Loading...
1/*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10#include <linux/kernel.h>
11#include <linux/delay.h>
12#include <linux/init.h>
13#include <linux/pci.h>
14#include <linux/pm.h>
15#include <linux/slab.h>
16#include <linux/module.h>
17#include <linux/spinlock.h>
18#include <linux/string.h>
19#include <linux/log2.h>
20#include <linux/pci-aspm.h>
21#include <linux/pm_wakeup.h>
22#include <linux/interrupt.h>
23#include <linux/device.h>
24#include <linux/pm_runtime.h>
25#include <asm-generic/pci-bridge.h>
26#include <asm/setup.h>
27#include "pci.h"
28
29const char *pci_power_names[] = {
30 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
31};
32EXPORT_SYMBOL_GPL(pci_power_names);
33
34int isa_dma_bridge_buggy;
35EXPORT_SYMBOL(isa_dma_bridge_buggy);
36
37int pci_pci_problems;
38EXPORT_SYMBOL(pci_pci_problems);
39
40unsigned int pci_pm_d3_delay;
41
42static void pci_pme_list_scan(struct work_struct *work);
43
44static LIST_HEAD(pci_pme_list);
45static DEFINE_MUTEX(pci_pme_list_mutex);
46static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
47
48struct pci_pme_device {
49 struct list_head list;
50 struct pci_dev *dev;
51};
52
53#define PME_TIMEOUT 1000 /* How long between PME checks */
54
55static void pci_dev_d3_sleep(struct pci_dev *dev)
56{
57 unsigned int delay = dev->d3_delay;
58
59 if (delay < pci_pm_d3_delay)
60 delay = pci_pm_d3_delay;
61
62 msleep(delay);
63}
64
65#ifdef CONFIG_PCI_DOMAINS
66int pci_domains_supported = 1;
67#endif
68
69#define DEFAULT_CARDBUS_IO_SIZE (256)
70#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
71/* pci=cbmemsize=nnM,cbiosize=nn can override this */
72unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
73unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
74
75#define DEFAULT_HOTPLUG_IO_SIZE (256)
76#define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
77/* pci=hpmemsize=nnM,hpiosize=nn can override this */
78unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
79unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
80
81enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
82
83/*
84 * The default CLS is used if arch didn't set CLS explicitly and not
85 * all pci devices agree on the same value. Arch can override either
86 * the dfl or actual value as it sees fit. Don't forget this is
87 * measured in 32-bit words, not bytes.
88 */
89u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
90u8 pci_cache_line_size;
91
92/*
93 * If we set up a device for bus mastering, we need to check the latency
94 * timer as certain BIOSes forget to set it properly.
95 */
96unsigned int pcibios_max_latency = 255;
97
98/* If set, the PCIe ARI capability will not be used. */
99static bool pcie_ari_disabled;
100
101/**
102 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
103 * @bus: pointer to PCI bus structure to search
104 *
105 * Given a PCI bus, returns the highest PCI bus number present in the set
106 * including the given PCI bus and its list of child PCI buses.
107 */
108unsigned char pci_bus_max_busnr(struct pci_bus* bus)
109{
110 struct list_head *tmp;
111 unsigned char max, n;
112
113 max = bus->subordinate;
114 list_for_each(tmp, &bus->children) {
115 n = pci_bus_max_busnr(pci_bus_b(tmp));
116 if(n > max)
117 max = n;
118 }
119 return max;
120}
121EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
122
123#ifdef CONFIG_HAS_IOMEM
124void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
125{
126 /*
127 * Make sure the BAR is actually a memory resource, not an IO resource
128 */
129 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
130 WARN_ON(1);
131 return NULL;
132 }
133 return ioremap_nocache(pci_resource_start(pdev, bar),
134 pci_resource_len(pdev, bar));
135}
136EXPORT_SYMBOL_GPL(pci_ioremap_bar);
137#endif
138
139#if 0
140/**
141 * pci_max_busnr - returns maximum PCI bus number
142 *
143 * Returns the highest PCI bus number present in the system global list of
144 * PCI buses.
145 */
146unsigned char __devinit
147pci_max_busnr(void)
148{
149 struct pci_bus *bus = NULL;
150 unsigned char max, n;
151
152 max = 0;
153 while ((bus = pci_find_next_bus(bus)) != NULL) {
154 n = pci_bus_max_busnr(bus);
155 if(n > max)
156 max = n;
157 }
158 return max;
159}
160
161#endif /* 0 */
162
163#define PCI_FIND_CAP_TTL 48
164
165static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
166 u8 pos, int cap, int *ttl)
167{
168 u8 id;
169
170 while ((*ttl)--) {
171 pci_bus_read_config_byte(bus, devfn, pos, &pos);
172 if (pos < 0x40)
173 break;
174 pos &= ~3;
175 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
176 &id);
177 if (id == 0xff)
178 break;
179 if (id == cap)
180 return pos;
181 pos += PCI_CAP_LIST_NEXT;
182 }
183 return 0;
184}
185
186static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
187 u8 pos, int cap)
188{
189 int ttl = PCI_FIND_CAP_TTL;
190
191 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
192}
193
194int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
195{
196 return __pci_find_next_cap(dev->bus, dev->devfn,
197 pos + PCI_CAP_LIST_NEXT, cap);
198}
199EXPORT_SYMBOL_GPL(pci_find_next_capability);
200
201static int __pci_bus_find_cap_start(struct pci_bus *bus,
202 unsigned int devfn, u8 hdr_type)
203{
204 u16 status;
205
206 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
207 if (!(status & PCI_STATUS_CAP_LIST))
208 return 0;
209
210 switch (hdr_type) {
211 case PCI_HEADER_TYPE_NORMAL:
212 case PCI_HEADER_TYPE_BRIDGE:
213 return PCI_CAPABILITY_LIST;
214 case PCI_HEADER_TYPE_CARDBUS:
215 return PCI_CB_CAPABILITY_LIST;
216 default:
217 return 0;
218 }
219
220 return 0;
221}
222
223/**
224 * pci_find_capability - query for devices' capabilities
225 * @dev: PCI device to query
226 * @cap: capability code
227 *
228 * Tell if a device supports a given PCI capability.
229 * Returns the address of the requested capability structure within the
230 * device's PCI configuration space or 0 in case the device does not
231 * support it. Possible values for @cap:
232 *
233 * %PCI_CAP_ID_PM Power Management
234 * %PCI_CAP_ID_AGP Accelerated Graphics Port
235 * %PCI_CAP_ID_VPD Vital Product Data
236 * %PCI_CAP_ID_SLOTID Slot Identification
237 * %PCI_CAP_ID_MSI Message Signalled Interrupts
238 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
239 * %PCI_CAP_ID_PCIX PCI-X
240 * %PCI_CAP_ID_EXP PCI Express
241 */
242int pci_find_capability(struct pci_dev *dev, int cap)
243{
244 int pos;
245
246 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
247 if (pos)
248 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
249
250 return pos;
251}
252
253/**
254 * pci_bus_find_capability - query for devices' capabilities
255 * @bus: the PCI bus to query
256 * @devfn: PCI device to query
257 * @cap: capability code
258 *
259 * Like pci_find_capability() but works for pci devices that do not have a
260 * pci_dev structure set up yet.
261 *
262 * Returns the address of the requested capability structure within the
263 * device's PCI configuration space or 0 in case the device does not
264 * support it.
265 */
266int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
267{
268 int pos;
269 u8 hdr_type;
270
271 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
272
273 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
274 if (pos)
275 pos = __pci_find_next_cap(bus, devfn, pos, cap);
276
277 return pos;
278}
279
280/**
281 * pci_find_ext_capability - Find an extended capability
282 * @dev: PCI device to query
283 * @cap: capability code
284 *
285 * Returns the address of the requested extended capability structure
286 * within the device's PCI configuration space or 0 if the device does
287 * not support it. Possible values for @cap:
288 *
289 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
290 * %PCI_EXT_CAP_ID_VC Virtual Channel
291 * %PCI_EXT_CAP_ID_DSN Device Serial Number
292 * %PCI_EXT_CAP_ID_PWR Power Budgeting
293 */
294int pci_find_ext_capability(struct pci_dev *dev, int cap)
295{
296 u32 header;
297 int ttl;
298 int pos = PCI_CFG_SPACE_SIZE;
299
300 /* minimum 8 bytes per capability */
301 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
302
303 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
304 return 0;
305
306 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
307 return 0;
308
309 /*
310 * If we have no capabilities, this is indicated by cap ID,
311 * cap version and next pointer all being 0.
312 */
313 if (header == 0)
314 return 0;
315
316 while (ttl-- > 0) {
317 if (PCI_EXT_CAP_ID(header) == cap)
318 return pos;
319
320 pos = PCI_EXT_CAP_NEXT(header);
321 if (pos < PCI_CFG_SPACE_SIZE)
322 break;
323
324 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
325 break;
326 }
327
328 return 0;
329}
330EXPORT_SYMBOL_GPL(pci_find_ext_capability);
331
332/**
333 * pci_bus_find_ext_capability - find an extended capability
334 * @bus: the PCI bus to query
335 * @devfn: PCI device to query
336 * @cap: capability code
337 *
338 * Like pci_find_ext_capability() but works for pci devices that do not have a
339 * pci_dev structure set up yet.
340 *
341 * Returns the address of the requested capability structure within the
342 * device's PCI configuration space or 0 in case the device does not
343 * support it.
344 */
345int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn,
346 int cap)
347{
348 u32 header;
349 int ttl;
350 int pos = PCI_CFG_SPACE_SIZE;
351
352 /* minimum 8 bytes per capability */
353 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
354
355 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
356 return 0;
357 if (header == 0xffffffff || header == 0)
358 return 0;
359
360 while (ttl-- > 0) {
361 if (PCI_EXT_CAP_ID(header) == cap)
362 return pos;
363
364 pos = PCI_EXT_CAP_NEXT(header);
365 if (pos < PCI_CFG_SPACE_SIZE)
366 break;
367
368 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
369 break;
370 }
371
372 return 0;
373}
374
375static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
376{
377 int rc, ttl = PCI_FIND_CAP_TTL;
378 u8 cap, mask;
379
380 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
381 mask = HT_3BIT_CAP_MASK;
382 else
383 mask = HT_5BIT_CAP_MASK;
384
385 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
386 PCI_CAP_ID_HT, &ttl);
387 while (pos) {
388 rc = pci_read_config_byte(dev, pos + 3, &cap);
389 if (rc != PCIBIOS_SUCCESSFUL)
390 return 0;
391
392 if ((cap & mask) == ht_cap)
393 return pos;
394
395 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
396 pos + PCI_CAP_LIST_NEXT,
397 PCI_CAP_ID_HT, &ttl);
398 }
399
400 return 0;
401}
402/**
403 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
404 * @dev: PCI device to query
405 * @pos: Position from which to continue searching
406 * @ht_cap: Hypertransport capability code
407 *
408 * To be used in conjunction with pci_find_ht_capability() to search for
409 * all capabilities matching @ht_cap. @pos should always be a value returned
410 * from pci_find_ht_capability().
411 *
412 * NB. To be 100% safe against broken PCI devices, the caller should take
413 * steps to avoid an infinite loop.
414 */
415int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
416{
417 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
418}
419EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
420
421/**
422 * pci_find_ht_capability - query a device's Hypertransport capabilities
423 * @dev: PCI device to query
424 * @ht_cap: Hypertransport capability code
425 *
426 * Tell if a device supports a given Hypertransport capability.
427 * Returns an address within the device's PCI configuration space
428 * or 0 in case the device does not support the request capability.
429 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
430 * which has a Hypertransport capability matching @ht_cap.
431 */
432int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
433{
434 int pos;
435
436 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
437 if (pos)
438 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
439
440 return pos;
441}
442EXPORT_SYMBOL_GPL(pci_find_ht_capability);
443
444/**
445 * pci_find_parent_resource - return resource region of parent bus of given region
446 * @dev: PCI device structure contains resources to be searched
447 * @res: child resource record for which parent is sought
448 *
449 * For given resource region of given device, return the resource
450 * region of parent bus the given region is contained in or where
451 * it should be allocated from.
452 */
453struct resource *
454pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
455{
456 const struct pci_bus *bus = dev->bus;
457 int i;
458 struct resource *best = NULL, *r;
459
460 pci_bus_for_each_resource(bus, r, i) {
461 if (!r)
462 continue;
463 if (res->start && !(res->start >= r->start && res->end <= r->end))
464 continue; /* Not contained */
465 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
466 continue; /* Wrong type */
467 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
468 return r; /* Exact match */
469 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
470 if (r->flags & IORESOURCE_PREFETCH)
471 continue;
472 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
473 if (!best)
474 best = r;
475 }
476 return best;
477}
478
479/**
480 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
481 * @dev: PCI device to have its BARs restored
482 *
483 * Restore the BAR values for a given device, so as to make it
484 * accessible by its driver.
485 */
486static void
487pci_restore_bars(struct pci_dev *dev)
488{
489 int i;
490
491 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
492 pci_update_resource(dev, i);
493}
494
495static struct pci_platform_pm_ops *pci_platform_pm;
496
497int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
498{
499 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
500 || !ops->sleep_wake || !ops->can_wakeup)
501 return -EINVAL;
502 pci_platform_pm = ops;
503 return 0;
504}
505
506static inline bool platform_pci_power_manageable(struct pci_dev *dev)
507{
508 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
509}
510
511static inline int platform_pci_set_power_state(struct pci_dev *dev,
512 pci_power_t t)
513{
514 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
515}
516
517static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
518{
519 return pci_platform_pm ?
520 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
521}
522
523static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
524{
525 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
526}
527
528static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
529{
530 return pci_platform_pm ?
531 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
532}
533
534static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
535{
536 return pci_platform_pm ?
537 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
538}
539
540/**
541 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
542 * given PCI device
543 * @dev: PCI device to handle.
544 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
545 *
546 * RETURN VALUE:
547 * -EINVAL if the requested state is invalid.
548 * -EIO if device does not support PCI PM or its PM capabilities register has a
549 * wrong version, or device doesn't support the requested state.
550 * 0 if device already is in the requested state.
551 * 0 if device's power state has been successfully changed.
552 */
553static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
554{
555 u16 pmcsr;
556 bool need_restore = false;
557
558 /* Check if we're already there */
559 if (dev->current_state == state)
560 return 0;
561
562 if (!dev->pm_cap)
563 return -EIO;
564
565 if (state < PCI_D0 || state > PCI_D3hot)
566 return -EINVAL;
567
568 /* Validate current state:
569 * Can enter D0 from any state, but if we can only go deeper
570 * to sleep if we're already in a low power state
571 */
572 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
573 && dev->current_state > state) {
574 dev_err(&dev->dev, "invalid power transition "
575 "(from state %d to %d)\n", dev->current_state, state);
576 return -EINVAL;
577 }
578
579 /* check if this device supports the desired state */
580 if ((state == PCI_D1 && !dev->d1_support)
581 || (state == PCI_D2 && !dev->d2_support))
582 return -EIO;
583
584 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
585
586 /* If we're (effectively) in D3, force entire word to 0.
587 * This doesn't affect PME_Status, disables PME_En, and
588 * sets PowerState to 0.
589 */
590 switch (dev->current_state) {
591 case PCI_D0:
592 case PCI_D1:
593 case PCI_D2:
594 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
595 pmcsr |= state;
596 break;
597 case PCI_D3hot:
598 case PCI_D3cold:
599 case PCI_UNKNOWN: /* Boot-up */
600 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
601 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
602 need_restore = true;
603 /* Fall-through: force to D0 */
604 default:
605 pmcsr = 0;
606 break;
607 }
608
609 /* enter specified state */
610 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
611
612 /* Mandatory power management transition delays */
613 /* see PCI PM 1.1 5.6.1 table 18 */
614 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
615 pci_dev_d3_sleep(dev);
616 else if (state == PCI_D2 || dev->current_state == PCI_D2)
617 udelay(PCI_PM_D2_DELAY);
618
619 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
620 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
621 if (dev->current_state != state && printk_ratelimit())
622 dev_info(&dev->dev, "Refused to change power state, "
623 "currently in D%d\n", dev->current_state);
624
625 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
626 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
627 * from D3hot to D0 _may_ perform an internal reset, thereby
628 * going to "D0 Uninitialized" rather than "D0 Initialized".
629 * For example, at least some versions of the 3c905B and the
630 * 3c556B exhibit this behaviour.
631 *
632 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
633 * devices in a D3hot state at boot. Consequently, we need to
634 * restore at least the BARs so that the device will be
635 * accessible to its driver.
636 */
637 if (need_restore)
638 pci_restore_bars(dev);
639
640 if (dev->bus->self)
641 pcie_aspm_pm_state_change(dev->bus->self);
642
643 return 0;
644}
645
646/**
647 * pci_update_current_state - Read PCI power state of given device from its
648 * PCI PM registers and cache it
649 * @dev: PCI device to handle.
650 * @state: State to cache in case the device doesn't have the PM capability
651 */
652void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
653{
654 if (dev->pm_cap) {
655 u16 pmcsr;
656
657 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
658 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
659 } else {
660 dev->current_state = state;
661 }
662}
663
664/**
665 * pci_platform_power_transition - Use platform to change device power state
666 * @dev: PCI device to handle.
667 * @state: State to put the device into.
668 */
669static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
670{
671 int error;
672
673 if (platform_pci_power_manageable(dev)) {
674 error = platform_pci_set_power_state(dev, state);
675 if (!error)
676 pci_update_current_state(dev, state);
677 /* Fall back to PCI_D0 if native PM is not supported */
678 if (!dev->pm_cap)
679 dev->current_state = PCI_D0;
680 } else {
681 error = -ENODEV;
682 /* Fall back to PCI_D0 if native PM is not supported */
683 if (!dev->pm_cap)
684 dev->current_state = PCI_D0;
685 }
686
687 return error;
688}
689
690/**
691 * __pci_start_power_transition - Start power transition of a PCI device
692 * @dev: PCI device to handle.
693 * @state: State to put the device into.
694 */
695static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
696{
697 if (state == PCI_D0)
698 pci_platform_power_transition(dev, PCI_D0);
699}
700
701/**
702 * __pci_complete_power_transition - Complete power transition of a PCI device
703 * @dev: PCI device to handle.
704 * @state: State to put the device into.
705 *
706 * This function should not be called directly by device drivers.
707 */
708int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
709{
710 return state >= PCI_D0 ?
711 pci_platform_power_transition(dev, state) : -EINVAL;
712}
713EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
714
715/**
716 * pci_set_power_state - Set the power state of a PCI device
717 * @dev: PCI device to handle.
718 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
719 *
720 * Transition a device to a new power state, using the platform firmware and/or
721 * the device's PCI PM registers.
722 *
723 * RETURN VALUE:
724 * -EINVAL if the requested state is invalid.
725 * -EIO if device does not support PCI PM or its PM capabilities register has a
726 * wrong version, or device doesn't support the requested state.
727 * 0 if device already is in the requested state.
728 * 0 if device's power state has been successfully changed.
729 */
730int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
731{
732 int error;
733
734 /* bound the state we're entering */
735 if (state > PCI_D3hot)
736 state = PCI_D3hot;
737 else if (state < PCI_D0)
738 state = PCI_D0;
739 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
740 /*
741 * If the device or the parent bridge do not support PCI PM,
742 * ignore the request if we're doing anything other than putting
743 * it into D0 (which would only happen on boot).
744 */
745 return 0;
746
747 __pci_start_power_transition(dev, state);
748
749 /* This device is quirked not to be put into D3, so
750 don't put it in D3 */
751 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
752 return 0;
753
754 error = pci_raw_set_power_state(dev, state);
755
756 if (!__pci_complete_power_transition(dev, state))
757 error = 0;
758 /*
759 * When aspm_policy is "powersave" this call ensures
760 * that ASPM is configured.
761 */
762 if (!error && dev->bus->self)
763 pcie_aspm_powersave_config_link(dev->bus->self);
764
765 return error;
766}
767
768/**
769 * pci_choose_state - Choose the power state of a PCI device
770 * @dev: PCI device to be suspended
771 * @state: target sleep state for the whole system. This is the value
772 * that is passed to suspend() function.
773 *
774 * Returns PCI power state suitable for given device and given system
775 * message.
776 */
777
778pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
779{
780 pci_power_t ret;
781
782 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
783 return PCI_D0;
784
785 ret = platform_pci_choose_state(dev);
786 if (ret != PCI_POWER_ERROR)
787 return ret;
788
789 switch (state.event) {
790 case PM_EVENT_ON:
791 return PCI_D0;
792 case PM_EVENT_FREEZE:
793 case PM_EVENT_PRETHAW:
794 /* REVISIT both freeze and pre-thaw "should" use D0 */
795 case PM_EVENT_SUSPEND:
796 case PM_EVENT_HIBERNATE:
797 return PCI_D3hot;
798 default:
799 dev_info(&dev->dev, "unrecognized suspend event %d\n",
800 state.event);
801 BUG();
802 }
803 return PCI_D0;
804}
805
806EXPORT_SYMBOL(pci_choose_state);
807
808#define PCI_EXP_SAVE_REGS 7
809
810#define pcie_cap_has_devctl(type, flags) 1
811#define pcie_cap_has_lnkctl(type, flags) \
812 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
813 (type == PCI_EXP_TYPE_ROOT_PORT || \
814 type == PCI_EXP_TYPE_ENDPOINT || \
815 type == PCI_EXP_TYPE_LEG_END))
816#define pcie_cap_has_sltctl(type, flags) \
817 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
818 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
819 (type == PCI_EXP_TYPE_DOWNSTREAM && \
820 (flags & PCI_EXP_FLAGS_SLOT))))
821#define pcie_cap_has_rtctl(type, flags) \
822 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
823 (type == PCI_EXP_TYPE_ROOT_PORT || \
824 type == PCI_EXP_TYPE_RC_EC))
825#define pcie_cap_has_devctl2(type, flags) \
826 ((flags & PCI_EXP_FLAGS_VERS) > 1)
827#define pcie_cap_has_lnkctl2(type, flags) \
828 ((flags & PCI_EXP_FLAGS_VERS) > 1)
829#define pcie_cap_has_sltctl2(type, flags) \
830 ((flags & PCI_EXP_FLAGS_VERS) > 1)
831
832static struct pci_cap_saved_state *pci_find_saved_cap(
833 struct pci_dev *pci_dev, char cap)
834{
835 struct pci_cap_saved_state *tmp;
836 struct hlist_node *pos;
837
838 hlist_for_each_entry(tmp, pos, &pci_dev->saved_cap_space, next) {
839 if (tmp->cap.cap_nr == cap)
840 return tmp;
841 }
842 return NULL;
843}
844
845static int pci_save_pcie_state(struct pci_dev *dev)
846{
847 int pos, i = 0;
848 struct pci_cap_saved_state *save_state;
849 u16 *cap;
850 u16 flags;
851
852 pos = pci_pcie_cap(dev);
853 if (!pos)
854 return 0;
855
856 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
857 if (!save_state) {
858 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
859 return -ENOMEM;
860 }
861 cap = (u16 *)&save_state->cap.data[0];
862
863 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
864
865 if (pcie_cap_has_devctl(dev->pcie_type, flags))
866 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
867 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
868 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
869 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
870 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
871 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
872 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
873 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
874 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
875 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
876 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
877 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
878 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
879
880 return 0;
881}
882
883static void pci_restore_pcie_state(struct pci_dev *dev)
884{
885 int i = 0, pos;
886 struct pci_cap_saved_state *save_state;
887 u16 *cap;
888 u16 flags;
889
890 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
891 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
892 if (!save_state || pos <= 0)
893 return;
894 cap = (u16 *)&save_state->cap.data[0];
895
896 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
897
898 if (pcie_cap_has_devctl(dev->pcie_type, flags))
899 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
900 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
901 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
902 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
903 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
904 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
905 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
906 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
907 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
908 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
909 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
910 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
911 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
912}
913
914
915static int pci_save_pcix_state(struct pci_dev *dev)
916{
917 int pos;
918 struct pci_cap_saved_state *save_state;
919
920 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
921 if (pos <= 0)
922 return 0;
923
924 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
925 if (!save_state) {
926 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
927 return -ENOMEM;
928 }
929
930 pci_read_config_word(dev, pos + PCI_X_CMD,
931 (u16 *)save_state->cap.data);
932
933 return 0;
934}
935
936static void pci_restore_pcix_state(struct pci_dev *dev)
937{
938 int i = 0, pos;
939 struct pci_cap_saved_state *save_state;
940 u16 *cap;
941
942 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
943 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
944 if (!save_state || pos <= 0)
945 return;
946 cap = (u16 *)&save_state->cap.data[0];
947
948 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
949}
950
951
952/**
953 * pci_save_state - save the PCI configuration space of a device before suspending
954 * @dev: - PCI device that we're dealing with
955 */
956int
957pci_save_state(struct pci_dev *dev)
958{
959 int i;
960 /* XXX: 100% dword access ok here? */
961 for (i = 0; i < 16; i++)
962 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
963 dev->state_saved = true;
964 if ((i = pci_save_pcie_state(dev)) != 0)
965 return i;
966 if ((i = pci_save_pcix_state(dev)) != 0)
967 return i;
968 return 0;
969}
970
971static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
972 u32 saved_val, int retry)
973{
974 u32 val;
975
976 pci_read_config_dword(pdev, offset, &val);
977 if (val == saved_val)
978 return;
979
980 for (;;) {
981 dev_dbg(&pdev->dev, "restoring config space at offset "
982 "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
983 pci_write_config_dword(pdev, offset, saved_val);
984 if (retry-- <= 0)
985 return;
986
987 pci_read_config_dword(pdev, offset, &val);
988 if (val == saved_val)
989 return;
990
991 mdelay(1);
992 }
993}
994
995static void pci_restore_config_space_range(struct pci_dev *pdev,
996 int start, int end, int retry)
997{
998 int index;
999
1000 for (index = end; index >= start; index--)
1001 pci_restore_config_dword(pdev, 4 * index,
1002 pdev->saved_config_space[index],
1003 retry);
1004}
1005
1006static void pci_restore_config_space(struct pci_dev *pdev)
1007{
1008 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1009 pci_restore_config_space_range(pdev, 10, 15, 0);
1010 /* Restore BARs before the command register. */
1011 pci_restore_config_space_range(pdev, 4, 9, 10);
1012 pci_restore_config_space_range(pdev, 0, 3, 0);
1013 } else {
1014 pci_restore_config_space_range(pdev, 0, 15, 0);
1015 }
1016}
1017
1018/**
1019 * pci_restore_state - Restore the saved state of a PCI device
1020 * @dev: - PCI device that we're dealing with
1021 */
1022void pci_restore_state(struct pci_dev *dev)
1023{
1024 if (!dev->state_saved)
1025 return;
1026
1027 /* PCI Express register must be restored first */
1028 pci_restore_pcie_state(dev);
1029 pci_restore_ats_state(dev);
1030
1031 pci_restore_config_space(dev);
1032
1033 pci_restore_pcix_state(dev);
1034 pci_restore_msi_state(dev);
1035 pci_restore_iov_state(dev);
1036
1037 dev->state_saved = false;
1038}
1039
1040struct pci_saved_state {
1041 u32 config_space[16];
1042 struct pci_cap_saved_data cap[0];
1043};
1044
1045/**
1046 * pci_store_saved_state - Allocate and return an opaque struct containing
1047 * the device saved state.
1048 * @dev: PCI device that we're dealing with
1049 *
1050 * Rerturn NULL if no state or error.
1051 */
1052struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1053{
1054 struct pci_saved_state *state;
1055 struct pci_cap_saved_state *tmp;
1056 struct pci_cap_saved_data *cap;
1057 struct hlist_node *pos;
1058 size_t size;
1059
1060 if (!dev->state_saved)
1061 return NULL;
1062
1063 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1064
1065 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next)
1066 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1067
1068 state = kzalloc(size, GFP_KERNEL);
1069 if (!state)
1070 return NULL;
1071
1072 memcpy(state->config_space, dev->saved_config_space,
1073 sizeof(state->config_space));
1074
1075 cap = state->cap;
1076 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) {
1077 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1078 memcpy(cap, &tmp->cap, len);
1079 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1080 }
1081 /* Empty cap_save terminates list */
1082
1083 return state;
1084}
1085EXPORT_SYMBOL_GPL(pci_store_saved_state);
1086
1087/**
1088 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1089 * @dev: PCI device that we're dealing with
1090 * @state: Saved state returned from pci_store_saved_state()
1091 */
1092int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1093{
1094 struct pci_cap_saved_data *cap;
1095
1096 dev->state_saved = false;
1097
1098 if (!state)
1099 return 0;
1100
1101 memcpy(dev->saved_config_space, state->config_space,
1102 sizeof(state->config_space));
1103
1104 cap = state->cap;
1105 while (cap->size) {
1106 struct pci_cap_saved_state *tmp;
1107
1108 tmp = pci_find_saved_cap(dev, cap->cap_nr);
1109 if (!tmp || tmp->cap.size != cap->size)
1110 return -EINVAL;
1111
1112 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1113 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1114 sizeof(struct pci_cap_saved_data) + cap->size);
1115 }
1116
1117 dev->state_saved = true;
1118 return 0;
1119}
1120EXPORT_SYMBOL_GPL(pci_load_saved_state);
1121
1122/**
1123 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1124 * and free the memory allocated for it.
1125 * @dev: PCI device that we're dealing with
1126 * @state: Pointer to saved state returned from pci_store_saved_state()
1127 */
1128int pci_load_and_free_saved_state(struct pci_dev *dev,
1129 struct pci_saved_state **state)
1130{
1131 int ret = pci_load_saved_state(dev, *state);
1132 kfree(*state);
1133 *state = NULL;
1134 return ret;
1135}
1136EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1137
1138static int do_pci_enable_device(struct pci_dev *dev, int bars)
1139{
1140 int err;
1141
1142 err = pci_set_power_state(dev, PCI_D0);
1143 if (err < 0 && err != -EIO)
1144 return err;
1145 err = pcibios_enable_device(dev, bars);
1146 if (err < 0)
1147 return err;
1148 pci_fixup_device(pci_fixup_enable, dev);
1149
1150 return 0;
1151}
1152
1153/**
1154 * pci_reenable_device - Resume abandoned device
1155 * @dev: PCI device to be resumed
1156 *
1157 * Note this function is a backend of pci_default_resume and is not supposed
1158 * to be called by normal code, write proper resume handler and use it instead.
1159 */
1160int pci_reenable_device(struct pci_dev *dev)
1161{
1162 if (pci_is_enabled(dev))
1163 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1164 return 0;
1165}
1166
1167static int __pci_enable_device_flags(struct pci_dev *dev,
1168 resource_size_t flags)
1169{
1170 int err;
1171 int i, bars = 0;
1172
1173 /*
1174 * Power state could be unknown at this point, either due to a fresh
1175 * boot or a device removal call. So get the current power state
1176 * so that things like MSI message writing will behave as expected
1177 * (e.g. if the device really is in D0 at enable time).
1178 */
1179 if (dev->pm_cap) {
1180 u16 pmcsr;
1181 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1182 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1183 }
1184
1185 if (atomic_add_return(1, &dev->enable_cnt) > 1)
1186 return 0; /* already enabled */
1187
1188 /* only skip sriov related */
1189 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1190 if (dev->resource[i].flags & flags)
1191 bars |= (1 << i);
1192 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1193 if (dev->resource[i].flags & flags)
1194 bars |= (1 << i);
1195
1196 err = do_pci_enable_device(dev, bars);
1197 if (err < 0)
1198 atomic_dec(&dev->enable_cnt);
1199 return err;
1200}
1201
1202/**
1203 * pci_enable_device_io - Initialize a device for use with IO space
1204 * @dev: PCI device to be initialized
1205 *
1206 * Initialize device before it's used by a driver. Ask low-level code
1207 * to enable I/O resources. Wake up the device if it was suspended.
1208 * Beware, this function can fail.
1209 */
1210int pci_enable_device_io(struct pci_dev *dev)
1211{
1212 return __pci_enable_device_flags(dev, IORESOURCE_IO);
1213}
1214
1215/**
1216 * pci_enable_device_mem - Initialize a device for use with Memory space
1217 * @dev: PCI device to be initialized
1218 *
1219 * Initialize device before it's used by a driver. Ask low-level code
1220 * to enable Memory resources. Wake up the device if it was suspended.
1221 * Beware, this function can fail.
1222 */
1223int pci_enable_device_mem(struct pci_dev *dev)
1224{
1225 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1226}
1227
1228/**
1229 * pci_enable_device - Initialize device before it's used by a driver.
1230 * @dev: PCI device to be initialized
1231 *
1232 * Initialize device before it's used by a driver. Ask low-level code
1233 * to enable I/O and memory. Wake up the device if it was suspended.
1234 * Beware, this function can fail.
1235 *
1236 * Note we don't actually enable the device many times if we call
1237 * this function repeatedly (we just increment the count).
1238 */
1239int pci_enable_device(struct pci_dev *dev)
1240{
1241 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1242}
1243
1244/*
1245 * Managed PCI resources. This manages device on/off, intx/msi/msix
1246 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1247 * there's no need to track it separately. pci_devres is initialized
1248 * when a device is enabled using managed PCI device enable interface.
1249 */
1250struct pci_devres {
1251 unsigned int enabled:1;
1252 unsigned int pinned:1;
1253 unsigned int orig_intx:1;
1254 unsigned int restore_intx:1;
1255 u32 region_mask;
1256};
1257
1258static void pcim_release(struct device *gendev, void *res)
1259{
1260 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1261 struct pci_devres *this = res;
1262 int i;
1263
1264 if (dev->msi_enabled)
1265 pci_disable_msi(dev);
1266 if (dev->msix_enabled)
1267 pci_disable_msix(dev);
1268
1269 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1270 if (this->region_mask & (1 << i))
1271 pci_release_region(dev, i);
1272
1273 if (this->restore_intx)
1274 pci_intx(dev, this->orig_intx);
1275
1276 if (this->enabled && !this->pinned)
1277 pci_disable_device(dev);
1278}
1279
1280static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1281{
1282 struct pci_devres *dr, *new_dr;
1283
1284 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1285 if (dr)
1286 return dr;
1287
1288 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1289 if (!new_dr)
1290 return NULL;
1291 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1292}
1293
1294static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1295{
1296 if (pci_is_managed(pdev))
1297 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1298 return NULL;
1299}
1300
1301/**
1302 * pcim_enable_device - Managed pci_enable_device()
1303 * @pdev: PCI device to be initialized
1304 *
1305 * Managed pci_enable_device().
1306 */
1307int pcim_enable_device(struct pci_dev *pdev)
1308{
1309 struct pci_devres *dr;
1310 int rc;
1311
1312 dr = get_pci_dr(pdev);
1313 if (unlikely(!dr))
1314 return -ENOMEM;
1315 if (dr->enabled)
1316 return 0;
1317
1318 rc = pci_enable_device(pdev);
1319 if (!rc) {
1320 pdev->is_managed = 1;
1321 dr->enabled = 1;
1322 }
1323 return rc;
1324}
1325
1326/**
1327 * pcim_pin_device - Pin managed PCI device
1328 * @pdev: PCI device to pin
1329 *
1330 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1331 * driver detach. @pdev must have been enabled with
1332 * pcim_enable_device().
1333 */
1334void pcim_pin_device(struct pci_dev *pdev)
1335{
1336 struct pci_devres *dr;
1337
1338 dr = find_pci_dr(pdev);
1339 WARN_ON(!dr || !dr->enabled);
1340 if (dr)
1341 dr->pinned = 1;
1342}
1343
1344/**
1345 * pcibios_disable_device - disable arch specific PCI resources for device dev
1346 * @dev: the PCI device to disable
1347 *
1348 * Disables architecture specific PCI resources for the device. This
1349 * is the default implementation. Architecture implementations can
1350 * override this.
1351 */
1352void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1353
1354static void do_pci_disable_device(struct pci_dev *dev)
1355{
1356 u16 pci_command;
1357
1358 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1359 if (pci_command & PCI_COMMAND_MASTER) {
1360 pci_command &= ~PCI_COMMAND_MASTER;
1361 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1362 }
1363
1364 pcibios_disable_device(dev);
1365}
1366
1367/**
1368 * pci_disable_enabled_device - Disable device without updating enable_cnt
1369 * @dev: PCI device to disable
1370 *
1371 * NOTE: This function is a backend of PCI power management routines and is
1372 * not supposed to be called drivers.
1373 */
1374void pci_disable_enabled_device(struct pci_dev *dev)
1375{
1376 if (pci_is_enabled(dev))
1377 do_pci_disable_device(dev);
1378}
1379
1380/**
1381 * pci_disable_device - Disable PCI device after use
1382 * @dev: PCI device to be disabled
1383 *
1384 * Signal to the system that the PCI device is not in use by the system
1385 * anymore. This only involves disabling PCI bus-mastering, if active.
1386 *
1387 * Note we don't actually disable the device until all callers of
1388 * pci_enable_device() have called pci_disable_device().
1389 */
1390void
1391pci_disable_device(struct pci_dev *dev)
1392{
1393 struct pci_devres *dr;
1394
1395 dr = find_pci_dr(dev);
1396 if (dr)
1397 dr->enabled = 0;
1398
1399 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1400 return;
1401
1402 do_pci_disable_device(dev);
1403
1404 dev->is_busmaster = 0;
1405}
1406
1407/**
1408 * pcibios_set_pcie_reset_state - set reset state for device dev
1409 * @dev: the PCIe device reset
1410 * @state: Reset state to enter into
1411 *
1412 *
1413 * Sets the PCIe reset state for the device. This is the default
1414 * implementation. Architecture implementations can override this.
1415 */
1416int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1417 enum pcie_reset_state state)
1418{
1419 return -EINVAL;
1420}
1421
1422/**
1423 * pci_set_pcie_reset_state - set reset state for device dev
1424 * @dev: the PCIe device reset
1425 * @state: Reset state to enter into
1426 *
1427 *
1428 * Sets the PCI reset state for the device.
1429 */
1430int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1431{
1432 return pcibios_set_pcie_reset_state(dev, state);
1433}
1434
1435/**
1436 * pci_check_pme_status - Check if given device has generated PME.
1437 * @dev: Device to check.
1438 *
1439 * Check the PME status of the device and if set, clear it and clear PME enable
1440 * (if set). Return 'true' if PME status and PME enable were both set or
1441 * 'false' otherwise.
1442 */
1443bool pci_check_pme_status(struct pci_dev *dev)
1444{
1445 int pmcsr_pos;
1446 u16 pmcsr;
1447 bool ret = false;
1448
1449 if (!dev->pm_cap)
1450 return false;
1451
1452 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1453 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1454 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1455 return false;
1456
1457 /* Clear PME status. */
1458 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1459 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1460 /* Disable PME to avoid interrupt flood. */
1461 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1462 ret = true;
1463 }
1464
1465 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1466
1467 return ret;
1468}
1469
1470/**
1471 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1472 * @dev: Device to handle.
1473 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1474 *
1475 * Check if @dev has generated PME and queue a resume request for it in that
1476 * case.
1477 */
1478static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1479{
1480 if (pme_poll_reset && dev->pme_poll)
1481 dev->pme_poll = false;
1482
1483 if (pci_check_pme_status(dev)) {
1484 pci_wakeup_event(dev);
1485 pm_request_resume(&dev->dev);
1486 }
1487 return 0;
1488}
1489
1490/**
1491 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1492 * @bus: Top bus of the subtree to walk.
1493 */
1494void pci_pme_wakeup_bus(struct pci_bus *bus)
1495{
1496 if (bus)
1497 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1498}
1499
1500/**
1501 * pci_pme_capable - check the capability of PCI device to generate PME#
1502 * @dev: PCI device to handle.
1503 * @state: PCI state from which device will issue PME#.
1504 */
1505bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1506{
1507 if (!dev->pm_cap)
1508 return false;
1509
1510 return !!(dev->pme_support & (1 << state));
1511}
1512
1513static void pci_pme_list_scan(struct work_struct *work)
1514{
1515 struct pci_pme_device *pme_dev, *n;
1516
1517 mutex_lock(&pci_pme_list_mutex);
1518 if (!list_empty(&pci_pme_list)) {
1519 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1520 if (pme_dev->dev->pme_poll) {
1521 pci_pme_wakeup(pme_dev->dev, NULL);
1522 } else {
1523 list_del(&pme_dev->list);
1524 kfree(pme_dev);
1525 }
1526 }
1527 if (!list_empty(&pci_pme_list))
1528 schedule_delayed_work(&pci_pme_work,
1529 msecs_to_jiffies(PME_TIMEOUT));
1530 }
1531 mutex_unlock(&pci_pme_list_mutex);
1532}
1533
1534/**
1535 * pci_pme_active - enable or disable PCI device's PME# function
1536 * @dev: PCI device to handle.
1537 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1538 *
1539 * The caller must verify that the device is capable of generating PME# before
1540 * calling this function with @enable equal to 'true'.
1541 */
1542void pci_pme_active(struct pci_dev *dev, bool enable)
1543{
1544 u16 pmcsr;
1545
1546 if (!dev->pm_cap)
1547 return;
1548
1549 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1550 /* Clear PME_Status by writing 1 to it and enable PME# */
1551 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1552 if (!enable)
1553 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1554
1555 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1556
1557 /* PCI (as opposed to PCIe) PME requires that the device have
1558 its PME# line hooked up correctly. Not all hardware vendors
1559 do this, so the PME never gets delivered and the device
1560 remains asleep. The easiest way around this is to
1561 periodically walk the list of suspended devices and check
1562 whether any have their PME flag set. The assumption is that
1563 we'll wake up often enough anyway that this won't be a huge
1564 hit, and the power savings from the devices will still be a
1565 win. */
1566
1567 if (dev->pme_poll) {
1568 struct pci_pme_device *pme_dev;
1569 if (enable) {
1570 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1571 GFP_KERNEL);
1572 if (!pme_dev)
1573 goto out;
1574 pme_dev->dev = dev;
1575 mutex_lock(&pci_pme_list_mutex);
1576 list_add(&pme_dev->list, &pci_pme_list);
1577 if (list_is_singular(&pci_pme_list))
1578 schedule_delayed_work(&pci_pme_work,
1579 msecs_to_jiffies(PME_TIMEOUT));
1580 mutex_unlock(&pci_pme_list_mutex);
1581 } else {
1582 mutex_lock(&pci_pme_list_mutex);
1583 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1584 if (pme_dev->dev == dev) {
1585 list_del(&pme_dev->list);
1586 kfree(pme_dev);
1587 break;
1588 }
1589 }
1590 mutex_unlock(&pci_pme_list_mutex);
1591 }
1592 }
1593
1594out:
1595 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1596}
1597
1598/**
1599 * __pci_enable_wake - enable PCI device as wakeup event source
1600 * @dev: PCI device affected
1601 * @state: PCI state from which device will issue wakeup events
1602 * @runtime: True if the events are to be generated at run time
1603 * @enable: True to enable event generation; false to disable
1604 *
1605 * This enables the device as a wakeup event source, or disables it.
1606 * When such events involves platform-specific hooks, those hooks are
1607 * called automatically by this routine.
1608 *
1609 * Devices with legacy power management (no standard PCI PM capabilities)
1610 * always require such platform hooks.
1611 *
1612 * RETURN VALUE:
1613 * 0 is returned on success
1614 * -EINVAL is returned if device is not supposed to wake up the system
1615 * Error code depending on the platform is returned if both the platform and
1616 * the native mechanism fail to enable the generation of wake-up events
1617 */
1618int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1619 bool runtime, bool enable)
1620{
1621 int ret = 0;
1622
1623 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1624 return -EINVAL;
1625
1626 /* Don't do the same thing twice in a row for one device. */
1627 if (!!enable == !!dev->wakeup_prepared)
1628 return 0;
1629
1630 /*
1631 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1632 * Anderson we should be doing PME# wake enable followed by ACPI wake
1633 * enable. To disable wake-up we call the platform first, for symmetry.
1634 */
1635
1636 if (enable) {
1637 int error;
1638
1639 if (pci_pme_capable(dev, state))
1640 pci_pme_active(dev, true);
1641 else
1642 ret = 1;
1643 error = runtime ? platform_pci_run_wake(dev, true) :
1644 platform_pci_sleep_wake(dev, true);
1645 if (ret)
1646 ret = error;
1647 if (!ret)
1648 dev->wakeup_prepared = true;
1649 } else {
1650 if (runtime)
1651 platform_pci_run_wake(dev, false);
1652 else
1653 platform_pci_sleep_wake(dev, false);
1654 pci_pme_active(dev, false);
1655 dev->wakeup_prepared = false;
1656 }
1657
1658 return ret;
1659}
1660EXPORT_SYMBOL(__pci_enable_wake);
1661
1662/**
1663 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1664 * @dev: PCI device to prepare
1665 * @enable: True to enable wake-up event generation; false to disable
1666 *
1667 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1668 * and this function allows them to set that up cleanly - pci_enable_wake()
1669 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1670 * ordering constraints.
1671 *
1672 * This function only returns error code if the device is not capable of
1673 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1674 * enable wake-up power for it.
1675 */
1676int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1677{
1678 return pci_pme_capable(dev, PCI_D3cold) ?
1679 pci_enable_wake(dev, PCI_D3cold, enable) :
1680 pci_enable_wake(dev, PCI_D3hot, enable);
1681}
1682
1683/**
1684 * pci_target_state - find an appropriate low power state for a given PCI dev
1685 * @dev: PCI device
1686 *
1687 * Use underlying platform code to find a supported low power state for @dev.
1688 * If the platform can't manage @dev, return the deepest state from which it
1689 * can generate wake events, based on any available PME info.
1690 */
1691pci_power_t pci_target_state(struct pci_dev *dev)
1692{
1693 pci_power_t target_state = PCI_D3hot;
1694
1695 if (platform_pci_power_manageable(dev)) {
1696 /*
1697 * Call the platform to choose the target state of the device
1698 * and enable wake-up from this state if supported.
1699 */
1700 pci_power_t state = platform_pci_choose_state(dev);
1701
1702 switch (state) {
1703 case PCI_POWER_ERROR:
1704 case PCI_UNKNOWN:
1705 break;
1706 case PCI_D1:
1707 case PCI_D2:
1708 if (pci_no_d1d2(dev))
1709 break;
1710 default:
1711 target_state = state;
1712 }
1713 } else if (!dev->pm_cap) {
1714 target_state = PCI_D0;
1715 } else if (device_may_wakeup(&dev->dev)) {
1716 /*
1717 * Find the deepest state from which the device can generate
1718 * wake-up events, make it the target state and enable device
1719 * to generate PME#.
1720 */
1721 if (dev->pme_support) {
1722 while (target_state
1723 && !(dev->pme_support & (1 << target_state)))
1724 target_state--;
1725 }
1726 }
1727
1728 return target_state;
1729}
1730
1731/**
1732 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1733 * @dev: Device to handle.
1734 *
1735 * Choose the power state appropriate for the device depending on whether
1736 * it can wake up the system and/or is power manageable by the platform
1737 * (PCI_D3hot is the default) and put the device into that state.
1738 */
1739int pci_prepare_to_sleep(struct pci_dev *dev)
1740{
1741 pci_power_t target_state = pci_target_state(dev);
1742 int error;
1743
1744 if (target_state == PCI_POWER_ERROR)
1745 return -EIO;
1746
1747 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1748
1749 error = pci_set_power_state(dev, target_state);
1750
1751 if (error)
1752 pci_enable_wake(dev, target_state, false);
1753
1754 return error;
1755}
1756
1757/**
1758 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1759 * @dev: Device to handle.
1760 *
1761 * Disable device's system wake-up capability and put it into D0.
1762 */
1763int pci_back_from_sleep(struct pci_dev *dev)
1764{
1765 pci_enable_wake(dev, PCI_D0, false);
1766 return pci_set_power_state(dev, PCI_D0);
1767}
1768
1769/**
1770 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1771 * @dev: PCI device being suspended.
1772 *
1773 * Prepare @dev to generate wake-up events at run time and put it into a low
1774 * power state.
1775 */
1776int pci_finish_runtime_suspend(struct pci_dev *dev)
1777{
1778 pci_power_t target_state = pci_target_state(dev);
1779 int error;
1780
1781 if (target_state == PCI_POWER_ERROR)
1782 return -EIO;
1783
1784 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1785
1786 error = pci_set_power_state(dev, target_state);
1787
1788 if (error)
1789 __pci_enable_wake(dev, target_state, true, false);
1790
1791 return error;
1792}
1793
1794/**
1795 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1796 * @dev: Device to check.
1797 *
1798 * Return true if the device itself is cabable of generating wake-up events
1799 * (through the platform or using the native PCIe PME) or if the device supports
1800 * PME and one of its upstream bridges can generate wake-up events.
1801 */
1802bool pci_dev_run_wake(struct pci_dev *dev)
1803{
1804 struct pci_bus *bus = dev->bus;
1805
1806 if (device_run_wake(&dev->dev))
1807 return true;
1808
1809 if (!dev->pme_support)
1810 return false;
1811
1812 while (bus->parent) {
1813 struct pci_dev *bridge = bus->self;
1814
1815 if (device_run_wake(&bridge->dev))
1816 return true;
1817
1818 bus = bus->parent;
1819 }
1820
1821 /* We have reached the root bus. */
1822 if (bus->bridge)
1823 return device_run_wake(bus->bridge);
1824
1825 return false;
1826}
1827EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1828
1829/**
1830 * pci_pm_init - Initialize PM functions of given PCI device
1831 * @dev: PCI device to handle.
1832 */
1833void pci_pm_init(struct pci_dev *dev)
1834{
1835 int pm;
1836 u16 pmc;
1837
1838 pm_runtime_forbid(&dev->dev);
1839 device_enable_async_suspend(&dev->dev);
1840 dev->wakeup_prepared = false;
1841
1842 dev->pm_cap = 0;
1843
1844 /* find PCI PM capability in list */
1845 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1846 if (!pm)
1847 return;
1848 /* Check device's ability to generate PME# */
1849 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1850
1851 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1852 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1853 pmc & PCI_PM_CAP_VER_MASK);
1854 return;
1855 }
1856
1857 dev->pm_cap = pm;
1858 dev->d3_delay = PCI_PM_D3_WAIT;
1859
1860 dev->d1_support = false;
1861 dev->d2_support = false;
1862 if (!pci_no_d1d2(dev)) {
1863 if (pmc & PCI_PM_CAP_D1)
1864 dev->d1_support = true;
1865 if (pmc & PCI_PM_CAP_D2)
1866 dev->d2_support = true;
1867
1868 if (dev->d1_support || dev->d2_support)
1869 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1870 dev->d1_support ? " D1" : "",
1871 dev->d2_support ? " D2" : "");
1872 }
1873
1874 pmc &= PCI_PM_CAP_PME_MASK;
1875 if (pmc) {
1876 dev_printk(KERN_DEBUG, &dev->dev,
1877 "PME# supported from%s%s%s%s%s\n",
1878 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1879 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1880 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1881 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1882 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1883 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1884 dev->pme_poll = true;
1885 /*
1886 * Make device's PM flags reflect the wake-up capability, but
1887 * let the user space enable it to wake up the system as needed.
1888 */
1889 device_set_wakeup_capable(&dev->dev, true);
1890 /* Disable the PME# generation functionality */
1891 pci_pme_active(dev, false);
1892 } else {
1893 dev->pme_support = 0;
1894 }
1895}
1896
1897/**
1898 * platform_pci_wakeup_init - init platform wakeup if present
1899 * @dev: PCI device
1900 *
1901 * Some devices don't have PCI PM caps but can still generate wakeup
1902 * events through platform methods (like ACPI events). If @dev supports
1903 * platform wakeup events, set the device flag to indicate as much. This
1904 * may be redundant if the device also supports PCI PM caps, but double
1905 * initialization should be safe in that case.
1906 */
1907void platform_pci_wakeup_init(struct pci_dev *dev)
1908{
1909 if (!platform_pci_can_wakeup(dev))
1910 return;
1911
1912 device_set_wakeup_capable(&dev->dev, true);
1913 platform_pci_sleep_wake(dev, false);
1914}
1915
1916static void pci_add_saved_cap(struct pci_dev *pci_dev,
1917 struct pci_cap_saved_state *new_cap)
1918{
1919 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
1920}
1921
1922/**
1923 * pci_add_save_buffer - allocate buffer for saving given capability registers
1924 * @dev: the PCI device
1925 * @cap: the capability to allocate the buffer for
1926 * @size: requested size of the buffer
1927 */
1928static int pci_add_cap_save_buffer(
1929 struct pci_dev *dev, char cap, unsigned int size)
1930{
1931 int pos;
1932 struct pci_cap_saved_state *save_state;
1933
1934 pos = pci_find_capability(dev, cap);
1935 if (pos <= 0)
1936 return 0;
1937
1938 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1939 if (!save_state)
1940 return -ENOMEM;
1941
1942 save_state->cap.cap_nr = cap;
1943 save_state->cap.size = size;
1944 pci_add_saved_cap(dev, save_state);
1945
1946 return 0;
1947}
1948
1949/**
1950 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1951 * @dev: the PCI device
1952 */
1953void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1954{
1955 int error;
1956
1957 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1958 PCI_EXP_SAVE_REGS * sizeof(u16));
1959 if (error)
1960 dev_err(&dev->dev,
1961 "unable to preallocate PCI Express save buffer\n");
1962
1963 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1964 if (error)
1965 dev_err(&dev->dev,
1966 "unable to preallocate PCI-X save buffer\n");
1967}
1968
1969void pci_free_cap_save_buffers(struct pci_dev *dev)
1970{
1971 struct pci_cap_saved_state *tmp;
1972 struct hlist_node *pos, *n;
1973
1974 hlist_for_each_entry_safe(tmp, pos, n, &dev->saved_cap_space, next)
1975 kfree(tmp);
1976}
1977
1978/**
1979 * pci_enable_ari - enable ARI forwarding if hardware support it
1980 * @dev: the PCI device
1981 */
1982void pci_enable_ari(struct pci_dev *dev)
1983{
1984 int pos;
1985 u32 cap;
1986 u16 flags, ctrl;
1987 struct pci_dev *bridge;
1988
1989 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
1990 return;
1991
1992 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1993 if (!pos)
1994 return;
1995
1996 bridge = dev->bus->self;
1997 if (!bridge || !pci_is_pcie(bridge))
1998 return;
1999
2000 pos = pci_pcie_cap(bridge);
2001 if (!pos)
2002 return;
2003
2004 /* ARI is a PCIe v2 feature */
2005 pci_read_config_word(bridge, pos + PCI_EXP_FLAGS, &flags);
2006 if ((flags & PCI_EXP_FLAGS_VERS) < 2)
2007 return;
2008
2009 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
2010 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2011 return;
2012
2013 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
2014 ctrl |= PCI_EXP_DEVCTL2_ARI;
2015 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
2016
2017 bridge->ari_enabled = 1;
2018}
2019
2020/**
2021 * pci_enable_ido - enable ID-based ordering on a device
2022 * @dev: the PCI device
2023 * @type: which types of IDO to enable
2024 *
2025 * Enable ID-based ordering on @dev. @type can contain the bits
2026 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2027 * which types of transactions are allowed to be re-ordered.
2028 */
2029void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2030{
2031 int pos;
2032 u16 ctrl;
2033
2034 pos = pci_pcie_cap(dev);
2035 if (!pos)
2036 return;
2037
2038 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2039 if (type & PCI_EXP_IDO_REQUEST)
2040 ctrl |= PCI_EXP_IDO_REQ_EN;
2041 if (type & PCI_EXP_IDO_COMPLETION)
2042 ctrl |= PCI_EXP_IDO_CMP_EN;
2043 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2044}
2045EXPORT_SYMBOL(pci_enable_ido);
2046
2047/**
2048 * pci_disable_ido - disable ID-based ordering on a device
2049 * @dev: the PCI device
2050 * @type: which types of IDO to disable
2051 */
2052void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2053{
2054 int pos;
2055 u16 ctrl;
2056
2057 if (!pci_is_pcie(dev))
2058 return;
2059
2060 pos = pci_pcie_cap(dev);
2061 if (!pos)
2062 return;
2063
2064 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2065 if (type & PCI_EXP_IDO_REQUEST)
2066 ctrl &= ~PCI_EXP_IDO_REQ_EN;
2067 if (type & PCI_EXP_IDO_COMPLETION)
2068 ctrl &= ~PCI_EXP_IDO_CMP_EN;
2069 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2070}
2071EXPORT_SYMBOL(pci_disable_ido);
2072
2073/**
2074 * pci_enable_obff - enable optimized buffer flush/fill
2075 * @dev: PCI device
2076 * @type: type of signaling to use
2077 *
2078 * Try to enable @type OBFF signaling on @dev. It will try using WAKE#
2079 * signaling if possible, falling back to message signaling only if
2080 * WAKE# isn't supported. @type should indicate whether the PCIe link
2081 * be brought out of L0s or L1 to send the message. It should be either
2082 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2083 *
2084 * If your device can benefit from receiving all messages, even at the
2085 * power cost of bringing the link back up from a low power state, use
2086 * %PCI_EXP_OBFF_SIGNAL_ALWAYS. Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2087 * preferred type).
2088 *
2089 * RETURNS:
2090 * Zero on success, appropriate error number on failure.
2091 */
2092int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2093{
2094 int pos;
2095 u32 cap;
2096 u16 ctrl;
2097 int ret;
2098
2099 if (!pci_is_pcie(dev))
2100 return -ENOTSUPP;
2101
2102 pos = pci_pcie_cap(dev);
2103 if (!pos)
2104 return -ENOTSUPP;
2105
2106 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2107 if (!(cap & PCI_EXP_OBFF_MASK))
2108 return -ENOTSUPP; /* no OBFF support at all */
2109
2110 /* Make sure the topology supports OBFF as well */
2111 if (dev->bus) {
2112 ret = pci_enable_obff(dev->bus->self, type);
2113 if (ret)
2114 return ret;
2115 }
2116
2117 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2118 if (cap & PCI_EXP_OBFF_WAKE)
2119 ctrl |= PCI_EXP_OBFF_WAKE_EN;
2120 else {
2121 switch (type) {
2122 case PCI_EXP_OBFF_SIGNAL_L0:
2123 if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2124 ctrl |= PCI_EXP_OBFF_MSGA_EN;
2125 break;
2126 case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2127 ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2128 ctrl |= PCI_EXP_OBFF_MSGB_EN;
2129 break;
2130 default:
2131 WARN(1, "bad OBFF signal type\n");
2132 return -ENOTSUPP;
2133 }
2134 }
2135 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2136
2137 return 0;
2138}
2139EXPORT_SYMBOL(pci_enable_obff);
2140
2141/**
2142 * pci_disable_obff - disable optimized buffer flush/fill
2143 * @dev: PCI device
2144 *
2145 * Disable OBFF on @dev.
2146 */
2147void pci_disable_obff(struct pci_dev *dev)
2148{
2149 int pos;
2150 u16 ctrl;
2151
2152 if (!pci_is_pcie(dev))
2153 return;
2154
2155 pos = pci_pcie_cap(dev);
2156 if (!pos)
2157 return;
2158
2159 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2160 ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2161 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2162}
2163EXPORT_SYMBOL(pci_disable_obff);
2164
2165/**
2166 * pci_ltr_supported - check whether a device supports LTR
2167 * @dev: PCI device
2168 *
2169 * RETURNS:
2170 * True if @dev supports latency tolerance reporting, false otherwise.
2171 */
2172bool pci_ltr_supported(struct pci_dev *dev)
2173{
2174 int pos;
2175 u32 cap;
2176
2177 if (!pci_is_pcie(dev))
2178 return false;
2179
2180 pos = pci_pcie_cap(dev);
2181 if (!pos)
2182 return false;
2183
2184 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2185
2186 return cap & PCI_EXP_DEVCAP2_LTR;
2187}
2188EXPORT_SYMBOL(pci_ltr_supported);
2189
2190/**
2191 * pci_enable_ltr - enable latency tolerance reporting
2192 * @dev: PCI device
2193 *
2194 * Enable LTR on @dev if possible, which means enabling it first on
2195 * upstream ports.
2196 *
2197 * RETURNS:
2198 * Zero on success, errno on failure.
2199 */
2200int pci_enable_ltr(struct pci_dev *dev)
2201{
2202 int pos;
2203 u16 ctrl;
2204 int ret;
2205
2206 if (!pci_ltr_supported(dev))
2207 return -ENOTSUPP;
2208
2209 pos = pci_pcie_cap(dev);
2210 if (!pos)
2211 return -ENOTSUPP;
2212
2213 /* Only primary function can enable/disable LTR */
2214 if (PCI_FUNC(dev->devfn) != 0)
2215 return -EINVAL;
2216
2217 /* Enable upstream ports first */
2218 if (dev->bus) {
2219 ret = pci_enable_ltr(dev->bus->self);
2220 if (ret)
2221 return ret;
2222 }
2223
2224 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2225 ctrl |= PCI_EXP_LTR_EN;
2226 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2227
2228 return 0;
2229}
2230EXPORT_SYMBOL(pci_enable_ltr);
2231
2232/**
2233 * pci_disable_ltr - disable latency tolerance reporting
2234 * @dev: PCI device
2235 */
2236void pci_disable_ltr(struct pci_dev *dev)
2237{
2238 int pos;
2239 u16 ctrl;
2240
2241 if (!pci_ltr_supported(dev))
2242 return;
2243
2244 pos = pci_pcie_cap(dev);
2245 if (!pos)
2246 return;
2247
2248 /* Only primary function can enable/disable LTR */
2249 if (PCI_FUNC(dev->devfn) != 0)
2250 return;
2251
2252 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2253 ctrl &= ~PCI_EXP_LTR_EN;
2254 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2255}
2256EXPORT_SYMBOL(pci_disable_ltr);
2257
2258static int __pci_ltr_scale(int *val)
2259{
2260 int scale = 0;
2261
2262 while (*val > 1023) {
2263 *val = (*val + 31) / 32;
2264 scale++;
2265 }
2266 return scale;
2267}
2268
2269/**
2270 * pci_set_ltr - set LTR latency values
2271 * @dev: PCI device
2272 * @snoop_lat_ns: snoop latency in nanoseconds
2273 * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2274 *
2275 * Figure out the scale and set the LTR values accordingly.
2276 */
2277int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2278{
2279 int pos, ret, snoop_scale, nosnoop_scale;
2280 u16 val;
2281
2282 if (!pci_ltr_supported(dev))
2283 return -ENOTSUPP;
2284
2285 snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2286 nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2287
2288 if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2289 nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2290 return -EINVAL;
2291
2292 if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2293 (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2294 return -EINVAL;
2295
2296 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2297 if (!pos)
2298 return -ENOTSUPP;
2299
2300 val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2301 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2302 if (ret != 4)
2303 return -EIO;
2304
2305 val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2306 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2307 if (ret != 4)
2308 return -EIO;
2309
2310 return 0;
2311}
2312EXPORT_SYMBOL(pci_set_ltr);
2313
2314static int pci_acs_enable;
2315
2316/**
2317 * pci_request_acs - ask for ACS to be enabled if supported
2318 */
2319void pci_request_acs(void)
2320{
2321 pci_acs_enable = 1;
2322}
2323
2324/**
2325 * pci_enable_acs - enable ACS if hardware support it
2326 * @dev: the PCI device
2327 */
2328void pci_enable_acs(struct pci_dev *dev)
2329{
2330 int pos;
2331 u16 cap;
2332 u16 ctrl;
2333
2334 if (!pci_acs_enable)
2335 return;
2336
2337 if (!pci_is_pcie(dev))
2338 return;
2339
2340 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2341 if (!pos)
2342 return;
2343
2344 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2345 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2346
2347 /* Source Validation */
2348 ctrl |= (cap & PCI_ACS_SV);
2349
2350 /* P2P Request Redirect */
2351 ctrl |= (cap & PCI_ACS_RR);
2352
2353 /* P2P Completion Redirect */
2354 ctrl |= (cap & PCI_ACS_CR);
2355
2356 /* Upstream Forwarding */
2357 ctrl |= (cap & PCI_ACS_UF);
2358
2359 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2360}
2361
2362/**
2363 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2364 * @dev: the PCI device
2365 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2366 *
2367 * Perform INTx swizzling for a device behind one level of bridge. This is
2368 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2369 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2370 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2371 * the PCI Express Base Specification, Revision 2.1)
2372 */
2373u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2374{
2375 int slot;
2376
2377 if (pci_ari_enabled(dev->bus))
2378 slot = 0;
2379 else
2380 slot = PCI_SLOT(dev->devfn);
2381
2382 return (((pin - 1) + slot) % 4) + 1;
2383}
2384
2385int
2386pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2387{
2388 u8 pin;
2389
2390 pin = dev->pin;
2391 if (!pin)
2392 return -1;
2393
2394 while (!pci_is_root_bus(dev->bus)) {
2395 pin = pci_swizzle_interrupt_pin(dev, pin);
2396 dev = dev->bus->self;
2397 }
2398 *bridge = dev;
2399 return pin;
2400}
2401
2402/**
2403 * pci_common_swizzle - swizzle INTx all the way to root bridge
2404 * @dev: the PCI device
2405 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2406 *
2407 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2408 * bridges all the way up to a PCI root bus.
2409 */
2410u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2411{
2412 u8 pin = *pinp;
2413
2414 while (!pci_is_root_bus(dev->bus)) {
2415 pin = pci_swizzle_interrupt_pin(dev, pin);
2416 dev = dev->bus->self;
2417 }
2418 *pinp = pin;
2419 return PCI_SLOT(dev->devfn);
2420}
2421
2422/**
2423 * pci_release_region - Release a PCI bar
2424 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2425 * @bar: BAR to release
2426 *
2427 * Releases the PCI I/O and memory resources previously reserved by a
2428 * successful call to pci_request_region. Call this function only
2429 * after all use of the PCI regions has ceased.
2430 */
2431void pci_release_region(struct pci_dev *pdev, int bar)
2432{
2433 struct pci_devres *dr;
2434
2435 if (pci_resource_len(pdev, bar) == 0)
2436 return;
2437 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2438 release_region(pci_resource_start(pdev, bar),
2439 pci_resource_len(pdev, bar));
2440 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2441 release_mem_region(pci_resource_start(pdev, bar),
2442 pci_resource_len(pdev, bar));
2443
2444 dr = find_pci_dr(pdev);
2445 if (dr)
2446 dr->region_mask &= ~(1 << bar);
2447}
2448
2449/**
2450 * __pci_request_region - Reserved PCI I/O and memory resource
2451 * @pdev: PCI device whose resources are to be reserved
2452 * @bar: BAR to be reserved
2453 * @res_name: Name to be associated with resource.
2454 * @exclusive: whether the region access is exclusive or not
2455 *
2456 * Mark the PCI region associated with PCI device @pdev BR @bar as
2457 * being reserved by owner @res_name. Do not access any
2458 * address inside the PCI regions unless this call returns
2459 * successfully.
2460 *
2461 * If @exclusive is set, then the region is marked so that userspace
2462 * is explicitly not allowed to map the resource via /dev/mem or
2463 * sysfs MMIO access.
2464 *
2465 * Returns 0 on success, or %EBUSY on error. A warning
2466 * message is also printed on failure.
2467 */
2468static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2469 int exclusive)
2470{
2471 struct pci_devres *dr;
2472
2473 if (pci_resource_len(pdev, bar) == 0)
2474 return 0;
2475
2476 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2477 if (!request_region(pci_resource_start(pdev, bar),
2478 pci_resource_len(pdev, bar), res_name))
2479 goto err_out;
2480 }
2481 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2482 if (!__request_mem_region(pci_resource_start(pdev, bar),
2483 pci_resource_len(pdev, bar), res_name,
2484 exclusive))
2485 goto err_out;
2486 }
2487
2488 dr = find_pci_dr(pdev);
2489 if (dr)
2490 dr->region_mask |= 1 << bar;
2491
2492 return 0;
2493
2494err_out:
2495 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2496 &pdev->resource[bar]);
2497 return -EBUSY;
2498}
2499
2500/**
2501 * pci_request_region - Reserve PCI I/O and memory resource
2502 * @pdev: PCI device whose resources are to be reserved
2503 * @bar: BAR to be reserved
2504 * @res_name: Name to be associated with resource
2505 *
2506 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2507 * being reserved by owner @res_name. Do not access any
2508 * address inside the PCI regions unless this call returns
2509 * successfully.
2510 *
2511 * Returns 0 on success, or %EBUSY on error. A warning
2512 * message is also printed on failure.
2513 */
2514int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2515{
2516 return __pci_request_region(pdev, bar, res_name, 0);
2517}
2518
2519/**
2520 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2521 * @pdev: PCI device whose resources are to be reserved
2522 * @bar: BAR to be reserved
2523 * @res_name: Name to be associated with resource.
2524 *
2525 * Mark the PCI region associated with PCI device @pdev BR @bar as
2526 * being reserved by owner @res_name. Do not access any
2527 * address inside the PCI regions unless this call returns
2528 * successfully.
2529 *
2530 * Returns 0 on success, or %EBUSY on error. A warning
2531 * message is also printed on failure.
2532 *
2533 * The key difference that _exclusive makes it that userspace is
2534 * explicitly not allowed to map the resource via /dev/mem or
2535 * sysfs.
2536 */
2537int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2538{
2539 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2540}
2541/**
2542 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2543 * @pdev: PCI device whose resources were previously reserved
2544 * @bars: Bitmask of BARs to be released
2545 *
2546 * Release selected PCI I/O and memory resources previously reserved.
2547 * Call this function only after all use of the PCI regions has ceased.
2548 */
2549void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2550{
2551 int i;
2552
2553 for (i = 0; i < 6; i++)
2554 if (bars & (1 << i))
2555 pci_release_region(pdev, i);
2556}
2557
2558int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2559 const char *res_name, int excl)
2560{
2561 int i;
2562
2563 for (i = 0; i < 6; i++)
2564 if (bars & (1 << i))
2565 if (__pci_request_region(pdev, i, res_name, excl))
2566 goto err_out;
2567 return 0;
2568
2569err_out:
2570 while(--i >= 0)
2571 if (bars & (1 << i))
2572 pci_release_region(pdev, i);
2573
2574 return -EBUSY;
2575}
2576
2577
2578/**
2579 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2580 * @pdev: PCI device whose resources are to be reserved
2581 * @bars: Bitmask of BARs to be requested
2582 * @res_name: Name to be associated with resource
2583 */
2584int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2585 const char *res_name)
2586{
2587 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2588}
2589
2590int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2591 int bars, const char *res_name)
2592{
2593 return __pci_request_selected_regions(pdev, bars, res_name,
2594 IORESOURCE_EXCLUSIVE);
2595}
2596
2597/**
2598 * pci_release_regions - Release reserved PCI I/O and memory resources
2599 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2600 *
2601 * Releases all PCI I/O and memory resources previously reserved by a
2602 * successful call to pci_request_regions. Call this function only
2603 * after all use of the PCI regions has ceased.
2604 */
2605
2606void pci_release_regions(struct pci_dev *pdev)
2607{
2608 pci_release_selected_regions(pdev, (1 << 6) - 1);
2609}
2610
2611/**
2612 * pci_request_regions - Reserved PCI I/O and memory resources
2613 * @pdev: PCI device whose resources are to be reserved
2614 * @res_name: Name to be associated with resource.
2615 *
2616 * Mark all PCI regions associated with PCI device @pdev as
2617 * being reserved by owner @res_name. Do not access any
2618 * address inside the PCI regions unless this call returns
2619 * successfully.
2620 *
2621 * Returns 0 on success, or %EBUSY on error. A warning
2622 * message is also printed on failure.
2623 */
2624int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2625{
2626 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2627}
2628
2629/**
2630 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2631 * @pdev: PCI device whose resources are to be reserved
2632 * @res_name: Name to be associated with resource.
2633 *
2634 * Mark all PCI regions associated with PCI device @pdev as
2635 * being reserved by owner @res_name. Do not access any
2636 * address inside the PCI regions unless this call returns
2637 * successfully.
2638 *
2639 * pci_request_regions_exclusive() will mark the region so that
2640 * /dev/mem and the sysfs MMIO access will not be allowed.
2641 *
2642 * Returns 0 on success, or %EBUSY on error. A warning
2643 * message is also printed on failure.
2644 */
2645int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2646{
2647 return pci_request_selected_regions_exclusive(pdev,
2648 ((1 << 6) - 1), res_name);
2649}
2650
2651static void __pci_set_master(struct pci_dev *dev, bool enable)
2652{
2653 u16 old_cmd, cmd;
2654
2655 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2656 if (enable)
2657 cmd = old_cmd | PCI_COMMAND_MASTER;
2658 else
2659 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2660 if (cmd != old_cmd) {
2661 dev_dbg(&dev->dev, "%s bus mastering\n",
2662 enable ? "enabling" : "disabling");
2663 pci_write_config_word(dev, PCI_COMMAND, cmd);
2664 }
2665 dev->is_busmaster = enable;
2666}
2667
2668/**
2669 * pcibios_set_master - enable PCI bus-mastering for device dev
2670 * @dev: the PCI device to enable
2671 *
2672 * Enables PCI bus-mastering for the device. This is the default
2673 * implementation. Architecture specific implementations can override
2674 * this if necessary.
2675 */
2676void __weak pcibios_set_master(struct pci_dev *dev)
2677{
2678 u8 lat;
2679
2680 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2681 if (pci_is_pcie(dev))
2682 return;
2683
2684 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2685 if (lat < 16)
2686 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2687 else if (lat > pcibios_max_latency)
2688 lat = pcibios_max_latency;
2689 else
2690 return;
2691 dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2692 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2693}
2694
2695/**
2696 * pci_set_master - enables bus-mastering for device dev
2697 * @dev: the PCI device to enable
2698 *
2699 * Enables bus-mastering on the device and calls pcibios_set_master()
2700 * to do the needed arch specific settings.
2701 */
2702void pci_set_master(struct pci_dev *dev)
2703{
2704 __pci_set_master(dev, true);
2705 pcibios_set_master(dev);
2706}
2707
2708/**
2709 * pci_clear_master - disables bus-mastering for device dev
2710 * @dev: the PCI device to disable
2711 */
2712void pci_clear_master(struct pci_dev *dev)
2713{
2714 __pci_set_master(dev, false);
2715}
2716
2717/**
2718 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2719 * @dev: the PCI device for which MWI is to be enabled
2720 *
2721 * Helper function for pci_set_mwi.
2722 * Originally copied from drivers/net/acenic.c.
2723 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2724 *
2725 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2726 */
2727int pci_set_cacheline_size(struct pci_dev *dev)
2728{
2729 u8 cacheline_size;
2730
2731 if (!pci_cache_line_size)
2732 return -EINVAL;
2733
2734 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2735 equal to or multiple of the right value. */
2736 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2737 if (cacheline_size >= pci_cache_line_size &&
2738 (cacheline_size % pci_cache_line_size) == 0)
2739 return 0;
2740
2741 /* Write the correct value. */
2742 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2743 /* Read it back. */
2744 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2745 if (cacheline_size == pci_cache_line_size)
2746 return 0;
2747
2748 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2749 "supported\n", pci_cache_line_size << 2);
2750
2751 return -EINVAL;
2752}
2753EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2754
2755#ifdef PCI_DISABLE_MWI
2756int pci_set_mwi(struct pci_dev *dev)
2757{
2758 return 0;
2759}
2760
2761int pci_try_set_mwi(struct pci_dev *dev)
2762{
2763 return 0;
2764}
2765
2766void pci_clear_mwi(struct pci_dev *dev)
2767{
2768}
2769
2770#else
2771
2772/**
2773 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2774 * @dev: the PCI device for which MWI is enabled
2775 *
2776 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2777 *
2778 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2779 */
2780int
2781pci_set_mwi(struct pci_dev *dev)
2782{
2783 int rc;
2784 u16 cmd;
2785
2786 rc = pci_set_cacheline_size(dev);
2787 if (rc)
2788 return rc;
2789
2790 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2791 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2792 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2793 cmd |= PCI_COMMAND_INVALIDATE;
2794 pci_write_config_word(dev, PCI_COMMAND, cmd);
2795 }
2796
2797 return 0;
2798}
2799
2800/**
2801 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2802 * @dev: the PCI device for which MWI is enabled
2803 *
2804 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2805 * Callers are not required to check the return value.
2806 *
2807 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2808 */
2809int pci_try_set_mwi(struct pci_dev *dev)
2810{
2811 int rc = pci_set_mwi(dev);
2812 return rc;
2813}
2814
2815/**
2816 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2817 * @dev: the PCI device to disable
2818 *
2819 * Disables PCI Memory-Write-Invalidate transaction on the device
2820 */
2821void
2822pci_clear_mwi(struct pci_dev *dev)
2823{
2824 u16 cmd;
2825
2826 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2827 if (cmd & PCI_COMMAND_INVALIDATE) {
2828 cmd &= ~PCI_COMMAND_INVALIDATE;
2829 pci_write_config_word(dev, PCI_COMMAND, cmd);
2830 }
2831}
2832#endif /* ! PCI_DISABLE_MWI */
2833
2834/**
2835 * pci_intx - enables/disables PCI INTx for device dev
2836 * @pdev: the PCI device to operate on
2837 * @enable: boolean: whether to enable or disable PCI INTx
2838 *
2839 * Enables/disables PCI INTx for device dev
2840 */
2841void
2842pci_intx(struct pci_dev *pdev, int enable)
2843{
2844 u16 pci_command, new;
2845
2846 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2847
2848 if (enable) {
2849 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2850 } else {
2851 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2852 }
2853
2854 if (new != pci_command) {
2855 struct pci_devres *dr;
2856
2857 pci_write_config_word(pdev, PCI_COMMAND, new);
2858
2859 dr = find_pci_dr(pdev);
2860 if (dr && !dr->restore_intx) {
2861 dr->restore_intx = 1;
2862 dr->orig_intx = !enable;
2863 }
2864 }
2865}
2866
2867/**
2868 * pci_intx_mask_supported - probe for INTx masking support
2869 * @dev: the PCI device to operate on
2870 *
2871 * Check if the device dev support INTx masking via the config space
2872 * command word.
2873 */
2874bool pci_intx_mask_supported(struct pci_dev *dev)
2875{
2876 bool mask_supported = false;
2877 u16 orig, new;
2878
2879 pci_cfg_access_lock(dev);
2880
2881 pci_read_config_word(dev, PCI_COMMAND, &orig);
2882 pci_write_config_word(dev, PCI_COMMAND,
2883 orig ^ PCI_COMMAND_INTX_DISABLE);
2884 pci_read_config_word(dev, PCI_COMMAND, &new);
2885
2886 /*
2887 * There's no way to protect against hardware bugs or detect them
2888 * reliably, but as long as we know what the value should be, let's
2889 * go ahead and check it.
2890 */
2891 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2892 dev_err(&dev->dev, "Command register changed from "
2893 "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2894 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2895 mask_supported = true;
2896 pci_write_config_word(dev, PCI_COMMAND, orig);
2897 }
2898
2899 pci_cfg_access_unlock(dev);
2900 return mask_supported;
2901}
2902EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2903
2904static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2905{
2906 struct pci_bus *bus = dev->bus;
2907 bool mask_updated = true;
2908 u32 cmd_status_dword;
2909 u16 origcmd, newcmd;
2910 unsigned long flags;
2911 bool irq_pending;
2912
2913 /*
2914 * We do a single dword read to retrieve both command and status.
2915 * Document assumptions that make this possible.
2916 */
2917 BUILD_BUG_ON(PCI_COMMAND % 4);
2918 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2919
2920 raw_spin_lock_irqsave(&pci_lock, flags);
2921
2922 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2923
2924 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2925
2926 /*
2927 * Check interrupt status register to see whether our device
2928 * triggered the interrupt (when masking) or the next IRQ is
2929 * already pending (when unmasking).
2930 */
2931 if (mask != irq_pending) {
2932 mask_updated = false;
2933 goto done;
2934 }
2935
2936 origcmd = cmd_status_dword;
2937 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
2938 if (mask)
2939 newcmd |= PCI_COMMAND_INTX_DISABLE;
2940 if (newcmd != origcmd)
2941 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
2942
2943done:
2944 raw_spin_unlock_irqrestore(&pci_lock, flags);
2945
2946 return mask_updated;
2947}
2948
2949/**
2950 * pci_check_and_mask_intx - mask INTx on pending interrupt
2951 * @dev: the PCI device to operate on
2952 *
2953 * Check if the device dev has its INTx line asserted, mask it and
2954 * return true in that case. False is returned if not interrupt was
2955 * pending.
2956 */
2957bool pci_check_and_mask_intx(struct pci_dev *dev)
2958{
2959 return pci_check_and_set_intx_mask(dev, true);
2960}
2961EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
2962
2963/**
2964 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
2965 * @dev: the PCI device to operate on
2966 *
2967 * Check if the device dev has its INTx line asserted, unmask it if not
2968 * and return true. False is returned and the mask remains active if
2969 * there was still an interrupt pending.
2970 */
2971bool pci_check_and_unmask_intx(struct pci_dev *dev)
2972{
2973 return pci_check_and_set_intx_mask(dev, false);
2974}
2975EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
2976
2977/**
2978 * pci_msi_off - disables any msi or msix capabilities
2979 * @dev: the PCI device to operate on
2980 *
2981 * If you want to use msi see pci_enable_msi and friends.
2982 * This is a lower level primitive that allows us to disable
2983 * msi operation at the device level.
2984 */
2985void pci_msi_off(struct pci_dev *dev)
2986{
2987 int pos;
2988 u16 control;
2989
2990 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2991 if (pos) {
2992 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2993 control &= ~PCI_MSI_FLAGS_ENABLE;
2994 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2995 }
2996 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2997 if (pos) {
2998 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2999 control &= ~PCI_MSIX_FLAGS_ENABLE;
3000 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3001 }
3002}
3003EXPORT_SYMBOL_GPL(pci_msi_off);
3004
3005int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3006{
3007 return dma_set_max_seg_size(&dev->dev, size);
3008}
3009EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3010
3011int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3012{
3013 return dma_set_seg_boundary(&dev->dev, mask);
3014}
3015EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3016
3017static int pcie_flr(struct pci_dev *dev, int probe)
3018{
3019 int i;
3020 int pos;
3021 u32 cap;
3022 u16 status, control;
3023
3024 pos = pci_pcie_cap(dev);
3025 if (!pos)
3026 return -ENOTTY;
3027
3028 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
3029 if (!(cap & PCI_EXP_DEVCAP_FLR))
3030 return -ENOTTY;
3031
3032 if (probe)
3033 return 0;
3034
3035 /* Wait for Transaction Pending bit clean */
3036 for (i = 0; i < 4; i++) {
3037 if (i)
3038 msleep((1 << (i - 1)) * 100);
3039
3040 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
3041 if (!(status & PCI_EXP_DEVSTA_TRPND))
3042 goto clear;
3043 }
3044
3045 dev_err(&dev->dev, "transaction is not cleared; "
3046 "proceeding with reset anyway\n");
3047
3048clear:
3049 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
3050 control |= PCI_EXP_DEVCTL_BCR_FLR;
3051 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
3052
3053 msleep(100);
3054
3055 return 0;
3056}
3057
3058static int pci_af_flr(struct pci_dev *dev, int probe)
3059{
3060 int i;
3061 int pos;
3062 u8 cap;
3063 u8 status;
3064
3065 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3066 if (!pos)
3067 return -ENOTTY;
3068
3069 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3070 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3071 return -ENOTTY;
3072
3073 if (probe)
3074 return 0;
3075
3076 /* Wait for Transaction Pending bit clean */
3077 for (i = 0; i < 4; i++) {
3078 if (i)
3079 msleep((1 << (i - 1)) * 100);
3080
3081 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3082 if (!(status & PCI_AF_STATUS_TP))
3083 goto clear;
3084 }
3085
3086 dev_err(&dev->dev, "transaction is not cleared; "
3087 "proceeding with reset anyway\n");
3088
3089clear:
3090 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3091 msleep(100);
3092
3093 return 0;
3094}
3095
3096/**
3097 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3098 * @dev: Device to reset.
3099 * @probe: If set, only check if the device can be reset this way.
3100 *
3101 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3102 * unset, it will be reinitialized internally when going from PCI_D3hot to
3103 * PCI_D0. If that's the case and the device is not in a low-power state
3104 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3105 *
3106 * NOTE: This causes the caller to sleep for twice the device power transition
3107 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3108 * by devault (i.e. unless the @dev's d3_delay field has a different value).
3109 * Moreover, only devices in D0 can be reset by this function.
3110 */
3111static int pci_pm_reset(struct pci_dev *dev, int probe)
3112{
3113 u16 csr;
3114
3115 if (!dev->pm_cap)
3116 return -ENOTTY;
3117
3118 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3119 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3120 return -ENOTTY;
3121
3122 if (probe)
3123 return 0;
3124
3125 if (dev->current_state != PCI_D0)
3126 return -EINVAL;
3127
3128 csr &= ~PCI_PM_CTRL_STATE_MASK;
3129 csr |= PCI_D3hot;
3130 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3131 pci_dev_d3_sleep(dev);
3132
3133 csr &= ~PCI_PM_CTRL_STATE_MASK;
3134 csr |= PCI_D0;
3135 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3136 pci_dev_d3_sleep(dev);
3137
3138 return 0;
3139}
3140
3141static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3142{
3143 u16 ctrl;
3144 struct pci_dev *pdev;
3145
3146 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3147 return -ENOTTY;
3148
3149 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3150 if (pdev != dev)
3151 return -ENOTTY;
3152
3153 if (probe)
3154 return 0;
3155
3156 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
3157 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3158 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3159 msleep(100);
3160
3161 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3162 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3163 msleep(100);
3164
3165 return 0;
3166}
3167
3168static int __pci_dev_reset(struct pci_dev *dev, int probe)
3169{
3170 int rc;
3171
3172 might_sleep();
3173
3174 rc = pci_dev_specific_reset(dev, probe);
3175 if (rc != -ENOTTY)
3176 goto done;
3177
3178 rc = pcie_flr(dev, probe);
3179 if (rc != -ENOTTY)
3180 goto done;
3181
3182 rc = pci_af_flr(dev, probe);
3183 if (rc != -ENOTTY)
3184 goto done;
3185
3186 rc = pci_pm_reset(dev, probe);
3187 if (rc != -ENOTTY)
3188 goto done;
3189
3190 rc = pci_parent_bus_reset(dev, probe);
3191done:
3192 return rc;
3193}
3194
3195static int pci_dev_reset(struct pci_dev *dev, int probe)
3196{
3197 int rc;
3198
3199 if (!probe) {
3200 pci_cfg_access_lock(dev);
3201 /* block PM suspend, driver probe, etc. */
3202 device_lock(&dev->dev);
3203 }
3204
3205 rc = __pci_dev_reset(dev, probe);
3206
3207 if (!probe) {
3208 device_unlock(&dev->dev);
3209 pci_cfg_access_unlock(dev);
3210 }
3211 return rc;
3212}
3213/**
3214 * __pci_reset_function - reset a PCI device function
3215 * @dev: PCI device to reset
3216 *
3217 * Some devices allow an individual function to be reset without affecting
3218 * other functions in the same device. The PCI device must be responsive
3219 * to PCI config space in order to use this function.
3220 *
3221 * The device function is presumed to be unused when this function is called.
3222 * Resetting the device will make the contents of PCI configuration space
3223 * random, so any caller of this must be prepared to reinitialise the
3224 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3225 * etc.
3226 *
3227 * Returns 0 if the device function was successfully reset or negative if the
3228 * device doesn't support resetting a single function.
3229 */
3230int __pci_reset_function(struct pci_dev *dev)
3231{
3232 return pci_dev_reset(dev, 0);
3233}
3234EXPORT_SYMBOL_GPL(__pci_reset_function);
3235
3236/**
3237 * __pci_reset_function_locked - reset a PCI device function while holding
3238 * the @dev mutex lock.
3239 * @dev: PCI device to reset
3240 *
3241 * Some devices allow an individual function to be reset without affecting
3242 * other functions in the same device. The PCI device must be responsive
3243 * to PCI config space in order to use this function.
3244 *
3245 * The device function is presumed to be unused and the caller is holding
3246 * the device mutex lock when this function is called.
3247 * Resetting the device will make the contents of PCI configuration space
3248 * random, so any caller of this must be prepared to reinitialise the
3249 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3250 * etc.
3251 *
3252 * Returns 0 if the device function was successfully reset or negative if the
3253 * device doesn't support resetting a single function.
3254 */
3255int __pci_reset_function_locked(struct pci_dev *dev)
3256{
3257 return __pci_dev_reset(dev, 0);
3258}
3259EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3260
3261/**
3262 * pci_probe_reset_function - check whether the device can be safely reset
3263 * @dev: PCI device to reset
3264 *
3265 * Some devices allow an individual function to be reset without affecting
3266 * other functions in the same device. The PCI device must be responsive
3267 * to PCI config space in order to use this function.
3268 *
3269 * Returns 0 if the device function can be reset or negative if the
3270 * device doesn't support resetting a single function.
3271 */
3272int pci_probe_reset_function(struct pci_dev *dev)
3273{
3274 return pci_dev_reset(dev, 1);
3275}
3276
3277/**
3278 * pci_reset_function - quiesce and reset a PCI device function
3279 * @dev: PCI device to reset
3280 *
3281 * Some devices allow an individual function to be reset without affecting
3282 * other functions in the same device. The PCI device must be responsive
3283 * to PCI config space in order to use this function.
3284 *
3285 * This function does not just reset the PCI portion of a device, but
3286 * clears all the state associated with the device. This function differs
3287 * from __pci_reset_function in that it saves and restores device state
3288 * over the reset.
3289 *
3290 * Returns 0 if the device function was successfully reset or negative if the
3291 * device doesn't support resetting a single function.
3292 */
3293int pci_reset_function(struct pci_dev *dev)
3294{
3295 int rc;
3296
3297 rc = pci_dev_reset(dev, 1);
3298 if (rc)
3299 return rc;
3300
3301 pci_save_state(dev);
3302
3303 /*
3304 * both INTx and MSI are disabled after the Interrupt Disable bit
3305 * is set and the Bus Master bit is cleared.
3306 */
3307 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3308
3309 rc = pci_dev_reset(dev, 0);
3310
3311 pci_restore_state(dev);
3312
3313 return rc;
3314}
3315EXPORT_SYMBOL_GPL(pci_reset_function);
3316
3317/**
3318 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3319 * @dev: PCI device to query
3320 *
3321 * Returns mmrbc: maximum designed memory read count in bytes
3322 * or appropriate error value.
3323 */
3324int pcix_get_max_mmrbc(struct pci_dev *dev)
3325{
3326 int cap;
3327 u32 stat;
3328
3329 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3330 if (!cap)
3331 return -EINVAL;
3332
3333 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3334 return -EINVAL;
3335
3336 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3337}
3338EXPORT_SYMBOL(pcix_get_max_mmrbc);
3339
3340/**
3341 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3342 * @dev: PCI device to query
3343 *
3344 * Returns mmrbc: maximum memory read count in bytes
3345 * or appropriate error value.
3346 */
3347int pcix_get_mmrbc(struct pci_dev *dev)
3348{
3349 int cap;
3350 u16 cmd;
3351
3352 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3353 if (!cap)
3354 return -EINVAL;
3355
3356 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3357 return -EINVAL;
3358
3359 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3360}
3361EXPORT_SYMBOL(pcix_get_mmrbc);
3362
3363/**
3364 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3365 * @dev: PCI device to query
3366 * @mmrbc: maximum memory read count in bytes
3367 * valid values are 512, 1024, 2048, 4096
3368 *
3369 * If possible sets maximum memory read byte count, some bridges have erratas
3370 * that prevent this.
3371 */
3372int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3373{
3374 int cap;
3375 u32 stat, v, o;
3376 u16 cmd;
3377
3378 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3379 return -EINVAL;
3380
3381 v = ffs(mmrbc) - 10;
3382
3383 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3384 if (!cap)
3385 return -EINVAL;
3386
3387 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3388 return -EINVAL;
3389
3390 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3391 return -E2BIG;
3392
3393 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3394 return -EINVAL;
3395
3396 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3397 if (o != v) {
3398 if (v > o && dev->bus &&
3399 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3400 return -EIO;
3401
3402 cmd &= ~PCI_X_CMD_MAX_READ;
3403 cmd |= v << 2;
3404 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3405 return -EIO;
3406 }
3407 return 0;
3408}
3409EXPORT_SYMBOL(pcix_set_mmrbc);
3410
3411/**
3412 * pcie_get_readrq - get PCI Express read request size
3413 * @dev: PCI device to query
3414 *
3415 * Returns maximum memory read request in bytes
3416 * or appropriate error value.
3417 */
3418int pcie_get_readrq(struct pci_dev *dev)
3419{
3420 int ret, cap;
3421 u16 ctl;
3422
3423 cap = pci_pcie_cap(dev);
3424 if (!cap)
3425 return -EINVAL;
3426
3427 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3428 if (!ret)
3429 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3430
3431 return ret;
3432}
3433EXPORT_SYMBOL(pcie_get_readrq);
3434
3435/**
3436 * pcie_set_readrq - set PCI Express maximum memory read request
3437 * @dev: PCI device to query
3438 * @rq: maximum memory read count in bytes
3439 * valid values are 128, 256, 512, 1024, 2048, 4096
3440 *
3441 * If possible sets maximum memory read request in bytes
3442 */
3443int pcie_set_readrq(struct pci_dev *dev, int rq)
3444{
3445 int cap, err = -EINVAL;
3446 u16 ctl, v;
3447
3448 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3449 goto out;
3450
3451 cap = pci_pcie_cap(dev);
3452 if (!cap)
3453 goto out;
3454
3455 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3456 if (err)
3457 goto out;
3458 /*
3459 * If using the "performance" PCIe config, we clamp the
3460 * read rq size to the max packet size to prevent the
3461 * host bridge generating requests larger than we can
3462 * cope with
3463 */
3464 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3465 int mps = pcie_get_mps(dev);
3466
3467 if (mps < 0)
3468 return mps;
3469 if (mps < rq)
3470 rq = mps;
3471 }
3472
3473 v = (ffs(rq) - 8) << 12;
3474
3475 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
3476 ctl &= ~PCI_EXP_DEVCTL_READRQ;
3477 ctl |= v;
3478 err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3479 }
3480
3481out:
3482 return err;
3483}
3484EXPORT_SYMBOL(pcie_set_readrq);
3485
3486/**
3487 * pcie_get_mps - get PCI Express maximum payload size
3488 * @dev: PCI device to query
3489 *
3490 * Returns maximum payload size in bytes
3491 * or appropriate error value.
3492 */
3493int pcie_get_mps(struct pci_dev *dev)
3494{
3495 int ret, cap;
3496 u16 ctl;
3497
3498 cap = pci_pcie_cap(dev);
3499 if (!cap)
3500 return -EINVAL;
3501
3502 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3503 if (!ret)
3504 ret = 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3505
3506 return ret;
3507}
3508
3509/**
3510 * pcie_set_mps - set PCI Express maximum payload size
3511 * @dev: PCI device to query
3512 * @mps: maximum payload size in bytes
3513 * valid values are 128, 256, 512, 1024, 2048, 4096
3514 *
3515 * If possible sets maximum payload size
3516 */
3517int pcie_set_mps(struct pci_dev *dev, int mps)
3518{
3519 int cap, err = -EINVAL;
3520 u16 ctl, v;
3521
3522 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3523 goto out;
3524
3525 v = ffs(mps) - 8;
3526 if (v > dev->pcie_mpss)
3527 goto out;
3528 v <<= 5;
3529
3530 cap = pci_pcie_cap(dev);
3531 if (!cap)
3532 goto out;
3533
3534 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3535 if (err)
3536 goto out;
3537
3538 if ((ctl & PCI_EXP_DEVCTL_PAYLOAD) != v) {
3539 ctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
3540 ctl |= v;
3541 err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3542 }
3543out:
3544 return err;
3545}
3546
3547/**
3548 * pci_select_bars - Make BAR mask from the type of resource
3549 * @dev: the PCI device for which BAR mask is made
3550 * @flags: resource type mask to be selected
3551 *
3552 * This helper routine makes bar mask from the type of resource.
3553 */
3554int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3555{
3556 int i, bars = 0;
3557 for (i = 0; i < PCI_NUM_RESOURCES; i++)
3558 if (pci_resource_flags(dev, i) & flags)
3559 bars |= (1 << i);
3560 return bars;
3561}
3562
3563/**
3564 * pci_resource_bar - get position of the BAR associated with a resource
3565 * @dev: the PCI device
3566 * @resno: the resource number
3567 * @type: the BAR type to be filled in
3568 *
3569 * Returns BAR position in config space, or 0 if the BAR is invalid.
3570 */
3571int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3572{
3573 int reg;
3574
3575 if (resno < PCI_ROM_RESOURCE) {
3576 *type = pci_bar_unknown;
3577 return PCI_BASE_ADDRESS_0 + 4 * resno;
3578 } else if (resno == PCI_ROM_RESOURCE) {
3579 *type = pci_bar_mem32;
3580 return dev->rom_base_reg;
3581 } else if (resno < PCI_BRIDGE_RESOURCES) {
3582 /* device specific resource */
3583 reg = pci_iov_resource_bar(dev, resno, type);
3584 if (reg)
3585 return reg;
3586 }
3587
3588 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3589 return 0;
3590}
3591
3592/* Some architectures require additional programming to enable VGA */
3593static arch_set_vga_state_t arch_set_vga_state;
3594
3595void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3596{
3597 arch_set_vga_state = func; /* NULL disables */
3598}
3599
3600static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3601 unsigned int command_bits, u32 flags)
3602{
3603 if (arch_set_vga_state)
3604 return arch_set_vga_state(dev, decode, command_bits,
3605 flags);
3606 return 0;
3607}
3608
3609/**
3610 * pci_set_vga_state - set VGA decode state on device and parents if requested
3611 * @dev: the PCI device
3612 * @decode: true = enable decoding, false = disable decoding
3613 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3614 * @flags: traverse ancestors and change bridges
3615 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3616 */
3617int pci_set_vga_state(struct pci_dev *dev, bool decode,
3618 unsigned int command_bits, u32 flags)
3619{
3620 struct pci_bus *bus;
3621 struct pci_dev *bridge;
3622 u16 cmd;
3623 int rc;
3624
3625 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3626
3627 /* ARCH specific VGA enables */
3628 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3629 if (rc)
3630 return rc;
3631
3632 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3633 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3634 if (decode == true)
3635 cmd |= command_bits;
3636 else
3637 cmd &= ~command_bits;
3638 pci_write_config_word(dev, PCI_COMMAND, cmd);
3639 }
3640
3641 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3642 return 0;
3643
3644 bus = dev->bus;
3645 while (bus) {
3646 bridge = bus->self;
3647 if (bridge) {
3648 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3649 &cmd);
3650 if (decode == true)
3651 cmd |= PCI_BRIDGE_CTL_VGA;
3652 else
3653 cmd &= ~PCI_BRIDGE_CTL_VGA;
3654 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3655 cmd);
3656 }
3657 bus = bus->parent;
3658 }
3659 return 0;
3660}
3661
3662#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3663static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3664static DEFINE_SPINLOCK(resource_alignment_lock);
3665
3666/**
3667 * pci_specified_resource_alignment - get resource alignment specified by user.
3668 * @dev: the PCI device to get
3669 *
3670 * RETURNS: Resource alignment if it is specified.
3671 * Zero if it is not specified.
3672 */
3673resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3674{
3675 int seg, bus, slot, func, align_order, count;
3676 resource_size_t align = 0;
3677 char *p;
3678
3679 spin_lock(&resource_alignment_lock);
3680 p = resource_alignment_param;
3681 while (*p) {
3682 count = 0;
3683 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3684 p[count] == '@') {
3685 p += count + 1;
3686 } else {
3687 align_order = -1;
3688 }
3689 if (sscanf(p, "%x:%x:%x.%x%n",
3690 &seg, &bus, &slot, &func, &count) != 4) {
3691 seg = 0;
3692 if (sscanf(p, "%x:%x.%x%n",
3693 &bus, &slot, &func, &count) != 3) {
3694 /* Invalid format */
3695 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3696 p);
3697 break;
3698 }
3699 }
3700 p += count;
3701 if (seg == pci_domain_nr(dev->bus) &&
3702 bus == dev->bus->number &&
3703 slot == PCI_SLOT(dev->devfn) &&
3704 func == PCI_FUNC(dev->devfn)) {
3705 if (align_order == -1) {
3706 align = PAGE_SIZE;
3707 } else {
3708 align = 1 << align_order;
3709 }
3710 /* Found */
3711 break;
3712 }
3713 if (*p != ';' && *p != ',') {
3714 /* End of param or invalid format */
3715 break;
3716 }
3717 p++;
3718 }
3719 spin_unlock(&resource_alignment_lock);
3720 return align;
3721}
3722
3723/**
3724 * pci_is_reassigndev - check if specified PCI is target device to reassign
3725 * @dev: the PCI device to check
3726 *
3727 * RETURNS: non-zero for PCI device is a target device to reassign,
3728 * or zero is not.
3729 */
3730int pci_is_reassigndev(struct pci_dev *dev)
3731{
3732 return (pci_specified_resource_alignment(dev) != 0);
3733}
3734
3735/*
3736 * This function disables memory decoding and releases memory resources
3737 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
3738 * It also rounds up size to specified alignment.
3739 * Later on, the kernel will assign page-aligned memory resource back
3740 * to the device.
3741 */
3742void pci_reassigndev_resource_alignment(struct pci_dev *dev)
3743{
3744 int i;
3745 struct resource *r;
3746 resource_size_t align, size;
3747 u16 command;
3748
3749 if (!pci_is_reassigndev(dev))
3750 return;
3751
3752 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
3753 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
3754 dev_warn(&dev->dev,
3755 "Can't reassign resources to host bridge.\n");
3756 return;
3757 }
3758
3759 dev_info(&dev->dev,
3760 "Disabling memory decoding and releasing memory resources.\n");
3761 pci_read_config_word(dev, PCI_COMMAND, &command);
3762 command &= ~PCI_COMMAND_MEMORY;
3763 pci_write_config_word(dev, PCI_COMMAND, command);
3764
3765 align = pci_specified_resource_alignment(dev);
3766 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
3767 r = &dev->resource[i];
3768 if (!(r->flags & IORESOURCE_MEM))
3769 continue;
3770 size = resource_size(r);
3771 if (size < align) {
3772 size = align;
3773 dev_info(&dev->dev,
3774 "Rounding up size of resource #%d to %#llx.\n",
3775 i, (unsigned long long)size);
3776 }
3777 r->end = size - 1;
3778 r->start = 0;
3779 }
3780 /* Need to disable bridge's resource window,
3781 * to enable the kernel to reassign new resource
3782 * window later on.
3783 */
3784 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
3785 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
3786 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
3787 r = &dev->resource[i];
3788 if (!(r->flags & IORESOURCE_MEM))
3789 continue;
3790 r->end = resource_size(r) - 1;
3791 r->start = 0;
3792 }
3793 pci_disable_bridge_window(dev);
3794 }
3795}
3796
3797ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3798{
3799 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3800 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3801 spin_lock(&resource_alignment_lock);
3802 strncpy(resource_alignment_param, buf, count);
3803 resource_alignment_param[count] = '\0';
3804 spin_unlock(&resource_alignment_lock);
3805 return count;
3806}
3807
3808ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3809{
3810 size_t count;
3811 spin_lock(&resource_alignment_lock);
3812 count = snprintf(buf, size, "%s", resource_alignment_param);
3813 spin_unlock(&resource_alignment_lock);
3814 return count;
3815}
3816
3817static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3818{
3819 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3820}
3821
3822static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3823 const char *buf, size_t count)
3824{
3825 return pci_set_resource_alignment_param(buf, count);
3826}
3827
3828BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3829 pci_resource_alignment_store);
3830
3831static int __init pci_resource_alignment_sysfs_init(void)
3832{
3833 return bus_create_file(&pci_bus_type,
3834 &bus_attr_resource_alignment);
3835}
3836
3837late_initcall(pci_resource_alignment_sysfs_init);
3838
3839static void __devinit pci_no_domains(void)
3840{
3841#ifdef CONFIG_PCI_DOMAINS
3842 pci_domains_supported = 0;
3843#endif
3844}
3845
3846/**
3847 * pci_ext_cfg_enabled - can we access extended PCI config space?
3848 * @dev: The PCI device of the root bridge.
3849 *
3850 * Returns 1 if we can access PCI extended config space (offsets
3851 * greater than 0xff). This is the default implementation. Architecture
3852 * implementations can override this.
3853 */
3854int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
3855{
3856 return 1;
3857}
3858
3859void __weak pci_fixup_cardbus(struct pci_bus *bus)
3860{
3861}
3862EXPORT_SYMBOL(pci_fixup_cardbus);
3863
3864static int __init pci_setup(char *str)
3865{
3866 while (str) {
3867 char *k = strchr(str, ',');
3868 if (k)
3869 *k++ = 0;
3870 if (*str && (str = pcibios_setup(str)) && *str) {
3871 if (!strcmp(str, "nomsi")) {
3872 pci_no_msi();
3873 } else if (!strcmp(str, "noaer")) {
3874 pci_no_aer();
3875 } else if (!strncmp(str, "realloc=", 8)) {
3876 pci_realloc_get_opt(str + 8);
3877 } else if (!strncmp(str, "realloc", 7)) {
3878 pci_realloc_get_opt("on");
3879 } else if (!strcmp(str, "nodomains")) {
3880 pci_no_domains();
3881 } else if (!strncmp(str, "noari", 5)) {
3882 pcie_ari_disabled = true;
3883 } else if (!strncmp(str, "cbiosize=", 9)) {
3884 pci_cardbus_io_size = memparse(str + 9, &str);
3885 } else if (!strncmp(str, "cbmemsize=", 10)) {
3886 pci_cardbus_mem_size = memparse(str + 10, &str);
3887 } else if (!strncmp(str, "resource_alignment=", 19)) {
3888 pci_set_resource_alignment_param(str + 19,
3889 strlen(str + 19));
3890 } else if (!strncmp(str, "ecrc=", 5)) {
3891 pcie_ecrc_get_policy(str + 5);
3892 } else if (!strncmp(str, "hpiosize=", 9)) {
3893 pci_hotplug_io_size = memparse(str + 9, &str);
3894 } else if (!strncmp(str, "hpmemsize=", 10)) {
3895 pci_hotplug_mem_size = memparse(str + 10, &str);
3896 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3897 pcie_bus_config = PCIE_BUS_TUNE_OFF;
3898 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
3899 pcie_bus_config = PCIE_BUS_SAFE;
3900 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
3901 pcie_bus_config = PCIE_BUS_PERFORMANCE;
3902 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3903 pcie_bus_config = PCIE_BUS_PEER2PEER;
3904 } else if (!strncmp(str, "pcie_scan_all", 13)) {
3905 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
3906 } else {
3907 printk(KERN_ERR "PCI: Unknown option `%s'\n",
3908 str);
3909 }
3910 }
3911 str = k;
3912 }
3913 return 0;
3914}
3915early_param("pci", pci_setup);
3916
3917EXPORT_SYMBOL(pci_reenable_device);
3918EXPORT_SYMBOL(pci_enable_device_io);
3919EXPORT_SYMBOL(pci_enable_device_mem);
3920EXPORT_SYMBOL(pci_enable_device);
3921EXPORT_SYMBOL(pcim_enable_device);
3922EXPORT_SYMBOL(pcim_pin_device);
3923EXPORT_SYMBOL(pci_disable_device);
3924EXPORT_SYMBOL(pci_find_capability);
3925EXPORT_SYMBOL(pci_bus_find_capability);
3926EXPORT_SYMBOL(pci_release_regions);
3927EXPORT_SYMBOL(pci_request_regions);
3928EXPORT_SYMBOL(pci_request_regions_exclusive);
3929EXPORT_SYMBOL(pci_release_region);
3930EXPORT_SYMBOL(pci_request_region);
3931EXPORT_SYMBOL(pci_request_region_exclusive);
3932EXPORT_SYMBOL(pci_release_selected_regions);
3933EXPORT_SYMBOL(pci_request_selected_regions);
3934EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3935EXPORT_SYMBOL(pci_set_master);
3936EXPORT_SYMBOL(pci_clear_master);
3937EXPORT_SYMBOL(pci_set_mwi);
3938EXPORT_SYMBOL(pci_try_set_mwi);
3939EXPORT_SYMBOL(pci_clear_mwi);
3940EXPORT_SYMBOL_GPL(pci_intx);
3941EXPORT_SYMBOL(pci_assign_resource);
3942EXPORT_SYMBOL(pci_find_parent_resource);
3943EXPORT_SYMBOL(pci_select_bars);
3944
3945EXPORT_SYMBOL(pci_set_power_state);
3946EXPORT_SYMBOL(pci_save_state);
3947EXPORT_SYMBOL(pci_restore_state);
3948EXPORT_SYMBOL(pci_pme_capable);
3949EXPORT_SYMBOL(pci_pme_active);
3950EXPORT_SYMBOL(pci_wake_from_d3);
3951EXPORT_SYMBOL(pci_target_state);
3952EXPORT_SYMBOL(pci_prepare_to_sleep);
3953EXPORT_SYMBOL(pci_back_from_sleep);
3954EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1/*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10#include <linux/kernel.h>
11#include <linux/delay.h>
12#include <linux/init.h>
13#include <linux/pci.h>
14#include <linux/pm.h>
15#include <linux/slab.h>
16#include <linux/module.h>
17#include <linux/spinlock.h>
18#include <linux/string.h>
19#include <linux/log2.h>
20#include <linux/pci-aspm.h>
21#include <linux/pm_wakeup.h>
22#include <linux/interrupt.h>
23#include <linux/device.h>
24#include <linux/pm_runtime.h>
25#include <linux/pci_hotplug.h>
26#include <asm-generic/pci-bridge.h>
27#include <asm/setup.h>
28#include "pci.h"
29
30const char *pci_power_names[] = {
31 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
32};
33EXPORT_SYMBOL_GPL(pci_power_names);
34
35int isa_dma_bridge_buggy;
36EXPORT_SYMBOL(isa_dma_bridge_buggy);
37
38int pci_pci_problems;
39EXPORT_SYMBOL(pci_pci_problems);
40
41unsigned int pci_pm_d3_delay;
42
43static void pci_pme_list_scan(struct work_struct *work);
44
45static LIST_HEAD(pci_pme_list);
46static DEFINE_MUTEX(pci_pme_list_mutex);
47static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
48
49struct pci_pme_device {
50 struct list_head list;
51 struct pci_dev *dev;
52};
53
54#define PME_TIMEOUT 1000 /* How long between PME checks */
55
56static void pci_dev_d3_sleep(struct pci_dev *dev)
57{
58 unsigned int delay = dev->d3_delay;
59
60 if (delay < pci_pm_d3_delay)
61 delay = pci_pm_d3_delay;
62
63 msleep(delay);
64}
65
66#ifdef CONFIG_PCI_DOMAINS
67int pci_domains_supported = 1;
68#endif
69
70#define DEFAULT_CARDBUS_IO_SIZE (256)
71#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
72/* pci=cbmemsize=nnM,cbiosize=nn can override this */
73unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
74unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
75
76#define DEFAULT_HOTPLUG_IO_SIZE (256)
77#define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
78/* pci=hpmemsize=nnM,hpiosize=nn can override this */
79unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
80unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
81
82enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
83
84/*
85 * The default CLS is used if arch didn't set CLS explicitly and not
86 * all pci devices agree on the same value. Arch can override either
87 * the dfl or actual value as it sees fit. Don't forget this is
88 * measured in 32-bit words, not bytes.
89 */
90u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
91u8 pci_cache_line_size;
92
93/*
94 * If we set up a device for bus mastering, we need to check the latency
95 * timer as certain BIOSes forget to set it properly.
96 */
97unsigned int pcibios_max_latency = 255;
98
99/* If set, the PCIe ARI capability will not be used. */
100static bool pcie_ari_disabled;
101
102/**
103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
104 * @bus: pointer to PCI bus structure to search
105 *
106 * Given a PCI bus, returns the highest PCI bus number present in the set
107 * including the given PCI bus and its list of child PCI buses.
108 */
109unsigned char pci_bus_max_busnr(struct pci_bus* bus)
110{
111 struct pci_bus *tmp;
112 unsigned char max, n;
113
114 max = bus->busn_res.end;
115 list_for_each_entry(tmp, &bus->children, node) {
116 n = pci_bus_max_busnr(tmp);
117 if(n > max)
118 max = n;
119 }
120 return max;
121}
122EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
123
124#ifdef CONFIG_HAS_IOMEM
125void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
126{
127 /*
128 * Make sure the BAR is actually a memory resource, not an IO resource
129 */
130 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
131 WARN_ON(1);
132 return NULL;
133 }
134 return ioremap_nocache(pci_resource_start(pdev, bar),
135 pci_resource_len(pdev, bar));
136}
137EXPORT_SYMBOL_GPL(pci_ioremap_bar);
138#endif
139
140#define PCI_FIND_CAP_TTL 48
141
142static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
143 u8 pos, int cap, int *ttl)
144{
145 u8 id;
146
147 while ((*ttl)--) {
148 pci_bus_read_config_byte(bus, devfn, pos, &pos);
149 if (pos < 0x40)
150 break;
151 pos &= ~3;
152 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
153 &id);
154 if (id == 0xff)
155 break;
156 if (id == cap)
157 return pos;
158 pos += PCI_CAP_LIST_NEXT;
159 }
160 return 0;
161}
162
163static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
164 u8 pos, int cap)
165{
166 int ttl = PCI_FIND_CAP_TTL;
167
168 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
169}
170
171int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
172{
173 return __pci_find_next_cap(dev->bus, dev->devfn,
174 pos + PCI_CAP_LIST_NEXT, cap);
175}
176EXPORT_SYMBOL_GPL(pci_find_next_capability);
177
178static int __pci_bus_find_cap_start(struct pci_bus *bus,
179 unsigned int devfn, u8 hdr_type)
180{
181 u16 status;
182
183 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
184 if (!(status & PCI_STATUS_CAP_LIST))
185 return 0;
186
187 switch (hdr_type) {
188 case PCI_HEADER_TYPE_NORMAL:
189 case PCI_HEADER_TYPE_BRIDGE:
190 return PCI_CAPABILITY_LIST;
191 case PCI_HEADER_TYPE_CARDBUS:
192 return PCI_CB_CAPABILITY_LIST;
193 default:
194 return 0;
195 }
196
197 return 0;
198}
199
200/**
201 * pci_find_capability - query for devices' capabilities
202 * @dev: PCI device to query
203 * @cap: capability code
204 *
205 * Tell if a device supports a given PCI capability.
206 * Returns the address of the requested capability structure within the
207 * device's PCI configuration space or 0 in case the device does not
208 * support it. Possible values for @cap:
209 *
210 * %PCI_CAP_ID_PM Power Management
211 * %PCI_CAP_ID_AGP Accelerated Graphics Port
212 * %PCI_CAP_ID_VPD Vital Product Data
213 * %PCI_CAP_ID_SLOTID Slot Identification
214 * %PCI_CAP_ID_MSI Message Signalled Interrupts
215 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
216 * %PCI_CAP_ID_PCIX PCI-X
217 * %PCI_CAP_ID_EXP PCI Express
218 */
219int pci_find_capability(struct pci_dev *dev, int cap)
220{
221 int pos;
222
223 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
224 if (pos)
225 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
226
227 return pos;
228}
229
230/**
231 * pci_bus_find_capability - query for devices' capabilities
232 * @bus: the PCI bus to query
233 * @devfn: PCI device to query
234 * @cap: capability code
235 *
236 * Like pci_find_capability() but works for pci devices that do not have a
237 * pci_dev structure set up yet.
238 *
239 * Returns the address of the requested capability structure within the
240 * device's PCI configuration space or 0 in case the device does not
241 * support it.
242 */
243int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
244{
245 int pos;
246 u8 hdr_type;
247
248 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
249
250 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
251 if (pos)
252 pos = __pci_find_next_cap(bus, devfn, pos, cap);
253
254 return pos;
255}
256
257/**
258 * pci_find_next_ext_capability - Find an extended capability
259 * @dev: PCI device to query
260 * @start: address at which to start looking (0 to start at beginning of list)
261 * @cap: capability code
262 *
263 * Returns the address of the next matching extended capability structure
264 * within the device's PCI configuration space or 0 if the device does
265 * not support it. Some capabilities can occur several times, e.g., the
266 * vendor-specific capability, and this provides a way to find them all.
267 */
268int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
269{
270 u32 header;
271 int ttl;
272 int pos = PCI_CFG_SPACE_SIZE;
273
274 /* minimum 8 bytes per capability */
275 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
276
277 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
278 return 0;
279
280 if (start)
281 pos = start;
282
283 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
284 return 0;
285
286 /*
287 * If we have no capabilities, this is indicated by cap ID,
288 * cap version and next pointer all being 0.
289 */
290 if (header == 0)
291 return 0;
292
293 while (ttl-- > 0) {
294 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
295 return pos;
296
297 pos = PCI_EXT_CAP_NEXT(header);
298 if (pos < PCI_CFG_SPACE_SIZE)
299 break;
300
301 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
302 break;
303 }
304
305 return 0;
306}
307EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
308
309/**
310 * pci_find_ext_capability - Find an extended capability
311 * @dev: PCI device to query
312 * @cap: capability code
313 *
314 * Returns the address of the requested extended capability structure
315 * within the device's PCI configuration space or 0 if the device does
316 * not support it. Possible values for @cap:
317 *
318 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
319 * %PCI_EXT_CAP_ID_VC Virtual Channel
320 * %PCI_EXT_CAP_ID_DSN Device Serial Number
321 * %PCI_EXT_CAP_ID_PWR Power Budgeting
322 */
323int pci_find_ext_capability(struct pci_dev *dev, int cap)
324{
325 return pci_find_next_ext_capability(dev, 0, cap);
326}
327EXPORT_SYMBOL_GPL(pci_find_ext_capability);
328
329static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
330{
331 int rc, ttl = PCI_FIND_CAP_TTL;
332 u8 cap, mask;
333
334 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
335 mask = HT_3BIT_CAP_MASK;
336 else
337 mask = HT_5BIT_CAP_MASK;
338
339 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
340 PCI_CAP_ID_HT, &ttl);
341 while (pos) {
342 rc = pci_read_config_byte(dev, pos + 3, &cap);
343 if (rc != PCIBIOS_SUCCESSFUL)
344 return 0;
345
346 if ((cap & mask) == ht_cap)
347 return pos;
348
349 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
350 pos + PCI_CAP_LIST_NEXT,
351 PCI_CAP_ID_HT, &ttl);
352 }
353
354 return 0;
355}
356/**
357 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
358 * @dev: PCI device to query
359 * @pos: Position from which to continue searching
360 * @ht_cap: Hypertransport capability code
361 *
362 * To be used in conjunction with pci_find_ht_capability() to search for
363 * all capabilities matching @ht_cap. @pos should always be a value returned
364 * from pci_find_ht_capability().
365 *
366 * NB. To be 100% safe against broken PCI devices, the caller should take
367 * steps to avoid an infinite loop.
368 */
369int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
370{
371 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
372}
373EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
374
375/**
376 * pci_find_ht_capability - query a device's Hypertransport capabilities
377 * @dev: PCI device to query
378 * @ht_cap: Hypertransport capability code
379 *
380 * Tell if a device supports a given Hypertransport capability.
381 * Returns an address within the device's PCI configuration space
382 * or 0 in case the device does not support the request capability.
383 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
384 * which has a Hypertransport capability matching @ht_cap.
385 */
386int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
387{
388 int pos;
389
390 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
391 if (pos)
392 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
393
394 return pos;
395}
396EXPORT_SYMBOL_GPL(pci_find_ht_capability);
397
398/**
399 * pci_find_parent_resource - return resource region of parent bus of given region
400 * @dev: PCI device structure contains resources to be searched
401 * @res: child resource record for which parent is sought
402 *
403 * For given resource region of given device, return the resource
404 * region of parent bus the given region is contained in.
405 */
406struct resource *
407pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
408{
409 const struct pci_bus *bus = dev->bus;
410 struct resource *r;
411 int i;
412
413 pci_bus_for_each_resource(bus, r, i) {
414 if (!r)
415 continue;
416 if (res->start && resource_contains(r, res)) {
417
418 /*
419 * If the window is prefetchable but the BAR is
420 * not, the allocator made a mistake.
421 */
422 if (r->flags & IORESOURCE_PREFETCH &&
423 !(res->flags & IORESOURCE_PREFETCH))
424 return NULL;
425
426 /*
427 * If we're below a transparent bridge, there may
428 * be both a positively-decoded aperture and a
429 * subtractively-decoded region that contain the BAR.
430 * We want the positively-decoded one, so this depends
431 * on pci_bus_for_each_resource() giving us those
432 * first.
433 */
434 return r;
435 }
436 }
437 return NULL;
438}
439
440/**
441 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
442 * @dev: the PCI device to operate on
443 * @pos: config space offset of status word
444 * @mask: mask of bit(s) to care about in status word
445 *
446 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
447 */
448int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
449{
450 int i;
451
452 /* Wait for Transaction Pending bit clean */
453 for (i = 0; i < 4; i++) {
454 u16 status;
455 if (i)
456 msleep((1 << (i - 1)) * 100);
457
458 pci_read_config_word(dev, pos, &status);
459 if (!(status & mask))
460 return 1;
461 }
462
463 return 0;
464}
465
466/**
467 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
468 * @dev: PCI device to have its BARs restored
469 *
470 * Restore the BAR values for a given device, so as to make it
471 * accessible by its driver.
472 */
473static void
474pci_restore_bars(struct pci_dev *dev)
475{
476 int i;
477
478 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
479 pci_update_resource(dev, i);
480}
481
482static struct pci_platform_pm_ops *pci_platform_pm;
483
484int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
485{
486 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
487 || !ops->sleep_wake)
488 return -EINVAL;
489 pci_platform_pm = ops;
490 return 0;
491}
492
493static inline bool platform_pci_power_manageable(struct pci_dev *dev)
494{
495 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
496}
497
498static inline int platform_pci_set_power_state(struct pci_dev *dev,
499 pci_power_t t)
500{
501 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
502}
503
504static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
505{
506 return pci_platform_pm ?
507 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
508}
509
510static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
511{
512 return pci_platform_pm ?
513 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
514}
515
516static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
517{
518 return pci_platform_pm ?
519 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
520}
521
522/**
523 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
524 * given PCI device
525 * @dev: PCI device to handle.
526 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
527 *
528 * RETURN VALUE:
529 * -EINVAL if the requested state is invalid.
530 * -EIO if device does not support PCI PM or its PM capabilities register has a
531 * wrong version, or device doesn't support the requested state.
532 * 0 if device already is in the requested state.
533 * 0 if device's power state has been successfully changed.
534 */
535static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
536{
537 u16 pmcsr;
538 bool need_restore = false;
539
540 /* Check if we're already there */
541 if (dev->current_state == state)
542 return 0;
543
544 if (!dev->pm_cap)
545 return -EIO;
546
547 if (state < PCI_D0 || state > PCI_D3hot)
548 return -EINVAL;
549
550 /* Validate current state:
551 * Can enter D0 from any state, but if we can only go deeper
552 * to sleep if we're already in a low power state
553 */
554 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
555 && dev->current_state > state) {
556 dev_err(&dev->dev, "invalid power transition "
557 "(from state %d to %d)\n", dev->current_state, state);
558 return -EINVAL;
559 }
560
561 /* check if this device supports the desired state */
562 if ((state == PCI_D1 && !dev->d1_support)
563 || (state == PCI_D2 && !dev->d2_support))
564 return -EIO;
565
566 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
567
568 /* If we're (effectively) in D3, force entire word to 0.
569 * This doesn't affect PME_Status, disables PME_En, and
570 * sets PowerState to 0.
571 */
572 switch (dev->current_state) {
573 case PCI_D0:
574 case PCI_D1:
575 case PCI_D2:
576 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
577 pmcsr |= state;
578 break;
579 case PCI_D3hot:
580 case PCI_D3cold:
581 case PCI_UNKNOWN: /* Boot-up */
582 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
583 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
584 need_restore = true;
585 /* Fall-through: force to D0 */
586 default:
587 pmcsr = 0;
588 break;
589 }
590
591 /* enter specified state */
592 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
593
594 /* Mandatory power management transition delays */
595 /* see PCI PM 1.1 5.6.1 table 18 */
596 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
597 pci_dev_d3_sleep(dev);
598 else if (state == PCI_D2 || dev->current_state == PCI_D2)
599 udelay(PCI_PM_D2_DELAY);
600
601 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
602 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
603 if (dev->current_state != state && printk_ratelimit())
604 dev_info(&dev->dev, "Refused to change power state, "
605 "currently in D%d\n", dev->current_state);
606
607 /*
608 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
609 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
610 * from D3hot to D0 _may_ perform an internal reset, thereby
611 * going to "D0 Uninitialized" rather than "D0 Initialized".
612 * For example, at least some versions of the 3c905B and the
613 * 3c556B exhibit this behaviour.
614 *
615 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
616 * devices in a D3hot state at boot. Consequently, we need to
617 * restore at least the BARs so that the device will be
618 * accessible to its driver.
619 */
620 if (need_restore)
621 pci_restore_bars(dev);
622
623 if (dev->bus->self)
624 pcie_aspm_pm_state_change(dev->bus->self);
625
626 return 0;
627}
628
629/**
630 * pci_update_current_state - Read PCI power state of given device from its
631 * PCI PM registers and cache it
632 * @dev: PCI device to handle.
633 * @state: State to cache in case the device doesn't have the PM capability
634 */
635void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
636{
637 if (dev->pm_cap) {
638 u16 pmcsr;
639
640 /*
641 * Configuration space is not accessible for device in
642 * D3cold, so just keep or set D3cold for safety
643 */
644 if (dev->current_state == PCI_D3cold)
645 return;
646 if (state == PCI_D3cold) {
647 dev->current_state = PCI_D3cold;
648 return;
649 }
650 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
651 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
652 } else {
653 dev->current_state = state;
654 }
655}
656
657/**
658 * pci_power_up - Put the given device into D0 forcibly
659 * @dev: PCI device to power up
660 */
661void pci_power_up(struct pci_dev *dev)
662{
663 if (platform_pci_power_manageable(dev))
664 platform_pci_set_power_state(dev, PCI_D0);
665
666 pci_raw_set_power_state(dev, PCI_D0);
667 pci_update_current_state(dev, PCI_D0);
668}
669
670/**
671 * pci_platform_power_transition - Use platform to change device power state
672 * @dev: PCI device to handle.
673 * @state: State to put the device into.
674 */
675static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
676{
677 int error;
678
679 if (platform_pci_power_manageable(dev)) {
680 error = platform_pci_set_power_state(dev, state);
681 if (!error)
682 pci_update_current_state(dev, state);
683 } else
684 error = -ENODEV;
685
686 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
687 dev->current_state = PCI_D0;
688
689 return error;
690}
691
692/**
693 * pci_wakeup - Wake up a PCI device
694 * @pci_dev: Device to handle.
695 * @ign: ignored parameter
696 */
697static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
698{
699 pci_wakeup_event(pci_dev);
700 pm_request_resume(&pci_dev->dev);
701 return 0;
702}
703
704/**
705 * pci_wakeup_bus - Walk given bus and wake up devices on it
706 * @bus: Top bus of the subtree to walk.
707 */
708static void pci_wakeup_bus(struct pci_bus *bus)
709{
710 if (bus)
711 pci_walk_bus(bus, pci_wakeup, NULL);
712}
713
714/**
715 * __pci_start_power_transition - Start power transition of a PCI device
716 * @dev: PCI device to handle.
717 * @state: State to put the device into.
718 */
719static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
720{
721 if (state == PCI_D0) {
722 pci_platform_power_transition(dev, PCI_D0);
723 /*
724 * Mandatory power management transition delays, see
725 * PCI Express Base Specification Revision 2.0 Section
726 * 6.6.1: Conventional Reset. Do not delay for
727 * devices powered on/off by corresponding bridge,
728 * because have already delayed for the bridge.
729 */
730 if (dev->runtime_d3cold) {
731 msleep(dev->d3cold_delay);
732 /*
733 * When powering on a bridge from D3cold, the
734 * whole hierarchy may be powered on into
735 * D0uninitialized state, resume them to give
736 * them a chance to suspend again
737 */
738 pci_wakeup_bus(dev->subordinate);
739 }
740 }
741}
742
743/**
744 * __pci_dev_set_current_state - Set current state of a PCI device
745 * @dev: Device to handle
746 * @data: pointer to state to be set
747 */
748static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
749{
750 pci_power_t state = *(pci_power_t *)data;
751
752 dev->current_state = state;
753 return 0;
754}
755
756/**
757 * __pci_bus_set_current_state - Walk given bus and set current state of devices
758 * @bus: Top bus of the subtree to walk.
759 * @state: state to be set
760 */
761static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
762{
763 if (bus)
764 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
765}
766
767/**
768 * __pci_complete_power_transition - Complete power transition of a PCI device
769 * @dev: PCI device to handle.
770 * @state: State to put the device into.
771 *
772 * This function should not be called directly by device drivers.
773 */
774int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
775{
776 int ret;
777
778 if (state <= PCI_D0)
779 return -EINVAL;
780 ret = pci_platform_power_transition(dev, state);
781 /* Power off the bridge may power off the whole hierarchy */
782 if (!ret && state == PCI_D3cold)
783 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
784 return ret;
785}
786EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
787
788/**
789 * pci_set_power_state - Set the power state of a PCI device
790 * @dev: PCI device to handle.
791 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
792 *
793 * Transition a device to a new power state, using the platform firmware and/or
794 * the device's PCI PM registers.
795 *
796 * RETURN VALUE:
797 * -EINVAL if the requested state is invalid.
798 * -EIO if device does not support PCI PM or its PM capabilities register has a
799 * wrong version, or device doesn't support the requested state.
800 * 0 if device already is in the requested state.
801 * 0 if device's power state has been successfully changed.
802 */
803int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
804{
805 int error;
806
807 /* bound the state we're entering */
808 if (state > PCI_D3cold)
809 state = PCI_D3cold;
810 else if (state < PCI_D0)
811 state = PCI_D0;
812 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
813 /*
814 * If the device or the parent bridge do not support PCI PM,
815 * ignore the request if we're doing anything other than putting
816 * it into D0 (which would only happen on boot).
817 */
818 return 0;
819
820 /* Check if we're already there */
821 if (dev->current_state == state)
822 return 0;
823
824 __pci_start_power_transition(dev, state);
825
826 /* This device is quirked not to be put into D3, so
827 don't put it in D3 */
828 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
829 return 0;
830
831 /*
832 * To put device in D3cold, we put device into D3hot in native
833 * way, then put device into D3cold with platform ops
834 */
835 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
836 PCI_D3hot : state);
837
838 if (!__pci_complete_power_transition(dev, state))
839 error = 0;
840 /*
841 * When aspm_policy is "powersave" this call ensures
842 * that ASPM is configured.
843 */
844 if (!error && dev->bus->self)
845 pcie_aspm_powersave_config_link(dev->bus->self);
846
847 return error;
848}
849
850/**
851 * pci_choose_state - Choose the power state of a PCI device
852 * @dev: PCI device to be suspended
853 * @state: target sleep state for the whole system. This is the value
854 * that is passed to suspend() function.
855 *
856 * Returns PCI power state suitable for given device and given system
857 * message.
858 */
859
860pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
861{
862 pci_power_t ret;
863
864 if (!dev->pm_cap)
865 return PCI_D0;
866
867 ret = platform_pci_choose_state(dev);
868 if (ret != PCI_POWER_ERROR)
869 return ret;
870
871 switch (state.event) {
872 case PM_EVENT_ON:
873 return PCI_D0;
874 case PM_EVENT_FREEZE:
875 case PM_EVENT_PRETHAW:
876 /* REVISIT both freeze and pre-thaw "should" use D0 */
877 case PM_EVENT_SUSPEND:
878 case PM_EVENT_HIBERNATE:
879 return PCI_D3hot;
880 default:
881 dev_info(&dev->dev, "unrecognized suspend event %d\n",
882 state.event);
883 BUG();
884 }
885 return PCI_D0;
886}
887
888EXPORT_SYMBOL(pci_choose_state);
889
890#define PCI_EXP_SAVE_REGS 7
891
892
893static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
894 u16 cap, bool extended)
895{
896 struct pci_cap_saved_state *tmp;
897
898 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
899 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
900 return tmp;
901 }
902 return NULL;
903}
904
905struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
906{
907 return _pci_find_saved_cap(dev, cap, false);
908}
909
910struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
911{
912 return _pci_find_saved_cap(dev, cap, true);
913}
914
915static int pci_save_pcie_state(struct pci_dev *dev)
916{
917 int i = 0;
918 struct pci_cap_saved_state *save_state;
919 u16 *cap;
920
921 if (!pci_is_pcie(dev))
922 return 0;
923
924 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
925 if (!save_state) {
926 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
927 return -ENOMEM;
928 }
929
930 cap = (u16 *)&save_state->cap.data[0];
931 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
932 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
933 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
934 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
935 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
936 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
937 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
938
939 return 0;
940}
941
942static void pci_restore_pcie_state(struct pci_dev *dev)
943{
944 int i = 0;
945 struct pci_cap_saved_state *save_state;
946 u16 *cap;
947
948 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
949 if (!save_state)
950 return;
951
952 cap = (u16 *)&save_state->cap.data[0];
953 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
954 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
955 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
956 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
957 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
958 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
959 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
960}
961
962
963static int pci_save_pcix_state(struct pci_dev *dev)
964{
965 int pos;
966 struct pci_cap_saved_state *save_state;
967
968 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
969 if (pos <= 0)
970 return 0;
971
972 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
973 if (!save_state) {
974 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
975 return -ENOMEM;
976 }
977
978 pci_read_config_word(dev, pos + PCI_X_CMD,
979 (u16 *)save_state->cap.data);
980
981 return 0;
982}
983
984static void pci_restore_pcix_state(struct pci_dev *dev)
985{
986 int i = 0, pos;
987 struct pci_cap_saved_state *save_state;
988 u16 *cap;
989
990 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
991 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
992 if (!save_state || pos <= 0)
993 return;
994 cap = (u16 *)&save_state->cap.data[0];
995
996 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
997}
998
999
1000/**
1001 * pci_save_state - save the PCI configuration space of a device before suspending
1002 * @dev: - PCI device that we're dealing with
1003 */
1004int
1005pci_save_state(struct pci_dev *dev)
1006{
1007 int i;
1008 /* XXX: 100% dword access ok here? */
1009 for (i = 0; i < 16; i++)
1010 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1011 dev->state_saved = true;
1012 if ((i = pci_save_pcie_state(dev)) != 0)
1013 return i;
1014 if ((i = pci_save_pcix_state(dev)) != 0)
1015 return i;
1016 if ((i = pci_save_vc_state(dev)) != 0)
1017 return i;
1018 return 0;
1019}
1020
1021static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1022 u32 saved_val, int retry)
1023{
1024 u32 val;
1025
1026 pci_read_config_dword(pdev, offset, &val);
1027 if (val == saved_val)
1028 return;
1029
1030 for (;;) {
1031 dev_dbg(&pdev->dev, "restoring config space at offset "
1032 "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
1033 pci_write_config_dword(pdev, offset, saved_val);
1034 if (retry-- <= 0)
1035 return;
1036
1037 pci_read_config_dword(pdev, offset, &val);
1038 if (val == saved_val)
1039 return;
1040
1041 mdelay(1);
1042 }
1043}
1044
1045static void pci_restore_config_space_range(struct pci_dev *pdev,
1046 int start, int end, int retry)
1047{
1048 int index;
1049
1050 for (index = end; index >= start; index--)
1051 pci_restore_config_dword(pdev, 4 * index,
1052 pdev->saved_config_space[index],
1053 retry);
1054}
1055
1056static void pci_restore_config_space(struct pci_dev *pdev)
1057{
1058 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1059 pci_restore_config_space_range(pdev, 10, 15, 0);
1060 /* Restore BARs before the command register. */
1061 pci_restore_config_space_range(pdev, 4, 9, 10);
1062 pci_restore_config_space_range(pdev, 0, 3, 0);
1063 } else {
1064 pci_restore_config_space_range(pdev, 0, 15, 0);
1065 }
1066}
1067
1068/**
1069 * pci_restore_state - Restore the saved state of a PCI device
1070 * @dev: - PCI device that we're dealing with
1071 */
1072void pci_restore_state(struct pci_dev *dev)
1073{
1074 if (!dev->state_saved)
1075 return;
1076
1077 /* PCI Express register must be restored first */
1078 pci_restore_pcie_state(dev);
1079 pci_restore_ats_state(dev);
1080 pci_restore_vc_state(dev);
1081
1082 pci_restore_config_space(dev);
1083
1084 pci_restore_pcix_state(dev);
1085 pci_restore_msi_state(dev);
1086 pci_restore_iov_state(dev);
1087
1088 dev->state_saved = false;
1089}
1090
1091struct pci_saved_state {
1092 u32 config_space[16];
1093 struct pci_cap_saved_data cap[0];
1094};
1095
1096/**
1097 * pci_store_saved_state - Allocate and return an opaque struct containing
1098 * the device saved state.
1099 * @dev: PCI device that we're dealing with
1100 *
1101 * Return NULL if no state or error.
1102 */
1103struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1104{
1105 struct pci_saved_state *state;
1106 struct pci_cap_saved_state *tmp;
1107 struct pci_cap_saved_data *cap;
1108 size_t size;
1109
1110 if (!dev->state_saved)
1111 return NULL;
1112
1113 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1114
1115 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1116 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1117
1118 state = kzalloc(size, GFP_KERNEL);
1119 if (!state)
1120 return NULL;
1121
1122 memcpy(state->config_space, dev->saved_config_space,
1123 sizeof(state->config_space));
1124
1125 cap = state->cap;
1126 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1127 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1128 memcpy(cap, &tmp->cap, len);
1129 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1130 }
1131 /* Empty cap_save terminates list */
1132
1133 return state;
1134}
1135EXPORT_SYMBOL_GPL(pci_store_saved_state);
1136
1137/**
1138 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1139 * @dev: PCI device that we're dealing with
1140 * @state: Saved state returned from pci_store_saved_state()
1141 */
1142static int pci_load_saved_state(struct pci_dev *dev,
1143 struct pci_saved_state *state)
1144{
1145 struct pci_cap_saved_data *cap;
1146
1147 dev->state_saved = false;
1148
1149 if (!state)
1150 return 0;
1151
1152 memcpy(dev->saved_config_space, state->config_space,
1153 sizeof(state->config_space));
1154
1155 cap = state->cap;
1156 while (cap->size) {
1157 struct pci_cap_saved_state *tmp;
1158
1159 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1160 if (!tmp || tmp->cap.size != cap->size)
1161 return -EINVAL;
1162
1163 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1164 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1165 sizeof(struct pci_cap_saved_data) + cap->size);
1166 }
1167
1168 dev->state_saved = true;
1169 return 0;
1170}
1171
1172/**
1173 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1174 * and free the memory allocated for it.
1175 * @dev: PCI device that we're dealing with
1176 * @state: Pointer to saved state returned from pci_store_saved_state()
1177 */
1178int pci_load_and_free_saved_state(struct pci_dev *dev,
1179 struct pci_saved_state **state)
1180{
1181 int ret = pci_load_saved_state(dev, *state);
1182 kfree(*state);
1183 *state = NULL;
1184 return ret;
1185}
1186EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1187
1188int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1189{
1190 return pci_enable_resources(dev, bars);
1191}
1192
1193static int do_pci_enable_device(struct pci_dev *dev, int bars)
1194{
1195 int err;
1196 u16 cmd;
1197 u8 pin;
1198
1199 err = pci_set_power_state(dev, PCI_D0);
1200 if (err < 0 && err != -EIO)
1201 return err;
1202 err = pcibios_enable_device(dev, bars);
1203 if (err < 0)
1204 return err;
1205 pci_fixup_device(pci_fixup_enable, dev);
1206
1207 if (dev->msi_enabled || dev->msix_enabled)
1208 return 0;
1209
1210 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1211 if (pin) {
1212 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1213 if (cmd & PCI_COMMAND_INTX_DISABLE)
1214 pci_write_config_word(dev, PCI_COMMAND,
1215 cmd & ~PCI_COMMAND_INTX_DISABLE);
1216 }
1217
1218 return 0;
1219}
1220
1221/**
1222 * pci_reenable_device - Resume abandoned device
1223 * @dev: PCI device to be resumed
1224 *
1225 * Note this function is a backend of pci_default_resume and is not supposed
1226 * to be called by normal code, write proper resume handler and use it instead.
1227 */
1228int pci_reenable_device(struct pci_dev *dev)
1229{
1230 if (pci_is_enabled(dev))
1231 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1232 return 0;
1233}
1234
1235static void pci_enable_bridge(struct pci_dev *dev)
1236{
1237 struct pci_dev *bridge;
1238 int retval;
1239
1240 bridge = pci_upstream_bridge(dev);
1241 if (bridge)
1242 pci_enable_bridge(bridge);
1243
1244 if (pci_is_enabled(dev)) {
1245 if (!dev->is_busmaster)
1246 pci_set_master(dev);
1247 return;
1248 }
1249
1250 retval = pci_enable_device(dev);
1251 if (retval)
1252 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1253 retval);
1254 pci_set_master(dev);
1255}
1256
1257static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1258{
1259 struct pci_dev *bridge;
1260 int err;
1261 int i, bars = 0;
1262
1263 /*
1264 * Power state could be unknown at this point, either due to a fresh
1265 * boot or a device removal call. So get the current power state
1266 * so that things like MSI message writing will behave as expected
1267 * (e.g. if the device really is in D0 at enable time).
1268 */
1269 if (dev->pm_cap) {
1270 u16 pmcsr;
1271 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1272 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1273 }
1274
1275 if (atomic_inc_return(&dev->enable_cnt) > 1)
1276 return 0; /* already enabled */
1277
1278 bridge = pci_upstream_bridge(dev);
1279 if (bridge)
1280 pci_enable_bridge(bridge);
1281
1282 /* only skip sriov related */
1283 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1284 if (dev->resource[i].flags & flags)
1285 bars |= (1 << i);
1286 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1287 if (dev->resource[i].flags & flags)
1288 bars |= (1 << i);
1289
1290 err = do_pci_enable_device(dev, bars);
1291 if (err < 0)
1292 atomic_dec(&dev->enable_cnt);
1293 return err;
1294}
1295
1296/**
1297 * pci_enable_device_io - Initialize a device for use with IO space
1298 * @dev: PCI device to be initialized
1299 *
1300 * Initialize device before it's used by a driver. Ask low-level code
1301 * to enable I/O resources. Wake up the device if it was suspended.
1302 * Beware, this function can fail.
1303 */
1304int pci_enable_device_io(struct pci_dev *dev)
1305{
1306 return pci_enable_device_flags(dev, IORESOURCE_IO);
1307}
1308
1309/**
1310 * pci_enable_device_mem - Initialize a device for use with Memory space
1311 * @dev: PCI device to be initialized
1312 *
1313 * Initialize device before it's used by a driver. Ask low-level code
1314 * to enable Memory resources. Wake up the device if it was suspended.
1315 * Beware, this function can fail.
1316 */
1317int pci_enable_device_mem(struct pci_dev *dev)
1318{
1319 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1320}
1321
1322/**
1323 * pci_enable_device - Initialize device before it's used by a driver.
1324 * @dev: PCI device to be initialized
1325 *
1326 * Initialize device before it's used by a driver. Ask low-level code
1327 * to enable I/O and memory. Wake up the device if it was suspended.
1328 * Beware, this function can fail.
1329 *
1330 * Note we don't actually enable the device many times if we call
1331 * this function repeatedly (we just increment the count).
1332 */
1333int pci_enable_device(struct pci_dev *dev)
1334{
1335 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1336}
1337
1338/*
1339 * Managed PCI resources. This manages device on/off, intx/msi/msix
1340 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1341 * there's no need to track it separately. pci_devres is initialized
1342 * when a device is enabled using managed PCI device enable interface.
1343 */
1344struct pci_devres {
1345 unsigned int enabled:1;
1346 unsigned int pinned:1;
1347 unsigned int orig_intx:1;
1348 unsigned int restore_intx:1;
1349 u32 region_mask;
1350};
1351
1352static void pcim_release(struct device *gendev, void *res)
1353{
1354 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1355 struct pci_devres *this = res;
1356 int i;
1357
1358 if (dev->msi_enabled)
1359 pci_disable_msi(dev);
1360 if (dev->msix_enabled)
1361 pci_disable_msix(dev);
1362
1363 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1364 if (this->region_mask & (1 << i))
1365 pci_release_region(dev, i);
1366
1367 if (this->restore_intx)
1368 pci_intx(dev, this->orig_intx);
1369
1370 if (this->enabled && !this->pinned)
1371 pci_disable_device(dev);
1372}
1373
1374static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1375{
1376 struct pci_devres *dr, *new_dr;
1377
1378 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1379 if (dr)
1380 return dr;
1381
1382 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1383 if (!new_dr)
1384 return NULL;
1385 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1386}
1387
1388static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1389{
1390 if (pci_is_managed(pdev))
1391 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1392 return NULL;
1393}
1394
1395/**
1396 * pcim_enable_device - Managed pci_enable_device()
1397 * @pdev: PCI device to be initialized
1398 *
1399 * Managed pci_enable_device().
1400 */
1401int pcim_enable_device(struct pci_dev *pdev)
1402{
1403 struct pci_devres *dr;
1404 int rc;
1405
1406 dr = get_pci_dr(pdev);
1407 if (unlikely(!dr))
1408 return -ENOMEM;
1409 if (dr->enabled)
1410 return 0;
1411
1412 rc = pci_enable_device(pdev);
1413 if (!rc) {
1414 pdev->is_managed = 1;
1415 dr->enabled = 1;
1416 }
1417 return rc;
1418}
1419
1420/**
1421 * pcim_pin_device - Pin managed PCI device
1422 * @pdev: PCI device to pin
1423 *
1424 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1425 * driver detach. @pdev must have been enabled with
1426 * pcim_enable_device().
1427 */
1428void pcim_pin_device(struct pci_dev *pdev)
1429{
1430 struct pci_devres *dr;
1431
1432 dr = find_pci_dr(pdev);
1433 WARN_ON(!dr || !dr->enabled);
1434 if (dr)
1435 dr->pinned = 1;
1436}
1437
1438/*
1439 * pcibios_add_device - provide arch specific hooks when adding device dev
1440 * @dev: the PCI device being added
1441 *
1442 * Permits the platform to provide architecture specific functionality when
1443 * devices are added. This is the default implementation. Architecture
1444 * implementations can override this.
1445 */
1446int __weak pcibios_add_device (struct pci_dev *dev)
1447{
1448 return 0;
1449}
1450
1451/**
1452 * pcibios_release_device - provide arch specific hooks when releasing device dev
1453 * @dev: the PCI device being released
1454 *
1455 * Permits the platform to provide architecture specific functionality when
1456 * devices are released. This is the default implementation. Architecture
1457 * implementations can override this.
1458 */
1459void __weak pcibios_release_device(struct pci_dev *dev) {}
1460
1461/**
1462 * pcibios_disable_device - disable arch specific PCI resources for device dev
1463 * @dev: the PCI device to disable
1464 *
1465 * Disables architecture specific PCI resources for the device. This
1466 * is the default implementation. Architecture implementations can
1467 * override this.
1468 */
1469void __weak pcibios_disable_device (struct pci_dev *dev) {}
1470
1471static void do_pci_disable_device(struct pci_dev *dev)
1472{
1473 u16 pci_command;
1474
1475 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1476 if (pci_command & PCI_COMMAND_MASTER) {
1477 pci_command &= ~PCI_COMMAND_MASTER;
1478 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1479 }
1480
1481 pcibios_disable_device(dev);
1482}
1483
1484/**
1485 * pci_disable_enabled_device - Disable device without updating enable_cnt
1486 * @dev: PCI device to disable
1487 *
1488 * NOTE: This function is a backend of PCI power management routines and is
1489 * not supposed to be called drivers.
1490 */
1491void pci_disable_enabled_device(struct pci_dev *dev)
1492{
1493 if (pci_is_enabled(dev))
1494 do_pci_disable_device(dev);
1495}
1496
1497/**
1498 * pci_disable_device - Disable PCI device after use
1499 * @dev: PCI device to be disabled
1500 *
1501 * Signal to the system that the PCI device is not in use by the system
1502 * anymore. This only involves disabling PCI bus-mastering, if active.
1503 *
1504 * Note we don't actually disable the device until all callers of
1505 * pci_enable_device() have called pci_disable_device().
1506 */
1507void
1508pci_disable_device(struct pci_dev *dev)
1509{
1510 struct pci_devres *dr;
1511
1512 dr = find_pci_dr(dev);
1513 if (dr)
1514 dr->enabled = 0;
1515
1516 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1517 "disabling already-disabled device");
1518
1519 if (atomic_dec_return(&dev->enable_cnt) != 0)
1520 return;
1521
1522 do_pci_disable_device(dev);
1523
1524 dev->is_busmaster = 0;
1525}
1526
1527/**
1528 * pcibios_set_pcie_reset_state - set reset state for device dev
1529 * @dev: the PCIe device reset
1530 * @state: Reset state to enter into
1531 *
1532 *
1533 * Sets the PCIe reset state for the device. This is the default
1534 * implementation. Architecture implementations can override this.
1535 */
1536int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1537 enum pcie_reset_state state)
1538{
1539 return -EINVAL;
1540}
1541
1542/**
1543 * pci_set_pcie_reset_state - set reset state for device dev
1544 * @dev: the PCIe device reset
1545 * @state: Reset state to enter into
1546 *
1547 *
1548 * Sets the PCI reset state for the device.
1549 */
1550int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1551{
1552 return pcibios_set_pcie_reset_state(dev, state);
1553}
1554
1555/**
1556 * pci_check_pme_status - Check if given device has generated PME.
1557 * @dev: Device to check.
1558 *
1559 * Check the PME status of the device and if set, clear it and clear PME enable
1560 * (if set). Return 'true' if PME status and PME enable were both set or
1561 * 'false' otherwise.
1562 */
1563bool pci_check_pme_status(struct pci_dev *dev)
1564{
1565 int pmcsr_pos;
1566 u16 pmcsr;
1567 bool ret = false;
1568
1569 if (!dev->pm_cap)
1570 return false;
1571
1572 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1573 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1574 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1575 return false;
1576
1577 /* Clear PME status. */
1578 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1579 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1580 /* Disable PME to avoid interrupt flood. */
1581 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1582 ret = true;
1583 }
1584
1585 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1586
1587 return ret;
1588}
1589
1590/**
1591 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1592 * @dev: Device to handle.
1593 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1594 *
1595 * Check if @dev has generated PME and queue a resume request for it in that
1596 * case.
1597 */
1598static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1599{
1600 if (pme_poll_reset && dev->pme_poll)
1601 dev->pme_poll = false;
1602
1603 if (pci_check_pme_status(dev)) {
1604 pci_wakeup_event(dev);
1605 pm_request_resume(&dev->dev);
1606 }
1607 return 0;
1608}
1609
1610/**
1611 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1612 * @bus: Top bus of the subtree to walk.
1613 */
1614void pci_pme_wakeup_bus(struct pci_bus *bus)
1615{
1616 if (bus)
1617 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1618}
1619
1620
1621/**
1622 * pci_pme_capable - check the capability of PCI device to generate PME#
1623 * @dev: PCI device to handle.
1624 * @state: PCI state from which device will issue PME#.
1625 */
1626bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1627{
1628 if (!dev->pm_cap)
1629 return false;
1630
1631 return !!(dev->pme_support & (1 << state));
1632}
1633
1634static void pci_pme_list_scan(struct work_struct *work)
1635{
1636 struct pci_pme_device *pme_dev, *n;
1637
1638 mutex_lock(&pci_pme_list_mutex);
1639 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1640 if (pme_dev->dev->pme_poll) {
1641 struct pci_dev *bridge;
1642
1643 bridge = pme_dev->dev->bus->self;
1644 /*
1645 * If bridge is in low power state, the
1646 * configuration space of subordinate devices
1647 * may be not accessible
1648 */
1649 if (bridge && bridge->current_state != PCI_D0)
1650 continue;
1651 pci_pme_wakeup(pme_dev->dev, NULL);
1652 } else {
1653 list_del(&pme_dev->list);
1654 kfree(pme_dev);
1655 }
1656 }
1657 if (!list_empty(&pci_pme_list))
1658 schedule_delayed_work(&pci_pme_work,
1659 msecs_to_jiffies(PME_TIMEOUT));
1660 mutex_unlock(&pci_pme_list_mutex);
1661}
1662
1663/**
1664 * pci_pme_active - enable or disable PCI device's PME# function
1665 * @dev: PCI device to handle.
1666 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1667 *
1668 * The caller must verify that the device is capable of generating PME# before
1669 * calling this function with @enable equal to 'true'.
1670 */
1671void pci_pme_active(struct pci_dev *dev, bool enable)
1672{
1673 u16 pmcsr;
1674
1675 if (!dev->pme_support)
1676 return;
1677
1678 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1679 /* Clear PME_Status by writing 1 to it and enable PME# */
1680 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1681 if (!enable)
1682 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1683
1684 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1685
1686 /*
1687 * PCI (as opposed to PCIe) PME requires that the device have
1688 * its PME# line hooked up correctly. Not all hardware vendors
1689 * do this, so the PME never gets delivered and the device
1690 * remains asleep. The easiest way around this is to
1691 * periodically walk the list of suspended devices and check
1692 * whether any have their PME flag set. The assumption is that
1693 * we'll wake up often enough anyway that this won't be a huge
1694 * hit, and the power savings from the devices will still be a
1695 * win.
1696 *
1697 * Although PCIe uses in-band PME message instead of PME# line
1698 * to report PME, PME does not work for some PCIe devices in
1699 * reality. For example, there are devices that set their PME
1700 * status bits, but don't really bother to send a PME message;
1701 * there are PCI Express Root Ports that don't bother to
1702 * trigger interrupts when they receive PME messages from the
1703 * devices below. So PME poll is used for PCIe devices too.
1704 */
1705
1706 if (dev->pme_poll) {
1707 struct pci_pme_device *pme_dev;
1708 if (enable) {
1709 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1710 GFP_KERNEL);
1711 if (!pme_dev) {
1712 dev_warn(&dev->dev, "can't enable PME#\n");
1713 return;
1714 }
1715 pme_dev->dev = dev;
1716 mutex_lock(&pci_pme_list_mutex);
1717 list_add(&pme_dev->list, &pci_pme_list);
1718 if (list_is_singular(&pci_pme_list))
1719 schedule_delayed_work(&pci_pme_work,
1720 msecs_to_jiffies(PME_TIMEOUT));
1721 mutex_unlock(&pci_pme_list_mutex);
1722 } else {
1723 mutex_lock(&pci_pme_list_mutex);
1724 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1725 if (pme_dev->dev == dev) {
1726 list_del(&pme_dev->list);
1727 kfree(pme_dev);
1728 break;
1729 }
1730 }
1731 mutex_unlock(&pci_pme_list_mutex);
1732 }
1733 }
1734
1735 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1736}
1737
1738/**
1739 * __pci_enable_wake - enable PCI device as wakeup event source
1740 * @dev: PCI device affected
1741 * @state: PCI state from which device will issue wakeup events
1742 * @runtime: True if the events are to be generated at run time
1743 * @enable: True to enable event generation; false to disable
1744 *
1745 * This enables the device as a wakeup event source, or disables it.
1746 * When such events involves platform-specific hooks, those hooks are
1747 * called automatically by this routine.
1748 *
1749 * Devices with legacy power management (no standard PCI PM capabilities)
1750 * always require such platform hooks.
1751 *
1752 * RETURN VALUE:
1753 * 0 is returned on success
1754 * -EINVAL is returned if device is not supposed to wake up the system
1755 * Error code depending on the platform is returned if both the platform and
1756 * the native mechanism fail to enable the generation of wake-up events
1757 */
1758int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1759 bool runtime, bool enable)
1760{
1761 int ret = 0;
1762
1763 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1764 return -EINVAL;
1765
1766 /* Don't do the same thing twice in a row for one device. */
1767 if (!!enable == !!dev->wakeup_prepared)
1768 return 0;
1769
1770 /*
1771 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1772 * Anderson we should be doing PME# wake enable followed by ACPI wake
1773 * enable. To disable wake-up we call the platform first, for symmetry.
1774 */
1775
1776 if (enable) {
1777 int error;
1778
1779 if (pci_pme_capable(dev, state))
1780 pci_pme_active(dev, true);
1781 else
1782 ret = 1;
1783 error = runtime ? platform_pci_run_wake(dev, true) :
1784 platform_pci_sleep_wake(dev, true);
1785 if (ret)
1786 ret = error;
1787 if (!ret)
1788 dev->wakeup_prepared = true;
1789 } else {
1790 if (runtime)
1791 platform_pci_run_wake(dev, false);
1792 else
1793 platform_pci_sleep_wake(dev, false);
1794 pci_pme_active(dev, false);
1795 dev->wakeup_prepared = false;
1796 }
1797
1798 return ret;
1799}
1800EXPORT_SYMBOL(__pci_enable_wake);
1801
1802/**
1803 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1804 * @dev: PCI device to prepare
1805 * @enable: True to enable wake-up event generation; false to disable
1806 *
1807 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1808 * and this function allows them to set that up cleanly - pci_enable_wake()
1809 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1810 * ordering constraints.
1811 *
1812 * This function only returns error code if the device is not capable of
1813 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1814 * enable wake-up power for it.
1815 */
1816int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1817{
1818 return pci_pme_capable(dev, PCI_D3cold) ?
1819 pci_enable_wake(dev, PCI_D3cold, enable) :
1820 pci_enable_wake(dev, PCI_D3hot, enable);
1821}
1822
1823/**
1824 * pci_target_state - find an appropriate low power state for a given PCI dev
1825 * @dev: PCI device
1826 *
1827 * Use underlying platform code to find a supported low power state for @dev.
1828 * If the platform can't manage @dev, return the deepest state from which it
1829 * can generate wake events, based on any available PME info.
1830 */
1831static pci_power_t pci_target_state(struct pci_dev *dev)
1832{
1833 pci_power_t target_state = PCI_D3hot;
1834
1835 if (platform_pci_power_manageable(dev)) {
1836 /*
1837 * Call the platform to choose the target state of the device
1838 * and enable wake-up from this state if supported.
1839 */
1840 pci_power_t state = platform_pci_choose_state(dev);
1841
1842 switch (state) {
1843 case PCI_POWER_ERROR:
1844 case PCI_UNKNOWN:
1845 break;
1846 case PCI_D1:
1847 case PCI_D2:
1848 if (pci_no_d1d2(dev))
1849 break;
1850 default:
1851 target_state = state;
1852 }
1853 } else if (!dev->pm_cap) {
1854 target_state = PCI_D0;
1855 } else if (device_may_wakeup(&dev->dev)) {
1856 /*
1857 * Find the deepest state from which the device can generate
1858 * wake-up events, make it the target state and enable device
1859 * to generate PME#.
1860 */
1861 if (dev->pme_support) {
1862 while (target_state
1863 && !(dev->pme_support & (1 << target_state)))
1864 target_state--;
1865 }
1866 }
1867
1868 return target_state;
1869}
1870
1871/**
1872 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1873 * @dev: Device to handle.
1874 *
1875 * Choose the power state appropriate for the device depending on whether
1876 * it can wake up the system and/or is power manageable by the platform
1877 * (PCI_D3hot is the default) and put the device into that state.
1878 */
1879int pci_prepare_to_sleep(struct pci_dev *dev)
1880{
1881 pci_power_t target_state = pci_target_state(dev);
1882 int error;
1883
1884 if (target_state == PCI_POWER_ERROR)
1885 return -EIO;
1886
1887 /* D3cold during system suspend/hibernate is not supported */
1888 if (target_state > PCI_D3hot)
1889 target_state = PCI_D3hot;
1890
1891 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1892
1893 error = pci_set_power_state(dev, target_state);
1894
1895 if (error)
1896 pci_enable_wake(dev, target_state, false);
1897
1898 return error;
1899}
1900
1901/**
1902 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1903 * @dev: Device to handle.
1904 *
1905 * Disable device's system wake-up capability and put it into D0.
1906 */
1907int pci_back_from_sleep(struct pci_dev *dev)
1908{
1909 pci_enable_wake(dev, PCI_D0, false);
1910 return pci_set_power_state(dev, PCI_D0);
1911}
1912
1913/**
1914 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1915 * @dev: PCI device being suspended.
1916 *
1917 * Prepare @dev to generate wake-up events at run time and put it into a low
1918 * power state.
1919 */
1920int pci_finish_runtime_suspend(struct pci_dev *dev)
1921{
1922 pci_power_t target_state = pci_target_state(dev);
1923 int error;
1924
1925 if (target_state == PCI_POWER_ERROR)
1926 return -EIO;
1927
1928 dev->runtime_d3cold = target_state == PCI_D3cold;
1929
1930 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1931
1932 error = pci_set_power_state(dev, target_state);
1933
1934 if (error) {
1935 __pci_enable_wake(dev, target_state, true, false);
1936 dev->runtime_d3cold = false;
1937 }
1938
1939 return error;
1940}
1941
1942/**
1943 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1944 * @dev: Device to check.
1945 *
1946 * Return true if the device itself is capable of generating wake-up events
1947 * (through the platform or using the native PCIe PME) or if the device supports
1948 * PME and one of its upstream bridges can generate wake-up events.
1949 */
1950bool pci_dev_run_wake(struct pci_dev *dev)
1951{
1952 struct pci_bus *bus = dev->bus;
1953
1954 if (device_run_wake(&dev->dev))
1955 return true;
1956
1957 if (!dev->pme_support)
1958 return false;
1959
1960 while (bus->parent) {
1961 struct pci_dev *bridge = bus->self;
1962
1963 if (device_run_wake(&bridge->dev))
1964 return true;
1965
1966 bus = bus->parent;
1967 }
1968
1969 /* We have reached the root bus. */
1970 if (bus->bridge)
1971 return device_run_wake(bus->bridge);
1972
1973 return false;
1974}
1975EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1976
1977void pci_config_pm_runtime_get(struct pci_dev *pdev)
1978{
1979 struct device *dev = &pdev->dev;
1980 struct device *parent = dev->parent;
1981
1982 if (parent)
1983 pm_runtime_get_sync(parent);
1984 pm_runtime_get_noresume(dev);
1985 /*
1986 * pdev->current_state is set to PCI_D3cold during suspending,
1987 * so wait until suspending completes
1988 */
1989 pm_runtime_barrier(dev);
1990 /*
1991 * Only need to resume devices in D3cold, because config
1992 * registers are still accessible for devices suspended but
1993 * not in D3cold.
1994 */
1995 if (pdev->current_state == PCI_D3cold)
1996 pm_runtime_resume(dev);
1997}
1998
1999void pci_config_pm_runtime_put(struct pci_dev *pdev)
2000{
2001 struct device *dev = &pdev->dev;
2002 struct device *parent = dev->parent;
2003
2004 pm_runtime_put(dev);
2005 if (parent)
2006 pm_runtime_put_sync(parent);
2007}
2008
2009/**
2010 * pci_pm_init - Initialize PM functions of given PCI device
2011 * @dev: PCI device to handle.
2012 */
2013void pci_pm_init(struct pci_dev *dev)
2014{
2015 int pm;
2016 u16 pmc;
2017
2018 pm_runtime_forbid(&dev->dev);
2019 pm_runtime_set_active(&dev->dev);
2020 pm_runtime_enable(&dev->dev);
2021 device_enable_async_suspend(&dev->dev);
2022 dev->wakeup_prepared = false;
2023
2024 dev->pm_cap = 0;
2025 dev->pme_support = 0;
2026
2027 /* find PCI PM capability in list */
2028 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2029 if (!pm)
2030 return;
2031 /* Check device's ability to generate PME# */
2032 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2033
2034 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2035 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2036 pmc & PCI_PM_CAP_VER_MASK);
2037 return;
2038 }
2039
2040 dev->pm_cap = pm;
2041 dev->d3_delay = PCI_PM_D3_WAIT;
2042 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2043 dev->d3cold_allowed = true;
2044
2045 dev->d1_support = false;
2046 dev->d2_support = false;
2047 if (!pci_no_d1d2(dev)) {
2048 if (pmc & PCI_PM_CAP_D1)
2049 dev->d1_support = true;
2050 if (pmc & PCI_PM_CAP_D2)
2051 dev->d2_support = true;
2052
2053 if (dev->d1_support || dev->d2_support)
2054 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2055 dev->d1_support ? " D1" : "",
2056 dev->d2_support ? " D2" : "");
2057 }
2058
2059 pmc &= PCI_PM_CAP_PME_MASK;
2060 if (pmc) {
2061 dev_printk(KERN_DEBUG, &dev->dev,
2062 "PME# supported from%s%s%s%s%s\n",
2063 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2064 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2065 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2066 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2067 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2068 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2069 dev->pme_poll = true;
2070 /*
2071 * Make device's PM flags reflect the wake-up capability, but
2072 * let the user space enable it to wake up the system as needed.
2073 */
2074 device_set_wakeup_capable(&dev->dev, true);
2075 /* Disable the PME# generation functionality */
2076 pci_pme_active(dev, false);
2077 }
2078}
2079
2080static void pci_add_saved_cap(struct pci_dev *pci_dev,
2081 struct pci_cap_saved_state *new_cap)
2082{
2083 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2084}
2085
2086/**
2087 * _pci_add_cap_save_buffer - allocate buffer for saving given
2088 * capability registers
2089 * @dev: the PCI device
2090 * @cap: the capability to allocate the buffer for
2091 * @extended: Standard or Extended capability ID
2092 * @size: requested size of the buffer
2093 */
2094static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2095 bool extended, unsigned int size)
2096{
2097 int pos;
2098 struct pci_cap_saved_state *save_state;
2099
2100 if (extended)
2101 pos = pci_find_ext_capability(dev, cap);
2102 else
2103 pos = pci_find_capability(dev, cap);
2104
2105 if (pos <= 0)
2106 return 0;
2107
2108 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2109 if (!save_state)
2110 return -ENOMEM;
2111
2112 save_state->cap.cap_nr = cap;
2113 save_state->cap.cap_extended = extended;
2114 save_state->cap.size = size;
2115 pci_add_saved_cap(dev, save_state);
2116
2117 return 0;
2118}
2119
2120int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2121{
2122 return _pci_add_cap_save_buffer(dev, cap, false, size);
2123}
2124
2125int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2126{
2127 return _pci_add_cap_save_buffer(dev, cap, true, size);
2128}
2129
2130/**
2131 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2132 * @dev: the PCI device
2133 */
2134void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2135{
2136 int error;
2137
2138 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2139 PCI_EXP_SAVE_REGS * sizeof(u16));
2140 if (error)
2141 dev_err(&dev->dev,
2142 "unable to preallocate PCI Express save buffer\n");
2143
2144 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2145 if (error)
2146 dev_err(&dev->dev,
2147 "unable to preallocate PCI-X save buffer\n");
2148
2149 pci_allocate_vc_save_buffers(dev);
2150}
2151
2152void pci_free_cap_save_buffers(struct pci_dev *dev)
2153{
2154 struct pci_cap_saved_state *tmp;
2155 struct hlist_node *n;
2156
2157 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2158 kfree(tmp);
2159}
2160
2161/**
2162 * pci_configure_ari - enable or disable ARI forwarding
2163 * @dev: the PCI device
2164 *
2165 * If @dev and its upstream bridge both support ARI, enable ARI in the
2166 * bridge. Otherwise, disable ARI in the bridge.
2167 */
2168void pci_configure_ari(struct pci_dev *dev)
2169{
2170 u32 cap;
2171 struct pci_dev *bridge;
2172
2173 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2174 return;
2175
2176 bridge = dev->bus->self;
2177 if (!bridge)
2178 return;
2179
2180 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2181 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2182 return;
2183
2184 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2185 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2186 PCI_EXP_DEVCTL2_ARI);
2187 bridge->ari_enabled = 1;
2188 } else {
2189 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2190 PCI_EXP_DEVCTL2_ARI);
2191 bridge->ari_enabled = 0;
2192 }
2193}
2194
2195static int pci_acs_enable;
2196
2197/**
2198 * pci_request_acs - ask for ACS to be enabled if supported
2199 */
2200void pci_request_acs(void)
2201{
2202 pci_acs_enable = 1;
2203}
2204
2205/**
2206 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2207 * @dev: the PCI device
2208 */
2209static int pci_std_enable_acs(struct pci_dev *dev)
2210{
2211 int pos;
2212 u16 cap;
2213 u16 ctrl;
2214
2215 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2216 if (!pos)
2217 return -ENODEV;
2218
2219 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2220 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2221
2222 /* Source Validation */
2223 ctrl |= (cap & PCI_ACS_SV);
2224
2225 /* P2P Request Redirect */
2226 ctrl |= (cap & PCI_ACS_RR);
2227
2228 /* P2P Completion Redirect */
2229 ctrl |= (cap & PCI_ACS_CR);
2230
2231 /* Upstream Forwarding */
2232 ctrl |= (cap & PCI_ACS_UF);
2233
2234 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2235
2236 return 0;
2237}
2238
2239/**
2240 * pci_enable_acs - enable ACS if hardware support it
2241 * @dev: the PCI device
2242 */
2243void pci_enable_acs(struct pci_dev *dev)
2244{
2245 if (!pci_acs_enable)
2246 return;
2247
2248 if (!pci_std_enable_acs(dev))
2249 return;
2250
2251 pci_dev_specific_enable_acs(dev);
2252}
2253
2254static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2255{
2256 int pos;
2257 u16 cap, ctrl;
2258
2259 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2260 if (!pos)
2261 return false;
2262
2263 /*
2264 * Except for egress control, capabilities are either required
2265 * or only required if controllable. Features missing from the
2266 * capability field can therefore be assumed as hard-wired enabled.
2267 */
2268 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2269 acs_flags &= (cap | PCI_ACS_EC);
2270
2271 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2272 return (ctrl & acs_flags) == acs_flags;
2273}
2274
2275/**
2276 * pci_acs_enabled - test ACS against required flags for a given device
2277 * @pdev: device to test
2278 * @acs_flags: required PCI ACS flags
2279 *
2280 * Return true if the device supports the provided flags. Automatically
2281 * filters out flags that are not implemented on multifunction devices.
2282 *
2283 * Note that this interface checks the effective ACS capabilities of the
2284 * device rather than the actual capabilities. For instance, most single
2285 * function endpoints are not required to support ACS because they have no
2286 * opportunity for peer-to-peer access. We therefore return 'true'
2287 * regardless of whether the device exposes an ACS capability. This makes
2288 * it much easier for callers of this function to ignore the actual type
2289 * or topology of the device when testing ACS support.
2290 */
2291bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2292{
2293 int ret;
2294
2295 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2296 if (ret >= 0)
2297 return ret > 0;
2298
2299 /*
2300 * Conventional PCI and PCI-X devices never support ACS, either
2301 * effectively or actually. The shared bus topology implies that
2302 * any device on the bus can receive or snoop DMA.
2303 */
2304 if (!pci_is_pcie(pdev))
2305 return false;
2306
2307 switch (pci_pcie_type(pdev)) {
2308 /*
2309 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2310 * but since their primary interface is PCI/X, we conservatively
2311 * handle them as we would a non-PCIe device.
2312 */
2313 case PCI_EXP_TYPE_PCIE_BRIDGE:
2314 /*
2315 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2316 * applicable... must never implement an ACS Extended Capability...".
2317 * This seems arbitrary, but we take a conservative interpretation
2318 * of this statement.
2319 */
2320 case PCI_EXP_TYPE_PCI_BRIDGE:
2321 case PCI_EXP_TYPE_RC_EC:
2322 return false;
2323 /*
2324 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2325 * implement ACS in order to indicate their peer-to-peer capabilities,
2326 * regardless of whether they are single- or multi-function devices.
2327 */
2328 case PCI_EXP_TYPE_DOWNSTREAM:
2329 case PCI_EXP_TYPE_ROOT_PORT:
2330 return pci_acs_flags_enabled(pdev, acs_flags);
2331 /*
2332 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2333 * implemented by the remaining PCIe types to indicate peer-to-peer
2334 * capabilities, but only when they are part of a multifunction
2335 * device. The footnote for section 6.12 indicates the specific
2336 * PCIe types included here.
2337 */
2338 case PCI_EXP_TYPE_ENDPOINT:
2339 case PCI_EXP_TYPE_UPSTREAM:
2340 case PCI_EXP_TYPE_LEG_END:
2341 case PCI_EXP_TYPE_RC_END:
2342 if (!pdev->multifunction)
2343 break;
2344
2345 return pci_acs_flags_enabled(pdev, acs_flags);
2346 }
2347
2348 /*
2349 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2350 * to single function devices with the exception of downstream ports.
2351 */
2352 return true;
2353}
2354
2355/**
2356 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2357 * @start: starting downstream device
2358 * @end: ending upstream device or NULL to search to the root bus
2359 * @acs_flags: required flags
2360 *
2361 * Walk up a device tree from start to end testing PCI ACS support. If
2362 * any step along the way does not support the required flags, return false.
2363 */
2364bool pci_acs_path_enabled(struct pci_dev *start,
2365 struct pci_dev *end, u16 acs_flags)
2366{
2367 struct pci_dev *pdev, *parent = start;
2368
2369 do {
2370 pdev = parent;
2371
2372 if (!pci_acs_enabled(pdev, acs_flags))
2373 return false;
2374
2375 if (pci_is_root_bus(pdev->bus))
2376 return (end == NULL);
2377
2378 parent = pdev->bus->self;
2379 } while (pdev != end);
2380
2381 return true;
2382}
2383
2384/**
2385 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2386 * @dev: the PCI device
2387 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2388 *
2389 * Perform INTx swizzling for a device behind one level of bridge. This is
2390 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2391 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2392 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2393 * the PCI Express Base Specification, Revision 2.1)
2394 */
2395u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2396{
2397 int slot;
2398
2399 if (pci_ari_enabled(dev->bus))
2400 slot = 0;
2401 else
2402 slot = PCI_SLOT(dev->devfn);
2403
2404 return (((pin - 1) + slot) % 4) + 1;
2405}
2406
2407int
2408pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2409{
2410 u8 pin;
2411
2412 pin = dev->pin;
2413 if (!pin)
2414 return -1;
2415
2416 while (!pci_is_root_bus(dev->bus)) {
2417 pin = pci_swizzle_interrupt_pin(dev, pin);
2418 dev = dev->bus->self;
2419 }
2420 *bridge = dev;
2421 return pin;
2422}
2423
2424/**
2425 * pci_common_swizzle - swizzle INTx all the way to root bridge
2426 * @dev: the PCI device
2427 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2428 *
2429 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2430 * bridges all the way up to a PCI root bus.
2431 */
2432u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2433{
2434 u8 pin = *pinp;
2435
2436 while (!pci_is_root_bus(dev->bus)) {
2437 pin = pci_swizzle_interrupt_pin(dev, pin);
2438 dev = dev->bus->self;
2439 }
2440 *pinp = pin;
2441 return PCI_SLOT(dev->devfn);
2442}
2443
2444/**
2445 * pci_release_region - Release a PCI bar
2446 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2447 * @bar: BAR to release
2448 *
2449 * Releases the PCI I/O and memory resources previously reserved by a
2450 * successful call to pci_request_region. Call this function only
2451 * after all use of the PCI regions has ceased.
2452 */
2453void pci_release_region(struct pci_dev *pdev, int bar)
2454{
2455 struct pci_devres *dr;
2456
2457 if (pci_resource_len(pdev, bar) == 0)
2458 return;
2459 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2460 release_region(pci_resource_start(pdev, bar),
2461 pci_resource_len(pdev, bar));
2462 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2463 release_mem_region(pci_resource_start(pdev, bar),
2464 pci_resource_len(pdev, bar));
2465
2466 dr = find_pci_dr(pdev);
2467 if (dr)
2468 dr->region_mask &= ~(1 << bar);
2469}
2470
2471/**
2472 * __pci_request_region - Reserved PCI I/O and memory resource
2473 * @pdev: PCI device whose resources are to be reserved
2474 * @bar: BAR to be reserved
2475 * @res_name: Name to be associated with resource.
2476 * @exclusive: whether the region access is exclusive or not
2477 *
2478 * Mark the PCI region associated with PCI device @pdev BR @bar as
2479 * being reserved by owner @res_name. Do not access any
2480 * address inside the PCI regions unless this call returns
2481 * successfully.
2482 *
2483 * If @exclusive is set, then the region is marked so that userspace
2484 * is explicitly not allowed to map the resource via /dev/mem or
2485 * sysfs MMIO access.
2486 *
2487 * Returns 0 on success, or %EBUSY on error. A warning
2488 * message is also printed on failure.
2489 */
2490static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2491 int exclusive)
2492{
2493 struct pci_devres *dr;
2494
2495 if (pci_resource_len(pdev, bar) == 0)
2496 return 0;
2497
2498 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2499 if (!request_region(pci_resource_start(pdev, bar),
2500 pci_resource_len(pdev, bar), res_name))
2501 goto err_out;
2502 }
2503 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2504 if (!__request_mem_region(pci_resource_start(pdev, bar),
2505 pci_resource_len(pdev, bar), res_name,
2506 exclusive))
2507 goto err_out;
2508 }
2509
2510 dr = find_pci_dr(pdev);
2511 if (dr)
2512 dr->region_mask |= 1 << bar;
2513
2514 return 0;
2515
2516err_out:
2517 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2518 &pdev->resource[bar]);
2519 return -EBUSY;
2520}
2521
2522/**
2523 * pci_request_region - Reserve PCI I/O and memory resource
2524 * @pdev: PCI device whose resources are to be reserved
2525 * @bar: BAR to be reserved
2526 * @res_name: Name to be associated with resource
2527 *
2528 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2529 * being reserved by owner @res_name. Do not access any
2530 * address inside the PCI regions unless this call returns
2531 * successfully.
2532 *
2533 * Returns 0 on success, or %EBUSY on error. A warning
2534 * message is also printed on failure.
2535 */
2536int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2537{
2538 return __pci_request_region(pdev, bar, res_name, 0);
2539}
2540
2541/**
2542 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2543 * @pdev: PCI device whose resources are to be reserved
2544 * @bar: BAR to be reserved
2545 * @res_name: Name to be associated with resource.
2546 *
2547 * Mark the PCI region associated with PCI device @pdev BR @bar as
2548 * being reserved by owner @res_name. Do not access any
2549 * address inside the PCI regions unless this call returns
2550 * successfully.
2551 *
2552 * Returns 0 on success, or %EBUSY on error. A warning
2553 * message is also printed on failure.
2554 *
2555 * The key difference that _exclusive makes it that userspace is
2556 * explicitly not allowed to map the resource via /dev/mem or
2557 * sysfs.
2558 */
2559int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2560{
2561 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2562}
2563/**
2564 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2565 * @pdev: PCI device whose resources were previously reserved
2566 * @bars: Bitmask of BARs to be released
2567 *
2568 * Release selected PCI I/O and memory resources previously reserved.
2569 * Call this function only after all use of the PCI regions has ceased.
2570 */
2571void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2572{
2573 int i;
2574
2575 for (i = 0; i < 6; i++)
2576 if (bars & (1 << i))
2577 pci_release_region(pdev, i);
2578}
2579
2580static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2581 const char *res_name, int excl)
2582{
2583 int i;
2584
2585 for (i = 0; i < 6; i++)
2586 if (bars & (1 << i))
2587 if (__pci_request_region(pdev, i, res_name, excl))
2588 goto err_out;
2589 return 0;
2590
2591err_out:
2592 while(--i >= 0)
2593 if (bars & (1 << i))
2594 pci_release_region(pdev, i);
2595
2596 return -EBUSY;
2597}
2598
2599
2600/**
2601 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2602 * @pdev: PCI device whose resources are to be reserved
2603 * @bars: Bitmask of BARs to be requested
2604 * @res_name: Name to be associated with resource
2605 */
2606int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2607 const char *res_name)
2608{
2609 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2610}
2611
2612int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2613 int bars, const char *res_name)
2614{
2615 return __pci_request_selected_regions(pdev, bars, res_name,
2616 IORESOURCE_EXCLUSIVE);
2617}
2618
2619/**
2620 * pci_release_regions - Release reserved PCI I/O and memory resources
2621 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2622 *
2623 * Releases all PCI I/O and memory resources previously reserved by a
2624 * successful call to pci_request_regions. Call this function only
2625 * after all use of the PCI regions has ceased.
2626 */
2627
2628void pci_release_regions(struct pci_dev *pdev)
2629{
2630 pci_release_selected_regions(pdev, (1 << 6) - 1);
2631}
2632
2633/**
2634 * pci_request_regions - Reserved PCI I/O and memory resources
2635 * @pdev: PCI device whose resources are to be reserved
2636 * @res_name: Name to be associated with resource.
2637 *
2638 * Mark all PCI regions associated with PCI device @pdev as
2639 * being reserved by owner @res_name. Do not access any
2640 * address inside the PCI regions unless this call returns
2641 * successfully.
2642 *
2643 * Returns 0 on success, or %EBUSY on error. A warning
2644 * message is also printed on failure.
2645 */
2646int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2647{
2648 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2649}
2650
2651/**
2652 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2653 * @pdev: PCI device whose resources are to be reserved
2654 * @res_name: Name to be associated with resource.
2655 *
2656 * Mark all PCI regions associated with PCI device @pdev as
2657 * being reserved by owner @res_name. Do not access any
2658 * address inside the PCI regions unless this call returns
2659 * successfully.
2660 *
2661 * pci_request_regions_exclusive() will mark the region so that
2662 * /dev/mem and the sysfs MMIO access will not be allowed.
2663 *
2664 * Returns 0 on success, or %EBUSY on error. A warning
2665 * message is also printed on failure.
2666 */
2667int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2668{
2669 return pci_request_selected_regions_exclusive(pdev,
2670 ((1 << 6) - 1), res_name);
2671}
2672
2673static void __pci_set_master(struct pci_dev *dev, bool enable)
2674{
2675 u16 old_cmd, cmd;
2676
2677 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2678 if (enable)
2679 cmd = old_cmd | PCI_COMMAND_MASTER;
2680 else
2681 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2682 if (cmd != old_cmd) {
2683 dev_dbg(&dev->dev, "%s bus mastering\n",
2684 enable ? "enabling" : "disabling");
2685 pci_write_config_word(dev, PCI_COMMAND, cmd);
2686 }
2687 dev->is_busmaster = enable;
2688}
2689
2690/**
2691 * pcibios_setup - process "pci=" kernel boot arguments
2692 * @str: string used to pass in "pci=" kernel boot arguments
2693 *
2694 * Process kernel boot arguments. This is the default implementation.
2695 * Architecture specific implementations can override this as necessary.
2696 */
2697char * __weak __init pcibios_setup(char *str)
2698{
2699 return str;
2700}
2701
2702/**
2703 * pcibios_set_master - enable PCI bus-mastering for device dev
2704 * @dev: the PCI device to enable
2705 *
2706 * Enables PCI bus-mastering for the device. This is the default
2707 * implementation. Architecture specific implementations can override
2708 * this if necessary.
2709 */
2710void __weak pcibios_set_master(struct pci_dev *dev)
2711{
2712 u8 lat;
2713
2714 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2715 if (pci_is_pcie(dev))
2716 return;
2717
2718 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2719 if (lat < 16)
2720 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2721 else if (lat > pcibios_max_latency)
2722 lat = pcibios_max_latency;
2723 else
2724 return;
2725
2726 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2727}
2728
2729/**
2730 * pci_set_master - enables bus-mastering for device dev
2731 * @dev: the PCI device to enable
2732 *
2733 * Enables bus-mastering on the device and calls pcibios_set_master()
2734 * to do the needed arch specific settings.
2735 */
2736void pci_set_master(struct pci_dev *dev)
2737{
2738 __pci_set_master(dev, true);
2739 pcibios_set_master(dev);
2740}
2741
2742/**
2743 * pci_clear_master - disables bus-mastering for device dev
2744 * @dev: the PCI device to disable
2745 */
2746void pci_clear_master(struct pci_dev *dev)
2747{
2748 __pci_set_master(dev, false);
2749}
2750
2751/**
2752 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2753 * @dev: the PCI device for which MWI is to be enabled
2754 *
2755 * Helper function for pci_set_mwi.
2756 * Originally copied from drivers/net/acenic.c.
2757 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2758 *
2759 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2760 */
2761int pci_set_cacheline_size(struct pci_dev *dev)
2762{
2763 u8 cacheline_size;
2764
2765 if (!pci_cache_line_size)
2766 return -EINVAL;
2767
2768 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2769 equal to or multiple of the right value. */
2770 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2771 if (cacheline_size >= pci_cache_line_size &&
2772 (cacheline_size % pci_cache_line_size) == 0)
2773 return 0;
2774
2775 /* Write the correct value. */
2776 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2777 /* Read it back. */
2778 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2779 if (cacheline_size == pci_cache_line_size)
2780 return 0;
2781
2782 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2783 "supported\n", pci_cache_line_size << 2);
2784
2785 return -EINVAL;
2786}
2787EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2788
2789#ifdef PCI_DISABLE_MWI
2790int pci_set_mwi(struct pci_dev *dev)
2791{
2792 return 0;
2793}
2794
2795int pci_try_set_mwi(struct pci_dev *dev)
2796{
2797 return 0;
2798}
2799
2800void pci_clear_mwi(struct pci_dev *dev)
2801{
2802}
2803
2804#else
2805
2806/**
2807 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2808 * @dev: the PCI device for which MWI is enabled
2809 *
2810 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2811 *
2812 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2813 */
2814int
2815pci_set_mwi(struct pci_dev *dev)
2816{
2817 int rc;
2818 u16 cmd;
2819
2820 rc = pci_set_cacheline_size(dev);
2821 if (rc)
2822 return rc;
2823
2824 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2825 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2826 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2827 cmd |= PCI_COMMAND_INVALIDATE;
2828 pci_write_config_word(dev, PCI_COMMAND, cmd);
2829 }
2830
2831 return 0;
2832}
2833
2834/**
2835 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2836 * @dev: the PCI device for which MWI is enabled
2837 *
2838 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2839 * Callers are not required to check the return value.
2840 *
2841 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2842 */
2843int pci_try_set_mwi(struct pci_dev *dev)
2844{
2845 int rc = pci_set_mwi(dev);
2846 return rc;
2847}
2848
2849/**
2850 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2851 * @dev: the PCI device to disable
2852 *
2853 * Disables PCI Memory-Write-Invalidate transaction on the device
2854 */
2855void
2856pci_clear_mwi(struct pci_dev *dev)
2857{
2858 u16 cmd;
2859
2860 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2861 if (cmd & PCI_COMMAND_INVALIDATE) {
2862 cmd &= ~PCI_COMMAND_INVALIDATE;
2863 pci_write_config_word(dev, PCI_COMMAND, cmd);
2864 }
2865}
2866#endif /* ! PCI_DISABLE_MWI */
2867
2868/**
2869 * pci_intx - enables/disables PCI INTx for device dev
2870 * @pdev: the PCI device to operate on
2871 * @enable: boolean: whether to enable or disable PCI INTx
2872 *
2873 * Enables/disables PCI INTx for device dev
2874 */
2875void
2876pci_intx(struct pci_dev *pdev, int enable)
2877{
2878 u16 pci_command, new;
2879
2880 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2881
2882 if (enable) {
2883 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2884 } else {
2885 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2886 }
2887
2888 if (new != pci_command) {
2889 struct pci_devres *dr;
2890
2891 pci_write_config_word(pdev, PCI_COMMAND, new);
2892
2893 dr = find_pci_dr(pdev);
2894 if (dr && !dr->restore_intx) {
2895 dr->restore_intx = 1;
2896 dr->orig_intx = !enable;
2897 }
2898 }
2899}
2900
2901/**
2902 * pci_intx_mask_supported - probe for INTx masking support
2903 * @dev: the PCI device to operate on
2904 *
2905 * Check if the device dev support INTx masking via the config space
2906 * command word.
2907 */
2908bool pci_intx_mask_supported(struct pci_dev *dev)
2909{
2910 bool mask_supported = false;
2911 u16 orig, new;
2912
2913 if (dev->broken_intx_masking)
2914 return false;
2915
2916 pci_cfg_access_lock(dev);
2917
2918 pci_read_config_word(dev, PCI_COMMAND, &orig);
2919 pci_write_config_word(dev, PCI_COMMAND,
2920 orig ^ PCI_COMMAND_INTX_DISABLE);
2921 pci_read_config_word(dev, PCI_COMMAND, &new);
2922
2923 /*
2924 * There's no way to protect against hardware bugs or detect them
2925 * reliably, but as long as we know what the value should be, let's
2926 * go ahead and check it.
2927 */
2928 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2929 dev_err(&dev->dev, "Command register changed from "
2930 "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2931 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2932 mask_supported = true;
2933 pci_write_config_word(dev, PCI_COMMAND, orig);
2934 }
2935
2936 pci_cfg_access_unlock(dev);
2937 return mask_supported;
2938}
2939EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2940
2941static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2942{
2943 struct pci_bus *bus = dev->bus;
2944 bool mask_updated = true;
2945 u32 cmd_status_dword;
2946 u16 origcmd, newcmd;
2947 unsigned long flags;
2948 bool irq_pending;
2949
2950 /*
2951 * We do a single dword read to retrieve both command and status.
2952 * Document assumptions that make this possible.
2953 */
2954 BUILD_BUG_ON(PCI_COMMAND % 4);
2955 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2956
2957 raw_spin_lock_irqsave(&pci_lock, flags);
2958
2959 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2960
2961 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2962
2963 /*
2964 * Check interrupt status register to see whether our device
2965 * triggered the interrupt (when masking) or the next IRQ is
2966 * already pending (when unmasking).
2967 */
2968 if (mask != irq_pending) {
2969 mask_updated = false;
2970 goto done;
2971 }
2972
2973 origcmd = cmd_status_dword;
2974 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
2975 if (mask)
2976 newcmd |= PCI_COMMAND_INTX_DISABLE;
2977 if (newcmd != origcmd)
2978 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
2979
2980done:
2981 raw_spin_unlock_irqrestore(&pci_lock, flags);
2982
2983 return mask_updated;
2984}
2985
2986/**
2987 * pci_check_and_mask_intx - mask INTx on pending interrupt
2988 * @dev: the PCI device to operate on
2989 *
2990 * Check if the device dev has its INTx line asserted, mask it and
2991 * return true in that case. False is returned if not interrupt was
2992 * pending.
2993 */
2994bool pci_check_and_mask_intx(struct pci_dev *dev)
2995{
2996 return pci_check_and_set_intx_mask(dev, true);
2997}
2998EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
2999
3000/**
3001 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3002 * @dev: the PCI device to operate on
3003 *
3004 * Check if the device dev has its INTx line asserted, unmask it if not
3005 * and return true. False is returned and the mask remains active if
3006 * there was still an interrupt pending.
3007 */
3008bool pci_check_and_unmask_intx(struct pci_dev *dev)
3009{
3010 return pci_check_and_set_intx_mask(dev, false);
3011}
3012EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3013
3014/**
3015 * pci_msi_off - disables any MSI or MSI-X capabilities
3016 * @dev: the PCI device to operate on
3017 *
3018 * If you want to use MSI, see pci_enable_msi() and friends.
3019 * This is a lower-level primitive that allows us to disable
3020 * MSI operation at the device level.
3021 */
3022void pci_msi_off(struct pci_dev *dev)
3023{
3024 int pos;
3025 u16 control;
3026
3027 /*
3028 * This looks like it could go in msi.c, but we need it even when
3029 * CONFIG_PCI_MSI=n. For the same reason, we can't use
3030 * dev->msi_cap or dev->msix_cap here.
3031 */
3032 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3033 if (pos) {
3034 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3035 control &= ~PCI_MSI_FLAGS_ENABLE;
3036 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3037 }
3038 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3039 if (pos) {
3040 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3041 control &= ~PCI_MSIX_FLAGS_ENABLE;
3042 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3043 }
3044}
3045EXPORT_SYMBOL_GPL(pci_msi_off);
3046
3047int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3048{
3049 return dma_set_max_seg_size(&dev->dev, size);
3050}
3051EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3052
3053int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3054{
3055 return dma_set_seg_boundary(&dev->dev, mask);
3056}
3057EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3058
3059/**
3060 * pci_wait_for_pending_transaction - waits for pending transaction
3061 * @dev: the PCI device to operate on
3062 *
3063 * Return 0 if transaction is pending 1 otherwise.
3064 */
3065int pci_wait_for_pending_transaction(struct pci_dev *dev)
3066{
3067 if (!pci_is_pcie(dev))
3068 return 1;
3069
3070 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3071 PCI_EXP_DEVSTA_TRPND);
3072}
3073EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3074
3075static int pcie_flr(struct pci_dev *dev, int probe)
3076{
3077 u32 cap;
3078
3079 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3080 if (!(cap & PCI_EXP_DEVCAP_FLR))
3081 return -ENOTTY;
3082
3083 if (probe)
3084 return 0;
3085
3086 if (!pci_wait_for_pending_transaction(dev))
3087 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3088
3089 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3090
3091 msleep(100);
3092
3093 return 0;
3094}
3095
3096static int pci_af_flr(struct pci_dev *dev, int probe)
3097{
3098 int pos;
3099 u8 cap;
3100
3101 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3102 if (!pos)
3103 return -ENOTTY;
3104
3105 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3106 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3107 return -ENOTTY;
3108
3109 if (probe)
3110 return 0;
3111
3112 /* Wait for Transaction Pending bit clean */
3113 if (pci_wait_for_pending(dev, pos + PCI_AF_STATUS, PCI_AF_STATUS_TP))
3114 goto clear;
3115
3116 dev_err(&dev->dev, "transaction is not cleared; "
3117 "proceeding with reset anyway\n");
3118
3119clear:
3120 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3121 msleep(100);
3122
3123 return 0;
3124}
3125
3126/**
3127 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3128 * @dev: Device to reset.
3129 * @probe: If set, only check if the device can be reset this way.
3130 *
3131 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3132 * unset, it will be reinitialized internally when going from PCI_D3hot to
3133 * PCI_D0. If that's the case and the device is not in a low-power state
3134 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3135 *
3136 * NOTE: This causes the caller to sleep for twice the device power transition
3137 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3138 * by default (i.e. unless the @dev's d3_delay field has a different value).
3139 * Moreover, only devices in D0 can be reset by this function.
3140 */
3141static int pci_pm_reset(struct pci_dev *dev, int probe)
3142{
3143 u16 csr;
3144
3145 if (!dev->pm_cap)
3146 return -ENOTTY;
3147
3148 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3149 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3150 return -ENOTTY;
3151
3152 if (probe)
3153 return 0;
3154
3155 if (dev->current_state != PCI_D0)
3156 return -EINVAL;
3157
3158 csr &= ~PCI_PM_CTRL_STATE_MASK;
3159 csr |= PCI_D3hot;
3160 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3161 pci_dev_d3_sleep(dev);
3162
3163 csr &= ~PCI_PM_CTRL_STATE_MASK;
3164 csr |= PCI_D0;
3165 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3166 pci_dev_d3_sleep(dev);
3167
3168 return 0;
3169}
3170
3171/**
3172 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3173 * @dev: Bridge device
3174 *
3175 * Use the bridge control register to assert reset on the secondary bus.
3176 * Devices on the secondary bus are left in power-on state.
3177 */
3178void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3179{
3180 u16 ctrl;
3181
3182 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3183 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3184 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3185 /*
3186 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3187 * this to 2ms to ensure that we meet the minimum requirement.
3188 */
3189 msleep(2);
3190
3191 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3192 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3193
3194 /*
3195 * Trhfa for conventional PCI is 2^25 clock cycles.
3196 * Assuming a minimum 33MHz clock this results in a 1s
3197 * delay before we can consider subordinate devices to
3198 * be re-initialized. PCIe has some ways to shorten this,
3199 * but we don't make use of them yet.
3200 */
3201 ssleep(1);
3202}
3203EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3204
3205static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3206{
3207 struct pci_dev *pdev;
3208
3209 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3210 return -ENOTTY;
3211
3212 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3213 if (pdev != dev)
3214 return -ENOTTY;
3215
3216 if (probe)
3217 return 0;
3218
3219 pci_reset_bridge_secondary_bus(dev->bus->self);
3220
3221 return 0;
3222}
3223
3224static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3225{
3226 int rc = -ENOTTY;
3227
3228 if (!hotplug || !try_module_get(hotplug->ops->owner))
3229 return rc;
3230
3231 if (hotplug->ops->reset_slot)
3232 rc = hotplug->ops->reset_slot(hotplug, probe);
3233
3234 module_put(hotplug->ops->owner);
3235
3236 return rc;
3237}
3238
3239static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3240{
3241 struct pci_dev *pdev;
3242
3243 if (dev->subordinate || !dev->slot)
3244 return -ENOTTY;
3245
3246 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3247 if (pdev != dev && pdev->slot == dev->slot)
3248 return -ENOTTY;
3249
3250 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3251}
3252
3253static int __pci_dev_reset(struct pci_dev *dev, int probe)
3254{
3255 int rc;
3256
3257 might_sleep();
3258
3259 rc = pci_dev_specific_reset(dev, probe);
3260 if (rc != -ENOTTY)
3261 goto done;
3262
3263 rc = pcie_flr(dev, probe);
3264 if (rc != -ENOTTY)
3265 goto done;
3266
3267 rc = pci_af_flr(dev, probe);
3268 if (rc != -ENOTTY)
3269 goto done;
3270
3271 rc = pci_pm_reset(dev, probe);
3272 if (rc != -ENOTTY)
3273 goto done;
3274
3275 rc = pci_dev_reset_slot_function(dev, probe);
3276 if (rc != -ENOTTY)
3277 goto done;
3278
3279 rc = pci_parent_bus_reset(dev, probe);
3280done:
3281 return rc;
3282}
3283
3284static void pci_dev_lock(struct pci_dev *dev)
3285{
3286 pci_cfg_access_lock(dev);
3287 /* block PM suspend, driver probe, etc. */
3288 device_lock(&dev->dev);
3289}
3290
3291/* Return 1 on successful lock, 0 on contention */
3292static int pci_dev_trylock(struct pci_dev *dev)
3293{
3294 if (pci_cfg_access_trylock(dev)) {
3295 if (device_trylock(&dev->dev))
3296 return 1;
3297 pci_cfg_access_unlock(dev);
3298 }
3299
3300 return 0;
3301}
3302
3303static void pci_dev_unlock(struct pci_dev *dev)
3304{
3305 device_unlock(&dev->dev);
3306 pci_cfg_access_unlock(dev);
3307}
3308
3309static void pci_dev_save_and_disable(struct pci_dev *dev)
3310{
3311 /*
3312 * Wake-up device prior to save. PM registers default to D0 after
3313 * reset and a simple register restore doesn't reliably return
3314 * to a non-D0 state anyway.
3315 */
3316 pci_set_power_state(dev, PCI_D0);
3317
3318 pci_save_state(dev);
3319 /*
3320 * Disable the device by clearing the Command register, except for
3321 * INTx-disable which is set. This not only disables MMIO and I/O port
3322 * BARs, but also prevents the device from being Bus Master, preventing
3323 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3324 * compliant devices, INTx-disable prevents legacy interrupts.
3325 */
3326 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3327}
3328
3329static void pci_dev_restore(struct pci_dev *dev)
3330{
3331 pci_restore_state(dev);
3332}
3333
3334static int pci_dev_reset(struct pci_dev *dev, int probe)
3335{
3336 int rc;
3337
3338 if (!probe)
3339 pci_dev_lock(dev);
3340
3341 rc = __pci_dev_reset(dev, probe);
3342
3343 if (!probe)
3344 pci_dev_unlock(dev);
3345
3346 return rc;
3347}
3348/**
3349 * __pci_reset_function - reset a PCI device function
3350 * @dev: PCI device to reset
3351 *
3352 * Some devices allow an individual function to be reset without affecting
3353 * other functions in the same device. The PCI device must be responsive
3354 * to PCI config space in order to use this function.
3355 *
3356 * The device function is presumed to be unused when this function is called.
3357 * Resetting the device will make the contents of PCI configuration space
3358 * random, so any caller of this must be prepared to reinitialise the
3359 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3360 * etc.
3361 *
3362 * Returns 0 if the device function was successfully reset or negative if the
3363 * device doesn't support resetting a single function.
3364 */
3365int __pci_reset_function(struct pci_dev *dev)
3366{
3367 return pci_dev_reset(dev, 0);
3368}
3369EXPORT_SYMBOL_GPL(__pci_reset_function);
3370
3371/**
3372 * __pci_reset_function_locked - reset a PCI device function while holding
3373 * the @dev mutex lock.
3374 * @dev: PCI device to reset
3375 *
3376 * Some devices allow an individual function to be reset without affecting
3377 * other functions in the same device. The PCI device must be responsive
3378 * to PCI config space in order to use this function.
3379 *
3380 * The device function is presumed to be unused and the caller is holding
3381 * the device mutex lock when this function is called.
3382 * Resetting the device will make the contents of PCI configuration space
3383 * random, so any caller of this must be prepared to reinitialise the
3384 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3385 * etc.
3386 *
3387 * Returns 0 if the device function was successfully reset or negative if the
3388 * device doesn't support resetting a single function.
3389 */
3390int __pci_reset_function_locked(struct pci_dev *dev)
3391{
3392 return __pci_dev_reset(dev, 0);
3393}
3394EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3395
3396/**
3397 * pci_probe_reset_function - check whether the device can be safely reset
3398 * @dev: PCI device to reset
3399 *
3400 * Some devices allow an individual function to be reset without affecting
3401 * other functions in the same device. The PCI device must be responsive
3402 * to PCI config space in order to use this function.
3403 *
3404 * Returns 0 if the device function can be reset or negative if the
3405 * device doesn't support resetting a single function.
3406 */
3407int pci_probe_reset_function(struct pci_dev *dev)
3408{
3409 return pci_dev_reset(dev, 1);
3410}
3411
3412/**
3413 * pci_reset_function - quiesce and reset a PCI device function
3414 * @dev: PCI device to reset
3415 *
3416 * Some devices allow an individual function to be reset without affecting
3417 * other functions in the same device. The PCI device must be responsive
3418 * to PCI config space in order to use this function.
3419 *
3420 * This function does not just reset the PCI portion of a device, but
3421 * clears all the state associated with the device. This function differs
3422 * from __pci_reset_function in that it saves and restores device state
3423 * over the reset.
3424 *
3425 * Returns 0 if the device function was successfully reset or negative if the
3426 * device doesn't support resetting a single function.
3427 */
3428int pci_reset_function(struct pci_dev *dev)
3429{
3430 int rc;
3431
3432 rc = pci_dev_reset(dev, 1);
3433 if (rc)
3434 return rc;
3435
3436 pci_dev_save_and_disable(dev);
3437
3438 rc = pci_dev_reset(dev, 0);
3439
3440 pci_dev_restore(dev);
3441
3442 return rc;
3443}
3444EXPORT_SYMBOL_GPL(pci_reset_function);
3445
3446/**
3447 * pci_try_reset_function - quiesce and reset a PCI device function
3448 * @dev: PCI device to reset
3449 *
3450 * Same as above, except return -EAGAIN if unable to lock device.
3451 */
3452int pci_try_reset_function(struct pci_dev *dev)
3453{
3454 int rc;
3455
3456 rc = pci_dev_reset(dev, 1);
3457 if (rc)
3458 return rc;
3459
3460 pci_dev_save_and_disable(dev);
3461
3462 if (pci_dev_trylock(dev)) {
3463 rc = __pci_dev_reset(dev, 0);
3464 pci_dev_unlock(dev);
3465 } else
3466 rc = -EAGAIN;
3467
3468 pci_dev_restore(dev);
3469
3470 return rc;
3471}
3472EXPORT_SYMBOL_GPL(pci_try_reset_function);
3473
3474/* Lock devices from the top of the tree down */
3475static void pci_bus_lock(struct pci_bus *bus)
3476{
3477 struct pci_dev *dev;
3478
3479 list_for_each_entry(dev, &bus->devices, bus_list) {
3480 pci_dev_lock(dev);
3481 if (dev->subordinate)
3482 pci_bus_lock(dev->subordinate);
3483 }
3484}
3485
3486/* Unlock devices from the bottom of the tree up */
3487static void pci_bus_unlock(struct pci_bus *bus)
3488{
3489 struct pci_dev *dev;
3490
3491 list_for_each_entry(dev, &bus->devices, bus_list) {
3492 if (dev->subordinate)
3493 pci_bus_unlock(dev->subordinate);
3494 pci_dev_unlock(dev);
3495 }
3496}
3497
3498/* Return 1 on successful lock, 0 on contention */
3499static int pci_bus_trylock(struct pci_bus *bus)
3500{
3501 struct pci_dev *dev;
3502
3503 list_for_each_entry(dev, &bus->devices, bus_list) {
3504 if (!pci_dev_trylock(dev))
3505 goto unlock;
3506 if (dev->subordinate) {
3507 if (!pci_bus_trylock(dev->subordinate)) {
3508 pci_dev_unlock(dev);
3509 goto unlock;
3510 }
3511 }
3512 }
3513 return 1;
3514
3515unlock:
3516 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3517 if (dev->subordinate)
3518 pci_bus_unlock(dev->subordinate);
3519 pci_dev_unlock(dev);
3520 }
3521 return 0;
3522}
3523
3524/* Lock devices from the top of the tree down */
3525static void pci_slot_lock(struct pci_slot *slot)
3526{
3527 struct pci_dev *dev;
3528
3529 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3530 if (!dev->slot || dev->slot != slot)
3531 continue;
3532 pci_dev_lock(dev);
3533 if (dev->subordinate)
3534 pci_bus_lock(dev->subordinate);
3535 }
3536}
3537
3538/* Unlock devices from the bottom of the tree up */
3539static void pci_slot_unlock(struct pci_slot *slot)
3540{
3541 struct pci_dev *dev;
3542
3543 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3544 if (!dev->slot || dev->slot != slot)
3545 continue;
3546 if (dev->subordinate)
3547 pci_bus_unlock(dev->subordinate);
3548 pci_dev_unlock(dev);
3549 }
3550}
3551
3552/* Return 1 on successful lock, 0 on contention */
3553static int pci_slot_trylock(struct pci_slot *slot)
3554{
3555 struct pci_dev *dev;
3556
3557 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3558 if (!dev->slot || dev->slot != slot)
3559 continue;
3560 if (!pci_dev_trylock(dev))
3561 goto unlock;
3562 if (dev->subordinate) {
3563 if (!pci_bus_trylock(dev->subordinate)) {
3564 pci_dev_unlock(dev);
3565 goto unlock;
3566 }
3567 }
3568 }
3569 return 1;
3570
3571unlock:
3572 list_for_each_entry_continue_reverse(dev,
3573 &slot->bus->devices, bus_list) {
3574 if (!dev->slot || dev->slot != slot)
3575 continue;
3576 if (dev->subordinate)
3577 pci_bus_unlock(dev->subordinate);
3578 pci_dev_unlock(dev);
3579 }
3580 return 0;
3581}
3582
3583/* Save and disable devices from the top of the tree down */
3584static void pci_bus_save_and_disable(struct pci_bus *bus)
3585{
3586 struct pci_dev *dev;
3587
3588 list_for_each_entry(dev, &bus->devices, bus_list) {
3589 pci_dev_save_and_disable(dev);
3590 if (dev->subordinate)
3591 pci_bus_save_and_disable(dev->subordinate);
3592 }
3593}
3594
3595/*
3596 * Restore devices from top of the tree down - parent bridges need to be
3597 * restored before we can get to subordinate devices.
3598 */
3599static void pci_bus_restore(struct pci_bus *bus)
3600{
3601 struct pci_dev *dev;
3602
3603 list_for_each_entry(dev, &bus->devices, bus_list) {
3604 pci_dev_restore(dev);
3605 if (dev->subordinate)
3606 pci_bus_restore(dev->subordinate);
3607 }
3608}
3609
3610/* Save and disable devices from the top of the tree down */
3611static void pci_slot_save_and_disable(struct pci_slot *slot)
3612{
3613 struct pci_dev *dev;
3614
3615 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3616 if (!dev->slot || dev->slot != slot)
3617 continue;
3618 pci_dev_save_and_disable(dev);
3619 if (dev->subordinate)
3620 pci_bus_save_and_disable(dev->subordinate);
3621 }
3622}
3623
3624/*
3625 * Restore devices from top of the tree down - parent bridges need to be
3626 * restored before we can get to subordinate devices.
3627 */
3628static void pci_slot_restore(struct pci_slot *slot)
3629{
3630 struct pci_dev *dev;
3631
3632 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3633 if (!dev->slot || dev->slot != slot)
3634 continue;
3635 pci_dev_restore(dev);
3636 if (dev->subordinate)
3637 pci_bus_restore(dev->subordinate);
3638 }
3639}
3640
3641static int pci_slot_reset(struct pci_slot *slot, int probe)
3642{
3643 int rc;
3644
3645 if (!slot)
3646 return -ENOTTY;
3647
3648 if (!probe)
3649 pci_slot_lock(slot);
3650
3651 might_sleep();
3652
3653 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3654
3655 if (!probe)
3656 pci_slot_unlock(slot);
3657
3658 return rc;
3659}
3660
3661/**
3662 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3663 * @slot: PCI slot to probe
3664 *
3665 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3666 */
3667int pci_probe_reset_slot(struct pci_slot *slot)
3668{
3669 return pci_slot_reset(slot, 1);
3670}
3671EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3672
3673/**
3674 * pci_reset_slot - reset a PCI slot
3675 * @slot: PCI slot to reset
3676 *
3677 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3678 * independent of other slots. For instance, some slots may support slot power
3679 * control. In the case of a 1:1 bus to slot architecture, this function may
3680 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3681 * Generally a slot reset should be attempted before a bus reset. All of the
3682 * function of the slot and any subordinate buses behind the slot are reset
3683 * through this function. PCI config space of all devices in the slot and
3684 * behind the slot is saved before and restored after reset.
3685 *
3686 * Return 0 on success, non-zero on error.
3687 */
3688int pci_reset_slot(struct pci_slot *slot)
3689{
3690 int rc;
3691
3692 rc = pci_slot_reset(slot, 1);
3693 if (rc)
3694 return rc;
3695
3696 pci_slot_save_and_disable(slot);
3697
3698 rc = pci_slot_reset(slot, 0);
3699
3700 pci_slot_restore(slot);
3701
3702 return rc;
3703}
3704EXPORT_SYMBOL_GPL(pci_reset_slot);
3705
3706/**
3707 * pci_try_reset_slot - Try to reset a PCI slot
3708 * @slot: PCI slot to reset
3709 *
3710 * Same as above except return -EAGAIN if the slot cannot be locked
3711 */
3712int pci_try_reset_slot(struct pci_slot *slot)
3713{
3714 int rc;
3715
3716 rc = pci_slot_reset(slot, 1);
3717 if (rc)
3718 return rc;
3719
3720 pci_slot_save_and_disable(slot);
3721
3722 if (pci_slot_trylock(slot)) {
3723 might_sleep();
3724 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3725 pci_slot_unlock(slot);
3726 } else
3727 rc = -EAGAIN;
3728
3729 pci_slot_restore(slot);
3730
3731 return rc;
3732}
3733EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3734
3735static int pci_bus_reset(struct pci_bus *bus, int probe)
3736{
3737 if (!bus->self)
3738 return -ENOTTY;
3739
3740 if (probe)
3741 return 0;
3742
3743 pci_bus_lock(bus);
3744
3745 might_sleep();
3746
3747 pci_reset_bridge_secondary_bus(bus->self);
3748
3749 pci_bus_unlock(bus);
3750
3751 return 0;
3752}
3753
3754/**
3755 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3756 * @bus: PCI bus to probe
3757 *
3758 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3759 */
3760int pci_probe_reset_bus(struct pci_bus *bus)
3761{
3762 return pci_bus_reset(bus, 1);
3763}
3764EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3765
3766/**
3767 * pci_reset_bus - reset a PCI bus
3768 * @bus: top level PCI bus to reset
3769 *
3770 * Do a bus reset on the given bus and any subordinate buses, saving
3771 * and restoring state of all devices.
3772 *
3773 * Return 0 on success, non-zero on error.
3774 */
3775int pci_reset_bus(struct pci_bus *bus)
3776{
3777 int rc;
3778
3779 rc = pci_bus_reset(bus, 1);
3780 if (rc)
3781 return rc;
3782
3783 pci_bus_save_and_disable(bus);
3784
3785 rc = pci_bus_reset(bus, 0);
3786
3787 pci_bus_restore(bus);
3788
3789 return rc;
3790}
3791EXPORT_SYMBOL_GPL(pci_reset_bus);
3792
3793/**
3794 * pci_try_reset_bus - Try to reset a PCI bus
3795 * @bus: top level PCI bus to reset
3796 *
3797 * Same as above except return -EAGAIN if the bus cannot be locked
3798 */
3799int pci_try_reset_bus(struct pci_bus *bus)
3800{
3801 int rc;
3802
3803 rc = pci_bus_reset(bus, 1);
3804 if (rc)
3805 return rc;
3806
3807 pci_bus_save_and_disable(bus);
3808
3809 if (pci_bus_trylock(bus)) {
3810 might_sleep();
3811 pci_reset_bridge_secondary_bus(bus->self);
3812 pci_bus_unlock(bus);
3813 } else
3814 rc = -EAGAIN;
3815
3816 pci_bus_restore(bus);
3817
3818 return rc;
3819}
3820EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3821
3822/**
3823 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3824 * @dev: PCI device to query
3825 *
3826 * Returns mmrbc: maximum designed memory read count in bytes
3827 * or appropriate error value.
3828 */
3829int pcix_get_max_mmrbc(struct pci_dev *dev)
3830{
3831 int cap;
3832 u32 stat;
3833
3834 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3835 if (!cap)
3836 return -EINVAL;
3837
3838 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3839 return -EINVAL;
3840
3841 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3842}
3843EXPORT_SYMBOL(pcix_get_max_mmrbc);
3844
3845/**
3846 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3847 * @dev: PCI device to query
3848 *
3849 * Returns mmrbc: maximum memory read count in bytes
3850 * or appropriate error value.
3851 */
3852int pcix_get_mmrbc(struct pci_dev *dev)
3853{
3854 int cap;
3855 u16 cmd;
3856
3857 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3858 if (!cap)
3859 return -EINVAL;
3860
3861 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3862 return -EINVAL;
3863
3864 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3865}
3866EXPORT_SYMBOL(pcix_get_mmrbc);
3867
3868/**
3869 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3870 * @dev: PCI device to query
3871 * @mmrbc: maximum memory read count in bytes
3872 * valid values are 512, 1024, 2048, 4096
3873 *
3874 * If possible sets maximum memory read byte count, some bridges have erratas
3875 * that prevent this.
3876 */
3877int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3878{
3879 int cap;
3880 u32 stat, v, o;
3881 u16 cmd;
3882
3883 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3884 return -EINVAL;
3885
3886 v = ffs(mmrbc) - 10;
3887
3888 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3889 if (!cap)
3890 return -EINVAL;
3891
3892 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3893 return -EINVAL;
3894
3895 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3896 return -E2BIG;
3897
3898 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3899 return -EINVAL;
3900
3901 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3902 if (o != v) {
3903 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3904 return -EIO;
3905
3906 cmd &= ~PCI_X_CMD_MAX_READ;
3907 cmd |= v << 2;
3908 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3909 return -EIO;
3910 }
3911 return 0;
3912}
3913EXPORT_SYMBOL(pcix_set_mmrbc);
3914
3915/**
3916 * pcie_get_readrq - get PCI Express read request size
3917 * @dev: PCI device to query
3918 *
3919 * Returns maximum memory read request in bytes
3920 * or appropriate error value.
3921 */
3922int pcie_get_readrq(struct pci_dev *dev)
3923{
3924 u16 ctl;
3925
3926 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3927
3928 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3929}
3930EXPORT_SYMBOL(pcie_get_readrq);
3931
3932/**
3933 * pcie_set_readrq - set PCI Express maximum memory read request
3934 * @dev: PCI device to query
3935 * @rq: maximum memory read count in bytes
3936 * valid values are 128, 256, 512, 1024, 2048, 4096
3937 *
3938 * If possible sets maximum memory read request in bytes
3939 */
3940int pcie_set_readrq(struct pci_dev *dev, int rq)
3941{
3942 u16 v;
3943
3944 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3945 return -EINVAL;
3946
3947 /*
3948 * If using the "performance" PCIe config, we clamp the
3949 * read rq size to the max packet size to prevent the
3950 * host bridge generating requests larger than we can
3951 * cope with
3952 */
3953 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3954 int mps = pcie_get_mps(dev);
3955
3956 if (mps < rq)
3957 rq = mps;
3958 }
3959
3960 v = (ffs(rq) - 8) << 12;
3961
3962 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3963 PCI_EXP_DEVCTL_READRQ, v);
3964}
3965EXPORT_SYMBOL(pcie_set_readrq);
3966
3967/**
3968 * pcie_get_mps - get PCI Express maximum payload size
3969 * @dev: PCI device to query
3970 *
3971 * Returns maximum payload size in bytes
3972 */
3973int pcie_get_mps(struct pci_dev *dev)
3974{
3975 u16 ctl;
3976
3977 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3978
3979 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3980}
3981EXPORT_SYMBOL(pcie_get_mps);
3982
3983/**
3984 * pcie_set_mps - set PCI Express maximum payload size
3985 * @dev: PCI device to query
3986 * @mps: maximum payload size in bytes
3987 * valid values are 128, 256, 512, 1024, 2048, 4096
3988 *
3989 * If possible sets maximum payload size
3990 */
3991int pcie_set_mps(struct pci_dev *dev, int mps)
3992{
3993 u16 v;
3994
3995 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3996 return -EINVAL;
3997
3998 v = ffs(mps) - 8;
3999 if (v > dev->pcie_mpss)
4000 return -EINVAL;
4001 v <<= 5;
4002
4003 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4004 PCI_EXP_DEVCTL_PAYLOAD, v);
4005}
4006EXPORT_SYMBOL(pcie_set_mps);
4007
4008/**
4009 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4010 * @dev: PCI device to query
4011 * @speed: storage for minimum speed
4012 * @width: storage for minimum width
4013 *
4014 * This function will walk up the PCI device chain and determine the minimum
4015 * link width and speed of the device.
4016 */
4017int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4018 enum pcie_link_width *width)
4019{
4020 int ret;
4021
4022 *speed = PCI_SPEED_UNKNOWN;
4023 *width = PCIE_LNK_WIDTH_UNKNOWN;
4024
4025 while (dev) {
4026 u16 lnksta;
4027 enum pci_bus_speed next_speed;
4028 enum pcie_link_width next_width;
4029
4030 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4031 if (ret)
4032 return ret;
4033
4034 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4035 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4036 PCI_EXP_LNKSTA_NLW_SHIFT;
4037
4038 if (next_speed < *speed)
4039 *speed = next_speed;
4040
4041 if (next_width < *width)
4042 *width = next_width;
4043
4044 dev = dev->bus->self;
4045 }
4046
4047 return 0;
4048}
4049EXPORT_SYMBOL(pcie_get_minimum_link);
4050
4051/**
4052 * pci_select_bars - Make BAR mask from the type of resource
4053 * @dev: the PCI device for which BAR mask is made
4054 * @flags: resource type mask to be selected
4055 *
4056 * This helper routine makes bar mask from the type of resource.
4057 */
4058int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4059{
4060 int i, bars = 0;
4061 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4062 if (pci_resource_flags(dev, i) & flags)
4063 bars |= (1 << i);
4064 return bars;
4065}
4066
4067/**
4068 * pci_resource_bar - get position of the BAR associated with a resource
4069 * @dev: the PCI device
4070 * @resno: the resource number
4071 * @type: the BAR type to be filled in
4072 *
4073 * Returns BAR position in config space, or 0 if the BAR is invalid.
4074 */
4075int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4076{
4077 int reg;
4078
4079 if (resno < PCI_ROM_RESOURCE) {
4080 *type = pci_bar_unknown;
4081 return PCI_BASE_ADDRESS_0 + 4 * resno;
4082 } else if (resno == PCI_ROM_RESOURCE) {
4083 *type = pci_bar_mem32;
4084 return dev->rom_base_reg;
4085 } else if (resno < PCI_BRIDGE_RESOURCES) {
4086 /* device specific resource */
4087 reg = pci_iov_resource_bar(dev, resno, type);
4088 if (reg)
4089 return reg;
4090 }
4091
4092 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4093 return 0;
4094}
4095
4096/* Some architectures require additional programming to enable VGA */
4097static arch_set_vga_state_t arch_set_vga_state;
4098
4099void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4100{
4101 arch_set_vga_state = func; /* NULL disables */
4102}
4103
4104static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4105 unsigned int command_bits, u32 flags)
4106{
4107 if (arch_set_vga_state)
4108 return arch_set_vga_state(dev, decode, command_bits,
4109 flags);
4110 return 0;
4111}
4112
4113/**
4114 * pci_set_vga_state - set VGA decode state on device and parents if requested
4115 * @dev: the PCI device
4116 * @decode: true = enable decoding, false = disable decoding
4117 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4118 * @flags: traverse ancestors and change bridges
4119 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4120 */
4121int pci_set_vga_state(struct pci_dev *dev, bool decode,
4122 unsigned int command_bits, u32 flags)
4123{
4124 struct pci_bus *bus;
4125 struct pci_dev *bridge;
4126 u16 cmd;
4127 int rc;
4128
4129 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4130
4131 /* ARCH specific VGA enables */
4132 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4133 if (rc)
4134 return rc;
4135
4136 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4137 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4138 if (decode == true)
4139 cmd |= command_bits;
4140 else
4141 cmd &= ~command_bits;
4142 pci_write_config_word(dev, PCI_COMMAND, cmd);
4143 }
4144
4145 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4146 return 0;
4147
4148 bus = dev->bus;
4149 while (bus) {
4150 bridge = bus->self;
4151 if (bridge) {
4152 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4153 &cmd);
4154 if (decode == true)
4155 cmd |= PCI_BRIDGE_CTL_VGA;
4156 else
4157 cmd &= ~PCI_BRIDGE_CTL_VGA;
4158 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4159 cmd);
4160 }
4161 bus = bus->parent;
4162 }
4163 return 0;
4164}
4165
4166bool pci_device_is_present(struct pci_dev *pdev)
4167{
4168 u32 v;
4169
4170 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4171}
4172EXPORT_SYMBOL_GPL(pci_device_is_present);
4173
4174#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4175static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4176static DEFINE_SPINLOCK(resource_alignment_lock);
4177
4178/**
4179 * pci_specified_resource_alignment - get resource alignment specified by user.
4180 * @dev: the PCI device to get
4181 *
4182 * RETURNS: Resource alignment if it is specified.
4183 * Zero if it is not specified.
4184 */
4185static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4186{
4187 int seg, bus, slot, func, align_order, count;
4188 resource_size_t align = 0;
4189 char *p;
4190
4191 spin_lock(&resource_alignment_lock);
4192 p = resource_alignment_param;
4193 while (*p) {
4194 count = 0;
4195 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4196 p[count] == '@') {
4197 p += count + 1;
4198 } else {
4199 align_order = -1;
4200 }
4201 if (sscanf(p, "%x:%x:%x.%x%n",
4202 &seg, &bus, &slot, &func, &count) != 4) {
4203 seg = 0;
4204 if (sscanf(p, "%x:%x.%x%n",
4205 &bus, &slot, &func, &count) != 3) {
4206 /* Invalid format */
4207 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4208 p);
4209 break;
4210 }
4211 }
4212 p += count;
4213 if (seg == pci_domain_nr(dev->bus) &&
4214 bus == dev->bus->number &&
4215 slot == PCI_SLOT(dev->devfn) &&
4216 func == PCI_FUNC(dev->devfn)) {
4217 if (align_order == -1) {
4218 align = PAGE_SIZE;
4219 } else {
4220 align = 1 << align_order;
4221 }
4222 /* Found */
4223 break;
4224 }
4225 if (*p != ';' && *p != ',') {
4226 /* End of param or invalid format */
4227 break;
4228 }
4229 p++;
4230 }
4231 spin_unlock(&resource_alignment_lock);
4232 return align;
4233}
4234
4235/*
4236 * This function disables memory decoding and releases memory resources
4237 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4238 * It also rounds up size to specified alignment.
4239 * Later on, the kernel will assign page-aligned memory resource back
4240 * to the device.
4241 */
4242void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4243{
4244 int i;
4245 struct resource *r;
4246 resource_size_t align, size;
4247 u16 command;
4248
4249 /* check if specified PCI is target device to reassign */
4250 align = pci_specified_resource_alignment(dev);
4251 if (!align)
4252 return;
4253
4254 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4255 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4256 dev_warn(&dev->dev,
4257 "Can't reassign resources to host bridge.\n");
4258 return;
4259 }
4260
4261 dev_info(&dev->dev,
4262 "Disabling memory decoding and releasing memory resources.\n");
4263 pci_read_config_word(dev, PCI_COMMAND, &command);
4264 command &= ~PCI_COMMAND_MEMORY;
4265 pci_write_config_word(dev, PCI_COMMAND, command);
4266
4267 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4268 r = &dev->resource[i];
4269 if (!(r->flags & IORESOURCE_MEM))
4270 continue;
4271 size = resource_size(r);
4272 if (size < align) {
4273 size = align;
4274 dev_info(&dev->dev,
4275 "Rounding up size of resource #%d to %#llx.\n",
4276 i, (unsigned long long)size);
4277 }
4278 r->flags |= IORESOURCE_UNSET;
4279 r->end = size - 1;
4280 r->start = 0;
4281 }
4282 /* Need to disable bridge's resource window,
4283 * to enable the kernel to reassign new resource
4284 * window later on.
4285 */
4286 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4287 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4288 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4289 r = &dev->resource[i];
4290 if (!(r->flags & IORESOURCE_MEM))
4291 continue;
4292 r->flags |= IORESOURCE_UNSET;
4293 r->end = resource_size(r) - 1;
4294 r->start = 0;
4295 }
4296 pci_disable_bridge_window(dev);
4297 }
4298}
4299
4300static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4301{
4302 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4303 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4304 spin_lock(&resource_alignment_lock);
4305 strncpy(resource_alignment_param, buf, count);
4306 resource_alignment_param[count] = '\0';
4307 spin_unlock(&resource_alignment_lock);
4308 return count;
4309}
4310
4311static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4312{
4313 size_t count;
4314 spin_lock(&resource_alignment_lock);
4315 count = snprintf(buf, size, "%s", resource_alignment_param);
4316 spin_unlock(&resource_alignment_lock);
4317 return count;
4318}
4319
4320static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4321{
4322 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4323}
4324
4325static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4326 const char *buf, size_t count)
4327{
4328 return pci_set_resource_alignment_param(buf, count);
4329}
4330
4331BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4332 pci_resource_alignment_store);
4333
4334static int __init pci_resource_alignment_sysfs_init(void)
4335{
4336 return bus_create_file(&pci_bus_type,
4337 &bus_attr_resource_alignment);
4338}
4339
4340late_initcall(pci_resource_alignment_sysfs_init);
4341
4342static void pci_no_domains(void)
4343{
4344#ifdef CONFIG_PCI_DOMAINS
4345 pci_domains_supported = 0;
4346#endif
4347}
4348
4349/**
4350 * pci_ext_cfg_avail - can we access extended PCI config space?
4351 *
4352 * Returns 1 if we can access PCI extended config space (offsets
4353 * greater than 0xff). This is the default implementation. Architecture
4354 * implementations can override this.
4355 */
4356int __weak pci_ext_cfg_avail(void)
4357{
4358 return 1;
4359}
4360
4361void __weak pci_fixup_cardbus(struct pci_bus *bus)
4362{
4363}
4364EXPORT_SYMBOL(pci_fixup_cardbus);
4365
4366static int __init pci_setup(char *str)
4367{
4368 while (str) {
4369 char *k = strchr(str, ',');
4370 if (k)
4371 *k++ = 0;
4372 if (*str && (str = pcibios_setup(str)) && *str) {
4373 if (!strcmp(str, "nomsi")) {
4374 pci_no_msi();
4375 } else if (!strcmp(str, "noaer")) {
4376 pci_no_aer();
4377 } else if (!strncmp(str, "realloc=", 8)) {
4378 pci_realloc_get_opt(str + 8);
4379 } else if (!strncmp(str, "realloc", 7)) {
4380 pci_realloc_get_opt("on");
4381 } else if (!strcmp(str, "nodomains")) {
4382 pci_no_domains();
4383 } else if (!strncmp(str, "noari", 5)) {
4384 pcie_ari_disabled = true;
4385 } else if (!strncmp(str, "cbiosize=", 9)) {
4386 pci_cardbus_io_size = memparse(str + 9, &str);
4387 } else if (!strncmp(str, "cbmemsize=", 10)) {
4388 pci_cardbus_mem_size = memparse(str + 10, &str);
4389 } else if (!strncmp(str, "resource_alignment=", 19)) {
4390 pci_set_resource_alignment_param(str + 19,
4391 strlen(str + 19));
4392 } else if (!strncmp(str, "ecrc=", 5)) {
4393 pcie_ecrc_get_policy(str + 5);
4394 } else if (!strncmp(str, "hpiosize=", 9)) {
4395 pci_hotplug_io_size = memparse(str + 9, &str);
4396 } else if (!strncmp(str, "hpmemsize=", 10)) {
4397 pci_hotplug_mem_size = memparse(str + 10, &str);
4398 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4399 pcie_bus_config = PCIE_BUS_TUNE_OFF;
4400 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4401 pcie_bus_config = PCIE_BUS_SAFE;
4402 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4403 pcie_bus_config = PCIE_BUS_PERFORMANCE;
4404 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4405 pcie_bus_config = PCIE_BUS_PEER2PEER;
4406 } else if (!strncmp(str, "pcie_scan_all", 13)) {
4407 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4408 } else {
4409 printk(KERN_ERR "PCI: Unknown option `%s'\n",
4410 str);
4411 }
4412 }
4413 str = k;
4414 }
4415 return 0;
4416}
4417early_param("pci", pci_setup);
4418
4419EXPORT_SYMBOL(pci_reenable_device);
4420EXPORT_SYMBOL(pci_enable_device_io);
4421EXPORT_SYMBOL(pci_enable_device_mem);
4422EXPORT_SYMBOL(pci_enable_device);
4423EXPORT_SYMBOL(pcim_enable_device);
4424EXPORT_SYMBOL(pcim_pin_device);
4425EXPORT_SYMBOL(pci_disable_device);
4426EXPORT_SYMBOL(pci_find_capability);
4427EXPORT_SYMBOL(pci_bus_find_capability);
4428EXPORT_SYMBOL(pci_release_regions);
4429EXPORT_SYMBOL(pci_request_regions);
4430EXPORT_SYMBOL(pci_request_regions_exclusive);
4431EXPORT_SYMBOL(pci_release_region);
4432EXPORT_SYMBOL(pci_request_region);
4433EXPORT_SYMBOL(pci_request_region_exclusive);
4434EXPORT_SYMBOL(pci_release_selected_regions);
4435EXPORT_SYMBOL(pci_request_selected_regions);
4436EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4437EXPORT_SYMBOL(pci_set_master);
4438EXPORT_SYMBOL(pci_clear_master);
4439EXPORT_SYMBOL(pci_set_mwi);
4440EXPORT_SYMBOL(pci_try_set_mwi);
4441EXPORT_SYMBOL(pci_clear_mwi);
4442EXPORT_SYMBOL_GPL(pci_intx);
4443EXPORT_SYMBOL(pci_assign_resource);
4444EXPORT_SYMBOL(pci_find_parent_resource);
4445EXPORT_SYMBOL(pci_select_bars);
4446
4447EXPORT_SYMBOL(pci_set_power_state);
4448EXPORT_SYMBOL(pci_save_state);
4449EXPORT_SYMBOL(pci_restore_state);
4450EXPORT_SYMBOL(pci_pme_capable);
4451EXPORT_SYMBOL(pci_pme_active);
4452EXPORT_SYMBOL(pci_wake_from_d3);
4453EXPORT_SYMBOL(pci_prepare_to_sleep);
4454EXPORT_SYMBOL(pci_back_from_sleep);
4455EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);