI device for which BAR mask is made
3550 * @flags: resource type mask to be selected
3551 *
3552 * This helper routine makes bar mask from the type of resource.
3553 */
3554int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3555{
3556	int i, bars = 0;
3557	for (i = 0; i < PCI_NUM_RESOURCES; i++)
3558		if (pci_resource_flags(dev, i) & flags)
3559			bars |= (1 << i);
3560	return bars;
3561}
3562
3563/**
3564 * pci_resource_bar - get position of the BAR associated with a resource
3565 * @dev: the PCI device
3566 * @resno: the resource number
3567 * @type: the BAR type to be filled in
3568 *
3569 * Returns BAR position in config space, or 0 if the BAR is invalid.
3570 */
3571int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3572{
3573	int reg;
3574
3575	if (resno < PCI_ROM_RESOURCE) {
3576		*type = pci_bar_unknown;
3577		return PCI_BASE_ADDRESS_0 + 4 * resno;
3578	} else if (resno == PCI_ROM_RESOURCE) {
3579		*type = pci_bar_mem32;
3580		return dev->rom_base_reg;
3581	} else if (resno < PCI_BRIDGE_RESOURCES) {
3582		/* device specific resource */
3583		reg = pci_iov_resource_bar(dev, resno, type);
3584		if (reg)
3585			return reg;
3586	}
3587
3588	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3589	return 0;
3590}
3591
3592/* Some architectures require additional programming to enable VGA */
3593static arch_set_vga_state_t arch_set_vga_state;
3594
3595void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3596{
3597	arch_set_vga_state = func;	/* NULL disables */
3598}
3599
3600static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3601		      unsigned int command_bits, u32 flags)
3602{
3603	if (arch_set_vga_state)
3604		return arch_set_vga_state(dev, decode, command_bits,
3605						flags);
3606	return 0;
3607}
3608
3609/**
3610 * pci_set_vga_state - set VGA decode state on device and parents if requested
3611 * @dev: the PCI device
3612 * @decode: true = enable decoding, false = disable decoding
3613 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3614 * @flags: traverse ancestors and change bridges
3615 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3616 */
3617int pci_set_vga_state(struct pci_dev *dev, bool decode,
3618		      unsigned int command_bits, u32 flags)
3619{
3620	struct pci_bus *bus;
3621	struct pci_dev *bridge;
3622	u16 cmd;
3623	int rc;
3624
3625	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3626
3627	/* ARCH specific VGA enables */
3628	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3629	if (rc)
3630		return rc;
3631
3632	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3633		pci_read_config_word(dev, PCI_COMMAND, &cmd);
3634		if (decode == true)
3635			cmd |= command_bits;
3636		else
3637			cmd &= ~command_bits;
3638		pci_write_config_word(dev, PCI_COMMAND, cmd);
3639	}
3640
3641	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3642		return 0;
3643
3644	bus = dev->bus;
3645	while (bus) {
3646		bridge = bus->self;
3647		if (bridge) {
3648			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3649					     &cmd);
3650			if (decode == true)
3651				cmd |= PCI_BRIDGE_CTL_VGA;
3652			else
3653				cmd &= ~PCI_BRIDGE_CTL_VGA;
3654			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3655					      cmd);
3656		}
3657		bus = bus->parent;
3658	}
3659	return 0;
3660}
3661
 
 
 
 
 
 
 
 
3662#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3663static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3664static DEFINE_SPINLOCK(resource_alignment_lock);
3665
3666/**
3667 * pci_specified_resource_alignment - get resource alignment specified by user.
3668 * @dev: the PCI device to get
3669 *
3670 * RETURNS: Resource alignment if it is specified.
3671 *          Zero if it is not specified.
3672 */
3673resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3674{
3675	int seg, bus, slot, func, align_order, count;
3676	resource_size_t align = 0;
3677	char *p;
3678
3679	spin_lock(&resource_alignment_lock);
3680	p = resource_alignment_param;
3681	while (*p) {
3682		count = 0;
3683		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3684							p[count] == '@') {
3685			p += count + 1;
3686		} else {
3687			align_order = -1;
3688		}
3689		if (sscanf(p, "%x:%x:%x.%x%n",
3690			&seg, &bus, &slot, &func, &count) != 4) {
3691			seg = 0;
3692			if (sscanf(p, "%x:%x.%x%n",
3693					&bus, &slot, &func, &count) != 3) {
3694				/* Invalid format */
3695				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3696					p);
3697				break;
3698			}
3699		}
3700		p += count;
3701		if (seg == pci_domain_nr(dev->bus) &&
3702			bus == dev->bus->number &&
3703			slot == PCI_SLOT(dev->devfn) &&
3704			func == PCI_FUNC(dev->devfn)) {
3705			if (align_order == -1) {
3706				align = PAGE_SIZE;
3707			} else {
3708				align = 1 << align_order;
3709			}
3710			/* Found */
3711			break;
3712		}
3713		if (*p != ';' && *p != ',') {
3714			/* End of param or invalid format */
3715			break;
3716		}
3717		p++;
3718	}
3719	spin_unlock(&resource_alignment_lock);
3720	return align;
3721}
3722
3723/**
3724 * pci_is_reassigndev - check if specified PCI is target device to reassign
3725 * @dev: the PCI device to check
3726 *
3727 * RETURNS: non-zero for PCI device is a target device to reassign,
3728 *          or zero is not.
3729 */
3730int pci_is_reassigndev(struct pci_dev *dev)
3731{
3732	return (pci_specified_resource_alignment(dev) != 0);
3733}
3734
3735/*
3736 * This function disables memory decoding and releases memory resources
3737 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
3738 * It also rounds up size to specified alignment.
3739 * Later on, the kernel will assign page-aligned memory resource back
3740 * to the device.
3741 */
3742void pci_reassigndev_resource_alignment(struct pci_dev *dev)
3743{
3744	int i;
3745	struct resource *r;
3746	resource_size_t align, size;
3747	u16 command;
3748
3749	if (!pci_is_reassigndev(dev))
 
 
3750		return;
3751
3752	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
3753	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
3754		dev_warn(&dev->dev,
3755			"Can't reassign resources to host bridge.\n");
3756		return;
3757	}
3758
3759	dev_info(&dev->dev,
3760		"Disabling memory decoding and releasing memory resources.\n");
3761	pci_read_config_word(dev, PCI_COMMAND, &command);
3762	command &= ~PCI_COMMAND_MEMORY;
3763	pci_write_config_word(dev, PCI_COMMAND, command);
3764
3765	align = pci_specified_resource_alignment(dev);
3766	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
3767		r = &dev->resource[i];
3768		if (!(r->flags & IORESOURCE_MEM))
3769			continue;
3770		size = resource_size(r);
3771		if (size < align) {
3772			size = align;
3773			dev_info(&dev->dev,
3774				"Rounding up size of resource #%d to %#llx.\n",
3775				i, (unsigned long long)size);
3776		}
 
3777		r->end = size - 1;
3778		r->start = 0;
3779	}
3780	/* Need to disable bridge's resource window,
3781	 * to enable the kernel to reassign new resource
3782	 * window later on.
3783	 */
3784	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
3785	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
3786		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
3787			r = &dev->resource[i];
3788			if (!(r->flags & IORESOURCE_MEM))
3789				continue;
 
3790			r->end = resource_size(r) - 1;
3791			r->start = 0;
3792		}
3793		pci_disable_bridge_window(dev);
3794	}
3795}
3796
3797ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3798{
3799	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3800		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3801	spin_lock(&resource_alignment_lock);
3802	strncpy(resource_alignment_param, buf, count);
3803	resource_alignment_param[count] = '\0';
3804	spin_unlock(&resource_alignment_lock);
3805	return count;
3806}
3807
3808ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3809{
3810	size_t count;
3811	spin_lock(&resource_alignment_lock);
3812	count = snprintf(buf, size, "%s", resource_alignment_param);
3813	spin_unlock(&resource_alignment_lock);
3814	return count;
3815}
3816
3817static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3818{
3819	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3820}
3821
3822static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3823					const char *buf, size_t count)
3824{
3825	return pci_set_resource_alignment_param(buf, count);
3826}
3827
3828BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3829					pci_resource_alignment_store);
3830
3831static int __init pci_resource_alignment_sysfs_init(void)
3832{
3833	return bus_create_file(&pci_bus_type,
3834					&bus_attr_resource_alignment);
3835}
3836
3837late_initcall(pci_resource_alignment_sysfs_init);
3838
3839static void __devinit pci_no_domains(void)
3840{
3841#ifdef CONFIG_PCI_DOMAINS
3842	pci_domains_supported = 0;
3843#endif
3844}
3845
3846/**
3847 * pci_ext_cfg_enabled - can we access extended PCI config space?
3848 * @dev: The PCI device of the root bridge.
3849 *
3850 * Returns 1 if we can access PCI extended config space (offsets
3851 * greater than 0xff). This is the default implementation. Architecture
3852 * implementations can override this.
3853 */
3854int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
3855{
3856	return 1;
3857}
3858
3859void __weak pci_fixup_cardbus(struct pci_bus *bus)
3860{
3861}
3862EXPORT_SYMBOL(pci_fixup_cardbus);
3863
3864static int __init pci_setup(char *str)
3865{
3866	while (str) {
3867		char *k = strchr(str, ',');
3868		if (k)
3869			*k++ = 0;
3870		if (*str && (str = pcibios_setup(str)) && *str) {
3871			if (!strcmp(str, "nomsi")) {
3872				pci_no_msi();
3873			} else if (!strcmp(str, "noaer")) {
3874				pci_no_aer();
3875			} else if (!strncmp(str, "realloc=", 8)) {
3876				pci_realloc_get_opt(str + 8);
3877			} else if (!strncmp(str, "realloc", 7)) {
3878				pci_realloc_get_opt("on");
3879			} else if (!strcmp(str, "nodomains")) {
3880				pci_no_domains();
3881			} else if (!strncmp(str, "noari", 5)) {
3882				pcie_ari_disabled = true;
3883			} else if (!strncmp(str, "cbiosize=", 9)) {
3884				pci_cardbus_io_size = memparse(str + 9, &str);
3885			} else if (!strncmp(str, "cbmemsize=", 10)) {
3886				pci_cardbus_mem_size = memparse(str + 10, &str);
3887			} else if (!strncmp(str, "resource_alignment=", 19)) {
3888				pci_set_resource_alignment_param(str + 19,
3889							strlen(str + 19));
3890			} else if (!strncmp(str, "ecrc=", 5)) {
3891				pcie_ecrc_get_policy(str + 5);
3892			} else if (!strncmp(str, "hpiosize=", 9)) {
3893				pci_hotplug_io_size = memparse(str + 9, &str);
3894			} else if (!strncmp(str, "hpmemsize=", 10)) {
3895				pci_hotplug_mem_size = memparse(str + 10, &str);
3896			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3897				pcie_bus_config = PCIE_BUS_TUNE_OFF;
3898			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
3899				pcie_bus_config = PCIE_BUS_SAFE;
3900			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
3901				pcie_bus_config = PCIE_BUS_PERFORMANCE;
3902			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3903				pcie_bus_config = PCIE_BUS_PEER2PEER;
3904			} else if (!strncmp(str, "pcie_scan_all", 13)) {
3905				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
3906			} else {
3907				printk(KERN_ERR "PCI: Unknown option `%s'\n",
3908						str);
3909			}
3910		}
3911		str = k;
3912	}
3913	return 0;
3914}
3915early_param("pci", pci_setup);
3916
3917EXPORT_SYMBOL(pci_reenable_device);
3918EXPORT_SYMBOL(pci_enable_device_io);
3919EXPORT_SYMBOL(pci_enable_device_mem);
3920EXPORT_SYMBOL(pci_enable_device);
3921EXPORT_SYMBOL(pcim_enable_device);
3922EXPORT_SYMBOL(pcim_pin_device);
3923EXPORT_SYMBOL(pci_disable_device);
3924EXPORT_SYMBOL(pci_find_capability);
3925EXPORT_SYMBOL(pci_bus_find_capability);
3926EXPORT_SYMBOL(pci_release_regions);
3927EXPORT_SYMBOL(pci_request_regions);
3928EXPORT_SYMBOL(pci_request_regions_exclusive);
3929EXPORT_SYMBOL(pci_release_region);
3930EXPORT_SYMBOL(pci_request_region);
3931EXPORT_SYMBOL(pci_request_region_exclusive);
3932EXPORT_SYMBOL(pci_release_selected_regions);
3933EXPORT_SYMBOL(pci_request_selected_regions);
3934EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3935EXPORT_SYMBOL(pci_set_master);
3936EXPORT_SYMBOL(pci_clear_master);
3937EXPORT_SYMBOL(pci_set_mwi);
3938EXPORT_SYMBOL(pci_try_set_mwi);
3939EXPORT_SYMBOL(pci_clear_mwi);
3940EXPORT_SYMBOL_GPL(pci_intx);
3941EXPORT_SYMBOL(pci_assign_resource);
3942EXPORT_SYMBOL(pci_find_parent_resource);
3943EXPORT_SYMBOL(pci_select_bars);
3944
3945EXPORT_SYMBOL(pci_set_power_state);
3946EXPORT_SYMBOL(pci_save_state);
3947EXPORT_SYMBOL(pci_restore_state);
3948EXPORT_SYMBOL(pci_pme_capable);
3949EXPORT_SYMBOL(pci_pme_active);
3950EXPORT_SYMBOL(pci_wake_from_d3);
3951EXPORT_SYMBOL(pci_target_state);
3952EXPORT_SYMBOL(pci_prepare_to_sleep);
3953EXPORT_SYMBOL(pci_back_from_sleep);
3954EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
v3.15
   1/*
   2 *	PCI Bus Services, see include/linux/pci.h for further explanation.
   3 *
   4 *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   5 *	David Mosberger-Tang
   6 *
   7 *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/delay.h>
  12#include <linux/init.h>
  13#include <linux/pci.h>
  14#include <linux/pm.h>
  15#include <linux/slab.h>
  16#include <linux/module.h>
  17#include <linux/spinlock.h>
  18#include <linux/string.h>
  19#include <linux/log2.h>
  20#include <linux/pci-aspm.h>
  21#include <linux/pm_wakeup.h>
  22#include <linux/interrupt.h>
  23#include <linux/device.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/pci_hotplug.h>
  26#include <asm-generic/pci-bridge.h>
  27#include <asm/setup.h>
  28#include "pci.h"
  29
  30const char *pci_power_names[] = {
  31	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  32};
  33EXPORT_SYMBOL_GPL(pci_power_names);
  34
  35int isa_dma_bridge_buggy;
  36EXPORT_SYMBOL(isa_dma_bridge_buggy);
  37
  38int pci_pci_problems;
  39EXPORT_SYMBOL(pci_pci_problems);
  40
  41unsigned int pci_pm_d3_delay;
  42
  43static void pci_pme_list_scan(struct work_struct *work);
  44
  45static LIST_HEAD(pci_pme_list);
  46static DEFINE_MUTEX(pci_pme_list_mutex);
  47static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  48
  49struct pci_pme_device {
  50	struct list_head list;
  51	struct pci_dev *dev;
  52};
  53
  54#define PME_TIMEOUT 1000 /* How long between PME checks */
  55
  56static void pci_dev_d3_sleep(struct pci_dev *dev)
  57{
  58	unsigned int delay = dev->d3_delay;
  59
  60	if (delay < pci_pm_d3_delay)
  61		delay = pci_pm_d3_delay;
  62
  63	msleep(delay);
  64}
  65
  66#ifdef CONFIG_PCI_DOMAINS
  67int pci_domains_supported = 1;
  68#endif
  69
  70#define DEFAULT_CARDBUS_IO_SIZE		(256)
  71#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
  72/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  73unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  74unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  75
  76#define DEFAULT_HOTPLUG_IO_SIZE		(256)
  77#define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
  78/* pci=hpmemsize=nnM,hpiosize=nn can override this */
  79unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  80unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
  81
  82enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
  83
  84/*
  85 * The default CLS is used if arch didn't set CLS explicitly and not
  86 * all pci devices agree on the same value.  Arch can override either
  87 * the dfl or actual value as it sees fit.  Don't forget this is
  88 * measured in 32-bit words, not bytes.
  89 */
  90u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
  91u8 pci_cache_line_size;
  92
  93/*
  94 * If we set up a device for bus mastering, we need to check the latency
  95 * timer as certain BIOSes forget to set it properly.
  96 */
  97unsigned int pcibios_max_latency = 255;
  98
  99/* If set, the PCIe ARI capability will not be used. */
 100static bool pcie_ari_disabled;
 101
 102/**
 103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 104 * @bus: pointer to PCI bus structure to search
 105 *
 106 * Given a PCI bus, returns the highest PCI bus number present in the set
 107 * including the given PCI bus and its list of child PCI buses.
 108 */
 109unsigned char pci_bus_max_busnr(struct pci_bus* bus)
 110{
 111	struct pci_bus *tmp;
 112	unsigned char max, n;
 113
 114	max = bus->busn_res.end;
 115	list_for_each_entry(tmp, &bus->children, node) {
 116		n = pci_bus_max_busnr(tmp);
 117		if(n > max)
 118			max = n;
 119	}
 120	return max;
 121}
 122EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 123
 124#ifdef CONFIG_HAS_IOMEM
 125void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 126{
 127	/*
 128	 * Make sure the BAR is actually a memory resource, not an IO resource
 129	 */
 130	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 131		WARN_ON(1);
 132		return NULL;
 133	}
 134	return ioremap_nocache(pci_resource_start(pdev, bar),
 135				     pci_resource_len(pdev, bar));
 136}
 137EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 138#endif
 139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 140#define PCI_FIND_CAP_TTL	48
 141
 142static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 143				   u8 pos, int cap, int *ttl)
 144{
 145	u8 id;
 146
 147	while ((*ttl)--) {
 148		pci_bus_read_config_byte(bus, devfn, pos, &pos);
 149		if (pos < 0x40)
 150			break;
 151		pos &= ~3;
 152		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
 153					 &id);
 154		if (id == 0xff)
 155			break;
 156		if (id == cap)
 157			return pos;
 158		pos += PCI_CAP_LIST_NEXT;
 159	}
 160	return 0;
 161}
 162
 163static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 164			       u8 pos, int cap)
 165{
 166	int ttl = PCI_FIND_CAP_TTL;
 167
 168	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 169}
 170
 171int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 172{
 173	return __pci_find_next_cap(dev->bus, dev->devfn,
 174				   pos + PCI_CAP_LIST_NEXT, cap);
 175}
 176EXPORT_SYMBOL_GPL(pci_find_next_capability);
 177
 178static int __pci_bus_find_cap_start(struct pci_bus *bus,
 179				    unsigned int devfn, u8 hdr_type)
 180{
 181	u16 status;
 182
 183	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 184	if (!(status & PCI_STATUS_CAP_LIST))
 185		return 0;
 186
 187	switch (hdr_type) {
 188	case PCI_HEADER_TYPE_NORMAL:
 189	case PCI_HEADER_TYPE_BRIDGE:
 190		return PCI_CAPABILITY_LIST;
 191	case PCI_HEADER_TYPE_CARDBUS:
 192		return PCI_CB_CAPABILITY_LIST;
 193	default:
 194		return 0;
 195	}
 196
 197	return 0;
 198}
 199
 200/**
 201 * pci_find_capability - query for devices' capabilities
 202 * @dev: PCI device to query
 203 * @cap: capability code
 204 *
 205 * Tell if a device supports a given PCI capability.
 206 * Returns the address of the requested capability structure within the
 207 * device's PCI configuration space or 0 in case the device does not
 208 * support it.  Possible values for @cap:
 209 *
 210 *  %PCI_CAP_ID_PM           Power Management
 211 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 212 *  %PCI_CAP_ID_VPD          Vital Product Data
 213 *  %PCI_CAP_ID_SLOTID       Slot Identification
 214 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 215 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 216 *  %PCI_CAP_ID_PCIX         PCI-X
 217 *  %PCI_CAP_ID_EXP          PCI Express
 218 */
 219int pci_find_capability(struct pci_dev *dev, int cap)
 220{
 221	int pos;
 222
 223	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 224	if (pos)
 225		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 226
 227	return pos;
 228}
 229
 230/**
 231 * pci_bus_find_capability - query for devices' capabilities
 232 * @bus:   the PCI bus to query
 233 * @devfn: PCI device to query
 234 * @cap:   capability code
 235 *
 236 * Like pci_find_capability() but works for pci devices that do not have a
 237 * pci_dev structure set up yet.
 238 *
 239 * Returns the address of the requested capability structure within the
 240 * device's PCI configuration space or 0 in case the device does not
 241 * support it.
 242 */
 243int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 244{
 245	int pos;
 246	u8 hdr_type;
 247
 248	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 249
 250	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 251	if (pos)
 252		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 253
 254	return pos;
 255}
 256
 257/**
 258 * pci_find_next_ext_capability - Find an extended capability
 259 * @dev: PCI device to query
 260 * @start: address at which to start looking (0 to start at beginning of list)
 261 * @cap: capability code
 262 *
 263 * Returns the address of the next matching extended capability structure
 264 * within the device's PCI configuration space or 0 if the device does
 265 * not support it.  Some capabilities can occur several times, e.g., the
 266 * vendor-specific capability, and this provides a way to find them all.
 
 
 
 
 267 */
 268int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
 269{
 270	u32 header;
 271	int ttl;
 272	int pos = PCI_CFG_SPACE_SIZE;
 273
 274	/* minimum 8 bytes per capability */
 275	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 276
 277	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 278		return 0;
 279
 280	if (start)
 281		pos = start;
 282
 283	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 284		return 0;
 285
 286	/*
 287	 * If we have no capabilities, this is indicated by cap ID,
 288	 * cap version and next pointer all being 0.
 289	 */
 290	if (header == 0)
 291		return 0;
 292
 293	while (ttl-- > 0) {
 294		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 295			return pos;
 296
 297		pos = PCI_EXT_CAP_NEXT(header);
 298		if (pos < PCI_CFG_SPACE_SIZE)
 299			break;
 300
 301		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 302			break;
 303	}
 304
 305	return 0;
 306}
 307EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 308
 309/**
 310 * pci_find_ext_capability - Find an extended capability
 311 * @dev: PCI device to query
 312 * @cap: capability code
 
 313 *
 314 * Returns the address of the requested extended capability structure
 315 * within the device's PCI configuration space or 0 if the device does
 316 * not support it.  Possible values for @cap:
 317 *
 318 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 319 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 320 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 321 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 322 */
 323int pci_find_ext_capability(struct pci_dev *dev, int cap)
 
 324{
 325	return pci_find_next_ext_capability(dev, 0, cap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 326}
 327EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 328
 329static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 330{
 331	int rc, ttl = PCI_FIND_CAP_TTL;
 332	u8 cap, mask;
 333
 334	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 335		mask = HT_3BIT_CAP_MASK;
 336	else
 337		mask = HT_5BIT_CAP_MASK;
 338
 339	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 340				      PCI_CAP_ID_HT, &ttl);
 341	while (pos) {
 342		rc = pci_read_config_byte(dev, pos + 3, &cap);
 343		if (rc != PCIBIOS_SUCCESSFUL)
 344			return 0;
 345
 346		if ((cap & mask) == ht_cap)
 347			return pos;
 348
 349		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 350					      pos + PCI_CAP_LIST_NEXT,
 351					      PCI_CAP_ID_HT, &ttl);
 352	}
 353
 354	return 0;
 355}
 356/**
 357 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 358 * @dev: PCI device to query
 359 * @pos: Position from which to continue searching
 360 * @ht_cap: Hypertransport capability code
 361 *
 362 * To be used in conjunction with pci_find_ht_capability() to search for
 363 * all capabilities matching @ht_cap. @pos should always be a value returned
 364 * from pci_find_ht_capability().
 365 *
 366 * NB. To be 100% safe against broken PCI devices, the caller should take
 367 * steps to avoid an infinite loop.
 368 */
 369int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 370{
 371	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 372}
 373EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 374
 375/**
 376 * pci_find_ht_capability - query a device's Hypertransport capabilities
 377 * @dev: PCI device to query
 378 * @ht_cap: Hypertransport capability code
 379 *
 380 * Tell if a device supports a given Hypertransport capability.
 381 * Returns an address within the device's PCI configuration space
 382 * or 0 in case the device does not support the request capability.
 383 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 384 * which has a Hypertransport capability matching @ht_cap.
 385 */
 386int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 387{
 388	int pos;
 389
 390	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 391	if (pos)
 392		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 393
 394	return pos;
 395}
 396EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 397
 398/**
 399 * pci_find_parent_resource - return resource region of parent bus of given region
 400 * @dev: PCI device structure contains resources to be searched
 401 * @res: child resource record for which parent is sought
 402 *
 403 *  For given resource region of given device, return the resource
 404 *  region of parent bus the given region is contained in.
 
 405 */
 406struct resource *
 407pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
 408{
 409	const struct pci_bus *bus = dev->bus;
 410	struct resource *r;
 411	int i;
 
 412
 413	pci_bus_for_each_resource(bus, r, i) {
 414		if (!r)
 415			continue;
 416		if (res->start && resource_contains(r, res)) {
 417
 418			/*
 419			 * If the window is prefetchable but the BAR is
 420			 * not, the allocator made a mistake.
 421			 */
 422			if (r->flags & IORESOURCE_PREFETCH &&
 423			    !(res->flags & IORESOURCE_PREFETCH))
 424				return NULL;
 425
 426			/*
 427			 * If we're below a transparent bridge, there may
 428			 * be both a positively-decoded aperture and a
 429			 * subtractively-decoded region that contain the BAR.
 430			 * We want the positively-decoded one, so this depends
 431			 * on pci_bus_for_each_resource() giving us those
 432			 * first.
 433			 */
 434			return r;
 435		}
 436	}
 437	return NULL;
 438}
 439
 440/**
 441 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 442 * @dev: the PCI device to operate on
 443 * @pos: config space offset of status word
 444 * @mask: mask of bit(s) to care about in status word
 445 *
 446 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 447 */
 448int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 449{
 450	int i;
 451
 452	/* Wait for Transaction Pending bit clean */
 453	for (i = 0; i < 4; i++) {
 454		u16 status;
 455		if (i)
 456			msleep((1 << (i - 1)) * 100);
 457
 458		pci_read_config_word(dev, pos, &status);
 459		if (!(status & mask))
 460			return 1;
 461	}
 462
 463	return 0;
 464}
 465
 466/**
 467 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
 468 * @dev: PCI device to have its BARs restored
 469 *
 470 * Restore the BAR values for a given device, so as to make it
 471 * accessible by its driver.
 472 */
 473static void
 474pci_restore_bars(struct pci_dev *dev)
 475{
 476	int i;
 477
 478	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 479		pci_update_resource(dev, i);
 480}
 481
 482static struct pci_platform_pm_ops *pci_platform_pm;
 483
 484int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
 485{
 486	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
 487	    || !ops->sleep_wake)
 488		return -EINVAL;
 489	pci_platform_pm = ops;
 490	return 0;
 491}
 492
 493static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 494{
 495	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 496}
 497
 498static inline int platform_pci_set_power_state(struct pci_dev *dev,
 499                                                pci_power_t t)
 500{
 501	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 502}
 503
 504static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 505{
 506	return pci_platform_pm ?
 507			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 508}
 509
 
 
 
 
 
 510static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
 511{
 512	return pci_platform_pm ?
 513			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
 514}
 515
 516static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
 517{
 518	return pci_platform_pm ?
 519			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
 520}
 521
 522/**
 523 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 524 *                           given PCI device
 525 * @dev: PCI device to handle.
 526 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 527 *
 528 * RETURN VALUE:
 529 * -EINVAL if the requested state is invalid.
 530 * -EIO if device does not support PCI PM or its PM capabilities register has a
 531 * wrong version, or device doesn't support the requested state.
 532 * 0 if device already is in the requested state.
 533 * 0 if device's power state has been successfully changed.
 534 */
 535static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 536{
 537	u16 pmcsr;
 538	bool need_restore = false;
 539
 540	/* Check if we're already there */
 541	if (dev->current_state == state)
 542		return 0;
 543
 544	if (!dev->pm_cap)
 545		return -EIO;
 546
 547	if (state < PCI_D0 || state > PCI_D3hot)
 548		return -EINVAL;
 549
 550	/* Validate current state:
 551	 * Can enter D0 from any state, but if we can only go deeper
 552	 * to sleep if we're already in a low power state
 553	 */
 554	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 555	    && dev->current_state > state) {
 556		dev_err(&dev->dev, "invalid power transition "
 557			"(from state %d to %d)\n", dev->current_state, state);
 558		return -EINVAL;
 559	}
 560
 561	/* check if this device supports the desired state */
 562	if ((state == PCI_D1 && !dev->d1_support)
 563	   || (state == PCI_D2 && !dev->d2_support))
 564		return -EIO;
 565
 566	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 567
 568	/* If we're (effectively) in D3, force entire word to 0.
 569	 * This doesn't affect PME_Status, disables PME_En, and
 570	 * sets PowerState to 0.
 571	 */
 572	switch (dev->current_state) {
 573	case PCI_D0:
 574	case PCI_D1:
 575	case PCI_D2:
 576		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 577		pmcsr |= state;
 578		break;
 579	case PCI_D3hot:
 580	case PCI_D3cold:
 581	case PCI_UNKNOWN: /* Boot-up */
 582		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 583		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 584			need_restore = true;
 585		/* Fall-through: force to D0 */
 586	default:
 587		pmcsr = 0;
 588		break;
 589	}
 590
 591	/* enter specified state */
 592	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 593
 594	/* Mandatory power management transition delays */
 595	/* see PCI PM 1.1 5.6.1 table 18 */
 596	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 597		pci_dev_d3_sleep(dev);
 598	else if (state == PCI_D2 || dev->current_state == PCI_D2)
 599		udelay(PCI_PM_D2_DELAY);
 600
 601	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 602	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 603	if (dev->current_state != state && printk_ratelimit())
 604		dev_info(&dev->dev, "Refused to change power state, "
 605			"currently in D%d\n", dev->current_state);
 606
 607	/*
 608	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 609	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 610	 * from D3hot to D0 _may_ perform an internal reset, thereby
 611	 * going to "D0 Uninitialized" rather than "D0 Initialized".
 612	 * For example, at least some versions of the 3c905B and the
 613	 * 3c556B exhibit this behaviour.
 614	 *
 615	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 616	 * devices in a D3hot state at boot.  Consequently, we need to
 617	 * restore at least the BARs so that the device will be
 618	 * accessible to its driver.
 619	 */
 620	if (need_restore)
 621		pci_restore_bars(dev);
 622
 623	if (dev->bus->self)
 624		pcie_aspm_pm_state_change(dev->bus->self);
 625
 626	return 0;
 627}
 628
 629/**
 630 * pci_update_current_state - Read PCI power state of given device from its
 631 *                            PCI PM registers and cache it
 632 * @dev: PCI device to handle.
 633 * @state: State to cache in case the device doesn't have the PM capability
 634 */
 635void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 636{
 637	if (dev->pm_cap) {
 638		u16 pmcsr;
 639
 640		/*
 641		 * Configuration space is not accessible for device in
 642		 * D3cold, so just keep or set D3cold for safety
 643		 */
 644		if (dev->current_state == PCI_D3cold)
 645			return;
 646		if (state == PCI_D3cold) {
 647			dev->current_state = PCI_D3cold;
 648			return;
 649		}
 650		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 651		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 652	} else {
 653		dev->current_state = state;
 654	}
 655}
 656
 657/**
 658 * pci_power_up - Put the given device into D0 forcibly
 659 * @dev: PCI device to power up
 660 */
 661void pci_power_up(struct pci_dev *dev)
 662{
 663	if (platform_pci_power_manageable(dev))
 664		platform_pci_set_power_state(dev, PCI_D0);
 665
 666	pci_raw_set_power_state(dev, PCI_D0);
 667	pci_update_current_state(dev, PCI_D0);
 668}
 669
 670/**
 671 * pci_platform_power_transition - Use platform to change device power state
 672 * @dev: PCI device to handle.
 673 * @state: State to put the device into.
 674 */
 675static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 676{
 677	int error;
 678
 679	if (platform_pci_power_manageable(dev)) {
 680		error = platform_pci_set_power_state(dev, state);
 681		if (!error)
 682			pci_update_current_state(dev, state);
 683	} else
 
 
 
 684		error = -ENODEV;
 685
 686	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
 687		dev->current_state = PCI_D0;
 
 688
 689	return error;
 690}
 691
 692/**
 693 * pci_wakeup - Wake up a PCI device
 694 * @pci_dev: Device to handle.
 695 * @ign: ignored parameter
 696 */
 697static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
 698{
 699	pci_wakeup_event(pci_dev);
 700	pm_request_resume(&pci_dev->dev);
 701	return 0;
 702}
 703
 704/**
 705 * pci_wakeup_bus - Walk given bus and wake up devices on it
 706 * @bus: Top bus of the subtree to walk.
 707 */
 708static void pci_wakeup_bus(struct pci_bus *bus)
 709{
 710	if (bus)
 711		pci_walk_bus(bus, pci_wakeup, NULL);
 712}
 713
 714/**
 715 * __pci_start_power_transition - Start power transition of a PCI device
 716 * @dev: PCI device to handle.
 717 * @state: State to put the device into.
 718 */
 719static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
 720{
 721	if (state == PCI_D0) {
 722		pci_platform_power_transition(dev, PCI_D0);
 723		/*
 724		 * Mandatory power management transition delays, see
 725		 * PCI Express Base Specification Revision 2.0 Section
 726		 * 6.6.1: Conventional Reset.  Do not delay for
 727		 * devices powered on/off by corresponding bridge,
 728		 * because have already delayed for the bridge.
 729		 */
 730		if (dev->runtime_d3cold) {
 731			msleep(dev->d3cold_delay);
 732			/*
 733			 * When powering on a bridge from D3cold, the
 734			 * whole hierarchy may be powered on into
 735			 * D0uninitialized state, resume them to give
 736			 * them a chance to suspend again
 737			 */
 738			pci_wakeup_bus(dev->subordinate);
 739		}
 740	}
 741}
 742
 743/**
 744 * __pci_dev_set_current_state - Set current state of a PCI device
 745 * @dev: Device to handle
 746 * @data: pointer to state to be set
 747 */
 748static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
 749{
 750	pci_power_t state = *(pci_power_t *)data;
 751
 752	dev->current_state = state;
 753	return 0;
 754}
 755
 756/**
 757 * __pci_bus_set_current_state - Walk given bus and set current state of devices
 758 * @bus: Top bus of the subtree to walk.
 759 * @state: state to be set
 760 */
 761static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
 762{
 763	if (bus)
 764		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
 765}
 766
 767/**
 768 * __pci_complete_power_transition - Complete power transition of a PCI device
 769 * @dev: PCI device to handle.
 770 * @state: State to put the device into.
 771 *
 772 * This function should not be called directly by device drivers.
 773 */
 774int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
 775{
 776	int ret;
 777
 778	if (state <= PCI_D0)
 779		return -EINVAL;
 780	ret = pci_platform_power_transition(dev, state);
 781	/* Power off the bridge may power off the whole hierarchy */
 782	if (!ret && state == PCI_D3cold)
 783		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
 784	return ret;
 785}
 786EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
 787
 788/**
 789 * pci_set_power_state - Set the power state of a PCI device
 790 * @dev: PCI device to handle.
 791 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 792 *
 793 * Transition a device to a new power state, using the platform firmware and/or
 794 * the device's PCI PM registers.
 795 *
 796 * RETURN VALUE:
 797 * -EINVAL if the requested state is invalid.
 798 * -EIO if device does not support PCI PM or its PM capabilities register has a
 799 * wrong version, or device doesn't support the requested state.
 800 * 0 if device already is in the requested state.
 801 * 0 if device's power state has been successfully changed.
 802 */
 803int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
 804{
 805	int error;
 806
 807	/* bound the state we're entering */
 808	if (state > PCI_D3cold)
 809		state = PCI_D3cold;
 810	else if (state < PCI_D0)
 811		state = PCI_D0;
 812	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
 813		/*
 814		 * If the device or the parent bridge do not support PCI PM,
 815		 * ignore the request if we're doing anything other than putting
 816		 * it into D0 (which would only happen on boot).
 817		 */
 818		return 0;
 819
 820	/* Check if we're already there */
 821	if (dev->current_state == state)
 822		return 0;
 823
 824	__pci_start_power_transition(dev, state);
 825
 826	/* This device is quirked not to be put into D3, so
 827	   don't put it in D3 */
 828	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
 829		return 0;
 830
 831	/*
 832	 * To put device in D3cold, we put device into D3hot in native
 833	 * way, then put device into D3cold with platform ops
 834	 */
 835	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
 836					PCI_D3hot : state);
 837
 838	if (!__pci_complete_power_transition(dev, state))
 839		error = 0;
 840	/*
 841	 * When aspm_policy is "powersave" this call ensures
 842	 * that ASPM is configured.
 843	 */
 844	if (!error && dev->bus->self)
 845		pcie_aspm_powersave_config_link(dev->bus->self);
 846
 847	return error;
 848}
 849
 850/**
 851 * pci_choose_state - Choose the power state of a PCI device
 852 * @dev: PCI device to be suspended
 853 * @state: target sleep state for the whole system. This is the value
 854 *	that is passed to suspend() function.
 855 *
 856 * Returns PCI power state suitable for given device and given system
 857 * message.
 858 */
 859
 860pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
 861{
 862	pci_power_t ret;
 863
 864	if (!dev->pm_cap)
 865		return PCI_D0;
 866
 867	ret = platform_pci_choose_state(dev);
 868	if (ret != PCI_POWER_ERROR)
 869		return ret;
 870
 871	switch (state.event) {
 872	case PM_EVENT_ON:
 873		return PCI_D0;
 874	case PM_EVENT_FREEZE:
 875	case PM_EVENT_PRETHAW:
 876		/* REVISIT both freeze and pre-thaw "should" use D0 */
 877	case PM_EVENT_SUSPEND:
 878	case PM_EVENT_HIBERNATE:
 879		return PCI_D3hot;
 880	default:
 881		dev_info(&dev->dev, "unrecognized suspend event %d\n",
 882			 state.event);
 883		BUG();
 884	}
 885	return PCI_D0;
 886}
 887
 888EXPORT_SYMBOL(pci_choose_state);
 889
 890#define PCI_EXP_SAVE_REGS	7
 891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 892
 893static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
 894						       u16 cap, bool extended)
 895{
 896	struct pci_cap_saved_state *tmp;
 
 897
 898	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
 899		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
 900			return tmp;
 901	}
 902	return NULL;
 903}
 904
 905struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
 906{
 907	return _pci_find_saved_cap(dev, cap, false);
 908}
 909
 910struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
 911{
 912	return _pci_find_saved_cap(dev, cap, true);
 913}
 914
 915static int pci_save_pcie_state(struct pci_dev *dev)
 916{
 917	int i = 0;
 918	struct pci_cap_saved_state *save_state;
 919	u16 *cap;
 
 920
 921	if (!pci_is_pcie(dev))
 
 922		return 0;
 923
 924	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 925	if (!save_state) {
 926		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 927		return -ENOMEM;
 928	}
 
 
 
 929
 930	cap = (u16 *)&save_state->cap.data[0];
 931	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
 932	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
 933	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
 934	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
 935	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
 936	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
 937	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
 
 
 
 
 
 
 938
 939	return 0;
 940}
 941
 942static void pci_restore_pcie_state(struct pci_dev *dev)
 943{
 944	int i = 0;
 945	struct pci_cap_saved_state *save_state;
 946	u16 *cap;
 
 947
 948	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 949	if (!save_state)
 
 950		return;
 
 
 
 951
 952	cap = (u16 *)&save_state->cap.data[0];
 953	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
 954	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
 955	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
 956	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
 957	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
 958	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
 959	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
 
 
 
 
 
 
 960}
 961
 962
 963static int pci_save_pcix_state(struct pci_dev *dev)
 964{
 965	int pos;
 966	struct pci_cap_saved_state *save_state;
 967
 968	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 969	if (pos <= 0)
 970		return 0;
 971
 972	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 973	if (!save_state) {
 974		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 975		return -ENOMEM;
 976	}
 977
 978	pci_read_config_word(dev, pos + PCI_X_CMD,
 979			     (u16 *)save_state->cap.data);
 980
 981	return 0;
 982}
 983
 984static void pci_restore_pcix_state(struct pci_dev *dev)
 985{
 986	int i = 0, pos;
 987	struct pci_cap_saved_state *save_state;
 988	u16 *cap;
 989
 990	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 991	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 992	if (!save_state || pos <= 0)
 993		return;
 994	cap = (u16 *)&save_state->cap.data[0];
 995
 996	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
 997}
 998
 999
1000/**
1001 * pci_save_state - save the PCI configuration space of a device before suspending
1002 * @dev: - PCI device that we're dealing with
1003 */
1004int
1005pci_save_state(struct pci_dev *dev)
1006{
1007	int i;
1008	/* XXX: 100% dword access ok here? */
1009	for (i = 0; i < 16; i++)
1010		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1011	dev->state_saved = true;
1012	if ((i = pci_save_pcie_state(dev)) != 0)
1013		return i;
1014	if ((i = pci_save_pcix_state(dev)) != 0)
1015		return i;
1016	if ((i = pci_save_vc_state(dev)) != 0)
1017		return i;
1018	return 0;
1019}
1020
1021static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1022				     u32 saved_val, int retry)
1023{
1024	u32 val;
1025
1026	pci_read_config_dword(pdev, offset, &val);
1027	if (val == saved_val)
1028		return;
1029
1030	for (;;) {
1031		dev_dbg(&pdev->dev, "restoring config space at offset "
1032			"%#x (was %#x, writing %#x)\n", offset, val, saved_val);
1033		pci_write_config_dword(pdev, offset, saved_val);
1034		if (retry-- <= 0)
1035			return;
1036
1037		pci_read_config_dword(pdev, offset, &val);
1038		if (val == saved_val)
1039			return;
1040
1041		mdelay(1);
1042	}
1043}
1044
1045static void pci_restore_config_space_range(struct pci_dev *pdev,
1046					   int start, int end, int retry)
1047{
1048	int index;
1049
1050	for (index = end; index >= start; index--)
1051		pci_restore_config_dword(pdev, 4 * index,
1052					 pdev->saved_config_space[index],
1053					 retry);
1054}
1055
1056static void pci_restore_config_space(struct pci_dev *pdev)
1057{
1058	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1059		pci_restore_config_space_range(pdev, 10, 15, 0);
1060		/* Restore BARs before the command register. */
1061		pci_restore_config_space_range(pdev, 4, 9, 10);
1062		pci_restore_config_space_range(pdev, 0, 3, 0);
1063	} else {
1064		pci_restore_config_space_range(pdev, 0, 15, 0);
1065	}
1066}
1067
1068/**
1069 * pci_restore_state - Restore the saved state of a PCI device
1070 * @dev: - PCI device that we're dealing with
1071 */
1072void pci_restore_state(struct pci_dev *dev)
1073{
1074	if (!dev->state_saved)
1075		return;
1076
1077	/* PCI Express register must be restored first */
1078	pci_restore_pcie_state(dev);
1079	pci_restore_ats_state(dev);
1080	pci_restore_vc_state(dev);
1081
1082	pci_restore_config_space(dev);
1083
1084	pci_restore_pcix_state(dev);
1085	pci_restore_msi_state(dev);
1086	pci_restore_iov_state(dev);
1087
1088	dev->state_saved = false;
1089}
1090
1091struct pci_saved_state {
1092	u32 config_space[16];
1093	struct pci_cap_saved_data cap[0];
1094};
1095
1096/**
1097 * pci_store_saved_state - Allocate and return an opaque struct containing
1098 *			   the device saved state.
1099 * @dev: PCI device that we're dealing with
1100 *
1101 * Return NULL if no state or error.
1102 */
1103struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1104{
1105	struct pci_saved_state *state;
1106	struct pci_cap_saved_state *tmp;
1107	struct pci_cap_saved_data *cap;
 
1108	size_t size;
1109
1110	if (!dev->state_saved)
1111		return NULL;
1112
1113	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1114
1115	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1116		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1117
1118	state = kzalloc(size, GFP_KERNEL);
1119	if (!state)
1120		return NULL;
1121
1122	memcpy(state->config_space, dev->saved_config_space,
1123	       sizeof(state->config_space));
1124
1125	cap = state->cap;
1126	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1127		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1128		memcpy(cap, &tmp->cap, len);
1129		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1130	}
1131	/* Empty cap_save terminates list */
1132
1133	return state;
1134}
1135EXPORT_SYMBOL_GPL(pci_store_saved_state);
1136
1137/**
1138 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1139 * @dev: PCI device that we're dealing with
1140 * @state: Saved state returned from pci_store_saved_state()
1141 */
1142static int pci_load_saved_state(struct pci_dev *dev,
1143				struct pci_saved_state *state)
1144{
1145	struct pci_cap_saved_data *cap;
1146
1147	dev->state_saved = false;
1148
1149	if (!state)
1150		return 0;
1151
1152	memcpy(dev->saved_config_space, state->config_space,
1153	       sizeof(state->config_space));
1154
1155	cap = state->cap;
1156	while (cap->size) {
1157		struct pci_cap_saved_state *tmp;
1158
1159		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1160		if (!tmp || tmp->cap.size != cap->size)
1161			return -EINVAL;
1162
1163		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1164		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1165		       sizeof(struct pci_cap_saved_data) + cap->size);
1166	}
1167
1168	dev->state_saved = true;
1169	return 0;
1170}
 
1171
1172/**
1173 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1174 *				   and free the memory allocated for it.
1175 * @dev: PCI device that we're dealing with
1176 * @state: Pointer to saved state returned from pci_store_saved_state()
1177 */
1178int pci_load_and_free_saved_state(struct pci_dev *dev,
1179				  struct pci_saved_state **state)
1180{
1181	int ret = pci_load_saved_state(dev, *state);
1182	kfree(*state);
1183	*state = NULL;
1184	return ret;
1185}
1186EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1187
1188int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1189{
1190	return pci_enable_resources(dev, bars);
1191}
1192
1193static int do_pci_enable_device(struct pci_dev *dev, int bars)
1194{
1195	int err;
1196	u16 cmd;
1197	u8 pin;
1198
1199	err = pci_set_power_state(dev, PCI_D0);
1200	if (err < 0 && err != -EIO)
1201		return err;
1202	err = pcibios_enable_device(dev, bars);
1203	if (err < 0)
1204		return err;
1205	pci_fixup_device(pci_fixup_enable, dev);
1206
1207	if (dev->msi_enabled || dev->msix_enabled)
1208		return 0;
1209
1210	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1211	if (pin) {
1212		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1213		if (cmd & PCI_COMMAND_INTX_DISABLE)
1214			pci_write_config_word(dev, PCI_COMMAND,
1215					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1216	}
1217
1218	return 0;
1219}
1220
1221/**
1222 * pci_reenable_device - Resume abandoned device
1223 * @dev: PCI device to be resumed
1224 *
1225 *  Note this function is a backend of pci_default_resume and is not supposed
1226 *  to be called by normal code, write proper resume handler and use it instead.
1227 */
1228int pci_reenable_device(struct pci_dev *dev)
1229{
1230	if (pci_is_enabled(dev))
1231		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1232	return 0;
1233}
1234
1235static void pci_enable_bridge(struct pci_dev *dev)
1236{
1237	struct pci_dev *bridge;
1238	int retval;
1239
1240	bridge = pci_upstream_bridge(dev);
1241	if (bridge)
1242		pci_enable_bridge(bridge);
1243
1244	if (pci_is_enabled(dev)) {
1245		if (!dev->is_busmaster)
1246			pci_set_master(dev);
1247		return;
1248	}
1249
1250	retval = pci_enable_device(dev);
1251	if (retval)
1252		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1253			retval);
1254	pci_set_master(dev);
1255}
1256
1257static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1258{
1259	struct pci_dev *bridge;
1260	int err;
1261	int i, bars = 0;
1262
1263	/*
1264	 * Power state could be unknown at this point, either due to a fresh
1265	 * boot or a device removal call.  So get the current power state
1266	 * so that things like MSI message writing will behave as expected
1267	 * (e.g. if the device really is in D0 at enable time).
1268	 */
1269	if (dev->pm_cap) {
1270		u16 pmcsr;
1271		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1272		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1273	}
1274
1275	if (atomic_inc_return(&dev->enable_cnt) > 1)
1276		return 0;		/* already enabled */
1277
1278	bridge = pci_upstream_bridge(dev);
1279	if (bridge)
1280		pci_enable_bridge(bridge);
1281
1282	/* only skip sriov related */
1283	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1284		if (dev->resource[i].flags & flags)
1285			bars |= (1 << i);
1286	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1287		if (dev->resource[i].flags & flags)
1288			bars |= (1 << i);
1289
1290	err = do_pci_enable_device(dev, bars);
1291	if (err < 0)
1292		atomic_dec(&dev->enable_cnt);
1293	return err;
1294}
1295
1296/**
1297 * pci_enable_device_io - Initialize a device for use with IO space
1298 * @dev: PCI device to be initialized
1299 *
1300 *  Initialize device before it's used by a driver. Ask low-level code
1301 *  to enable I/O resources. Wake up the device if it was suspended.
1302 *  Beware, this function can fail.
1303 */
1304int pci_enable_device_io(struct pci_dev *dev)
1305{
1306	return pci_enable_device_flags(dev, IORESOURCE_IO);
1307}
1308
1309/**
1310 * pci_enable_device_mem - Initialize a device for use with Memory space
1311 * @dev: PCI device to be initialized
1312 *
1313 *  Initialize device before it's used by a driver. Ask low-level code
1314 *  to enable Memory resources. Wake up the device if it was suspended.
1315 *  Beware, this function can fail.
1316 */
1317int pci_enable_device_mem(struct pci_dev *dev)
1318{
1319	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1320}
1321
1322/**
1323 * pci_enable_device - Initialize device before it's used by a driver.
1324 * @dev: PCI device to be initialized
1325 *
1326 *  Initialize device before it's used by a driver. Ask low-level code
1327 *  to enable I/O and memory. Wake up the device if it was suspended.
1328 *  Beware, this function can fail.
1329 *
1330 *  Note we don't actually enable the device many times if we call
1331 *  this function repeatedly (we just increment the count).
1332 */
1333int pci_enable_device(struct pci_dev *dev)
1334{
1335	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1336}
1337
1338/*
1339 * Managed PCI resources.  This manages device on/off, intx/msi/msix
1340 * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1341 * there's no need to track it separately.  pci_devres is initialized
1342 * when a device is enabled using managed PCI device enable interface.
1343 */
1344struct pci_devres {
1345	unsigned int enabled:1;
1346	unsigned int pinned:1;
1347	unsigned int orig_intx:1;
1348	unsigned int restore_intx:1;
1349	u32 region_mask;
1350};
1351
1352static void pcim_release(struct device *gendev, void *res)
1353{
1354	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1355	struct pci_devres *this = res;
1356	int i;
1357
1358	if (dev->msi_enabled)
1359		pci_disable_msi(dev);
1360	if (dev->msix_enabled)
1361		pci_disable_msix(dev);
1362
1363	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1364		if (this->region_mask & (1 << i))
1365			pci_release_region(dev, i);
1366
1367	if (this->restore_intx)
1368		pci_intx(dev, this->orig_intx);
1369
1370	if (this->enabled && !this->pinned)
1371		pci_disable_device(dev);
1372}
1373
1374static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1375{
1376	struct pci_devres *dr, *new_dr;
1377
1378	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1379	if (dr)
1380		return dr;
1381
1382	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1383	if (!new_dr)
1384		return NULL;
1385	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1386}
1387
1388static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1389{
1390	if (pci_is_managed(pdev))
1391		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1392	return NULL;
1393}
1394
1395/**
1396 * pcim_enable_device - Managed pci_enable_device()
1397 * @pdev: PCI device to be initialized
1398 *
1399 * Managed pci_enable_device().
1400 */
1401int pcim_enable_device(struct pci_dev *pdev)
1402{
1403	struct pci_devres *dr;
1404	int rc;
1405
1406	dr = get_pci_dr(pdev);
1407	if (unlikely(!dr))
1408		return -ENOMEM;
1409	if (dr->enabled)
1410		return 0;
1411
1412	rc = pci_enable_device(pdev);
1413	if (!rc) {
1414		pdev->is_managed = 1;
1415		dr->enabled = 1;
1416	}
1417	return rc;
1418}
1419
1420/**
1421 * pcim_pin_device - Pin managed PCI device
1422 * @pdev: PCI device to pin
1423 *
1424 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1425 * driver detach.  @pdev must have been enabled with
1426 * pcim_enable_device().
1427 */
1428void pcim_pin_device(struct pci_dev *pdev)
1429{
1430	struct pci_devres *dr;
1431
1432	dr = find_pci_dr(pdev);
1433	WARN_ON(!dr || !dr->enabled);
1434	if (dr)
1435		dr->pinned = 1;
1436}
1437
1438/*
1439 * pcibios_add_device - provide arch specific hooks when adding device dev
1440 * @dev: the PCI device being added
1441 *
1442 * Permits the platform to provide architecture specific functionality when
1443 * devices are added. This is the default implementation. Architecture
1444 * implementations can override this.
1445 */
1446int __weak pcibios_add_device (struct pci_dev *dev)
1447{
1448	return 0;
1449}
1450
1451/**
1452 * pcibios_release_device - provide arch specific hooks when releasing device dev
1453 * @dev: the PCI device being released
1454 *
1455 * Permits the platform to provide architecture specific functionality when
1456 * devices are released. This is the default implementation. Architecture
1457 * implementations can override this.
1458 */
1459void __weak pcibios_release_device(struct pci_dev *dev) {}
1460
1461/**
1462 * pcibios_disable_device - disable arch specific PCI resources for device dev
1463 * @dev: the PCI device to disable
1464 *
1465 * Disables architecture specific PCI resources for the device. This
1466 * is the default implementation. Architecture implementations can
1467 * override this.
1468 */
1469void __weak pcibios_disable_device (struct pci_dev *dev) {}
1470
1471static void do_pci_disable_device(struct pci_dev *dev)
1472{
1473	u16 pci_command;
1474
1475	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1476	if (pci_command & PCI_COMMAND_MASTER) {
1477		pci_command &= ~PCI_COMMAND_MASTER;
1478		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1479	}
1480
1481	pcibios_disable_device(dev);
1482}
1483
1484/**
1485 * pci_disable_enabled_device - Disable device without updating enable_cnt
1486 * @dev: PCI device to disable
1487 *
1488 * NOTE: This function is a backend of PCI power management routines and is
1489 * not supposed to be called drivers.
1490 */
1491void pci_disable_enabled_device(struct pci_dev *dev)
1492{
1493	if (pci_is_enabled(dev))
1494		do_pci_disable_device(dev);
1495}
1496
1497/**
1498 * pci_disable_device - Disable PCI device after use
1499 * @dev: PCI device to be disabled
1500 *
1501 * Signal to the system that the PCI device is not in use by the system
1502 * anymore.  This only involves disabling PCI bus-mastering, if active.
1503 *
1504 * Note we don't actually disable the device until all callers of
1505 * pci_enable_device() have called pci_disable_device().
1506 */
1507void
1508pci_disable_device(struct pci_dev *dev)
1509{
1510	struct pci_devres *dr;
1511
1512	dr = find_pci_dr(dev);
1513	if (dr)
1514		dr->enabled = 0;
1515
1516	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1517		      "disabling already-disabled device");
1518
1519	if (atomic_dec_return(&dev->enable_cnt) != 0)
1520		return;
1521
1522	do_pci_disable_device(dev);
1523
1524	dev->is_busmaster = 0;
1525}
1526
1527/**
1528 * pcibios_set_pcie_reset_state - set reset state for device dev
1529 * @dev: the PCIe device reset
1530 * @state: Reset state to enter into
1531 *
1532 *
1533 * Sets the PCIe reset state for the device. This is the default
1534 * implementation. Architecture implementations can override this.
1535 */
1536int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1537					enum pcie_reset_state state)
1538{
1539	return -EINVAL;
1540}
1541
1542/**
1543 * pci_set_pcie_reset_state - set reset state for device dev
1544 * @dev: the PCIe device reset
1545 * @state: Reset state to enter into
1546 *
1547 *
1548 * Sets the PCI reset state for the device.
1549 */
1550int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1551{
1552	return pcibios_set_pcie_reset_state(dev, state);
1553}
1554
1555/**
1556 * pci_check_pme_status - Check if given device has generated PME.
1557 * @dev: Device to check.
1558 *
1559 * Check the PME status of the device and if set, clear it and clear PME enable
1560 * (if set).  Return 'true' if PME status and PME enable were both set or
1561 * 'false' otherwise.
1562 */
1563bool pci_check_pme_status(struct pci_dev *dev)
1564{
1565	int pmcsr_pos;
1566	u16 pmcsr;
1567	bool ret = false;
1568
1569	if (!dev->pm_cap)
1570		return false;
1571
1572	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1573	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1574	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1575		return false;
1576
1577	/* Clear PME status. */
1578	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1579	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1580		/* Disable PME to avoid interrupt flood. */
1581		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1582		ret = true;
1583	}
1584
1585	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1586
1587	return ret;
1588}
1589
1590/**
1591 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1592 * @dev: Device to handle.
1593 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1594 *
1595 * Check if @dev has generated PME and queue a resume request for it in that
1596 * case.
1597 */
1598static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1599{
1600	if (pme_poll_reset && dev->pme_poll)
1601		dev->pme_poll = false;
1602
1603	if (pci_check_pme_status(dev)) {
1604		pci_wakeup_event(dev);
1605		pm_request_resume(&dev->dev);
1606	}
1607	return 0;
1608}
1609
1610/**
1611 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1612 * @bus: Top bus of the subtree to walk.
1613 */
1614void pci_pme_wakeup_bus(struct pci_bus *bus)
1615{
1616	if (bus)
1617		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1618}
1619
1620
1621/**
1622 * pci_pme_capable - check the capability of PCI device to generate PME#
1623 * @dev: PCI device to handle.
1624 * @state: PCI state from which device will issue PME#.
1625 */
1626bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1627{
1628	if (!dev->pm_cap)
1629		return false;
1630
1631	return !!(dev->pme_support & (1 << state));
1632}
1633
1634static void pci_pme_list_scan(struct work_struct *work)
1635{
1636	struct pci_pme_device *pme_dev, *n;
1637
1638	mutex_lock(&pci_pme_list_mutex);
1639	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1640		if (pme_dev->dev->pme_poll) {
1641			struct pci_dev *bridge;
1642
1643			bridge = pme_dev->dev->bus->self;
1644			/*
1645			 * If bridge is in low power state, the
1646			 * configuration space of subordinate devices
1647			 * may be not accessible
1648			 */
1649			if (bridge && bridge->current_state != PCI_D0)
1650				continue;
1651			pci_pme_wakeup(pme_dev->dev, NULL);
1652		} else {
1653			list_del(&pme_dev->list);
1654			kfree(pme_dev);
1655		}
 
 
 
1656	}
1657	if (!list_empty(&pci_pme_list))
1658		schedule_delayed_work(&pci_pme_work,
1659				      msecs_to_jiffies(PME_TIMEOUT));
1660	mutex_unlock(&pci_pme_list_mutex);
1661}
1662
1663/**
1664 * pci_pme_active - enable or disable PCI device's PME# function
1665 * @dev: PCI device to handle.
1666 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1667 *
1668 * The caller must verify that the device is capable of generating PME# before
1669 * calling this function with @enable equal to 'true'.
1670 */
1671void pci_pme_active(struct pci_dev *dev, bool enable)
1672{
1673	u16 pmcsr;
1674
1675	if (!dev->pme_support)
1676		return;
1677
1678	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1679	/* Clear PME_Status by writing 1 to it and enable PME# */
1680	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1681	if (!enable)
1682		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1683
1684	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1685
1686	/*
1687	 * PCI (as opposed to PCIe) PME requires that the device have
1688	 * its PME# line hooked up correctly. Not all hardware vendors
1689	 * do this, so the PME never gets delivered and the device
1690	 * remains asleep. The easiest way around this is to
1691	 * periodically walk the list of suspended devices and check
1692	 * whether any have their PME flag set. The assumption is that
1693	 * we'll wake up often enough anyway that this won't be a huge
1694	 * hit, and the power savings from the devices will still be a
1695	 * win.
1696	 *
1697	 * Although PCIe uses in-band PME message instead of PME# line
1698	 * to report PME, PME does not work for some PCIe devices in
1699	 * reality.  For example, there are devices that set their PME
1700	 * status bits, but don't really bother to send a PME message;
1701	 * there are PCI Express Root Ports that don't bother to
1702	 * trigger interrupts when they receive PME messages from the
1703	 * devices below.  So PME poll is used for PCIe devices too.
1704	 */
1705
1706	if (dev->pme_poll) {
1707		struct pci_pme_device *pme_dev;
1708		if (enable) {
1709			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1710					  GFP_KERNEL);
1711			if (!pme_dev) {
1712				dev_warn(&dev->dev, "can't enable PME#\n");
1713				return;
1714			}
1715			pme_dev->dev = dev;
1716			mutex_lock(&pci_pme_list_mutex);
1717			list_add(&pme_dev->list, &pci_pme_list);
1718			if (list_is_singular(&pci_pme_list))
1719				schedule_delayed_work(&pci_pme_work,
1720						      msecs_to_jiffies(PME_TIMEOUT));
1721			mutex_unlock(&pci_pme_list_mutex);
1722		} else {
1723			mutex_lock(&pci_pme_list_mutex);
1724			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1725				if (pme_dev->dev == dev) {
1726					list_del(&pme_dev->list);
1727					kfree(pme_dev);
1728					break;
1729				}
1730			}
1731			mutex_unlock(&pci_pme_list_mutex);
1732		}
1733	}
1734
 
1735	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1736}
1737
1738/**
1739 * __pci_enable_wake - enable PCI device as wakeup event source
1740 * @dev: PCI device affected
1741 * @state: PCI state from which device will issue wakeup events
1742 * @runtime: True if the events are to be generated at run time
1743 * @enable: True to enable event generation; false to disable
1744 *
1745 * This enables the device as a wakeup event source, or disables it.
1746 * When such events involves platform-specific hooks, those hooks are
1747 * called automatically by this routine.
1748 *
1749 * Devices with legacy power management (no standard PCI PM capabilities)
1750 * always require such platform hooks.
1751 *
1752 * RETURN VALUE:
1753 * 0 is returned on success
1754 * -EINVAL is returned if device is not supposed to wake up the system
1755 * Error code depending on the platform is returned if both the platform and
1756 * the native mechanism fail to enable the generation of wake-up events
1757 */
1758int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1759		      bool runtime, bool enable)
1760{
1761	int ret = 0;
1762
1763	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1764		return -EINVAL;
1765
1766	/* Don't do the same thing twice in a row for one device. */
1767	if (!!enable == !!dev->wakeup_prepared)
1768		return 0;
1769
1770	/*
1771	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1772	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1773	 * enable.  To disable wake-up we call the platform first, for symmetry.
1774	 */
1775
1776	if (enable) {
1777		int error;
1778
1779		if (pci_pme_capable(dev, state))
1780			pci_pme_active(dev, true);
1781		else
1782			ret = 1;
1783		error = runtime ? platform_pci_run_wake(dev, true) :
1784					platform_pci_sleep_wake(dev, true);
1785		if (ret)
1786			ret = error;
1787		if (!ret)
1788			dev->wakeup_prepared = true;
1789	} else {
1790		if (runtime)
1791			platform_pci_run_wake(dev, false);
1792		else
1793			platform_pci_sleep_wake(dev, false);
1794		pci_pme_active(dev, false);
1795		dev->wakeup_prepared = false;
1796	}
1797
1798	return ret;
1799}
1800EXPORT_SYMBOL(__pci_enable_wake);
1801
1802/**
1803 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1804 * @dev: PCI device to prepare
1805 * @enable: True to enable wake-up event generation; false to disable
1806 *
1807 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1808 * and this function allows them to set that up cleanly - pci_enable_wake()
1809 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1810 * ordering constraints.
1811 *
1812 * This function only returns error code if the device is not capable of
1813 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1814 * enable wake-up power for it.
1815 */
1816int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1817{
1818	return pci_pme_capable(dev, PCI_D3cold) ?
1819			pci_enable_wake(dev, PCI_D3cold, enable) :
1820			pci_enable_wake(dev, PCI_D3hot, enable);
1821}
1822
1823/**
1824 * pci_target_state - find an appropriate low power state for a given PCI dev
1825 * @dev: PCI device
1826 *
1827 * Use underlying platform code to find a supported low power state for @dev.
1828 * If the platform can't manage @dev, return the deepest state from which it
1829 * can generate wake events, based on any available PME info.
1830 */
1831static pci_power_t pci_target_state(struct pci_dev *dev)
1832{
1833	pci_power_t target_state = PCI_D3hot;
1834
1835	if (platform_pci_power_manageable(dev)) {
1836		/*
1837		 * Call the platform to choose the target state of the device
1838		 * and enable wake-up from this state if supported.
1839		 */
1840		pci_power_t state = platform_pci_choose_state(dev);
1841
1842		switch (state) {
1843		case PCI_POWER_ERROR:
1844		case PCI_UNKNOWN:
1845			break;
1846		case PCI_D1:
1847		case PCI_D2:
1848			if (pci_no_d1d2(dev))
1849				break;
1850		default:
1851			target_state = state;
1852		}
1853	} else if (!dev->pm_cap) {
1854		target_state = PCI_D0;
1855	} else if (device_may_wakeup(&dev->dev)) {
1856		/*
1857		 * Find the deepest state from which the device can generate
1858		 * wake-up events, make it the target state and enable device
1859		 * to generate PME#.
1860		 */
1861		if (dev->pme_support) {
1862			while (target_state
1863			      && !(dev->pme_support & (1 << target_state)))
1864				target_state--;
1865		}
1866	}
1867
1868	return target_state;
1869}
1870
1871/**
1872 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1873 * @dev: Device to handle.
1874 *
1875 * Choose the power state appropriate for the device depending on whether
1876 * it can wake up the system and/or is power manageable by the platform
1877 * (PCI_D3hot is the default) and put the device into that state.
1878 */
1879int pci_prepare_to_sleep(struct pci_dev *dev)
1880{
1881	pci_power_t target_state = pci_target_state(dev);
1882	int error;
1883
1884	if (target_state == PCI_POWER_ERROR)
1885		return -EIO;
1886
1887	/* D3cold during system suspend/hibernate is not supported */
1888	if (target_state > PCI_D3hot)
1889		target_state = PCI_D3hot;
1890
1891	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1892
1893	error = pci_set_power_state(dev, target_state);
1894
1895	if (error)
1896		pci_enable_wake(dev, target_state, false);
1897
1898	return error;
1899}
1900
1901/**
1902 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1903 * @dev: Device to handle.
1904 *
1905 * Disable device's system wake-up capability and put it into D0.
1906 */
1907int pci_back_from_sleep(struct pci_dev *dev)
1908{
1909	pci_enable_wake(dev, PCI_D0, false);
1910	return pci_set_power_state(dev, PCI_D0);
1911}
1912
1913/**
1914 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1915 * @dev: PCI device being suspended.
1916 *
1917 * Prepare @dev to generate wake-up events at run time and put it into a low
1918 * power state.
1919 */
1920int pci_finish_runtime_suspend(struct pci_dev *dev)
1921{
1922	pci_power_t target_state = pci_target_state(dev);
1923	int error;
1924
1925	if (target_state == PCI_POWER_ERROR)
1926		return -EIO;
1927
1928	dev->runtime_d3cold = target_state == PCI_D3cold;
1929
1930	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1931
1932	error = pci_set_power_state(dev, target_state);
1933
1934	if (error) {
1935		__pci_enable_wake(dev, target_state, true, false);
1936		dev->runtime_d3cold = false;
1937	}
1938
1939	return error;
1940}
1941
1942/**
1943 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1944 * @dev: Device to check.
1945 *
1946 * Return true if the device itself is capable of generating wake-up events
1947 * (through the platform or using the native PCIe PME) or if the device supports
1948 * PME and one of its upstream bridges can generate wake-up events.
1949 */
1950bool pci_dev_run_wake(struct pci_dev *dev)
1951{
1952	struct pci_bus *bus = dev->bus;
1953
1954	if (device_run_wake(&dev->dev))
1955		return true;
1956
1957	if (!dev->pme_support)
1958		return false;
1959
1960	while (bus->parent) {
1961		struct pci_dev *bridge = bus->self;
1962
1963		if (device_run_wake(&bridge->dev))
1964			return true;
1965
1966		bus = bus->parent;
1967	}
1968
1969	/* We have reached the root bus. */
1970	if (bus->bridge)
1971		return device_run_wake(bus->bridge);
1972
1973	return false;
1974}
1975EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1976
1977void pci_config_pm_runtime_get(struct pci_dev *pdev)
1978{
1979	struct device *dev = &pdev->dev;
1980	struct device *parent = dev->parent;
1981
1982	if (parent)
1983		pm_runtime_get_sync(parent);
1984	pm_runtime_get_noresume(dev);
1985	/*
1986	 * pdev->current_state is set to PCI_D3cold during suspending,
1987	 * so wait until suspending completes
1988	 */
1989	pm_runtime_barrier(dev);
1990	/*
1991	 * Only need to resume devices in D3cold, because config
1992	 * registers are still accessible for devices suspended but
1993	 * not in D3cold.
1994	 */
1995	if (pdev->current_state == PCI_D3cold)
1996		pm_runtime_resume(dev);
1997}
1998
1999void pci_config_pm_runtime_put(struct pci_dev *pdev)
2000{
2001	struct device *dev = &pdev->dev;
2002	struct device *parent = dev->parent;
2003
2004	pm_runtime_put(dev);
2005	if (parent)
2006		pm_runtime_put_sync(parent);
2007}
2008
2009/**
2010 * pci_pm_init - Initialize PM functions of given PCI device
2011 * @dev: PCI device to handle.
2012 */
2013void pci_pm_init(struct pci_dev *dev)
2014{
2015	int pm;
2016	u16 pmc;
2017
2018	pm_runtime_forbid(&dev->dev);
2019	pm_runtime_set_active(&dev->dev);
2020	pm_runtime_enable(&dev->dev);
2021	device_enable_async_suspend(&dev->dev);
2022	dev->wakeup_prepared = false;
2023
2024	dev->pm_cap = 0;
2025	dev->pme_support = 0;
2026
2027	/* find PCI PM capability in list */
2028	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2029	if (!pm)
2030		return;
2031	/* Check device's ability to generate PME# */
2032	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2033
2034	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2035		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2036			pmc & PCI_PM_CAP_VER_MASK);
2037		return;
2038	}
2039
2040	dev->pm_cap = pm;
2041	dev->d3_delay = PCI_PM_D3_WAIT;
2042	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2043	dev->d3cold_allowed = true;
2044
2045	dev->d1_support = false;
2046	dev->d2_support = false;
2047	if (!pci_no_d1d2(dev)) {
2048		if (pmc & PCI_PM_CAP_D1)
2049			dev->d1_support = true;
2050		if (pmc & PCI_PM_CAP_D2)
2051			dev->d2_support = true;
2052
2053		if (dev->d1_support || dev->d2_support)
2054			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2055				   dev->d1_support ? " D1" : "",
2056				   dev->d2_support ? " D2" : "");
2057	}
2058
2059	pmc &= PCI_PM_CAP_PME_MASK;
2060	if (pmc) {
2061		dev_printk(KERN_DEBUG, &dev->dev,
2062			 "PME# supported from%s%s%s%s%s\n",
2063			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2064			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2065			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2066			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2067			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2068		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2069		dev->pme_poll = true;
2070		/*
2071		 * Make device's PM flags reflect the wake-up capability, but
2072		 * let the user space enable it to wake up the system as needed.
2073		 */
2074		device_set_wakeup_capable(&dev->dev, true);
2075		/* Disable the PME# generation functionality */
2076		pci_pme_active(dev, false);
 
 
2077	}
2078}
2079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2080static void pci_add_saved_cap(struct pci_dev *pci_dev,
2081	struct pci_cap_saved_state *new_cap)
2082{
2083	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2084}
2085
2086/**
2087 * _pci_add_cap_save_buffer - allocate buffer for saving given
2088 *                            capability registers
2089 * @dev: the PCI device
2090 * @cap: the capability to allocate the buffer for
2091 * @extended: Standard or Extended capability ID
2092 * @size: requested size of the buffer
2093 */
2094static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2095				    bool extended, unsigned int size)
2096{
2097	int pos;
2098	struct pci_cap_saved_state *save_state;
2099
2100	if (extended)
2101		pos = pci_find_ext_capability(dev, cap);
2102	else
2103		pos = pci_find_capability(dev, cap);
2104
2105	if (pos <= 0)
2106		return 0;
2107
2108	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2109	if (!save_state)
2110		return -ENOMEM;
2111
2112	save_state->cap.cap_nr = cap;
2113	save_state->cap.cap_extended = extended;
2114	save_state->cap.size = size;
2115	pci_add_saved_cap(dev, save_state);
2116
2117	return 0;
2118}
2119
2120int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2121{
2122	return _pci_add_cap_save_buffer(dev, cap, false, size);
2123}
2124
2125int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2126{
2127	return _pci_add_cap_save_buffer(dev, cap, true, size);
2128}
2129
2130/**
2131 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2132 * @dev: the PCI device
2133 */
2134void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2135{
2136	int error;
2137
2138	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2139					PCI_EXP_SAVE_REGS * sizeof(u16));
2140	if (error)
2141		dev_err(&dev->dev,
2142			"unable to preallocate PCI Express save buffer\n");
2143
2144	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2145	if (error)
2146		dev_err(&dev->dev,
2147			"unable to preallocate PCI-X save buffer\n");
2148
2149	pci_allocate_vc_save_buffers(dev);
2150}
2151
2152void pci_free_cap_save_buffers(struct pci_dev *dev)
2153{
2154	struct pci_cap_saved_state *tmp;
2155	struct hlist_node *n;
2156
2157	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2158		kfree(tmp);
2159}
2160
2161/**
2162 * pci_configure_ari - enable or disable ARI forwarding
2163 * @dev: the PCI device
2164 *
2165 * If @dev and its upstream bridge both support ARI, enable ARI in the
2166 * bridge.  Otherwise, disable ARI in the bridge.
2167 */
2168void pci_configure_ari(struct pci_dev *dev)
2169{
 
2170	u32 cap;
 
2171	struct pci_dev *bridge;
2172
2173	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2174		return;
2175
 
 
 
 
2176	bridge = dev->bus->self;
2177	if (!bridge)
 
 
 
 
2178		return;
2179
2180	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
 
 
 
 
 
2181	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2182		return;
2183
2184	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2185		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2186					 PCI_EXP_DEVCTL2_ARI);
2187		bridge->ari_enabled = 1;
2188	} else {
2189		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2190					   PCI_EXP_DEVCTL2_ARI);
2191		bridge->ari_enabled = 0;
2192	}
2193}
2194
2195static int pci_acs_enable;
2196
2197/**
2198 * pci_request_acs - ask for ACS to be enabled if supported
 
 
 
 
 
 
2199 */
2200void pci_request_acs(void)
2201{
2202	pci_acs_enable = 1;
 
 
 
 
 
 
 
 
 
 
 
 
2203}
 
2204
2205/**
2206 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2207 * @dev: the PCI device
 
2208 */
2209static int pci_std_enable_acs(struct pci_dev *dev)
2210{
2211	int pos;
2212	u16 cap;
2213	u16 ctrl;
2214
2215	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
 
 
 
2216	if (!pos)
2217		return -ENODEV;
2218
2219	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2220	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 
 
 
 
 
 
2221
2222	/* Source Validation */
2223	ctrl |= (cap & PCI_ACS_SV);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2224
2225	/* P2P Request Redirect */
2226	ctrl |= (cap & PCI_ACS_RR);
2227
2228	/* P2P Completion Redirect */
2229	ctrl |= (cap & PCI_ACS_CR);
 
2230
2231	/* Upstream Forwarding */
2232	ctrl |= (cap & PCI_ACS_UF);
 
 
 
 
 
 
 
 
2233
2234	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2235
2236	return 0;
2237}
 
2238
2239/**
2240 * pci_enable_acs - enable ACS if hardware support it
2241 * @dev: the PCI device
 
 
2242 */
2243void pci_enable_acs(struct pci_dev *dev)
2244{
2245	if (!pci_acs_enable)
 
 
 
2246		return;
2247
2248	if (!pci_std_enable_acs(dev))
 
2249		return;
2250
2251	pci_dev_specific_enable_acs(dev);
 
 
2252}
 
2253
2254static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
 
 
 
 
 
 
 
2255{
2256	int pos;
2257	u16 cap, ctrl;
 
 
 
2258
2259	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2260	if (!pos)
2261		return false;
2262
2263	/*
2264	 * Except for egress control, capabilities are either required
2265	 * or only required if controllable.  Features missing from the
2266	 * capability field can therefore be assumed as hard-wired enabled.
2267	 */
2268	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2269	acs_flags &= (cap | PCI_ACS_EC);
2270
2271	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2272	return (ctrl & acs_flags) == acs_flags;
2273}
 
2274
2275/**
2276 * pci_acs_enabled - test ACS against required flags for a given device
2277 * @pdev: device to test
2278 * @acs_flags: required PCI ACS flags
2279 *
2280 * Return true if the device supports the provided flags.  Automatically
2281 * filters out flags that are not implemented on multifunction devices.
2282 *
2283 * Note that this interface checks the effective ACS capabilities of the
2284 * device rather than the actual capabilities.  For instance, most single
2285 * function endpoints are not required to support ACS because they have no
2286 * opportunity for peer-to-peer access.  We therefore return 'true'
2287 * regardless of whether the device exposes an ACS capability.  This makes
2288 * it much easier for callers of this function to ignore the actual type
2289 * or topology of the device when testing ACS support.
2290 */
2291bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2292{
 
 
2293	int ret;
2294
2295	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2296	if (ret >= 0)
2297		return ret > 0;
2298
2299	/*
2300	 * Conventional PCI and PCI-X devices never support ACS, either
2301	 * effectively or actually.  The shared bus topology implies that
2302	 * any device on the bus can receive or snoop DMA.
2303	 */
2304	if (!pci_is_pcie(pdev))
2305		return false;
2306
2307	switch (pci_pcie_type(pdev)) {
2308	/*
2309	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2310	 * but since their primary interface is PCI/X, we conservatively
2311	 * handle them as we would a non-PCIe device.
2312	 */
2313	case PCI_EXP_TYPE_PCIE_BRIDGE:
2314	/*
2315	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2316	 * applicable... must never implement an ACS Extended Capability...".
2317	 * This seems arbitrary, but we take a conservative interpretation
2318	 * of this statement.
2319	 */
2320	case PCI_EXP_TYPE_PCI_BRIDGE:
2321	case PCI_EXP_TYPE_RC_EC:
2322		return false;
2323	/*
2324	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2325	 * implement ACS in order to indicate their peer-to-peer capabilities,
2326	 * regardless of whether they are single- or multi-function devices.
2327	 */
2328	case PCI_EXP_TYPE_DOWNSTREAM:
2329	case PCI_EXP_TYPE_ROOT_PORT:
2330		return pci_acs_flags_enabled(pdev, acs_flags);
2331	/*
2332	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2333	 * implemented by the remaining PCIe types to indicate peer-to-peer
2334	 * capabilities, but only when they are part of a multifunction
2335	 * device.  The footnote for section 6.12 indicates the specific
2336	 * PCIe types included here.
2337	 */
2338	case PCI_EXP_TYPE_ENDPOINT:
2339	case PCI_EXP_TYPE_UPSTREAM:
2340	case PCI_EXP_TYPE_LEG_END:
2341	case PCI_EXP_TYPE_RC_END:
2342		if (!pdev->multifunction)
2343			break;
2344
2345		return pci_acs_flags_enabled(pdev, acs_flags);
 
 
 
 
2346	}
2347
2348	/*
2349	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2350	 * to single function devices with the exception of downstream ports.
2351	 */
2352	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2353}
2354
2355/**
2356 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2357 * @start: starting downstream device
2358 * @end: ending upstream device or NULL to search to the root bus
2359 * @acs_flags: required flags
2360 *
2361 * Walk up a device tree from start to end testing PCI ACS support.  If
2362 * any step along the way does not support the required flags, return false.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2363 */
2364bool pci_acs_path_enabled(struct pci_dev *start,
2365			  struct pci_dev *end, u16 acs_flags)
2366{
2367	struct pci_dev *pdev, *parent = start;
 
 
 
 
 
 
 
 
2368
2369	do {
2370		pdev = parent;
 
2371
2372		if (!pci_acs_enabled(pdev, acs_flags))
2373			return false;
2374
2375		if (pci_is_root_bus(pdev->bus))
2376			return (end == NULL);
2377
2378		parent = pdev->bus->self;
2379	} while (pdev != end);
 
 
 
2380
2381	return true;
 
 
 
2382}
2383
2384/**
2385 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2386 * @dev: the PCI device
2387 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2388 *
2389 * Perform INTx swizzling for a device behind one level of bridge.  This is
2390 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2391 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2392 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2393 * the PCI Express Base Specification, Revision 2.1)
2394 */
2395u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2396{
2397	int slot;
2398
2399	if (pci_ari_enabled(dev->bus))
2400		slot = 0;
2401	else
2402		slot = PCI_SLOT(dev->devfn);
2403
2404	return (((pin - 1) + slot) % 4) + 1;
2405}
2406
2407int
2408pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2409{
2410	u8 pin;
2411
2412	pin = dev->pin;
2413	if (!pin)
2414		return -1;
2415
2416	while (!pci_is_root_bus(dev->bus)) {
2417		pin = pci_swizzle_interrupt_pin(dev, pin);
2418		dev = dev->bus->self;
2419	}
2420	*bridge = dev;
2421	return pin;
2422}
2423
2424/**
2425 * pci_common_swizzle - swizzle INTx all the way to root bridge
2426 * @dev: the PCI device
2427 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2428 *
2429 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2430 * bridges all the way up to a PCI root bus.
2431 */
2432u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2433{
2434	u8 pin = *pinp;
2435
2436	while (!pci_is_root_bus(dev->bus)) {
2437		pin = pci_swizzle_interrupt_pin(dev, pin);
2438		dev = dev->bus->self;
2439	}
2440	*pinp = pin;
2441	return PCI_SLOT(dev->devfn);
2442}
2443
2444/**
2445 *	pci_release_region - Release a PCI bar
2446 *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2447 *	@bar: BAR to release
2448 *
2449 *	Releases the PCI I/O and memory resources previously reserved by a
2450 *	successful call to pci_request_region.  Call this function only
2451 *	after all use of the PCI regions has ceased.
2452 */
2453void pci_release_region(struct pci_dev *pdev, int bar)
2454{
2455	struct pci_devres *dr;
2456
2457	if (pci_resource_len(pdev, bar) == 0)
2458		return;
2459	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2460		release_region(pci_resource_start(pdev, bar),
2461				pci_resource_len(pdev, bar));
2462	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2463		release_mem_region(pci_resource_start(pdev, bar),
2464				pci_resource_len(pdev, bar));
2465
2466	dr = find_pci_dr(pdev);
2467	if (dr)
2468		dr->region_mask &= ~(1 << bar);
2469}
2470
2471/**
2472 *	__pci_request_region - Reserved PCI I/O and memory resource
2473 *	@pdev: PCI device whose resources are to be reserved
2474 *	@bar: BAR to be reserved
2475 *	@res_name: Name to be associated with resource.
2476 *	@exclusive: whether the region access is exclusive or not
2477 *
2478 *	Mark the PCI region associated with PCI device @pdev BR @bar as
2479 *	being reserved by owner @res_name.  Do not access any
2480 *	address inside the PCI regions unless this call returns
2481 *	successfully.
2482 *
2483 *	If @exclusive is set, then the region is marked so that userspace
2484 *	is explicitly not allowed to map the resource via /dev/mem or
2485 *	sysfs MMIO access.
2486 *
2487 *	Returns 0 on success, or %EBUSY on error.  A warning
2488 *	message is also printed on failure.
2489 */
2490static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2491									int exclusive)
2492{
2493	struct pci_devres *dr;
2494
2495	if (pci_resource_len(pdev, bar) == 0)
2496		return 0;
2497
2498	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2499		if (!request_region(pci_resource_start(pdev, bar),
2500			    pci_resource_len(pdev, bar), res_name))
2501			goto err_out;
2502	}
2503	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2504		if (!__request_mem_region(pci_resource_start(pdev, bar),
2505					pci_resource_len(pdev, bar), res_name,
2506					exclusive))
2507			goto err_out;
2508	}
2509
2510	dr = find_pci_dr(pdev);
2511	if (dr)
2512		dr->region_mask |= 1 << bar;
2513
2514	return 0;
2515
2516err_out:
2517	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2518		 &pdev->resource[bar]);
2519	return -EBUSY;
2520}
2521
2522/**
2523 *	pci_request_region - Reserve PCI I/O and memory resource
2524 *	@pdev: PCI device whose resources are to be reserved
2525 *	@bar: BAR to be reserved
2526 *	@res_name: Name to be associated with resource
2527 *
2528 *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2529 *	being reserved by owner @res_name.  Do not access any
2530 *	address inside the PCI regions unless this call returns
2531 *	successfully.
2532 *
2533 *	Returns 0 on success, or %EBUSY on error.  A warning
2534 *	message is also printed on failure.
2535 */
2536int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2537{
2538	return __pci_request_region(pdev, bar, res_name, 0);
2539}
2540
2541/**
2542 *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2543 *	@pdev: PCI device whose resources are to be reserved
2544 *	@bar: BAR to be reserved
2545 *	@res_name: Name to be associated with resource.
2546 *
2547 *	Mark the PCI region associated with PCI device @pdev BR @bar as
2548 *	being reserved by owner @res_name.  Do not access any
2549 *	address inside the PCI regions unless this call returns
2550 *	successfully.
2551 *
2552 *	Returns 0 on success, or %EBUSY on error.  A warning
2553 *	message is also printed on failure.
2554 *
2555 *	The key difference that _exclusive makes it that userspace is
2556 *	explicitly not allowed to map the resource via /dev/mem or
2557 *	sysfs.
2558 */
2559int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2560{
2561	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2562}
2563/**
2564 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2565 * @pdev: PCI device whose resources were previously reserved
2566 * @bars: Bitmask of BARs to be released
2567 *
2568 * Release selected PCI I/O and memory resources previously reserved.
2569 * Call this function only after all use of the PCI regions has ceased.
2570 */
2571void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2572{
2573	int i;
2574
2575	for (i = 0; i < 6; i++)
2576		if (bars & (1 << i))
2577			pci_release_region(pdev, i);
2578}
2579
2580static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2581				 const char *res_name, int excl)
2582{
2583	int i;
2584
2585	for (i = 0; i < 6; i++)
2586		if (bars & (1 << i))
2587			if (__pci_request_region(pdev, i, res_name, excl))
2588				goto err_out;
2589	return 0;
2590
2591err_out:
2592	while(--i >= 0)
2593		if (bars & (1 << i))
2594			pci_release_region(pdev, i);
2595
2596	return -EBUSY;
2597}
2598
2599
2600/**
2601 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2602 * @pdev: PCI device whose resources are to be reserved
2603 * @bars: Bitmask of BARs to be requested
2604 * @res_name: Name to be associated with resource
2605 */
2606int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2607				 const char *res_name)
2608{
2609	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2610}
2611
2612int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2613				 int bars, const char *res_name)
2614{
2615	return __pci_request_selected_regions(pdev, bars, res_name,
2616			IORESOURCE_EXCLUSIVE);
2617}
2618
2619/**
2620 *	pci_release_regions - Release reserved PCI I/O and memory resources
2621 *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2622 *
2623 *	Releases all PCI I/O and memory resources previously reserved by a
2624 *	successful call to pci_request_regions.  Call this function only
2625 *	after all use of the PCI regions has ceased.
2626 */
2627
2628void pci_release_regions(struct pci_dev *pdev)
2629{
2630	pci_release_selected_regions(pdev, (1 << 6) - 1);
2631}
2632
2633/**
2634 *	pci_request_regions - Reserved PCI I/O and memory resources
2635 *	@pdev: PCI device whose resources are to be reserved
2636 *	@res_name: Name to be associated with resource.
2637 *
2638 *	Mark all PCI regions associated with PCI device @pdev as
2639 *	being reserved by owner @res_name.  Do not access any
2640 *	address inside the PCI regions unless this call returns
2641 *	successfully.
2642 *
2643 *	Returns 0 on success, or %EBUSY on error.  A warning
2644 *	message is also printed on failure.
2645 */
2646int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2647{
2648	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2649}
2650
2651/**
2652 *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2653 *	@pdev: PCI device whose resources are to be reserved
2654 *	@res_name: Name to be associated with resource.
2655 *
2656 *	Mark all PCI regions associated with PCI device @pdev as
2657 *	being reserved by owner @res_name.  Do not access any
2658 *	address inside the PCI regions unless this call returns
2659 *	successfully.
2660 *
2661 *	pci_request_regions_exclusive() will mark the region so that
2662 *	/dev/mem and the sysfs MMIO access will not be allowed.
2663 *
2664 *	Returns 0 on success, or %EBUSY on error.  A warning
2665 *	message is also printed on failure.
2666 */
2667int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2668{
2669	return pci_request_selected_regions_exclusive(pdev,
2670					((1 << 6) - 1), res_name);
2671}
2672
2673static void __pci_set_master(struct pci_dev *dev, bool enable)
2674{
2675	u16 old_cmd, cmd;
2676
2677	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2678	if (enable)
2679		cmd = old_cmd | PCI_COMMAND_MASTER;
2680	else
2681		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2682	if (cmd != old_cmd) {
2683		dev_dbg(&dev->dev, "%s bus mastering\n",
2684			enable ? "enabling" : "disabling");
2685		pci_write_config_word(dev, PCI_COMMAND, cmd);
2686	}
2687	dev->is_busmaster = enable;
2688}
2689
2690/**
2691 * pcibios_setup - process "pci=" kernel boot arguments
2692 * @str: string used to pass in "pci=" kernel boot arguments
2693 *
2694 * Process kernel boot arguments.  This is the default implementation.
2695 * Architecture specific implementations can override this as necessary.
2696 */
2697char * __weak __init pcibios_setup(char *str)
2698{
2699	return str;
2700}
2701
2702/**
2703 * pcibios_set_master - enable PCI bus-mastering for device dev
2704 * @dev: the PCI device to enable
2705 *
2706 * Enables PCI bus-mastering for the device.  This is the default
2707 * implementation.  Architecture specific implementations can override
2708 * this if necessary.
2709 */
2710void __weak pcibios_set_master(struct pci_dev *dev)
2711{
2712	u8 lat;
2713
2714	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2715	if (pci_is_pcie(dev))
2716		return;
2717
2718	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2719	if (lat < 16)
2720		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2721	else if (lat > pcibios_max_latency)
2722		lat = pcibios_max_latency;
2723	else
2724		return;
2725
2726	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2727}
2728
2729/**
2730 * pci_set_master - enables bus-mastering for device dev
2731 * @dev: the PCI device to enable
2732 *
2733 * Enables bus-mastering on the device and calls pcibios_set_master()
2734 * to do the needed arch specific settings.
2735 */
2736void pci_set_master(struct pci_dev *dev)
2737{
2738	__pci_set_master(dev, true);
2739	pcibios_set_master(dev);
2740}
2741
2742/**
2743 * pci_clear_master - disables bus-mastering for device dev
2744 * @dev: the PCI device to disable
2745 */
2746void pci_clear_master(struct pci_dev *dev)
2747{
2748	__pci_set_master(dev, false);
2749}
2750
2751/**
2752 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2753 * @dev: the PCI device for which MWI is to be enabled
2754 *
2755 * Helper function for pci_set_mwi.
2756 * Originally copied from drivers/net/acenic.c.
2757 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2758 *
2759 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2760 */
2761int pci_set_cacheline_size(struct pci_dev *dev)
2762{
2763	u8 cacheline_size;
2764
2765	if (!pci_cache_line_size)
2766		return -EINVAL;
2767
2768	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2769	   equal to or multiple of the right value. */
2770	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2771	if (cacheline_size >= pci_cache_line_size &&
2772	    (cacheline_size % pci_cache_line_size) == 0)
2773		return 0;
2774
2775	/* Write the correct value. */
2776	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2777	/* Read it back. */
2778	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2779	if (cacheline_size == pci_cache_line_size)
2780		return 0;
2781
2782	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2783		   "supported\n", pci_cache_line_size << 2);
2784
2785	return -EINVAL;
2786}
2787EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2788
2789#ifdef PCI_DISABLE_MWI
2790int pci_set_mwi(struct pci_dev *dev)
2791{
2792	return 0;
2793}
2794
2795int pci_try_set_mwi(struct pci_dev *dev)
2796{
2797	return 0;
2798}
2799
2800void pci_clear_mwi(struct pci_dev *dev)
2801{
2802}
2803
2804#else
2805
2806/**
2807 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2808 * @dev: the PCI device for which MWI is enabled
2809 *
2810 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2811 *
2812 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2813 */
2814int
2815pci_set_mwi(struct pci_dev *dev)
2816{
2817	int rc;
2818	u16 cmd;
2819
2820	rc = pci_set_cacheline_size(dev);
2821	if (rc)
2822		return rc;
2823
2824	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2825	if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2826		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2827		cmd |= PCI_COMMAND_INVALIDATE;
2828		pci_write_config_word(dev, PCI_COMMAND, cmd);
2829	}
2830
2831	return 0;
2832}
2833
2834/**
2835 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2836 * @dev: the PCI device for which MWI is enabled
2837 *
2838 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2839 * Callers are not required to check the return value.
2840 *
2841 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2842 */
2843int pci_try_set_mwi(struct pci_dev *dev)
2844{
2845	int rc = pci_set_mwi(dev);
2846	return rc;
2847}
2848
2849/**
2850 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2851 * @dev: the PCI device to disable
2852 *
2853 * Disables PCI Memory-Write-Invalidate transaction on the device
2854 */
2855void
2856pci_clear_mwi(struct pci_dev *dev)
2857{
2858	u16 cmd;
2859
2860	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2861	if (cmd & PCI_COMMAND_INVALIDATE) {
2862		cmd &= ~PCI_COMMAND_INVALIDATE;
2863		pci_write_config_word(dev, PCI_COMMAND, cmd);
2864	}
2865}
2866#endif /* ! PCI_DISABLE_MWI */
2867
2868/**
2869 * pci_intx - enables/disables PCI INTx for device dev
2870 * @pdev: the PCI device to operate on
2871 * @enable: boolean: whether to enable or disable PCI INTx
2872 *
2873 * Enables/disables PCI INTx for device dev
2874 */
2875void
2876pci_intx(struct pci_dev *pdev, int enable)
2877{
2878	u16 pci_command, new;
2879
2880	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2881
2882	if (enable) {
2883		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2884	} else {
2885		new = pci_command | PCI_COMMAND_INTX_DISABLE;
2886	}
2887
2888	if (new != pci_command) {
2889		struct pci_devres *dr;
2890
2891		pci_write_config_word(pdev, PCI_COMMAND, new);
2892
2893		dr = find_pci_dr(pdev);
2894		if (dr && !dr->restore_intx) {
2895			dr->restore_intx = 1;
2896			dr->orig_intx = !enable;
2897		}
2898	}
2899}
2900
2901/**
2902 * pci_intx_mask_supported - probe for INTx masking support
2903 * @dev: the PCI device to operate on
2904 *
2905 * Check if the device dev support INTx masking via the config space
2906 * command word.
2907 */
2908bool pci_intx_mask_supported(struct pci_dev *dev)
2909{
2910	bool mask_supported = false;
2911	u16 orig, new;
2912
2913	if (dev->broken_intx_masking)
2914		return false;
2915
2916	pci_cfg_access_lock(dev);
2917
2918	pci_read_config_word(dev, PCI_COMMAND, &orig);
2919	pci_write_config_word(dev, PCI_COMMAND,
2920			      orig ^ PCI_COMMAND_INTX_DISABLE);
2921	pci_read_config_word(dev, PCI_COMMAND, &new);
2922
2923	/*
2924	 * There's no way to protect against hardware bugs or detect them
2925	 * reliably, but as long as we know what the value should be, let's
2926	 * go ahead and check it.
2927	 */
2928	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2929		dev_err(&dev->dev, "Command register changed from "
2930			"0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2931	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2932		mask_supported = true;
2933		pci_write_config_word(dev, PCI_COMMAND, orig);
2934	}
2935
2936	pci_cfg_access_unlock(dev);
2937	return mask_supported;
2938}
2939EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2940
2941static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2942{
2943	struct pci_bus *bus = dev->bus;
2944	bool mask_updated = true;
2945	u32 cmd_status_dword;
2946	u16 origcmd, newcmd;
2947	unsigned long flags;
2948	bool irq_pending;
2949
2950	/*
2951	 * We do a single dword read to retrieve both command and status.
2952	 * Document assumptions that make this possible.
2953	 */
2954	BUILD_BUG_ON(PCI_COMMAND % 4);
2955	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2956
2957	raw_spin_lock_irqsave(&pci_lock, flags);
2958
2959	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2960
2961	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2962
2963	/*
2964	 * Check interrupt status register to see whether our device
2965	 * triggered the interrupt (when masking) or the next IRQ is
2966	 * already pending (when unmasking).
2967	 */
2968	if (mask != irq_pending) {
2969		mask_updated = false;
2970		goto done;
2971	}
2972
2973	origcmd = cmd_status_dword;
2974	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
2975	if (mask)
2976		newcmd |= PCI_COMMAND_INTX_DISABLE;
2977	if (newcmd != origcmd)
2978		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
2979
2980done:
2981	raw_spin_unlock_irqrestore(&pci_lock, flags);
2982
2983	return mask_updated;
2984}
2985
2986/**
2987 * pci_check_and_mask_intx - mask INTx on pending interrupt
2988 * @dev: the PCI device to operate on
2989 *
2990 * Check if the device dev has its INTx line asserted, mask it and
2991 * return true in that case. False is returned if not interrupt was
2992 * pending.
2993 */
2994bool pci_check_and_mask_intx(struct pci_dev *dev)
2995{
2996	return pci_check_and_set_intx_mask(dev, true);
2997}
2998EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
2999
3000/**
3001 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3002 * @dev: the PCI device to operate on
3003 *
3004 * Check if the device dev has its INTx line asserted, unmask it if not
3005 * and return true. False is returned and the mask remains active if
3006 * there was still an interrupt pending.
3007 */
3008bool pci_check_and_unmask_intx(struct pci_dev *dev)
3009{
3010	return pci_check_and_set_intx_mask(dev, false);
3011}
3012EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3013
3014/**
3015 * pci_msi_off - disables any MSI or MSI-X capabilities
3016 * @dev: the PCI device to operate on
3017 *
3018 * If you want to use MSI, see pci_enable_msi() and friends.
3019 * This is a lower-level primitive that allows us to disable
3020 * MSI operation at the device level.
3021 */
3022void pci_msi_off(struct pci_dev *dev)
3023{
3024	int pos;
3025	u16 control;
3026
3027	/*
3028	 * This looks like it could go in msi.c, but we need it even when
3029	 * CONFIG_PCI_MSI=n.  For the same reason, we can't use
3030	 * dev->msi_cap or dev->msix_cap here.
3031	 */
3032	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3033	if (pos) {
3034		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3035		control &= ~PCI_MSI_FLAGS_ENABLE;
3036		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3037	}
3038	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3039	if (pos) {
3040		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3041		control &= ~PCI_MSIX_FLAGS_ENABLE;
3042		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3043	}
3044}
3045EXPORT_SYMBOL_GPL(pci_msi_off);
3046
3047int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3048{
3049	return dma_set_max_seg_size(&dev->dev, size);
3050}
3051EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3052
3053int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3054{
3055	return dma_set_seg_boundary(&dev->dev, mask);
3056}
3057EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3058
3059/**
3060 * pci_wait_for_pending_transaction - waits for pending transaction
3061 * @dev: the PCI device to operate on
3062 *
3063 * Return 0 if transaction is pending 1 otherwise.
3064 */
3065int pci_wait_for_pending_transaction(struct pci_dev *dev)
3066{
3067	if (!pci_is_pcie(dev))
3068		return 1;
3069
3070	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3071				    PCI_EXP_DEVSTA_TRPND);
3072}
3073EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3074
3075static int pcie_flr(struct pci_dev *dev, int probe)
3076{
 
 
3077	u32 cap;
 
3078
3079	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
 
 
 
 
3080	if (!(cap & PCI_EXP_DEVCAP_FLR))
3081		return -ENOTTY;
3082
3083	if (probe)
3084		return 0;
3085
3086	if (!pci_wait_for_pending_transaction(dev))
3087		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
 
 
 
 
 
 
 
 
 
 
3088
3089	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
 
 
 
3090
3091	msleep(100);
3092
3093	return 0;
3094}
3095
3096static int pci_af_flr(struct pci_dev *dev, int probe)
3097{
 
3098	int pos;
3099	u8 cap;
 
3100
3101	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3102	if (!pos)
3103		return -ENOTTY;
3104
3105	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3106	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3107		return -ENOTTY;
3108
3109	if (probe)
3110		return 0;
3111
3112	/* Wait for Transaction Pending bit clean */
3113	if (pci_wait_for_pending(dev, pos + PCI_AF_STATUS, PCI_AF_STATUS_TP))
3114		goto clear;
 
 
 
 
 
 
3115
3116	dev_err(&dev->dev, "transaction is not cleared; "
3117			"proceeding with reset anyway\n");
3118
3119clear:
3120	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3121	msleep(100);
3122
3123	return 0;
3124}
3125
3126/**
3127 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3128 * @dev: Device to reset.
3129 * @probe: If set, only check if the device can be reset this way.
3130 *
3131 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3132 * unset, it will be reinitialized internally when going from PCI_D3hot to
3133 * PCI_D0.  If that's the case and the device is not in a low-power state
3134 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3135 *
3136 * NOTE: This causes the caller to sleep for twice the device power transition
3137 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3138 * by default (i.e. unless the @dev's d3_delay field has a different value).
3139 * Moreover, only devices in D0 can be reset by this function.
3140 */
3141static int pci_pm_reset(struct pci_dev *dev, int probe)
3142{
3143	u16 csr;
3144
3145	if (!dev->pm_cap)
3146		return -ENOTTY;
3147
3148	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3149	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3150		return -ENOTTY;
3151
3152	if (probe)
3153		return 0;
3154
3155	if (dev->current_state != PCI_D0)
3156		return -EINVAL;
3157
3158	csr &= ~PCI_PM_CTRL_STATE_MASK;
3159	csr |= PCI_D3hot;
3160	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3161	pci_dev_d3_sleep(dev);
3162
3163	csr &= ~PCI_PM_CTRL_STATE_MASK;
3164	csr |= PCI_D0;
3165	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3166	pci_dev_d3_sleep(dev);
3167
3168	return 0;
3169}
3170
3171/**
3172 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3173 * @dev: Bridge device
3174 *
3175 * Use the bridge control register to assert reset on the secondary bus.
3176 * Devices on the secondary bus are left in power-on state.
3177 */
3178void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3179{
3180	u16 ctrl;
3181
3182	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3183	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3184	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3185	/*
3186	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3187	 * this to 2ms to ensure that we meet the minimum requirement.
3188	 */
3189	msleep(2);
3190
3191	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3192	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3193
3194	/*
3195	 * Trhfa for conventional PCI is 2^25 clock cycles.
3196	 * Assuming a minimum 33MHz clock this results in a 1s
3197	 * delay before we can consider subordinate devices to
3198	 * be re-initialized.  PCIe has some ways to shorten this,
3199	 * but we don't make use of them yet.
3200	 */
3201	ssleep(1);
3202}
3203EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3204
3205static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3206{
3207	struct pci_dev *pdev;
3208
3209	if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3210		return -ENOTTY;
3211
3212	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3213		if (pdev != dev)
3214			return -ENOTTY;
3215
3216	if (probe)
3217		return 0;
3218
3219	pci_reset_bridge_secondary_bus(dev->bus->self);
 
 
 
 
 
 
 
3220
3221	return 0;
3222}
3223
3224static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3225{
3226	int rc = -ENOTTY;
3227
3228	if (!hotplug || !try_module_get(hotplug->ops->owner))
3229		return rc;
3230
3231	if (hotplug->ops->reset_slot)
3232		rc = hotplug->ops->reset_slot(hotplug, probe);
3233
3234	module_put(hotplug->ops->owner);
3235
3236	return rc;
3237}
3238
3239static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3240{
3241	struct pci_dev *pdev;
3242
3243	if (dev->subordinate || !dev->slot)
3244		return -ENOTTY;
3245
3246	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3247		if (pdev != dev && pdev->slot == dev->slot)
3248			return -ENOTTY;
3249
3250	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3251}
3252
3253static int __pci_dev_reset(struct pci_dev *dev, int probe)
3254{
3255	int rc;
3256
3257	might_sleep();
3258
3259	rc = pci_dev_specific_reset(dev, probe);
3260	if (rc != -ENOTTY)
3261		goto done;
3262
3263	rc = pcie_flr(dev, probe);
3264	if (rc != -ENOTTY)
3265		goto done;
3266
3267	rc = pci_af_flr(dev, probe);
3268	if (rc != -ENOTTY)
3269		goto done;
3270
3271	rc = pci_pm_reset(dev, probe);
3272	if (rc != -ENOTTY)
3273		goto done;
3274
3275	rc = pci_dev_reset_slot_function(dev, probe);
3276	if (rc != -ENOTTY)
3277		goto done;
3278
3279	rc = pci_parent_bus_reset(dev, probe);
3280done:
3281	return rc;
3282}
3283
3284static void pci_dev_lock(struct pci_dev *dev)
3285{
3286	pci_cfg_access_lock(dev);
3287	/* block PM suspend, driver probe, etc. */
3288	device_lock(&dev->dev);
3289}
3290
3291/* Return 1 on successful lock, 0 on contention */
3292static int pci_dev_trylock(struct pci_dev *dev)
3293{
3294	if (pci_cfg_access_trylock(dev)) {
3295		if (device_trylock(&dev->dev))
3296			return 1;
3297		pci_cfg_access_unlock(dev);
3298	}
3299
3300	return 0;
3301}
3302
3303static void pci_dev_unlock(struct pci_dev *dev)
3304{
3305	device_unlock(&dev->dev);
3306	pci_cfg_access_unlock(dev);
3307}
3308
3309static void pci_dev_save_and_disable(struct pci_dev *dev)
3310{
3311	/*
3312	 * Wake-up device prior to save.  PM registers default to D0 after
3313	 * reset and a simple register restore doesn't reliably return
3314	 * to a non-D0 state anyway.
3315	 */
3316	pci_set_power_state(dev, PCI_D0);
3317
3318	pci_save_state(dev);
3319	/*
3320	 * Disable the device by clearing the Command register, except for
3321	 * INTx-disable which is set.  This not only disables MMIO and I/O port
3322	 * BARs, but also prevents the device from being Bus Master, preventing
3323	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
3324	 * compliant devices, INTx-disable prevents legacy interrupts.
3325	 */
3326	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3327}
3328
3329static void pci_dev_restore(struct pci_dev *dev)
3330{
3331	pci_restore_state(dev);
3332}
3333
3334static int pci_dev_reset(struct pci_dev *dev, int probe)
3335{
3336	int rc;
3337
3338	if (!probe)
3339		pci_dev_lock(dev);
 
 
 
3340
3341	rc = __pci_dev_reset(dev, probe);
3342
3343	if (!probe)
3344		pci_dev_unlock(dev);
3345
 
3346	return rc;
3347}
3348/**
3349 * __pci_reset_function - reset a PCI device function
3350 * @dev: PCI device to reset
3351 *
3352 * Some devices allow an individual function to be reset without affecting
3353 * other functions in the same device.  The PCI device must be responsive
3354 * to PCI config space in order to use this function.
3355 *
3356 * The device function is presumed to be unused when this function is called.
3357 * Resetting the device will make the contents of PCI configuration space
3358 * random, so any caller of this must be prepared to reinitialise the
3359 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3360 * etc.
3361 *
3362 * Returns 0 if the device function was successfully reset or negative if the
3363 * device doesn't support resetting a single function.
3364 */
3365int __pci_reset_function(struct pci_dev *dev)
3366{
3367	return pci_dev_reset(dev, 0);
3368}
3369EXPORT_SYMBOL_GPL(__pci_reset_function);
3370
3371/**
3372 * __pci_reset_function_locked - reset a PCI device function while holding
3373 * the @dev mutex lock.
3374 * @dev: PCI device to reset
3375 *
3376 * Some devices allow an individual function to be reset without affecting
3377 * other functions in the same device.  The PCI device must be responsive
3378 * to PCI config space in order to use this function.
3379 *
3380 * The device function is presumed to be unused and the caller is holding
3381 * the device mutex lock when this function is called.
3382 * Resetting the device will make the contents of PCI configuration space
3383 * random, so any caller of this must be prepared to reinitialise the
3384 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3385 * etc.
3386 *
3387 * Returns 0 if the device function was successfully reset or negative if the
3388 * device doesn't support resetting a single function.
3389 */
3390int __pci_reset_function_locked(struct pci_dev *dev)
3391{
3392	return __pci_dev_reset(dev, 0);
3393}
3394EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3395
3396/**
3397 * pci_probe_reset_function - check whether the device can be safely reset
3398 * @dev: PCI device to reset
3399 *
3400 * Some devices allow an individual function to be reset without affecting
3401 * other functions in the same device.  The PCI device must be responsive
3402 * to PCI config space in order to use this function.
3403 *
3404 * Returns 0 if the device function can be reset or negative if the
3405 * device doesn't support resetting a single function.
3406 */
3407int pci_probe_reset_function(struct pci_dev *dev)
3408{
3409	return pci_dev_reset(dev, 1);
3410}
3411
3412/**
3413 * pci_reset_function - quiesce and reset a PCI device function
3414 * @dev: PCI device to reset
3415 *
3416 * Some devices allow an individual function to be reset without affecting
3417 * other functions in the same device.  The PCI device must be responsive
3418 * to PCI config space in order to use this function.
3419 *
3420 * This function does not just reset the PCI portion of a device, but
3421 * clears all the state associated with the device.  This function differs
3422 * from __pci_reset_function in that it saves and restores device state
3423 * over the reset.
3424 *
3425 * Returns 0 if the device function was successfully reset or negative if the
3426 * device doesn't support resetting a single function.
3427 */
3428int pci_reset_function(struct pci_dev *dev)
3429{
3430	int rc;
3431
3432	rc = pci_dev_reset(dev, 1);
3433	if (rc)
3434		return rc;
3435
3436	pci_dev_save_and_disable(dev);
 
 
 
 
 
 
3437
3438	rc = pci_dev_reset(dev, 0);
3439
3440	pci_dev_restore(dev);
3441
3442	return rc;
3443}
3444EXPORT_SYMBOL_GPL(pci_reset_function);
3445
3446/**
3447 * pci_try_reset_function - quiesce and reset a PCI device function
3448 * @dev: PCI device to reset
3449 *
3450 * Same as above, except return -EAGAIN if unable to lock device.
3451 */
3452int pci_try_reset_function(struct pci_dev *dev)
3453{
3454	int rc;
3455
3456	rc = pci_dev_reset(dev, 1);
3457	if (rc)
3458		return rc;
3459
3460	pci_dev_save_and_disable(dev);
3461
3462	if (pci_dev_trylock(dev)) {
3463		rc = __pci_dev_reset(dev, 0);
3464		pci_dev_unlock(dev);
3465	} else
3466		rc = -EAGAIN;
3467
3468	pci_dev_restore(dev);
3469
3470	return rc;
3471}
3472EXPORT_SYMBOL_GPL(pci_try_reset_function);
3473
3474/* Lock devices from the top of the tree down */
3475static void pci_bus_lock(struct pci_bus *bus)
3476{
3477	struct pci_dev *dev;
3478
3479	list_for_each_entry(dev, &bus->devices, bus_list) {
3480		pci_dev_lock(dev);
3481		if (dev->subordinate)
3482			pci_bus_lock(dev->subordinate);
3483	}
3484}
3485
3486/* Unlock devices from the bottom of the tree up */
3487static void pci_bus_unlock(struct pci_bus *bus)
3488{
3489	struct pci_dev *dev;
3490
3491	list_for_each_entry(dev, &bus->devices, bus_list) {
3492		if (dev->subordinate)
3493			pci_bus_unlock(dev->subordinate);
3494		pci_dev_unlock(dev);
3495	}
3496}
3497
3498/* Return 1 on successful lock, 0 on contention */
3499static int pci_bus_trylock(struct pci_bus *bus)
3500{
3501	struct pci_dev *dev;
3502
3503	list_for_each_entry(dev, &bus->devices, bus_list) {
3504		if (!pci_dev_trylock(dev))
3505			goto unlock;
3506		if (dev->subordinate) {
3507			if (!pci_bus_trylock(dev->subordinate)) {
3508				pci_dev_unlock(dev);
3509				goto unlock;
3510			}
3511		}
3512	}
3513	return 1;
3514
3515unlock:
3516	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3517		if (dev->subordinate)
3518			pci_bus_unlock(dev->subordinate);
3519		pci_dev_unlock(dev);
3520	}
3521	return 0;
3522}
3523
3524/* Lock devices from the top of the tree down */
3525static void pci_slot_lock(struct pci_slot *slot)
3526{
3527	struct pci_dev *dev;
3528
3529	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3530		if (!dev->slot || dev->slot != slot)
3531			continue;
3532		pci_dev_lock(dev);
3533		if (dev->subordinate)
3534			pci_bus_lock(dev->subordinate);
3535	}
3536}
3537
3538/* Unlock devices from the bottom of the tree up */
3539static void pci_slot_unlock(struct pci_slot *slot)
3540{
3541	struct pci_dev *dev;
3542
3543	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3544		if (!dev->slot || dev->slot != slot)
3545			continue;
3546		if (dev->subordinate)
3547			pci_bus_unlock(dev->subordinate);
3548		pci_dev_unlock(dev);
3549	}
3550}
3551
3552/* Return 1 on successful lock, 0 on contention */
3553static int pci_slot_trylock(struct pci_slot *slot)
3554{
3555	struct pci_dev *dev;
3556
3557	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3558		if (!dev->slot || dev->slot != slot)
3559			continue;
3560		if (!pci_dev_trylock(dev))
3561			goto unlock;
3562		if (dev->subordinate) {
3563			if (!pci_bus_trylock(dev->subordinate)) {
3564				pci_dev_unlock(dev);
3565				goto unlock;
3566			}
3567		}
3568	}
3569	return 1;
3570
3571unlock:
3572	list_for_each_entry_continue_reverse(dev,
3573					     &slot->bus->devices, bus_list) {
3574		if (!dev->slot || dev->slot != slot)
3575			continue;
3576		if (dev->subordinate)
3577			pci_bus_unlock(dev->subordinate);
3578		pci_dev_unlock(dev);
3579	}
3580	return 0;
3581}
3582
3583/* Save and disable devices from the top of the tree down */
3584static void pci_bus_save_and_disable(struct pci_bus *bus)
3585{
3586	struct pci_dev *dev;
3587
3588	list_for_each_entry(dev, &bus->devices, bus_list) {
3589		pci_dev_save_and_disable(dev);
3590		if (dev->subordinate)
3591			pci_bus_save_and_disable(dev->subordinate);
3592	}
3593}
3594
3595/*
3596 * Restore devices from top of the tree down - parent bridges need to be
3597 * restored before we can get to subordinate devices.
3598 */
3599static void pci_bus_restore(struct pci_bus *bus)
3600{
3601	struct pci_dev *dev;
3602
3603	list_for_each_entry(dev, &bus->devices, bus_list) {
3604		pci_dev_restore(dev);
3605		if (dev->subordinate)
3606			pci_bus_restore(dev->subordinate);
3607	}
3608}
3609
3610/* Save and disable devices from the top of the tree down */
3611static void pci_slot_save_and_disable(struct pci_slot *slot)
3612{
3613	struct pci_dev *dev;
3614
3615	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3616		if (!dev->slot || dev->slot != slot)
3617			continue;
3618		pci_dev_save_and_disable(dev);
3619		if (dev->subordinate)
3620			pci_bus_save_and_disable(dev->subordinate);
3621	}
3622}
3623
3624/*
3625 * Restore devices from top of the tree down - parent bridges need to be
3626 * restored before we can get to subordinate devices.
3627 */
3628static void pci_slot_restore(struct pci_slot *slot)
3629{
3630	struct pci_dev *dev;
3631
3632	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3633		if (!dev->slot || dev->slot != slot)
3634			continue;
3635		pci_dev_restore(dev);
3636		if (dev->subordinate)
3637			pci_bus_restore(dev->subordinate);
3638	}
3639}
3640
3641static int pci_slot_reset(struct pci_slot *slot, int probe)
3642{
3643	int rc;
3644
3645	if (!slot)
3646		return -ENOTTY;
3647
3648	if (!probe)
3649		pci_slot_lock(slot);
3650
3651	might_sleep();
3652
3653	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3654
3655	if (!probe)
3656		pci_slot_unlock(slot);
3657
3658	return rc;
3659}
3660
3661/**
3662 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3663 * @slot: PCI slot to probe
3664 *
3665 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3666 */
3667int pci_probe_reset_slot(struct pci_slot *slot)
3668{
3669	return pci_slot_reset(slot, 1);
3670}
3671EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3672
3673/**
3674 * pci_reset_slot - reset a PCI slot
3675 * @slot: PCI slot to reset
3676 *
3677 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3678 * independent of other slots.  For instance, some slots may support slot power
3679 * control.  In the case of a 1:1 bus to slot architecture, this function may
3680 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3681 * Generally a slot reset should be attempted before a bus reset.  All of the
3682 * function of the slot and any subordinate buses behind the slot are reset
3683 * through this function.  PCI config space of all devices in the slot and
3684 * behind the slot is saved before and restored after reset.
3685 *
3686 * Return 0 on success, non-zero on error.
3687 */
3688int pci_reset_slot(struct pci_slot *slot)
3689{
3690	int rc;
3691
3692	rc = pci_slot_reset(slot, 1);
3693	if (rc)
3694		return rc;
3695
3696	pci_slot_save_and_disable(slot);
3697
3698	rc = pci_slot_reset(slot, 0);
3699
3700	pci_slot_restore(slot);
3701
3702	return rc;
3703}
3704EXPORT_SYMBOL_GPL(pci_reset_slot);
3705
3706/**
3707 * pci_try_reset_slot - Try to reset a PCI slot
3708 * @slot: PCI slot to reset
3709 *
3710 * Same as above except return -EAGAIN if the slot cannot be locked
3711 */
3712int pci_try_reset_slot(struct pci_slot *slot)
3713{
3714	int rc;
3715
3716	rc = pci_slot_reset(slot, 1);
3717	if (rc)
3718		return rc;
3719
3720	pci_slot_save_and_disable(slot);
3721
3722	if (pci_slot_trylock(slot)) {
3723		might_sleep();
3724		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3725		pci_slot_unlock(slot);
3726	} else
3727		rc = -EAGAIN;
3728
3729	pci_slot_restore(slot);
3730
3731	return rc;
3732}
3733EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3734
3735static int pci_bus_reset(struct pci_bus *bus, int probe)
3736{
3737	if (!bus->self)
3738		return -ENOTTY;
3739
3740	if (probe)
3741		return 0;
3742
3743	pci_bus_lock(bus);
3744
3745	might_sleep();
3746
3747	pci_reset_bridge_secondary_bus(bus->self);
3748
3749	pci_bus_unlock(bus);
3750
3751	return 0;
3752}
3753
3754/**
3755 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3756 * @bus: PCI bus to probe
3757 *
3758 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3759 */
3760int pci_probe_reset_bus(struct pci_bus *bus)
3761{
3762	return pci_bus_reset(bus, 1);
3763}
3764EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3765
3766/**
3767 * pci_reset_bus - reset a PCI bus
3768 * @bus: top level PCI bus to reset
3769 *
3770 * Do a bus reset on the given bus and any subordinate buses, saving
3771 * and restoring state of all devices.
3772 *
3773 * Return 0 on success, non-zero on error.
3774 */
3775int pci_reset_bus(struct pci_bus *bus)
3776{
3777	int rc;
3778
3779	rc = pci_bus_reset(bus, 1);
3780	if (rc)
3781		return rc;
3782
3783	pci_bus_save_and_disable(bus);
3784
3785	rc = pci_bus_reset(bus, 0);
3786
3787	pci_bus_restore(bus);
3788
3789	return rc;
3790}
3791EXPORT_SYMBOL_GPL(pci_reset_bus);
3792
3793/**
3794 * pci_try_reset_bus - Try to reset a PCI bus
3795 * @bus: top level PCI bus to reset
3796 *
3797 * Same as above except return -EAGAIN if the bus cannot be locked
3798 */
3799int pci_try_reset_bus(struct pci_bus *bus)
3800{
3801	int rc;
3802
3803	rc = pci_bus_reset(bus, 1);
3804	if (rc)
3805		return rc;
3806
3807	pci_bus_save_and_disable(bus);
3808
3809	if (pci_bus_trylock(bus)) {
3810		might_sleep();
3811		pci_reset_bridge_secondary_bus(bus->self);
3812		pci_bus_unlock(bus);
3813	} else
3814		rc = -EAGAIN;
3815
3816	pci_bus_restore(bus);
3817
3818	return rc;
3819}
3820EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3821
3822/**
3823 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3824 * @dev: PCI device to query
3825 *
3826 * Returns mmrbc: maximum designed memory read count in bytes
3827 *    or appropriate error value.
3828 */
3829int pcix_get_max_mmrbc(struct pci_dev *dev)
3830{
3831	int cap;
3832	u32 stat;
3833
3834	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3835	if (!cap)
3836		return -EINVAL;
3837
3838	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3839		return -EINVAL;
3840
3841	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3842}
3843EXPORT_SYMBOL(pcix_get_max_mmrbc);
3844
3845/**
3846 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3847 * @dev: PCI device to query
3848 *
3849 * Returns mmrbc: maximum memory read count in bytes
3850 *    or appropriate error value.
3851 */
3852int pcix_get_mmrbc(struct pci_dev *dev)
3853{
3854	int cap;
3855	u16 cmd;
3856
3857	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3858	if (!cap)
3859		return -EINVAL;
3860
3861	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3862		return -EINVAL;
3863
3864	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3865}
3866EXPORT_SYMBOL(pcix_get_mmrbc);
3867
3868/**
3869 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3870 * @dev: PCI device to query
3871 * @mmrbc: maximum memory read count in bytes
3872 *    valid values are 512, 1024, 2048, 4096
3873 *
3874 * If possible sets maximum memory read byte count, some bridges have erratas
3875 * that prevent this.
3876 */
3877int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3878{
3879	int cap;
3880	u32 stat, v, o;
3881	u16 cmd;
3882
3883	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3884		return -EINVAL;
3885
3886	v = ffs(mmrbc) - 10;
3887
3888	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3889	if (!cap)
3890		return -EINVAL;
3891
3892	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3893		return -EINVAL;
3894
3895	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3896		return -E2BIG;
3897
3898	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3899		return -EINVAL;
3900
3901	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3902	if (o != v) {
3903		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
 
3904			return -EIO;
3905
3906		cmd &= ~PCI_X_CMD_MAX_READ;
3907		cmd |= v << 2;
3908		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3909			return -EIO;
3910	}
3911	return 0;
3912}
3913EXPORT_SYMBOL(pcix_set_mmrbc);
3914
3915/**
3916 * pcie_get_readrq - get PCI Express read request size
3917 * @dev: PCI device to query
3918 *
3919 * Returns maximum memory read request in bytes
3920 *    or appropriate error value.
3921 */
3922int pcie_get_readrq(struct pci_dev *dev)
3923{
 
3924	u16 ctl;
3925
3926	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
 
 
3927
3928	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
 
 
 
 
3929}
3930EXPORT_SYMBOL(pcie_get_readrq);
3931
3932/**
3933 * pcie_set_readrq - set PCI Express maximum memory read request
3934 * @dev: PCI device to query
3935 * @rq: maximum memory read count in bytes
3936 *    valid values are 128, 256, 512, 1024, 2048, 4096
3937 *
3938 * If possible sets maximum memory read request in bytes
3939 */
3940int pcie_set_readrq(struct pci_dev *dev, int rq)
3941{
3942	u16 v;
 
3943
3944	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3945		return -EINVAL;
 
 
 
 
3946
 
 
 
3947	/*
3948	 * If using the "performance" PCIe config, we clamp the
3949	 * read rq size to the max packet size to prevent the
3950	 * host bridge generating requests larger than we can
3951	 * cope with
3952	 */
3953	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3954		int mps = pcie_get_mps(dev);
3955
 
 
3956		if (mps < rq)
3957			rq = mps;
3958	}
3959
3960	v = (ffs(rq) - 8) << 12;
3961
3962	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3963						  PCI_EXP_DEVCTL_READRQ, v);
 
 
 
 
 
 
3964}
3965EXPORT_SYMBOL(pcie_set_readrq);
3966
3967/**
3968 * pcie_get_mps - get PCI Express maximum payload size
3969 * @dev: PCI device to query
3970 *
3971 * Returns maximum payload size in bytes
 
3972 */
3973int pcie_get_mps(struct pci_dev *dev)
3974{
 
3975	u16 ctl;
3976
3977	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
 
 
3978
3979	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
 
 
 
 
3980}
3981EXPORT_SYMBOL(pcie_get_mps);
3982
3983/**
3984 * pcie_set_mps - set PCI Express maximum payload size
3985 * @dev: PCI device to query
3986 * @mps: maximum payload size in bytes
3987 *    valid values are 128, 256, 512, 1024, 2048, 4096
3988 *
3989 * If possible sets maximum payload size
3990 */
3991int pcie_set_mps(struct pci_dev *dev, int mps)
3992{
3993	u16 v;
 
3994
3995	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3996		return -EINVAL;
3997
3998	v = ffs(mps) - 8;
3999	if (v > dev->pcie_mpss)
4000		return -EINVAL;
4001	v <<= 5;
4002
4003	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4004						  PCI_EXP_DEVCTL_PAYLOAD, v);
4005}
4006EXPORT_SYMBOL(pcie_set_mps);
4007
4008/**
4009 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4010 * @dev: PCI device to query
4011 * @speed: storage for minimum speed
4012 * @width: storage for minimum width
4013 *
4014 * This function will walk up the PCI device chain and determine the minimum
4015 * link width and speed of the device.
4016 */
4017int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4018			  enum pcie_link_width *width)
4019{
4020	int ret;
4021
4022	*speed = PCI_SPEED_UNKNOWN;
4023	*width = PCIE_LNK_WIDTH_UNKNOWN;
4024
4025	while (dev) {
4026		u16 lnksta;
4027		enum pci_bus_speed next_speed;
4028		enum pcie_link_width next_width;
4029
4030		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4031		if (ret)
4032			return ret;
4033
4034		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4035		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4036			PCI_EXP_LNKSTA_NLW_SHIFT;
4037
4038		if (next_speed < *speed)
4039			*speed = next_speed;
4040
4041		if (next_width < *width)
4042			*width = next_width;
4043
4044		dev = dev->bus->self;
 
4045	}
4046
4047	return 0;
4048}
4049EXPORT_SYMBOL(pcie_get_minimum_link);
4050
4051/**
4052 * pci_select_bars - Make BAR mask from the type of resource
4053 * @dev: the PCI device for which BAR mask is made
4054 * @flags: resource type mask to be selected
4055 *
4056 * This helper routine makes bar mask from the type of resource.
4057 */
4058int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4059{
4060	int i, bars = 0;
4061	for (i = 0; i < PCI_NUM_RESOURCES; i++)
4062		if (pci_resource_flags(dev, i) & flags)
4063			bars |= (1 << i);
4064	return bars;
4065}
4066
4067/**
4068 * pci_resource_bar - get position of the BAR associated with a resource
4069 * @dev: the PCI device
4070 * @resno: the resource number
4071 * @type: the BAR type to be filled in
4072 *
4073 * Returns BAR position in config space, or 0 if the BAR is invalid.
4074 */
4075int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4076{
4077	int reg;
4078
4079	if (resno < PCI_ROM_RESOURCE) {
4080		*type = pci_bar_unknown;
4081		return PCI_BASE_ADDRESS_0 + 4 * resno;
4082	} else if (resno == PCI_ROM_RESOURCE) {
4083		*type = pci_bar_mem32;
4084		return dev->rom_base_reg;
4085	} else if (resno < PCI_BRIDGE_RESOURCES) {
4086		/* device specific resource */
4087		reg = pci_iov_resource_bar(dev, resno, type);
4088		if (reg)
4089			return reg;
4090	}
4091
4092	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4093	return 0;
4094}
4095
4096/* Some architectures require additional programming to enable VGA */
4097static arch_set_vga_state_t arch_set_vga_state;
4098
4099void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4100{
4101	arch_set_vga_state = func;	/* NULL disables */
4102}
4103
4104static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4105		      unsigned int command_bits, u32 flags)
4106{
4107	if (arch_set_vga_state)
4108		return arch_set_vga_state(dev, decode, command_bits,
4109						flags);
4110	return 0;
4111}
4112
4113/**
4114 * pci_set_vga_state - set VGA decode state on device and parents if requested
4115 * @dev: the PCI device
4116 * @decode: true = enable decoding, false = disable decoding
4117 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4118 * @flags: traverse ancestors and change bridges
4119 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4120 */
4121int pci_set_vga_state(struct pci_dev *dev, bool decode,
4122		      unsigned int command_bits, u32 flags)
4123{
4124	struct pci_bus *bus;
4125	struct pci_dev *bridge;
4126	u16 cmd;
4127	int rc;
4128
4129	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4130
4131	/* ARCH specific VGA enables */
4132	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4133	if (rc)
4134		return rc;
4135
4136	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4137		pci_read_config_word(dev, PCI_COMMAND, &cmd);
4138		if (decode == true)
4139			cmd |= command_bits;
4140		else
4141			cmd &= ~command_bits;
4142		pci_write_config_word(dev, PCI_COMMAND, cmd);
4143	}
4144
4145	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4146		return 0;
4147
4148	bus = dev->bus;
4149	while (bus) {
4150		bridge = bus->self;
4151		if (bridge) {
4152			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4153					     &cmd);
4154			if (decode == true)
4155				cmd |= PCI_BRIDGE_CTL_VGA;
4156			else
4157				cmd &= ~PCI_BRIDGE_CTL_VGA;
4158			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4159					      cmd);
4160		}
4161		bus = bus->parent;
4162	}
4163	return 0;
4164}
4165
4166bool pci_device_is_present(struct pci_dev *pdev)
4167{
4168	u32 v;
4169
4170	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4171}
4172EXPORT_SYMBOL_GPL(pci_device_is_present);
4173
4174#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4175static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4176static DEFINE_SPINLOCK(resource_alignment_lock);
4177
4178/**
4179 * pci_specified_resource_alignment - get resource alignment specified by user.
4180 * @dev: the PCI device to get
4181 *
4182 * RETURNS: Resource alignment if it is specified.
4183 *          Zero if it is not specified.
4184 */
4185static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4186{
4187	int seg, bus, slot, func, align_order, count;
4188	resource_size_t align = 0;
4189	char *p;
4190
4191	spin_lock(&resource_alignment_lock);
4192	p = resource_alignment_param;
4193	while (*p) {
4194		count = 0;
4195		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4196							p[count] == '@') {
4197			p += count + 1;
4198		} else {
4199			align_order = -1;
4200		}
4201		if (sscanf(p, "%x:%x:%x.%x%n",
4202			&seg, &bus, &slot, &func, &count) != 4) {
4203			seg = 0;
4204			if (sscanf(p, "%x:%x.%x%n",
4205					&bus, &slot, &func, &count) != 3) {
4206				/* Invalid format */
4207				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4208					p);
4209				break;
4210			}
4211		}
4212		p += count;
4213		if (seg == pci_domain_nr(dev->bus) &&
4214			bus == dev->bus->number &&
4215			slot == PCI_SLOT(dev->devfn) &&
4216			func == PCI_FUNC(dev->devfn)) {
4217			if (align_order == -1) {
4218				align = PAGE_SIZE;
4219			} else {
4220				align = 1 << align_order;
4221			}
4222			/* Found */
4223			break;
4224		}
4225		if (*p != ';' && *p != ',') {
4226			/* End of param or invalid format */
4227			break;
4228		}
4229		p++;
4230	}
4231	spin_unlock(&resource_alignment_lock);
4232	return align;
4233}
4234
 
 
 
 
 
 
 
 
 
 
 
 
4235/*
4236 * This function disables memory decoding and releases memory resources
4237 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4238 * It also rounds up size to specified alignment.
4239 * Later on, the kernel will assign page-aligned memory resource back
4240 * to the device.
4241 */
4242void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4243{
4244	int i;
4245	struct resource *r;
4246	resource_size_t align, size;
4247	u16 command;
4248
4249	/* check if specified PCI is target device to reassign */
4250	align = pci_specified_resource_alignment(dev);
4251	if (!align)
4252		return;
4253
4254	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4255	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4256		dev_warn(&dev->dev,
4257			"Can't reassign resources to host bridge.\n");
4258		return;
4259	}
4260
4261	dev_info(&dev->dev,
4262		"Disabling memory decoding and releasing memory resources.\n");
4263	pci_read_config_word(dev, PCI_COMMAND, &command);
4264	command &= ~PCI_COMMAND_MEMORY;
4265	pci_write_config_word(dev, PCI_COMMAND, command);
4266
 
4267	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4268		r = &dev->resource[i];
4269		if (!(r->flags & IORESOURCE_MEM))
4270			continue;
4271		size = resource_size(r);
4272		if (size < align) {
4273			size = align;
4274			dev_info(&dev->dev,
4275				"Rounding up size of resource #%d to %#llx.\n",
4276				i, (unsigned long long)size);
4277		}
4278		r->flags |= IORESOURCE_UNSET;
4279		r->end = size - 1;
4280		r->start = 0;
4281	}
4282	/* Need to disable bridge's resource window,
4283	 * to enable the kernel to reassign new resource
4284	 * window later on.
4285	 */
4286	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4287	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4288		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4289			r = &dev->resource[i];
4290			if (!(r->flags & IORESOURCE_MEM))
4291				continue;
4292			r->flags |= IORESOURCE_UNSET;
4293			r->end = resource_size(r) - 1;
4294			r->start = 0;
4295		}
4296		pci_disable_bridge_window(dev);
4297	}
4298}
4299
4300static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4301{
4302	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4303		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4304	spin_lock(&resource_alignment_lock);
4305	strncpy(resource_alignment_param, buf, count);
4306	resource_alignment_param[count] = '\0';
4307	spin_unlock(&resource_alignment_lock);
4308	return count;
4309}
4310
4311static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4312{
4313	size_t count;
4314	spin_lock(&resource_alignment_lock);
4315	count = snprintf(buf, size, "%s", resource_alignment_param);
4316	spin_unlock(&resource_alignment_lock);
4317	return count;
4318}
4319
4320static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4321{
4322	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4323}
4324
4325static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4326					const char *buf, size_t count)
4327{
4328	return pci_set_resource_alignment_param(buf, count);
4329}
4330
4331BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4332					pci_resource_alignment_store);
4333
4334static int __init pci_resource_alignment_sysfs_init(void)
4335{
4336	return bus_create_file(&pci_bus_type,
4337					&bus_attr_resource_alignment);
4338}
4339
4340late_initcall(pci_resource_alignment_sysfs_init);
4341
4342static void pci_no_domains(void)
4343{
4344#ifdef CONFIG_PCI_DOMAINS
4345	pci_domains_supported = 0;
4346#endif
4347}
4348
4349/**
4350 * pci_ext_cfg_avail - can we access extended PCI config space?
 
4351 *
4352 * Returns 1 if we can access PCI extended config space (offsets
4353 * greater than 0xff). This is the default implementation. Architecture
4354 * implementations can override this.
4355 */
4356int __weak pci_ext_cfg_avail(void)
4357{
4358	return 1;
4359}
4360
4361void __weak pci_fixup_cardbus(struct pci_bus *bus)
4362{
4363}
4364EXPORT_SYMBOL(pci_fixup_cardbus);
4365
4366static int __init pci_setup(char *str)
4367{
4368	while (str) {
4369		char *k = strchr(str, ',');
4370		if (k)
4371			*k++ = 0;
4372		if (*str && (str = pcibios_setup(str)) && *str) {
4373			if (!strcmp(str, "nomsi")) {
4374				pci_no_msi();
4375			} else if (!strcmp(str, "noaer")) {
4376				pci_no_aer();
4377			} else if (!strncmp(str, "realloc=", 8)) {
4378				pci_realloc_get_opt(str + 8);
4379			} else if (!strncmp(str, "realloc", 7)) {
4380				pci_realloc_get_opt("on");
4381			} else if (!strcmp(str, "nodomains")) {
4382				pci_no_domains();
4383			} else if (!strncmp(str, "noari", 5)) {
4384				pcie_ari_disabled = true;
4385			} else if (!strncmp(str, "cbiosize=", 9)) {
4386				pci_cardbus_io_size = memparse(str + 9, &str);
4387			} else if (!strncmp(str, "cbmemsize=", 10)) {
4388				pci_cardbus_mem_size = memparse(str + 10, &str);
4389			} else if (!strncmp(str, "resource_alignment=", 19)) {
4390				pci_set_resource_alignment_param(str + 19,
4391							strlen(str + 19));
4392			} else if (!strncmp(str, "ecrc=", 5)) {
4393				pcie_ecrc_get_policy(str + 5);
4394			} else if (!strncmp(str, "hpiosize=", 9)) {
4395				pci_hotplug_io_size = memparse(str + 9, &str);
4396			} else if (!strncmp(str, "hpmemsize=", 10)) {
4397				pci_hotplug_mem_size = memparse(str + 10, &str);
4398			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4399				pcie_bus_config = PCIE_BUS_TUNE_OFF;
4400			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
4401				pcie_bus_config = PCIE_BUS_SAFE;
4402			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
4403				pcie_bus_config = PCIE_BUS_PERFORMANCE;
4404			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4405				pcie_bus_config = PCIE_BUS_PEER2PEER;
4406			} else if (!strncmp(str, "pcie_scan_all", 13)) {
4407				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4408			} else {
4409				printk(KERN_ERR "PCI: Unknown option `%s'\n",
4410						str);
4411			}
4412		}
4413		str = k;
4414	}
4415	return 0;
4416}
4417early_param("pci", pci_setup);
4418
4419EXPORT_SYMBOL(pci_reenable_device);
4420EXPORT_SYMBOL(pci_enable_device_io);
4421EXPORT_SYMBOL(pci_enable_device_mem);
4422EXPORT_SYMBOL(pci_enable_device);
4423EXPORT_SYMBOL(pcim_enable_device);
4424EXPORT_SYMBOL(pcim_pin_device);
4425EXPORT_SYMBOL(pci_disable_device);
4426EXPORT_SYMBOL(pci_find_capability);
4427EXPORT_SYMBOL(pci_bus_find_capability);
4428EXPORT_SYMBOL(pci_release_regions);
4429EXPORT_SYMBOL(pci_request_regions);
4430EXPORT_SYMBOL(pci_request_regions_exclusive);
4431EXPORT_SYMBOL(pci_release_region);
4432EXPORT_SYMBOL(pci_request_region);
4433EXPORT_SYMBOL(pci_request_region_exclusive);
4434EXPORT_SYMBOL(pci_release_selected_regions);
4435EXPORT_SYMBOL(pci_request_selected_regions);
4436EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4437EXPORT_SYMBOL(pci_set_master);
4438EXPORT_SYMBOL(pci_clear_master);
4439EXPORT_SYMBOL(pci_set_mwi);
4440EXPORT_SYMBOL(pci_try_set_mwi);
4441EXPORT_SYMBOL(pci_clear_mwi);
4442EXPORT_SYMBOL_GPL(pci_intx);
4443EXPORT_SYMBOL(pci_assign_resource);
4444EXPORT_SYMBOL(pci_find_parent_resource);
4445EXPORT_SYMBOL(pci_select_bars);
4446
4447EXPORT_SYMBOL(pci_set_power_state);
4448EXPORT_SYMBOL(pci_save_state);
4449EXPORT_SYMBOL(pci_restore_state);
4450EXPORT_SYMBOL(pci_pme_capable);
4451EXPORT_SYMBOL(pci_pme_active);
4452EXPORT_SYMBOL(pci_wake_from_d3);
 
4453EXPORT_SYMBOL(pci_prepare_to_sleep);
4454EXPORT_SYMBOL(pci_back_from_sleep);
4455EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);