Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v3.5.6
   1/*
   2 *  linux/drivers/mmc/core/core.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/completion.h>
  17#include <linux/device.h>
  18#include <linux/delay.h>
  19#include <linux/pagemap.h>
  20#include <linux/err.h>
  21#include <linux/leds.h>
  22#include <linux/scatterlist.h>
  23#include <linux/log2.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/pm_runtime.h>
 
  26#include <linux/suspend.h>
  27#include <linux/fault-inject.h>
  28#include <linux/random.h>
 
 
  29
  30#include <linux/mmc/card.h>
  31#include <linux/mmc/host.h>
  32#include <linux/mmc/mmc.h>
  33#include <linux/mmc/sd.h>
 
  34
  35#include "core.h"
  36#include "bus.h"
  37#include "host.h"
  38#include "sdio_bus.h"
  39
  40#include "mmc_ops.h"
  41#include "sd_ops.h"
  42#include "sdio_ops.h"
  43
 
 
 
 
 
 
 
 
 
  44static struct workqueue_struct *workqueue;
  45static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  46
  47/*
  48 * Enabling software CRCs on the data blocks can be a significant (30%)
  49 * performance cost, and for other reasons may not always be desired.
  50 * So we allow it it to be disabled.
  51 */
  52bool use_spi_crc = 1;
  53module_param(use_spi_crc, bool, 0);
  54
  55/*
  56 * We normally treat cards as removed during suspend if they are not
  57 * known to be on a non-removable bus, to avoid the risk of writing
  58 * back data to a different card after resume.  Allow this to be
  59 * overridden if necessary.
  60 */
  61#ifdef CONFIG_MMC_UNSAFE_RESUME
  62bool mmc_assume_removable;
  63#else
  64bool mmc_assume_removable = 1;
  65#endif
  66EXPORT_SYMBOL(mmc_assume_removable);
  67module_param_named(removable, mmc_assume_removable, bool, 0644);
  68MODULE_PARM_DESC(
  69	removable,
  70	"MMC/SD cards are removable and may be removed during suspend");
  71
  72/*
  73 * Internal function. Schedule delayed work in the MMC work queue.
  74 */
  75static int mmc_schedule_delayed_work(struct delayed_work *work,
  76				     unsigned long delay)
  77{
  78	return queue_delayed_work(workqueue, work, delay);
  79}
  80
  81/*
  82 * Internal function. Flush all scheduled work from the MMC work queue.
  83 */
  84static void mmc_flush_scheduled_work(void)
  85{
  86	flush_workqueue(workqueue);
  87}
  88
  89#ifdef CONFIG_FAIL_MMC_REQUEST
  90
  91/*
  92 * Internal function. Inject random data errors.
  93 * If mmc_data is NULL no errors are injected.
  94 */
  95static void mmc_should_fail_request(struct mmc_host *host,
  96				    struct mmc_request *mrq)
  97{
  98	struct mmc_command *cmd = mrq->cmd;
  99	struct mmc_data *data = mrq->data;
 100	static const int data_errors[] = {
 101		-ETIMEDOUT,
 102		-EILSEQ,
 103		-EIO,
 104	};
 105
 106	if (!data)
 107		return;
 108
 109	if (cmd->error || data->error ||
 110	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
 111		return;
 112
 113	data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
 114	data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
 115}
 116
 117#else /* CONFIG_FAIL_MMC_REQUEST */
 118
 119static inline void mmc_should_fail_request(struct mmc_host *host,
 120					   struct mmc_request *mrq)
 121{
 122}
 123
 124#endif /* CONFIG_FAIL_MMC_REQUEST */
 125
 126/**
 127 *	mmc_request_done - finish processing an MMC request
 128 *	@host: MMC host which completed request
 129 *	@mrq: MMC request which request
 130 *
 131 *	MMC drivers should call this function when they have completed
 132 *	their processing of a request.
 133 */
 134void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 135{
 136	struct mmc_command *cmd = mrq->cmd;
 137	int err = cmd->error;
 138
 139	if (err && cmd->retries && mmc_host_is_spi(host)) {
 140		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 141			cmd->retries = 0;
 142	}
 143
 144	if (err && cmd->retries && !mmc_card_removed(host->card)) {
 145		/*
 146		 * Request starter must handle retries - see
 147		 * mmc_wait_for_req_done().
 148		 */
 149		if (mrq->done)
 150			mrq->done(mrq);
 151	} else {
 152		mmc_should_fail_request(host, mrq);
 153
 154		led_trigger_event(host->led, LED_OFF);
 155
 156		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 157			mmc_hostname(host), cmd->opcode, err,
 158			cmd->resp[0], cmd->resp[1],
 159			cmd->resp[2], cmd->resp[3]);
 160
 161		if (mrq->data) {
 162			pr_debug("%s:     %d bytes transferred: %d\n",
 163				mmc_hostname(host),
 164				mrq->data->bytes_xfered, mrq->data->error);
 165		}
 166
 167		if (mrq->stop) {
 168			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 169				mmc_hostname(host), mrq->stop->opcode,
 170				mrq->stop->error,
 171				mrq->stop->resp[0], mrq->stop->resp[1],
 172				mrq->stop->resp[2], mrq->stop->resp[3]);
 173		}
 174
 175		if (mrq->done)
 176			mrq->done(mrq);
 177
 178		mmc_host_clk_release(host);
 179	}
 180}
 181
 182EXPORT_SYMBOL(mmc_request_done);
 183
 184static void
 185mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 186{
 187#ifdef CONFIG_MMC_DEBUG
 188	unsigned int i, sz;
 189	struct scatterlist *sg;
 190#endif
 191
 192	if (mrq->sbc) {
 193		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 194			 mmc_hostname(host), mrq->sbc->opcode,
 195			 mrq->sbc->arg, mrq->sbc->flags);
 196	}
 197
 198	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
 199		 mmc_hostname(host), mrq->cmd->opcode,
 200		 mrq->cmd->arg, mrq->cmd->flags);
 201
 202	if (mrq->data) {
 203		pr_debug("%s:     blksz %d blocks %d flags %08x "
 204			"tsac %d ms nsac %d\n",
 205			mmc_hostname(host), mrq->data->blksz,
 206			mrq->data->blocks, mrq->data->flags,
 207			mrq->data->timeout_ns / 1000000,
 208			mrq->data->timeout_clks);
 209	}
 210
 211	if (mrq->stop) {
 212		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 213			 mmc_hostname(host), mrq->stop->opcode,
 214			 mrq->stop->arg, mrq->stop->flags);
 215	}
 216
 217	WARN_ON(!host->claimed);
 218
 219	mrq->cmd->error = 0;
 220	mrq->cmd->mrq = mrq;
 221	if (mrq->data) {
 222		BUG_ON(mrq->data->blksz > host->max_blk_size);
 223		BUG_ON(mrq->data->blocks > host->max_blk_count);
 224		BUG_ON(mrq->data->blocks * mrq->data->blksz >
 225			host->max_req_size);
 226
 227#ifdef CONFIG_MMC_DEBUG
 228		sz = 0;
 229		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 230			sz += sg->length;
 231		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
 232#endif
 233
 234		mrq->cmd->data = mrq->data;
 235		mrq->data->error = 0;
 236		mrq->data->mrq = mrq;
 237		if (mrq->stop) {
 238			mrq->data->stop = mrq->stop;
 239			mrq->stop->error = 0;
 240			mrq->stop->mrq = mrq;
 241		}
 242	}
 243	mmc_host_clk_hold(host);
 244	led_trigger_event(host->led, LED_FULL);
 245	host->ops->request(host, mrq);
 246}
 247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248static void mmc_wait_done(struct mmc_request *mrq)
 249{
 250	complete(&mrq->completion);
 251}
 252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 253static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 254{
 255	init_completion(&mrq->completion);
 256	mrq->done = mmc_wait_done;
 257	if (mmc_card_removed(host->card)) {
 258		mrq->cmd->error = -ENOMEDIUM;
 259		complete(&mrq->completion);
 260		return -ENOMEDIUM;
 261	}
 262	mmc_start_request(host, mrq);
 263	return 0;
 264}
 265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 266static void mmc_wait_for_req_done(struct mmc_host *host,
 267				  struct mmc_request *mrq)
 268{
 269	struct mmc_command *cmd;
 270
 271	while (1) {
 272		wait_for_completion(&mrq->completion);
 273
 274		cmd = mrq->cmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275		if (!cmd->error || !cmd->retries ||
 276		    mmc_card_removed(host->card))
 277			break;
 278
 279		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 280			 mmc_hostname(host), cmd->opcode, cmd->error);
 281		cmd->retries--;
 282		cmd->error = 0;
 283		host->ops->request(host, mrq);
 284	}
 285}
 286
 287/**
 288 *	mmc_pre_req - Prepare for a new request
 289 *	@host: MMC host to prepare command
 290 *	@mrq: MMC request to prepare for
 291 *	@is_first_req: true if there is no previous started request
 292 *                     that may run in parellel to this call, otherwise false
 293 *
 294 *	mmc_pre_req() is called in prior to mmc_start_req() to let
 295 *	host prepare for the new request. Preparation of a request may be
 296 *	performed while another request is running on the host.
 297 */
 298static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
 299		 bool is_first_req)
 300{
 301	if (host->ops->pre_req) {
 302		mmc_host_clk_hold(host);
 303		host->ops->pre_req(host, mrq, is_first_req);
 304		mmc_host_clk_release(host);
 305	}
 306}
 307
 308/**
 309 *	mmc_post_req - Post process a completed request
 310 *	@host: MMC host to post process command
 311 *	@mrq: MMC request to post process for
 312 *	@err: Error, if non zero, clean up any resources made in pre_req
 313 *
 314 *	Let the host post process a completed request. Post processing of
 315 *	a request may be performed while another reuqest is running.
 316 */
 317static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
 318			 int err)
 319{
 320	if (host->ops->post_req) {
 321		mmc_host_clk_hold(host);
 322		host->ops->post_req(host, mrq, err);
 323		mmc_host_clk_release(host);
 324	}
 325}
 326
 327/**
 328 *	mmc_start_req - start a non-blocking request
 329 *	@host: MMC host to start command
 330 *	@areq: async request to start
 331 *	@error: out parameter returns 0 for success, otherwise non zero
 332 *
 333 *	Start a new MMC custom command request for a host.
 334 *	If there is on ongoing async request wait for completion
 335 *	of that request and start the new one and return.
 336 *	Does not wait for the new request to complete.
 337 *
 338 *      Returns the completed request, NULL in case of none completed.
 339 *	Wait for the an ongoing request (previoulsy started) to complete and
 340 *	return the completed request. If there is no ongoing request, NULL
 341 *	is returned without waiting. NULL is not an error condition.
 342 */
 343struct mmc_async_req *mmc_start_req(struct mmc_host *host,
 344				    struct mmc_async_req *areq, int *error)
 345{
 346	int err = 0;
 347	int start_err = 0;
 348	struct mmc_async_req *data = host->areq;
 349
 350	/* Prepare a new request */
 351	if (areq)
 352		mmc_pre_req(host, areq->mrq, !host->areq);
 353
 354	if (host->areq) {
 355		mmc_wait_for_req_done(host, host->areq->mrq);
 356		err = host->areq->err_check(host->card, host->areq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357	}
 358
 359	if (!err && areq)
 360		start_err = __mmc_start_req(host, areq->mrq);
 361
 362	if (host->areq)
 363		mmc_post_req(host, host->areq->mrq, 0);
 364
 365	 /* Cancel a prepared request if it was not started. */
 366	if ((err || start_err) && areq)
 367			mmc_post_req(host, areq->mrq, -EINVAL);
 368
 369	if (err)
 370		host->areq = NULL;
 371	else
 372		host->areq = areq;
 373
 374	if (error)
 375		*error = err;
 376	return data;
 377}
 378EXPORT_SYMBOL(mmc_start_req);
 379
 380/**
 381 *	mmc_wait_for_req - start a request and wait for completion
 382 *	@host: MMC host to start command
 383 *	@mrq: MMC request to start
 384 *
 385 *	Start a new MMC custom command request for a host, and wait
 386 *	for the command to complete. Does not attempt to parse the
 387 *	response.
 388 */
 389void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 390{
 391	__mmc_start_req(host, mrq);
 392	mmc_wait_for_req_done(host, mrq);
 393}
 394EXPORT_SYMBOL(mmc_wait_for_req);
 395
 396/**
 397 *	mmc_interrupt_hpi - Issue for High priority Interrupt
 398 *	@card: the MMC card associated with the HPI transfer
 399 *
 400 *	Issued High Priority Interrupt, and check for card status
 401 *	util out-of prg-state.
 402 */
 403int mmc_interrupt_hpi(struct mmc_card *card)
 404{
 405	int err;
 406	u32 status;
 
 407
 408	BUG_ON(!card);
 409
 410	if (!card->ext_csd.hpi_en) {
 411		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
 412		return 1;
 413	}
 414
 415	mmc_claim_host(card->host);
 416	err = mmc_send_status(card, &status);
 417	if (err) {
 418		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
 419		goto out;
 420	}
 421
 422	/*
 423	 * If the card status is in PRG-state, we can send the HPI command.
 424	 */
 425	if (R1_CURRENT_STATE(status) == R1_STATE_PRG) {
 426		do {
 427			/*
 428			 * We don't know when the HPI command will finish
 429			 * processing, so we need to resend HPI until out
 430			 * of prg-state, and keep checking the card status
 431			 * with SEND_STATUS.  If a timeout error occurs when
 432			 * sending the HPI command, we are already out of
 433			 * prg-state.
 434			 */
 435			err = mmc_send_hpi_cmd(card, &status);
 436			if (err)
 437				pr_debug("%s: abort HPI (%d error)\n",
 438					 mmc_hostname(card->host), err);
 
 
 439
 440			err = mmc_send_status(card, &status);
 441			if (err)
 442				break;
 443		} while (R1_CURRENT_STATE(status) == R1_STATE_PRG);
 444	} else
 445		pr_debug("%s: Left prg-state\n", mmc_hostname(card->host));
 
 
 
 
 
 
 
 446
 447out:
 448	mmc_release_host(card->host);
 449	return err;
 450}
 451EXPORT_SYMBOL(mmc_interrupt_hpi);
 452
 453/**
 454 *	mmc_wait_for_cmd - start a command and wait for completion
 455 *	@host: MMC host to start command
 456 *	@cmd: MMC command to start
 457 *	@retries: maximum number of retries
 458 *
 459 *	Start a new MMC command for a host, and wait for the command
 460 *	to complete.  Return any error that occurred while the command
 461 *	was executing.  Do not attempt to parse the response.
 462 */
 463int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 464{
 465	struct mmc_request mrq = {NULL};
 466
 467	WARN_ON(!host->claimed);
 468
 469	memset(cmd->resp, 0, sizeof(cmd->resp));
 470	cmd->retries = retries;
 471
 472	mrq.cmd = cmd;
 473	cmd->data = NULL;
 474
 475	mmc_wait_for_req(host, &mrq);
 476
 477	return cmd->error;
 478}
 479
 480EXPORT_SYMBOL(mmc_wait_for_cmd);
 481
 482/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 483 *	mmc_set_data_timeout - set the timeout for a data command
 484 *	@data: data phase for command
 485 *	@card: the MMC card associated with the data transfer
 486 *
 487 *	Computes the data timeout parameters according to the
 488 *	correct algorithm given the card type.
 489 */
 490void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 491{
 492	unsigned int mult;
 493
 494	/*
 495	 * SDIO cards only define an upper 1 s limit on access.
 496	 */
 497	if (mmc_card_sdio(card)) {
 498		data->timeout_ns = 1000000000;
 499		data->timeout_clks = 0;
 500		return;
 501	}
 502
 503	/*
 504	 * SD cards use a 100 multiplier rather than 10
 505	 */
 506	mult = mmc_card_sd(card) ? 100 : 10;
 507
 508	/*
 509	 * Scale up the multiplier (and therefore the timeout) by
 510	 * the r2w factor for writes.
 511	 */
 512	if (data->flags & MMC_DATA_WRITE)
 513		mult <<= card->csd.r2w_factor;
 514
 515	data->timeout_ns = card->csd.tacc_ns * mult;
 516	data->timeout_clks = card->csd.tacc_clks * mult;
 517
 518	/*
 519	 * SD cards also have an upper limit on the timeout.
 520	 */
 521	if (mmc_card_sd(card)) {
 522		unsigned int timeout_us, limit_us;
 523
 524		timeout_us = data->timeout_ns / 1000;
 525		if (mmc_host_clk_rate(card->host))
 526			timeout_us += data->timeout_clks * 1000 /
 527				(mmc_host_clk_rate(card->host) / 1000);
 528
 529		if (data->flags & MMC_DATA_WRITE)
 530			/*
 531			 * The MMC spec "It is strongly recommended
 532			 * for hosts to implement more than 500ms
 533			 * timeout value even if the card indicates
 534			 * the 250ms maximum busy length."  Even the
 535			 * previous value of 300ms is known to be
 536			 * insufficient for some cards.
 537			 */
 538			limit_us = 3000000;
 539		else
 540			limit_us = 100000;
 541
 542		/*
 543		 * SDHC cards always use these fixed values.
 544		 */
 545		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
 546			data->timeout_ns = limit_us * 1000;
 547			data->timeout_clks = 0;
 548		}
 549	}
 550
 551	/*
 552	 * Some cards require longer data read timeout than indicated in CSD.
 553	 * Address this by setting the read timeout to a "reasonably high"
 554	 * value. For the cards tested, 300ms has proven enough. If necessary,
 555	 * this value can be increased if other problematic cards require this.
 556	 */
 557	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 558		data->timeout_ns = 300000000;
 559		data->timeout_clks = 0;
 560	}
 561
 562	/*
 563	 * Some cards need very high timeouts if driven in SPI mode.
 564	 * The worst observed timeout was 900ms after writing a
 565	 * continuous stream of data until the internal logic
 566	 * overflowed.
 567	 */
 568	if (mmc_host_is_spi(card->host)) {
 569		if (data->flags & MMC_DATA_WRITE) {
 570			if (data->timeout_ns < 1000000000)
 571				data->timeout_ns = 1000000000;	/* 1s */
 572		} else {
 573			if (data->timeout_ns < 100000000)
 574				data->timeout_ns =  100000000;	/* 100ms */
 575		}
 576	}
 577}
 578EXPORT_SYMBOL(mmc_set_data_timeout);
 579
 580/**
 581 *	mmc_align_data_size - pads a transfer size to a more optimal value
 582 *	@card: the MMC card associated with the data transfer
 583 *	@sz: original transfer size
 584 *
 585 *	Pads the original data size with a number of extra bytes in
 586 *	order to avoid controller bugs and/or performance hits
 587 *	(e.g. some controllers revert to PIO for certain sizes).
 588 *
 589 *	Returns the improved size, which might be unmodified.
 590 *
 591 *	Note that this function is only relevant when issuing a
 592 *	single scatter gather entry.
 593 */
 594unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
 595{
 596	/*
 597	 * FIXME: We don't have a system for the controller to tell
 598	 * the core about its problems yet, so for now we just 32-bit
 599	 * align the size.
 600	 */
 601	sz = ((sz + 3) / 4) * 4;
 602
 603	return sz;
 604}
 605EXPORT_SYMBOL(mmc_align_data_size);
 606
 607/**
 608 *	__mmc_claim_host - exclusively claim a host
 609 *	@host: mmc host to claim
 610 *	@abort: whether or not the operation should be aborted
 611 *
 612 *	Claim a host for a set of operations.  If @abort is non null and
 613 *	dereference a non-zero value then this will return prematurely with
 614 *	that non-zero value without acquiring the lock.  Returns zero
 615 *	with the lock held otherwise.
 616 */
 617int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
 618{
 619	DECLARE_WAITQUEUE(wait, current);
 620	unsigned long flags;
 621	int stop;
 622
 623	might_sleep();
 624
 625	add_wait_queue(&host->wq, &wait);
 626	spin_lock_irqsave(&host->lock, flags);
 627	while (1) {
 628		set_current_state(TASK_UNINTERRUPTIBLE);
 629		stop = abort ? atomic_read(abort) : 0;
 630		if (stop || !host->claimed || host->claimer == current)
 631			break;
 632		spin_unlock_irqrestore(&host->lock, flags);
 633		schedule();
 634		spin_lock_irqsave(&host->lock, flags);
 635	}
 636	set_current_state(TASK_RUNNING);
 637	if (!stop) {
 638		host->claimed = 1;
 639		host->claimer = current;
 640		host->claim_cnt += 1;
 641	} else
 642		wake_up(&host->wq);
 643	spin_unlock_irqrestore(&host->lock, flags);
 644	remove_wait_queue(&host->wq, &wait);
 645	if (host->ops->enable && !stop && host->claim_cnt == 1)
 646		host->ops->enable(host);
 647	return stop;
 648}
 649
 650EXPORT_SYMBOL(__mmc_claim_host);
 651
 652/**
 653 *	mmc_try_claim_host - try exclusively to claim a host
 654 *	@host: mmc host to claim
 655 *
 656 *	Returns %1 if the host is claimed, %0 otherwise.
 657 */
 658int mmc_try_claim_host(struct mmc_host *host)
 659{
 660	int claimed_host = 0;
 661	unsigned long flags;
 662
 663	spin_lock_irqsave(&host->lock, flags);
 664	if (!host->claimed || host->claimer == current) {
 665		host->claimed = 1;
 666		host->claimer = current;
 667		host->claim_cnt += 1;
 668		claimed_host = 1;
 669	}
 670	spin_unlock_irqrestore(&host->lock, flags);
 671	if (host->ops->enable && claimed_host && host->claim_cnt == 1)
 672		host->ops->enable(host);
 673	return claimed_host;
 674}
 675EXPORT_SYMBOL(mmc_try_claim_host);
 676
 677/**
 678 *	mmc_release_host - release a host
 679 *	@host: mmc host to release
 680 *
 681 *	Release a MMC host, allowing others to claim the host
 682 *	for their operations.
 683 */
 684void mmc_release_host(struct mmc_host *host)
 685{
 686	unsigned long flags;
 687
 688	WARN_ON(!host->claimed);
 689
 690	if (host->ops->disable && host->claim_cnt == 1)
 691		host->ops->disable(host);
 692
 693	spin_lock_irqsave(&host->lock, flags);
 694	if (--host->claim_cnt) {
 695		/* Release for nested claim */
 696		spin_unlock_irqrestore(&host->lock, flags);
 697	} else {
 698		host->claimed = 0;
 699		host->claimer = NULL;
 700		spin_unlock_irqrestore(&host->lock, flags);
 701		wake_up(&host->wq);
 702	}
 703}
 704EXPORT_SYMBOL(mmc_release_host);
 705
 706/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707 * Internal function that does the actual ios call to the host driver,
 708 * optionally printing some debug output.
 709 */
 710static inline void mmc_set_ios(struct mmc_host *host)
 711{
 712	struct mmc_ios *ios = &host->ios;
 713
 714	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 715		"width %u timing %u\n",
 716		 mmc_hostname(host), ios->clock, ios->bus_mode,
 717		 ios->power_mode, ios->chip_select, ios->vdd,
 718		 ios->bus_width, ios->timing);
 719
 720	if (ios->clock > 0)
 721		mmc_set_ungated(host);
 722	host->ops->set_ios(host, ios);
 723}
 724
 725/*
 726 * Control chip select pin on a host.
 727 */
 728void mmc_set_chip_select(struct mmc_host *host, int mode)
 729{
 730	mmc_host_clk_hold(host);
 731	host->ios.chip_select = mode;
 732	mmc_set_ios(host);
 733	mmc_host_clk_release(host);
 734}
 735
 736/*
 737 * Sets the host clock to the highest possible frequency that
 738 * is below "hz".
 739 */
 740static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
 741{
 742	WARN_ON(hz < host->f_min);
 743
 744	if (hz > host->f_max)
 745		hz = host->f_max;
 746
 747	host->ios.clock = hz;
 748	mmc_set_ios(host);
 749}
 750
 751void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 752{
 753	mmc_host_clk_hold(host);
 754	__mmc_set_clock(host, hz);
 755	mmc_host_clk_release(host);
 756}
 757
 758#ifdef CONFIG_MMC_CLKGATE
 759/*
 760 * This gates the clock by setting it to 0 Hz.
 761 */
 762void mmc_gate_clock(struct mmc_host *host)
 763{
 764	unsigned long flags;
 765
 766	spin_lock_irqsave(&host->clk_lock, flags);
 767	host->clk_old = host->ios.clock;
 768	host->ios.clock = 0;
 769	host->clk_gated = true;
 770	spin_unlock_irqrestore(&host->clk_lock, flags);
 771	mmc_set_ios(host);
 772}
 773
 774/*
 775 * This restores the clock from gating by using the cached
 776 * clock value.
 777 */
 778void mmc_ungate_clock(struct mmc_host *host)
 779{
 780	/*
 781	 * We should previously have gated the clock, so the clock shall
 782	 * be 0 here! The clock may however be 0 during initialization,
 783	 * when some request operations are performed before setting
 784	 * the frequency. When ungate is requested in that situation
 785	 * we just ignore the call.
 786	 */
 787	if (host->clk_old) {
 788		BUG_ON(host->ios.clock);
 789		/* This call will also set host->clk_gated to false */
 790		__mmc_set_clock(host, host->clk_old);
 791	}
 792}
 793
 794void mmc_set_ungated(struct mmc_host *host)
 795{
 796	unsigned long flags;
 797
 798	/*
 799	 * We've been given a new frequency while the clock is gated,
 800	 * so make sure we regard this as ungating it.
 801	 */
 802	spin_lock_irqsave(&host->clk_lock, flags);
 803	host->clk_gated = false;
 804	spin_unlock_irqrestore(&host->clk_lock, flags);
 805}
 806
 807#else
 808void mmc_set_ungated(struct mmc_host *host)
 809{
 810}
 811#endif
 812
 813/*
 814 * Change the bus mode (open drain/push-pull) of a host.
 815 */
 816void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 817{
 818	mmc_host_clk_hold(host);
 819	host->ios.bus_mode = mode;
 820	mmc_set_ios(host);
 821	mmc_host_clk_release(host);
 822}
 823
 824/*
 825 * Change data bus width of a host.
 826 */
 827void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
 828{
 829	mmc_host_clk_hold(host);
 830	host->ios.bus_width = width;
 831	mmc_set_ios(host);
 832	mmc_host_clk_release(host);
 833}
 834
 835/**
 836 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
 837 * @vdd:	voltage (mV)
 838 * @low_bits:	prefer low bits in boundary cases
 839 *
 840 * This function returns the OCR bit number according to the provided @vdd
 841 * value. If conversion is not possible a negative errno value returned.
 842 *
 843 * Depending on the @low_bits flag the function prefers low or high OCR bits
 844 * on boundary voltages. For example,
 845 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
 846 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
 847 *
 848 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
 849 */
 850static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
 851{
 852	const int max_bit = ilog2(MMC_VDD_35_36);
 853	int bit;
 854
 855	if (vdd < 1650 || vdd > 3600)
 856		return -EINVAL;
 857
 858	if (vdd >= 1650 && vdd <= 1950)
 859		return ilog2(MMC_VDD_165_195);
 860
 861	if (low_bits)
 862		vdd -= 1;
 863
 864	/* Base 2000 mV, step 100 mV, bit's base 8. */
 865	bit = (vdd - 2000) / 100 + 8;
 866	if (bit > max_bit)
 867		return max_bit;
 868	return bit;
 869}
 870
 871/**
 872 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
 873 * @vdd_min:	minimum voltage value (mV)
 874 * @vdd_max:	maximum voltage value (mV)
 875 *
 876 * This function returns the OCR mask bits according to the provided @vdd_min
 877 * and @vdd_max values. If conversion is not possible the function returns 0.
 878 *
 879 * Notes wrt boundary cases:
 880 * This function sets the OCR bits for all boundary voltages, for example
 881 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
 882 * MMC_VDD_34_35 mask.
 883 */
 884u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
 885{
 886	u32 mask = 0;
 887
 888	if (vdd_max < vdd_min)
 889		return 0;
 890
 891	/* Prefer high bits for the boundary vdd_max values. */
 892	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
 893	if (vdd_max < 0)
 894		return 0;
 895
 896	/* Prefer low bits for the boundary vdd_min values. */
 897	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
 898	if (vdd_min < 0)
 899		return 0;
 900
 901	/* Fill the mask, from max bit to min bit. */
 902	while (vdd_max >= vdd_min)
 903		mask |= 1 << vdd_max--;
 904
 905	return mask;
 906}
 907EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
 908
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909#ifdef CONFIG_REGULATOR
 910
 911/**
 912 * mmc_regulator_get_ocrmask - return mask of supported voltages
 913 * @supply: regulator to use
 914 *
 915 * This returns either a negative errno, or a mask of voltages that
 916 * can be provided to MMC/SD/SDIO devices using the specified voltage
 917 * regulator.  This would normally be called before registering the
 918 * MMC host adapter.
 919 */
 920int mmc_regulator_get_ocrmask(struct regulator *supply)
 921{
 922	int			result = 0;
 923	int			count;
 924	int			i;
 925
 926	count = regulator_count_voltages(supply);
 927	if (count < 0)
 928		return count;
 929
 930	for (i = 0; i < count; i++) {
 931		int		vdd_uV;
 932		int		vdd_mV;
 933
 934		vdd_uV = regulator_list_voltage(supply, i);
 935		if (vdd_uV <= 0)
 936			continue;
 937
 938		vdd_mV = vdd_uV / 1000;
 939		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
 940	}
 941
 942	return result;
 943}
 944EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
 945
 946/**
 947 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
 948 * @mmc: the host to regulate
 949 * @supply: regulator to use
 950 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
 951 *
 952 * Returns zero on success, else negative errno.
 953 *
 954 * MMC host drivers may use this to enable or disable a regulator using
 955 * a particular supply voltage.  This would normally be called from the
 956 * set_ios() method.
 957 */
 958int mmc_regulator_set_ocr(struct mmc_host *mmc,
 959			struct regulator *supply,
 960			unsigned short vdd_bit)
 961{
 962	int			result = 0;
 963	int			min_uV, max_uV;
 964
 965	if (vdd_bit) {
 966		int		tmp;
 967		int		voltage;
 968
 969		/* REVISIT mmc_vddrange_to_ocrmask() may have set some
 
 970		 * bits this regulator doesn't quite support ... don't
 971		 * be too picky, most cards and regulators are OK with
 972		 * a 0.1V range goof (it's a small error percentage).
 973		 */
 974		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
 975		if (tmp == 0) {
 976			min_uV = 1650 * 1000;
 977			max_uV = 1950 * 1000;
 978		} else {
 979			min_uV = 1900 * 1000 + tmp * 100 * 1000;
 980			max_uV = min_uV + 100 * 1000;
 981		}
 982
 983		/* avoid needless changes to this voltage; the regulator
 984		 * might not allow this operation
 
 985		 */
 986		voltage = regulator_get_voltage(supply);
 987
 988		if (mmc->caps2 & MMC_CAP2_BROKEN_VOLTAGE)
 989			min_uV = max_uV = voltage;
 990
 991		if (voltage < 0)
 992			result = voltage;
 993		else if (voltage < min_uV || voltage > max_uV)
 994			result = regulator_set_voltage(supply, min_uV, max_uV);
 995		else
 996			result = 0;
 997
 998		if (result == 0 && !mmc->regulator_enabled) {
 999			result = regulator_enable(supply);
1000			if (!result)
1001				mmc->regulator_enabled = true;
1002		}
1003	} else if (mmc->regulator_enabled) {
1004		result = regulator_disable(supply);
1005		if (result == 0)
1006			mmc->regulator_enabled = false;
1007	}
1008
1009	if (result)
1010		dev_err(mmc_dev(mmc),
1011			"could not set regulator OCR (%d)\n", result);
1012	return result;
1013}
1014EXPORT_SYMBOL(mmc_regulator_set_ocr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015
1016#endif /* CONFIG_REGULATOR */
1017
1018/*
1019 * Mask off any voltages we don't support and select
1020 * the lowest voltage
1021 */
1022u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1023{
1024	int bit;
1025
1026	ocr &= host->ocr_avail;
 
 
 
 
 
 
 
 
1027
1028	bit = ffs(ocr);
1029	if (bit) {
1030		bit -= 1;
 
 
1031
 
 
 
 
 
 
1032		ocr &= 3 << bit;
 
 
 
 
 
 
 
 
 
 
 
1033
 
 
1034		mmc_host_clk_hold(host);
1035		host->ios.vdd = bit;
1036		mmc_set_ios(host);
1037		mmc_host_clk_release(host);
1038	} else {
1039		pr_warning("%s: host doesn't support card's voltages\n",
1040				mmc_hostname(host));
1041		ocr = 0;
1042	}
1043
1044	return ocr;
 
 
 
 
1045}
1046
1047int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1048{
1049	struct mmc_command cmd = {0};
1050	int err = 0;
 
1051
1052	BUG_ON(!host);
1053
1054	/*
1055	 * Send CMD11 only if the request is to switch the card to
1056	 * 1.8V signalling.
1057	 */
1058	if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1059		cmd.opcode = SD_SWITCH_VOLTAGE;
1060		cmd.arg = 0;
1061		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1062
1063		err = mmc_wait_for_cmd(host, &cmd, 0);
1064		if (err)
1065			return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1066
1067		if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1068			return -EIO;
 
 
 
 
 
 
 
1069	}
 
 
 
 
 
 
 
1070
1071	host->ios.signal_voltage = signal_voltage;
 
 
 
 
 
 
 
1072
1073	if (host->ops->start_signal_voltage_switch) {
1074		mmc_host_clk_hold(host);
1075		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1076		mmc_host_clk_release(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077	}
1078
 
 
1079	return err;
1080}
1081
1082/*
1083 * Select timing parameters for host.
1084 */
1085void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1086{
1087	mmc_host_clk_hold(host);
1088	host->ios.timing = timing;
1089	mmc_set_ios(host);
1090	mmc_host_clk_release(host);
1091}
1092
1093/*
1094 * Select appropriate driver type for host.
1095 */
1096void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1097{
1098	mmc_host_clk_hold(host);
1099	host->ios.drv_type = drv_type;
1100	mmc_set_ios(host);
1101	mmc_host_clk_release(host);
1102}
1103
1104static void mmc_poweroff_notify(struct mmc_host *host)
1105{
1106	struct mmc_card *card;
1107	unsigned int timeout;
1108	unsigned int notify_type = EXT_CSD_NO_POWER_NOTIFICATION;
1109	int err = 0;
1110
1111	card = host->card;
1112	mmc_claim_host(host);
1113
1114	/*
1115	 * Send power notify command only if card
1116	 * is mmc and notify state is powered ON
1117	 */
1118	if (card && mmc_card_mmc(card) &&
1119	    (card->poweroff_notify_state == MMC_POWERED_ON)) {
1120
1121		if (host->power_notify_type == MMC_HOST_PW_NOTIFY_SHORT) {
1122			notify_type = EXT_CSD_POWER_OFF_SHORT;
1123			timeout = card->ext_csd.generic_cmd6_time;
1124			card->poweroff_notify_state = MMC_POWEROFF_SHORT;
1125		} else {
1126			notify_type = EXT_CSD_POWER_OFF_LONG;
1127			timeout = card->ext_csd.power_off_longtime;
1128			card->poweroff_notify_state = MMC_POWEROFF_LONG;
1129		}
1130
1131		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1132				 EXT_CSD_POWER_OFF_NOTIFICATION,
1133				 notify_type, timeout);
1134
1135		if (err && err != -EBADMSG)
1136			pr_err("Device failed to respond within %d poweroff "
1137			       "time. Forcefully powering down the device\n",
1138			       timeout);
1139
1140		/* Set the card state to no notification after the poweroff */
1141		card->poweroff_notify_state = MMC_NO_POWER_NOTIFICATION;
1142	}
1143	mmc_release_host(host);
1144}
1145
1146/*
1147 * Apply power to the MMC stack.  This is a two-stage process.
1148 * First, we enable power to the card without the clock running.
1149 * We then wait a bit for the power to stabilise.  Finally,
1150 * enable the bus drivers and clock to the card.
1151 *
1152 * We must _NOT_ enable the clock prior to power stablising.
1153 *
1154 * If a host does all the power sequencing itself, ignore the
1155 * initial MMC_POWER_UP stage.
1156 */
1157static void mmc_power_up(struct mmc_host *host)
1158{
1159	int bit;
1160
1161	if (host->ios.power_mode == MMC_POWER_ON)
1162		return;
1163
1164	mmc_host_clk_hold(host);
1165
1166	/* If ocr is set, we use it */
1167	if (host->ocr)
1168		bit = ffs(host->ocr) - 1;
1169	else
1170		bit = fls(host->ocr_avail) - 1;
1171
1172	host->ios.vdd = bit;
1173	if (mmc_host_is_spi(host))
1174		host->ios.chip_select = MMC_CS_HIGH;
1175	else
1176		host->ios.chip_select = MMC_CS_DONTCARE;
1177	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1178	host->ios.power_mode = MMC_POWER_UP;
1179	host->ios.bus_width = MMC_BUS_WIDTH_1;
1180	host->ios.timing = MMC_TIMING_LEGACY;
1181	mmc_set_ios(host);
1182
 
 
 
1183	/*
1184	 * This delay should be sufficient to allow the power supply
1185	 * to reach the minimum voltage.
1186	 */
1187	mmc_delay(10);
1188
1189	host->ios.clock = host->f_init;
1190
1191	host->ios.power_mode = MMC_POWER_ON;
1192	mmc_set_ios(host);
1193
1194	/*
1195	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1196	 * time required to reach a stable voltage.
1197	 */
1198	mmc_delay(10);
1199
1200	mmc_host_clk_release(host);
1201}
1202
1203void mmc_power_off(struct mmc_host *host)
1204{
1205	int err = 0;
1206
1207	if (host->ios.power_mode == MMC_POWER_OFF)
1208		return;
1209
1210	mmc_host_clk_hold(host);
1211
1212	host->ios.clock = 0;
1213	host->ios.vdd = 0;
1214
1215	/*
1216	 * For eMMC 4.5 device send AWAKE command before
1217	 * POWER_OFF_NOTIFY command, because in sleep state
1218	 * eMMC 4.5 devices respond to only RESET and AWAKE cmd
1219	 */
1220	if (host->card && mmc_card_is_sleep(host->card) &&
1221	    host->bus_ops->resume) {
1222		err = host->bus_ops->resume(host);
1223
1224		if (!err)
1225			mmc_poweroff_notify(host);
1226		else
1227			pr_warning("%s: error %d during resume "
1228				   "(continue with poweroff sequence)\n",
1229				   mmc_hostname(host), err);
1230	}
1231
1232	/*
1233	 * Reset ocr mask to be the highest possible voltage supported for
1234	 * this mmc host. This value will be used at next power up.
1235	 */
1236	host->ocr = 1 << (fls(host->ocr_avail) - 1);
1237
1238	if (!mmc_host_is_spi(host)) {
1239		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1240		host->ios.chip_select = MMC_CS_DONTCARE;
1241	}
1242	host->ios.power_mode = MMC_POWER_OFF;
1243	host->ios.bus_width = MMC_BUS_WIDTH_1;
1244	host->ios.timing = MMC_TIMING_LEGACY;
1245	mmc_set_ios(host);
1246
1247	/*
1248	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1249	 * XO-1.5, require a short delay after poweroff before the card
1250	 * can be successfully turned on again.
1251	 */
1252	mmc_delay(1);
1253
1254	mmc_host_clk_release(host);
1255}
1256
 
 
 
 
 
 
 
 
1257/*
1258 * Cleanup when the last reference to the bus operator is dropped.
1259 */
1260static void __mmc_release_bus(struct mmc_host *host)
1261{
1262	BUG_ON(!host);
1263	BUG_ON(host->bus_refs);
1264	BUG_ON(!host->bus_dead);
1265
1266	host->bus_ops = NULL;
1267}
1268
1269/*
1270 * Increase reference count of bus operator
1271 */
1272static inline void mmc_bus_get(struct mmc_host *host)
1273{
1274	unsigned long flags;
1275
1276	spin_lock_irqsave(&host->lock, flags);
1277	host->bus_refs++;
1278	spin_unlock_irqrestore(&host->lock, flags);
1279}
1280
1281/*
1282 * Decrease reference count of bus operator and free it if
1283 * it is the last reference.
1284 */
1285static inline void mmc_bus_put(struct mmc_host *host)
1286{
1287	unsigned long flags;
1288
1289	spin_lock_irqsave(&host->lock, flags);
1290	host->bus_refs--;
1291	if ((host->bus_refs == 0) && host->bus_ops)
1292		__mmc_release_bus(host);
1293	spin_unlock_irqrestore(&host->lock, flags);
1294}
1295
1296/*
1297 * Assign a mmc bus handler to a host. Only one bus handler may control a
1298 * host at any given time.
1299 */
1300void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1301{
1302	unsigned long flags;
1303
1304	BUG_ON(!host);
1305	BUG_ON(!ops);
1306
1307	WARN_ON(!host->claimed);
1308
1309	spin_lock_irqsave(&host->lock, flags);
1310
1311	BUG_ON(host->bus_ops);
1312	BUG_ON(host->bus_refs);
1313
1314	host->bus_ops = ops;
1315	host->bus_refs = 1;
1316	host->bus_dead = 0;
1317
1318	spin_unlock_irqrestore(&host->lock, flags);
1319}
1320
1321/*
1322 * Remove the current bus handler from a host.
1323 */
1324void mmc_detach_bus(struct mmc_host *host)
1325{
1326	unsigned long flags;
1327
1328	BUG_ON(!host);
1329
1330	WARN_ON(!host->claimed);
1331	WARN_ON(!host->bus_ops);
1332
1333	spin_lock_irqsave(&host->lock, flags);
1334
1335	host->bus_dead = 1;
1336
1337	spin_unlock_irqrestore(&host->lock, flags);
1338
1339	mmc_bus_put(host);
1340}
1341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342/**
1343 *	mmc_detect_change - process change of state on a MMC socket
1344 *	@host: host which changed state.
1345 *	@delay: optional delay to wait before detection (jiffies)
1346 *
1347 *	MMC drivers should call this when they detect a card has been
1348 *	inserted or removed. The MMC layer will confirm that any
1349 *	present card is still functional, and initialize any newly
1350 *	inserted.
1351 */
1352void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1353{
1354#ifdef CONFIG_MMC_DEBUG
1355	unsigned long flags;
1356	spin_lock_irqsave(&host->lock, flags);
1357	WARN_ON(host->removed);
1358	spin_unlock_irqrestore(&host->lock, flags);
1359#endif
1360	host->detect_change = 1;
1361	mmc_schedule_delayed_work(&host->detect, delay);
1362}
1363
1364EXPORT_SYMBOL(mmc_detect_change);
1365
1366void mmc_init_erase(struct mmc_card *card)
1367{
1368	unsigned int sz;
1369
1370	if (is_power_of_2(card->erase_size))
1371		card->erase_shift = ffs(card->erase_size) - 1;
1372	else
1373		card->erase_shift = 0;
1374
1375	/*
1376	 * It is possible to erase an arbitrarily large area of an SD or MMC
1377	 * card.  That is not desirable because it can take a long time
1378	 * (minutes) potentially delaying more important I/O, and also the
1379	 * timeout calculations become increasingly hugely over-estimated.
1380	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1381	 * to that size and alignment.
1382	 *
1383	 * For SD cards that define Allocation Unit size, limit erases to one
1384	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1385	 * Erase Size, whether it is switched on or not, limit to that size.
1386	 * Otherwise just have a stab at a good value.  For modern cards it
1387	 * will end up being 4MiB.  Note that if the value is too small, it
1388	 * can end up taking longer to erase.
1389	 */
1390	if (mmc_card_sd(card) && card->ssr.au) {
1391		card->pref_erase = card->ssr.au;
1392		card->erase_shift = ffs(card->ssr.au) - 1;
1393	} else if (card->ext_csd.hc_erase_size) {
1394		card->pref_erase = card->ext_csd.hc_erase_size;
1395	} else {
1396		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1397		if (sz < 128)
1398			card->pref_erase = 512 * 1024 / 512;
1399		else if (sz < 512)
1400			card->pref_erase = 1024 * 1024 / 512;
1401		else if (sz < 1024)
1402			card->pref_erase = 2 * 1024 * 1024 / 512;
1403		else
1404			card->pref_erase = 4 * 1024 * 1024 / 512;
1405		if (card->pref_erase < card->erase_size)
1406			card->pref_erase = card->erase_size;
1407		else {
1408			sz = card->pref_erase % card->erase_size;
1409			if (sz)
1410				card->pref_erase += card->erase_size - sz;
1411		}
1412	}
1413}
1414
1415static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1416				          unsigned int arg, unsigned int qty)
1417{
1418	unsigned int erase_timeout;
1419
1420	if (arg == MMC_DISCARD_ARG ||
1421	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1422		erase_timeout = card->ext_csd.trim_timeout;
1423	} else if (card->ext_csd.erase_group_def & 1) {
1424		/* High Capacity Erase Group Size uses HC timeouts */
1425		if (arg == MMC_TRIM_ARG)
1426			erase_timeout = card->ext_csd.trim_timeout;
1427		else
1428			erase_timeout = card->ext_csd.hc_erase_timeout;
1429	} else {
1430		/* CSD Erase Group Size uses write timeout */
1431		unsigned int mult = (10 << card->csd.r2w_factor);
1432		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1433		unsigned int timeout_us;
1434
1435		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1436		if (card->csd.tacc_ns < 1000000)
1437			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1438		else
1439			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1440
1441		/*
1442		 * ios.clock is only a target.  The real clock rate might be
1443		 * less but not that much less, so fudge it by multiplying by 2.
1444		 */
1445		timeout_clks <<= 1;
1446		timeout_us += (timeout_clks * 1000) /
1447			      (mmc_host_clk_rate(card->host) / 1000);
1448
1449		erase_timeout = timeout_us / 1000;
1450
1451		/*
1452		 * Theoretically, the calculation could underflow so round up
1453		 * to 1ms in that case.
1454		 */
1455		if (!erase_timeout)
1456			erase_timeout = 1;
1457	}
1458
1459	/* Multiplier for secure operations */
1460	if (arg & MMC_SECURE_ARGS) {
1461		if (arg == MMC_SECURE_ERASE_ARG)
1462			erase_timeout *= card->ext_csd.sec_erase_mult;
1463		else
1464			erase_timeout *= card->ext_csd.sec_trim_mult;
1465	}
1466
1467	erase_timeout *= qty;
1468
1469	/*
1470	 * Ensure at least a 1 second timeout for SPI as per
1471	 * 'mmc_set_data_timeout()'
1472	 */
1473	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1474		erase_timeout = 1000;
1475
1476	return erase_timeout;
1477}
1478
1479static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1480					 unsigned int arg,
1481					 unsigned int qty)
1482{
1483	unsigned int erase_timeout;
1484
1485	if (card->ssr.erase_timeout) {
1486		/* Erase timeout specified in SD Status Register (SSR) */
1487		erase_timeout = card->ssr.erase_timeout * qty +
1488				card->ssr.erase_offset;
1489	} else {
1490		/*
1491		 * Erase timeout not specified in SD Status Register (SSR) so
1492		 * use 250ms per write block.
1493		 */
1494		erase_timeout = 250 * qty;
1495	}
1496
1497	/* Must not be less than 1 second */
1498	if (erase_timeout < 1000)
1499		erase_timeout = 1000;
1500
1501	return erase_timeout;
1502}
1503
1504static unsigned int mmc_erase_timeout(struct mmc_card *card,
1505				      unsigned int arg,
1506				      unsigned int qty)
1507{
1508	if (mmc_card_sd(card))
1509		return mmc_sd_erase_timeout(card, arg, qty);
1510	else
1511		return mmc_mmc_erase_timeout(card, arg, qty);
1512}
1513
1514static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1515			unsigned int to, unsigned int arg)
1516{
1517	struct mmc_command cmd = {0};
1518	unsigned int qty = 0;
 
1519	int err;
1520
1521	/*
1522	 * qty is used to calculate the erase timeout which depends on how many
1523	 * erase groups (or allocation units in SD terminology) are affected.
1524	 * We count erasing part of an erase group as one erase group.
1525	 * For SD, the allocation units are always a power of 2.  For MMC, the
1526	 * erase group size is almost certainly also power of 2, but it does not
1527	 * seem to insist on that in the JEDEC standard, so we fall back to
1528	 * division in that case.  SD may not specify an allocation unit size,
1529	 * in which case the timeout is based on the number of write blocks.
1530	 *
1531	 * Note that the timeout for secure trim 2 will only be correct if the
1532	 * number of erase groups specified is the same as the total of all
1533	 * preceding secure trim 1 commands.  Since the power may have been
1534	 * lost since the secure trim 1 commands occurred, it is generally
1535	 * impossible to calculate the secure trim 2 timeout correctly.
1536	 */
1537	if (card->erase_shift)
1538		qty += ((to >> card->erase_shift) -
1539			(from >> card->erase_shift)) + 1;
1540	else if (mmc_card_sd(card))
1541		qty += to - from + 1;
1542	else
1543		qty += ((to / card->erase_size) -
1544			(from / card->erase_size)) + 1;
1545
1546	if (!mmc_card_blockaddr(card)) {
1547		from <<= 9;
1548		to <<= 9;
1549	}
1550
1551	if (mmc_card_sd(card))
1552		cmd.opcode = SD_ERASE_WR_BLK_START;
1553	else
1554		cmd.opcode = MMC_ERASE_GROUP_START;
1555	cmd.arg = from;
1556	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1557	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1558	if (err) {
1559		pr_err("mmc_erase: group start error %d, "
1560		       "status %#x\n", err, cmd.resp[0]);
1561		err = -EIO;
1562		goto out;
1563	}
1564
1565	memset(&cmd, 0, sizeof(struct mmc_command));
1566	if (mmc_card_sd(card))
1567		cmd.opcode = SD_ERASE_WR_BLK_END;
1568	else
1569		cmd.opcode = MMC_ERASE_GROUP_END;
1570	cmd.arg = to;
1571	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1572	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1573	if (err) {
1574		pr_err("mmc_erase: group end error %d, status %#x\n",
1575		       err, cmd.resp[0]);
1576		err = -EIO;
1577		goto out;
1578	}
1579
1580	memset(&cmd, 0, sizeof(struct mmc_command));
1581	cmd.opcode = MMC_ERASE;
1582	cmd.arg = arg;
1583	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1584	cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1585	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1586	if (err) {
1587		pr_err("mmc_erase: erase error %d, status %#x\n",
1588		       err, cmd.resp[0]);
1589		err = -EIO;
1590		goto out;
1591	}
1592
1593	if (mmc_host_is_spi(card->host))
1594		goto out;
1595
 
1596	do {
1597		memset(&cmd, 0, sizeof(struct mmc_command));
1598		cmd.opcode = MMC_SEND_STATUS;
1599		cmd.arg = card->rca << 16;
1600		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1601		/* Do not retry else we can't see errors */
1602		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1603		if (err || (cmd.resp[0] & 0xFDF92000)) {
1604			pr_err("error %d requesting status %#x\n",
1605				err, cmd.resp[0]);
1606			err = -EIO;
1607			goto out;
1608		}
 
 
 
 
 
 
 
 
 
 
 
1609	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1610		 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1611out:
1612	return err;
1613}
1614
1615/**
1616 * mmc_erase - erase sectors.
1617 * @card: card to erase
1618 * @from: first sector to erase
1619 * @nr: number of sectors to erase
1620 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1621 *
1622 * Caller must claim host before calling this function.
1623 */
1624int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1625	      unsigned int arg)
1626{
1627	unsigned int rem, to = from + nr;
1628
1629	if (!(card->host->caps & MMC_CAP_ERASE) ||
1630	    !(card->csd.cmdclass & CCC_ERASE))
1631		return -EOPNOTSUPP;
1632
1633	if (!card->erase_size)
1634		return -EOPNOTSUPP;
1635
1636	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1637		return -EOPNOTSUPP;
1638
1639	if ((arg & MMC_SECURE_ARGS) &&
1640	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1641		return -EOPNOTSUPP;
1642
1643	if ((arg & MMC_TRIM_ARGS) &&
1644	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1645		return -EOPNOTSUPP;
1646
1647	if (arg == MMC_SECURE_ERASE_ARG) {
1648		if (from % card->erase_size || nr % card->erase_size)
1649			return -EINVAL;
1650	}
1651
1652	if (arg == MMC_ERASE_ARG) {
1653		rem = from % card->erase_size;
1654		if (rem) {
1655			rem = card->erase_size - rem;
1656			from += rem;
1657			if (nr > rem)
1658				nr -= rem;
1659			else
1660				return 0;
1661		}
1662		rem = nr % card->erase_size;
1663		if (rem)
1664			nr -= rem;
1665	}
1666
1667	if (nr == 0)
1668		return 0;
1669
1670	to = from + nr;
1671
1672	if (to <= from)
1673		return -EINVAL;
1674
1675	/* 'from' and 'to' are inclusive */
1676	to -= 1;
1677
1678	return mmc_do_erase(card, from, to, arg);
1679}
1680EXPORT_SYMBOL(mmc_erase);
1681
1682int mmc_can_erase(struct mmc_card *card)
1683{
1684	if ((card->host->caps & MMC_CAP_ERASE) &&
1685	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1686		return 1;
1687	return 0;
1688}
1689EXPORT_SYMBOL(mmc_can_erase);
1690
1691int mmc_can_trim(struct mmc_card *card)
1692{
1693	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1694		return 1;
1695	return 0;
1696}
1697EXPORT_SYMBOL(mmc_can_trim);
1698
1699int mmc_can_discard(struct mmc_card *card)
1700{
1701	/*
1702	 * As there's no way to detect the discard support bit at v4.5
1703	 * use the s/w feature support filed.
1704	 */
1705	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1706		return 1;
1707	return 0;
1708}
1709EXPORT_SYMBOL(mmc_can_discard);
1710
1711int mmc_can_sanitize(struct mmc_card *card)
1712{
1713	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1714		return 0;
1715	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1716		return 1;
1717	return 0;
1718}
1719EXPORT_SYMBOL(mmc_can_sanitize);
1720
1721int mmc_can_secure_erase_trim(struct mmc_card *card)
1722{
1723	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1724		return 1;
1725	return 0;
1726}
1727EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1728
1729int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1730			    unsigned int nr)
1731{
1732	if (!card->erase_size)
1733		return 0;
1734	if (from % card->erase_size || nr % card->erase_size)
1735		return 0;
1736	return 1;
1737}
1738EXPORT_SYMBOL(mmc_erase_group_aligned);
1739
1740static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1741					    unsigned int arg)
1742{
1743	struct mmc_host *host = card->host;
1744	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1745	unsigned int last_timeout = 0;
1746
1747	if (card->erase_shift)
1748		max_qty = UINT_MAX >> card->erase_shift;
1749	else if (mmc_card_sd(card))
1750		max_qty = UINT_MAX;
1751	else
1752		max_qty = UINT_MAX / card->erase_size;
1753
1754	/* Find the largest qty with an OK timeout */
1755	do {
1756		y = 0;
1757		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1758			timeout = mmc_erase_timeout(card, arg, qty + x);
1759			if (timeout > host->max_discard_to)
1760				break;
1761			if (timeout < last_timeout)
1762				break;
1763			last_timeout = timeout;
1764			y = x;
1765		}
1766		qty += y;
1767	} while (y);
1768
1769	if (!qty)
1770		return 0;
1771
1772	if (qty == 1)
1773		return 1;
1774
1775	/* Convert qty to sectors */
1776	if (card->erase_shift)
1777		max_discard = --qty << card->erase_shift;
1778	else if (mmc_card_sd(card))
1779		max_discard = qty;
1780	else
1781		max_discard = --qty * card->erase_size;
1782
1783	return max_discard;
1784}
1785
1786unsigned int mmc_calc_max_discard(struct mmc_card *card)
1787{
1788	struct mmc_host *host = card->host;
1789	unsigned int max_discard, max_trim;
1790
1791	if (!host->max_discard_to)
1792		return UINT_MAX;
1793
1794	/*
1795	 * Without erase_group_def set, MMC erase timeout depends on clock
1796	 * frequence which can change.  In that case, the best choice is
1797	 * just the preferred erase size.
1798	 */
1799	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1800		return card->pref_erase;
1801
1802	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1803	if (mmc_can_trim(card)) {
1804		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1805		if (max_trim < max_discard)
1806			max_discard = max_trim;
1807	} else if (max_discard < card->erase_size) {
1808		max_discard = 0;
1809	}
1810	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1811		 mmc_hostname(host), max_discard, host->max_discard_to);
1812	return max_discard;
1813}
1814EXPORT_SYMBOL(mmc_calc_max_discard);
1815
1816int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1817{
1818	struct mmc_command cmd = {0};
1819
1820	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1821		return 0;
1822
1823	cmd.opcode = MMC_SET_BLOCKLEN;
1824	cmd.arg = blocklen;
1825	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1826	return mmc_wait_for_cmd(card->host, &cmd, 5);
1827}
1828EXPORT_SYMBOL(mmc_set_blocklen);
1829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1830static void mmc_hw_reset_for_init(struct mmc_host *host)
1831{
1832	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1833		return;
1834	mmc_host_clk_hold(host);
1835	host->ops->hw_reset(host);
1836	mmc_host_clk_release(host);
1837}
1838
1839int mmc_can_reset(struct mmc_card *card)
1840{
1841	u8 rst_n_function;
1842
1843	if (!mmc_card_mmc(card))
1844		return 0;
1845	rst_n_function = card->ext_csd.rst_n_function;
1846	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1847		return 0;
1848	return 1;
1849}
1850EXPORT_SYMBOL(mmc_can_reset);
1851
1852static int mmc_do_hw_reset(struct mmc_host *host, int check)
1853{
1854	struct mmc_card *card = host->card;
1855
1856	if (!host->bus_ops->power_restore)
1857		return -EOPNOTSUPP;
1858
1859	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1860		return -EOPNOTSUPP;
1861
1862	if (!card)
1863		return -EINVAL;
1864
1865	if (!mmc_can_reset(card))
1866		return -EOPNOTSUPP;
1867
1868	mmc_host_clk_hold(host);
1869	mmc_set_clock(host, host->f_init);
1870
1871	host->ops->hw_reset(host);
1872
1873	/* If the reset has happened, then a status command will fail */
1874	if (check) {
1875		struct mmc_command cmd = {0};
1876		int err;
1877
1878		cmd.opcode = MMC_SEND_STATUS;
1879		if (!mmc_host_is_spi(card->host))
1880			cmd.arg = card->rca << 16;
1881		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
1882		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1883		if (!err) {
1884			mmc_host_clk_release(host);
1885			return -ENOSYS;
1886		}
1887	}
1888
1889	host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
1890	if (mmc_host_is_spi(host)) {
1891		host->ios.chip_select = MMC_CS_HIGH;
1892		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1893	} else {
1894		host->ios.chip_select = MMC_CS_DONTCARE;
1895		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1896	}
1897	host->ios.bus_width = MMC_BUS_WIDTH_1;
1898	host->ios.timing = MMC_TIMING_LEGACY;
1899	mmc_set_ios(host);
1900
1901	mmc_host_clk_release(host);
1902
1903	return host->bus_ops->power_restore(host);
1904}
1905
1906int mmc_hw_reset(struct mmc_host *host)
1907{
1908	return mmc_do_hw_reset(host, 0);
1909}
1910EXPORT_SYMBOL(mmc_hw_reset);
1911
1912int mmc_hw_reset_check(struct mmc_host *host)
1913{
1914	return mmc_do_hw_reset(host, 1);
1915}
1916EXPORT_SYMBOL(mmc_hw_reset_check);
1917
1918static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1919{
1920	host->f_init = freq;
1921
1922#ifdef CONFIG_MMC_DEBUG
1923	pr_info("%s: %s: trying to init card at %u Hz\n",
1924		mmc_hostname(host), __func__, host->f_init);
1925#endif
1926	mmc_power_up(host);
1927
1928	/*
1929	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
1930	 * do a hardware reset if possible.
1931	 */
1932	mmc_hw_reset_for_init(host);
1933
1934	/* Initialization should be done at 3.3 V I/O voltage. */
1935	mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, 0);
1936
1937	/*
1938	 * sdio_reset sends CMD52 to reset card.  Since we do not know
1939	 * if the card is being re-initialized, just send it.  CMD52
1940	 * should be ignored by SD/eMMC cards.
1941	 */
1942	sdio_reset(host);
1943	mmc_go_idle(host);
1944
1945	mmc_send_if_cond(host, host->ocr_avail);
1946
1947	/* Order's important: probe SDIO, then SD, then MMC */
1948	if (!mmc_attach_sdio(host))
1949		return 0;
1950	if (!mmc_attach_sd(host))
1951		return 0;
1952	if (!mmc_attach_mmc(host))
1953		return 0;
1954
1955	mmc_power_off(host);
1956	return -EIO;
1957}
1958
1959int _mmc_detect_card_removed(struct mmc_host *host)
1960{
1961	int ret;
1962
1963	if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
1964		return 0;
1965
1966	if (!host->card || mmc_card_removed(host->card))
1967		return 1;
1968
1969	ret = host->bus_ops->alive(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
1970	if (ret) {
1971		mmc_card_set_removed(host->card);
1972		pr_debug("%s: card remove detected\n", mmc_hostname(host));
1973	}
1974
1975	return ret;
1976}
1977
1978int mmc_detect_card_removed(struct mmc_host *host)
1979{
1980	struct mmc_card *card = host->card;
1981	int ret;
1982
1983	WARN_ON(!host->claimed);
1984
1985	if (!card)
1986		return 1;
1987
1988	ret = mmc_card_removed(card);
1989	/*
1990	 * The card will be considered unchanged unless we have been asked to
1991	 * detect a change or host requires polling to provide card detection.
1992	 */
1993	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1994	    !(host->caps2 & MMC_CAP2_DETECT_ON_ERR))
1995		return ret;
1996
1997	host->detect_change = 0;
1998	if (!ret) {
1999		ret = _mmc_detect_card_removed(host);
2000		if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) {
2001			/*
2002			 * Schedule a detect work as soon as possible to let a
2003			 * rescan handle the card removal.
2004			 */
2005			cancel_delayed_work(&host->detect);
2006			mmc_detect_change(host, 0);
2007		}
2008	}
2009
2010	return ret;
2011}
2012EXPORT_SYMBOL(mmc_detect_card_removed);
2013
2014void mmc_rescan(struct work_struct *work)
2015{
2016	struct mmc_host *host =
2017		container_of(work, struct mmc_host, detect.work);
2018	int i;
2019
2020	if (host->rescan_disable)
2021		return;
2022
 
 
 
 
 
2023	mmc_bus_get(host);
2024
2025	/*
2026	 * if there is a _removable_ card registered, check whether it is
2027	 * still present
2028	 */
2029	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2030	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2031		host->bus_ops->detect(host);
2032
2033	host->detect_change = 0;
2034
2035	/*
2036	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2037	 * the card is no longer present.
2038	 */
2039	mmc_bus_put(host);
2040	mmc_bus_get(host);
2041
2042	/* if there still is a card present, stop here */
2043	if (host->bus_ops != NULL) {
2044		mmc_bus_put(host);
2045		goto out;
2046	}
2047
2048	/*
2049	 * Only we can add a new handler, so it's safe to
2050	 * release the lock here.
2051	 */
2052	mmc_bus_put(host);
2053
2054	if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
 
2055		mmc_claim_host(host);
2056		mmc_power_off(host);
2057		mmc_release_host(host);
2058		goto out;
2059	}
2060
2061	mmc_claim_host(host);
2062	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2063		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2064			break;
2065		if (freqs[i] <= host->f_min)
2066			break;
2067	}
2068	mmc_release_host(host);
2069
2070 out:
2071	if (host->caps & MMC_CAP_NEEDS_POLL)
2072		mmc_schedule_delayed_work(&host->detect, HZ);
2073}
2074
2075void mmc_start_host(struct mmc_host *host)
2076{
2077	host->f_init = max(freqs[0], host->f_min);
2078	mmc_power_up(host);
2079	mmc_detect_change(host, 0);
 
 
 
 
 
2080}
2081
2082void mmc_stop_host(struct mmc_host *host)
2083{
2084#ifdef CONFIG_MMC_DEBUG
2085	unsigned long flags;
2086	spin_lock_irqsave(&host->lock, flags);
2087	host->removed = 1;
2088	spin_unlock_irqrestore(&host->lock, flags);
2089#endif
 
 
2090
 
2091	cancel_delayed_work_sync(&host->detect);
2092	mmc_flush_scheduled_work();
2093
2094	/* clear pm flags now and let card drivers set them as needed */
2095	host->pm_flags = 0;
2096
2097	mmc_bus_get(host);
2098	if (host->bus_ops && !host->bus_dead) {
2099		/* Calling bus_ops->remove() with a claimed host can deadlock */
2100		if (host->bus_ops->remove)
2101			host->bus_ops->remove(host);
2102
2103		mmc_claim_host(host);
2104		mmc_detach_bus(host);
2105		mmc_power_off(host);
2106		mmc_release_host(host);
2107		mmc_bus_put(host);
2108		return;
2109	}
2110	mmc_bus_put(host);
2111
2112	BUG_ON(host->card);
2113
2114	mmc_power_off(host);
2115}
2116
2117int mmc_power_save_host(struct mmc_host *host)
2118{
2119	int ret = 0;
2120
2121#ifdef CONFIG_MMC_DEBUG
2122	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2123#endif
2124
2125	mmc_bus_get(host);
2126
2127	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2128		mmc_bus_put(host);
2129		return -EINVAL;
2130	}
2131
2132	if (host->bus_ops->power_save)
2133		ret = host->bus_ops->power_save(host);
2134
2135	mmc_bus_put(host);
2136
2137	mmc_power_off(host);
2138
2139	return ret;
2140}
2141EXPORT_SYMBOL(mmc_power_save_host);
2142
2143int mmc_power_restore_host(struct mmc_host *host)
2144{
2145	int ret;
2146
2147#ifdef CONFIG_MMC_DEBUG
2148	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2149#endif
2150
2151	mmc_bus_get(host);
2152
2153	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2154		mmc_bus_put(host);
2155		return -EINVAL;
2156	}
2157
2158	mmc_power_up(host);
2159	ret = host->bus_ops->power_restore(host);
2160
2161	mmc_bus_put(host);
2162
2163	return ret;
2164}
2165EXPORT_SYMBOL(mmc_power_restore_host);
2166
2167int mmc_card_awake(struct mmc_host *host)
2168{
2169	int err = -ENOSYS;
2170
2171	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2172		return 0;
2173
2174	mmc_bus_get(host);
2175
2176	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2177		err = host->bus_ops->awake(host);
2178
2179	mmc_bus_put(host);
2180
2181	return err;
2182}
2183EXPORT_SYMBOL(mmc_card_awake);
2184
2185int mmc_card_sleep(struct mmc_host *host)
2186{
2187	int err = -ENOSYS;
2188
2189	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2190		return 0;
2191
2192	mmc_bus_get(host);
2193
2194	if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
2195		err = host->bus_ops->sleep(host);
2196
2197	mmc_bus_put(host);
2198
2199	return err;
2200}
2201EXPORT_SYMBOL(mmc_card_sleep);
2202
2203int mmc_card_can_sleep(struct mmc_host *host)
2204{
2205	struct mmc_card *card = host->card;
2206
2207	if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2208		return 1;
2209	return 0;
2210}
2211EXPORT_SYMBOL(mmc_card_can_sleep);
2212
2213/*
2214 * Flush the cache to the non-volatile storage.
2215 */
2216int mmc_flush_cache(struct mmc_card *card)
2217{
2218	struct mmc_host *host = card->host;
2219	int err = 0;
2220
2221	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2222		return err;
2223
2224	if (mmc_card_mmc(card) &&
2225			(card->ext_csd.cache_size > 0) &&
2226			(card->ext_csd.cache_ctrl & 1)) {
2227		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2228				EXT_CSD_FLUSH_CACHE, 1, 0);
2229		if (err)
2230			pr_err("%s: cache flush error %d\n",
2231					mmc_hostname(card->host), err);
2232	}
2233
2234	return err;
2235}
2236EXPORT_SYMBOL(mmc_flush_cache);
2237
2238/*
2239 * Turn the cache ON/OFF.
2240 * Turning the cache OFF shall trigger flushing of the data
2241 * to the non-volatile storage.
2242 */
2243int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2244{
2245	struct mmc_card *card = host->card;
2246	unsigned int timeout;
2247	int err = 0;
2248
2249	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2250			mmc_card_is_removable(host))
2251		return err;
2252
2253	mmc_claim_host(host);
2254	if (card && mmc_card_mmc(card) &&
2255			(card->ext_csd.cache_size > 0)) {
2256		enable = !!enable;
2257
2258		if (card->ext_csd.cache_ctrl ^ enable) {
2259			timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2260			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2261					EXT_CSD_CACHE_CTRL, enable, timeout);
2262			if (err)
2263				pr_err("%s: cache %s error %d\n",
2264						mmc_hostname(card->host),
2265						enable ? "on" : "off",
2266						err);
2267			else
2268				card->ext_csd.cache_ctrl = enable;
2269		}
2270	}
2271	mmc_release_host(host);
2272
2273	return err;
2274}
2275EXPORT_SYMBOL(mmc_cache_ctrl);
2276
2277#ifdef CONFIG_PM
2278
2279/**
2280 *	mmc_suspend_host - suspend a host
2281 *	@host: mmc host
2282 */
2283int mmc_suspend_host(struct mmc_host *host)
2284{
2285	int err = 0;
2286
2287	cancel_delayed_work(&host->detect);
2288	mmc_flush_scheduled_work();
2289
2290	err = mmc_cache_ctrl(host, 0);
2291	if (err)
2292		goto out;
2293
2294	mmc_bus_get(host);
2295	if (host->bus_ops && !host->bus_dead) {
2296
2297		if (host->bus_ops->suspend)
2298			err = host->bus_ops->suspend(host);
2299
2300		if (err == -ENOSYS || !host->bus_ops->resume) {
2301			/*
2302			 * We simply "remove" the card in this case.
2303			 * It will be redetected on resume.  (Calling
2304			 * bus_ops->remove() with a claimed host can
2305			 * deadlock.)
2306			 */
2307			if (host->bus_ops->remove)
2308				host->bus_ops->remove(host);
2309			mmc_claim_host(host);
2310			mmc_detach_bus(host);
2311			mmc_power_off(host);
2312			mmc_release_host(host);
2313			host->pm_flags = 0;
2314			err = 0;
2315		}
2316	}
2317	mmc_bus_put(host);
2318
2319	if (!err && !mmc_card_keep_power(host))
2320		mmc_power_off(host);
2321
2322out:
2323	return err;
2324}
2325
2326EXPORT_SYMBOL(mmc_suspend_host);
2327
2328/**
2329 *	mmc_resume_host - resume a previously suspended host
2330 *	@host: mmc host
2331 */
2332int mmc_resume_host(struct mmc_host *host)
2333{
2334	int err = 0;
2335
2336	mmc_bus_get(host);
2337	if (host->bus_ops && !host->bus_dead) {
2338		if (!mmc_card_keep_power(host)) {
2339			mmc_power_up(host);
2340			mmc_select_voltage(host, host->ocr);
2341			/*
2342			 * Tell runtime PM core we just powered up the card,
2343			 * since it still believes the card is powered off.
2344			 * Note that currently runtime PM is only enabled
2345			 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2346			 */
2347			if (mmc_card_sdio(host->card) &&
2348			    (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2349				pm_runtime_disable(&host->card->dev);
2350				pm_runtime_set_active(&host->card->dev);
2351				pm_runtime_enable(&host->card->dev);
2352			}
2353		}
2354		BUG_ON(!host->bus_ops->resume);
2355		err = host->bus_ops->resume(host);
2356		if (err) {
2357			pr_warning("%s: error %d during resume "
2358					    "(card was removed?)\n",
2359					    mmc_hostname(host), err);
2360			err = 0;
2361		}
2362	}
2363	host->pm_flags &= ~MMC_PM_KEEP_POWER;
2364	mmc_bus_put(host);
2365
2366	return err;
2367}
2368EXPORT_SYMBOL(mmc_resume_host);
2369
2370/* Do the card removal on suspend if card is assumed removeable
2371 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2372   to sync the card.
2373*/
2374int mmc_pm_notify(struct notifier_block *notify_block,
2375					unsigned long mode, void *unused)
2376{
2377	struct mmc_host *host = container_of(
2378		notify_block, struct mmc_host, pm_notify);
2379	unsigned long flags;
2380
2381
2382	switch (mode) {
2383	case PM_HIBERNATION_PREPARE:
2384	case PM_SUSPEND_PREPARE:
2385
2386		spin_lock_irqsave(&host->lock, flags);
2387		host->rescan_disable = 1;
2388		host->power_notify_type = MMC_HOST_PW_NOTIFY_SHORT;
2389		spin_unlock_irqrestore(&host->lock, flags);
2390		cancel_delayed_work_sync(&host->detect);
2391
2392		if (!host->bus_ops || host->bus_ops->suspend)
2393			break;
2394
2395		/* Calling bus_ops->remove() with a claimed host can deadlock */
2396		if (host->bus_ops->remove)
2397			host->bus_ops->remove(host);
 
 
2398
 
 
2399		mmc_claim_host(host);
2400		mmc_detach_bus(host);
2401		mmc_power_off(host);
2402		mmc_release_host(host);
2403		host->pm_flags = 0;
2404		break;
2405
2406	case PM_POST_SUSPEND:
2407	case PM_POST_HIBERNATION:
2408	case PM_POST_RESTORE:
2409
2410		spin_lock_irqsave(&host->lock, flags);
2411		host->rescan_disable = 0;
2412		host->power_notify_type = MMC_HOST_PW_NOTIFY_LONG;
2413		spin_unlock_irqrestore(&host->lock, flags);
2414		mmc_detect_change(host, 0);
2415
2416	}
2417
2418	return 0;
2419}
2420#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2421
2422static int __init mmc_init(void)
2423{
2424	int ret;
2425
2426	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2427	if (!workqueue)
2428		return -ENOMEM;
2429
2430	ret = mmc_register_bus();
2431	if (ret)
2432		goto destroy_workqueue;
2433
2434	ret = mmc_register_host_class();
2435	if (ret)
2436		goto unregister_bus;
2437
2438	ret = sdio_register_bus();
2439	if (ret)
2440		goto unregister_host_class;
2441
2442	return 0;
2443
2444unregister_host_class:
2445	mmc_unregister_host_class();
2446unregister_bus:
2447	mmc_unregister_bus();
2448destroy_workqueue:
2449	destroy_workqueue(workqueue);
2450
2451	return ret;
2452}
2453
2454static void __exit mmc_exit(void)
2455{
2456	sdio_unregister_bus();
2457	mmc_unregister_host_class();
2458	mmc_unregister_bus();
2459	destroy_workqueue(workqueue);
2460}
2461
2462subsys_initcall(mmc_init);
2463module_exit(mmc_exit);
2464
2465MODULE_LICENSE("GPL");
v3.15
   1/*
   2 *  linux/drivers/mmc/core/core.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/completion.h>
  17#include <linux/device.h>
  18#include <linux/delay.h>
  19#include <linux/pagemap.h>
  20#include <linux/err.h>
  21#include <linux/leds.h>
  22#include <linux/scatterlist.h>
  23#include <linux/log2.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/suspend.h>
  28#include <linux/fault-inject.h>
  29#include <linux/random.h>
  30#include <linux/slab.h>
  31#include <linux/of.h>
  32
  33#include <linux/mmc/card.h>
  34#include <linux/mmc/host.h>
  35#include <linux/mmc/mmc.h>
  36#include <linux/mmc/sd.h>
  37#include <linux/mmc/slot-gpio.h>
  38
  39#include "core.h"
  40#include "bus.h"
  41#include "host.h"
  42#include "sdio_bus.h"
  43
  44#include "mmc_ops.h"
  45#include "sd_ops.h"
  46#include "sdio_ops.h"
  47
  48/* If the device is not responding */
  49#define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
  50
  51/*
  52 * Background operations can take a long time, depending on the housekeeping
  53 * operations the card has to perform.
  54 */
  55#define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
  56
  57static struct workqueue_struct *workqueue;
  58static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  59
  60/*
  61 * Enabling software CRCs on the data blocks can be a significant (30%)
  62 * performance cost, and for other reasons may not always be desired.
  63 * So we allow it it to be disabled.
  64 */
  65bool use_spi_crc = 1;
  66module_param(use_spi_crc, bool, 0);
  67
  68/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  69 * Internal function. Schedule delayed work in the MMC work queue.
  70 */
  71static int mmc_schedule_delayed_work(struct delayed_work *work,
  72				     unsigned long delay)
  73{
  74	return queue_delayed_work(workqueue, work, delay);
  75}
  76
  77/*
  78 * Internal function. Flush all scheduled work from the MMC work queue.
  79 */
  80static void mmc_flush_scheduled_work(void)
  81{
  82	flush_workqueue(workqueue);
  83}
  84
  85#ifdef CONFIG_FAIL_MMC_REQUEST
  86
  87/*
  88 * Internal function. Inject random data errors.
  89 * If mmc_data is NULL no errors are injected.
  90 */
  91static void mmc_should_fail_request(struct mmc_host *host,
  92				    struct mmc_request *mrq)
  93{
  94	struct mmc_command *cmd = mrq->cmd;
  95	struct mmc_data *data = mrq->data;
  96	static const int data_errors[] = {
  97		-ETIMEDOUT,
  98		-EILSEQ,
  99		-EIO,
 100	};
 101
 102	if (!data)
 103		return;
 104
 105	if (cmd->error || data->error ||
 106	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
 107		return;
 108
 109	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
 110	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
 111}
 112
 113#else /* CONFIG_FAIL_MMC_REQUEST */
 114
 115static inline void mmc_should_fail_request(struct mmc_host *host,
 116					   struct mmc_request *mrq)
 117{
 118}
 119
 120#endif /* CONFIG_FAIL_MMC_REQUEST */
 121
 122/**
 123 *	mmc_request_done - finish processing an MMC request
 124 *	@host: MMC host which completed request
 125 *	@mrq: MMC request which request
 126 *
 127 *	MMC drivers should call this function when they have completed
 128 *	their processing of a request.
 129 */
 130void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 131{
 132	struct mmc_command *cmd = mrq->cmd;
 133	int err = cmd->error;
 134
 135	if (err && cmd->retries && mmc_host_is_spi(host)) {
 136		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 137			cmd->retries = 0;
 138	}
 139
 140	if (err && cmd->retries && !mmc_card_removed(host->card)) {
 141		/*
 142		 * Request starter must handle retries - see
 143		 * mmc_wait_for_req_done().
 144		 */
 145		if (mrq->done)
 146			mrq->done(mrq);
 147	} else {
 148		mmc_should_fail_request(host, mrq);
 149
 150		led_trigger_event(host->led, LED_OFF);
 151
 152		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 153			mmc_hostname(host), cmd->opcode, err,
 154			cmd->resp[0], cmd->resp[1],
 155			cmd->resp[2], cmd->resp[3]);
 156
 157		if (mrq->data) {
 158			pr_debug("%s:     %d bytes transferred: %d\n",
 159				mmc_hostname(host),
 160				mrq->data->bytes_xfered, mrq->data->error);
 161		}
 162
 163		if (mrq->stop) {
 164			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 165				mmc_hostname(host), mrq->stop->opcode,
 166				mrq->stop->error,
 167				mrq->stop->resp[0], mrq->stop->resp[1],
 168				mrq->stop->resp[2], mrq->stop->resp[3]);
 169		}
 170
 171		if (mrq->done)
 172			mrq->done(mrq);
 173
 174		mmc_host_clk_release(host);
 175	}
 176}
 177
 178EXPORT_SYMBOL(mmc_request_done);
 179
 180static void
 181mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 182{
 183#ifdef CONFIG_MMC_DEBUG
 184	unsigned int i, sz;
 185	struct scatterlist *sg;
 186#endif
 187
 188	if (mrq->sbc) {
 189		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 190			 mmc_hostname(host), mrq->sbc->opcode,
 191			 mrq->sbc->arg, mrq->sbc->flags);
 192	}
 193
 194	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
 195		 mmc_hostname(host), mrq->cmd->opcode,
 196		 mrq->cmd->arg, mrq->cmd->flags);
 197
 198	if (mrq->data) {
 199		pr_debug("%s:     blksz %d blocks %d flags %08x "
 200			"tsac %d ms nsac %d\n",
 201			mmc_hostname(host), mrq->data->blksz,
 202			mrq->data->blocks, mrq->data->flags,
 203			mrq->data->timeout_ns / 1000000,
 204			mrq->data->timeout_clks);
 205	}
 206
 207	if (mrq->stop) {
 208		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 209			 mmc_hostname(host), mrq->stop->opcode,
 210			 mrq->stop->arg, mrq->stop->flags);
 211	}
 212
 213	WARN_ON(!host->claimed);
 214
 215	mrq->cmd->error = 0;
 216	mrq->cmd->mrq = mrq;
 217	if (mrq->data) {
 218		BUG_ON(mrq->data->blksz > host->max_blk_size);
 219		BUG_ON(mrq->data->blocks > host->max_blk_count);
 220		BUG_ON(mrq->data->blocks * mrq->data->blksz >
 221			host->max_req_size);
 222
 223#ifdef CONFIG_MMC_DEBUG
 224		sz = 0;
 225		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 226			sz += sg->length;
 227		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
 228#endif
 229
 230		mrq->cmd->data = mrq->data;
 231		mrq->data->error = 0;
 232		mrq->data->mrq = mrq;
 233		if (mrq->stop) {
 234			mrq->data->stop = mrq->stop;
 235			mrq->stop->error = 0;
 236			mrq->stop->mrq = mrq;
 237		}
 238	}
 239	mmc_host_clk_hold(host);
 240	led_trigger_event(host->led, LED_FULL);
 241	host->ops->request(host, mrq);
 242}
 243
 244/**
 245 *	mmc_start_bkops - start BKOPS for supported cards
 246 *	@card: MMC card to start BKOPS
 247 *	@form_exception: A flag to indicate if this function was
 248 *			 called due to an exception raised by the card
 249 *
 250 *	Start background operations whenever requested.
 251 *	When the urgent BKOPS bit is set in a R1 command response
 252 *	then background operations should be started immediately.
 253*/
 254void mmc_start_bkops(struct mmc_card *card, bool from_exception)
 255{
 256	int err;
 257	int timeout;
 258	bool use_busy_signal;
 259
 260	BUG_ON(!card);
 261
 262	if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
 263		return;
 264
 265	err = mmc_read_bkops_status(card);
 266	if (err) {
 267		pr_err("%s: Failed to read bkops status: %d\n",
 268		       mmc_hostname(card->host), err);
 269		return;
 270	}
 271
 272	if (!card->ext_csd.raw_bkops_status)
 273		return;
 274
 275	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
 276	    from_exception)
 277		return;
 278
 279	mmc_claim_host(card->host);
 280	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
 281		timeout = MMC_BKOPS_MAX_TIMEOUT;
 282		use_busy_signal = true;
 283	} else {
 284		timeout = 0;
 285		use_busy_signal = false;
 286	}
 287
 288	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 289			EXT_CSD_BKOPS_START, 1, timeout,
 290			use_busy_signal, true, false);
 291	if (err) {
 292		pr_warn("%s: Error %d starting bkops\n",
 293			mmc_hostname(card->host), err);
 294		goto out;
 295	}
 296
 297	/*
 298	 * For urgent bkops status (LEVEL_2 and more)
 299	 * bkops executed synchronously, otherwise
 300	 * the operation is in progress
 301	 */
 302	if (!use_busy_signal)
 303		mmc_card_set_doing_bkops(card);
 304out:
 305	mmc_release_host(card->host);
 306}
 307EXPORT_SYMBOL(mmc_start_bkops);
 308
 309/*
 310 * mmc_wait_data_done() - done callback for data request
 311 * @mrq: done data request
 312 *
 313 * Wakes up mmc context, passed as a callback to host controller driver
 314 */
 315static void mmc_wait_data_done(struct mmc_request *mrq)
 316{
 317	mrq->host->context_info.is_done_rcv = true;
 318	wake_up_interruptible(&mrq->host->context_info.wait);
 319}
 320
 321static void mmc_wait_done(struct mmc_request *mrq)
 322{
 323	complete(&mrq->completion);
 324}
 325
 326/*
 327 *__mmc_start_data_req() - starts data request
 328 * @host: MMC host to start the request
 329 * @mrq: data request to start
 330 *
 331 * Sets the done callback to be called when request is completed by the card.
 332 * Starts data mmc request execution
 333 */
 334static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
 335{
 336	mrq->done = mmc_wait_data_done;
 337	mrq->host = host;
 338	if (mmc_card_removed(host->card)) {
 339		mrq->cmd->error = -ENOMEDIUM;
 340		mmc_wait_data_done(mrq);
 341		return -ENOMEDIUM;
 342	}
 343	mmc_start_request(host, mrq);
 344
 345	return 0;
 346}
 347
 348static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 349{
 350	init_completion(&mrq->completion);
 351	mrq->done = mmc_wait_done;
 352	if (mmc_card_removed(host->card)) {
 353		mrq->cmd->error = -ENOMEDIUM;
 354		complete(&mrq->completion);
 355		return -ENOMEDIUM;
 356	}
 357	mmc_start_request(host, mrq);
 358	return 0;
 359}
 360
 361/*
 362 * mmc_wait_for_data_req_done() - wait for request completed
 363 * @host: MMC host to prepare the command.
 364 * @mrq: MMC request to wait for
 365 *
 366 * Blocks MMC context till host controller will ack end of data request
 367 * execution or new request notification arrives from the block layer.
 368 * Handles command retries.
 369 *
 370 * Returns enum mmc_blk_status after checking errors.
 371 */
 372static int mmc_wait_for_data_req_done(struct mmc_host *host,
 373				      struct mmc_request *mrq,
 374				      struct mmc_async_req *next_req)
 375{
 376	struct mmc_command *cmd;
 377	struct mmc_context_info *context_info = &host->context_info;
 378	int err;
 379	unsigned long flags;
 380
 381	while (1) {
 382		wait_event_interruptible(context_info->wait,
 383				(context_info->is_done_rcv ||
 384				 context_info->is_new_req));
 385		spin_lock_irqsave(&context_info->lock, flags);
 386		context_info->is_waiting_last_req = false;
 387		spin_unlock_irqrestore(&context_info->lock, flags);
 388		if (context_info->is_done_rcv) {
 389			context_info->is_done_rcv = false;
 390			context_info->is_new_req = false;
 391			cmd = mrq->cmd;
 392
 393			if (!cmd->error || !cmd->retries ||
 394			    mmc_card_removed(host->card)) {
 395				err = host->areq->err_check(host->card,
 396							    host->areq);
 397				break; /* return err */
 398			} else {
 399				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
 400					mmc_hostname(host),
 401					cmd->opcode, cmd->error);
 402				cmd->retries--;
 403				cmd->error = 0;
 404				host->ops->request(host, mrq);
 405				continue; /* wait for done/new event again */
 406			}
 407		} else if (context_info->is_new_req) {
 408			context_info->is_new_req = false;
 409			if (!next_req) {
 410				err = MMC_BLK_NEW_REQUEST;
 411				break; /* return err */
 412			}
 413		}
 414	}
 415	return err;
 416}
 417
 418static void mmc_wait_for_req_done(struct mmc_host *host,
 419				  struct mmc_request *mrq)
 420{
 421	struct mmc_command *cmd;
 422
 423	while (1) {
 424		wait_for_completion(&mrq->completion);
 425
 426		cmd = mrq->cmd;
 427
 428		/*
 429		 * If host has timed out waiting for the sanitize
 430		 * to complete, card might be still in programming state
 431		 * so let's try to bring the card out of programming
 432		 * state.
 433		 */
 434		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
 435			if (!mmc_interrupt_hpi(host->card)) {
 436				pr_warning("%s: %s: Interrupted sanitize\n",
 437					   mmc_hostname(host), __func__);
 438				cmd->error = 0;
 439				break;
 440			} else {
 441				pr_err("%s: %s: Failed to interrupt sanitize\n",
 442				       mmc_hostname(host), __func__);
 443			}
 444		}
 445		if (!cmd->error || !cmd->retries ||
 446		    mmc_card_removed(host->card))
 447			break;
 448
 449		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 450			 mmc_hostname(host), cmd->opcode, cmd->error);
 451		cmd->retries--;
 452		cmd->error = 0;
 453		host->ops->request(host, mrq);
 454	}
 455}
 456
 457/**
 458 *	mmc_pre_req - Prepare for a new request
 459 *	@host: MMC host to prepare command
 460 *	@mrq: MMC request to prepare for
 461 *	@is_first_req: true if there is no previous started request
 462 *                     that may run in parellel to this call, otherwise false
 463 *
 464 *	mmc_pre_req() is called in prior to mmc_start_req() to let
 465 *	host prepare for the new request. Preparation of a request may be
 466 *	performed while another request is running on the host.
 467 */
 468static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
 469		 bool is_first_req)
 470{
 471	if (host->ops->pre_req) {
 472		mmc_host_clk_hold(host);
 473		host->ops->pre_req(host, mrq, is_first_req);
 474		mmc_host_clk_release(host);
 475	}
 476}
 477
 478/**
 479 *	mmc_post_req - Post process a completed request
 480 *	@host: MMC host to post process command
 481 *	@mrq: MMC request to post process for
 482 *	@err: Error, if non zero, clean up any resources made in pre_req
 483 *
 484 *	Let the host post process a completed request. Post processing of
 485 *	a request may be performed while another reuqest is running.
 486 */
 487static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
 488			 int err)
 489{
 490	if (host->ops->post_req) {
 491		mmc_host_clk_hold(host);
 492		host->ops->post_req(host, mrq, err);
 493		mmc_host_clk_release(host);
 494	}
 495}
 496
 497/**
 498 *	mmc_start_req - start a non-blocking request
 499 *	@host: MMC host to start command
 500 *	@areq: async request to start
 501 *	@error: out parameter returns 0 for success, otherwise non zero
 502 *
 503 *	Start a new MMC custom command request for a host.
 504 *	If there is on ongoing async request wait for completion
 505 *	of that request and start the new one and return.
 506 *	Does not wait for the new request to complete.
 507 *
 508 *      Returns the completed request, NULL in case of none completed.
 509 *	Wait for the an ongoing request (previoulsy started) to complete and
 510 *	return the completed request. If there is no ongoing request, NULL
 511 *	is returned without waiting. NULL is not an error condition.
 512 */
 513struct mmc_async_req *mmc_start_req(struct mmc_host *host,
 514				    struct mmc_async_req *areq, int *error)
 515{
 516	int err = 0;
 517	int start_err = 0;
 518	struct mmc_async_req *data = host->areq;
 519
 520	/* Prepare a new request */
 521	if (areq)
 522		mmc_pre_req(host, areq->mrq, !host->areq);
 523
 524	if (host->areq) {
 525		err = mmc_wait_for_data_req_done(host, host->areq->mrq,	areq);
 526		if (err == MMC_BLK_NEW_REQUEST) {
 527			if (error)
 528				*error = err;
 529			/*
 530			 * The previous request was not completed,
 531			 * nothing to return
 532			 */
 533			return NULL;
 534		}
 535		/*
 536		 * Check BKOPS urgency for each R1 response
 537		 */
 538		if (host->card && mmc_card_mmc(host->card) &&
 539		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
 540		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
 541		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
 542			mmc_start_bkops(host->card, true);
 543	}
 544
 545	if (!err && areq)
 546		start_err = __mmc_start_data_req(host, areq->mrq);
 547
 548	if (host->areq)
 549		mmc_post_req(host, host->areq->mrq, 0);
 550
 551	 /* Cancel a prepared request if it was not started. */
 552	if ((err || start_err) && areq)
 553		mmc_post_req(host, areq->mrq, -EINVAL);
 554
 555	if (err)
 556		host->areq = NULL;
 557	else
 558		host->areq = areq;
 559
 560	if (error)
 561		*error = err;
 562	return data;
 563}
 564EXPORT_SYMBOL(mmc_start_req);
 565
 566/**
 567 *	mmc_wait_for_req - start a request and wait for completion
 568 *	@host: MMC host to start command
 569 *	@mrq: MMC request to start
 570 *
 571 *	Start a new MMC custom command request for a host, and wait
 572 *	for the command to complete. Does not attempt to parse the
 573 *	response.
 574 */
 575void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 576{
 577	__mmc_start_req(host, mrq);
 578	mmc_wait_for_req_done(host, mrq);
 579}
 580EXPORT_SYMBOL(mmc_wait_for_req);
 581
 582/**
 583 *	mmc_interrupt_hpi - Issue for High priority Interrupt
 584 *	@card: the MMC card associated with the HPI transfer
 585 *
 586 *	Issued High Priority Interrupt, and check for card status
 587 *	until out-of prg-state.
 588 */
 589int mmc_interrupt_hpi(struct mmc_card *card)
 590{
 591	int err;
 592	u32 status;
 593	unsigned long prg_wait;
 594
 595	BUG_ON(!card);
 596
 597	if (!card->ext_csd.hpi_en) {
 598		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
 599		return 1;
 600	}
 601
 602	mmc_claim_host(card->host);
 603	err = mmc_send_status(card, &status);
 604	if (err) {
 605		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
 606		goto out;
 607	}
 608
 609	switch (R1_CURRENT_STATE(status)) {
 610	case R1_STATE_IDLE:
 611	case R1_STATE_READY:
 612	case R1_STATE_STBY:
 613	case R1_STATE_TRAN:
 614		/*
 615		 * In idle and transfer states, HPI is not needed and the caller
 616		 * can issue the next intended command immediately
 617		 */
 618		goto out;
 619	case R1_STATE_PRG:
 620		break;
 621	default:
 622		/* In all other states, it's illegal to issue HPI */
 623		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
 624			mmc_hostname(card->host), R1_CURRENT_STATE(status));
 625		err = -EINVAL;
 626		goto out;
 627	}
 628
 629	err = mmc_send_hpi_cmd(card, &status);
 630	if (err)
 631		goto out;
 632
 633	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
 634	do {
 635		err = mmc_send_status(card, &status);
 636
 637		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
 638			break;
 639		if (time_after(jiffies, prg_wait))
 640			err = -ETIMEDOUT;
 641	} while (!err);
 642
 643out:
 644	mmc_release_host(card->host);
 645	return err;
 646}
 647EXPORT_SYMBOL(mmc_interrupt_hpi);
 648
 649/**
 650 *	mmc_wait_for_cmd - start a command and wait for completion
 651 *	@host: MMC host to start command
 652 *	@cmd: MMC command to start
 653 *	@retries: maximum number of retries
 654 *
 655 *	Start a new MMC command for a host, and wait for the command
 656 *	to complete.  Return any error that occurred while the command
 657 *	was executing.  Do not attempt to parse the response.
 658 */
 659int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 660{
 661	struct mmc_request mrq = {NULL};
 662
 663	WARN_ON(!host->claimed);
 664
 665	memset(cmd->resp, 0, sizeof(cmd->resp));
 666	cmd->retries = retries;
 667
 668	mrq.cmd = cmd;
 669	cmd->data = NULL;
 670
 671	mmc_wait_for_req(host, &mrq);
 672
 673	return cmd->error;
 674}
 675
 676EXPORT_SYMBOL(mmc_wait_for_cmd);
 677
 678/**
 679 *	mmc_stop_bkops - stop ongoing BKOPS
 680 *	@card: MMC card to check BKOPS
 681 *
 682 *	Send HPI command to stop ongoing background operations to
 683 *	allow rapid servicing of foreground operations, e.g. read/
 684 *	writes. Wait until the card comes out of the programming state
 685 *	to avoid errors in servicing read/write requests.
 686 */
 687int mmc_stop_bkops(struct mmc_card *card)
 688{
 689	int err = 0;
 690
 691	BUG_ON(!card);
 692	err = mmc_interrupt_hpi(card);
 693
 694	/*
 695	 * If err is EINVAL, we can't issue an HPI.
 696	 * It should complete the BKOPS.
 697	 */
 698	if (!err || (err == -EINVAL)) {
 699		mmc_card_clr_doing_bkops(card);
 700		err = 0;
 701	}
 702
 703	return err;
 704}
 705EXPORT_SYMBOL(mmc_stop_bkops);
 706
 707int mmc_read_bkops_status(struct mmc_card *card)
 708{
 709	int err;
 710	u8 *ext_csd;
 711
 712	/*
 713	 * In future work, we should consider storing the entire ext_csd.
 714	 */
 715	ext_csd = kmalloc(512, GFP_KERNEL);
 716	if (!ext_csd) {
 717		pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
 718		       mmc_hostname(card->host));
 719		return -ENOMEM;
 720	}
 721
 722	mmc_claim_host(card->host);
 723	err = mmc_send_ext_csd(card, ext_csd);
 724	mmc_release_host(card->host);
 725	if (err)
 726		goto out;
 727
 728	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
 729	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
 730out:
 731	kfree(ext_csd);
 732	return err;
 733}
 734EXPORT_SYMBOL(mmc_read_bkops_status);
 735
 736/**
 737 *	mmc_set_data_timeout - set the timeout for a data command
 738 *	@data: data phase for command
 739 *	@card: the MMC card associated with the data transfer
 740 *
 741 *	Computes the data timeout parameters according to the
 742 *	correct algorithm given the card type.
 743 */
 744void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 745{
 746	unsigned int mult;
 747
 748	/*
 749	 * SDIO cards only define an upper 1 s limit on access.
 750	 */
 751	if (mmc_card_sdio(card)) {
 752		data->timeout_ns = 1000000000;
 753		data->timeout_clks = 0;
 754		return;
 755	}
 756
 757	/*
 758	 * SD cards use a 100 multiplier rather than 10
 759	 */
 760	mult = mmc_card_sd(card) ? 100 : 10;
 761
 762	/*
 763	 * Scale up the multiplier (and therefore the timeout) by
 764	 * the r2w factor for writes.
 765	 */
 766	if (data->flags & MMC_DATA_WRITE)
 767		mult <<= card->csd.r2w_factor;
 768
 769	data->timeout_ns = card->csd.tacc_ns * mult;
 770	data->timeout_clks = card->csd.tacc_clks * mult;
 771
 772	/*
 773	 * SD cards also have an upper limit on the timeout.
 774	 */
 775	if (mmc_card_sd(card)) {
 776		unsigned int timeout_us, limit_us;
 777
 778		timeout_us = data->timeout_ns / 1000;
 779		if (mmc_host_clk_rate(card->host))
 780			timeout_us += data->timeout_clks * 1000 /
 781				(mmc_host_clk_rate(card->host) / 1000);
 782
 783		if (data->flags & MMC_DATA_WRITE)
 784			/*
 785			 * The MMC spec "It is strongly recommended
 786			 * for hosts to implement more than 500ms
 787			 * timeout value even if the card indicates
 788			 * the 250ms maximum busy length."  Even the
 789			 * previous value of 300ms is known to be
 790			 * insufficient for some cards.
 791			 */
 792			limit_us = 3000000;
 793		else
 794			limit_us = 100000;
 795
 796		/*
 797		 * SDHC cards always use these fixed values.
 798		 */
 799		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
 800			data->timeout_ns = limit_us * 1000;
 801			data->timeout_clks = 0;
 802		}
 803	}
 804
 805	/*
 806	 * Some cards require longer data read timeout than indicated in CSD.
 807	 * Address this by setting the read timeout to a "reasonably high"
 808	 * value. For the cards tested, 300ms has proven enough. If necessary,
 809	 * this value can be increased if other problematic cards require this.
 810	 */
 811	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 812		data->timeout_ns = 300000000;
 813		data->timeout_clks = 0;
 814	}
 815
 816	/*
 817	 * Some cards need very high timeouts if driven in SPI mode.
 818	 * The worst observed timeout was 900ms after writing a
 819	 * continuous stream of data until the internal logic
 820	 * overflowed.
 821	 */
 822	if (mmc_host_is_spi(card->host)) {
 823		if (data->flags & MMC_DATA_WRITE) {
 824			if (data->timeout_ns < 1000000000)
 825				data->timeout_ns = 1000000000;	/* 1s */
 826		} else {
 827			if (data->timeout_ns < 100000000)
 828				data->timeout_ns =  100000000;	/* 100ms */
 829		}
 830	}
 831}
 832EXPORT_SYMBOL(mmc_set_data_timeout);
 833
 834/**
 835 *	mmc_align_data_size - pads a transfer size to a more optimal value
 836 *	@card: the MMC card associated with the data transfer
 837 *	@sz: original transfer size
 838 *
 839 *	Pads the original data size with a number of extra bytes in
 840 *	order to avoid controller bugs and/or performance hits
 841 *	(e.g. some controllers revert to PIO for certain sizes).
 842 *
 843 *	Returns the improved size, which might be unmodified.
 844 *
 845 *	Note that this function is only relevant when issuing a
 846 *	single scatter gather entry.
 847 */
 848unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
 849{
 850	/*
 851	 * FIXME: We don't have a system for the controller to tell
 852	 * the core about its problems yet, so for now we just 32-bit
 853	 * align the size.
 854	 */
 855	sz = ((sz + 3) / 4) * 4;
 856
 857	return sz;
 858}
 859EXPORT_SYMBOL(mmc_align_data_size);
 860
 861/**
 862 *	__mmc_claim_host - exclusively claim a host
 863 *	@host: mmc host to claim
 864 *	@abort: whether or not the operation should be aborted
 865 *
 866 *	Claim a host for a set of operations.  If @abort is non null and
 867 *	dereference a non-zero value then this will return prematurely with
 868 *	that non-zero value without acquiring the lock.  Returns zero
 869 *	with the lock held otherwise.
 870 */
 871int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
 872{
 873	DECLARE_WAITQUEUE(wait, current);
 874	unsigned long flags;
 875	int stop;
 876
 877	might_sleep();
 878
 879	add_wait_queue(&host->wq, &wait);
 880	spin_lock_irqsave(&host->lock, flags);
 881	while (1) {
 882		set_current_state(TASK_UNINTERRUPTIBLE);
 883		stop = abort ? atomic_read(abort) : 0;
 884		if (stop || !host->claimed || host->claimer == current)
 885			break;
 886		spin_unlock_irqrestore(&host->lock, flags);
 887		schedule();
 888		spin_lock_irqsave(&host->lock, flags);
 889	}
 890	set_current_state(TASK_RUNNING);
 891	if (!stop) {
 892		host->claimed = 1;
 893		host->claimer = current;
 894		host->claim_cnt += 1;
 895	} else
 896		wake_up(&host->wq);
 897	spin_unlock_irqrestore(&host->lock, flags);
 898	remove_wait_queue(&host->wq, &wait);
 899	if (host->ops->enable && !stop && host->claim_cnt == 1)
 900		host->ops->enable(host);
 901	return stop;
 902}
 903
 904EXPORT_SYMBOL(__mmc_claim_host);
 905
 906/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 907 *	mmc_release_host - release a host
 908 *	@host: mmc host to release
 909 *
 910 *	Release a MMC host, allowing others to claim the host
 911 *	for their operations.
 912 */
 913void mmc_release_host(struct mmc_host *host)
 914{
 915	unsigned long flags;
 916
 917	WARN_ON(!host->claimed);
 918
 919	if (host->ops->disable && host->claim_cnt == 1)
 920		host->ops->disable(host);
 921
 922	spin_lock_irqsave(&host->lock, flags);
 923	if (--host->claim_cnt) {
 924		/* Release for nested claim */
 925		spin_unlock_irqrestore(&host->lock, flags);
 926	} else {
 927		host->claimed = 0;
 928		host->claimer = NULL;
 929		spin_unlock_irqrestore(&host->lock, flags);
 930		wake_up(&host->wq);
 931	}
 932}
 933EXPORT_SYMBOL(mmc_release_host);
 934
 935/*
 936 * This is a helper function, which fetches a runtime pm reference for the
 937 * card device and also claims the host.
 938 */
 939void mmc_get_card(struct mmc_card *card)
 940{
 941	pm_runtime_get_sync(&card->dev);
 942	mmc_claim_host(card->host);
 943}
 944EXPORT_SYMBOL(mmc_get_card);
 945
 946/*
 947 * This is a helper function, which releases the host and drops the runtime
 948 * pm reference for the card device.
 949 */
 950void mmc_put_card(struct mmc_card *card)
 951{
 952	mmc_release_host(card->host);
 953	pm_runtime_mark_last_busy(&card->dev);
 954	pm_runtime_put_autosuspend(&card->dev);
 955}
 956EXPORT_SYMBOL(mmc_put_card);
 957
 958/*
 959 * Internal function that does the actual ios call to the host driver,
 960 * optionally printing some debug output.
 961 */
 962static inline void mmc_set_ios(struct mmc_host *host)
 963{
 964	struct mmc_ios *ios = &host->ios;
 965
 966	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 967		"width %u timing %u\n",
 968		 mmc_hostname(host), ios->clock, ios->bus_mode,
 969		 ios->power_mode, ios->chip_select, ios->vdd,
 970		 ios->bus_width, ios->timing);
 971
 972	if (ios->clock > 0)
 973		mmc_set_ungated(host);
 974	host->ops->set_ios(host, ios);
 975}
 976
 977/*
 978 * Control chip select pin on a host.
 979 */
 980void mmc_set_chip_select(struct mmc_host *host, int mode)
 981{
 982	mmc_host_clk_hold(host);
 983	host->ios.chip_select = mode;
 984	mmc_set_ios(host);
 985	mmc_host_clk_release(host);
 986}
 987
 988/*
 989 * Sets the host clock to the highest possible frequency that
 990 * is below "hz".
 991 */
 992static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
 993{
 994	WARN_ON(hz < host->f_min);
 995
 996	if (hz > host->f_max)
 997		hz = host->f_max;
 998
 999	host->ios.clock = hz;
1000	mmc_set_ios(host);
1001}
1002
1003void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1004{
1005	mmc_host_clk_hold(host);
1006	__mmc_set_clock(host, hz);
1007	mmc_host_clk_release(host);
1008}
1009
1010#ifdef CONFIG_MMC_CLKGATE
1011/*
1012 * This gates the clock by setting it to 0 Hz.
1013 */
1014void mmc_gate_clock(struct mmc_host *host)
1015{
1016	unsigned long flags;
1017
1018	spin_lock_irqsave(&host->clk_lock, flags);
1019	host->clk_old = host->ios.clock;
1020	host->ios.clock = 0;
1021	host->clk_gated = true;
1022	spin_unlock_irqrestore(&host->clk_lock, flags);
1023	mmc_set_ios(host);
1024}
1025
1026/*
1027 * This restores the clock from gating by using the cached
1028 * clock value.
1029 */
1030void mmc_ungate_clock(struct mmc_host *host)
1031{
1032	/*
1033	 * We should previously have gated the clock, so the clock shall
1034	 * be 0 here! The clock may however be 0 during initialization,
1035	 * when some request operations are performed before setting
1036	 * the frequency. When ungate is requested in that situation
1037	 * we just ignore the call.
1038	 */
1039	if (host->clk_old) {
1040		BUG_ON(host->ios.clock);
1041		/* This call will also set host->clk_gated to false */
1042		__mmc_set_clock(host, host->clk_old);
1043	}
1044}
1045
1046void mmc_set_ungated(struct mmc_host *host)
1047{
1048	unsigned long flags;
1049
1050	/*
1051	 * We've been given a new frequency while the clock is gated,
1052	 * so make sure we regard this as ungating it.
1053	 */
1054	spin_lock_irqsave(&host->clk_lock, flags);
1055	host->clk_gated = false;
1056	spin_unlock_irqrestore(&host->clk_lock, flags);
1057}
1058
1059#else
1060void mmc_set_ungated(struct mmc_host *host)
1061{
1062}
1063#endif
1064
1065/*
1066 * Change the bus mode (open drain/push-pull) of a host.
1067 */
1068void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1069{
1070	mmc_host_clk_hold(host);
1071	host->ios.bus_mode = mode;
1072	mmc_set_ios(host);
1073	mmc_host_clk_release(host);
1074}
1075
1076/*
1077 * Change data bus width of a host.
1078 */
1079void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1080{
1081	mmc_host_clk_hold(host);
1082	host->ios.bus_width = width;
1083	mmc_set_ios(host);
1084	mmc_host_clk_release(host);
1085}
1086
1087/**
1088 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1089 * @vdd:	voltage (mV)
1090 * @low_bits:	prefer low bits in boundary cases
1091 *
1092 * This function returns the OCR bit number according to the provided @vdd
1093 * value. If conversion is not possible a negative errno value returned.
1094 *
1095 * Depending on the @low_bits flag the function prefers low or high OCR bits
1096 * on boundary voltages. For example,
1097 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1098 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1099 *
1100 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1101 */
1102static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1103{
1104	const int max_bit = ilog2(MMC_VDD_35_36);
1105	int bit;
1106
1107	if (vdd < 1650 || vdd > 3600)
1108		return -EINVAL;
1109
1110	if (vdd >= 1650 && vdd <= 1950)
1111		return ilog2(MMC_VDD_165_195);
1112
1113	if (low_bits)
1114		vdd -= 1;
1115
1116	/* Base 2000 mV, step 100 mV, bit's base 8. */
1117	bit = (vdd - 2000) / 100 + 8;
1118	if (bit > max_bit)
1119		return max_bit;
1120	return bit;
1121}
1122
1123/**
1124 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1125 * @vdd_min:	minimum voltage value (mV)
1126 * @vdd_max:	maximum voltage value (mV)
1127 *
1128 * This function returns the OCR mask bits according to the provided @vdd_min
1129 * and @vdd_max values. If conversion is not possible the function returns 0.
1130 *
1131 * Notes wrt boundary cases:
1132 * This function sets the OCR bits for all boundary voltages, for example
1133 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1134 * MMC_VDD_34_35 mask.
1135 */
1136u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1137{
1138	u32 mask = 0;
1139
1140	if (vdd_max < vdd_min)
1141		return 0;
1142
1143	/* Prefer high bits for the boundary vdd_max values. */
1144	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1145	if (vdd_max < 0)
1146		return 0;
1147
1148	/* Prefer low bits for the boundary vdd_min values. */
1149	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1150	if (vdd_min < 0)
1151		return 0;
1152
1153	/* Fill the mask, from max bit to min bit. */
1154	while (vdd_max >= vdd_min)
1155		mask |= 1 << vdd_max--;
1156
1157	return mask;
1158}
1159EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1160
1161#ifdef CONFIG_OF
1162
1163/**
1164 * mmc_of_parse_voltage - return mask of supported voltages
1165 * @np: The device node need to be parsed.
1166 * @mask: mask of voltages available for MMC/SD/SDIO
1167 *
1168 * 1. Return zero on success.
1169 * 2. Return negative errno: voltage-range is invalid.
1170 */
1171int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1172{
1173	const u32 *voltage_ranges;
1174	int num_ranges, i;
1175
1176	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1177	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1178	if (!voltage_ranges || !num_ranges) {
1179		pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1180		return -EINVAL;
1181	}
1182
1183	for (i = 0; i < num_ranges; i++) {
1184		const int j = i * 2;
1185		u32 ocr_mask;
1186
1187		ocr_mask = mmc_vddrange_to_ocrmask(
1188				be32_to_cpu(voltage_ranges[j]),
1189				be32_to_cpu(voltage_ranges[j + 1]));
1190		if (!ocr_mask) {
1191			pr_err("%s: voltage-range #%d is invalid\n",
1192				np->full_name, i);
1193			return -EINVAL;
1194		}
1195		*mask |= ocr_mask;
1196	}
1197
1198	return 0;
1199}
1200EXPORT_SYMBOL(mmc_of_parse_voltage);
1201
1202#endif /* CONFIG_OF */
1203
1204#ifdef CONFIG_REGULATOR
1205
1206/**
1207 * mmc_regulator_get_ocrmask - return mask of supported voltages
1208 * @supply: regulator to use
1209 *
1210 * This returns either a negative errno, or a mask of voltages that
1211 * can be provided to MMC/SD/SDIO devices using the specified voltage
1212 * regulator.  This would normally be called before registering the
1213 * MMC host adapter.
1214 */
1215int mmc_regulator_get_ocrmask(struct regulator *supply)
1216{
1217	int			result = 0;
1218	int			count;
1219	int			i;
1220
1221	count = regulator_count_voltages(supply);
1222	if (count < 0)
1223		return count;
1224
1225	for (i = 0; i < count; i++) {
1226		int		vdd_uV;
1227		int		vdd_mV;
1228
1229		vdd_uV = regulator_list_voltage(supply, i);
1230		if (vdd_uV <= 0)
1231			continue;
1232
1233		vdd_mV = vdd_uV / 1000;
1234		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1235	}
1236
1237	return result;
1238}
1239EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1240
1241/**
1242 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1243 * @mmc: the host to regulate
1244 * @supply: regulator to use
1245 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1246 *
1247 * Returns zero on success, else negative errno.
1248 *
1249 * MMC host drivers may use this to enable or disable a regulator using
1250 * a particular supply voltage.  This would normally be called from the
1251 * set_ios() method.
1252 */
1253int mmc_regulator_set_ocr(struct mmc_host *mmc,
1254			struct regulator *supply,
1255			unsigned short vdd_bit)
1256{
1257	int			result = 0;
1258	int			min_uV, max_uV;
1259
1260	if (vdd_bit) {
1261		int		tmp;
1262		int		voltage;
1263
1264		/*
1265		 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1266		 * bits this regulator doesn't quite support ... don't
1267		 * be too picky, most cards and regulators are OK with
1268		 * a 0.1V range goof (it's a small error percentage).
1269		 */
1270		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1271		if (tmp == 0) {
1272			min_uV = 1650 * 1000;
1273			max_uV = 1950 * 1000;
1274		} else {
1275			min_uV = 1900 * 1000 + tmp * 100 * 1000;
1276			max_uV = min_uV + 100 * 1000;
1277		}
1278
1279		/*
1280		 * If we're using a fixed/static regulator, don't call
1281		 * regulator_set_voltage; it would fail.
1282		 */
1283		voltage = regulator_get_voltage(supply);
1284
1285		if (!regulator_can_change_voltage(supply))
1286			min_uV = max_uV = voltage;
1287
1288		if (voltage < 0)
1289			result = voltage;
1290		else if (voltage < min_uV || voltage > max_uV)
1291			result = regulator_set_voltage(supply, min_uV, max_uV);
1292		else
1293			result = 0;
1294
1295		if (result == 0 && !mmc->regulator_enabled) {
1296			result = regulator_enable(supply);
1297			if (!result)
1298				mmc->regulator_enabled = true;
1299		}
1300	} else if (mmc->regulator_enabled) {
1301		result = regulator_disable(supply);
1302		if (result == 0)
1303			mmc->regulator_enabled = false;
1304	}
1305
1306	if (result)
1307		dev_err(mmc_dev(mmc),
1308			"could not set regulator OCR (%d)\n", result);
1309	return result;
1310}
1311EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1312
1313int mmc_regulator_get_supply(struct mmc_host *mmc)
1314{
1315	struct device *dev = mmc_dev(mmc);
1316	struct regulator *supply;
1317	int ret;
1318
1319	supply = devm_regulator_get(dev, "vmmc");
1320	mmc->supply.vmmc = supply;
1321	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1322
1323	if (IS_ERR(supply))
1324		return PTR_ERR(supply);
1325
1326	ret = mmc_regulator_get_ocrmask(supply);
1327	if (ret > 0)
1328		mmc->ocr_avail = ret;
1329	else
1330		dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1331
1332	return 0;
1333}
1334EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1335
1336#endif /* CONFIG_REGULATOR */
1337
1338/*
1339 * Mask off any voltages we don't support and select
1340 * the lowest voltage
1341 */
1342u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1343{
1344	int bit;
1345
1346	/*
1347	 * Sanity check the voltages that the card claims to
1348	 * support.
1349	 */
1350	if (ocr & 0x7F) {
1351		dev_warn(mmc_dev(host),
1352		"card claims to support voltages below defined range\n");
1353		ocr &= ~0x7F;
1354	}
1355
1356	ocr &= host->ocr_avail;
1357	if (!ocr) {
1358		dev_warn(mmc_dev(host), "no support for card's volts\n");
1359		return 0;
1360	}
1361
1362	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1363		bit = ffs(ocr) - 1;
1364		ocr &= 3 << bit;
1365		mmc_power_cycle(host, ocr);
1366	} else {
1367		bit = fls(ocr) - 1;
1368		ocr &= 3 << bit;
1369		if (bit != host->ios.vdd)
1370			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1371	}
1372
1373	return ocr;
1374}
1375
1376int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1377{
1378	int err = 0;
1379	int old_signal_voltage = host->ios.signal_voltage;
1380
1381	host->ios.signal_voltage = signal_voltage;
1382	if (host->ops->start_signal_voltage_switch) {
1383		mmc_host_clk_hold(host);
1384		err = host->ops->start_signal_voltage_switch(host, &host->ios);
 
1385		mmc_host_clk_release(host);
 
 
 
 
1386	}
1387
1388	if (err)
1389		host->ios.signal_voltage = old_signal_voltage;
1390
1391	return err;
1392
1393}
1394
1395int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1396{
1397	struct mmc_command cmd = {0};
1398	int err = 0;
1399	u32 clock;
1400
1401	BUG_ON(!host);
1402
1403	/*
1404	 * Send CMD11 only if the request is to switch the card to
1405	 * 1.8V signalling.
1406	 */
1407	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1408		return __mmc_set_signal_voltage(host, signal_voltage);
 
 
1409
1410	/*
1411	 * If we cannot switch voltages, return failure so the caller
1412	 * can continue without UHS mode
1413	 */
1414	if (!host->ops->start_signal_voltage_switch)
1415		return -EPERM;
1416	if (!host->ops->card_busy)
1417		pr_warning("%s: cannot verify signal voltage switch\n",
1418				mmc_hostname(host));
1419
1420	cmd.opcode = SD_SWITCH_VOLTAGE;
1421	cmd.arg = 0;
1422	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1423
1424	err = mmc_wait_for_cmd(host, &cmd, 0);
1425	if (err)
1426		return err;
1427
1428	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1429		return -EIO;
1430
1431	mmc_host_clk_hold(host);
1432	/*
1433	 * The card should drive cmd and dat[0:3] low immediately
1434	 * after the response of cmd11, but wait 1 ms to be sure
1435	 */
1436	mmc_delay(1);
1437	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1438		err = -EAGAIN;
1439		goto power_cycle;
1440	}
1441	/*
1442	 * During a signal voltage level switch, the clock must be gated
1443	 * for 5 ms according to the SD spec
1444	 */
1445	clock = host->ios.clock;
1446	host->ios.clock = 0;
1447	mmc_set_ios(host);
1448
1449	if (__mmc_set_signal_voltage(host, signal_voltage)) {
1450		/*
1451		 * Voltages may not have been switched, but we've already
1452		 * sent CMD11, so a power cycle is required anyway
1453		 */
1454		err = -EAGAIN;
1455		goto power_cycle;
1456	}
1457
1458	/* Keep clock gated for at least 5 ms */
1459	mmc_delay(5);
1460	host->ios.clock = clock;
1461	mmc_set_ios(host);
1462
1463	/* Wait for at least 1 ms according to spec */
1464	mmc_delay(1);
1465
1466	/*
1467	 * Failure to switch is indicated by the card holding
1468	 * dat[0:3] low
1469	 */
1470	if (host->ops->card_busy && host->ops->card_busy(host))
1471		err = -EAGAIN;
1472
1473power_cycle:
1474	if (err) {
1475		pr_debug("%s: Signal voltage switch failed, "
1476			"power cycling card\n", mmc_hostname(host));
1477		mmc_power_cycle(host, ocr);
1478	}
1479
1480	mmc_host_clk_release(host);
1481
1482	return err;
1483}
1484
1485/*
1486 * Select timing parameters for host.
1487 */
1488void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1489{
1490	mmc_host_clk_hold(host);
1491	host->ios.timing = timing;
1492	mmc_set_ios(host);
1493	mmc_host_clk_release(host);
1494}
1495
1496/*
1497 * Select appropriate driver type for host.
1498 */
1499void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1500{
1501	mmc_host_clk_hold(host);
1502	host->ios.drv_type = drv_type;
1503	mmc_set_ios(host);
1504	mmc_host_clk_release(host);
1505}
1506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1507/*
1508 * Apply power to the MMC stack.  This is a two-stage process.
1509 * First, we enable power to the card without the clock running.
1510 * We then wait a bit for the power to stabilise.  Finally,
1511 * enable the bus drivers and clock to the card.
1512 *
1513 * We must _NOT_ enable the clock prior to power stablising.
1514 *
1515 * If a host does all the power sequencing itself, ignore the
1516 * initial MMC_POWER_UP stage.
1517 */
1518void mmc_power_up(struct mmc_host *host, u32 ocr)
1519{
 
 
1520	if (host->ios.power_mode == MMC_POWER_ON)
1521		return;
1522
1523	mmc_host_clk_hold(host);
1524
1525	host->ios.vdd = fls(ocr) - 1;
 
 
 
 
 
 
1526	if (mmc_host_is_spi(host))
1527		host->ios.chip_select = MMC_CS_HIGH;
1528	else
1529		host->ios.chip_select = MMC_CS_DONTCARE;
1530	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1531	host->ios.power_mode = MMC_POWER_UP;
1532	host->ios.bus_width = MMC_BUS_WIDTH_1;
1533	host->ios.timing = MMC_TIMING_LEGACY;
1534	mmc_set_ios(host);
1535
1536	/* Set signal voltage to 3.3V */
1537	__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1538
1539	/*
1540	 * This delay should be sufficient to allow the power supply
1541	 * to reach the minimum voltage.
1542	 */
1543	mmc_delay(10);
1544
1545	host->ios.clock = host->f_init;
1546
1547	host->ios.power_mode = MMC_POWER_ON;
1548	mmc_set_ios(host);
1549
1550	/*
1551	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1552	 * time required to reach a stable voltage.
1553	 */
1554	mmc_delay(10);
1555
1556	mmc_host_clk_release(host);
1557}
1558
1559void mmc_power_off(struct mmc_host *host)
1560{
 
 
1561	if (host->ios.power_mode == MMC_POWER_OFF)
1562		return;
1563
1564	mmc_host_clk_hold(host);
1565
1566	host->ios.clock = 0;
1567	host->ios.vdd = 0;
1568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1569	if (!mmc_host_is_spi(host)) {
1570		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1571		host->ios.chip_select = MMC_CS_DONTCARE;
1572	}
1573	host->ios.power_mode = MMC_POWER_OFF;
1574	host->ios.bus_width = MMC_BUS_WIDTH_1;
1575	host->ios.timing = MMC_TIMING_LEGACY;
1576	mmc_set_ios(host);
1577
1578	/*
1579	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1580	 * XO-1.5, require a short delay after poweroff before the card
1581	 * can be successfully turned on again.
1582	 */
1583	mmc_delay(1);
1584
1585	mmc_host_clk_release(host);
1586}
1587
1588void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1589{
1590	mmc_power_off(host);
1591	/* Wait at least 1 ms according to SD spec */
1592	mmc_delay(1);
1593	mmc_power_up(host, ocr);
1594}
1595
1596/*
1597 * Cleanup when the last reference to the bus operator is dropped.
1598 */
1599static void __mmc_release_bus(struct mmc_host *host)
1600{
1601	BUG_ON(!host);
1602	BUG_ON(host->bus_refs);
1603	BUG_ON(!host->bus_dead);
1604
1605	host->bus_ops = NULL;
1606}
1607
1608/*
1609 * Increase reference count of bus operator
1610 */
1611static inline void mmc_bus_get(struct mmc_host *host)
1612{
1613	unsigned long flags;
1614
1615	spin_lock_irqsave(&host->lock, flags);
1616	host->bus_refs++;
1617	spin_unlock_irqrestore(&host->lock, flags);
1618}
1619
1620/*
1621 * Decrease reference count of bus operator and free it if
1622 * it is the last reference.
1623 */
1624static inline void mmc_bus_put(struct mmc_host *host)
1625{
1626	unsigned long flags;
1627
1628	spin_lock_irqsave(&host->lock, flags);
1629	host->bus_refs--;
1630	if ((host->bus_refs == 0) && host->bus_ops)
1631		__mmc_release_bus(host);
1632	spin_unlock_irqrestore(&host->lock, flags);
1633}
1634
1635/*
1636 * Assign a mmc bus handler to a host. Only one bus handler may control a
1637 * host at any given time.
1638 */
1639void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1640{
1641	unsigned long flags;
1642
1643	BUG_ON(!host);
1644	BUG_ON(!ops);
1645
1646	WARN_ON(!host->claimed);
1647
1648	spin_lock_irqsave(&host->lock, flags);
1649
1650	BUG_ON(host->bus_ops);
1651	BUG_ON(host->bus_refs);
1652
1653	host->bus_ops = ops;
1654	host->bus_refs = 1;
1655	host->bus_dead = 0;
1656
1657	spin_unlock_irqrestore(&host->lock, flags);
1658}
1659
1660/*
1661 * Remove the current bus handler from a host.
1662 */
1663void mmc_detach_bus(struct mmc_host *host)
1664{
1665	unsigned long flags;
1666
1667	BUG_ON(!host);
1668
1669	WARN_ON(!host->claimed);
1670	WARN_ON(!host->bus_ops);
1671
1672	spin_lock_irqsave(&host->lock, flags);
1673
1674	host->bus_dead = 1;
1675
1676	spin_unlock_irqrestore(&host->lock, flags);
1677
1678	mmc_bus_put(host);
1679}
1680
1681static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1682				bool cd_irq)
1683{
1684#ifdef CONFIG_MMC_DEBUG
1685	unsigned long flags;
1686	spin_lock_irqsave(&host->lock, flags);
1687	WARN_ON(host->removed);
1688	spin_unlock_irqrestore(&host->lock, flags);
1689#endif
1690
1691	/*
1692	 * If the device is configured as wakeup, we prevent a new sleep for
1693	 * 5 s to give provision for user space to consume the event.
1694	 */
1695	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1696		device_can_wakeup(mmc_dev(host)))
1697		pm_wakeup_event(mmc_dev(host), 5000);
1698
1699	host->detect_change = 1;
1700	mmc_schedule_delayed_work(&host->detect, delay);
1701}
1702
1703/**
1704 *	mmc_detect_change - process change of state on a MMC socket
1705 *	@host: host which changed state.
1706 *	@delay: optional delay to wait before detection (jiffies)
1707 *
1708 *	MMC drivers should call this when they detect a card has been
1709 *	inserted or removed. The MMC layer will confirm that any
1710 *	present card is still functional, and initialize any newly
1711 *	inserted.
1712 */
1713void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1714{
1715	_mmc_detect_change(host, delay, true);
 
 
 
 
 
 
 
1716}
 
1717EXPORT_SYMBOL(mmc_detect_change);
1718
1719void mmc_init_erase(struct mmc_card *card)
1720{
1721	unsigned int sz;
1722
1723	if (is_power_of_2(card->erase_size))
1724		card->erase_shift = ffs(card->erase_size) - 1;
1725	else
1726		card->erase_shift = 0;
1727
1728	/*
1729	 * It is possible to erase an arbitrarily large area of an SD or MMC
1730	 * card.  That is not desirable because it can take a long time
1731	 * (minutes) potentially delaying more important I/O, and also the
1732	 * timeout calculations become increasingly hugely over-estimated.
1733	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1734	 * to that size and alignment.
1735	 *
1736	 * For SD cards that define Allocation Unit size, limit erases to one
1737	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1738	 * Erase Size, whether it is switched on or not, limit to that size.
1739	 * Otherwise just have a stab at a good value.  For modern cards it
1740	 * will end up being 4MiB.  Note that if the value is too small, it
1741	 * can end up taking longer to erase.
1742	 */
1743	if (mmc_card_sd(card) && card->ssr.au) {
1744		card->pref_erase = card->ssr.au;
1745		card->erase_shift = ffs(card->ssr.au) - 1;
1746	} else if (card->ext_csd.hc_erase_size) {
1747		card->pref_erase = card->ext_csd.hc_erase_size;
1748	} else {
1749		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1750		if (sz < 128)
1751			card->pref_erase = 512 * 1024 / 512;
1752		else if (sz < 512)
1753			card->pref_erase = 1024 * 1024 / 512;
1754		else if (sz < 1024)
1755			card->pref_erase = 2 * 1024 * 1024 / 512;
1756		else
1757			card->pref_erase = 4 * 1024 * 1024 / 512;
1758		if (card->pref_erase < card->erase_size)
1759			card->pref_erase = card->erase_size;
1760		else {
1761			sz = card->pref_erase % card->erase_size;
1762			if (sz)
1763				card->pref_erase += card->erase_size - sz;
1764		}
1765	}
1766}
1767
1768static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1769				          unsigned int arg, unsigned int qty)
1770{
1771	unsigned int erase_timeout;
1772
1773	if (arg == MMC_DISCARD_ARG ||
1774	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1775		erase_timeout = card->ext_csd.trim_timeout;
1776	} else if (card->ext_csd.erase_group_def & 1) {
1777		/* High Capacity Erase Group Size uses HC timeouts */
1778		if (arg == MMC_TRIM_ARG)
1779			erase_timeout = card->ext_csd.trim_timeout;
1780		else
1781			erase_timeout = card->ext_csd.hc_erase_timeout;
1782	} else {
1783		/* CSD Erase Group Size uses write timeout */
1784		unsigned int mult = (10 << card->csd.r2w_factor);
1785		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1786		unsigned int timeout_us;
1787
1788		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1789		if (card->csd.tacc_ns < 1000000)
1790			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1791		else
1792			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1793
1794		/*
1795		 * ios.clock is only a target.  The real clock rate might be
1796		 * less but not that much less, so fudge it by multiplying by 2.
1797		 */
1798		timeout_clks <<= 1;
1799		timeout_us += (timeout_clks * 1000) /
1800			      (mmc_host_clk_rate(card->host) / 1000);
1801
1802		erase_timeout = timeout_us / 1000;
1803
1804		/*
1805		 * Theoretically, the calculation could underflow so round up
1806		 * to 1ms in that case.
1807		 */
1808		if (!erase_timeout)
1809			erase_timeout = 1;
1810	}
1811
1812	/* Multiplier for secure operations */
1813	if (arg & MMC_SECURE_ARGS) {
1814		if (arg == MMC_SECURE_ERASE_ARG)
1815			erase_timeout *= card->ext_csd.sec_erase_mult;
1816		else
1817			erase_timeout *= card->ext_csd.sec_trim_mult;
1818	}
1819
1820	erase_timeout *= qty;
1821
1822	/*
1823	 * Ensure at least a 1 second timeout for SPI as per
1824	 * 'mmc_set_data_timeout()'
1825	 */
1826	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1827		erase_timeout = 1000;
1828
1829	return erase_timeout;
1830}
1831
1832static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1833					 unsigned int arg,
1834					 unsigned int qty)
1835{
1836	unsigned int erase_timeout;
1837
1838	if (card->ssr.erase_timeout) {
1839		/* Erase timeout specified in SD Status Register (SSR) */
1840		erase_timeout = card->ssr.erase_timeout * qty +
1841				card->ssr.erase_offset;
1842	} else {
1843		/*
1844		 * Erase timeout not specified in SD Status Register (SSR) so
1845		 * use 250ms per write block.
1846		 */
1847		erase_timeout = 250 * qty;
1848	}
1849
1850	/* Must not be less than 1 second */
1851	if (erase_timeout < 1000)
1852		erase_timeout = 1000;
1853
1854	return erase_timeout;
1855}
1856
1857static unsigned int mmc_erase_timeout(struct mmc_card *card,
1858				      unsigned int arg,
1859				      unsigned int qty)
1860{
1861	if (mmc_card_sd(card))
1862		return mmc_sd_erase_timeout(card, arg, qty);
1863	else
1864		return mmc_mmc_erase_timeout(card, arg, qty);
1865}
1866
1867static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1868			unsigned int to, unsigned int arg)
1869{
1870	struct mmc_command cmd = {0};
1871	unsigned int qty = 0;
1872	unsigned long timeout;
1873	int err;
1874
1875	/*
1876	 * qty is used to calculate the erase timeout which depends on how many
1877	 * erase groups (or allocation units in SD terminology) are affected.
1878	 * We count erasing part of an erase group as one erase group.
1879	 * For SD, the allocation units are always a power of 2.  For MMC, the
1880	 * erase group size is almost certainly also power of 2, but it does not
1881	 * seem to insist on that in the JEDEC standard, so we fall back to
1882	 * division in that case.  SD may not specify an allocation unit size,
1883	 * in which case the timeout is based on the number of write blocks.
1884	 *
1885	 * Note that the timeout for secure trim 2 will only be correct if the
1886	 * number of erase groups specified is the same as the total of all
1887	 * preceding secure trim 1 commands.  Since the power may have been
1888	 * lost since the secure trim 1 commands occurred, it is generally
1889	 * impossible to calculate the secure trim 2 timeout correctly.
1890	 */
1891	if (card->erase_shift)
1892		qty += ((to >> card->erase_shift) -
1893			(from >> card->erase_shift)) + 1;
1894	else if (mmc_card_sd(card))
1895		qty += to - from + 1;
1896	else
1897		qty += ((to / card->erase_size) -
1898			(from / card->erase_size)) + 1;
1899
1900	if (!mmc_card_blockaddr(card)) {
1901		from <<= 9;
1902		to <<= 9;
1903	}
1904
1905	if (mmc_card_sd(card))
1906		cmd.opcode = SD_ERASE_WR_BLK_START;
1907	else
1908		cmd.opcode = MMC_ERASE_GROUP_START;
1909	cmd.arg = from;
1910	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1911	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1912	if (err) {
1913		pr_err("mmc_erase: group start error %d, "
1914		       "status %#x\n", err, cmd.resp[0]);
1915		err = -EIO;
1916		goto out;
1917	}
1918
1919	memset(&cmd, 0, sizeof(struct mmc_command));
1920	if (mmc_card_sd(card))
1921		cmd.opcode = SD_ERASE_WR_BLK_END;
1922	else
1923		cmd.opcode = MMC_ERASE_GROUP_END;
1924	cmd.arg = to;
1925	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1926	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1927	if (err) {
1928		pr_err("mmc_erase: group end error %d, status %#x\n",
1929		       err, cmd.resp[0]);
1930		err = -EIO;
1931		goto out;
1932	}
1933
1934	memset(&cmd, 0, sizeof(struct mmc_command));
1935	cmd.opcode = MMC_ERASE;
1936	cmd.arg = arg;
1937	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1938	cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
1939	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1940	if (err) {
1941		pr_err("mmc_erase: erase error %d, status %#x\n",
1942		       err, cmd.resp[0]);
1943		err = -EIO;
1944		goto out;
1945	}
1946
1947	if (mmc_host_is_spi(card->host))
1948		goto out;
1949
1950	timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1951	do {
1952		memset(&cmd, 0, sizeof(struct mmc_command));
1953		cmd.opcode = MMC_SEND_STATUS;
1954		cmd.arg = card->rca << 16;
1955		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1956		/* Do not retry else we can't see errors */
1957		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1958		if (err || (cmd.resp[0] & 0xFDF92000)) {
1959			pr_err("error %d requesting status %#x\n",
1960				err, cmd.resp[0]);
1961			err = -EIO;
1962			goto out;
1963		}
1964
1965		/* Timeout if the device never becomes ready for data and
1966		 * never leaves the program state.
1967		 */
1968		if (time_after(jiffies, timeout)) {
1969			pr_err("%s: Card stuck in programming state! %s\n",
1970				mmc_hostname(card->host), __func__);
1971			err =  -EIO;
1972			goto out;
1973		}
1974
1975	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1976		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
1977out:
1978	return err;
1979}
1980
1981/**
1982 * mmc_erase - erase sectors.
1983 * @card: card to erase
1984 * @from: first sector to erase
1985 * @nr: number of sectors to erase
1986 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1987 *
1988 * Caller must claim host before calling this function.
1989 */
1990int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1991	      unsigned int arg)
1992{
1993	unsigned int rem, to = from + nr;
1994
1995	if (!(card->host->caps & MMC_CAP_ERASE) ||
1996	    !(card->csd.cmdclass & CCC_ERASE))
1997		return -EOPNOTSUPP;
1998
1999	if (!card->erase_size)
2000		return -EOPNOTSUPP;
2001
2002	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2003		return -EOPNOTSUPP;
2004
2005	if ((arg & MMC_SECURE_ARGS) &&
2006	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2007		return -EOPNOTSUPP;
2008
2009	if ((arg & MMC_TRIM_ARGS) &&
2010	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2011		return -EOPNOTSUPP;
2012
2013	if (arg == MMC_SECURE_ERASE_ARG) {
2014		if (from % card->erase_size || nr % card->erase_size)
2015			return -EINVAL;
2016	}
2017
2018	if (arg == MMC_ERASE_ARG) {
2019		rem = from % card->erase_size;
2020		if (rem) {
2021			rem = card->erase_size - rem;
2022			from += rem;
2023			if (nr > rem)
2024				nr -= rem;
2025			else
2026				return 0;
2027		}
2028		rem = nr % card->erase_size;
2029		if (rem)
2030			nr -= rem;
2031	}
2032
2033	if (nr == 0)
2034		return 0;
2035
2036	to = from + nr;
2037
2038	if (to <= from)
2039		return -EINVAL;
2040
2041	/* 'from' and 'to' are inclusive */
2042	to -= 1;
2043
2044	return mmc_do_erase(card, from, to, arg);
2045}
2046EXPORT_SYMBOL(mmc_erase);
2047
2048int mmc_can_erase(struct mmc_card *card)
2049{
2050	if ((card->host->caps & MMC_CAP_ERASE) &&
2051	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2052		return 1;
2053	return 0;
2054}
2055EXPORT_SYMBOL(mmc_can_erase);
2056
2057int mmc_can_trim(struct mmc_card *card)
2058{
2059	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2060		return 1;
2061	return 0;
2062}
2063EXPORT_SYMBOL(mmc_can_trim);
2064
2065int mmc_can_discard(struct mmc_card *card)
2066{
2067	/*
2068	 * As there's no way to detect the discard support bit at v4.5
2069	 * use the s/w feature support filed.
2070	 */
2071	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2072		return 1;
2073	return 0;
2074}
2075EXPORT_SYMBOL(mmc_can_discard);
2076
2077int mmc_can_sanitize(struct mmc_card *card)
2078{
2079	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2080		return 0;
2081	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2082		return 1;
2083	return 0;
2084}
2085EXPORT_SYMBOL(mmc_can_sanitize);
2086
2087int mmc_can_secure_erase_trim(struct mmc_card *card)
2088{
2089	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
2090		return 1;
2091	return 0;
2092}
2093EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2094
2095int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2096			    unsigned int nr)
2097{
2098	if (!card->erase_size)
2099		return 0;
2100	if (from % card->erase_size || nr % card->erase_size)
2101		return 0;
2102	return 1;
2103}
2104EXPORT_SYMBOL(mmc_erase_group_aligned);
2105
2106static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2107					    unsigned int arg)
2108{
2109	struct mmc_host *host = card->host;
2110	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2111	unsigned int last_timeout = 0;
2112
2113	if (card->erase_shift)
2114		max_qty = UINT_MAX >> card->erase_shift;
2115	else if (mmc_card_sd(card))
2116		max_qty = UINT_MAX;
2117	else
2118		max_qty = UINT_MAX / card->erase_size;
2119
2120	/* Find the largest qty with an OK timeout */
2121	do {
2122		y = 0;
2123		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2124			timeout = mmc_erase_timeout(card, arg, qty + x);
2125			if (timeout > host->max_busy_timeout)
2126				break;
2127			if (timeout < last_timeout)
2128				break;
2129			last_timeout = timeout;
2130			y = x;
2131		}
2132		qty += y;
2133	} while (y);
2134
2135	if (!qty)
2136		return 0;
2137
2138	if (qty == 1)
2139		return 1;
2140
2141	/* Convert qty to sectors */
2142	if (card->erase_shift)
2143		max_discard = --qty << card->erase_shift;
2144	else if (mmc_card_sd(card))
2145		max_discard = qty;
2146	else
2147		max_discard = --qty * card->erase_size;
2148
2149	return max_discard;
2150}
2151
2152unsigned int mmc_calc_max_discard(struct mmc_card *card)
2153{
2154	struct mmc_host *host = card->host;
2155	unsigned int max_discard, max_trim;
2156
2157	if (!host->max_busy_timeout)
2158		return UINT_MAX;
2159
2160	/*
2161	 * Without erase_group_def set, MMC erase timeout depends on clock
2162	 * frequence which can change.  In that case, the best choice is
2163	 * just the preferred erase size.
2164	 */
2165	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2166		return card->pref_erase;
2167
2168	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2169	if (mmc_can_trim(card)) {
2170		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2171		if (max_trim < max_discard)
2172			max_discard = max_trim;
2173	} else if (max_discard < card->erase_size) {
2174		max_discard = 0;
2175	}
2176	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2177		 mmc_hostname(host), max_discard, host->max_busy_timeout);
2178	return max_discard;
2179}
2180EXPORT_SYMBOL(mmc_calc_max_discard);
2181
2182int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2183{
2184	struct mmc_command cmd = {0};
2185
2186	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
2187		return 0;
2188
2189	cmd.opcode = MMC_SET_BLOCKLEN;
2190	cmd.arg = blocklen;
2191	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2192	return mmc_wait_for_cmd(card->host, &cmd, 5);
2193}
2194EXPORT_SYMBOL(mmc_set_blocklen);
2195
2196int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2197			bool is_rel_write)
2198{
2199	struct mmc_command cmd = {0};
2200
2201	cmd.opcode = MMC_SET_BLOCK_COUNT;
2202	cmd.arg = blockcount & 0x0000FFFF;
2203	if (is_rel_write)
2204		cmd.arg |= 1 << 31;
2205	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2206	return mmc_wait_for_cmd(card->host, &cmd, 5);
2207}
2208EXPORT_SYMBOL(mmc_set_blockcount);
2209
2210static void mmc_hw_reset_for_init(struct mmc_host *host)
2211{
2212	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2213		return;
2214	mmc_host_clk_hold(host);
2215	host->ops->hw_reset(host);
2216	mmc_host_clk_release(host);
2217}
2218
2219int mmc_can_reset(struct mmc_card *card)
2220{
2221	u8 rst_n_function;
2222
2223	if (!mmc_card_mmc(card))
2224		return 0;
2225	rst_n_function = card->ext_csd.rst_n_function;
2226	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2227		return 0;
2228	return 1;
2229}
2230EXPORT_SYMBOL(mmc_can_reset);
2231
2232static int mmc_do_hw_reset(struct mmc_host *host, int check)
2233{
2234	struct mmc_card *card = host->card;
2235
 
 
 
2236	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2237		return -EOPNOTSUPP;
2238
2239	if (!card)
2240		return -EINVAL;
2241
2242	if (!mmc_can_reset(card))
2243		return -EOPNOTSUPP;
2244
2245	mmc_host_clk_hold(host);
2246	mmc_set_clock(host, host->f_init);
2247
2248	host->ops->hw_reset(host);
2249
2250	/* If the reset has happened, then a status command will fail */
2251	if (check) {
2252		struct mmc_command cmd = {0};
2253		int err;
2254
2255		cmd.opcode = MMC_SEND_STATUS;
2256		if (!mmc_host_is_spi(card->host))
2257			cmd.arg = card->rca << 16;
2258		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2259		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2260		if (!err) {
2261			mmc_host_clk_release(host);
2262			return -ENOSYS;
2263		}
2264	}
2265
2266	host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2267	if (mmc_host_is_spi(host)) {
2268		host->ios.chip_select = MMC_CS_HIGH;
2269		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2270	} else {
2271		host->ios.chip_select = MMC_CS_DONTCARE;
2272		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2273	}
2274	host->ios.bus_width = MMC_BUS_WIDTH_1;
2275	host->ios.timing = MMC_TIMING_LEGACY;
2276	mmc_set_ios(host);
2277
2278	mmc_host_clk_release(host);
2279
2280	return host->bus_ops->power_restore(host);
2281}
2282
2283int mmc_hw_reset(struct mmc_host *host)
2284{
2285	return mmc_do_hw_reset(host, 0);
2286}
2287EXPORT_SYMBOL(mmc_hw_reset);
2288
2289int mmc_hw_reset_check(struct mmc_host *host)
2290{
2291	return mmc_do_hw_reset(host, 1);
2292}
2293EXPORT_SYMBOL(mmc_hw_reset_check);
2294
2295static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2296{
2297	host->f_init = freq;
2298
2299#ifdef CONFIG_MMC_DEBUG
2300	pr_info("%s: %s: trying to init card at %u Hz\n",
2301		mmc_hostname(host), __func__, host->f_init);
2302#endif
2303	mmc_power_up(host, host->ocr_avail);
2304
2305	/*
2306	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2307	 * do a hardware reset if possible.
2308	 */
2309	mmc_hw_reset_for_init(host);
2310
 
 
 
2311	/*
2312	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2313	 * if the card is being re-initialized, just send it.  CMD52
2314	 * should be ignored by SD/eMMC cards.
2315	 */
2316	sdio_reset(host);
2317	mmc_go_idle(host);
2318
2319	mmc_send_if_cond(host, host->ocr_avail);
2320
2321	/* Order's important: probe SDIO, then SD, then MMC */
2322	if (!mmc_attach_sdio(host))
2323		return 0;
2324	if (!mmc_attach_sd(host))
2325		return 0;
2326	if (!mmc_attach_mmc(host))
2327		return 0;
2328
2329	mmc_power_off(host);
2330	return -EIO;
2331}
2332
2333int _mmc_detect_card_removed(struct mmc_host *host)
2334{
2335	int ret;
2336
2337	if (host->caps & MMC_CAP_NONREMOVABLE)
2338		return 0;
2339
2340	if (!host->card || mmc_card_removed(host->card))
2341		return 1;
2342
2343	ret = host->bus_ops->alive(host);
2344
2345	/*
2346	 * Card detect status and alive check may be out of sync if card is
2347	 * removed slowly, when card detect switch changes while card/slot
2348	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2349	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2350	 * detect work 200ms later for this case.
2351	 */
2352	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2353		mmc_detect_change(host, msecs_to_jiffies(200));
2354		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2355	}
2356
2357	if (ret) {
2358		mmc_card_set_removed(host->card);
2359		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2360	}
2361
2362	return ret;
2363}
2364
2365int mmc_detect_card_removed(struct mmc_host *host)
2366{
2367	struct mmc_card *card = host->card;
2368	int ret;
2369
2370	WARN_ON(!host->claimed);
2371
2372	if (!card)
2373		return 1;
2374
2375	ret = mmc_card_removed(card);
2376	/*
2377	 * The card will be considered unchanged unless we have been asked to
2378	 * detect a change or host requires polling to provide card detection.
2379	 */
2380	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
 
2381		return ret;
2382
2383	host->detect_change = 0;
2384	if (!ret) {
2385		ret = _mmc_detect_card_removed(host);
2386		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2387			/*
2388			 * Schedule a detect work as soon as possible to let a
2389			 * rescan handle the card removal.
2390			 */
2391			cancel_delayed_work(&host->detect);
2392			_mmc_detect_change(host, 0, false);
2393		}
2394	}
2395
2396	return ret;
2397}
2398EXPORT_SYMBOL(mmc_detect_card_removed);
2399
2400void mmc_rescan(struct work_struct *work)
2401{
2402	struct mmc_host *host =
2403		container_of(work, struct mmc_host, detect.work);
2404	int i;
2405
2406	if (host->rescan_disable)
2407		return;
2408
2409	/* If there is a non-removable card registered, only scan once */
2410	if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2411		return;
2412	host->rescan_entered = 1;
2413
2414	mmc_bus_get(host);
2415
2416	/*
2417	 * if there is a _removable_ card registered, check whether it is
2418	 * still present
2419	 */
2420	if (host->bus_ops && !host->bus_dead
2421	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2422		host->bus_ops->detect(host);
2423
2424	host->detect_change = 0;
2425
2426	/*
2427	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2428	 * the card is no longer present.
2429	 */
2430	mmc_bus_put(host);
2431	mmc_bus_get(host);
2432
2433	/* if there still is a card present, stop here */
2434	if (host->bus_ops != NULL) {
2435		mmc_bus_put(host);
2436		goto out;
2437	}
2438
2439	/*
2440	 * Only we can add a new handler, so it's safe to
2441	 * release the lock here.
2442	 */
2443	mmc_bus_put(host);
2444
2445	if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2446			host->ops->get_cd(host) == 0) {
2447		mmc_claim_host(host);
2448		mmc_power_off(host);
2449		mmc_release_host(host);
2450		goto out;
2451	}
2452
2453	mmc_claim_host(host);
2454	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2455		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2456			break;
2457		if (freqs[i] <= host->f_min)
2458			break;
2459	}
2460	mmc_release_host(host);
2461
2462 out:
2463	if (host->caps & MMC_CAP_NEEDS_POLL)
2464		mmc_schedule_delayed_work(&host->detect, HZ);
2465}
2466
2467void mmc_start_host(struct mmc_host *host)
2468{
2469	host->f_init = max(freqs[0], host->f_min);
2470	host->rescan_disable = 0;
2471	if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2472		mmc_power_off(host);
2473	else
2474		mmc_power_up(host, host->ocr_avail);
2475	mmc_gpiod_request_cd_irq(host);
2476	_mmc_detect_change(host, 0, false);
2477}
2478
2479void mmc_stop_host(struct mmc_host *host)
2480{
2481#ifdef CONFIG_MMC_DEBUG
2482	unsigned long flags;
2483	spin_lock_irqsave(&host->lock, flags);
2484	host->removed = 1;
2485	spin_unlock_irqrestore(&host->lock, flags);
2486#endif
2487	if (host->slot.cd_irq >= 0)
2488		disable_irq(host->slot.cd_irq);
2489
2490	host->rescan_disable = 1;
2491	cancel_delayed_work_sync(&host->detect);
2492	mmc_flush_scheduled_work();
2493
2494	/* clear pm flags now and let card drivers set them as needed */
2495	host->pm_flags = 0;
2496
2497	mmc_bus_get(host);
2498	if (host->bus_ops && !host->bus_dead) {
2499		/* Calling bus_ops->remove() with a claimed host can deadlock */
2500		host->bus_ops->remove(host);
 
 
2501		mmc_claim_host(host);
2502		mmc_detach_bus(host);
2503		mmc_power_off(host);
2504		mmc_release_host(host);
2505		mmc_bus_put(host);
2506		return;
2507	}
2508	mmc_bus_put(host);
2509
2510	BUG_ON(host->card);
2511
2512	mmc_power_off(host);
2513}
2514
2515int mmc_power_save_host(struct mmc_host *host)
2516{
2517	int ret = 0;
2518
2519#ifdef CONFIG_MMC_DEBUG
2520	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2521#endif
2522
2523	mmc_bus_get(host);
2524
2525	if (!host->bus_ops || host->bus_dead) {
2526		mmc_bus_put(host);
2527		return -EINVAL;
2528	}
2529
2530	if (host->bus_ops->power_save)
2531		ret = host->bus_ops->power_save(host);
2532
2533	mmc_bus_put(host);
2534
2535	mmc_power_off(host);
2536
2537	return ret;
2538}
2539EXPORT_SYMBOL(mmc_power_save_host);
2540
2541int mmc_power_restore_host(struct mmc_host *host)
2542{
2543	int ret;
2544
2545#ifdef CONFIG_MMC_DEBUG
2546	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2547#endif
2548
2549	mmc_bus_get(host);
2550
2551	if (!host->bus_ops || host->bus_dead) {
2552		mmc_bus_put(host);
2553		return -EINVAL;
2554	}
2555
2556	mmc_power_up(host, host->card->ocr);
2557	ret = host->bus_ops->power_restore(host);
2558
2559	mmc_bus_put(host);
2560
2561	return ret;
2562}
2563EXPORT_SYMBOL(mmc_power_restore_host);
2564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2565/*
2566 * Flush the cache to the non-volatile storage.
2567 */
2568int mmc_flush_cache(struct mmc_card *card)
2569{
 
2570	int err = 0;
2571
 
 
 
2572	if (mmc_card_mmc(card) &&
2573			(card->ext_csd.cache_size > 0) &&
2574			(card->ext_csd.cache_ctrl & 1)) {
2575		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2576				EXT_CSD_FLUSH_CACHE, 1, 0);
2577		if (err)
2578			pr_err("%s: cache flush error %d\n",
2579					mmc_hostname(card->host), err);
2580	}
2581
2582	return err;
2583}
2584EXPORT_SYMBOL(mmc_flush_cache);
2585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2586#ifdef CONFIG_PM
2587
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2588/* Do the card removal on suspend if card is assumed removeable
2589 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2590   to sync the card.
2591*/
2592int mmc_pm_notify(struct notifier_block *notify_block,
2593					unsigned long mode, void *unused)
2594{
2595	struct mmc_host *host = container_of(
2596		notify_block, struct mmc_host, pm_notify);
2597	unsigned long flags;
2598	int err = 0;
2599
2600	switch (mode) {
2601	case PM_HIBERNATION_PREPARE:
2602	case PM_SUSPEND_PREPARE:
 
2603		spin_lock_irqsave(&host->lock, flags);
2604		host->rescan_disable = 1;
 
2605		spin_unlock_irqrestore(&host->lock, flags);
2606		cancel_delayed_work_sync(&host->detect);
2607
2608		if (!host->bus_ops)
2609			break;
2610
2611		/* Validate prerequisites for suspend */
2612		if (host->bus_ops->pre_suspend)
2613			err = host->bus_ops->pre_suspend(host);
2614		if (!err)
2615			break;
2616
2617		/* Calling bus_ops->remove() with a claimed host can deadlock */
2618		host->bus_ops->remove(host);
2619		mmc_claim_host(host);
2620		mmc_detach_bus(host);
2621		mmc_power_off(host);
2622		mmc_release_host(host);
2623		host->pm_flags = 0;
2624		break;
2625
2626	case PM_POST_SUSPEND:
2627	case PM_POST_HIBERNATION:
2628	case PM_POST_RESTORE:
2629
2630		spin_lock_irqsave(&host->lock, flags);
2631		host->rescan_disable = 0;
 
2632		spin_unlock_irqrestore(&host->lock, flags);
2633		_mmc_detect_change(host, 0, false);
2634
2635	}
2636
2637	return 0;
2638}
2639#endif
2640
2641/**
2642 * mmc_init_context_info() - init synchronization context
2643 * @host: mmc host
2644 *
2645 * Init struct context_info needed to implement asynchronous
2646 * request mechanism, used by mmc core, host driver and mmc requests
2647 * supplier.
2648 */
2649void mmc_init_context_info(struct mmc_host *host)
2650{
2651	spin_lock_init(&host->context_info.lock);
2652	host->context_info.is_new_req = false;
2653	host->context_info.is_done_rcv = false;
2654	host->context_info.is_waiting_last_req = false;
2655	init_waitqueue_head(&host->context_info.wait);
2656}
2657
2658static int __init mmc_init(void)
2659{
2660	int ret;
2661
2662	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2663	if (!workqueue)
2664		return -ENOMEM;
2665
2666	ret = mmc_register_bus();
2667	if (ret)
2668		goto destroy_workqueue;
2669
2670	ret = mmc_register_host_class();
2671	if (ret)
2672		goto unregister_bus;
2673
2674	ret = sdio_register_bus();
2675	if (ret)
2676		goto unregister_host_class;
2677
2678	return 0;
2679
2680unregister_host_class:
2681	mmc_unregister_host_class();
2682unregister_bus:
2683	mmc_unregister_bus();
2684destroy_workqueue:
2685	destroy_workqueue(workqueue);
2686
2687	return ret;
2688}
2689
2690static void __exit mmc_exit(void)
2691{
2692	sdio_unregister_bus();
2693	mmc_unregister_host_class();
2694	mmc_unregister_bus();
2695	destroy_workqueue(workqueue);
2696}
2697
2698subsys_initcall(mmc_init);
2699module_exit(mmc_exit);
2700
2701MODULE_LICENSE("GPL");