Loading...
1/*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
21#include <linux/leds.h>
22#include <linux/scatterlist.h>
23#include <linux/log2.h>
24#include <linux/regulator/consumer.h>
25#include <linux/pm_runtime.h>
26#include <linux/suspend.h>
27#include <linux/fault-inject.h>
28#include <linux/random.h>
29
30#include <linux/mmc/card.h>
31#include <linux/mmc/host.h>
32#include <linux/mmc/mmc.h>
33#include <linux/mmc/sd.h>
34
35#include "core.h"
36#include "bus.h"
37#include "host.h"
38#include "sdio_bus.h"
39
40#include "mmc_ops.h"
41#include "sd_ops.h"
42#include "sdio_ops.h"
43
44static struct workqueue_struct *workqueue;
45static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
46
47/*
48 * Enabling software CRCs on the data blocks can be a significant (30%)
49 * performance cost, and for other reasons may not always be desired.
50 * So we allow it it to be disabled.
51 */
52bool use_spi_crc = 1;
53module_param(use_spi_crc, bool, 0);
54
55/*
56 * We normally treat cards as removed during suspend if they are not
57 * known to be on a non-removable bus, to avoid the risk of writing
58 * back data to a different card after resume. Allow this to be
59 * overridden if necessary.
60 */
61#ifdef CONFIG_MMC_UNSAFE_RESUME
62bool mmc_assume_removable;
63#else
64bool mmc_assume_removable = 1;
65#endif
66EXPORT_SYMBOL(mmc_assume_removable);
67module_param_named(removable, mmc_assume_removable, bool, 0644);
68MODULE_PARM_DESC(
69 removable,
70 "MMC/SD cards are removable and may be removed during suspend");
71
72/*
73 * Internal function. Schedule delayed work in the MMC work queue.
74 */
75static int mmc_schedule_delayed_work(struct delayed_work *work,
76 unsigned long delay)
77{
78 return queue_delayed_work(workqueue, work, delay);
79}
80
81/*
82 * Internal function. Flush all scheduled work from the MMC work queue.
83 */
84static void mmc_flush_scheduled_work(void)
85{
86 flush_workqueue(workqueue);
87}
88
89#ifdef CONFIG_FAIL_MMC_REQUEST
90
91/*
92 * Internal function. Inject random data errors.
93 * If mmc_data is NULL no errors are injected.
94 */
95static void mmc_should_fail_request(struct mmc_host *host,
96 struct mmc_request *mrq)
97{
98 struct mmc_command *cmd = mrq->cmd;
99 struct mmc_data *data = mrq->data;
100 static const int data_errors[] = {
101 -ETIMEDOUT,
102 -EILSEQ,
103 -EIO,
104 };
105
106 if (!data)
107 return;
108
109 if (cmd->error || data->error ||
110 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
111 return;
112
113 data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
114 data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
115}
116
117#else /* CONFIG_FAIL_MMC_REQUEST */
118
119static inline void mmc_should_fail_request(struct mmc_host *host,
120 struct mmc_request *mrq)
121{
122}
123
124#endif /* CONFIG_FAIL_MMC_REQUEST */
125
126/**
127 * mmc_request_done - finish processing an MMC request
128 * @host: MMC host which completed request
129 * @mrq: MMC request which request
130 *
131 * MMC drivers should call this function when they have completed
132 * their processing of a request.
133 */
134void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
135{
136 struct mmc_command *cmd = mrq->cmd;
137 int err = cmd->error;
138
139 if (err && cmd->retries && mmc_host_is_spi(host)) {
140 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
141 cmd->retries = 0;
142 }
143
144 if (err && cmd->retries && !mmc_card_removed(host->card)) {
145 /*
146 * Request starter must handle retries - see
147 * mmc_wait_for_req_done().
148 */
149 if (mrq->done)
150 mrq->done(mrq);
151 } else {
152 mmc_should_fail_request(host, mrq);
153
154 led_trigger_event(host->led, LED_OFF);
155
156 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
157 mmc_hostname(host), cmd->opcode, err,
158 cmd->resp[0], cmd->resp[1],
159 cmd->resp[2], cmd->resp[3]);
160
161 if (mrq->data) {
162 pr_debug("%s: %d bytes transferred: %d\n",
163 mmc_hostname(host),
164 mrq->data->bytes_xfered, mrq->data->error);
165 }
166
167 if (mrq->stop) {
168 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
169 mmc_hostname(host), mrq->stop->opcode,
170 mrq->stop->error,
171 mrq->stop->resp[0], mrq->stop->resp[1],
172 mrq->stop->resp[2], mrq->stop->resp[3]);
173 }
174
175 if (mrq->done)
176 mrq->done(mrq);
177
178 mmc_host_clk_release(host);
179 }
180}
181
182EXPORT_SYMBOL(mmc_request_done);
183
184static void
185mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
186{
187#ifdef CONFIG_MMC_DEBUG
188 unsigned int i, sz;
189 struct scatterlist *sg;
190#endif
191
192 if (mrq->sbc) {
193 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
194 mmc_hostname(host), mrq->sbc->opcode,
195 mrq->sbc->arg, mrq->sbc->flags);
196 }
197
198 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
199 mmc_hostname(host), mrq->cmd->opcode,
200 mrq->cmd->arg, mrq->cmd->flags);
201
202 if (mrq->data) {
203 pr_debug("%s: blksz %d blocks %d flags %08x "
204 "tsac %d ms nsac %d\n",
205 mmc_hostname(host), mrq->data->blksz,
206 mrq->data->blocks, mrq->data->flags,
207 mrq->data->timeout_ns / 1000000,
208 mrq->data->timeout_clks);
209 }
210
211 if (mrq->stop) {
212 pr_debug("%s: CMD%u arg %08x flags %08x\n",
213 mmc_hostname(host), mrq->stop->opcode,
214 mrq->stop->arg, mrq->stop->flags);
215 }
216
217 WARN_ON(!host->claimed);
218
219 mrq->cmd->error = 0;
220 mrq->cmd->mrq = mrq;
221 if (mrq->data) {
222 BUG_ON(mrq->data->blksz > host->max_blk_size);
223 BUG_ON(mrq->data->blocks > host->max_blk_count);
224 BUG_ON(mrq->data->blocks * mrq->data->blksz >
225 host->max_req_size);
226
227#ifdef CONFIG_MMC_DEBUG
228 sz = 0;
229 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
230 sz += sg->length;
231 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
232#endif
233
234 mrq->cmd->data = mrq->data;
235 mrq->data->error = 0;
236 mrq->data->mrq = mrq;
237 if (mrq->stop) {
238 mrq->data->stop = mrq->stop;
239 mrq->stop->error = 0;
240 mrq->stop->mrq = mrq;
241 }
242 }
243 mmc_host_clk_hold(host);
244 led_trigger_event(host->led, LED_FULL);
245 host->ops->request(host, mrq);
246}
247
248static void mmc_wait_done(struct mmc_request *mrq)
249{
250 complete(&mrq->completion);
251}
252
253static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
254{
255 init_completion(&mrq->completion);
256 mrq->done = mmc_wait_done;
257 if (mmc_card_removed(host->card)) {
258 mrq->cmd->error = -ENOMEDIUM;
259 complete(&mrq->completion);
260 return -ENOMEDIUM;
261 }
262 mmc_start_request(host, mrq);
263 return 0;
264}
265
266static void mmc_wait_for_req_done(struct mmc_host *host,
267 struct mmc_request *mrq)
268{
269 struct mmc_command *cmd;
270
271 while (1) {
272 wait_for_completion(&mrq->completion);
273
274 cmd = mrq->cmd;
275 if (!cmd->error || !cmd->retries ||
276 mmc_card_removed(host->card))
277 break;
278
279 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
280 mmc_hostname(host), cmd->opcode, cmd->error);
281 cmd->retries--;
282 cmd->error = 0;
283 host->ops->request(host, mrq);
284 }
285}
286
287/**
288 * mmc_pre_req - Prepare for a new request
289 * @host: MMC host to prepare command
290 * @mrq: MMC request to prepare for
291 * @is_first_req: true if there is no previous started request
292 * that may run in parellel to this call, otherwise false
293 *
294 * mmc_pre_req() is called in prior to mmc_start_req() to let
295 * host prepare for the new request. Preparation of a request may be
296 * performed while another request is running on the host.
297 */
298static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
299 bool is_first_req)
300{
301 if (host->ops->pre_req) {
302 mmc_host_clk_hold(host);
303 host->ops->pre_req(host, mrq, is_first_req);
304 mmc_host_clk_release(host);
305 }
306}
307
308/**
309 * mmc_post_req - Post process a completed request
310 * @host: MMC host to post process command
311 * @mrq: MMC request to post process for
312 * @err: Error, if non zero, clean up any resources made in pre_req
313 *
314 * Let the host post process a completed request. Post processing of
315 * a request may be performed while another reuqest is running.
316 */
317static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
318 int err)
319{
320 if (host->ops->post_req) {
321 mmc_host_clk_hold(host);
322 host->ops->post_req(host, mrq, err);
323 mmc_host_clk_release(host);
324 }
325}
326
327/**
328 * mmc_start_req - start a non-blocking request
329 * @host: MMC host to start command
330 * @areq: async request to start
331 * @error: out parameter returns 0 for success, otherwise non zero
332 *
333 * Start a new MMC custom command request for a host.
334 * If there is on ongoing async request wait for completion
335 * of that request and start the new one and return.
336 * Does not wait for the new request to complete.
337 *
338 * Returns the completed request, NULL in case of none completed.
339 * Wait for the an ongoing request (previoulsy started) to complete and
340 * return the completed request. If there is no ongoing request, NULL
341 * is returned without waiting. NULL is not an error condition.
342 */
343struct mmc_async_req *mmc_start_req(struct mmc_host *host,
344 struct mmc_async_req *areq, int *error)
345{
346 int err = 0;
347 int start_err = 0;
348 struct mmc_async_req *data = host->areq;
349
350 /* Prepare a new request */
351 if (areq)
352 mmc_pre_req(host, areq->mrq, !host->areq);
353
354 if (host->areq) {
355 mmc_wait_for_req_done(host, host->areq->mrq);
356 err = host->areq->err_check(host->card, host->areq);
357 }
358
359 if (!err && areq)
360 start_err = __mmc_start_req(host, areq->mrq);
361
362 if (host->areq)
363 mmc_post_req(host, host->areq->mrq, 0);
364
365 /* Cancel a prepared request if it was not started. */
366 if ((err || start_err) && areq)
367 mmc_post_req(host, areq->mrq, -EINVAL);
368
369 if (err)
370 host->areq = NULL;
371 else
372 host->areq = areq;
373
374 if (error)
375 *error = err;
376 return data;
377}
378EXPORT_SYMBOL(mmc_start_req);
379
380/**
381 * mmc_wait_for_req - start a request and wait for completion
382 * @host: MMC host to start command
383 * @mrq: MMC request to start
384 *
385 * Start a new MMC custom command request for a host, and wait
386 * for the command to complete. Does not attempt to parse the
387 * response.
388 */
389void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
390{
391 __mmc_start_req(host, mrq);
392 mmc_wait_for_req_done(host, mrq);
393}
394EXPORT_SYMBOL(mmc_wait_for_req);
395
396/**
397 * mmc_interrupt_hpi - Issue for High priority Interrupt
398 * @card: the MMC card associated with the HPI transfer
399 *
400 * Issued High Priority Interrupt, and check for card status
401 * util out-of prg-state.
402 */
403int mmc_interrupt_hpi(struct mmc_card *card)
404{
405 int err;
406 u32 status;
407
408 BUG_ON(!card);
409
410 if (!card->ext_csd.hpi_en) {
411 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
412 return 1;
413 }
414
415 mmc_claim_host(card->host);
416 err = mmc_send_status(card, &status);
417 if (err) {
418 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
419 goto out;
420 }
421
422 /*
423 * If the card status is in PRG-state, we can send the HPI command.
424 */
425 if (R1_CURRENT_STATE(status) == R1_STATE_PRG) {
426 do {
427 /*
428 * We don't know when the HPI command will finish
429 * processing, so we need to resend HPI until out
430 * of prg-state, and keep checking the card status
431 * with SEND_STATUS. If a timeout error occurs when
432 * sending the HPI command, we are already out of
433 * prg-state.
434 */
435 err = mmc_send_hpi_cmd(card, &status);
436 if (err)
437 pr_debug("%s: abort HPI (%d error)\n",
438 mmc_hostname(card->host), err);
439
440 err = mmc_send_status(card, &status);
441 if (err)
442 break;
443 } while (R1_CURRENT_STATE(status) == R1_STATE_PRG);
444 } else
445 pr_debug("%s: Left prg-state\n", mmc_hostname(card->host));
446
447out:
448 mmc_release_host(card->host);
449 return err;
450}
451EXPORT_SYMBOL(mmc_interrupt_hpi);
452
453/**
454 * mmc_wait_for_cmd - start a command and wait for completion
455 * @host: MMC host to start command
456 * @cmd: MMC command to start
457 * @retries: maximum number of retries
458 *
459 * Start a new MMC command for a host, and wait for the command
460 * to complete. Return any error that occurred while the command
461 * was executing. Do not attempt to parse the response.
462 */
463int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
464{
465 struct mmc_request mrq = {NULL};
466
467 WARN_ON(!host->claimed);
468
469 memset(cmd->resp, 0, sizeof(cmd->resp));
470 cmd->retries = retries;
471
472 mrq.cmd = cmd;
473 cmd->data = NULL;
474
475 mmc_wait_for_req(host, &mrq);
476
477 return cmd->error;
478}
479
480EXPORT_SYMBOL(mmc_wait_for_cmd);
481
482/**
483 * mmc_set_data_timeout - set the timeout for a data command
484 * @data: data phase for command
485 * @card: the MMC card associated with the data transfer
486 *
487 * Computes the data timeout parameters according to the
488 * correct algorithm given the card type.
489 */
490void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
491{
492 unsigned int mult;
493
494 /*
495 * SDIO cards only define an upper 1 s limit on access.
496 */
497 if (mmc_card_sdio(card)) {
498 data->timeout_ns = 1000000000;
499 data->timeout_clks = 0;
500 return;
501 }
502
503 /*
504 * SD cards use a 100 multiplier rather than 10
505 */
506 mult = mmc_card_sd(card) ? 100 : 10;
507
508 /*
509 * Scale up the multiplier (and therefore the timeout) by
510 * the r2w factor for writes.
511 */
512 if (data->flags & MMC_DATA_WRITE)
513 mult <<= card->csd.r2w_factor;
514
515 data->timeout_ns = card->csd.tacc_ns * mult;
516 data->timeout_clks = card->csd.tacc_clks * mult;
517
518 /*
519 * SD cards also have an upper limit on the timeout.
520 */
521 if (mmc_card_sd(card)) {
522 unsigned int timeout_us, limit_us;
523
524 timeout_us = data->timeout_ns / 1000;
525 if (mmc_host_clk_rate(card->host))
526 timeout_us += data->timeout_clks * 1000 /
527 (mmc_host_clk_rate(card->host) / 1000);
528
529 if (data->flags & MMC_DATA_WRITE)
530 /*
531 * The MMC spec "It is strongly recommended
532 * for hosts to implement more than 500ms
533 * timeout value even if the card indicates
534 * the 250ms maximum busy length." Even the
535 * previous value of 300ms is known to be
536 * insufficient for some cards.
537 */
538 limit_us = 3000000;
539 else
540 limit_us = 100000;
541
542 /*
543 * SDHC cards always use these fixed values.
544 */
545 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
546 data->timeout_ns = limit_us * 1000;
547 data->timeout_clks = 0;
548 }
549 }
550
551 /*
552 * Some cards require longer data read timeout than indicated in CSD.
553 * Address this by setting the read timeout to a "reasonably high"
554 * value. For the cards tested, 300ms has proven enough. If necessary,
555 * this value can be increased if other problematic cards require this.
556 */
557 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
558 data->timeout_ns = 300000000;
559 data->timeout_clks = 0;
560 }
561
562 /*
563 * Some cards need very high timeouts if driven in SPI mode.
564 * The worst observed timeout was 900ms after writing a
565 * continuous stream of data until the internal logic
566 * overflowed.
567 */
568 if (mmc_host_is_spi(card->host)) {
569 if (data->flags & MMC_DATA_WRITE) {
570 if (data->timeout_ns < 1000000000)
571 data->timeout_ns = 1000000000; /* 1s */
572 } else {
573 if (data->timeout_ns < 100000000)
574 data->timeout_ns = 100000000; /* 100ms */
575 }
576 }
577}
578EXPORT_SYMBOL(mmc_set_data_timeout);
579
580/**
581 * mmc_align_data_size - pads a transfer size to a more optimal value
582 * @card: the MMC card associated with the data transfer
583 * @sz: original transfer size
584 *
585 * Pads the original data size with a number of extra bytes in
586 * order to avoid controller bugs and/or performance hits
587 * (e.g. some controllers revert to PIO for certain sizes).
588 *
589 * Returns the improved size, which might be unmodified.
590 *
591 * Note that this function is only relevant when issuing a
592 * single scatter gather entry.
593 */
594unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
595{
596 /*
597 * FIXME: We don't have a system for the controller to tell
598 * the core about its problems yet, so for now we just 32-bit
599 * align the size.
600 */
601 sz = ((sz + 3) / 4) * 4;
602
603 return sz;
604}
605EXPORT_SYMBOL(mmc_align_data_size);
606
607/**
608 * __mmc_claim_host - exclusively claim a host
609 * @host: mmc host to claim
610 * @abort: whether or not the operation should be aborted
611 *
612 * Claim a host for a set of operations. If @abort is non null and
613 * dereference a non-zero value then this will return prematurely with
614 * that non-zero value without acquiring the lock. Returns zero
615 * with the lock held otherwise.
616 */
617int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
618{
619 DECLARE_WAITQUEUE(wait, current);
620 unsigned long flags;
621 int stop;
622
623 might_sleep();
624
625 add_wait_queue(&host->wq, &wait);
626 spin_lock_irqsave(&host->lock, flags);
627 while (1) {
628 set_current_state(TASK_UNINTERRUPTIBLE);
629 stop = abort ? atomic_read(abort) : 0;
630 if (stop || !host->claimed || host->claimer == current)
631 break;
632 spin_unlock_irqrestore(&host->lock, flags);
633 schedule();
634 spin_lock_irqsave(&host->lock, flags);
635 }
636 set_current_state(TASK_RUNNING);
637 if (!stop) {
638 host->claimed = 1;
639 host->claimer = current;
640 host->claim_cnt += 1;
641 } else
642 wake_up(&host->wq);
643 spin_unlock_irqrestore(&host->lock, flags);
644 remove_wait_queue(&host->wq, &wait);
645 if (host->ops->enable && !stop && host->claim_cnt == 1)
646 host->ops->enable(host);
647 return stop;
648}
649
650EXPORT_SYMBOL(__mmc_claim_host);
651
652/**
653 * mmc_try_claim_host - try exclusively to claim a host
654 * @host: mmc host to claim
655 *
656 * Returns %1 if the host is claimed, %0 otherwise.
657 */
658int mmc_try_claim_host(struct mmc_host *host)
659{
660 int claimed_host = 0;
661 unsigned long flags;
662
663 spin_lock_irqsave(&host->lock, flags);
664 if (!host->claimed || host->claimer == current) {
665 host->claimed = 1;
666 host->claimer = current;
667 host->claim_cnt += 1;
668 claimed_host = 1;
669 }
670 spin_unlock_irqrestore(&host->lock, flags);
671 if (host->ops->enable && claimed_host && host->claim_cnt == 1)
672 host->ops->enable(host);
673 return claimed_host;
674}
675EXPORT_SYMBOL(mmc_try_claim_host);
676
677/**
678 * mmc_release_host - release a host
679 * @host: mmc host to release
680 *
681 * Release a MMC host, allowing others to claim the host
682 * for their operations.
683 */
684void mmc_release_host(struct mmc_host *host)
685{
686 unsigned long flags;
687
688 WARN_ON(!host->claimed);
689
690 if (host->ops->disable && host->claim_cnt == 1)
691 host->ops->disable(host);
692
693 spin_lock_irqsave(&host->lock, flags);
694 if (--host->claim_cnt) {
695 /* Release for nested claim */
696 spin_unlock_irqrestore(&host->lock, flags);
697 } else {
698 host->claimed = 0;
699 host->claimer = NULL;
700 spin_unlock_irqrestore(&host->lock, flags);
701 wake_up(&host->wq);
702 }
703}
704EXPORT_SYMBOL(mmc_release_host);
705
706/*
707 * Internal function that does the actual ios call to the host driver,
708 * optionally printing some debug output.
709 */
710static inline void mmc_set_ios(struct mmc_host *host)
711{
712 struct mmc_ios *ios = &host->ios;
713
714 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
715 "width %u timing %u\n",
716 mmc_hostname(host), ios->clock, ios->bus_mode,
717 ios->power_mode, ios->chip_select, ios->vdd,
718 ios->bus_width, ios->timing);
719
720 if (ios->clock > 0)
721 mmc_set_ungated(host);
722 host->ops->set_ios(host, ios);
723}
724
725/*
726 * Control chip select pin on a host.
727 */
728void mmc_set_chip_select(struct mmc_host *host, int mode)
729{
730 mmc_host_clk_hold(host);
731 host->ios.chip_select = mode;
732 mmc_set_ios(host);
733 mmc_host_clk_release(host);
734}
735
736/*
737 * Sets the host clock to the highest possible frequency that
738 * is below "hz".
739 */
740static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
741{
742 WARN_ON(hz < host->f_min);
743
744 if (hz > host->f_max)
745 hz = host->f_max;
746
747 host->ios.clock = hz;
748 mmc_set_ios(host);
749}
750
751void mmc_set_clock(struct mmc_host *host, unsigned int hz)
752{
753 mmc_host_clk_hold(host);
754 __mmc_set_clock(host, hz);
755 mmc_host_clk_release(host);
756}
757
758#ifdef CONFIG_MMC_CLKGATE
759/*
760 * This gates the clock by setting it to 0 Hz.
761 */
762void mmc_gate_clock(struct mmc_host *host)
763{
764 unsigned long flags;
765
766 spin_lock_irqsave(&host->clk_lock, flags);
767 host->clk_old = host->ios.clock;
768 host->ios.clock = 0;
769 host->clk_gated = true;
770 spin_unlock_irqrestore(&host->clk_lock, flags);
771 mmc_set_ios(host);
772}
773
774/*
775 * This restores the clock from gating by using the cached
776 * clock value.
777 */
778void mmc_ungate_clock(struct mmc_host *host)
779{
780 /*
781 * We should previously have gated the clock, so the clock shall
782 * be 0 here! The clock may however be 0 during initialization,
783 * when some request operations are performed before setting
784 * the frequency. When ungate is requested in that situation
785 * we just ignore the call.
786 */
787 if (host->clk_old) {
788 BUG_ON(host->ios.clock);
789 /* This call will also set host->clk_gated to false */
790 __mmc_set_clock(host, host->clk_old);
791 }
792}
793
794void mmc_set_ungated(struct mmc_host *host)
795{
796 unsigned long flags;
797
798 /*
799 * We've been given a new frequency while the clock is gated,
800 * so make sure we regard this as ungating it.
801 */
802 spin_lock_irqsave(&host->clk_lock, flags);
803 host->clk_gated = false;
804 spin_unlock_irqrestore(&host->clk_lock, flags);
805}
806
807#else
808void mmc_set_ungated(struct mmc_host *host)
809{
810}
811#endif
812
813/*
814 * Change the bus mode (open drain/push-pull) of a host.
815 */
816void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
817{
818 mmc_host_clk_hold(host);
819 host->ios.bus_mode = mode;
820 mmc_set_ios(host);
821 mmc_host_clk_release(host);
822}
823
824/*
825 * Change data bus width of a host.
826 */
827void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
828{
829 mmc_host_clk_hold(host);
830 host->ios.bus_width = width;
831 mmc_set_ios(host);
832 mmc_host_clk_release(host);
833}
834
835/**
836 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
837 * @vdd: voltage (mV)
838 * @low_bits: prefer low bits in boundary cases
839 *
840 * This function returns the OCR bit number according to the provided @vdd
841 * value. If conversion is not possible a negative errno value returned.
842 *
843 * Depending on the @low_bits flag the function prefers low or high OCR bits
844 * on boundary voltages. For example,
845 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
846 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
847 *
848 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
849 */
850static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
851{
852 const int max_bit = ilog2(MMC_VDD_35_36);
853 int bit;
854
855 if (vdd < 1650 || vdd > 3600)
856 return -EINVAL;
857
858 if (vdd >= 1650 && vdd <= 1950)
859 return ilog2(MMC_VDD_165_195);
860
861 if (low_bits)
862 vdd -= 1;
863
864 /* Base 2000 mV, step 100 mV, bit's base 8. */
865 bit = (vdd - 2000) / 100 + 8;
866 if (bit > max_bit)
867 return max_bit;
868 return bit;
869}
870
871/**
872 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
873 * @vdd_min: minimum voltage value (mV)
874 * @vdd_max: maximum voltage value (mV)
875 *
876 * This function returns the OCR mask bits according to the provided @vdd_min
877 * and @vdd_max values. If conversion is not possible the function returns 0.
878 *
879 * Notes wrt boundary cases:
880 * This function sets the OCR bits for all boundary voltages, for example
881 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
882 * MMC_VDD_34_35 mask.
883 */
884u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
885{
886 u32 mask = 0;
887
888 if (vdd_max < vdd_min)
889 return 0;
890
891 /* Prefer high bits for the boundary vdd_max values. */
892 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
893 if (vdd_max < 0)
894 return 0;
895
896 /* Prefer low bits for the boundary vdd_min values. */
897 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
898 if (vdd_min < 0)
899 return 0;
900
901 /* Fill the mask, from max bit to min bit. */
902 while (vdd_max >= vdd_min)
903 mask |= 1 << vdd_max--;
904
905 return mask;
906}
907EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
908
909#ifdef CONFIG_REGULATOR
910
911/**
912 * mmc_regulator_get_ocrmask - return mask of supported voltages
913 * @supply: regulator to use
914 *
915 * This returns either a negative errno, or a mask of voltages that
916 * can be provided to MMC/SD/SDIO devices using the specified voltage
917 * regulator. This would normally be called before registering the
918 * MMC host adapter.
919 */
920int mmc_regulator_get_ocrmask(struct regulator *supply)
921{
922 int result = 0;
923 int count;
924 int i;
925
926 count = regulator_count_voltages(supply);
927 if (count < 0)
928 return count;
929
930 for (i = 0; i < count; i++) {
931 int vdd_uV;
932 int vdd_mV;
933
934 vdd_uV = regulator_list_voltage(supply, i);
935 if (vdd_uV <= 0)
936 continue;
937
938 vdd_mV = vdd_uV / 1000;
939 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
940 }
941
942 return result;
943}
944EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
945
946/**
947 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
948 * @mmc: the host to regulate
949 * @supply: regulator to use
950 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
951 *
952 * Returns zero on success, else negative errno.
953 *
954 * MMC host drivers may use this to enable or disable a regulator using
955 * a particular supply voltage. This would normally be called from the
956 * set_ios() method.
957 */
958int mmc_regulator_set_ocr(struct mmc_host *mmc,
959 struct regulator *supply,
960 unsigned short vdd_bit)
961{
962 int result = 0;
963 int min_uV, max_uV;
964
965 if (vdd_bit) {
966 int tmp;
967 int voltage;
968
969 /* REVISIT mmc_vddrange_to_ocrmask() may have set some
970 * bits this regulator doesn't quite support ... don't
971 * be too picky, most cards and regulators are OK with
972 * a 0.1V range goof (it's a small error percentage).
973 */
974 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
975 if (tmp == 0) {
976 min_uV = 1650 * 1000;
977 max_uV = 1950 * 1000;
978 } else {
979 min_uV = 1900 * 1000 + tmp * 100 * 1000;
980 max_uV = min_uV + 100 * 1000;
981 }
982
983 /* avoid needless changes to this voltage; the regulator
984 * might not allow this operation
985 */
986 voltage = regulator_get_voltage(supply);
987
988 if (mmc->caps2 & MMC_CAP2_BROKEN_VOLTAGE)
989 min_uV = max_uV = voltage;
990
991 if (voltage < 0)
992 result = voltage;
993 else if (voltage < min_uV || voltage > max_uV)
994 result = regulator_set_voltage(supply, min_uV, max_uV);
995 else
996 result = 0;
997
998 if (result == 0 && !mmc->regulator_enabled) {
999 result = regulator_enable(supply);
1000 if (!result)
1001 mmc->regulator_enabled = true;
1002 }
1003 } else if (mmc->regulator_enabled) {
1004 result = regulator_disable(supply);
1005 if (result == 0)
1006 mmc->regulator_enabled = false;
1007 }
1008
1009 if (result)
1010 dev_err(mmc_dev(mmc),
1011 "could not set regulator OCR (%d)\n", result);
1012 return result;
1013}
1014EXPORT_SYMBOL(mmc_regulator_set_ocr);
1015
1016#endif /* CONFIG_REGULATOR */
1017
1018/*
1019 * Mask off any voltages we don't support and select
1020 * the lowest voltage
1021 */
1022u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1023{
1024 int bit;
1025
1026 ocr &= host->ocr_avail;
1027
1028 bit = ffs(ocr);
1029 if (bit) {
1030 bit -= 1;
1031
1032 ocr &= 3 << bit;
1033
1034 mmc_host_clk_hold(host);
1035 host->ios.vdd = bit;
1036 mmc_set_ios(host);
1037 mmc_host_clk_release(host);
1038 } else {
1039 pr_warning("%s: host doesn't support card's voltages\n",
1040 mmc_hostname(host));
1041 ocr = 0;
1042 }
1043
1044 return ocr;
1045}
1046
1047int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1048{
1049 struct mmc_command cmd = {0};
1050 int err = 0;
1051
1052 BUG_ON(!host);
1053
1054 /*
1055 * Send CMD11 only if the request is to switch the card to
1056 * 1.8V signalling.
1057 */
1058 if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1059 cmd.opcode = SD_SWITCH_VOLTAGE;
1060 cmd.arg = 0;
1061 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1062
1063 err = mmc_wait_for_cmd(host, &cmd, 0);
1064 if (err)
1065 return err;
1066
1067 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1068 return -EIO;
1069 }
1070
1071 host->ios.signal_voltage = signal_voltage;
1072
1073 if (host->ops->start_signal_voltage_switch) {
1074 mmc_host_clk_hold(host);
1075 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1076 mmc_host_clk_release(host);
1077 }
1078
1079 return err;
1080}
1081
1082/*
1083 * Select timing parameters for host.
1084 */
1085void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1086{
1087 mmc_host_clk_hold(host);
1088 host->ios.timing = timing;
1089 mmc_set_ios(host);
1090 mmc_host_clk_release(host);
1091}
1092
1093/*
1094 * Select appropriate driver type for host.
1095 */
1096void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1097{
1098 mmc_host_clk_hold(host);
1099 host->ios.drv_type = drv_type;
1100 mmc_set_ios(host);
1101 mmc_host_clk_release(host);
1102}
1103
1104static void mmc_poweroff_notify(struct mmc_host *host)
1105{
1106 struct mmc_card *card;
1107 unsigned int timeout;
1108 unsigned int notify_type = EXT_CSD_NO_POWER_NOTIFICATION;
1109 int err = 0;
1110
1111 card = host->card;
1112 mmc_claim_host(host);
1113
1114 /*
1115 * Send power notify command only if card
1116 * is mmc and notify state is powered ON
1117 */
1118 if (card && mmc_card_mmc(card) &&
1119 (card->poweroff_notify_state == MMC_POWERED_ON)) {
1120
1121 if (host->power_notify_type == MMC_HOST_PW_NOTIFY_SHORT) {
1122 notify_type = EXT_CSD_POWER_OFF_SHORT;
1123 timeout = card->ext_csd.generic_cmd6_time;
1124 card->poweroff_notify_state = MMC_POWEROFF_SHORT;
1125 } else {
1126 notify_type = EXT_CSD_POWER_OFF_LONG;
1127 timeout = card->ext_csd.power_off_longtime;
1128 card->poweroff_notify_state = MMC_POWEROFF_LONG;
1129 }
1130
1131 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1132 EXT_CSD_POWER_OFF_NOTIFICATION,
1133 notify_type, timeout);
1134
1135 if (err && err != -EBADMSG)
1136 pr_err("Device failed to respond within %d poweroff "
1137 "time. Forcefully powering down the device\n",
1138 timeout);
1139
1140 /* Set the card state to no notification after the poweroff */
1141 card->poweroff_notify_state = MMC_NO_POWER_NOTIFICATION;
1142 }
1143 mmc_release_host(host);
1144}
1145
1146/*
1147 * Apply power to the MMC stack. This is a two-stage process.
1148 * First, we enable power to the card without the clock running.
1149 * We then wait a bit for the power to stabilise. Finally,
1150 * enable the bus drivers and clock to the card.
1151 *
1152 * We must _NOT_ enable the clock prior to power stablising.
1153 *
1154 * If a host does all the power sequencing itself, ignore the
1155 * initial MMC_POWER_UP stage.
1156 */
1157static void mmc_power_up(struct mmc_host *host)
1158{
1159 int bit;
1160
1161 if (host->ios.power_mode == MMC_POWER_ON)
1162 return;
1163
1164 mmc_host_clk_hold(host);
1165
1166 /* If ocr is set, we use it */
1167 if (host->ocr)
1168 bit = ffs(host->ocr) - 1;
1169 else
1170 bit = fls(host->ocr_avail) - 1;
1171
1172 host->ios.vdd = bit;
1173 if (mmc_host_is_spi(host))
1174 host->ios.chip_select = MMC_CS_HIGH;
1175 else
1176 host->ios.chip_select = MMC_CS_DONTCARE;
1177 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1178 host->ios.power_mode = MMC_POWER_UP;
1179 host->ios.bus_width = MMC_BUS_WIDTH_1;
1180 host->ios.timing = MMC_TIMING_LEGACY;
1181 mmc_set_ios(host);
1182
1183 /*
1184 * This delay should be sufficient to allow the power supply
1185 * to reach the minimum voltage.
1186 */
1187 mmc_delay(10);
1188
1189 host->ios.clock = host->f_init;
1190
1191 host->ios.power_mode = MMC_POWER_ON;
1192 mmc_set_ios(host);
1193
1194 /*
1195 * This delay must be at least 74 clock sizes, or 1 ms, or the
1196 * time required to reach a stable voltage.
1197 */
1198 mmc_delay(10);
1199
1200 mmc_host_clk_release(host);
1201}
1202
1203void mmc_power_off(struct mmc_host *host)
1204{
1205 int err = 0;
1206
1207 if (host->ios.power_mode == MMC_POWER_OFF)
1208 return;
1209
1210 mmc_host_clk_hold(host);
1211
1212 host->ios.clock = 0;
1213 host->ios.vdd = 0;
1214
1215 /*
1216 * For eMMC 4.5 device send AWAKE command before
1217 * POWER_OFF_NOTIFY command, because in sleep state
1218 * eMMC 4.5 devices respond to only RESET and AWAKE cmd
1219 */
1220 if (host->card && mmc_card_is_sleep(host->card) &&
1221 host->bus_ops->resume) {
1222 err = host->bus_ops->resume(host);
1223
1224 if (!err)
1225 mmc_poweroff_notify(host);
1226 else
1227 pr_warning("%s: error %d during resume "
1228 "(continue with poweroff sequence)\n",
1229 mmc_hostname(host), err);
1230 }
1231
1232 /*
1233 * Reset ocr mask to be the highest possible voltage supported for
1234 * this mmc host. This value will be used at next power up.
1235 */
1236 host->ocr = 1 << (fls(host->ocr_avail) - 1);
1237
1238 if (!mmc_host_is_spi(host)) {
1239 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1240 host->ios.chip_select = MMC_CS_DONTCARE;
1241 }
1242 host->ios.power_mode = MMC_POWER_OFF;
1243 host->ios.bus_width = MMC_BUS_WIDTH_1;
1244 host->ios.timing = MMC_TIMING_LEGACY;
1245 mmc_set_ios(host);
1246
1247 /*
1248 * Some configurations, such as the 802.11 SDIO card in the OLPC
1249 * XO-1.5, require a short delay after poweroff before the card
1250 * can be successfully turned on again.
1251 */
1252 mmc_delay(1);
1253
1254 mmc_host_clk_release(host);
1255}
1256
1257/*
1258 * Cleanup when the last reference to the bus operator is dropped.
1259 */
1260static void __mmc_release_bus(struct mmc_host *host)
1261{
1262 BUG_ON(!host);
1263 BUG_ON(host->bus_refs);
1264 BUG_ON(!host->bus_dead);
1265
1266 host->bus_ops = NULL;
1267}
1268
1269/*
1270 * Increase reference count of bus operator
1271 */
1272static inline void mmc_bus_get(struct mmc_host *host)
1273{
1274 unsigned long flags;
1275
1276 spin_lock_irqsave(&host->lock, flags);
1277 host->bus_refs++;
1278 spin_unlock_irqrestore(&host->lock, flags);
1279}
1280
1281/*
1282 * Decrease reference count of bus operator and free it if
1283 * it is the last reference.
1284 */
1285static inline void mmc_bus_put(struct mmc_host *host)
1286{
1287 unsigned long flags;
1288
1289 spin_lock_irqsave(&host->lock, flags);
1290 host->bus_refs--;
1291 if ((host->bus_refs == 0) && host->bus_ops)
1292 __mmc_release_bus(host);
1293 spin_unlock_irqrestore(&host->lock, flags);
1294}
1295
1296/*
1297 * Assign a mmc bus handler to a host. Only one bus handler may control a
1298 * host at any given time.
1299 */
1300void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1301{
1302 unsigned long flags;
1303
1304 BUG_ON(!host);
1305 BUG_ON(!ops);
1306
1307 WARN_ON(!host->claimed);
1308
1309 spin_lock_irqsave(&host->lock, flags);
1310
1311 BUG_ON(host->bus_ops);
1312 BUG_ON(host->bus_refs);
1313
1314 host->bus_ops = ops;
1315 host->bus_refs = 1;
1316 host->bus_dead = 0;
1317
1318 spin_unlock_irqrestore(&host->lock, flags);
1319}
1320
1321/*
1322 * Remove the current bus handler from a host.
1323 */
1324void mmc_detach_bus(struct mmc_host *host)
1325{
1326 unsigned long flags;
1327
1328 BUG_ON(!host);
1329
1330 WARN_ON(!host->claimed);
1331 WARN_ON(!host->bus_ops);
1332
1333 spin_lock_irqsave(&host->lock, flags);
1334
1335 host->bus_dead = 1;
1336
1337 spin_unlock_irqrestore(&host->lock, flags);
1338
1339 mmc_bus_put(host);
1340}
1341
1342/**
1343 * mmc_detect_change - process change of state on a MMC socket
1344 * @host: host which changed state.
1345 * @delay: optional delay to wait before detection (jiffies)
1346 *
1347 * MMC drivers should call this when they detect a card has been
1348 * inserted or removed. The MMC layer will confirm that any
1349 * present card is still functional, and initialize any newly
1350 * inserted.
1351 */
1352void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1353{
1354#ifdef CONFIG_MMC_DEBUG
1355 unsigned long flags;
1356 spin_lock_irqsave(&host->lock, flags);
1357 WARN_ON(host->removed);
1358 spin_unlock_irqrestore(&host->lock, flags);
1359#endif
1360 host->detect_change = 1;
1361 mmc_schedule_delayed_work(&host->detect, delay);
1362}
1363
1364EXPORT_SYMBOL(mmc_detect_change);
1365
1366void mmc_init_erase(struct mmc_card *card)
1367{
1368 unsigned int sz;
1369
1370 if (is_power_of_2(card->erase_size))
1371 card->erase_shift = ffs(card->erase_size) - 1;
1372 else
1373 card->erase_shift = 0;
1374
1375 /*
1376 * It is possible to erase an arbitrarily large area of an SD or MMC
1377 * card. That is not desirable because it can take a long time
1378 * (minutes) potentially delaying more important I/O, and also the
1379 * timeout calculations become increasingly hugely over-estimated.
1380 * Consequently, 'pref_erase' is defined as a guide to limit erases
1381 * to that size and alignment.
1382 *
1383 * For SD cards that define Allocation Unit size, limit erases to one
1384 * Allocation Unit at a time. For MMC cards that define High Capacity
1385 * Erase Size, whether it is switched on or not, limit to that size.
1386 * Otherwise just have a stab at a good value. For modern cards it
1387 * will end up being 4MiB. Note that if the value is too small, it
1388 * can end up taking longer to erase.
1389 */
1390 if (mmc_card_sd(card) && card->ssr.au) {
1391 card->pref_erase = card->ssr.au;
1392 card->erase_shift = ffs(card->ssr.au) - 1;
1393 } else if (card->ext_csd.hc_erase_size) {
1394 card->pref_erase = card->ext_csd.hc_erase_size;
1395 } else {
1396 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1397 if (sz < 128)
1398 card->pref_erase = 512 * 1024 / 512;
1399 else if (sz < 512)
1400 card->pref_erase = 1024 * 1024 / 512;
1401 else if (sz < 1024)
1402 card->pref_erase = 2 * 1024 * 1024 / 512;
1403 else
1404 card->pref_erase = 4 * 1024 * 1024 / 512;
1405 if (card->pref_erase < card->erase_size)
1406 card->pref_erase = card->erase_size;
1407 else {
1408 sz = card->pref_erase % card->erase_size;
1409 if (sz)
1410 card->pref_erase += card->erase_size - sz;
1411 }
1412 }
1413}
1414
1415static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1416 unsigned int arg, unsigned int qty)
1417{
1418 unsigned int erase_timeout;
1419
1420 if (arg == MMC_DISCARD_ARG ||
1421 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1422 erase_timeout = card->ext_csd.trim_timeout;
1423 } else if (card->ext_csd.erase_group_def & 1) {
1424 /* High Capacity Erase Group Size uses HC timeouts */
1425 if (arg == MMC_TRIM_ARG)
1426 erase_timeout = card->ext_csd.trim_timeout;
1427 else
1428 erase_timeout = card->ext_csd.hc_erase_timeout;
1429 } else {
1430 /* CSD Erase Group Size uses write timeout */
1431 unsigned int mult = (10 << card->csd.r2w_factor);
1432 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1433 unsigned int timeout_us;
1434
1435 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1436 if (card->csd.tacc_ns < 1000000)
1437 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1438 else
1439 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1440
1441 /*
1442 * ios.clock is only a target. The real clock rate might be
1443 * less but not that much less, so fudge it by multiplying by 2.
1444 */
1445 timeout_clks <<= 1;
1446 timeout_us += (timeout_clks * 1000) /
1447 (mmc_host_clk_rate(card->host) / 1000);
1448
1449 erase_timeout = timeout_us / 1000;
1450
1451 /*
1452 * Theoretically, the calculation could underflow so round up
1453 * to 1ms in that case.
1454 */
1455 if (!erase_timeout)
1456 erase_timeout = 1;
1457 }
1458
1459 /* Multiplier for secure operations */
1460 if (arg & MMC_SECURE_ARGS) {
1461 if (arg == MMC_SECURE_ERASE_ARG)
1462 erase_timeout *= card->ext_csd.sec_erase_mult;
1463 else
1464 erase_timeout *= card->ext_csd.sec_trim_mult;
1465 }
1466
1467 erase_timeout *= qty;
1468
1469 /*
1470 * Ensure at least a 1 second timeout for SPI as per
1471 * 'mmc_set_data_timeout()'
1472 */
1473 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1474 erase_timeout = 1000;
1475
1476 return erase_timeout;
1477}
1478
1479static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1480 unsigned int arg,
1481 unsigned int qty)
1482{
1483 unsigned int erase_timeout;
1484
1485 if (card->ssr.erase_timeout) {
1486 /* Erase timeout specified in SD Status Register (SSR) */
1487 erase_timeout = card->ssr.erase_timeout * qty +
1488 card->ssr.erase_offset;
1489 } else {
1490 /*
1491 * Erase timeout not specified in SD Status Register (SSR) so
1492 * use 250ms per write block.
1493 */
1494 erase_timeout = 250 * qty;
1495 }
1496
1497 /* Must not be less than 1 second */
1498 if (erase_timeout < 1000)
1499 erase_timeout = 1000;
1500
1501 return erase_timeout;
1502}
1503
1504static unsigned int mmc_erase_timeout(struct mmc_card *card,
1505 unsigned int arg,
1506 unsigned int qty)
1507{
1508 if (mmc_card_sd(card))
1509 return mmc_sd_erase_timeout(card, arg, qty);
1510 else
1511 return mmc_mmc_erase_timeout(card, arg, qty);
1512}
1513
1514static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1515 unsigned int to, unsigned int arg)
1516{
1517 struct mmc_command cmd = {0};
1518 unsigned int qty = 0;
1519 int err;
1520
1521 /*
1522 * qty is used to calculate the erase timeout which depends on how many
1523 * erase groups (or allocation units in SD terminology) are affected.
1524 * We count erasing part of an erase group as one erase group.
1525 * For SD, the allocation units are always a power of 2. For MMC, the
1526 * erase group size is almost certainly also power of 2, but it does not
1527 * seem to insist on that in the JEDEC standard, so we fall back to
1528 * division in that case. SD may not specify an allocation unit size,
1529 * in which case the timeout is based on the number of write blocks.
1530 *
1531 * Note that the timeout for secure trim 2 will only be correct if the
1532 * number of erase groups specified is the same as the total of all
1533 * preceding secure trim 1 commands. Since the power may have been
1534 * lost since the secure trim 1 commands occurred, it is generally
1535 * impossible to calculate the secure trim 2 timeout correctly.
1536 */
1537 if (card->erase_shift)
1538 qty += ((to >> card->erase_shift) -
1539 (from >> card->erase_shift)) + 1;
1540 else if (mmc_card_sd(card))
1541 qty += to - from + 1;
1542 else
1543 qty += ((to / card->erase_size) -
1544 (from / card->erase_size)) + 1;
1545
1546 if (!mmc_card_blockaddr(card)) {
1547 from <<= 9;
1548 to <<= 9;
1549 }
1550
1551 if (mmc_card_sd(card))
1552 cmd.opcode = SD_ERASE_WR_BLK_START;
1553 else
1554 cmd.opcode = MMC_ERASE_GROUP_START;
1555 cmd.arg = from;
1556 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1557 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1558 if (err) {
1559 pr_err("mmc_erase: group start error %d, "
1560 "status %#x\n", err, cmd.resp[0]);
1561 err = -EIO;
1562 goto out;
1563 }
1564
1565 memset(&cmd, 0, sizeof(struct mmc_command));
1566 if (mmc_card_sd(card))
1567 cmd.opcode = SD_ERASE_WR_BLK_END;
1568 else
1569 cmd.opcode = MMC_ERASE_GROUP_END;
1570 cmd.arg = to;
1571 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1572 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1573 if (err) {
1574 pr_err("mmc_erase: group end error %d, status %#x\n",
1575 err, cmd.resp[0]);
1576 err = -EIO;
1577 goto out;
1578 }
1579
1580 memset(&cmd, 0, sizeof(struct mmc_command));
1581 cmd.opcode = MMC_ERASE;
1582 cmd.arg = arg;
1583 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1584 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1585 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1586 if (err) {
1587 pr_err("mmc_erase: erase error %d, status %#x\n",
1588 err, cmd.resp[0]);
1589 err = -EIO;
1590 goto out;
1591 }
1592
1593 if (mmc_host_is_spi(card->host))
1594 goto out;
1595
1596 do {
1597 memset(&cmd, 0, sizeof(struct mmc_command));
1598 cmd.opcode = MMC_SEND_STATUS;
1599 cmd.arg = card->rca << 16;
1600 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1601 /* Do not retry else we can't see errors */
1602 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1603 if (err || (cmd.resp[0] & 0xFDF92000)) {
1604 pr_err("error %d requesting status %#x\n",
1605 err, cmd.resp[0]);
1606 err = -EIO;
1607 goto out;
1608 }
1609 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1610 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1611out:
1612 return err;
1613}
1614
1615/**
1616 * mmc_erase - erase sectors.
1617 * @card: card to erase
1618 * @from: first sector to erase
1619 * @nr: number of sectors to erase
1620 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1621 *
1622 * Caller must claim host before calling this function.
1623 */
1624int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1625 unsigned int arg)
1626{
1627 unsigned int rem, to = from + nr;
1628
1629 if (!(card->host->caps & MMC_CAP_ERASE) ||
1630 !(card->csd.cmdclass & CCC_ERASE))
1631 return -EOPNOTSUPP;
1632
1633 if (!card->erase_size)
1634 return -EOPNOTSUPP;
1635
1636 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1637 return -EOPNOTSUPP;
1638
1639 if ((arg & MMC_SECURE_ARGS) &&
1640 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1641 return -EOPNOTSUPP;
1642
1643 if ((arg & MMC_TRIM_ARGS) &&
1644 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1645 return -EOPNOTSUPP;
1646
1647 if (arg == MMC_SECURE_ERASE_ARG) {
1648 if (from % card->erase_size || nr % card->erase_size)
1649 return -EINVAL;
1650 }
1651
1652 if (arg == MMC_ERASE_ARG) {
1653 rem = from % card->erase_size;
1654 if (rem) {
1655 rem = card->erase_size - rem;
1656 from += rem;
1657 if (nr > rem)
1658 nr -= rem;
1659 else
1660 return 0;
1661 }
1662 rem = nr % card->erase_size;
1663 if (rem)
1664 nr -= rem;
1665 }
1666
1667 if (nr == 0)
1668 return 0;
1669
1670 to = from + nr;
1671
1672 if (to <= from)
1673 return -EINVAL;
1674
1675 /* 'from' and 'to' are inclusive */
1676 to -= 1;
1677
1678 return mmc_do_erase(card, from, to, arg);
1679}
1680EXPORT_SYMBOL(mmc_erase);
1681
1682int mmc_can_erase(struct mmc_card *card)
1683{
1684 if ((card->host->caps & MMC_CAP_ERASE) &&
1685 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1686 return 1;
1687 return 0;
1688}
1689EXPORT_SYMBOL(mmc_can_erase);
1690
1691int mmc_can_trim(struct mmc_card *card)
1692{
1693 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1694 return 1;
1695 return 0;
1696}
1697EXPORT_SYMBOL(mmc_can_trim);
1698
1699int mmc_can_discard(struct mmc_card *card)
1700{
1701 /*
1702 * As there's no way to detect the discard support bit at v4.5
1703 * use the s/w feature support filed.
1704 */
1705 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1706 return 1;
1707 return 0;
1708}
1709EXPORT_SYMBOL(mmc_can_discard);
1710
1711int mmc_can_sanitize(struct mmc_card *card)
1712{
1713 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1714 return 0;
1715 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1716 return 1;
1717 return 0;
1718}
1719EXPORT_SYMBOL(mmc_can_sanitize);
1720
1721int mmc_can_secure_erase_trim(struct mmc_card *card)
1722{
1723 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1724 return 1;
1725 return 0;
1726}
1727EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1728
1729int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1730 unsigned int nr)
1731{
1732 if (!card->erase_size)
1733 return 0;
1734 if (from % card->erase_size || nr % card->erase_size)
1735 return 0;
1736 return 1;
1737}
1738EXPORT_SYMBOL(mmc_erase_group_aligned);
1739
1740static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1741 unsigned int arg)
1742{
1743 struct mmc_host *host = card->host;
1744 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1745 unsigned int last_timeout = 0;
1746
1747 if (card->erase_shift)
1748 max_qty = UINT_MAX >> card->erase_shift;
1749 else if (mmc_card_sd(card))
1750 max_qty = UINT_MAX;
1751 else
1752 max_qty = UINT_MAX / card->erase_size;
1753
1754 /* Find the largest qty with an OK timeout */
1755 do {
1756 y = 0;
1757 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1758 timeout = mmc_erase_timeout(card, arg, qty + x);
1759 if (timeout > host->max_discard_to)
1760 break;
1761 if (timeout < last_timeout)
1762 break;
1763 last_timeout = timeout;
1764 y = x;
1765 }
1766 qty += y;
1767 } while (y);
1768
1769 if (!qty)
1770 return 0;
1771
1772 if (qty == 1)
1773 return 1;
1774
1775 /* Convert qty to sectors */
1776 if (card->erase_shift)
1777 max_discard = --qty << card->erase_shift;
1778 else if (mmc_card_sd(card))
1779 max_discard = qty;
1780 else
1781 max_discard = --qty * card->erase_size;
1782
1783 return max_discard;
1784}
1785
1786unsigned int mmc_calc_max_discard(struct mmc_card *card)
1787{
1788 struct mmc_host *host = card->host;
1789 unsigned int max_discard, max_trim;
1790
1791 if (!host->max_discard_to)
1792 return UINT_MAX;
1793
1794 /*
1795 * Without erase_group_def set, MMC erase timeout depends on clock
1796 * frequence which can change. In that case, the best choice is
1797 * just the preferred erase size.
1798 */
1799 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1800 return card->pref_erase;
1801
1802 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1803 if (mmc_can_trim(card)) {
1804 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1805 if (max_trim < max_discard)
1806 max_discard = max_trim;
1807 } else if (max_discard < card->erase_size) {
1808 max_discard = 0;
1809 }
1810 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1811 mmc_hostname(host), max_discard, host->max_discard_to);
1812 return max_discard;
1813}
1814EXPORT_SYMBOL(mmc_calc_max_discard);
1815
1816int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1817{
1818 struct mmc_command cmd = {0};
1819
1820 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1821 return 0;
1822
1823 cmd.opcode = MMC_SET_BLOCKLEN;
1824 cmd.arg = blocklen;
1825 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1826 return mmc_wait_for_cmd(card->host, &cmd, 5);
1827}
1828EXPORT_SYMBOL(mmc_set_blocklen);
1829
1830static void mmc_hw_reset_for_init(struct mmc_host *host)
1831{
1832 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1833 return;
1834 mmc_host_clk_hold(host);
1835 host->ops->hw_reset(host);
1836 mmc_host_clk_release(host);
1837}
1838
1839int mmc_can_reset(struct mmc_card *card)
1840{
1841 u8 rst_n_function;
1842
1843 if (!mmc_card_mmc(card))
1844 return 0;
1845 rst_n_function = card->ext_csd.rst_n_function;
1846 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1847 return 0;
1848 return 1;
1849}
1850EXPORT_SYMBOL(mmc_can_reset);
1851
1852static int mmc_do_hw_reset(struct mmc_host *host, int check)
1853{
1854 struct mmc_card *card = host->card;
1855
1856 if (!host->bus_ops->power_restore)
1857 return -EOPNOTSUPP;
1858
1859 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1860 return -EOPNOTSUPP;
1861
1862 if (!card)
1863 return -EINVAL;
1864
1865 if (!mmc_can_reset(card))
1866 return -EOPNOTSUPP;
1867
1868 mmc_host_clk_hold(host);
1869 mmc_set_clock(host, host->f_init);
1870
1871 host->ops->hw_reset(host);
1872
1873 /* If the reset has happened, then a status command will fail */
1874 if (check) {
1875 struct mmc_command cmd = {0};
1876 int err;
1877
1878 cmd.opcode = MMC_SEND_STATUS;
1879 if (!mmc_host_is_spi(card->host))
1880 cmd.arg = card->rca << 16;
1881 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
1882 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1883 if (!err) {
1884 mmc_host_clk_release(host);
1885 return -ENOSYS;
1886 }
1887 }
1888
1889 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
1890 if (mmc_host_is_spi(host)) {
1891 host->ios.chip_select = MMC_CS_HIGH;
1892 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1893 } else {
1894 host->ios.chip_select = MMC_CS_DONTCARE;
1895 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1896 }
1897 host->ios.bus_width = MMC_BUS_WIDTH_1;
1898 host->ios.timing = MMC_TIMING_LEGACY;
1899 mmc_set_ios(host);
1900
1901 mmc_host_clk_release(host);
1902
1903 return host->bus_ops->power_restore(host);
1904}
1905
1906int mmc_hw_reset(struct mmc_host *host)
1907{
1908 return mmc_do_hw_reset(host, 0);
1909}
1910EXPORT_SYMBOL(mmc_hw_reset);
1911
1912int mmc_hw_reset_check(struct mmc_host *host)
1913{
1914 return mmc_do_hw_reset(host, 1);
1915}
1916EXPORT_SYMBOL(mmc_hw_reset_check);
1917
1918static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1919{
1920 host->f_init = freq;
1921
1922#ifdef CONFIG_MMC_DEBUG
1923 pr_info("%s: %s: trying to init card at %u Hz\n",
1924 mmc_hostname(host), __func__, host->f_init);
1925#endif
1926 mmc_power_up(host);
1927
1928 /*
1929 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
1930 * do a hardware reset if possible.
1931 */
1932 mmc_hw_reset_for_init(host);
1933
1934 /* Initialization should be done at 3.3 V I/O voltage. */
1935 mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, 0);
1936
1937 /*
1938 * sdio_reset sends CMD52 to reset card. Since we do not know
1939 * if the card is being re-initialized, just send it. CMD52
1940 * should be ignored by SD/eMMC cards.
1941 */
1942 sdio_reset(host);
1943 mmc_go_idle(host);
1944
1945 mmc_send_if_cond(host, host->ocr_avail);
1946
1947 /* Order's important: probe SDIO, then SD, then MMC */
1948 if (!mmc_attach_sdio(host))
1949 return 0;
1950 if (!mmc_attach_sd(host))
1951 return 0;
1952 if (!mmc_attach_mmc(host))
1953 return 0;
1954
1955 mmc_power_off(host);
1956 return -EIO;
1957}
1958
1959int _mmc_detect_card_removed(struct mmc_host *host)
1960{
1961 int ret;
1962
1963 if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
1964 return 0;
1965
1966 if (!host->card || mmc_card_removed(host->card))
1967 return 1;
1968
1969 ret = host->bus_ops->alive(host);
1970 if (ret) {
1971 mmc_card_set_removed(host->card);
1972 pr_debug("%s: card remove detected\n", mmc_hostname(host));
1973 }
1974
1975 return ret;
1976}
1977
1978int mmc_detect_card_removed(struct mmc_host *host)
1979{
1980 struct mmc_card *card = host->card;
1981 int ret;
1982
1983 WARN_ON(!host->claimed);
1984
1985 if (!card)
1986 return 1;
1987
1988 ret = mmc_card_removed(card);
1989 /*
1990 * The card will be considered unchanged unless we have been asked to
1991 * detect a change or host requires polling to provide card detection.
1992 */
1993 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1994 !(host->caps2 & MMC_CAP2_DETECT_ON_ERR))
1995 return ret;
1996
1997 host->detect_change = 0;
1998 if (!ret) {
1999 ret = _mmc_detect_card_removed(host);
2000 if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) {
2001 /*
2002 * Schedule a detect work as soon as possible to let a
2003 * rescan handle the card removal.
2004 */
2005 cancel_delayed_work(&host->detect);
2006 mmc_detect_change(host, 0);
2007 }
2008 }
2009
2010 return ret;
2011}
2012EXPORT_SYMBOL(mmc_detect_card_removed);
2013
2014void mmc_rescan(struct work_struct *work)
2015{
2016 struct mmc_host *host =
2017 container_of(work, struct mmc_host, detect.work);
2018 int i;
2019
2020 if (host->rescan_disable)
2021 return;
2022
2023 mmc_bus_get(host);
2024
2025 /*
2026 * if there is a _removable_ card registered, check whether it is
2027 * still present
2028 */
2029 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2030 && !(host->caps & MMC_CAP_NONREMOVABLE))
2031 host->bus_ops->detect(host);
2032
2033 host->detect_change = 0;
2034
2035 /*
2036 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2037 * the card is no longer present.
2038 */
2039 mmc_bus_put(host);
2040 mmc_bus_get(host);
2041
2042 /* if there still is a card present, stop here */
2043 if (host->bus_ops != NULL) {
2044 mmc_bus_put(host);
2045 goto out;
2046 }
2047
2048 /*
2049 * Only we can add a new handler, so it's safe to
2050 * release the lock here.
2051 */
2052 mmc_bus_put(host);
2053
2054 if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
2055 mmc_claim_host(host);
2056 mmc_power_off(host);
2057 mmc_release_host(host);
2058 goto out;
2059 }
2060
2061 mmc_claim_host(host);
2062 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2063 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2064 break;
2065 if (freqs[i] <= host->f_min)
2066 break;
2067 }
2068 mmc_release_host(host);
2069
2070 out:
2071 if (host->caps & MMC_CAP_NEEDS_POLL)
2072 mmc_schedule_delayed_work(&host->detect, HZ);
2073}
2074
2075void mmc_start_host(struct mmc_host *host)
2076{
2077 host->f_init = max(freqs[0], host->f_min);
2078 mmc_power_up(host);
2079 mmc_detect_change(host, 0);
2080}
2081
2082void mmc_stop_host(struct mmc_host *host)
2083{
2084#ifdef CONFIG_MMC_DEBUG
2085 unsigned long flags;
2086 spin_lock_irqsave(&host->lock, flags);
2087 host->removed = 1;
2088 spin_unlock_irqrestore(&host->lock, flags);
2089#endif
2090
2091 cancel_delayed_work_sync(&host->detect);
2092 mmc_flush_scheduled_work();
2093
2094 /* clear pm flags now and let card drivers set them as needed */
2095 host->pm_flags = 0;
2096
2097 mmc_bus_get(host);
2098 if (host->bus_ops && !host->bus_dead) {
2099 /* Calling bus_ops->remove() with a claimed host can deadlock */
2100 if (host->bus_ops->remove)
2101 host->bus_ops->remove(host);
2102
2103 mmc_claim_host(host);
2104 mmc_detach_bus(host);
2105 mmc_power_off(host);
2106 mmc_release_host(host);
2107 mmc_bus_put(host);
2108 return;
2109 }
2110 mmc_bus_put(host);
2111
2112 BUG_ON(host->card);
2113
2114 mmc_power_off(host);
2115}
2116
2117int mmc_power_save_host(struct mmc_host *host)
2118{
2119 int ret = 0;
2120
2121#ifdef CONFIG_MMC_DEBUG
2122 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2123#endif
2124
2125 mmc_bus_get(host);
2126
2127 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2128 mmc_bus_put(host);
2129 return -EINVAL;
2130 }
2131
2132 if (host->bus_ops->power_save)
2133 ret = host->bus_ops->power_save(host);
2134
2135 mmc_bus_put(host);
2136
2137 mmc_power_off(host);
2138
2139 return ret;
2140}
2141EXPORT_SYMBOL(mmc_power_save_host);
2142
2143int mmc_power_restore_host(struct mmc_host *host)
2144{
2145 int ret;
2146
2147#ifdef CONFIG_MMC_DEBUG
2148 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2149#endif
2150
2151 mmc_bus_get(host);
2152
2153 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2154 mmc_bus_put(host);
2155 return -EINVAL;
2156 }
2157
2158 mmc_power_up(host);
2159 ret = host->bus_ops->power_restore(host);
2160
2161 mmc_bus_put(host);
2162
2163 return ret;
2164}
2165EXPORT_SYMBOL(mmc_power_restore_host);
2166
2167int mmc_card_awake(struct mmc_host *host)
2168{
2169 int err = -ENOSYS;
2170
2171 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2172 return 0;
2173
2174 mmc_bus_get(host);
2175
2176 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2177 err = host->bus_ops->awake(host);
2178
2179 mmc_bus_put(host);
2180
2181 return err;
2182}
2183EXPORT_SYMBOL(mmc_card_awake);
2184
2185int mmc_card_sleep(struct mmc_host *host)
2186{
2187 int err = -ENOSYS;
2188
2189 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2190 return 0;
2191
2192 mmc_bus_get(host);
2193
2194 if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
2195 err = host->bus_ops->sleep(host);
2196
2197 mmc_bus_put(host);
2198
2199 return err;
2200}
2201EXPORT_SYMBOL(mmc_card_sleep);
2202
2203int mmc_card_can_sleep(struct mmc_host *host)
2204{
2205 struct mmc_card *card = host->card;
2206
2207 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2208 return 1;
2209 return 0;
2210}
2211EXPORT_SYMBOL(mmc_card_can_sleep);
2212
2213/*
2214 * Flush the cache to the non-volatile storage.
2215 */
2216int mmc_flush_cache(struct mmc_card *card)
2217{
2218 struct mmc_host *host = card->host;
2219 int err = 0;
2220
2221 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2222 return err;
2223
2224 if (mmc_card_mmc(card) &&
2225 (card->ext_csd.cache_size > 0) &&
2226 (card->ext_csd.cache_ctrl & 1)) {
2227 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2228 EXT_CSD_FLUSH_CACHE, 1, 0);
2229 if (err)
2230 pr_err("%s: cache flush error %d\n",
2231 mmc_hostname(card->host), err);
2232 }
2233
2234 return err;
2235}
2236EXPORT_SYMBOL(mmc_flush_cache);
2237
2238/*
2239 * Turn the cache ON/OFF.
2240 * Turning the cache OFF shall trigger flushing of the data
2241 * to the non-volatile storage.
2242 */
2243int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2244{
2245 struct mmc_card *card = host->card;
2246 unsigned int timeout;
2247 int err = 0;
2248
2249 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2250 mmc_card_is_removable(host))
2251 return err;
2252
2253 mmc_claim_host(host);
2254 if (card && mmc_card_mmc(card) &&
2255 (card->ext_csd.cache_size > 0)) {
2256 enable = !!enable;
2257
2258 if (card->ext_csd.cache_ctrl ^ enable) {
2259 timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2260 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2261 EXT_CSD_CACHE_CTRL, enable, timeout);
2262 if (err)
2263 pr_err("%s: cache %s error %d\n",
2264 mmc_hostname(card->host),
2265 enable ? "on" : "off",
2266 err);
2267 else
2268 card->ext_csd.cache_ctrl = enable;
2269 }
2270 }
2271 mmc_release_host(host);
2272
2273 return err;
2274}
2275EXPORT_SYMBOL(mmc_cache_ctrl);
2276
2277#ifdef CONFIG_PM
2278
2279/**
2280 * mmc_suspend_host - suspend a host
2281 * @host: mmc host
2282 */
2283int mmc_suspend_host(struct mmc_host *host)
2284{
2285 int err = 0;
2286
2287 cancel_delayed_work(&host->detect);
2288 mmc_flush_scheduled_work();
2289
2290 err = mmc_cache_ctrl(host, 0);
2291 if (err)
2292 goto out;
2293
2294 mmc_bus_get(host);
2295 if (host->bus_ops && !host->bus_dead) {
2296
2297 if (host->bus_ops->suspend)
2298 err = host->bus_ops->suspend(host);
2299
2300 if (err == -ENOSYS || !host->bus_ops->resume) {
2301 /*
2302 * We simply "remove" the card in this case.
2303 * It will be redetected on resume. (Calling
2304 * bus_ops->remove() with a claimed host can
2305 * deadlock.)
2306 */
2307 if (host->bus_ops->remove)
2308 host->bus_ops->remove(host);
2309 mmc_claim_host(host);
2310 mmc_detach_bus(host);
2311 mmc_power_off(host);
2312 mmc_release_host(host);
2313 host->pm_flags = 0;
2314 err = 0;
2315 }
2316 }
2317 mmc_bus_put(host);
2318
2319 if (!err && !mmc_card_keep_power(host))
2320 mmc_power_off(host);
2321
2322out:
2323 return err;
2324}
2325
2326EXPORT_SYMBOL(mmc_suspend_host);
2327
2328/**
2329 * mmc_resume_host - resume a previously suspended host
2330 * @host: mmc host
2331 */
2332int mmc_resume_host(struct mmc_host *host)
2333{
2334 int err = 0;
2335
2336 mmc_bus_get(host);
2337 if (host->bus_ops && !host->bus_dead) {
2338 if (!mmc_card_keep_power(host)) {
2339 mmc_power_up(host);
2340 mmc_select_voltage(host, host->ocr);
2341 /*
2342 * Tell runtime PM core we just powered up the card,
2343 * since it still believes the card is powered off.
2344 * Note that currently runtime PM is only enabled
2345 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2346 */
2347 if (mmc_card_sdio(host->card) &&
2348 (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2349 pm_runtime_disable(&host->card->dev);
2350 pm_runtime_set_active(&host->card->dev);
2351 pm_runtime_enable(&host->card->dev);
2352 }
2353 }
2354 BUG_ON(!host->bus_ops->resume);
2355 err = host->bus_ops->resume(host);
2356 if (err) {
2357 pr_warning("%s: error %d during resume "
2358 "(card was removed?)\n",
2359 mmc_hostname(host), err);
2360 err = 0;
2361 }
2362 }
2363 host->pm_flags &= ~MMC_PM_KEEP_POWER;
2364 mmc_bus_put(host);
2365
2366 return err;
2367}
2368EXPORT_SYMBOL(mmc_resume_host);
2369
2370/* Do the card removal on suspend if card is assumed removeable
2371 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2372 to sync the card.
2373*/
2374int mmc_pm_notify(struct notifier_block *notify_block,
2375 unsigned long mode, void *unused)
2376{
2377 struct mmc_host *host = container_of(
2378 notify_block, struct mmc_host, pm_notify);
2379 unsigned long flags;
2380
2381
2382 switch (mode) {
2383 case PM_HIBERNATION_PREPARE:
2384 case PM_SUSPEND_PREPARE:
2385
2386 spin_lock_irqsave(&host->lock, flags);
2387 host->rescan_disable = 1;
2388 host->power_notify_type = MMC_HOST_PW_NOTIFY_SHORT;
2389 spin_unlock_irqrestore(&host->lock, flags);
2390 cancel_delayed_work_sync(&host->detect);
2391
2392 if (!host->bus_ops || host->bus_ops->suspend)
2393 break;
2394
2395 /* Calling bus_ops->remove() with a claimed host can deadlock */
2396 if (host->bus_ops->remove)
2397 host->bus_ops->remove(host);
2398
2399 mmc_claim_host(host);
2400 mmc_detach_bus(host);
2401 mmc_power_off(host);
2402 mmc_release_host(host);
2403 host->pm_flags = 0;
2404 break;
2405
2406 case PM_POST_SUSPEND:
2407 case PM_POST_HIBERNATION:
2408 case PM_POST_RESTORE:
2409
2410 spin_lock_irqsave(&host->lock, flags);
2411 host->rescan_disable = 0;
2412 host->power_notify_type = MMC_HOST_PW_NOTIFY_LONG;
2413 spin_unlock_irqrestore(&host->lock, flags);
2414 mmc_detect_change(host, 0);
2415
2416 }
2417
2418 return 0;
2419}
2420#endif
2421
2422static int __init mmc_init(void)
2423{
2424 int ret;
2425
2426 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2427 if (!workqueue)
2428 return -ENOMEM;
2429
2430 ret = mmc_register_bus();
2431 if (ret)
2432 goto destroy_workqueue;
2433
2434 ret = mmc_register_host_class();
2435 if (ret)
2436 goto unregister_bus;
2437
2438 ret = sdio_register_bus();
2439 if (ret)
2440 goto unregister_host_class;
2441
2442 return 0;
2443
2444unregister_host_class:
2445 mmc_unregister_host_class();
2446unregister_bus:
2447 mmc_unregister_bus();
2448destroy_workqueue:
2449 destroy_workqueue(workqueue);
2450
2451 return ret;
2452}
2453
2454static void __exit mmc_exit(void)
2455{
2456 sdio_unregister_bus();
2457 mmc_unregister_host_class();
2458 mmc_unregister_bus();
2459 destroy_workqueue(workqueue);
2460}
2461
2462subsys_initcall(mmc_init);
2463module_exit(mmc_exit);
2464
2465MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/core/core.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10#include <linux/module.h>
11#include <linux/init.h>
12#include <linux/interrupt.h>
13#include <linux/completion.h>
14#include <linux/device.h>
15#include <linux/delay.h>
16#include <linux/pagemap.h>
17#include <linux/err.h>
18#include <linux/leds.h>
19#include <linux/scatterlist.h>
20#include <linux/log2.h>
21#include <linux/pm_runtime.h>
22#include <linux/pm_wakeup.h>
23#include <linux/suspend.h>
24#include <linux/fault-inject.h>
25#include <linux/random.h>
26#include <linux/slab.h>
27#include <linux/of.h>
28
29#include <linux/mmc/card.h>
30#include <linux/mmc/host.h>
31#include <linux/mmc/mmc.h>
32#include <linux/mmc/sd.h>
33#include <linux/mmc/slot-gpio.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/mmc.h>
37
38#include "core.h"
39#include "card.h"
40#include "crypto.h"
41#include "bus.h"
42#include "host.h"
43#include "sdio_bus.h"
44#include "pwrseq.h"
45
46#include "mmc_ops.h"
47#include "sd_ops.h"
48#include "sdio_ops.h"
49
50/* The max erase timeout, used when host->max_busy_timeout isn't specified */
51#define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
52#define SD_DISCARD_TIMEOUT_MS (250)
53
54static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
55
56/*
57 * Enabling software CRCs on the data blocks can be a significant (30%)
58 * performance cost, and for other reasons may not always be desired.
59 * So we allow it to be disabled.
60 */
61bool use_spi_crc = 1;
62module_param(use_spi_crc, bool, 0);
63
64static int mmc_schedule_delayed_work(struct delayed_work *work,
65 unsigned long delay)
66{
67 /*
68 * We use the system_freezable_wq, because of two reasons.
69 * First, it allows several works (not the same work item) to be
70 * executed simultaneously. Second, the queue becomes frozen when
71 * userspace becomes frozen during system PM.
72 */
73 return queue_delayed_work(system_freezable_wq, work, delay);
74}
75
76#ifdef CONFIG_FAIL_MMC_REQUEST
77
78/*
79 * Internal function. Inject random data errors.
80 * If mmc_data is NULL no errors are injected.
81 */
82static void mmc_should_fail_request(struct mmc_host *host,
83 struct mmc_request *mrq)
84{
85 struct mmc_command *cmd = mrq->cmd;
86 struct mmc_data *data = mrq->data;
87 static const int data_errors[] = {
88 -ETIMEDOUT,
89 -EILSEQ,
90 -EIO,
91 };
92
93 if (!data)
94 return;
95
96 if ((cmd && cmd->error) || data->error ||
97 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98 return;
99
100 data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
101 data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
102}
103
104#else /* CONFIG_FAIL_MMC_REQUEST */
105
106static inline void mmc_should_fail_request(struct mmc_host *host,
107 struct mmc_request *mrq)
108{
109}
110
111#endif /* CONFIG_FAIL_MMC_REQUEST */
112
113static inline void mmc_complete_cmd(struct mmc_request *mrq)
114{
115 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116 complete_all(&mrq->cmd_completion);
117}
118
119void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120{
121 if (!mrq->cap_cmd_during_tfr)
122 return;
123
124 mmc_complete_cmd(mrq);
125
126 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 mmc_hostname(host), mrq->cmd->opcode);
128}
129EXPORT_SYMBOL(mmc_command_done);
130
131/**
132 * mmc_request_done - finish processing an MMC request
133 * @host: MMC host which completed request
134 * @mrq: MMC request which request
135 *
136 * MMC drivers should call this function when they have completed
137 * their processing of a request.
138 */
139void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140{
141 struct mmc_command *cmd = mrq->cmd;
142 int err = cmd->error;
143
144 /* Flag re-tuning needed on CRC errors */
145 if (!mmc_op_tuning(cmd->opcode) &&
146 !host->retune_crc_disable &&
147 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
148 (mrq->data && mrq->data->error == -EILSEQ) ||
149 (mrq->stop && mrq->stop->error == -EILSEQ)))
150 mmc_retune_needed(host);
151
152 if (err && cmd->retries && mmc_host_is_spi(host)) {
153 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
154 cmd->retries = 0;
155 }
156
157 if (host->ongoing_mrq == mrq)
158 host->ongoing_mrq = NULL;
159
160 mmc_complete_cmd(mrq);
161
162 trace_mmc_request_done(host, mrq);
163
164 /*
165 * We list various conditions for the command to be considered
166 * properly done:
167 *
168 * - There was no error, OK fine then
169 * - We are not doing some kind of retry
170 * - The card was removed (...so just complete everything no matter
171 * if there are errors or retries)
172 */
173 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
174 mmc_should_fail_request(host, mrq);
175
176 if (!host->ongoing_mrq)
177 led_trigger_event(host->led, LED_OFF);
178
179 if (mrq->sbc) {
180 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
181 mmc_hostname(host), mrq->sbc->opcode,
182 mrq->sbc->error,
183 mrq->sbc->resp[0], mrq->sbc->resp[1],
184 mrq->sbc->resp[2], mrq->sbc->resp[3]);
185 }
186
187 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
188 mmc_hostname(host), cmd->opcode, err,
189 cmd->resp[0], cmd->resp[1],
190 cmd->resp[2], cmd->resp[3]);
191
192 if (mrq->data) {
193 pr_debug("%s: %d bytes transferred: %d\n",
194 mmc_hostname(host),
195 mrq->data->bytes_xfered, mrq->data->error);
196 }
197
198 if (mrq->stop) {
199 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
200 mmc_hostname(host), mrq->stop->opcode,
201 mrq->stop->error,
202 mrq->stop->resp[0], mrq->stop->resp[1],
203 mrq->stop->resp[2], mrq->stop->resp[3]);
204 }
205 }
206 /*
207 * Request starter must handle retries - see
208 * mmc_wait_for_req_done().
209 */
210 if (mrq->done)
211 mrq->done(mrq);
212}
213
214EXPORT_SYMBOL(mmc_request_done);
215
216static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
217{
218 int err;
219
220 /* Assumes host controller has been runtime resumed by mmc_claim_host */
221 err = mmc_retune(host);
222 if (err) {
223 mrq->cmd->error = err;
224 mmc_request_done(host, mrq);
225 return;
226 }
227
228 /*
229 * For sdio rw commands we must wait for card busy otherwise some
230 * sdio devices won't work properly.
231 * And bypass I/O abort, reset and bus suspend operations.
232 */
233 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
234 host->ops->card_busy) {
235 int tries = 500; /* Wait aprox 500ms at maximum */
236
237 while (host->ops->card_busy(host) && --tries)
238 mmc_delay(1);
239
240 if (tries == 0) {
241 mrq->cmd->error = -EBUSY;
242 mmc_request_done(host, mrq);
243 return;
244 }
245 }
246
247 if (mrq->cap_cmd_during_tfr) {
248 host->ongoing_mrq = mrq;
249 /*
250 * Retry path could come through here without having waiting on
251 * cmd_completion, so ensure it is reinitialised.
252 */
253 reinit_completion(&mrq->cmd_completion);
254 }
255
256 trace_mmc_request_start(host, mrq);
257
258 if (host->cqe_on)
259 host->cqe_ops->cqe_off(host);
260
261 host->ops->request(host, mrq);
262}
263
264static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
265 bool cqe)
266{
267 if (mrq->sbc) {
268 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
269 mmc_hostname(host), mrq->sbc->opcode,
270 mrq->sbc->arg, mrq->sbc->flags);
271 }
272
273 if (mrq->cmd) {
274 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
275 mmc_hostname(host), cqe ? "CQE direct " : "",
276 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
277 } else if (cqe) {
278 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
279 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
280 }
281
282 if (mrq->data) {
283 pr_debug("%s: blksz %d blocks %d flags %08x "
284 "tsac %d ms nsac %d\n",
285 mmc_hostname(host), mrq->data->blksz,
286 mrq->data->blocks, mrq->data->flags,
287 mrq->data->timeout_ns / 1000000,
288 mrq->data->timeout_clks);
289 }
290
291 if (mrq->stop) {
292 pr_debug("%s: CMD%u arg %08x flags %08x\n",
293 mmc_hostname(host), mrq->stop->opcode,
294 mrq->stop->arg, mrq->stop->flags);
295 }
296}
297
298static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
299{
300 unsigned int i, sz = 0;
301 struct scatterlist *sg;
302
303 if (mrq->cmd) {
304 mrq->cmd->error = 0;
305 mrq->cmd->mrq = mrq;
306 mrq->cmd->data = mrq->data;
307 }
308 if (mrq->sbc) {
309 mrq->sbc->error = 0;
310 mrq->sbc->mrq = mrq;
311 }
312 if (mrq->data) {
313 if (mrq->data->blksz > host->max_blk_size ||
314 mrq->data->blocks > host->max_blk_count ||
315 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
316 return -EINVAL;
317
318 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
319 sz += sg->length;
320 if (sz != mrq->data->blocks * mrq->data->blksz)
321 return -EINVAL;
322
323 mrq->data->error = 0;
324 mrq->data->mrq = mrq;
325 if (mrq->stop) {
326 mrq->data->stop = mrq->stop;
327 mrq->stop->error = 0;
328 mrq->stop->mrq = mrq;
329 }
330 }
331
332 return 0;
333}
334
335int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
336{
337 int err;
338
339 if (mrq->cmd && mrq->cmd->has_ext_addr)
340 mmc_send_ext_addr(host, mrq->cmd->ext_addr);
341
342 init_completion(&mrq->cmd_completion);
343
344 mmc_retune_hold(host);
345
346 if (mmc_card_removed(host->card))
347 return -ENOMEDIUM;
348
349 mmc_mrq_pr_debug(host, mrq, false);
350
351 WARN_ON(!host->claimed);
352
353 err = mmc_mrq_prep(host, mrq);
354 if (err)
355 return err;
356
357 if (host->uhs2_sd_tran)
358 mmc_uhs2_prepare_cmd(host, mrq);
359
360 led_trigger_event(host->led, LED_FULL);
361 __mmc_start_request(host, mrq);
362
363 return 0;
364}
365EXPORT_SYMBOL(mmc_start_request);
366
367static void mmc_wait_done(struct mmc_request *mrq)
368{
369 complete(&mrq->completion);
370}
371
372static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
373{
374 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
375
376 /*
377 * If there is an ongoing transfer, wait for the command line to become
378 * available.
379 */
380 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
381 wait_for_completion(&ongoing_mrq->cmd_completion);
382}
383
384static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
385{
386 int err;
387
388 mmc_wait_ongoing_tfr_cmd(host);
389
390 init_completion(&mrq->completion);
391 mrq->done = mmc_wait_done;
392
393 err = mmc_start_request(host, mrq);
394 if (err) {
395 mrq->cmd->error = err;
396 mmc_complete_cmd(mrq);
397 complete(&mrq->completion);
398 }
399
400 return err;
401}
402
403void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
404{
405 struct mmc_command *cmd;
406
407 while (1) {
408 wait_for_completion(&mrq->completion);
409
410 cmd = mrq->cmd;
411
412 if (!cmd->error || !cmd->retries ||
413 mmc_card_removed(host->card))
414 break;
415
416 mmc_retune_recheck(host);
417
418 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
419 mmc_hostname(host), cmd->opcode, cmd->error);
420 cmd->retries--;
421 cmd->error = 0;
422 __mmc_start_request(host, mrq);
423 }
424
425 mmc_retune_release(host);
426}
427EXPORT_SYMBOL(mmc_wait_for_req_done);
428
429/*
430 * mmc_cqe_start_req - Start a CQE request.
431 * @host: MMC host to start the request
432 * @mrq: request to start
433 *
434 * Start the request, re-tuning if needed and it is possible. Returns an error
435 * code if the request fails to start or -EBUSY if CQE is busy.
436 */
437int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
438{
439 int err;
440
441 /*
442 * CQE cannot process re-tuning commands. Caller must hold retuning
443 * while CQE is in use. Re-tuning can happen here only when CQE has no
444 * active requests i.e. this is the first. Note, re-tuning will call
445 * ->cqe_off().
446 */
447 err = mmc_retune(host);
448 if (err)
449 goto out_err;
450
451 mrq->host = host;
452
453 mmc_mrq_pr_debug(host, mrq, true);
454
455 err = mmc_mrq_prep(host, mrq);
456 if (err)
457 goto out_err;
458
459 if (host->uhs2_sd_tran)
460 mmc_uhs2_prepare_cmd(host, mrq);
461
462 err = host->cqe_ops->cqe_request(host, mrq);
463 if (err)
464 goto out_err;
465
466 trace_mmc_request_start(host, mrq);
467
468 return 0;
469
470out_err:
471 if (mrq->cmd) {
472 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
473 mmc_hostname(host), mrq->cmd->opcode, err);
474 } else {
475 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
476 mmc_hostname(host), mrq->tag, err);
477 }
478 return err;
479}
480EXPORT_SYMBOL(mmc_cqe_start_req);
481
482/**
483 * mmc_cqe_request_done - CQE has finished processing an MMC request
484 * @host: MMC host which completed request
485 * @mrq: MMC request which completed
486 *
487 * CQE drivers should call this function when they have completed
488 * their processing of a request.
489 */
490void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
491{
492 mmc_should_fail_request(host, mrq);
493
494 /* Flag re-tuning needed on CRC errors */
495 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
496 (mrq->data && mrq->data->error == -EILSEQ))
497 mmc_retune_needed(host);
498
499 trace_mmc_request_done(host, mrq);
500
501 if (mrq->cmd) {
502 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
503 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
504 } else {
505 pr_debug("%s: CQE transfer done tag %d\n",
506 mmc_hostname(host), mrq->tag);
507 }
508
509 if (mrq->data) {
510 pr_debug("%s: %d bytes transferred: %d\n",
511 mmc_hostname(host),
512 mrq->data->bytes_xfered, mrq->data->error);
513 }
514
515 mrq->done(mrq);
516}
517EXPORT_SYMBOL(mmc_cqe_request_done);
518
519/**
520 * mmc_cqe_post_req - CQE post process of a completed MMC request
521 * @host: MMC host
522 * @mrq: MMC request to be processed
523 */
524void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
525{
526 if (host->cqe_ops->cqe_post_req)
527 host->cqe_ops->cqe_post_req(host, mrq);
528}
529EXPORT_SYMBOL(mmc_cqe_post_req);
530
531/* Arbitrary 1 second timeout */
532#define MMC_CQE_RECOVERY_TIMEOUT 1000
533
534/*
535 * mmc_cqe_recovery - Recover from CQE errors.
536 * @host: MMC host to recover
537 *
538 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
539 * in eMMC, and discarding the queue in CQE. CQE must call
540 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
541 * fails to discard its queue.
542 */
543int mmc_cqe_recovery(struct mmc_host *host)
544{
545 struct mmc_command cmd;
546 int err;
547
548 mmc_retune_hold_now(host);
549
550 /*
551 * Recovery is expected seldom, if at all, but it reduces performance,
552 * so make sure it is not completely silent.
553 */
554 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
555
556 host->cqe_ops->cqe_recovery_start(host);
557
558 memset(&cmd, 0, sizeof(cmd));
559 cmd.opcode = MMC_STOP_TRANSMISSION;
560 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
561 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
562 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
563 mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
564
565 mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO);
566
567 memset(&cmd, 0, sizeof(cmd));
568 cmd.opcode = MMC_CMDQ_TASK_MGMT;
569 cmd.arg = 1; /* Discard entire queue */
570 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
571 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
572 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
573 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
574
575 host->cqe_ops->cqe_recovery_finish(host);
576
577 if (err)
578 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
579
580 mmc_retune_release(host);
581
582 return err;
583}
584EXPORT_SYMBOL(mmc_cqe_recovery);
585
586/**
587 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
588 * @host: MMC host
589 * @mrq: MMC request
590 *
591 * mmc_is_req_done() is used with requests that have
592 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
593 * starting a request and before waiting for it to complete. That is,
594 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
595 * and before mmc_wait_for_req_done(). If it is called at other times the
596 * result is not meaningful.
597 */
598bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
599{
600 return completion_done(&mrq->completion);
601}
602EXPORT_SYMBOL(mmc_is_req_done);
603
604/**
605 * mmc_wait_for_req - start a request and wait for completion
606 * @host: MMC host to start command
607 * @mrq: MMC request to start
608 *
609 * Start a new MMC custom command request for a host, and wait
610 * for the command to complete. In the case of 'cap_cmd_during_tfr'
611 * requests, the transfer is ongoing and the caller can issue further
612 * commands that do not use the data lines, and then wait by calling
613 * mmc_wait_for_req_done().
614 * Does not attempt to parse the response.
615 */
616void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
617{
618 __mmc_start_req(host, mrq);
619
620 if (!mrq->cap_cmd_during_tfr)
621 mmc_wait_for_req_done(host, mrq);
622}
623EXPORT_SYMBOL(mmc_wait_for_req);
624
625/**
626 * mmc_wait_for_cmd - start a command and wait for completion
627 * @host: MMC host to start command
628 * @cmd: MMC command to start
629 * @retries: maximum number of retries
630 *
631 * Start a new MMC command for a host, and wait for the command
632 * to complete. Return any error that occurred while the command
633 * was executing. Do not attempt to parse the response.
634 */
635int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
636{
637 struct mmc_request mrq = {};
638
639 WARN_ON(!host->claimed);
640
641 memset(cmd->resp, 0, sizeof(cmd->resp));
642 cmd->retries = retries;
643
644 mrq.cmd = cmd;
645 cmd->data = NULL;
646
647 mmc_wait_for_req(host, &mrq);
648
649 return cmd->error;
650}
651
652EXPORT_SYMBOL(mmc_wait_for_cmd);
653
654/**
655 * mmc_set_data_timeout - set the timeout for a data command
656 * @data: data phase for command
657 * @card: the MMC card associated with the data transfer
658 *
659 * Computes the data timeout parameters according to the
660 * correct algorithm given the card type.
661 */
662void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
663{
664 unsigned int mult;
665
666 /*
667 * SDIO cards only define an upper 1 s limit on access.
668 */
669 if (mmc_card_sdio(card)) {
670 data->timeout_ns = 1000000000;
671 data->timeout_clks = 0;
672 return;
673 }
674
675 /*
676 * SD cards use a 100 multiplier rather than 10
677 */
678 mult = mmc_card_sd(card) ? 100 : 10;
679
680 /*
681 * Scale up the multiplier (and therefore the timeout) by
682 * the r2w factor for writes.
683 */
684 if (data->flags & MMC_DATA_WRITE)
685 mult <<= card->csd.r2w_factor;
686
687 data->timeout_ns = card->csd.taac_ns * mult;
688 data->timeout_clks = card->csd.taac_clks * mult;
689
690 /*
691 * SD cards also have an upper limit on the timeout.
692 */
693 if (mmc_card_sd(card)) {
694 unsigned int timeout_us, limit_us;
695
696 timeout_us = data->timeout_ns / 1000;
697 if (card->host->ios.clock)
698 timeout_us += data->timeout_clks * 1000 /
699 (card->host->ios.clock / 1000);
700
701 if (data->flags & MMC_DATA_WRITE)
702 /*
703 * The MMC spec "It is strongly recommended
704 * for hosts to implement more than 500ms
705 * timeout value even if the card indicates
706 * the 250ms maximum busy length." Even the
707 * previous value of 300ms is known to be
708 * insufficient for some cards.
709 */
710 limit_us = 3000000;
711 else
712 limit_us = 100000;
713
714 /*
715 * SDHC cards always use these fixed values.
716 */
717 if (timeout_us > limit_us) {
718 data->timeout_ns = limit_us * 1000;
719 data->timeout_clks = 0;
720 }
721
722 /* assign limit value if invalid */
723 if (timeout_us == 0)
724 data->timeout_ns = limit_us * 1000;
725 }
726
727 /*
728 * Some cards require longer data read timeout than indicated in CSD.
729 * Address this by setting the read timeout to a "reasonably high"
730 * value. For the cards tested, 600ms has proven enough. If necessary,
731 * this value can be increased if other problematic cards require this.
732 */
733 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
734 data->timeout_ns = 600000000;
735 data->timeout_clks = 0;
736 }
737
738 /*
739 * Some cards need very high timeouts if driven in SPI mode.
740 * The worst observed timeout was 900ms after writing a
741 * continuous stream of data until the internal logic
742 * overflowed.
743 */
744 if (mmc_host_is_spi(card->host)) {
745 if (data->flags & MMC_DATA_WRITE) {
746 if (data->timeout_ns < 1000000000)
747 data->timeout_ns = 1000000000; /* 1s */
748 } else {
749 if (data->timeout_ns < 100000000)
750 data->timeout_ns = 100000000; /* 100ms */
751 }
752 }
753}
754EXPORT_SYMBOL(mmc_set_data_timeout);
755
756/*
757 * Allow claiming an already claimed host if the context is the same or there is
758 * no context but the task is the same.
759 */
760static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
761 struct task_struct *task)
762{
763 return host->claimer == ctx ||
764 (!ctx && task && host->claimer->task == task);
765}
766
767static inline void mmc_ctx_set_claimer(struct mmc_host *host,
768 struct mmc_ctx *ctx,
769 struct task_struct *task)
770{
771 if (!host->claimer) {
772 if (ctx)
773 host->claimer = ctx;
774 else
775 host->claimer = &host->default_ctx;
776 }
777 if (task)
778 host->claimer->task = task;
779}
780
781/**
782 * __mmc_claim_host - exclusively claim a host
783 * @host: mmc host to claim
784 * @ctx: context that claims the host or NULL in which case the default
785 * context will be used
786 * @abort: whether or not the operation should be aborted
787 *
788 * Claim a host for a set of operations. If @abort is non null and
789 * dereference a non-zero value then this will return prematurely with
790 * that non-zero value without acquiring the lock. Returns zero
791 * with the lock held otherwise.
792 */
793int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
794 atomic_t *abort)
795{
796 struct task_struct *task = ctx ? NULL : current;
797 DECLARE_WAITQUEUE(wait, current);
798 unsigned long flags;
799 int stop;
800 bool pm = false;
801
802 might_sleep();
803
804 add_wait_queue(&host->wq, &wait);
805 spin_lock_irqsave(&host->lock, flags);
806 while (1) {
807 set_current_state(TASK_UNINTERRUPTIBLE);
808 stop = abort ? atomic_read(abort) : 0;
809 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
810 break;
811 spin_unlock_irqrestore(&host->lock, flags);
812 schedule();
813 spin_lock_irqsave(&host->lock, flags);
814 }
815 set_current_state(TASK_RUNNING);
816 if (!stop) {
817 host->claimed = 1;
818 mmc_ctx_set_claimer(host, ctx, task);
819 host->claim_cnt += 1;
820 if (host->claim_cnt == 1)
821 pm = true;
822 } else
823 wake_up(&host->wq);
824 spin_unlock_irqrestore(&host->lock, flags);
825 remove_wait_queue(&host->wq, &wait);
826
827 if (pm)
828 pm_runtime_get_sync(mmc_dev(host));
829
830 return stop;
831}
832EXPORT_SYMBOL(__mmc_claim_host);
833
834/**
835 * mmc_release_host - release a host
836 * @host: mmc host to release
837 *
838 * Release a MMC host, allowing others to claim the host
839 * for their operations.
840 */
841void mmc_release_host(struct mmc_host *host)
842{
843 unsigned long flags;
844
845 WARN_ON(!host->claimed);
846
847 spin_lock_irqsave(&host->lock, flags);
848 if (--host->claim_cnt) {
849 /* Release for nested claim */
850 spin_unlock_irqrestore(&host->lock, flags);
851 } else {
852 host->claimed = 0;
853 host->claimer->task = NULL;
854 host->claimer = NULL;
855 spin_unlock_irqrestore(&host->lock, flags);
856 wake_up(&host->wq);
857 pm_runtime_mark_last_busy(mmc_dev(host));
858 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
859 pm_runtime_put_sync_suspend(mmc_dev(host));
860 else
861 pm_runtime_put_autosuspend(mmc_dev(host));
862 }
863}
864EXPORT_SYMBOL(mmc_release_host);
865
866/*
867 * This is a helper function, which fetches a runtime pm reference for the
868 * card device and also claims the host.
869 */
870void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
871{
872 pm_runtime_get_sync(&card->dev);
873 __mmc_claim_host(card->host, ctx, NULL);
874}
875EXPORT_SYMBOL(mmc_get_card);
876
877/*
878 * This is a helper function, which releases the host and drops the runtime
879 * pm reference for the card device.
880 */
881void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
882{
883 struct mmc_host *host = card->host;
884
885 WARN_ON(ctx && host->claimer != ctx);
886
887 mmc_release_host(host);
888 pm_runtime_mark_last_busy(&card->dev);
889 pm_runtime_put_autosuspend(&card->dev);
890}
891EXPORT_SYMBOL(mmc_put_card);
892
893/*
894 * Internal function that does the actual ios call to the host driver,
895 * optionally printing some debug output.
896 */
897static inline void mmc_set_ios(struct mmc_host *host)
898{
899 struct mmc_ios *ios = &host->ios;
900
901 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
902 "width %u timing %u\n",
903 mmc_hostname(host), ios->clock, ios->bus_mode,
904 ios->power_mode, ios->chip_select, ios->vdd,
905 1 << ios->bus_width, ios->timing);
906
907 host->ops->set_ios(host, ios);
908}
909
910/*
911 * Control chip select pin on a host.
912 */
913void mmc_set_chip_select(struct mmc_host *host, int mode)
914{
915 host->ios.chip_select = mode;
916 mmc_set_ios(host);
917}
918
919/*
920 * Sets the host clock to the highest possible frequency that
921 * is below "hz".
922 */
923void mmc_set_clock(struct mmc_host *host, unsigned int hz)
924{
925 WARN_ON(hz && hz < host->f_min);
926
927 if (hz > host->f_max)
928 hz = host->f_max;
929
930 host->ios.clock = hz;
931 mmc_set_ios(host);
932}
933
934int mmc_execute_tuning(struct mmc_card *card)
935{
936 struct mmc_host *host = card->host;
937 u32 opcode;
938 int err;
939
940 if (!host->ops->execute_tuning)
941 return 0;
942
943 if (host->cqe_on)
944 host->cqe_ops->cqe_off(host);
945
946 if (mmc_card_mmc(card))
947 opcode = MMC_SEND_TUNING_BLOCK_HS200;
948 else
949 opcode = MMC_SEND_TUNING_BLOCK;
950
951 err = host->ops->execute_tuning(host, opcode);
952 if (!err) {
953 mmc_retune_clear(host);
954 mmc_retune_enable(host);
955 return 0;
956 }
957
958 /* Only print error when we don't check for card removal */
959 if (!host->detect_change) {
960 pr_err("%s: tuning execution failed: %d\n",
961 mmc_hostname(host), err);
962 mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
963 }
964
965 return err;
966}
967
968/*
969 * Change the bus mode (open drain/push-pull) of a host.
970 */
971void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
972{
973 host->ios.bus_mode = mode;
974 mmc_set_ios(host);
975}
976
977/*
978 * Change data bus width of a host.
979 */
980void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
981{
982 host->ios.bus_width = width;
983 mmc_set_ios(host);
984}
985
986/*
987 * Set initial state after a power cycle or a hw_reset.
988 */
989void mmc_set_initial_state(struct mmc_host *host)
990{
991 if (host->cqe_on)
992 host->cqe_ops->cqe_off(host);
993
994 mmc_retune_disable(host);
995
996 if (mmc_host_is_spi(host))
997 host->ios.chip_select = MMC_CS_HIGH;
998 else
999 host->ios.chip_select = MMC_CS_DONTCARE;
1000 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1001 host->ios.bus_width = MMC_BUS_WIDTH_1;
1002 host->ios.timing = MMC_TIMING_LEGACY;
1003 host->ios.drv_type = 0;
1004 host->ios.enhanced_strobe = false;
1005
1006 /*
1007 * Make sure we are in non-enhanced strobe mode before we
1008 * actually enable it in ext_csd.
1009 */
1010 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1011 host->ops->hs400_enhanced_strobe)
1012 host->ops->hs400_enhanced_strobe(host, &host->ios);
1013
1014 mmc_set_ios(host);
1015
1016 mmc_crypto_set_initial_state(host);
1017}
1018
1019/**
1020 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1021 * @vdd: voltage (mV)
1022 * @low_bits: prefer low bits in boundary cases
1023 *
1024 * This function returns the OCR bit number according to the provided @vdd
1025 * value. If conversion is not possible a negative errno value returned.
1026 *
1027 * Depending on the @low_bits flag the function prefers low or high OCR bits
1028 * on boundary voltages. For example,
1029 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1030 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1031 *
1032 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1033 */
1034static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1035{
1036 const int max_bit = ilog2(MMC_VDD_35_36);
1037 int bit;
1038
1039 if (vdd < 1650 || vdd > 3600)
1040 return -EINVAL;
1041
1042 if (vdd >= 1650 && vdd <= 1950)
1043 return ilog2(MMC_VDD_165_195);
1044
1045 if (low_bits)
1046 vdd -= 1;
1047
1048 /* Base 2000 mV, step 100 mV, bit's base 8. */
1049 bit = (vdd - 2000) / 100 + 8;
1050 if (bit > max_bit)
1051 return max_bit;
1052 return bit;
1053}
1054
1055/**
1056 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1057 * @vdd_min: minimum voltage value (mV)
1058 * @vdd_max: maximum voltage value (mV)
1059 *
1060 * This function returns the OCR mask bits according to the provided @vdd_min
1061 * and @vdd_max values. If conversion is not possible the function returns 0.
1062 *
1063 * Notes wrt boundary cases:
1064 * This function sets the OCR bits for all boundary voltages, for example
1065 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1066 * MMC_VDD_34_35 mask.
1067 */
1068u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1069{
1070 u32 mask = 0;
1071
1072 if (vdd_max < vdd_min)
1073 return 0;
1074
1075 /* Prefer high bits for the boundary vdd_max values. */
1076 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1077 if (vdd_max < 0)
1078 return 0;
1079
1080 /* Prefer low bits for the boundary vdd_min values. */
1081 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1082 if (vdd_min < 0)
1083 return 0;
1084
1085 /* Fill the mask, from max bit to min bit. */
1086 while (vdd_max >= vdd_min)
1087 mask |= 1 << vdd_max--;
1088
1089 return mask;
1090}
1091
1092static int mmc_of_get_func_num(struct device_node *node)
1093{
1094 u32 reg;
1095 int ret;
1096
1097 ret = of_property_read_u32(node, "reg", ®);
1098 if (ret < 0)
1099 return ret;
1100
1101 return reg;
1102}
1103
1104struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1105 unsigned func_num)
1106{
1107 struct device_node *node;
1108
1109 if (!host->parent || !host->parent->of_node)
1110 return NULL;
1111
1112 for_each_child_of_node(host->parent->of_node, node) {
1113 if (mmc_of_get_func_num(node) == func_num)
1114 return node;
1115 }
1116
1117 return NULL;
1118}
1119
1120/*
1121 * Mask off any voltages we don't support and select
1122 * the lowest voltage
1123 */
1124u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1125{
1126 int bit;
1127
1128 /*
1129 * Sanity check the voltages that the card claims to
1130 * support.
1131 */
1132 if (ocr & 0x7F) {
1133 dev_warn(mmc_dev(host),
1134 "card claims to support voltages below defined range\n");
1135 ocr &= ~0x7F;
1136 }
1137
1138 ocr &= host->ocr_avail;
1139 if (!ocr) {
1140 dev_warn(mmc_dev(host), "no support for card's volts\n");
1141 return 0;
1142 }
1143
1144 if (!mmc_card_uhs2(host) && host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1145 bit = ffs(ocr) - 1;
1146 ocr &= 3 << bit;
1147 mmc_power_cycle(host, ocr);
1148 } else {
1149 bit = fls(ocr) - 1;
1150 /*
1151 * The bit variable represents the highest voltage bit set in
1152 * the OCR register.
1153 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1154 * we must shift the mask '3' with (bit - 1).
1155 */
1156 ocr &= 3 << (bit - 1);
1157 if (bit != host->ios.vdd)
1158 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1159 }
1160
1161 return ocr;
1162}
1163
1164int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1165{
1166 int err = 0;
1167 int old_signal_voltage = host->ios.signal_voltage;
1168
1169 host->ios.signal_voltage = signal_voltage;
1170 if (host->ops->start_signal_voltage_switch)
1171 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1172
1173 if (err)
1174 host->ios.signal_voltage = old_signal_voltage;
1175
1176 return err;
1177
1178}
1179
1180void mmc_set_initial_signal_voltage(struct mmc_host *host)
1181{
1182 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1183 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1184 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1185 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1186 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1187 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1188 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1189}
1190
1191int mmc_host_set_uhs_voltage(struct mmc_host *host)
1192{
1193 u32 clock;
1194
1195 /*
1196 * During a signal voltage level switch, the clock must be gated
1197 * for 5 ms according to the SD spec
1198 */
1199 clock = host->ios.clock;
1200 host->ios.clock = 0;
1201 mmc_set_ios(host);
1202
1203 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1204 return -EAGAIN;
1205
1206 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1207 mmc_delay(10);
1208 host->ios.clock = clock;
1209 mmc_set_ios(host);
1210
1211 return 0;
1212}
1213
1214int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1215{
1216 struct mmc_command cmd = {};
1217 int err = 0;
1218
1219 /*
1220 * If we cannot switch voltages, return failure so the caller
1221 * can continue without UHS mode
1222 */
1223 if (!host->ops->start_signal_voltage_switch)
1224 return -EPERM;
1225 if (!host->ops->card_busy)
1226 pr_warn("%s: cannot verify signal voltage switch\n",
1227 mmc_hostname(host));
1228
1229 cmd.opcode = SD_SWITCH_VOLTAGE;
1230 cmd.arg = 0;
1231 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1232
1233 err = mmc_wait_for_cmd(host, &cmd, 0);
1234 if (err)
1235 goto power_cycle;
1236
1237 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1238 return -EIO;
1239
1240 /*
1241 * The card should drive cmd and dat[0:3] low immediately
1242 * after the response of cmd11, but wait 1 ms to be sure
1243 */
1244 mmc_delay(1);
1245 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1246 err = -EAGAIN;
1247 goto power_cycle;
1248 }
1249
1250 if (mmc_host_set_uhs_voltage(host)) {
1251 /*
1252 * Voltages may not have been switched, but we've already
1253 * sent CMD11, so a power cycle is required anyway
1254 */
1255 err = -EAGAIN;
1256 goto power_cycle;
1257 }
1258
1259 /* Wait for at least 1 ms according to spec */
1260 mmc_delay(1);
1261
1262 /*
1263 * Failure to switch is indicated by the card holding
1264 * dat[0:3] low
1265 */
1266 if (host->ops->card_busy && host->ops->card_busy(host))
1267 err = -EAGAIN;
1268
1269power_cycle:
1270 if (err) {
1271 pr_debug("%s: Signal voltage switch failed, "
1272 "power cycling card\n", mmc_hostname(host));
1273 mmc_power_cycle(host, ocr);
1274 }
1275
1276 return err;
1277}
1278
1279/*
1280 * Select timing parameters for host.
1281 */
1282void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1283{
1284 host->ios.timing = timing;
1285 mmc_set_ios(host);
1286}
1287
1288/*
1289 * Select appropriate driver type for host.
1290 */
1291void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1292{
1293 host->ios.drv_type = drv_type;
1294 mmc_set_ios(host);
1295}
1296
1297int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1298 int card_drv_type, int *drv_type)
1299{
1300 struct mmc_host *host = card->host;
1301 int host_drv_type = SD_DRIVER_TYPE_B;
1302
1303 *drv_type = 0;
1304
1305 if (!host->ops->select_drive_strength)
1306 return 0;
1307
1308 /* Use SD definition of driver strength for hosts */
1309 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1310 host_drv_type |= SD_DRIVER_TYPE_A;
1311
1312 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1313 host_drv_type |= SD_DRIVER_TYPE_C;
1314
1315 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1316 host_drv_type |= SD_DRIVER_TYPE_D;
1317
1318 /*
1319 * The drive strength that the hardware can support
1320 * depends on the board design. Pass the appropriate
1321 * information and let the hardware specific code
1322 * return what is possible given the options
1323 */
1324 return host->ops->select_drive_strength(card, max_dtr,
1325 host_drv_type,
1326 card_drv_type,
1327 drv_type);
1328}
1329
1330/*
1331 * Apply power to the MMC stack. This is a two-stage process.
1332 * First, we enable power to the card without the clock running.
1333 * We then wait a bit for the power to stabilise. Finally,
1334 * enable the bus drivers and clock to the card.
1335 *
1336 * We must _NOT_ enable the clock prior to power stablising.
1337 *
1338 * If a host does all the power sequencing itself, ignore the
1339 * initial MMC_POWER_UP stage.
1340 */
1341void mmc_power_up(struct mmc_host *host, u32 ocr)
1342{
1343 if (host->ios.power_mode == MMC_POWER_ON)
1344 return;
1345
1346 mmc_pwrseq_pre_power_on(host);
1347
1348 host->ios.vdd = fls(ocr) - 1;
1349 host->ios.power_mode = MMC_POWER_UP;
1350 /* Set initial state and call mmc_set_ios */
1351 mmc_set_initial_state(host);
1352
1353 mmc_set_initial_signal_voltage(host);
1354
1355 /*
1356 * This delay should be sufficient to allow the power supply
1357 * to reach the minimum voltage.
1358 */
1359 mmc_delay(host->ios.power_delay_ms);
1360
1361 mmc_pwrseq_post_power_on(host);
1362
1363 host->ios.clock = host->f_init;
1364
1365 host->ios.power_mode = MMC_POWER_ON;
1366 mmc_set_ios(host);
1367
1368 /*
1369 * This delay must be at least 74 clock sizes, or 1 ms, or the
1370 * time required to reach a stable voltage.
1371 */
1372 mmc_delay(host->ios.power_delay_ms);
1373}
1374
1375void mmc_power_off(struct mmc_host *host)
1376{
1377 if (host->ios.power_mode == MMC_POWER_OFF)
1378 return;
1379
1380 mmc_pwrseq_power_off(host);
1381
1382 host->ios.clock = 0;
1383 host->ios.vdd = 0;
1384
1385 host->ios.power_mode = MMC_POWER_OFF;
1386 /* Set initial state and call mmc_set_ios */
1387 mmc_set_initial_state(host);
1388
1389 /*
1390 * Some configurations, such as the 802.11 SDIO card in the OLPC
1391 * XO-1.5, require a short delay after poweroff before the card
1392 * can be successfully turned on again.
1393 */
1394 mmc_delay(1);
1395}
1396
1397void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1398{
1399 mmc_power_off(host);
1400 /* Wait at least 1 ms according to SD spec */
1401 mmc_delay(1);
1402 mmc_power_up(host, ocr);
1403}
1404
1405/*
1406 * Assign a mmc bus handler to a host. Only one bus handler may control a
1407 * host at any given time.
1408 */
1409void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1410{
1411 host->bus_ops = ops;
1412}
1413
1414/*
1415 * Remove the current bus handler from a host.
1416 */
1417void mmc_detach_bus(struct mmc_host *host)
1418{
1419 host->bus_ops = NULL;
1420}
1421
1422void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1423{
1424 /*
1425 * Prevent system sleep for 5s to allow user space to consume the
1426 * corresponding uevent. This is especially useful, when CD irq is used
1427 * as a system wakeup, but doesn't hurt in other cases.
1428 */
1429 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1430 __pm_wakeup_event(host->ws, 5000);
1431
1432 host->detect_change = 1;
1433 mmc_schedule_delayed_work(&host->detect, delay);
1434}
1435
1436/**
1437 * mmc_detect_change - process change of state on a MMC socket
1438 * @host: host which changed state.
1439 * @delay: optional delay to wait before detection (jiffies)
1440 *
1441 * MMC drivers should call this when they detect a card has been
1442 * inserted or removed. The MMC layer will confirm that any
1443 * present card is still functional, and initialize any newly
1444 * inserted.
1445 */
1446void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1447{
1448 _mmc_detect_change(host, delay, true);
1449}
1450EXPORT_SYMBOL(mmc_detect_change);
1451
1452void mmc_init_erase(struct mmc_card *card)
1453{
1454 unsigned int sz;
1455
1456 if (is_power_of_2(card->erase_size))
1457 card->erase_shift = ffs(card->erase_size) - 1;
1458 else
1459 card->erase_shift = 0;
1460
1461 /*
1462 * It is possible to erase an arbitrarily large area of an SD or MMC
1463 * card. That is not desirable because it can take a long time
1464 * (minutes) potentially delaying more important I/O, and also the
1465 * timeout calculations become increasingly hugely over-estimated.
1466 * Consequently, 'pref_erase' is defined as a guide to limit erases
1467 * to that size and alignment.
1468 *
1469 * For SD cards that define Allocation Unit size, limit erases to one
1470 * Allocation Unit at a time.
1471 * For MMC, have a stab at ai good value and for modern cards it will
1472 * end up being 4MiB. Note that if the value is too small, it can end
1473 * up taking longer to erase. Also note, erase_size is already set to
1474 * High Capacity Erase Size if available when this function is called.
1475 */
1476 if (mmc_card_sd(card) && card->ssr.au) {
1477 card->pref_erase = card->ssr.au;
1478 card->erase_shift = ffs(card->ssr.au) - 1;
1479 } else if (card->erase_size) {
1480 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1481 if (sz < 128)
1482 card->pref_erase = 512 * 1024 / 512;
1483 else if (sz < 512)
1484 card->pref_erase = 1024 * 1024 / 512;
1485 else if (sz < 1024)
1486 card->pref_erase = 2 * 1024 * 1024 / 512;
1487 else
1488 card->pref_erase = 4 * 1024 * 1024 / 512;
1489 if (card->pref_erase < card->erase_size)
1490 card->pref_erase = card->erase_size;
1491 else {
1492 sz = card->pref_erase % card->erase_size;
1493 if (sz)
1494 card->pref_erase += card->erase_size - sz;
1495 }
1496 } else
1497 card->pref_erase = 0;
1498}
1499
1500static bool is_trim_arg(unsigned int arg)
1501{
1502 return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1503}
1504
1505static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1506 unsigned int arg, unsigned int qty)
1507{
1508 unsigned int erase_timeout;
1509
1510 if (arg == MMC_DISCARD_ARG ||
1511 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1512 erase_timeout = card->ext_csd.trim_timeout;
1513 } else if (card->ext_csd.erase_group_def & 1) {
1514 /* High Capacity Erase Group Size uses HC timeouts */
1515 if (arg == MMC_TRIM_ARG)
1516 erase_timeout = card->ext_csd.trim_timeout;
1517 else
1518 erase_timeout = card->ext_csd.hc_erase_timeout;
1519 } else {
1520 /* CSD Erase Group Size uses write timeout */
1521 unsigned int mult = (10 << card->csd.r2w_factor);
1522 unsigned int timeout_clks = card->csd.taac_clks * mult;
1523 unsigned int timeout_us;
1524
1525 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1526 if (card->csd.taac_ns < 1000000)
1527 timeout_us = (card->csd.taac_ns * mult) / 1000;
1528 else
1529 timeout_us = (card->csd.taac_ns / 1000) * mult;
1530
1531 /*
1532 * ios.clock is only a target. The real clock rate might be
1533 * less but not that much less, so fudge it by multiplying by 2.
1534 */
1535 timeout_clks <<= 1;
1536 timeout_us += (timeout_clks * 1000) /
1537 (card->host->ios.clock / 1000);
1538
1539 erase_timeout = timeout_us / 1000;
1540
1541 /*
1542 * Theoretically, the calculation could underflow so round up
1543 * to 1ms in that case.
1544 */
1545 if (!erase_timeout)
1546 erase_timeout = 1;
1547 }
1548
1549 /* Multiplier for secure operations */
1550 if (arg & MMC_SECURE_ARGS) {
1551 if (arg == MMC_SECURE_ERASE_ARG)
1552 erase_timeout *= card->ext_csd.sec_erase_mult;
1553 else
1554 erase_timeout *= card->ext_csd.sec_trim_mult;
1555 }
1556
1557 erase_timeout *= qty;
1558
1559 /*
1560 * Ensure at least a 1 second timeout for SPI as per
1561 * 'mmc_set_data_timeout()'
1562 */
1563 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1564 erase_timeout = 1000;
1565
1566 return erase_timeout;
1567}
1568
1569static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1570 unsigned int arg,
1571 unsigned int qty)
1572{
1573 unsigned int erase_timeout;
1574
1575 /* for DISCARD none of the below calculation applies.
1576 * the busy timeout is 250msec per discard command.
1577 */
1578 if (arg == SD_DISCARD_ARG)
1579 return SD_DISCARD_TIMEOUT_MS;
1580
1581 if (card->ssr.erase_timeout) {
1582 /* Erase timeout specified in SD Status Register (SSR) */
1583 erase_timeout = card->ssr.erase_timeout * qty +
1584 card->ssr.erase_offset;
1585 } else {
1586 /*
1587 * Erase timeout not specified in SD Status Register (SSR) so
1588 * use 250ms per write block.
1589 */
1590 erase_timeout = 250 * qty;
1591 }
1592
1593 /* Must not be less than 1 second */
1594 if (erase_timeout < 1000)
1595 erase_timeout = 1000;
1596
1597 return erase_timeout;
1598}
1599
1600static unsigned int mmc_erase_timeout(struct mmc_card *card,
1601 unsigned int arg,
1602 unsigned int qty)
1603{
1604 if (mmc_card_sd(card))
1605 return mmc_sd_erase_timeout(card, arg, qty);
1606 else
1607 return mmc_mmc_erase_timeout(card, arg, qty);
1608}
1609
1610static int mmc_do_erase(struct mmc_card *card, sector_t from,
1611 sector_t to, unsigned int arg)
1612{
1613 struct mmc_command cmd = {};
1614 unsigned int qty = 0, busy_timeout = 0;
1615 bool use_r1b_resp;
1616 int err;
1617
1618 mmc_retune_hold(card->host);
1619
1620 /*
1621 * qty is used to calculate the erase timeout which depends on how many
1622 * erase groups (or allocation units in SD terminology) are affected.
1623 * We count erasing part of an erase group as one erase group.
1624 * For SD, the allocation units are always a power of 2. For MMC, the
1625 * erase group size is almost certainly also power of 2, but it does not
1626 * seem to insist on that in the JEDEC standard, so we fall back to
1627 * division in that case. SD may not specify an allocation unit size,
1628 * in which case the timeout is based on the number of write blocks.
1629 *
1630 * Note that the timeout for secure trim 2 will only be correct if the
1631 * number of erase groups specified is the same as the total of all
1632 * preceding secure trim 1 commands. Since the power may have been
1633 * lost since the secure trim 1 commands occurred, it is generally
1634 * impossible to calculate the secure trim 2 timeout correctly.
1635 */
1636 if (card->erase_shift)
1637 qty += ((to >> card->erase_shift) -
1638 (from >> card->erase_shift)) + 1;
1639 else if (mmc_card_sd(card))
1640 qty += to - from + 1;
1641 else
1642 qty += (mmc_sector_div(to, card->erase_size) -
1643 mmc_sector_div(from, card->erase_size)) + 1;
1644
1645 if (!mmc_card_blockaddr(card)) {
1646 from <<= 9;
1647 to <<= 9;
1648 }
1649
1650 if (mmc_card_sd(card))
1651 cmd.opcode = SD_ERASE_WR_BLK_START;
1652 else
1653 cmd.opcode = MMC_ERASE_GROUP_START;
1654 cmd.arg = from;
1655 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1656
1657 if (mmc_card_ult_capacity(card)) {
1658 cmd.ext_addr = from >> 32;
1659 cmd.has_ext_addr = true;
1660 }
1661
1662 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1663 if (err) {
1664 pr_err("mmc_erase: group start error %d, "
1665 "status %#x\n", err, cmd.resp[0]);
1666 err = -EIO;
1667 goto out;
1668 }
1669
1670 memset(&cmd, 0, sizeof(struct mmc_command));
1671 if (mmc_card_sd(card))
1672 cmd.opcode = SD_ERASE_WR_BLK_END;
1673 else
1674 cmd.opcode = MMC_ERASE_GROUP_END;
1675 cmd.arg = to;
1676 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1677
1678 if (mmc_card_ult_capacity(card)) {
1679 cmd.ext_addr = to >> 32;
1680 cmd.has_ext_addr = true;
1681 }
1682
1683 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1684 if (err) {
1685 pr_err("mmc_erase: group end error %d, status %#x\n",
1686 err, cmd.resp[0]);
1687 err = -EIO;
1688 goto out;
1689 }
1690
1691 memset(&cmd, 0, sizeof(struct mmc_command));
1692 cmd.opcode = MMC_ERASE;
1693 cmd.arg = arg;
1694 busy_timeout = mmc_erase_timeout(card, arg, qty);
1695 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1696
1697 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1698 if (err) {
1699 pr_err("mmc_erase: erase error %d, status %#x\n",
1700 err, cmd.resp[0]);
1701 err = -EIO;
1702 goto out;
1703 }
1704
1705 if (mmc_host_is_spi(card->host))
1706 goto out;
1707
1708 /*
1709 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1710 * shall be avoided.
1711 */
1712 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1713 goto out;
1714
1715 /* Let's poll to find out when the erase operation completes. */
1716 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1717
1718out:
1719 mmc_retune_release(card->host);
1720 return err;
1721}
1722
1723static unsigned int mmc_align_erase_size(struct mmc_card *card,
1724 sector_t *from,
1725 sector_t *to,
1726 unsigned int nr)
1727{
1728 sector_t from_new = *from;
1729 unsigned int nr_new = nr, rem;
1730
1731 /*
1732 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1733 * to align the erase size efficiently.
1734 */
1735 if (is_power_of_2(card->erase_size)) {
1736 sector_t temp = from_new;
1737
1738 from_new = round_up(temp, card->erase_size);
1739 rem = from_new - temp;
1740
1741 if (nr_new > rem)
1742 nr_new -= rem;
1743 else
1744 return 0;
1745
1746 nr_new = round_down(nr_new, card->erase_size);
1747 } else {
1748 rem = mmc_sector_mod(from_new, card->erase_size);
1749 if (rem) {
1750 rem = card->erase_size - rem;
1751 from_new += rem;
1752 if (nr_new > rem)
1753 nr_new -= rem;
1754 else
1755 return 0;
1756 }
1757
1758 rem = nr_new % card->erase_size;
1759 if (rem)
1760 nr_new -= rem;
1761 }
1762
1763 if (nr_new == 0)
1764 return 0;
1765
1766 *to = from_new + nr_new;
1767 *from = from_new;
1768
1769 return nr_new;
1770}
1771
1772/**
1773 * mmc_erase - erase sectors.
1774 * @card: card to erase
1775 * @from: first sector to erase
1776 * @nr: number of sectors to erase
1777 * @arg: erase command argument
1778 *
1779 * Caller must claim host before calling this function.
1780 */
1781int mmc_erase(struct mmc_card *card, sector_t from, unsigned int nr,
1782 unsigned int arg)
1783{
1784 unsigned int rem;
1785 sector_t to = from + nr;
1786
1787 int err;
1788
1789 if (!(card->csd.cmdclass & CCC_ERASE))
1790 return -EOPNOTSUPP;
1791
1792 if (!card->erase_size)
1793 return -EOPNOTSUPP;
1794
1795 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1796 return -EOPNOTSUPP;
1797
1798 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1799 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1800 return -EOPNOTSUPP;
1801
1802 if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1803 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1804 return -EOPNOTSUPP;
1805
1806 if (arg == MMC_SECURE_ERASE_ARG) {
1807 if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1808 return -EINVAL;
1809 }
1810
1811 if (arg == MMC_ERASE_ARG)
1812 nr = mmc_align_erase_size(card, &from, &to, nr);
1813
1814 if (nr == 0)
1815 return 0;
1816
1817 if (to <= from)
1818 return -EINVAL;
1819
1820 /* 'from' and 'to' are inclusive */
1821 to -= 1;
1822
1823 /*
1824 * Special case where only one erase-group fits in the timeout budget:
1825 * If the region crosses an erase-group boundary on this particular
1826 * case, we will be trimming more than one erase-group which, does not
1827 * fit in the timeout budget of the controller, so we need to split it
1828 * and call mmc_do_erase() twice if necessary. This special case is
1829 * identified by the card->eg_boundary flag.
1830 */
1831 rem = card->erase_size - mmc_sector_mod(from, card->erase_size);
1832 if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1833 err = mmc_do_erase(card, from, from + rem - 1, arg);
1834 from += rem;
1835 if ((err) || (to <= from))
1836 return err;
1837 }
1838
1839 return mmc_do_erase(card, from, to, arg);
1840}
1841EXPORT_SYMBOL(mmc_erase);
1842
1843int mmc_can_erase(struct mmc_card *card)
1844{
1845 if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1846 return 1;
1847 return 0;
1848}
1849EXPORT_SYMBOL(mmc_can_erase);
1850
1851int mmc_can_trim(struct mmc_card *card)
1852{
1853 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1854 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1855 return 1;
1856 return 0;
1857}
1858EXPORT_SYMBOL(mmc_can_trim);
1859
1860int mmc_can_discard(struct mmc_card *card)
1861{
1862 /*
1863 * As there's no way to detect the discard support bit at v4.5
1864 * use the s/w feature support filed.
1865 */
1866 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1867 return 1;
1868 return 0;
1869}
1870EXPORT_SYMBOL(mmc_can_discard);
1871
1872int mmc_can_sanitize(struct mmc_card *card)
1873{
1874 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1875 return 0;
1876 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1877 return 1;
1878 return 0;
1879}
1880
1881int mmc_can_secure_erase_trim(struct mmc_card *card)
1882{
1883 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1884 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1885 return 1;
1886 return 0;
1887}
1888EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1889
1890int mmc_erase_group_aligned(struct mmc_card *card, sector_t from,
1891 unsigned int nr)
1892{
1893 if (!card->erase_size)
1894 return 0;
1895 if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1896 return 0;
1897 return 1;
1898}
1899EXPORT_SYMBOL(mmc_erase_group_aligned);
1900
1901static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1902 unsigned int arg)
1903{
1904 struct mmc_host *host = card->host;
1905 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1906 unsigned int last_timeout = 0;
1907 unsigned int max_busy_timeout = host->max_busy_timeout ?
1908 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1909
1910 if (card->erase_shift) {
1911 max_qty = UINT_MAX >> card->erase_shift;
1912 min_qty = card->pref_erase >> card->erase_shift;
1913 } else if (mmc_card_sd(card)) {
1914 max_qty = UINT_MAX;
1915 min_qty = card->pref_erase;
1916 } else {
1917 max_qty = UINT_MAX / card->erase_size;
1918 min_qty = card->pref_erase / card->erase_size;
1919 }
1920
1921 /*
1922 * We should not only use 'host->max_busy_timeout' as the limitation
1923 * when deciding the max discard sectors. We should set a balance value
1924 * to improve the erase speed, and it can not get too long timeout at
1925 * the same time.
1926 *
1927 * Here we set 'card->pref_erase' as the minimal discard sectors no
1928 * matter what size of 'host->max_busy_timeout', but if the
1929 * 'host->max_busy_timeout' is large enough for more discard sectors,
1930 * then we can continue to increase the max discard sectors until we
1931 * get a balance value. In cases when the 'host->max_busy_timeout'
1932 * isn't specified, use the default max erase timeout.
1933 */
1934 do {
1935 y = 0;
1936 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1937 timeout = mmc_erase_timeout(card, arg, qty + x);
1938
1939 if (qty + x > min_qty && timeout > max_busy_timeout)
1940 break;
1941
1942 if (timeout < last_timeout)
1943 break;
1944 last_timeout = timeout;
1945 y = x;
1946 }
1947 qty += y;
1948 } while (y);
1949
1950 if (!qty)
1951 return 0;
1952
1953 /*
1954 * When specifying a sector range to trim, chances are we might cross
1955 * an erase-group boundary even if the amount of sectors is less than
1956 * one erase-group.
1957 * If we can only fit one erase-group in the controller timeout budget,
1958 * we have to care that erase-group boundaries are not crossed by a
1959 * single trim operation. We flag that special case with "eg_boundary".
1960 * In all other cases we can just decrement qty and pretend that we
1961 * always touch (qty + 1) erase-groups as a simple optimization.
1962 */
1963 if (qty == 1)
1964 card->eg_boundary = 1;
1965 else
1966 qty--;
1967
1968 /* Convert qty to sectors */
1969 if (card->erase_shift)
1970 max_discard = qty << card->erase_shift;
1971 else if (mmc_card_sd(card))
1972 max_discard = qty + 1;
1973 else
1974 max_discard = qty * card->erase_size;
1975
1976 return max_discard;
1977}
1978
1979unsigned int mmc_calc_max_discard(struct mmc_card *card)
1980{
1981 struct mmc_host *host = card->host;
1982 unsigned int max_discard, max_trim;
1983
1984 /*
1985 * Without erase_group_def set, MMC erase timeout depends on clock
1986 * frequence which can change. In that case, the best choice is
1987 * just the preferred erase size.
1988 */
1989 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1990 return card->pref_erase;
1991
1992 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1993 if (mmc_can_trim(card)) {
1994 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1995 if (max_trim < max_discard || max_discard == 0)
1996 max_discard = max_trim;
1997 } else if (max_discard < card->erase_size) {
1998 max_discard = 0;
1999 }
2000 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2001 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2002 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2003 return max_discard;
2004}
2005EXPORT_SYMBOL(mmc_calc_max_discard);
2006
2007bool mmc_card_is_blockaddr(struct mmc_card *card)
2008{
2009 return card ? mmc_card_blockaddr(card) : false;
2010}
2011EXPORT_SYMBOL(mmc_card_is_blockaddr);
2012
2013int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2014{
2015 struct mmc_command cmd = {};
2016
2017 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2018 mmc_card_hs400(card) || mmc_card_hs400es(card))
2019 return 0;
2020
2021 cmd.opcode = MMC_SET_BLOCKLEN;
2022 cmd.arg = blocklen;
2023 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2024 return mmc_wait_for_cmd(card->host, &cmd, 5);
2025}
2026EXPORT_SYMBOL(mmc_set_blocklen);
2027
2028static void mmc_hw_reset_for_init(struct mmc_host *host)
2029{
2030 mmc_pwrseq_reset(host);
2031
2032 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2033 return;
2034 host->ops->card_hw_reset(host);
2035}
2036
2037/**
2038 * mmc_hw_reset - reset the card in hardware
2039 * @card: card to be reset
2040 *
2041 * Hard reset the card. This function is only for upper layers, like the
2042 * block layer or card drivers. You cannot use it in host drivers (struct
2043 * mmc_card might be gone then).
2044 *
2045 * Return: 0 on success, -errno on failure
2046 */
2047int mmc_hw_reset(struct mmc_card *card)
2048{
2049 struct mmc_host *host = card->host;
2050 int ret;
2051
2052 ret = host->bus_ops->hw_reset(host);
2053 if (ret < 0)
2054 pr_warn("%s: tried to HW reset card, got error %d\n",
2055 mmc_hostname(host), ret);
2056
2057 return ret;
2058}
2059EXPORT_SYMBOL(mmc_hw_reset);
2060
2061int mmc_sw_reset(struct mmc_card *card)
2062{
2063 struct mmc_host *host = card->host;
2064 int ret;
2065
2066 if (!host->bus_ops->sw_reset)
2067 return -EOPNOTSUPP;
2068
2069 ret = host->bus_ops->sw_reset(host);
2070 if (ret)
2071 pr_warn("%s: tried to SW reset card, got error %d\n",
2072 mmc_hostname(host), ret);
2073
2074 return ret;
2075}
2076EXPORT_SYMBOL(mmc_sw_reset);
2077
2078static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2079{
2080 host->f_init = freq;
2081
2082 pr_debug("%s: %s: trying to init card at %u Hz\n",
2083 mmc_hostname(host), __func__, host->f_init);
2084
2085 mmc_power_up(host, host->ocr_avail);
2086
2087 /*
2088 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2089 * do a hardware reset if possible.
2090 */
2091 mmc_hw_reset_for_init(host);
2092
2093 /*
2094 * sdio_reset sends CMD52 to reset card. Since we do not know
2095 * if the card is being re-initialized, just send it. CMD52
2096 * should be ignored by SD/eMMC cards.
2097 * Skip it if we already know that we do not support SDIO commands
2098 */
2099 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2100 sdio_reset(host);
2101
2102 mmc_go_idle(host);
2103
2104 if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2105 if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2106 goto out;
2107 if (mmc_card_sd_express(host))
2108 return 0;
2109 }
2110
2111 /* Order's important: probe SDIO, then SD, then MMC */
2112 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2113 if (!mmc_attach_sdio(host))
2114 return 0;
2115
2116 if (!(host->caps2 & MMC_CAP2_NO_SD))
2117 if (!mmc_attach_sd(host))
2118 return 0;
2119
2120 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2121 if (!mmc_attach_mmc(host))
2122 return 0;
2123
2124out:
2125 mmc_power_off(host);
2126 return -EIO;
2127}
2128
2129int _mmc_detect_card_removed(struct mmc_host *host)
2130{
2131 int ret;
2132
2133 if (!host->card || mmc_card_removed(host->card))
2134 return 1;
2135
2136 ret = host->bus_ops->alive(host);
2137
2138 /*
2139 * Card detect status and alive check may be out of sync if card is
2140 * removed slowly, when card detect switch changes while card/slot
2141 * pads are still contacted in hardware (refer to "SD Card Mechanical
2142 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2143 * detect work 200ms later for this case.
2144 */
2145 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2146 mmc_detect_change(host, msecs_to_jiffies(200));
2147 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2148 }
2149
2150 if (ret) {
2151 mmc_card_set_removed(host->card);
2152 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2153 }
2154
2155 return ret;
2156}
2157
2158int mmc_detect_card_removed(struct mmc_host *host)
2159{
2160 struct mmc_card *card = host->card;
2161 int ret;
2162
2163 WARN_ON(!host->claimed);
2164
2165 if (!card)
2166 return 1;
2167
2168 if (!mmc_card_is_removable(host))
2169 return 0;
2170
2171 ret = mmc_card_removed(card);
2172 /*
2173 * The card will be considered unchanged unless we have been asked to
2174 * detect a change or host requires polling to provide card detection.
2175 */
2176 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2177 return ret;
2178
2179 host->detect_change = 0;
2180 if (!ret) {
2181 ret = _mmc_detect_card_removed(host);
2182 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2183 /*
2184 * Schedule a detect work as soon as possible to let a
2185 * rescan handle the card removal.
2186 */
2187 cancel_delayed_work(&host->detect);
2188 _mmc_detect_change(host, 0, false);
2189 }
2190 }
2191
2192 return ret;
2193}
2194EXPORT_SYMBOL(mmc_detect_card_removed);
2195
2196int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2197{
2198 unsigned int boot_sectors_num;
2199
2200 if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2201 return -EOPNOTSUPP;
2202
2203 /* filter out unrelated cards */
2204 if (card->ext_csd.rev < 3 ||
2205 !mmc_card_mmc(card) ||
2206 !mmc_card_is_blockaddr(card) ||
2207 mmc_card_is_removable(card->host))
2208 return -ENOENT;
2209
2210 /*
2211 * eMMC storage has two special boot partitions in addition to the
2212 * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2213 * accesses, this means that the partition table addresses are shifted
2214 * by the size of boot partitions. In accordance with the eMMC
2215 * specification, the boot partition size is calculated as follows:
2216 *
2217 * boot partition size = 128K byte x BOOT_SIZE_MULT
2218 *
2219 * Calculate number of sectors occupied by the both boot partitions.
2220 */
2221 boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2222 SZ_512 * MMC_NUM_BOOT_PARTITION;
2223
2224 /* Defined by NVIDIA and used by Android devices. */
2225 *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2226
2227 return 0;
2228}
2229EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2230
2231void mmc_rescan(struct work_struct *work)
2232{
2233 struct mmc_host *host =
2234 container_of(work, struct mmc_host, detect.work);
2235 int i;
2236
2237 if (host->rescan_disable)
2238 return;
2239
2240 /* If there is a non-removable card registered, only scan once */
2241 if (!mmc_card_is_removable(host) && host->rescan_entered)
2242 return;
2243 host->rescan_entered = 1;
2244
2245 if (host->trigger_card_event && host->ops->card_event) {
2246 mmc_claim_host(host);
2247 host->ops->card_event(host);
2248 mmc_release_host(host);
2249 host->trigger_card_event = false;
2250 }
2251
2252 /* Verify a registered card to be functional, else remove it. */
2253 if (host->bus_ops)
2254 host->bus_ops->detect(host);
2255
2256 host->detect_change = 0;
2257
2258 /* if there still is a card present, stop here */
2259 if (host->bus_ops != NULL)
2260 goto out;
2261
2262 mmc_claim_host(host);
2263 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2264 host->ops->get_cd(host) == 0) {
2265 mmc_power_off(host);
2266 mmc_release_host(host);
2267 goto out;
2268 }
2269
2270 /* If an SD express card is present, then leave it as is. */
2271 if (mmc_card_sd_express(host)) {
2272 mmc_release_host(host);
2273 goto out;
2274 }
2275
2276 /*
2277 * Ideally we should favor initialization of legacy SD cards and defer
2278 * UHS-II enumeration. However, it seems like cards doesn't reliably
2279 * announce their support for UHS-II in the response to the ACMD41,
2280 * while initializing the legacy SD interface. Therefore, let's start
2281 * with UHS-II for now.
2282 */
2283 if (!mmc_attach_sd_uhs2(host)) {
2284 mmc_release_host(host);
2285 goto out;
2286 }
2287
2288 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2289 unsigned int freq = freqs[i];
2290 if (freq > host->f_max) {
2291 if (i + 1 < ARRAY_SIZE(freqs))
2292 continue;
2293 freq = host->f_max;
2294 }
2295 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2296 break;
2297 if (freqs[i] <= host->f_min)
2298 break;
2299 }
2300
2301 /* A non-removable card should have been detected by now. */
2302 if (!mmc_card_is_removable(host) && !host->bus_ops)
2303 pr_info("%s: Failed to initialize a non-removable card",
2304 mmc_hostname(host));
2305
2306 /*
2307 * Ignore the command timeout errors observed during
2308 * the card init as those are excepted.
2309 */
2310 host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2311 mmc_release_host(host);
2312
2313 out:
2314 if (host->caps & MMC_CAP_NEEDS_POLL)
2315 mmc_schedule_delayed_work(&host->detect, HZ);
2316}
2317
2318void mmc_start_host(struct mmc_host *host)
2319{
2320 bool power_up = !(host->caps2 &
2321 (MMC_CAP2_NO_PRESCAN_POWERUP | MMC_CAP2_SD_UHS2));
2322
2323 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2324 host->rescan_disable = 0;
2325
2326 if (power_up) {
2327 mmc_claim_host(host);
2328 mmc_power_up(host, host->ocr_avail);
2329 mmc_release_host(host);
2330 }
2331
2332 mmc_gpiod_request_cd_irq(host);
2333 _mmc_detect_change(host, 0, false);
2334}
2335
2336void __mmc_stop_host(struct mmc_host *host)
2337{
2338 if (host->rescan_disable)
2339 return;
2340
2341 if (host->slot.cd_irq >= 0) {
2342 mmc_gpio_set_cd_wake(host, false);
2343 disable_irq(host->slot.cd_irq);
2344 }
2345
2346 host->rescan_disable = 1;
2347 cancel_delayed_work_sync(&host->detect);
2348}
2349
2350void mmc_stop_host(struct mmc_host *host)
2351{
2352 __mmc_stop_host(host);
2353
2354 /* clear pm flags now and let card drivers set them as needed */
2355 host->pm_flags = 0;
2356
2357 if (host->bus_ops) {
2358 /* Calling bus_ops->remove() with a claimed host can deadlock */
2359 host->bus_ops->remove(host);
2360 mmc_claim_host(host);
2361 mmc_detach_bus(host);
2362 mmc_power_off(host);
2363 mmc_release_host(host);
2364 return;
2365 }
2366
2367 mmc_claim_host(host);
2368 mmc_power_off(host);
2369 mmc_release_host(host);
2370}
2371
2372static int __init mmc_init(void)
2373{
2374 int ret;
2375
2376 ret = mmc_register_bus();
2377 if (ret)
2378 return ret;
2379
2380 ret = mmc_register_host_class();
2381 if (ret)
2382 goto unregister_bus;
2383
2384 ret = sdio_register_bus();
2385 if (ret)
2386 goto unregister_host_class;
2387
2388 return 0;
2389
2390unregister_host_class:
2391 mmc_unregister_host_class();
2392unregister_bus:
2393 mmc_unregister_bus();
2394 return ret;
2395}
2396
2397static void __exit mmc_exit(void)
2398{
2399 sdio_unregister_bus();
2400 mmc_unregister_host_class();
2401 mmc_unregister_bus();
2402}
2403
2404subsys_initcall(mmc_init);
2405module_exit(mmc_exit);
2406
2407MODULE_DESCRIPTION("MMC core driver");
2408MODULE_LICENSE("GPL");