Loading...
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
28#include <linux/task_io_accounting_ops.h>
29#include <linux/fault-inject.h>
30#include <linux/list_sort.h>
31#include <linux/delay.h>
32#include <linux/ratelimit.h>
33
34#define CREATE_TRACE_POINTS
35#include <trace/events/block.h>
36
37#include "blk.h"
38#include "blk-cgroup.h"
39
40EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
41EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
42EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
43
44DEFINE_IDA(blk_queue_ida);
45
46/*
47 * For the allocated request tables
48 */
49static struct kmem_cache *request_cachep;
50
51/*
52 * For queue allocation
53 */
54struct kmem_cache *blk_requestq_cachep;
55
56/*
57 * Controlling structure to kblockd
58 */
59static struct workqueue_struct *kblockd_workqueue;
60
61static void drive_stat_acct(struct request *rq, int new_io)
62{
63 struct hd_struct *part;
64 int rw = rq_data_dir(rq);
65 int cpu;
66
67 if (!blk_do_io_stat(rq))
68 return;
69
70 cpu = part_stat_lock();
71
72 if (!new_io) {
73 part = rq->part;
74 part_stat_inc(cpu, part, merges[rw]);
75 } else {
76 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
77 if (!hd_struct_try_get(part)) {
78 /*
79 * The partition is already being removed,
80 * the request will be accounted on the disk only
81 *
82 * We take a reference on disk->part0 although that
83 * partition will never be deleted, so we can treat
84 * it as any other partition.
85 */
86 part = &rq->rq_disk->part0;
87 hd_struct_get(part);
88 }
89 part_round_stats(cpu, part);
90 part_inc_in_flight(part, rw);
91 rq->part = part;
92 }
93
94 part_stat_unlock();
95}
96
97void blk_queue_congestion_threshold(struct request_queue *q)
98{
99 int nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
103 nr = q->nr_requests;
104 q->nr_congestion_on = nr;
105
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 if (nr < 1)
108 nr = 1;
109 q->nr_congestion_off = nr;
110}
111
112/**
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev: device
115 *
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
118 *
119 * Will return NULL if the request queue cannot be located.
120 */
121struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122{
123 struct backing_dev_info *ret = NULL;
124 struct request_queue *q = bdev_get_queue(bdev);
125
126 if (q)
127 ret = &q->backing_dev_info;
128 return ret;
129}
130EXPORT_SYMBOL(blk_get_backing_dev_info);
131
132void blk_rq_init(struct request_queue *q, struct request *rq)
133{
134 memset(rq, 0, sizeof(*rq));
135
136 INIT_LIST_HEAD(&rq->queuelist);
137 INIT_LIST_HEAD(&rq->timeout_list);
138 rq->cpu = -1;
139 rq->q = q;
140 rq->__sector = (sector_t) -1;
141 INIT_HLIST_NODE(&rq->hash);
142 RB_CLEAR_NODE(&rq->rb_node);
143 rq->cmd = rq->__cmd;
144 rq->cmd_len = BLK_MAX_CDB;
145 rq->tag = -1;
146 rq->ref_count = 1;
147 rq->start_time = jiffies;
148 set_start_time_ns(rq);
149 rq->part = NULL;
150}
151EXPORT_SYMBOL(blk_rq_init);
152
153static void req_bio_endio(struct request *rq, struct bio *bio,
154 unsigned int nbytes, int error)
155{
156 if (error)
157 clear_bit(BIO_UPTODATE, &bio->bi_flags);
158 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
159 error = -EIO;
160
161 if (unlikely(nbytes > bio->bi_size)) {
162 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
163 __func__, nbytes, bio->bi_size);
164 nbytes = bio->bi_size;
165 }
166
167 if (unlikely(rq->cmd_flags & REQ_QUIET))
168 set_bit(BIO_QUIET, &bio->bi_flags);
169
170 bio->bi_size -= nbytes;
171 bio->bi_sector += (nbytes >> 9);
172
173 if (bio_integrity(bio))
174 bio_integrity_advance(bio, nbytes);
175
176 /* don't actually finish bio if it's part of flush sequence */
177 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
178 bio_endio(bio, error);
179}
180
181void blk_dump_rq_flags(struct request *rq, char *msg)
182{
183 int bit;
184
185 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
186 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
187 rq->cmd_flags);
188
189 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
190 (unsigned long long)blk_rq_pos(rq),
191 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
192 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
193 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
194
195 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
196 printk(KERN_INFO " cdb: ");
197 for (bit = 0; bit < BLK_MAX_CDB; bit++)
198 printk("%02x ", rq->cmd[bit]);
199 printk("\n");
200 }
201}
202EXPORT_SYMBOL(blk_dump_rq_flags);
203
204static void blk_delay_work(struct work_struct *work)
205{
206 struct request_queue *q;
207
208 q = container_of(work, struct request_queue, delay_work.work);
209 spin_lock_irq(q->queue_lock);
210 __blk_run_queue(q);
211 spin_unlock_irq(q->queue_lock);
212}
213
214/**
215 * blk_delay_queue - restart queueing after defined interval
216 * @q: The &struct request_queue in question
217 * @msecs: Delay in msecs
218 *
219 * Description:
220 * Sometimes queueing needs to be postponed for a little while, to allow
221 * resources to come back. This function will make sure that queueing is
222 * restarted around the specified time.
223 */
224void blk_delay_queue(struct request_queue *q, unsigned long msecs)
225{
226 queue_delayed_work(kblockd_workqueue, &q->delay_work,
227 msecs_to_jiffies(msecs));
228}
229EXPORT_SYMBOL(blk_delay_queue);
230
231/**
232 * blk_start_queue - restart a previously stopped queue
233 * @q: The &struct request_queue in question
234 *
235 * Description:
236 * blk_start_queue() will clear the stop flag on the queue, and call
237 * the request_fn for the queue if it was in a stopped state when
238 * entered. Also see blk_stop_queue(). Queue lock must be held.
239 **/
240void blk_start_queue(struct request_queue *q)
241{
242 WARN_ON(!irqs_disabled());
243
244 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
245 __blk_run_queue(q);
246}
247EXPORT_SYMBOL(blk_start_queue);
248
249/**
250 * blk_stop_queue - stop a queue
251 * @q: The &struct request_queue in question
252 *
253 * Description:
254 * The Linux block layer assumes that a block driver will consume all
255 * entries on the request queue when the request_fn strategy is called.
256 * Often this will not happen, because of hardware limitations (queue
257 * depth settings). If a device driver gets a 'queue full' response,
258 * or if it simply chooses not to queue more I/O at one point, it can
259 * call this function to prevent the request_fn from being called until
260 * the driver has signalled it's ready to go again. This happens by calling
261 * blk_start_queue() to restart queue operations. Queue lock must be held.
262 **/
263void blk_stop_queue(struct request_queue *q)
264{
265 __cancel_delayed_work(&q->delay_work);
266 queue_flag_set(QUEUE_FLAG_STOPPED, q);
267}
268EXPORT_SYMBOL(blk_stop_queue);
269
270/**
271 * blk_sync_queue - cancel any pending callbacks on a queue
272 * @q: the queue
273 *
274 * Description:
275 * The block layer may perform asynchronous callback activity
276 * on a queue, such as calling the unplug function after a timeout.
277 * A block device may call blk_sync_queue to ensure that any
278 * such activity is cancelled, thus allowing it to release resources
279 * that the callbacks might use. The caller must already have made sure
280 * that its ->make_request_fn will not re-add plugging prior to calling
281 * this function.
282 *
283 * This function does not cancel any asynchronous activity arising
284 * out of elevator or throttling code. That would require elevaotor_exit()
285 * and blkcg_exit_queue() to be called with queue lock initialized.
286 *
287 */
288void blk_sync_queue(struct request_queue *q)
289{
290 del_timer_sync(&q->timeout);
291 cancel_delayed_work_sync(&q->delay_work);
292}
293EXPORT_SYMBOL(blk_sync_queue);
294
295/**
296 * __blk_run_queue - run a single device queue
297 * @q: The queue to run
298 *
299 * Description:
300 * See @blk_run_queue. This variant must be called with the queue lock
301 * held and interrupts disabled.
302 */
303void __blk_run_queue(struct request_queue *q)
304{
305 if (unlikely(blk_queue_stopped(q)))
306 return;
307
308 q->request_fn(q);
309}
310EXPORT_SYMBOL(__blk_run_queue);
311
312/**
313 * blk_run_queue_async - run a single device queue in workqueue context
314 * @q: The queue to run
315 *
316 * Description:
317 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
318 * of us.
319 */
320void blk_run_queue_async(struct request_queue *q)
321{
322 if (likely(!blk_queue_stopped(q))) {
323 __cancel_delayed_work(&q->delay_work);
324 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
325 }
326}
327EXPORT_SYMBOL(blk_run_queue_async);
328
329/**
330 * blk_run_queue - run a single device queue
331 * @q: The queue to run
332 *
333 * Description:
334 * Invoke request handling on this queue, if it has pending work to do.
335 * May be used to restart queueing when a request has completed.
336 */
337void blk_run_queue(struct request_queue *q)
338{
339 unsigned long flags;
340
341 spin_lock_irqsave(q->queue_lock, flags);
342 __blk_run_queue(q);
343 spin_unlock_irqrestore(q->queue_lock, flags);
344}
345EXPORT_SYMBOL(blk_run_queue);
346
347void blk_put_queue(struct request_queue *q)
348{
349 kobject_put(&q->kobj);
350}
351EXPORT_SYMBOL(blk_put_queue);
352
353/**
354 * blk_drain_queue - drain requests from request_queue
355 * @q: queue to drain
356 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
357 *
358 * Drain requests from @q. If @drain_all is set, all requests are drained.
359 * If not, only ELVPRIV requests are drained. The caller is responsible
360 * for ensuring that no new requests which need to be drained are queued.
361 */
362void blk_drain_queue(struct request_queue *q, bool drain_all)
363{
364 int i;
365
366 while (true) {
367 bool drain = false;
368
369 spin_lock_irq(q->queue_lock);
370
371 /*
372 * The caller might be trying to drain @q before its
373 * elevator is initialized.
374 */
375 if (q->elevator)
376 elv_drain_elevator(q);
377
378 blkcg_drain_queue(q);
379
380 /*
381 * This function might be called on a queue which failed
382 * driver init after queue creation or is not yet fully
383 * active yet. Some drivers (e.g. fd and loop) get unhappy
384 * in such cases. Kick queue iff dispatch queue has
385 * something on it and @q has request_fn set.
386 */
387 if (!list_empty(&q->queue_head) && q->request_fn)
388 __blk_run_queue(q);
389
390 drain |= q->rq.elvpriv;
391
392 /*
393 * Unfortunately, requests are queued at and tracked from
394 * multiple places and there's no single counter which can
395 * be drained. Check all the queues and counters.
396 */
397 if (drain_all) {
398 drain |= !list_empty(&q->queue_head);
399 for (i = 0; i < 2; i++) {
400 drain |= q->rq.count[i];
401 drain |= q->in_flight[i];
402 drain |= !list_empty(&q->flush_queue[i]);
403 }
404 }
405
406 spin_unlock_irq(q->queue_lock);
407
408 if (!drain)
409 break;
410 msleep(10);
411 }
412
413 /*
414 * With queue marked dead, any woken up waiter will fail the
415 * allocation path, so the wakeup chaining is lost and we're
416 * left with hung waiters. We need to wake up those waiters.
417 */
418 if (q->request_fn) {
419 spin_lock_irq(q->queue_lock);
420 for (i = 0; i < ARRAY_SIZE(q->rq.wait); i++)
421 wake_up_all(&q->rq.wait[i]);
422 spin_unlock_irq(q->queue_lock);
423 }
424}
425
426/**
427 * blk_queue_bypass_start - enter queue bypass mode
428 * @q: queue of interest
429 *
430 * In bypass mode, only the dispatch FIFO queue of @q is used. This
431 * function makes @q enter bypass mode and drains all requests which were
432 * throttled or issued before. On return, it's guaranteed that no request
433 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
434 * inside queue or RCU read lock.
435 */
436void blk_queue_bypass_start(struct request_queue *q)
437{
438 bool drain;
439
440 spin_lock_irq(q->queue_lock);
441 drain = !q->bypass_depth++;
442 queue_flag_set(QUEUE_FLAG_BYPASS, q);
443 spin_unlock_irq(q->queue_lock);
444
445 if (drain) {
446 blk_drain_queue(q, false);
447 /* ensure blk_queue_bypass() is %true inside RCU read lock */
448 synchronize_rcu();
449 }
450}
451EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
452
453/**
454 * blk_queue_bypass_end - leave queue bypass mode
455 * @q: queue of interest
456 *
457 * Leave bypass mode and restore the normal queueing behavior.
458 */
459void blk_queue_bypass_end(struct request_queue *q)
460{
461 spin_lock_irq(q->queue_lock);
462 if (!--q->bypass_depth)
463 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
464 WARN_ON_ONCE(q->bypass_depth < 0);
465 spin_unlock_irq(q->queue_lock);
466}
467EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
468
469/**
470 * blk_cleanup_queue - shutdown a request queue
471 * @q: request queue to shutdown
472 *
473 * Mark @q DEAD, drain all pending requests, destroy and put it. All
474 * future requests will be failed immediately with -ENODEV.
475 */
476void blk_cleanup_queue(struct request_queue *q)
477{
478 spinlock_t *lock = q->queue_lock;
479
480 /* mark @q DEAD, no new request or merges will be allowed afterwards */
481 mutex_lock(&q->sysfs_lock);
482 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483 spin_lock_irq(lock);
484
485 /*
486 * Dead queue is permanently in bypass mode till released. Note
487 * that, unlike blk_queue_bypass_start(), we aren't performing
488 * synchronize_rcu() after entering bypass mode to avoid the delay
489 * as some drivers create and destroy a lot of queues while
490 * probing. This is still safe because blk_release_queue() will be
491 * called only after the queue refcnt drops to zero and nothing,
492 * RCU or not, would be traversing the queue by then.
493 */
494 q->bypass_depth++;
495 queue_flag_set(QUEUE_FLAG_BYPASS, q);
496
497 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
498 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
499 queue_flag_set(QUEUE_FLAG_DEAD, q);
500 spin_unlock_irq(lock);
501 mutex_unlock(&q->sysfs_lock);
502
503 /* drain all requests queued before DEAD marking */
504 blk_drain_queue(q, true);
505
506 /* @q won't process any more request, flush async actions */
507 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
508 blk_sync_queue(q);
509
510 spin_lock_irq(lock);
511 if (q->queue_lock != &q->__queue_lock)
512 q->queue_lock = &q->__queue_lock;
513 spin_unlock_irq(lock);
514
515 /* @q is and will stay empty, shutdown and put */
516 blk_put_queue(q);
517}
518EXPORT_SYMBOL(blk_cleanup_queue);
519
520static int blk_init_free_list(struct request_queue *q)
521{
522 struct request_list *rl = &q->rq;
523
524 if (unlikely(rl->rq_pool))
525 return 0;
526
527 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
528 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
529 rl->elvpriv = 0;
530 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
531 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
532
533 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
534 mempool_free_slab, request_cachep, q->node);
535
536 if (!rl->rq_pool)
537 return -ENOMEM;
538
539 return 0;
540}
541
542struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
543{
544 return blk_alloc_queue_node(gfp_mask, -1);
545}
546EXPORT_SYMBOL(blk_alloc_queue);
547
548struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
549{
550 struct request_queue *q;
551 int err;
552
553 q = kmem_cache_alloc_node(blk_requestq_cachep,
554 gfp_mask | __GFP_ZERO, node_id);
555 if (!q)
556 return NULL;
557
558 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
559 if (q->id < 0)
560 goto fail_q;
561
562 q->backing_dev_info.ra_pages =
563 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
564 q->backing_dev_info.state = 0;
565 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
566 q->backing_dev_info.name = "block";
567 q->node = node_id;
568
569 err = bdi_init(&q->backing_dev_info);
570 if (err)
571 goto fail_id;
572
573 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
574 laptop_mode_timer_fn, (unsigned long) q);
575 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
576 INIT_LIST_HEAD(&q->queue_head);
577 INIT_LIST_HEAD(&q->timeout_list);
578 INIT_LIST_HEAD(&q->icq_list);
579#ifdef CONFIG_BLK_CGROUP
580 INIT_LIST_HEAD(&q->blkg_list);
581#endif
582 INIT_LIST_HEAD(&q->flush_queue[0]);
583 INIT_LIST_HEAD(&q->flush_queue[1]);
584 INIT_LIST_HEAD(&q->flush_data_in_flight);
585 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
586
587 kobject_init(&q->kobj, &blk_queue_ktype);
588
589 mutex_init(&q->sysfs_lock);
590 spin_lock_init(&q->__queue_lock);
591
592 /*
593 * By default initialize queue_lock to internal lock and driver can
594 * override it later if need be.
595 */
596 q->queue_lock = &q->__queue_lock;
597
598 /*
599 * A queue starts its life with bypass turned on to avoid
600 * unnecessary bypass on/off overhead and nasty surprises during
601 * init. The initial bypass will be finished at the end of
602 * blk_init_allocated_queue().
603 */
604 q->bypass_depth = 1;
605 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
606
607 if (blkcg_init_queue(q))
608 goto fail_id;
609
610 return q;
611
612fail_id:
613 ida_simple_remove(&blk_queue_ida, q->id);
614fail_q:
615 kmem_cache_free(blk_requestq_cachep, q);
616 return NULL;
617}
618EXPORT_SYMBOL(blk_alloc_queue_node);
619
620/**
621 * blk_init_queue - prepare a request queue for use with a block device
622 * @rfn: The function to be called to process requests that have been
623 * placed on the queue.
624 * @lock: Request queue spin lock
625 *
626 * Description:
627 * If a block device wishes to use the standard request handling procedures,
628 * which sorts requests and coalesces adjacent requests, then it must
629 * call blk_init_queue(). The function @rfn will be called when there
630 * are requests on the queue that need to be processed. If the device
631 * supports plugging, then @rfn may not be called immediately when requests
632 * are available on the queue, but may be called at some time later instead.
633 * Plugged queues are generally unplugged when a buffer belonging to one
634 * of the requests on the queue is needed, or due to memory pressure.
635 *
636 * @rfn is not required, or even expected, to remove all requests off the
637 * queue, but only as many as it can handle at a time. If it does leave
638 * requests on the queue, it is responsible for arranging that the requests
639 * get dealt with eventually.
640 *
641 * The queue spin lock must be held while manipulating the requests on the
642 * request queue; this lock will be taken also from interrupt context, so irq
643 * disabling is needed for it.
644 *
645 * Function returns a pointer to the initialized request queue, or %NULL if
646 * it didn't succeed.
647 *
648 * Note:
649 * blk_init_queue() must be paired with a blk_cleanup_queue() call
650 * when the block device is deactivated (such as at module unload).
651 **/
652
653struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
654{
655 return blk_init_queue_node(rfn, lock, -1);
656}
657EXPORT_SYMBOL(blk_init_queue);
658
659struct request_queue *
660blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
661{
662 struct request_queue *uninit_q, *q;
663
664 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
665 if (!uninit_q)
666 return NULL;
667
668 q = blk_init_allocated_queue(uninit_q, rfn, lock);
669 if (!q)
670 blk_cleanup_queue(uninit_q);
671
672 return q;
673}
674EXPORT_SYMBOL(blk_init_queue_node);
675
676struct request_queue *
677blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
678 spinlock_t *lock)
679{
680 if (!q)
681 return NULL;
682
683 if (blk_init_free_list(q))
684 return NULL;
685
686 q->request_fn = rfn;
687 q->prep_rq_fn = NULL;
688 q->unprep_rq_fn = NULL;
689 q->queue_flags = QUEUE_FLAG_DEFAULT;
690
691 /* Override internal queue lock with supplied lock pointer */
692 if (lock)
693 q->queue_lock = lock;
694
695 /*
696 * This also sets hw/phys segments, boundary and size
697 */
698 blk_queue_make_request(q, blk_queue_bio);
699
700 q->sg_reserved_size = INT_MAX;
701
702 /* init elevator */
703 if (elevator_init(q, NULL))
704 return NULL;
705
706 blk_queue_congestion_threshold(q);
707
708 /* all done, end the initial bypass */
709 blk_queue_bypass_end(q);
710 return q;
711}
712EXPORT_SYMBOL(blk_init_allocated_queue);
713
714bool blk_get_queue(struct request_queue *q)
715{
716 if (likely(!blk_queue_dead(q))) {
717 __blk_get_queue(q);
718 return true;
719 }
720
721 return false;
722}
723EXPORT_SYMBOL(blk_get_queue);
724
725static inline void blk_free_request(struct request_queue *q, struct request *rq)
726{
727 if (rq->cmd_flags & REQ_ELVPRIV) {
728 elv_put_request(q, rq);
729 if (rq->elv.icq)
730 put_io_context(rq->elv.icq->ioc);
731 }
732
733 mempool_free(rq, q->rq.rq_pool);
734}
735
736/*
737 * ioc_batching returns true if the ioc is a valid batching request and
738 * should be given priority access to a request.
739 */
740static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
741{
742 if (!ioc)
743 return 0;
744
745 /*
746 * Make sure the process is able to allocate at least 1 request
747 * even if the batch times out, otherwise we could theoretically
748 * lose wakeups.
749 */
750 return ioc->nr_batch_requests == q->nr_batching ||
751 (ioc->nr_batch_requests > 0
752 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
753}
754
755/*
756 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
757 * will cause the process to be a "batcher" on all queues in the system. This
758 * is the behaviour we want though - once it gets a wakeup it should be given
759 * a nice run.
760 */
761static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
762{
763 if (!ioc || ioc_batching(q, ioc))
764 return;
765
766 ioc->nr_batch_requests = q->nr_batching;
767 ioc->last_waited = jiffies;
768}
769
770static void __freed_request(struct request_queue *q, int sync)
771{
772 struct request_list *rl = &q->rq;
773
774 if (rl->count[sync] < queue_congestion_off_threshold(q))
775 blk_clear_queue_congested(q, sync);
776
777 if (rl->count[sync] + 1 <= q->nr_requests) {
778 if (waitqueue_active(&rl->wait[sync]))
779 wake_up(&rl->wait[sync]);
780
781 blk_clear_queue_full(q, sync);
782 }
783}
784
785/*
786 * A request has just been released. Account for it, update the full and
787 * congestion status, wake up any waiters. Called under q->queue_lock.
788 */
789static void freed_request(struct request_queue *q, unsigned int flags)
790{
791 struct request_list *rl = &q->rq;
792 int sync = rw_is_sync(flags);
793
794 rl->count[sync]--;
795 if (flags & REQ_ELVPRIV)
796 rl->elvpriv--;
797
798 __freed_request(q, sync);
799
800 if (unlikely(rl->starved[sync ^ 1]))
801 __freed_request(q, sync ^ 1);
802}
803
804/*
805 * Determine if elevator data should be initialized when allocating the
806 * request associated with @bio.
807 */
808static bool blk_rq_should_init_elevator(struct bio *bio)
809{
810 if (!bio)
811 return true;
812
813 /*
814 * Flush requests do not use the elevator so skip initialization.
815 * This allows a request to share the flush and elevator data.
816 */
817 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
818 return false;
819
820 return true;
821}
822
823/**
824 * rq_ioc - determine io_context for request allocation
825 * @bio: request being allocated is for this bio (can be %NULL)
826 *
827 * Determine io_context to use for request allocation for @bio. May return
828 * %NULL if %current->io_context doesn't exist.
829 */
830static struct io_context *rq_ioc(struct bio *bio)
831{
832#ifdef CONFIG_BLK_CGROUP
833 if (bio && bio->bi_ioc)
834 return bio->bi_ioc;
835#endif
836 return current->io_context;
837}
838
839/**
840 * get_request - get a free request
841 * @q: request_queue to allocate request from
842 * @rw_flags: RW and SYNC flags
843 * @bio: bio to allocate request for (can be %NULL)
844 * @gfp_mask: allocation mask
845 *
846 * Get a free request from @q. This function may fail under memory
847 * pressure or if @q is dead.
848 *
849 * Must be callled with @q->queue_lock held and,
850 * Returns %NULL on failure, with @q->queue_lock held.
851 * Returns !%NULL on success, with @q->queue_lock *not held*.
852 */
853static struct request *get_request(struct request_queue *q, int rw_flags,
854 struct bio *bio, gfp_t gfp_mask)
855{
856 struct request *rq;
857 struct request_list *rl = &q->rq;
858 struct elevator_type *et;
859 struct io_context *ioc;
860 struct io_cq *icq = NULL;
861 const bool is_sync = rw_is_sync(rw_flags) != 0;
862 bool retried = false;
863 int may_queue;
864retry:
865 et = q->elevator->type;
866 ioc = rq_ioc(bio);
867
868 if (unlikely(blk_queue_dead(q)))
869 return NULL;
870
871 may_queue = elv_may_queue(q, rw_flags);
872 if (may_queue == ELV_MQUEUE_NO)
873 goto rq_starved;
874
875 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
876 if (rl->count[is_sync]+1 >= q->nr_requests) {
877 /*
878 * We want ioc to record batching state. If it's
879 * not already there, creating a new one requires
880 * dropping queue_lock, which in turn requires
881 * retesting conditions to avoid queue hang.
882 */
883 if (!ioc && !retried) {
884 spin_unlock_irq(q->queue_lock);
885 create_io_context(gfp_mask, q->node);
886 spin_lock_irq(q->queue_lock);
887 retried = true;
888 goto retry;
889 }
890
891 /*
892 * The queue will fill after this allocation, so set
893 * it as full, and mark this process as "batching".
894 * This process will be allowed to complete a batch of
895 * requests, others will be blocked.
896 */
897 if (!blk_queue_full(q, is_sync)) {
898 ioc_set_batching(q, ioc);
899 blk_set_queue_full(q, is_sync);
900 } else {
901 if (may_queue != ELV_MQUEUE_MUST
902 && !ioc_batching(q, ioc)) {
903 /*
904 * The queue is full and the allocating
905 * process is not a "batcher", and not
906 * exempted by the IO scheduler
907 */
908 return NULL;
909 }
910 }
911 }
912 blk_set_queue_congested(q, is_sync);
913 }
914
915 /*
916 * Only allow batching queuers to allocate up to 50% over the defined
917 * limit of requests, otherwise we could have thousands of requests
918 * allocated with any setting of ->nr_requests
919 */
920 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
921 return NULL;
922
923 rl->count[is_sync]++;
924 rl->starved[is_sync] = 0;
925
926 /*
927 * Decide whether the new request will be managed by elevator. If
928 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
929 * prevent the current elevator from being destroyed until the new
930 * request is freed. This guarantees icq's won't be destroyed and
931 * makes creating new ones safe.
932 *
933 * Also, lookup icq while holding queue_lock. If it doesn't exist,
934 * it will be created after releasing queue_lock.
935 */
936 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
937 rw_flags |= REQ_ELVPRIV;
938 rl->elvpriv++;
939 if (et->icq_cache && ioc)
940 icq = ioc_lookup_icq(ioc, q);
941 }
942
943 if (blk_queue_io_stat(q))
944 rw_flags |= REQ_IO_STAT;
945 spin_unlock_irq(q->queue_lock);
946
947 /* allocate and init request */
948 rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
949 if (!rq)
950 goto fail_alloc;
951
952 blk_rq_init(q, rq);
953 rq->cmd_flags = rw_flags | REQ_ALLOCED;
954
955 /* init elvpriv */
956 if (rw_flags & REQ_ELVPRIV) {
957 if (unlikely(et->icq_cache && !icq)) {
958 create_io_context(gfp_mask, q->node);
959 ioc = rq_ioc(bio);
960 if (!ioc)
961 goto fail_elvpriv;
962
963 icq = ioc_create_icq(ioc, q, gfp_mask);
964 if (!icq)
965 goto fail_elvpriv;
966 }
967
968 rq->elv.icq = icq;
969 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
970 goto fail_elvpriv;
971
972 /* @rq->elv.icq holds io_context until @rq is freed */
973 if (icq)
974 get_io_context(icq->ioc);
975 }
976out:
977 /*
978 * ioc may be NULL here, and ioc_batching will be false. That's
979 * OK, if the queue is under the request limit then requests need
980 * not count toward the nr_batch_requests limit. There will always
981 * be some limit enforced by BLK_BATCH_TIME.
982 */
983 if (ioc_batching(q, ioc))
984 ioc->nr_batch_requests--;
985
986 trace_block_getrq(q, bio, rw_flags & 1);
987 return rq;
988
989fail_elvpriv:
990 /*
991 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
992 * and may fail indefinitely under memory pressure and thus
993 * shouldn't stall IO. Treat this request as !elvpriv. This will
994 * disturb iosched and blkcg but weird is bettern than dead.
995 */
996 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
997 dev_name(q->backing_dev_info.dev));
998
999 rq->cmd_flags &= ~REQ_ELVPRIV;
1000 rq->elv.icq = NULL;
1001
1002 spin_lock_irq(q->queue_lock);
1003 rl->elvpriv--;
1004 spin_unlock_irq(q->queue_lock);
1005 goto out;
1006
1007fail_alloc:
1008 /*
1009 * Allocation failed presumably due to memory. Undo anything we
1010 * might have messed up.
1011 *
1012 * Allocating task should really be put onto the front of the wait
1013 * queue, but this is pretty rare.
1014 */
1015 spin_lock_irq(q->queue_lock);
1016 freed_request(q, rw_flags);
1017
1018 /*
1019 * in the very unlikely event that allocation failed and no
1020 * requests for this direction was pending, mark us starved so that
1021 * freeing of a request in the other direction will notice
1022 * us. another possible fix would be to split the rq mempool into
1023 * READ and WRITE
1024 */
1025rq_starved:
1026 if (unlikely(rl->count[is_sync] == 0))
1027 rl->starved[is_sync] = 1;
1028 return NULL;
1029}
1030
1031/**
1032 * get_request_wait - get a free request with retry
1033 * @q: request_queue to allocate request from
1034 * @rw_flags: RW and SYNC flags
1035 * @bio: bio to allocate request for (can be %NULL)
1036 *
1037 * Get a free request from @q. This function keeps retrying under memory
1038 * pressure and fails iff @q is dead.
1039 *
1040 * Must be callled with @q->queue_lock held and,
1041 * Returns %NULL on failure, with @q->queue_lock held.
1042 * Returns !%NULL on success, with @q->queue_lock *not held*.
1043 */
1044static struct request *get_request_wait(struct request_queue *q, int rw_flags,
1045 struct bio *bio)
1046{
1047 const bool is_sync = rw_is_sync(rw_flags) != 0;
1048 struct request *rq;
1049
1050 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1051 while (!rq) {
1052 DEFINE_WAIT(wait);
1053 struct request_list *rl = &q->rq;
1054
1055 if (unlikely(blk_queue_dead(q)))
1056 return NULL;
1057
1058 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1059 TASK_UNINTERRUPTIBLE);
1060
1061 trace_block_sleeprq(q, bio, rw_flags & 1);
1062
1063 spin_unlock_irq(q->queue_lock);
1064 io_schedule();
1065
1066 /*
1067 * After sleeping, we become a "batching" process and
1068 * will be able to allocate at least one request, and
1069 * up to a big batch of them for a small period time.
1070 * See ioc_batching, ioc_set_batching
1071 */
1072 create_io_context(GFP_NOIO, q->node);
1073 ioc_set_batching(q, current->io_context);
1074
1075 spin_lock_irq(q->queue_lock);
1076 finish_wait(&rl->wait[is_sync], &wait);
1077
1078 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1079 };
1080
1081 return rq;
1082}
1083
1084struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1085{
1086 struct request *rq;
1087
1088 BUG_ON(rw != READ && rw != WRITE);
1089
1090 spin_lock_irq(q->queue_lock);
1091 if (gfp_mask & __GFP_WAIT)
1092 rq = get_request_wait(q, rw, NULL);
1093 else
1094 rq = get_request(q, rw, NULL, gfp_mask);
1095 if (!rq)
1096 spin_unlock_irq(q->queue_lock);
1097 /* q->queue_lock is unlocked at this point */
1098
1099 return rq;
1100}
1101EXPORT_SYMBOL(blk_get_request);
1102
1103/**
1104 * blk_make_request - given a bio, allocate a corresponding struct request.
1105 * @q: target request queue
1106 * @bio: The bio describing the memory mappings that will be submitted for IO.
1107 * It may be a chained-bio properly constructed by block/bio layer.
1108 * @gfp_mask: gfp flags to be used for memory allocation
1109 *
1110 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1111 * type commands. Where the struct request needs to be farther initialized by
1112 * the caller. It is passed a &struct bio, which describes the memory info of
1113 * the I/O transfer.
1114 *
1115 * The caller of blk_make_request must make sure that bi_io_vec
1116 * are set to describe the memory buffers. That bio_data_dir() will return
1117 * the needed direction of the request. (And all bio's in the passed bio-chain
1118 * are properly set accordingly)
1119 *
1120 * If called under none-sleepable conditions, mapped bio buffers must not
1121 * need bouncing, by calling the appropriate masked or flagged allocator,
1122 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1123 * BUG.
1124 *
1125 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1126 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1127 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1128 * completion of a bio that hasn't been submitted yet, thus resulting in a
1129 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1130 * of bio_alloc(), as that avoids the mempool deadlock.
1131 * If possible a big IO should be split into smaller parts when allocation
1132 * fails. Partial allocation should not be an error, or you risk a live-lock.
1133 */
1134struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1135 gfp_t gfp_mask)
1136{
1137 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1138
1139 if (unlikely(!rq))
1140 return ERR_PTR(-ENOMEM);
1141
1142 for_each_bio(bio) {
1143 struct bio *bounce_bio = bio;
1144 int ret;
1145
1146 blk_queue_bounce(q, &bounce_bio);
1147 ret = blk_rq_append_bio(q, rq, bounce_bio);
1148 if (unlikely(ret)) {
1149 blk_put_request(rq);
1150 return ERR_PTR(ret);
1151 }
1152 }
1153
1154 return rq;
1155}
1156EXPORT_SYMBOL(blk_make_request);
1157
1158/**
1159 * blk_requeue_request - put a request back on queue
1160 * @q: request queue where request should be inserted
1161 * @rq: request to be inserted
1162 *
1163 * Description:
1164 * Drivers often keep queueing requests until the hardware cannot accept
1165 * more, when that condition happens we need to put the request back
1166 * on the queue. Must be called with queue lock held.
1167 */
1168void blk_requeue_request(struct request_queue *q, struct request *rq)
1169{
1170 blk_delete_timer(rq);
1171 blk_clear_rq_complete(rq);
1172 trace_block_rq_requeue(q, rq);
1173
1174 if (blk_rq_tagged(rq))
1175 blk_queue_end_tag(q, rq);
1176
1177 BUG_ON(blk_queued_rq(rq));
1178
1179 elv_requeue_request(q, rq);
1180}
1181EXPORT_SYMBOL(blk_requeue_request);
1182
1183static void add_acct_request(struct request_queue *q, struct request *rq,
1184 int where)
1185{
1186 drive_stat_acct(rq, 1);
1187 __elv_add_request(q, rq, where);
1188}
1189
1190static void part_round_stats_single(int cpu, struct hd_struct *part,
1191 unsigned long now)
1192{
1193 if (now == part->stamp)
1194 return;
1195
1196 if (part_in_flight(part)) {
1197 __part_stat_add(cpu, part, time_in_queue,
1198 part_in_flight(part) * (now - part->stamp));
1199 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1200 }
1201 part->stamp = now;
1202}
1203
1204/**
1205 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1206 * @cpu: cpu number for stats access
1207 * @part: target partition
1208 *
1209 * The average IO queue length and utilisation statistics are maintained
1210 * by observing the current state of the queue length and the amount of
1211 * time it has been in this state for.
1212 *
1213 * Normally, that accounting is done on IO completion, but that can result
1214 * in more than a second's worth of IO being accounted for within any one
1215 * second, leading to >100% utilisation. To deal with that, we call this
1216 * function to do a round-off before returning the results when reading
1217 * /proc/diskstats. This accounts immediately for all queue usage up to
1218 * the current jiffies and restarts the counters again.
1219 */
1220void part_round_stats(int cpu, struct hd_struct *part)
1221{
1222 unsigned long now = jiffies;
1223
1224 if (part->partno)
1225 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1226 part_round_stats_single(cpu, part, now);
1227}
1228EXPORT_SYMBOL_GPL(part_round_stats);
1229
1230/*
1231 * queue lock must be held
1232 */
1233void __blk_put_request(struct request_queue *q, struct request *req)
1234{
1235 if (unlikely(!q))
1236 return;
1237 if (unlikely(--req->ref_count))
1238 return;
1239
1240 elv_completed_request(q, req);
1241
1242 /* this is a bio leak */
1243 WARN_ON(req->bio != NULL);
1244
1245 /*
1246 * Request may not have originated from ll_rw_blk. if not,
1247 * it didn't come out of our reserved rq pools
1248 */
1249 if (req->cmd_flags & REQ_ALLOCED) {
1250 unsigned int flags = req->cmd_flags;
1251
1252 BUG_ON(!list_empty(&req->queuelist));
1253 BUG_ON(!hlist_unhashed(&req->hash));
1254
1255 blk_free_request(q, req);
1256 freed_request(q, flags);
1257 }
1258}
1259EXPORT_SYMBOL_GPL(__blk_put_request);
1260
1261void blk_put_request(struct request *req)
1262{
1263 unsigned long flags;
1264 struct request_queue *q = req->q;
1265
1266 spin_lock_irqsave(q->queue_lock, flags);
1267 __blk_put_request(q, req);
1268 spin_unlock_irqrestore(q->queue_lock, flags);
1269}
1270EXPORT_SYMBOL(blk_put_request);
1271
1272/**
1273 * blk_add_request_payload - add a payload to a request
1274 * @rq: request to update
1275 * @page: page backing the payload
1276 * @len: length of the payload.
1277 *
1278 * This allows to later add a payload to an already submitted request by
1279 * a block driver. The driver needs to take care of freeing the payload
1280 * itself.
1281 *
1282 * Note that this is a quite horrible hack and nothing but handling of
1283 * discard requests should ever use it.
1284 */
1285void blk_add_request_payload(struct request *rq, struct page *page,
1286 unsigned int len)
1287{
1288 struct bio *bio = rq->bio;
1289
1290 bio->bi_io_vec->bv_page = page;
1291 bio->bi_io_vec->bv_offset = 0;
1292 bio->bi_io_vec->bv_len = len;
1293
1294 bio->bi_size = len;
1295 bio->bi_vcnt = 1;
1296 bio->bi_phys_segments = 1;
1297
1298 rq->__data_len = rq->resid_len = len;
1299 rq->nr_phys_segments = 1;
1300 rq->buffer = bio_data(bio);
1301}
1302EXPORT_SYMBOL_GPL(blk_add_request_payload);
1303
1304static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1305 struct bio *bio)
1306{
1307 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1308
1309 if (!ll_back_merge_fn(q, req, bio))
1310 return false;
1311
1312 trace_block_bio_backmerge(q, bio);
1313
1314 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1315 blk_rq_set_mixed_merge(req);
1316
1317 req->biotail->bi_next = bio;
1318 req->biotail = bio;
1319 req->__data_len += bio->bi_size;
1320 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1321
1322 drive_stat_acct(req, 0);
1323 return true;
1324}
1325
1326static bool bio_attempt_front_merge(struct request_queue *q,
1327 struct request *req, struct bio *bio)
1328{
1329 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1330
1331 if (!ll_front_merge_fn(q, req, bio))
1332 return false;
1333
1334 trace_block_bio_frontmerge(q, bio);
1335
1336 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1337 blk_rq_set_mixed_merge(req);
1338
1339 bio->bi_next = req->bio;
1340 req->bio = bio;
1341
1342 /*
1343 * may not be valid. if the low level driver said
1344 * it didn't need a bounce buffer then it better
1345 * not touch req->buffer either...
1346 */
1347 req->buffer = bio_data(bio);
1348 req->__sector = bio->bi_sector;
1349 req->__data_len += bio->bi_size;
1350 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1351
1352 drive_stat_acct(req, 0);
1353 return true;
1354}
1355
1356/**
1357 * attempt_plug_merge - try to merge with %current's plugged list
1358 * @q: request_queue new bio is being queued at
1359 * @bio: new bio being queued
1360 * @request_count: out parameter for number of traversed plugged requests
1361 *
1362 * Determine whether @bio being queued on @q can be merged with a request
1363 * on %current's plugged list. Returns %true if merge was successful,
1364 * otherwise %false.
1365 *
1366 * Plugging coalesces IOs from the same issuer for the same purpose without
1367 * going through @q->queue_lock. As such it's more of an issuing mechanism
1368 * than scheduling, and the request, while may have elvpriv data, is not
1369 * added on the elevator at this point. In addition, we don't have
1370 * reliable access to the elevator outside queue lock. Only check basic
1371 * merging parameters without querying the elevator.
1372 */
1373static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1374 unsigned int *request_count)
1375{
1376 struct blk_plug *plug;
1377 struct request *rq;
1378 bool ret = false;
1379
1380 plug = current->plug;
1381 if (!plug)
1382 goto out;
1383 *request_count = 0;
1384
1385 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1386 int el_ret;
1387
1388 if (rq->q == q)
1389 (*request_count)++;
1390
1391 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1392 continue;
1393
1394 el_ret = blk_try_merge(rq, bio);
1395 if (el_ret == ELEVATOR_BACK_MERGE) {
1396 ret = bio_attempt_back_merge(q, rq, bio);
1397 if (ret)
1398 break;
1399 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1400 ret = bio_attempt_front_merge(q, rq, bio);
1401 if (ret)
1402 break;
1403 }
1404 }
1405out:
1406 return ret;
1407}
1408
1409void init_request_from_bio(struct request *req, struct bio *bio)
1410{
1411 req->cmd_type = REQ_TYPE_FS;
1412
1413 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1414 if (bio->bi_rw & REQ_RAHEAD)
1415 req->cmd_flags |= REQ_FAILFAST_MASK;
1416
1417 req->errors = 0;
1418 req->__sector = bio->bi_sector;
1419 req->ioprio = bio_prio(bio);
1420 blk_rq_bio_prep(req->q, req, bio);
1421}
1422
1423void blk_queue_bio(struct request_queue *q, struct bio *bio)
1424{
1425 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1426 struct blk_plug *plug;
1427 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1428 struct request *req;
1429 unsigned int request_count = 0;
1430
1431 /*
1432 * low level driver can indicate that it wants pages above a
1433 * certain limit bounced to low memory (ie for highmem, or even
1434 * ISA dma in theory)
1435 */
1436 blk_queue_bounce(q, &bio);
1437
1438 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1439 spin_lock_irq(q->queue_lock);
1440 where = ELEVATOR_INSERT_FLUSH;
1441 goto get_rq;
1442 }
1443
1444 /*
1445 * Check if we can merge with the plugged list before grabbing
1446 * any locks.
1447 */
1448 if (attempt_plug_merge(q, bio, &request_count))
1449 return;
1450
1451 spin_lock_irq(q->queue_lock);
1452
1453 el_ret = elv_merge(q, &req, bio);
1454 if (el_ret == ELEVATOR_BACK_MERGE) {
1455 if (bio_attempt_back_merge(q, req, bio)) {
1456 elv_bio_merged(q, req, bio);
1457 if (!attempt_back_merge(q, req))
1458 elv_merged_request(q, req, el_ret);
1459 goto out_unlock;
1460 }
1461 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1462 if (bio_attempt_front_merge(q, req, bio)) {
1463 elv_bio_merged(q, req, bio);
1464 if (!attempt_front_merge(q, req))
1465 elv_merged_request(q, req, el_ret);
1466 goto out_unlock;
1467 }
1468 }
1469
1470get_rq:
1471 /*
1472 * This sync check and mask will be re-done in init_request_from_bio(),
1473 * but we need to set it earlier to expose the sync flag to the
1474 * rq allocator and io schedulers.
1475 */
1476 rw_flags = bio_data_dir(bio);
1477 if (sync)
1478 rw_flags |= REQ_SYNC;
1479
1480 /*
1481 * Grab a free request. This is might sleep but can not fail.
1482 * Returns with the queue unlocked.
1483 */
1484 req = get_request_wait(q, rw_flags, bio);
1485 if (unlikely(!req)) {
1486 bio_endio(bio, -ENODEV); /* @q is dead */
1487 goto out_unlock;
1488 }
1489
1490 /*
1491 * After dropping the lock and possibly sleeping here, our request
1492 * may now be mergeable after it had proven unmergeable (above).
1493 * We don't worry about that case for efficiency. It won't happen
1494 * often, and the elevators are able to handle it.
1495 */
1496 init_request_from_bio(req, bio);
1497
1498 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1499 req->cpu = raw_smp_processor_id();
1500
1501 plug = current->plug;
1502 if (plug) {
1503 /*
1504 * If this is the first request added after a plug, fire
1505 * of a plug trace. If others have been added before, check
1506 * if we have multiple devices in this plug. If so, make a
1507 * note to sort the list before dispatch.
1508 */
1509 if (list_empty(&plug->list))
1510 trace_block_plug(q);
1511 else {
1512 if (!plug->should_sort) {
1513 struct request *__rq;
1514
1515 __rq = list_entry_rq(plug->list.prev);
1516 if (__rq->q != q)
1517 plug->should_sort = 1;
1518 }
1519 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1520 blk_flush_plug_list(plug, false);
1521 trace_block_plug(q);
1522 }
1523 }
1524 list_add_tail(&req->queuelist, &plug->list);
1525 drive_stat_acct(req, 1);
1526 } else {
1527 spin_lock_irq(q->queue_lock);
1528 add_acct_request(q, req, where);
1529 __blk_run_queue(q);
1530out_unlock:
1531 spin_unlock_irq(q->queue_lock);
1532 }
1533}
1534EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1535
1536/*
1537 * If bio->bi_dev is a partition, remap the location
1538 */
1539static inline void blk_partition_remap(struct bio *bio)
1540{
1541 struct block_device *bdev = bio->bi_bdev;
1542
1543 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1544 struct hd_struct *p = bdev->bd_part;
1545
1546 bio->bi_sector += p->start_sect;
1547 bio->bi_bdev = bdev->bd_contains;
1548
1549 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1550 bdev->bd_dev,
1551 bio->bi_sector - p->start_sect);
1552 }
1553}
1554
1555static void handle_bad_sector(struct bio *bio)
1556{
1557 char b[BDEVNAME_SIZE];
1558
1559 printk(KERN_INFO "attempt to access beyond end of device\n");
1560 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1561 bdevname(bio->bi_bdev, b),
1562 bio->bi_rw,
1563 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1564 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1565
1566 set_bit(BIO_EOF, &bio->bi_flags);
1567}
1568
1569#ifdef CONFIG_FAIL_MAKE_REQUEST
1570
1571static DECLARE_FAULT_ATTR(fail_make_request);
1572
1573static int __init setup_fail_make_request(char *str)
1574{
1575 return setup_fault_attr(&fail_make_request, str);
1576}
1577__setup("fail_make_request=", setup_fail_make_request);
1578
1579static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1580{
1581 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1582}
1583
1584static int __init fail_make_request_debugfs(void)
1585{
1586 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1587 NULL, &fail_make_request);
1588
1589 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1590}
1591
1592late_initcall(fail_make_request_debugfs);
1593
1594#else /* CONFIG_FAIL_MAKE_REQUEST */
1595
1596static inline bool should_fail_request(struct hd_struct *part,
1597 unsigned int bytes)
1598{
1599 return false;
1600}
1601
1602#endif /* CONFIG_FAIL_MAKE_REQUEST */
1603
1604/*
1605 * Check whether this bio extends beyond the end of the device.
1606 */
1607static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1608{
1609 sector_t maxsector;
1610
1611 if (!nr_sectors)
1612 return 0;
1613
1614 /* Test device or partition size, when known. */
1615 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1616 if (maxsector) {
1617 sector_t sector = bio->bi_sector;
1618
1619 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1620 /*
1621 * This may well happen - the kernel calls bread()
1622 * without checking the size of the device, e.g., when
1623 * mounting a device.
1624 */
1625 handle_bad_sector(bio);
1626 return 1;
1627 }
1628 }
1629
1630 return 0;
1631}
1632
1633static noinline_for_stack bool
1634generic_make_request_checks(struct bio *bio)
1635{
1636 struct request_queue *q;
1637 int nr_sectors = bio_sectors(bio);
1638 int err = -EIO;
1639 char b[BDEVNAME_SIZE];
1640 struct hd_struct *part;
1641
1642 might_sleep();
1643
1644 if (bio_check_eod(bio, nr_sectors))
1645 goto end_io;
1646
1647 q = bdev_get_queue(bio->bi_bdev);
1648 if (unlikely(!q)) {
1649 printk(KERN_ERR
1650 "generic_make_request: Trying to access "
1651 "nonexistent block-device %s (%Lu)\n",
1652 bdevname(bio->bi_bdev, b),
1653 (long long) bio->bi_sector);
1654 goto end_io;
1655 }
1656
1657 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1658 nr_sectors > queue_max_hw_sectors(q))) {
1659 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1660 bdevname(bio->bi_bdev, b),
1661 bio_sectors(bio),
1662 queue_max_hw_sectors(q));
1663 goto end_io;
1664 }
1665
1666 part = bio->bi_bdev->bd_part;
1667 if (should_fail_request(part, bio->bi_size) ||
1668 should_fail_request(&part_to_disk(part)->part0,
1669 bio->bi_size))
1670 goto end_io;
1671
1672 /*
1673 * If this device has partitions, remap block n
1674 * of partition p to block n+start(p) of the disk.
1675 */
1676 blk_partition_remap(bio);
1677
1678 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1679 goto end_io;
1680
1681 if (bio_check_eod(bio, nr_sectors))
1682 goto end_io;
1683
1684 /*
1685 * Filter flush bio's early so that make_request based
1686 * drivers without flush support don't have to worry
1687 * about them.
1688 */
1689 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1690 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1691 if (!nr_sectors) {
1692 err = 0;
1693 goto end_io;
1694 }
1695 }
1696
1697 if ((bio->bi_rw & REQ_DISCARD) &&
1698 (!blk_queue_discard(q) ||
1699 ((bio->bi_rw & REQ_SECURE) &&
1700 !blk_queue_secdiscard(q)))) {
1701 err = -EOPNOTSUPP;
1702 goto end_io;
1703 }
1704
1705 if (blk_throtl_bio(q, bio))
1706 return false; /* throttled, will be resubmitted later */
1707
1708 trace_block_bio_queue(q, bio);
1709 return true;
1710
1711end_io:
1712 bio_endio(bio, err);
1713 return false;
1714}
1715
1716/**
1717 * generic_make_request - hand a buffer to its device driver for I/O
1718 * @bio: The bio describing the location in memory and on the device.
1719 *
1720 * generic_make_request() is used to make I/O requests of block
1721 * devices. It is passed a &struct bio, which describes the I/O that needs
1722 * to be done.
1723 *
1724 * generic_make_request() does not return any status. The
1725 * success/failure status of the request, along with notification of
1726 * completion, is delivered asynchronously through the bio->bi_end_io
1727 * function described (one day) else where.
1728 *
1729 * The caller of generic_make_request must make sure that bi_io_vec
1730 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1731 * set to describe the device address, and the
1732 * bi_end_io and optionally bi_private are set to describe how
1733 * completion notification should be signaled.
1734 *
1735 * generic_make_request and the drivers it calls may use bi_next if this
1736 * bio happens to be merged with someone else, and may resubmit the bio to
1737 * a lower device by calling into generic_make_request recursively, which
1738 * means the bio should NOT be touched after the call to ->make_request_fn.
1739 */
1740void generic_make_request(struct bio *bio)
1741{
1742 struct bio_list bio_list_on_stack;
1743
1744 if (!generic_make_request_checks(bio))
1745 return;
1746
1747 /*
1748 * We only want one ->make_request_fn to be active at a time, else
1749 * stack usage with stacked devices could be a problem. So use
1750 * current->bio_list to keep a list of requests submited by a
1751 * make_request_fn function. current->bio_list is also used as a
1752 * flag to say if generic_make_request is currently active in this
1753 * task or not. If it is NULL, then no make_request is active. If
1754 * it is non-NULL, then a make_request is active, and new requests
1755 * should be added at the tail
1756 */
1757 if (current->bio_list) {
1758 bio_list_add(current->bio_list, bio);
1759 return;
1760 }
1761
1762 /* following loop may be a bit non-obvious, and so deserves some
1763 * explanation.
1764 * Before entering the loop, bio->bi_next is NULL (as all callers
1765 * ensure that) so we have a list with a single bio.
1766 * We pretend that we have just taken it off a longer list, so
1767 * we assign bio_list to a pointer to the bio_list_on_stack,
1768 * thus initialising the bio_list of new bios to be
1769 * added. ->make_request() may indeed add some more bios
1770 * through a recursive call to generic_make_request. If it
1771 * did, we find a non-NULL value in bio_list and re-enter the loop
1772 * from the top. In this case we really did just take the bio
1773 * of the top of the list (no pretending) and so remove it from
1774 * bio_list, and call into ->make_request() again.
1775 */
1776 BUG_ON(bio->bi_next);
1777 bio_list_init(&bio_list_on_stack);
1778 current->bio_list = &bio_list_on_stack;
1779 do {
1780 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1781
1782 q->make_request_fn(q, bio);
1783
1784 bio = bio_list_pop(current->bio_list);
1785 } while (bio);
1786 current->bio_list = NULL; /* deactivate */
1787}
1788EXPORT_SYMBOL(generic_make_request);
1789
1790/**
1791 * submit_bio - submit a bio to the block device layer for I/O
1792 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1793 * @bio: The &struct bio which describes the I/O
1794 *
1795 * submit_bio() is very similar in purpose to generic_make_request(), and
1796 * uses that function to do most of the work. Both are fairly rough
1797 * interfaces; @bio must be presetup and ready for I/O.
1798 *
1799 */
1800void submit_bio(int rw, struct bio *bio)
1801{
1802 int count = bio_sectors(bio);
1803
1804 bio->bi_rw |= rw;
1805
1806 /*
1807 * If it's a regular read/write or a barrier with data attached,
1808 * go through the normal accounting stuff before submission.
1809 */
1810 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1811 if (rw & WRITE) {
1812 count_vm_events(PGPGOUT, count);
1813 } else {
1814 task_io_account_read(bio->bi_size);
1815 count_vm_events(PGPGIN, count);
1816 }
1817
1818 if (unlikely(block_dump)) {
1819 char b[BDEVNAME_SIZE];
1820 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1821 current->comm, task_pid_nr(current),
1822 (rw & WRITE) ? "WRITE" : "READ",
1823 (unsigned long long)bio->bi_sector,
1824 bdevname(bio->bi_bdev, b),
1825 count);
1826 }
1827 }
1828
1829 generic_make_request(bio);
1830}
1831EXPORT_SYMBOL(submit_bio);
1832
1833/**
1834 * blk_rq_check_limits - Helper function to check a request for the queue limit
1835 * @q: the queue
1836 * @rq: the request being checked
1837 *
1838 * Description:
1839 * @rq may have been made based on weaker limitations of upper-level queues
1840 * in request stacking drivers, and it may violate the limitation of @q.
1841 * Since the block layer and the underlying device driver trust @rq
1842 * after it is inserted to @q, it should be checked against @q before
1843 * the insertion using this generic function.
1844 *
1845 * This function should also be useful for request stacking drivers
1846 * in some cases below, so export this function.
1847 * Request stacking drivers like request-based dm may change the queue
1848 * limits while requests are in the queue (e.g. dm's table swapping).
1849 * Such request stacking drivers should check those requests agaist
1850 * the new queue limits again when they dispatch those requests,
1851 * although such checkings are also done against the old queue limits
1852 * when submitting requests.
1853 */
1854int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1855{
1856 if (rq->cmd_flags & REQ_DISCARD)
1857 return 0;
1858
1859 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1860 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1861 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1862 return -EIO;
1863 }
1864
1865 /*
1866 * queue's settings related to segment counting like q->bounce_pfn
1867 * may differ from that of other stacking queues.
1868 * Recalculate it to check the request correctly on this queue's
1869 * limitation.
1870 */
1871 blk_recalc_rq_segments(rq);
1872 if (rq->nr_phys_segments > queue_max_segments(q)) {
1873 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1874 return -EIO;
1875 }
1876
1877 return 0;
1878}
1879EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1880
1881/**
1882 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1883 * @q: the queue to submit the request
1884 * @rq: the request being queued
1885 */
1886int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1887{
1888 unsigned long flags;
1889 int where = ELEVATOR_INSERT_BACK;
1890
1891 if (blk_rq_check_limits(q, rq))
1892 return -EIO;
1893
1894 if (rq->rq_disk &&
1895 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1896 return -EIO;
1897
1898 spin_lock_irqsave(q->queue_lock, flags);
1899 if (unlikely(blk_queue_dead(q))) {
1900 spin_unlock_irqrestore(q->queue_lock, flags);
1901 return -ENODEV;
1902 }
1903
1904 /*
1905 * Submitting request must be dequeued before calling this function
1906 * because it will be linked to another request_queue
1907 */
1908 BUG_ON(blk_queued_rq(rq));
1909
1910 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1911 where = ELEVATOR_INSERT_FLUSH;
1912
1913 add_acct_request(q, rq, where);
1914 if (where == ELEVATOR_INSERT_FLUSH)
1915 __blk_run_queue(q);
1916 spin_unlock_irqrestore(q->queue_lock, flags);
1917
1918 return 0;
1919}
1920EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1921
1922/**
1923 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1924 * @rq: request to examine
1925 *
1926 * Description:
1927 * A request could be merge of IOs which require different failure
1928 * handling. This function determines the number of bytes which
1929 * can be failed from the beginning of the request without
1930 * crossing into area which need to be retried further.
1931 *
1932 * Return:
1933 * The number of bytes to fail.
1934 *
1935 * Context:
1936 * queue_lock must be held.
1937 */
1938unsigned int blk_rq_err_bytes(const struct request *rq)
1939{
1940 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1941 unsigned int bytes = 0;
1942 struct bio *bio;
1943
1944 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1945 return blk_rq_bytes(rq);
1946
1947 /*
1948 * Currently the only 'mixing' which can happen is between
1949 * different fastfail types. We can safely fail portions
1950 * which have all the failfast bits that the first one has -
1951 * the ones which are at least as eager to fail as the first
1952 * one.
1953 */
1954 for (bio = rq->bio; bio; bio = bio->bi_next) {
1955 if ((bio->bi_rw & ff) != ff)
1956 break;
1957 bytes += bio->bi_size;
1958 }
1959
1960 /* this could lead to infinite loop */
1961 BUG_ON(blk_rq_bytes(rq) && !bytes);
1962 return bytes;
1963}
1964EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1965
1966static void blk_account_io_completion(struct request *req, unsigned int bytes)
1967{
1968 if (blk_do_io_stat(req)) {
1969 const int rw = rq_data_dir(req);
1970 struct hd_struct *part;
1971 int cpu;
1972
1973 cpu = part_stat_lock();
1974 part = req->part;
1975 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1976 part_stat_unlock();
1977 }
1978}
1979
1980static void blk_account_io_done(struct request *req)
1981{
1982 /*
1983 * Account IO completion. flush_rq isn't accounted as a
1984 * normal IO on queueing nor completion. Accounting the
1985 * containing request is enough.
1986 */
1987 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1988 unsigned long duration = jiffies - req->start_time;
1989 const int rw = rq_data_dir(req);
1990 struct hd_struct *part;
1991 int cpu;
1992
1993 cpu = part_stat_lock();
1994 part = req->part;
1995
1996 part_stat_inc(cpu, part, ios[rw]);
1997 part_stat_add(cpu, part, ticks[rw], duration);
1998 part_round_stats(cpu, part);
1999 part_dec_in_flight(part, rw);
2000
2001 hd_struct_put(part);
2002 part_stat_unlock();
2003 }
2004}
2005
2006/**
2007 * blk_peek_request - peek at the top of a request queue
2008 * @q: request queue to peek at
2009 *
2010 * Description:
2011 * Return the request at the top of @q. The returned request
2012 * should be started using blk_start_request() before LLD starts
2013 * processing it.
2014 *
2015 * Return:
2016 * Pointer to the request at the top of @q if available. Null
2017 * otherwise.
2018 *
2019 * Context:
2020 * queue_lock must be held.
2021 */
2022struct request *blk_peek_request(struct request_queue *q)
2023{
2024 struct request *rq;
2025 int ret;
2026
2027 while ((rq = __elv_next_request(q)) != NULL) {
2028 if (!(rq->cmd_flags & REQ_STARTED)) {
2029 /*
2030 * This is the first time the device driver
2031 * sees this request (possibly after
2032 * requeueing). Notify IO scheduler.
2033 */
2034 if (rq->cmd_flags & REQ_SORTED)
2035 elv_activate_rq(q, rq);
2036
2037 /*
2038 * just mark as started even if we don't start
2039 * it, a request that has been delayed should
2040 * not be passed by new incoming requests
2041 */
2042 rq->cmd_flags |= REQ_STARTED;
2043 trace_block_rq_issue(q, rq);
2044 }
2045
2046 if (!q->boundary_rq || q->boundary_rq == rq) {
2047 q->end_sector = rq_end_sector(rq);
2048 q->boundary_rq = NULL;
2049 }
2050
2051 if (rq->cmd_flags & REQ_DONTPREP)
2052 break;
2053
2054 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2055 /*
2056 * make sure space for the drain appears we
2057 * know we can do this because max_hw_segments
2058 * has been adjusted to be one fewer than the
2059 * device can handle
2060 */
2061 rq->nr_phys_segments++;
2062 }
2063
2064 if (!q->prep_rq_fn)
2065 break;
2066
2067 ret = q->prep_rq_fn(q, rq);
2068 if (ret == BLKPREP_OK) {
2069 break;
2070 } else if (ret == BLKPREP_DEFER) {
2071 /*
2072 * the request may have been (partially) prepped.
2073 * we need to keep this request in the front to
2074 * avoid resource deadlock. REQ_STARTED will
2075 * prevent other fs requests from passing this one.
2076 */
2077 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2078 !(rq->cmd_flags & REQ_DONTPREP)) {
2079 /*
2080 * remove the space for the drain we added
2081 * so that we don't add it again
2082 */
2083 --rq->nr_phys_segments;
2084 }
2085
2086 rq = NULL;
2087 break;
2088 } else if (ret == BLKPREP_KILL) {
2089 rq->cmd_flags |= REQ_QUIET;
2090 /*
2091 * Mark this request as started so we don't trigger
2092 * any debug logic in the end I/O path.
2093 */
2094 blk_start_request(rq);
2095 __blk_end_request_all(rq, -EIO);
2096 } else {
2097 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2098 break;
2099 }
2100 }
2101
2102 return rq;
2103}
2104EXPORT_SYMBOL(blk_peek_request);
2105
2106void blk_dequeue_request(struct request *rq)
2107{
2108 struct request_queue *q = rq->q;
2109
2110 BUG_ON(list_empty(&rq->queuelist));
2111 BUG_ON(ELV_ON_HASH(rq));
2112
2113 list_del_init(&rq->queuelist);
2114
2115 /*
2116 * the time frame between a request being removed from the lists
2117 * and to it is freed is accounted as io that is in progress at
2118 * the driver side.
2119 */
2120 if (blk_account_rq(rq)) {
2121 q->in_flight[rq_is_sync(rq)]++;
2122 set_io_start_time_ns(rq);
2123 }
2124}
2125
2126/**
2127 * blk_start_request - start request processing on the driver
2128 * @req: request to dequeue
2129 *
2130 * Description:
2131 * Dequeue @req and start timeout timer on it. This hands off the
2132 * request to the driver.
2133 *
2134 * Block internal functions which don't want to start timer should
2135 * call blk_dequeue_request().
2136 *
2137 * Context:
2138 * queue_lock must be held.
2139 */
2140void blk_start_request(struct request *req)
2141{
2142 blk_dequeue_request(req);
2143
2144 /*
2145 * We are now handing the request to the hardware, initialize
2146 * resid_len to full count and add the timeout handler.
2147 */
2148 req->resid_len = blk_rq_bytes(req);
2149 if (unlikely(blk_bidi_rq(req)))
2150 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2151
2152 blk_add_timer(req);
2153}
2154EXPORT_SYMBOL(blk_start_request);
2155
2156/**
2157 * blk_fetch_request - fetch a request from a request queue
2158 * @q: request queue to fetch a request from
2159 *
2160 * Description:
2161 * Return the request at the top of @q. The request is started on
2162 * return and LLD can start processing it immediately.
2163 *
2164 * Return:
2165 * Pointer to the request at the top of @q if available. Null
2166 * otherwise.
2167 *
2168 * Context:
2169 * queue_lock must be held.
2170 */
2171struct request *blk_fetch_request(struct request_queue *q)
2172{
2173 struct request *rq;
2174
2175 rq = blk_peek_request(q);
2176 if (rq)
2177 blk_start_request(rq);
2178 return rq;
2179}
2180EXPORT_SYMBOL(blk_fetch_request);
2181
2182/**
2183 * blk_update_request - Special helper function for request stacking drivers
2184 * @req: the request being processed
2185 * @error: %0 for success, < %0 for error
2186 * @nr_bytes: number of bytes to complete @req
2187 *
2188 * Description:
2189 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2190 * the request structure even if @req doesn't have leftover.
2191 * If @req has leftover, sets it up for the next range of segments.
2192 *
2193 * This special helper function is only for request stacking drivers
2194 * (e.g. request-based dm) so that they can handle partial completion.
2195 * Actual device drivers should use blk_end_request instead.
2196 *
2197 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2198 * %false return from this function.
2199 *
2200 * Return:
2201 * %false - this request doesn't have any more data
2202 * %true - this request has more data
2203 **/
2204bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2205{
2206 int total_bytes, bio_nbytes, next_idx = 0;
2207 struct bio *bio;
2208
2209 if (!req->bio)
2210 return false;
2211
2212 trace_block_rq_complete(req->q, req);
2213
2214 /*
2215 * For fs requests, rq is just carrier of independent bio's
2216 * and each partial completion should be handled separately.
2217 * Reset per-request error on each partial completion.
2218 *
2219 * TODO: tj: This is too subtle. It would be better to let
2220 * low level drivers do what they see fit.
2221 */
2222 if (req->cmd_type == REQ_TYPE_FS)
2223 req->errors = 0;
2224
2225 if (error && req->cmd_type == REQ_TYPE_FS &&
2226 !(req->cmd_flags & REQ_QUIET)) {
2227 char *error_type;
2228
2229 switch (error) {
2230 case -ENOLINK:
2231 error_type = "recoverable transport";
2232 break;
2233 case -EREMOTEIO:
2234 error_type = "critical target";
2235 break;
2236 case -EBADE:
2237 error_type = "critical nexus";
2238 break;
2239 case -EIO:
2240 default:
2241 error_type = "I/O";
2242 break;
2243 }
2244 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2245 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2246 (unsigned long long)blk_rq_pos(req));
2247 }
2248
2249 blk_account_io_completion(req, nr_bytes);
2250
2251 total_bytes = bio_nbytes = 0;
2252 while ((bio = req->bio) != NULL) {
2253 int nbytes;
2254
2255 if (nr_bytes >= bio->bi_size) {
2256 req->bio = bio->bi_next;
2257 nbytes = bio->bi_size;
2258 req_bio_endio(req, bio, nbytes, error);
2259 next_idx = 0;
2260 bio_nbytes = 0;
2261 } else {
2262 int idx = bio->bi_idx + next_idx;
2263
2264 if (unlikely(idx >= bio->bi_vcnt)) {
2265 blk_dump_rq_flags(req, "__end_that");
2266 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2267 __func__, idx, bio->bi_vcnt);
2268 break;
2269 }
2270
2271 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2272 BIO_BUG_ON(nbytes > bio->bi_size);
2273
2274 /*
2275 * not a complete bvec done
2276 */
2277 if (unlikely(nbytes > nr_bytes)) {
2278 bio_nbytes += nr_bytes;
2279 total_bytes += nr_bytes;
2280 break;
2281 }
2282
2283 /*
2284 * advance to the next vector
2285 */
2286 next_idx++;
2287 bio_nbytes += nbytes;
2288 }
2289
2290 total_bytes += nbytes;
2291 nr_bytes -= nbytes;
2292
2293 bio = req->bio;
2294 if (bio) {
2295 /*
2296 * end more in this run, or just return 'not-done'
2297 */
2298 if (unlikely(nr_bytes <= 0))
2299 break;
2300 }
2301 }
2302
2303 /*
2304 * completely done
2305 */
2306 if (!req->bio) {
2307 /*
2308 * Reset counters so that the request stacking driver
2309 * can find how many bytes remain in the request
2310 * later.
2311 */
2312 req->__data_len = 0;
2313 return false;
2314 }
2315
2316 /*
2317 * if the request wasn't completed, update state
2318 */
2319 if (bio_nbytes) {
2320 req_bio_endio(req, bio, bio_nbytes, error);
2321 bio->bi_idx += next_idx;
2322 bio_iovec(bio)->bv_offset += nr_bytes;
2323 bio_iovec(bio)->bv_len -= nr_bytes;
2324 }
2325
2326 req->__data_len -= total_bytes;
2327 req->buffer = bio_data(req->bio);
2328
2329 /* update sector only for requests with clear definition of sector */
2330 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2331 req->__sector += total_bytes >> 9;
2332
2333 /* mixed attributes always follow the first bio */
2334 if (req->cmd_flags & REQ_MIXED_MERGE) {
2335 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2336 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2337 }
2338
2339 /*
2340 * If total number of sectors is less than the first segment
2341 * size, something has gone terribly wrong.
2342 */
2343 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2344 blk_dump_rq_flags(req, "request botched");
2345 req->__data_len = blk_rq_cur_bytes(req);
2346 }
2347
2348 /* recalculate the number of segments */
2349 blk_recalc_rq_segments(req);
2350
2351 return true;
2352}
2353EXPORT_SYMBOL_GPL(blk_update_request);
2354
2355static bool blk_update_bidi_request(struct request *rq, int error,
2356 unsigned int nr_bytes,
2357 unsigned int bidi_bytes)
2358{
2359 if (blk_update_request(rq, error, nr_bytes))
2360 return true;
2361
2362 /* Bidi request must be completed as a whole */
2363 if (unlikely(blk_bidi_rq(rq)) &&
2364 blk_update_request(rq->next_rq, error, bidi_bytes))
2365 return true;
2366
2367 if (blk_queue_add_random(rq->q))
2368 add_disk_randomness(rq->rq_disk);
2369
2370 return false;
2371}
2372
2373/**
2374 * blk_unprep_request - unprepare a request
2375 * @req: the request
2376 *
2377 * This function makes a request ready for complete resubmission (or
2378 * completion). It happens only after all error handling is complete,
2379 * so represents the appropriate moment to deallocate any resources
2380 * that were allocated to the request in the prep_rq_fn. The queue
2381 * lock is held when calling this.
2382 */
2383void blk_unprep_request(struct request *req)
2384{
2385 struct request_queue *q = req->q;
2386
2387 req->cmd_flags &= ~REQ_DONTPREP;
2388 if (q->unprep_rq_fn)
2389 q->unprep_rq_fn(q, req);
2390}
2391EXPORT_SYMBOL_GPL(blk_unprep_request);
2392
2393/*
2394 * queue lock must be held
2395 */
2396static void blk_finish_request(struct request *req, int error)
2397{
2398 if (blk_rq_tagged(req))
2399 blk_queue_end_tag(req->q, req);
2400
2401 BUG_ON(blk_queued_rq(req));
2402
2403 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2404 laptop_io_completion(&req->q->backing_dev_info);
2405
2406 blk_delete_timer(req);
2407
2408 if (req->cmd_flags & REQ_DONTPREP)
2409 blk_unprep_request(req);
2410
2411
2412 blk_account_io_done(req);
2413
2414 if (req->end_io)
2415 req->end_io(req, error);
2416 else {
2417 if (blk_bidi_rq(req))
2418 __blk_put_request(req->next_rq->q, req->next_rq);
2419
2420 __blk_put_request(req->q, req);
2421 }
2422}
2423
2424/**
2425 * blk_end_bidi_request - Complete a bidi request
2426 * @rq: the request to complete
2427 * @error: %0 for success, < %0 for error
2428 * @nr_bytes: number of bytes to complete @rq
2429 * @bidi_bytes: number of bytes to complete @rq->next_rq
2430 *
2431 * Description:
2432 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2433 * Drivers that supports bidi can safely call this member for any
2434 * type of request, bidi or uni. In the later case @bidi_bytes is
2435 * just ignored.
2436 *
2437 * Return:
2438 * %false - we are done with this request
2439 * %true - still buffers pending for this request
2440 **/
2441static bool blk_end_bidi_request(struct request *rq, int error,
2442 unsigned int nr_bytes, unsigned int bidi_bytes)
2443{
2444 struct request_queue *q = rq->q;
2445 unsigned long flags;
2446
2447 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2448 return true;
2449
2450 spin_lock_irqsave(q->queue_lock, flags);
2451 blk_finish_request(rq, error);
2452 spin_unlock_irqrestore(q->queue_lock, flags);
2453
2454 return false;
2455}
2456
2457/**
2458 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2459 * @rq: the request to complete
2460 * @error: %0 for success, < %0 for error
2461 * @nr_bytes: number of bytes to complete @rq
2462 * @bidi_bytes: number of bytes to complete @rq->next_rq
2463 *
2464 * Description:
2465 * Identical to blk_end_bidi_request() except that queue lock is
2466 * assumed to be locked on entry and remains so on return.
2467 *
2468 * Return:
2469 * %false - we are done with this request
2470 * %true - still buffers pending for this request
2471 **/
2472bool __blk_end_bidi_request(struct request *rq, int error,
2473 unsigned int nr_bytes, unsigned int bidi_bytes)
2474{
2475 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2476 return true;
2477
2478 blk_finish_request(rq, error);
2479
2480 return false;
2481}
2482
2483/**
2484 * blk_end_request - Helper function for drivers to complete the request.
2485 * @rq: the request being processed
2486 * @error: %0 for success, < %0 for error
2487 * @nr_bytes: number of bytes to complete
2488 *
2489 * Description:
2490 * Ends I/O on a number of bytes attached to @rq.
2491 * If @rq has leftover, sets it up for the next range of segments.
2492 *
2493 * Return:
2494 * %false - we are done with this request
2495 * %true - still buffers pending for this request
2496 **/
2497bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2498{
2499 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2500}
2501EXPORT_SYMBOL(blk_end_request);
2502
2503/**
2504 * blk_end_request_all - Helper function for drives to finish the request.
2505 * @rq: the request to finish
2506 * @error: %0 for success, < %0 for error
2507 *
2508 * Description:
2509 * Completely finish @rq.
2510 */
2511void blk_end_request_all(struct request *rq, int error)
2512{
2513 bool pending;
2514 unsigned int bidi_bytes = 0;
2515
2516 if (unlikely(blk_bidi_rq(rq)))
2517 bidi_bytes = blk_rq_bytes(rq->next_rq);
2518
2519 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2520 BUG_ON(pending);
2521}
2522EXPORT_SYMBOL(blk_end_request_all);
2523
2524/**
2525 * blk_end_request_cur - Helper function to finish the current request chunk.
2526 * @rq: the request to finish the current chunk for
2527 * @error: %0 for success, < %0 for error
2528 *
2529 * Description:
2530 * Complete the current consecutively mapped chunk from @rq.
2531 *
2532 * Return:
2533 * %false - we are done with this request
2534 * %true - still buffers pending for this request
2535 */
2536bool blk_end_request_cur(struct request *rq, int error)
2537{
2538 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2539}
2540EXPORT_SYMBOL(blk_end_request_cur);
2541
2542/**
2543 * blk_end_request_err - Finish a request till the next failure boundary.
2544 * @rq: the request to finish till the next failure boundary for
2545 * @error: must be negative errno
2546 *
2547 * Description:
2548 * Complete @rq till the next failure boundary.
2549 *
2550 * Return:
2551 * %false - we are done with this request
2552 * %true - still buffers pending for this request
2553 */
2554bool blk_end_request_err(struct request *rq, int error)
2555{
2556 WARN_ON(error >= 0);
2557 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2558}
2559EXPORT_SYMBOL_GPL(blk_end_request_err);
2560
2561/**
2562 * __blk_end_request - Helper function for drivers to complete the request.
2563 * @rq: the request being processed
2564 * @error: %0 for success, < %0 for error
2565 * @nr_bytes: number of bytes to complete
2566 *
2567 * Description:
2568 * Must be called with queue lock held unlike blk_end_request().
2569 *
2570 * Return:
2571 * %false - we are done with this request
2572 * %true - still buffers pending for this request
2573 **/
2574bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2575{
2576 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2577}
2578EXPORT_SYMBOL(__blk_end_request);
2579
2580/**
2581 * __blk_end_request_all - Helper function for drives to finish the request.
2582 * @rq: the request to finish
2583 * @error: %0 for success, < %0 for error
2584 *
2585 * Description:
2586 * Completely finish @rq. Must be called with queue lock held.
2587 */
2588void __blk_end_request_all(struct request *rq, int error)
2589{
2590 bool pending;
2591 unsigned int bidi_bytes = 0;
2592
2593 if (unlikely(blk_bidi_rq(rq)))
2594 bidi_bytes = blk_rq_bytes(rq->next_rq);
2595
2596 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2597 BUG_ON(pending);
2598}
2599EXPORT_SYMBOL(__blk_end_request_all);
2600
2601/**
2602 * __blk_end_request_cur - Helper function to finish the current request chunk.
2603 * @rq: the request to finish the current chunk for
2604 * @error: %0 for success, < %0 for error
2605 *
2606 * Description:
2607 * Complete the current consecutively mapped chunk from @rq. Must
2608 * be called with queue lock held.
2609 *
2610 * Return:
2611 * %false - we are done with this request
2612 * %true - still buffers pending for this request
2613 */
2614bool __blk_end_request_cur(struct request *rq, int error)
2615{
2616 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2617}
2618EXPORT_SYMBOL(__blk_end_request_cur);
2619
2620/**
2621 * __blk_end_request_err - Finish a request till the next failure boundary.
2622 * @rq: the request to finish till the next failure boundary for
2623 * @error: must be negative errno
2624 *
2625 * Description:
2626 * Complete @rq till the next failure boundary. Must be called
2627 * with queue lock held.
2628 *
2629 * Return:
2630 * %false - we are done with this request
2631 * %true - still buffers pending for this request
2632 */
2633bool __blk_end_request_err(struct request *rq, int error)
2634{
2635 WARN_ON(error >= 0);
2636 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2637}
2638EXPORT_SYMBOL_GPL(__blk_end_request_err);
2639
2640void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2641 struct bio *bio)
2642{
2643 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2644 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2645
2646 if (bio_has_data(bio)) {
2647 rq->nr_phys_segments = bio_phys_segments(q, bio);
2648 rq->buffer = bio_data(bio);
2649 }
2650 rq->__data_len = bio->bi_size;
2651 rq->bio = rq->biotail = bio;
2652
2653 if (bio->bi_bdev)
2654 rq->rq_disk = bio->bi_bdev->bd_disk;
2655}
2656
2657#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2658/**
2659 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2660 * @rq: the request to be flushed
2661 *
2662 * Description:
2663 * Flush all pages in @rq.
2664 */
2665void rq_flush_dcache_pages(struct request *rq)
2666{
2667 struct req_iterator iter;
2668 struct bio_vec *bvec;
2669
2670 rq_for_each_segment(bvec, rq, iter)
2671 flush_dcache_page(bvec->bv_page);
2672}
2673EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2674#endif
2675
2676/**
2677 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2678 * @q : the queue of the device being checked
2679 *
2680 * Description:
2681 * Check if underlying low-level drivers of a device are busy.
2682 * If the drivers want to export their busy state, they must set own
2683 * exporting function using blk_queue_lld_busy() first.
2684 *
2685 * Basically, this function is used only by request stacking drivers
2686 * to stop dispatching requests to underlying devices when underlying
2687 * devices are busy. This behavior helps more I/O merging on the queue
2688 * of the request stacking driver and prevents I/O throughput regression
2689 * on burst I/O load.
2690 *
2691 * Return:
2692 * 0 - Not busy (The request stacking driver should dispatch request)
2693 * 1 - Busy (The request stacking driver should stop dispatching request)
2694 */
2695int blk_lld_busy(struct request_queue *q)
2696{
2697 if (q->lld_busy_fn)
2698 return q->lld_busy_fn(q);
2699
2700 return 0;
2701}
2702EXPORT_SYMBOL_GPL(blk_lld_busy);
2703
2704/**
2705 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2706 * @rq: the clone request to be cleaned up
2707 *
2708 * Description:
2709 * Free all bios in @rq for a cloned request.
2710 */
2711void blk_rq_unprep_clone(struct request *rq)
2712{
2713 struct bio *bio;
2714
2715 while ((bio = rq->bio) != NULL) {
2716 rq->bio = bio->bi_next;
2717
2718 bio_put(bio);
2719 }
2720}
2721EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2722
2723/*
2724 * Copy attributes of the original request to the clone request.
2725 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2726 */
2727static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2728{
2729 dst->cpu = src->cpu;
2730 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2731 dst->cmd_type = src->cmd_type;
2732 dst->__sector = blk_rq_pos(src);
2733 dst->__data_len = blk_rq_bytes(src);
2734 dst->nr_phys_segments = src->nr_phys_segments;
2735 dst->ioprio = src->ioprio;
2736 dst->extra_len = src->extra_len;
2737}
2738
2739/**
2740 * blk_rq_prep_clone - Helper function to setup clone request
2741 * @rq: the request to be setup
2742 * @rq_src: original request to be cloned
2743 * @bs: bio_set that bios for clone are allocated from
2744 * @gfp_mask: memory allocation mask for bio
2745 * @bio_ctr: setup function to be called for each clone bio.
2746 * Returns %0 for success, non %0 for failure.
2747 * @data: private data to be passed to @bio_ctr
2748 *
2749 * Description:
2750 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2751 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2752 * are not copied, and copying such parts is the caller's responsibility.
2753 * Also, pages which the original bios are pointing to are not copied
2754 * and the cloned bios just point same pages.
2755 * So cloned bios must be completed before original bios, which means
2756 * the caller must complete @rq before @rq_src.
2757 */
2758int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2759 struct bio_set *bs, gfp_t gfp_mask,
2760 int (*bio_ctr)(struct bio *, struct bio *, void *),
2761 void *data)
2762{
2763 struct bio *bio, *bio_src;
2764
2765 if (!bs)
2766 bs = fs_bio_set;
2767
2768 blk_rq_init(NULL, rq);
2769
2770 __rq_for_each_bio(bio_src, rq_src) {
2771 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2772 if (!bio)
2773 goto free_and_out;
2774
2775 __bio_clone(bio, bio_src);
2776
2777 if (bio_integrity(bio_src) &&
2778 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2779 goto free_and_out;
2780
2781 if (bio_ctr && bio_ctr(bio, bio_src, data))
2782 goto free_and_out;
2783
2784 if (rq->bio) {
2785 rq->biotail->bi_next = bio;
2786 rq->biotail = bio;
2787 } else
2788 rq->bio = rq->biotail = bio;
2789 }
2790
2791 __blk_rq_prep_clone(rq, rq_src);
2792
2793 return 0;
2794
2795free_and_out:
2796 if (bio)
2797 bio_free(bio, bs);
2798 blk_rq_unprep_clone(rq);
2799
2800 return -ENOMEM;
2801}
2802EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2803
2804int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2805{
2806 return queue_work(kblockd_workqueue, work);
2807}
2808EXPORT_SYMBOL(kblockd_schedule_work);
2809
2810int kblockd_schedule_delayed_work(struct request_queue *q,
2811 struct delayed_work *dwork, unsigned long delay)
2812{
2813 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2814}
2815EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2816
2817#define PLUG_MAGIC 0x91827364
2818
2819/**
2820 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2821 * @plug: The &struct blk_plug that needs to be initialized
2822 *
2823 * Description:
2824 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2825 * pending I/O should the task end up blocking between blk_start_plug() and
2826 * blk_finish_plug(). This is important from a performance perspective, but
2827 * also ensures that we don't deadlock. For instance, if the task is blocking
2828 * for a memory allocation, memory reclaim could end up wanting to free a
2829 * page belonging to that request that is currently residing in our private
2830 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2831 * this kind of deadlock.
2832 */
2833void blk_start_plug(struct blk_plug *plug)
2834{
2835 struct task_struct *tsk = current;
2836
2837 plug->magic = PLUG_MAGIC;
2838 INIT_LIST_HEAD(&plug->list);
2839 INIT_LIST_HEAD(&plug->cb_list);
2840 plug->should_sort = 0;
2841
2842 /*
2843 * If this is a nested plug, don't actually assign it. It will be
2844 * flushed on its own.
2845 */
2846 if (!tsk->plug) {
2847 /*
2848 * Store ordering should not be needed here, since a potential
2849 * preempt will imply a full memory barrier
2850 */
2851 tsk->plug = plug;
2852 }
2853}
2854EXPORT_SYMBOL(blk_start_plug);
2855
2856static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2857{
2858 struct request *rqa = container_of(a, struct request, queuelist);
2859 struct request *rqb = container_of(b, struct request, queuelist);
2860
2861 return !(rqa->q <= rqb->q);
2862}
2863
2864/*
2865 * If 'from_schedule' is true, then postpone the dispatch of requests
2866 * until a safe kblockd context. We due this to avoid accidental big
2867 * additional stack usage in driver dispatch, in places where the originally
2868 * plugger did not intend it.
2869 */
2870static void queue_unplugged(struct request_queue *q, unsigned int depth,
2871 bool from_schedule)
2872 __releases(q->queue_lock)
2873{
2874 trace_block_unplug(q, depth, !from_schedule);
2875
2876 /*
2877 * Don't mess with dead queue.
2878 */
2879 if (unlikely(blk_queue_dead(q))) {
2880 spin_unlock(q->queue_lock);
2881 return;
2882 }
2883
2884 /*
2885 * If we are punting this to kblockd, then we can safely drop
2886 * the queue_lock before waking kblockd (which needs to take
2887 * this lock).
2888 */
2889 if (from_schedule) {
2890 spin_unlock(q->queue_lock);
2891 blk_run_queue_async(q);
2892 } else {
2893 __blk_run_queue(q);
2894 spin_unlock(q->queue_lock);
2895 }
2896
2897}
2898
2899static void flush_plug_callbacks(struct blk_plug *plug)
2900{
2901 LIST_HEAD(callbacks);
2902
2903 if (list_empty(&plug->cb_list))
2904 return;
2905
2906 list_splice_init(&plug->cb_list, &callbacks);
2907
2908 while (!list_empty(&callbacks)) {
2909 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2910 struct blk_plug_cb,
2911 list);
2912 list_del(&cb->list);
2913 cb->callback(cb);
2914 }
2915}
2916
2917void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2918{
2919 struct request_queue *q;
2920 unsigned long flags;
2921 struct request *rq;
2922 LIST_HEAD(list);
2923 unsigned int depth;
2924
2925 BUG_ON(plug->magic != PLUG_MAGIC);
2926
2927 flush_plug_callbacks(plug);
2928 if (list_empty(&plug->list))
2929 return;
2930
2931 list_splice_init(&plug->list, &list);
2932
2933 if (plug->should_sort) {
2934 list_sort(NULL, &list, plug_rq_cmp);
2935 plug->should_sort = 0;
2936 }
2937
2938 q = NULL;
2939 depth = 0;
2940
2941 /*
2942 * Save and disable interrupts here, to avoid doing it for every
2943 * queue lock we have to take.
2944 */
2945 local_irq_save(flags);
2946 while (!list_empty(&list)) {
2947 rq = list_entry_rq(list.next);
2948 list_del_init(&rq->queuelist);
2949 BUG_ON(!rq->q);
2950 if (rq->q != q) {
2951 /*
2952 * This drops the queue lock
2953 */
2954 if (q)
2955 queue_unplugged(q, depth, from_schedule);
2956 q = rq->q;
2957 depth = 0;
2958 spin_lock(q->queue_lock);
2959 }
2960
2961 /*
2962 * Short-circuit if @q is dead
2963 */
2964 if (unlikely(blk_queue_dead(q))) {
2965 __blk_end_request_all(rq, -ENODEV);
2966 continue;
2967 }
2968
2969 /*
2970 * rq is already accounted, so use raw insert
2971 */
2972 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2973 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2974 else
2975 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2976
2977 depth++;
2978 }
2979
2980 /*
2981 * This drops the queue lock
2982 */
2983 if (q)
2984 queue_unplugged(q, depth, from_schedule);
2985
2986 local_irq_restore(flags);
2987}
2988
2989void blk_finish_plug(struct blk_plug *plug)
2990{
2991 blk_flush_plug_list(plug, false);
2992
2993 if (plug == current->plug)
2994 current->plug = NULL;
2995}
2996EXPORT_SYMBOL(blk_finish_plug);
2997
2998int __init blk_dev_init(void)
2999{
3000 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3001 sizeof(((struct request *)0)->cmd_flags));
3002
3003 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3004 kblockd_workqueue = alloc_workqueue("kblockd",
3005 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3006 if (!kblockd_workqueue)
3007 panic("Failed to create kblockd\n");
3008
3009 request_cachep = kmem_cache_create("blkdev_requests",
3010 sizeof(struct request), 0, SLAB_PANIC, NULL);
3011
3012 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3013 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3014
3015 return 0;
3016}
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/blk-mq.h>
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
29#include <linux/task_io_accounting_ops.h>
30#include <linux/fault-inject.h>
31#include <linux/list_sort.h>
32#include <linux/delay.h>
33#include <linux/ratelimit.h>
34#include <linux/pm_runtime.h>
35
36#define CREATE_TRACE_POINTS
37#include <trace/events/block.h>
38
39#include "blk.h"
40#include "blk-cgroup.h"
41#include "blk-mq.h"
42
43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
47
48DEFINE_IDA(blk_queue_ida);
49
50/*
51 * For the allocated request tables
52 */
53struct kmem_cache *request_cachep = NULL;
54
55/*
56 * For queue allocation
57 */
58struct kmem_cache *blk_requestq_cachep;
59
60/*
61 * Controlling structure to kblockd
62 */
63static struct workqueue_struct *kblockd_workqueue;
64
65void blk_queue_congestion_threshold(struct request_queue *q)
66{
67 int nr;
68
69 nr = q->nr_requests - (q->nr_requests / 8) + 1;
70 if (nr > q->nr_requests)
71 nr = q->nr_requests;
72 q->nr_congestion_on = nr;
73
74 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
75 if (nr < 1)
76 nr = 1;
77 q->nr_congestion_off = nr;
78}
79
80/**
81 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
82 * @bdev: device
83 *
84 * Locates the passed device's request queue and returns the address of its
85 * backing_dev_info
86 *
87 * Will return NULL if the request queue cannot be located.
88 */
89struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90{
91 struct backing_dev_info *ret = NULL;
92 struct request_queue *q = bdev_get_queue(bdev);
93
94 if (q)
95 ret = &q->backing_dev_info;
96 return ret;
97}
98EXPORT_SYMBOL(blk_get_backing_dev_info);
99
100void blk_rq_init(struct request_queue *q, struct request *rq)
101{
102 memset(rq, 0, sizeof(*rq));
103
104 INIT_LIST_HEAD(&rq->queuelist);
105 INIT_LIST_HEAD(&rq->timeout_list);
106 rq->cpu = -1;
107 rq->q = q;
108 rq->__sector = (sector_t) -1;
109 INIT_HLIST_NODE(&rq->hash);
110 RB_CLEAR_NODE(&rq->rb_node);
111 rq->cmd = rq->__cmd;
112 rq->cmd_len = BLK_MAX_CDB;
113 rq->tag = -1;
114 rq->start_time = jiffies;
115 set_start_time_ns(rq);
116 rq->part = NULL;
117}
118EXPORT_SYMBOL(blk_rq_init);
119
120static void req_bio_endio(struct request *rq, struct bio *bio,
121 unsigned int nbytes, int error)
122{
123 if (error)
124 clear_bit(BIO_UPTODATE, &bio->bi_flags);
125 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
126 error = -EIO;
127
128 if (unlikely(rq->cmd_flags & REQ_QUIET))
129 set_bit(BIO_QUIET, &bio->bi_flags);
130
131 bio_advance(bio, nbytes);
132
133 /* don't actually finish bio if it's part of flush sequence */
134 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
135 bio_endio(bio, error);
136}
137
138void blk_dump_rq_flags(struct request *rq, char *msg)
139{
140 int bit;
141
142 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
143 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
144 (unsigned long long) rq->cmd_flags);
145
146 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
147 (unsigned long long)blk_rq_pos(rq),
148 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
149 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
150 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
151
152 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
153 printk(KERN_INFO " cdb: ");
154 for (bit = 0; bit < BLK_MAX_CDB; bit++)
155 printk("%02x ", rq->cmd[bit]);
156 printk("\n");
157 }
158}
159EXPORT_SYMBOL(blk_dump_rq_flags);
160
161static void blk_delay_work(struct work_struct *work)
162{
163 struct request_queue *q;
164
165 q = container_of(work, struct request_queue, delay_work.work);
166 spin_lock_irq(q->queue_lock);
167 __blk_run_queue(q);
168 spin_unlock_irq(q->queue_lock);
169}
170
171/**
172 * blk_delay_queue - restart queueing after defined interval
173 * @q: The &struct request_queue in question
174 * @msecs: Delay in msecs
175 *
176 * Description:
177 * Sometimes queueing needs to be postponed for a little while, to allow
178 * resources to come back. This function will make sure that queueing is
179 * restarted around the specified time. Queue lock must be held.
180 */
181void blk_delay_queue(struct request_queue *q, unsigned long msecs)
182{
183 if (likely(!blk_queue_dead(q)))
184 queue_delayed_work(kblockd_workqueue, &q->delay_work,
185 msecs_to_jiffies(msecs));
186}
187EXPORT_SYMBOL(blk_delay_queue);
188
189/**
190 * blk_start_queue - restart a previously stopped queue
191 * @q: The &struct request_queue in question
192 *
193 * Description:
194 * blk_start_queue() will clear the stop flag on the queue, and call
195 * the request_fn for the queue if it was in a stopped state when
196 * entered. Also see blk_stop_queue(). Queue lock must be held.
197 **/
198void blk_start_queue(struct request_queue *q)
199{
200 WARN_ON(!irqs_disabled());
201
202 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
203 __blk_run_queue(q);
204}
205EXPORT_SYMBOL(blk_start_queue);
206
207/**
208 * blk_stop_queue - stop a queue
209 * @q: The &struct request_queue in question
210 *
211 * Description:
212 * The Linux block layer assumes that a block driver will consume all
213 * entries on the request queue when the request_fn strategy is called.
214 * Often this will not happen, because of hardware limitations (queue
215 * depth settings). If a device driver gets a 'queue full' response,
216 * or if it simply chooses not to queue more I/O at one point, it can
217 * call this function to prevent the request_fn from being called until
218 * the driver has signalled it's ready to go again. This happens by calling
219 * blk_start_queue() to restart queue operations. Queue lock must be held.
220 **/
221void blk_stop_queue(struct request_queue *q)
222{
223 cancel_delayed_work(&q->delay_work);
224 queue_flag_set(QUEUE_FLAG_STOPPED, q);
225}
226EXPORT_SYMBOL(blk_stop_queue);
227
228/**
229 * blk_sync_queue - cancel any pending callbacks on a queue
230 * @q: the queue
231 *
232 * Description:
233 * The block layer may perform asynchronous callback activity
234 * on a queue, such as calling the unplug function after a timeout.
235 * A block device may call blk_sync_queue to ensure that any
236 * such activity is cancelled, thus allowing it to release resources
237 * that the callbacks might use. The caller must already have made sure
238 * that its ->make_request_fn will not re-add plugging prior to calling
239 * this function.
240 *
241 * This function does not cancel any asynchronous activity arising
242 * out of elevator or throttling code. That would require elevaotor_exit()
243 * and blkcg_exit_queue() to be called with queue lock initialized.
244 *
245 */
246void blk_sync_queue(struct request_queue *q)
247{
248 del_timer_sync(&q->timeout);
249
250 if (q->mq_ops) {
251 struct blk_mq_hw_ctx *hctx;
252 int i;
253
254 queue_for_each_hw_ctx(q, hctx, i)
255 cancel_delayed_work_sync(&hctx->delayed_work);
256 } else {
257 cancel_delayed_work_sync(&q->delay_work);
258 }
259}
260EXPORT_SYMBOL(blk_sync_queue);
261
262/**
263 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
264 * @q: The queue to run
265 *
266 * Description:
267 * Invoke request handling on a queue if there are any pending requests.
268 * May be used to restart request handling after a request has completed.
269 * This variant runs the queue whether or not the queue has been
270 * stopped. Must be called with the queue lock held and interrupts
271 * disabled. See also @blk_run_queue.
272 */
273inline void __blk_run_queue_uncond(struct request_queue *q)
274{
275 if (unlikely(blk_queue_dead(q)))
276 return;
277
278 /*
279 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
280 * the queue lock internally. As a result multiple threads may be
281 * running such a request function concurrently. Keep track of the
282 * number of active request_fn invocations such that blk_drain_queue()
283 * can wait until all these request_fn calls have finished.
284 */
285 q->request_fn_active++;
286 q->request_fn(q);
287 q->request_fn_active--;
288}
289
290/**
291 * __blk_run_queue - run a single device queue
292 * @q: The queue to run
293 *
294 * Description:
295 * See @blk_run_queue. This variant must be called with the queue lock
296 * held and interrupts disabled.
297 */
298void __blk_run_queue(struct request_queue *q)
299{
300 if (unlikely(blk_queue_stopped(q)))
301 return;
302
303 __blk_run_queue_uncond(q);
304}
305EXPORT_SYMBOL(__blk_run_queue);
306
307/**
308 * blk_run_queue_async - run a single device queue in workqueue context
309 * @q: The queue to run
310 *
311 * Description:
312 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
313 * of us. The caller must hold the queue lock.
314 */
315void blk_run_queue_async(struct request_queue *q)
316{
317 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
318 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
319}
320EXPORT_SYMBOL(blk_run_queue_async);
321
322/**
323 * blk_run_queue - run a single device queue
324 * @q: The queue to run
325 *
326 * Description:
327 * Invoke request handling on this queue, if it has pending work to do.
328 * May be used to restart queueing when a request has completed.
329 */
330void blk_run_queue(struct request_queue *q)
331{
332 unsigned long flags;
333
334 spin_lock_irqsave(q->queue_lock, flags);
335 __blk_run_queue(q);
336 spin_unlock_irqrestore(q->queue_lock, flags);
337}
338EXPORT_SYMBOL(blk_run_queue);
339
340void blk_put_queue(struct request_queue *q)
341{
342 kobject_put(&q->kobj);
343}
344EXPORT_SYMBOL(blk_put_queue);
345
346/**
347 * __blk_drain_queue - drain requests from request_queue
348 * @q: queue to drain
349 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
350 *
351 * Drain requests from @q. If @drain_all is set, all requests are drained.
352 * If not, only ELVPRIV requests are drained. The caller is responsible
353 * for ensuring that no new requests which need to be drained are queued.
354 */
355static void __blk_drain_queue(struct request_queue *q, bool drain_all)
356 __releases(q->queue_lock)
357 __acquires(q->queue_lock)
358{
359 int i;
360
361 lockdep_assert_held(q->queue_lock);
362
363 while (true) {
364 bool drain = false;
365
366 /*
367 * The caller might be trying to drain @q before its
368 * elevator is initialized.
369 */
370 if (q->elevator)
371 elv_drain_elevator(q);
372
373 blkcg_drain_queue(q);
374
375 /*
376 * This function might be called on a queue which failed
377 * driver init after queue creation or is not yet fully
378 * active yet. Some drivers (e.g. fd and loop) get unhappy
379 * in such cases. Kick queue iff dispatch queue has
380 * something on it and @q has request_fn set.
381 */
382 if (!list_empty(&q->queue_head) && q->request_fn)
383 __blk_run_queue(q);
384
385 drain |= q->nr_rqs_elvpriv;
386 drain |= q->request_fn_active;
387
388 /*
389 * Unfortunately, requests are queued at and tracked from
390 * multiple places and there's no single counter which can
391 * be drained. Check all the queues and counters.
392 */
393 if (drain_all) {
394 drain |= !list_empty(&q->queue_head);
395 for (i = 0; i < 2; i++) {
396 drain |= q->nr_rqs[i];
397 drain |= q->in_flight[i];
398 drain |= !list_empty(&q->flush_queue[i]);
399 }
400 }
401
402 if (!drain)
403 break;
404
405 spin_unlock_irq(q->queue_lock);
406
407 msleep(10);
408
409 spin_lock_irq(q->queue_lock);
410 }
411
412 /*
413 * With queue marked dead, any woken up waiter will fail the
414 * allocation path, so the wakeup chaining is lost and we're
415 * left with hung waiters. We need to wake up those waiters.
416 */
417 if (q->request_fn) {
418 struct request_list *rl;
419
420 blk_queue_for_each_rl(rl, q)
421 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
422 wake_up_all(&rl->wait[i]);
423 }
424}
425
426/**
427 * blk_queue_bypass_start - enter queue bypass mode
428 * @q: queue of interest
429 *
430 * In bypass mode, only the dispatch FIFO queue of @q is used. This
431 * function makes @q enter bypass mode and drains all requests which were
432 * throttled or issued before. On return, it's guaranteed that no request
433 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
434 * inside queue or RCU read lock.
435 */
436void blk_queue_bypass_start(struct request_queue *q)
437{
438 bool drain;
439
440 spin_lock_irq(q->queue_lock);
441 drain = !q->bypass_depth++;
442 queue_flag_set(QUEUE_FLAG_BYPASS, q);
443 spin_unlock_irq(q->queue_lock);
444
445 if (drain) {
446 spin_lock_irq(q->queue_lock);
447 __blk_drain_queue(q, false);
448 spin_unlock_irq(q->queue_lock);
449
450 /* ensure blk_queue_bypass() is %true inside RCU read lock */
451 synchronize_rcu();
452 }
453}
454EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
455
456/**
457 * blk_queue_bypass_end - leave queue bypass mode
458 * @q: queue of interest
459 *
460 * Leave bypass mode and restore the normal queueing behavior.
461 */
462void blk_queue_bypass_end(struct request_queue *q)
463{
464 spin_lock_irq(q->queue_lock);
465 if (!--q->bypass_depth)
466 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
467 WARN_ON_ONCE(q->bypass_depth < 0);
468 spin_unlock_irq(q->queue_lock);
469}
470EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
471
472/**
473 * blk_cleanup_queue - shutdown a request queue
474 * @q: request queue to shutdown
475 *
476 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
477 * put it. All future requests will be failed immediately with -ENODEV.
478 */
479void blk_cleanup_queue(struct request_queue *q)
480{
481 spinlock_t *lock = q->queue_lock;
482
483 /* mark @q DYING, no new request or merges will be allowed afterwards */
484 mutex_lock(&q->sysfs_lock);
485 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
486 spin_lock_irq(lock);
487
488 /*
489 * A dying queue is permanently in bypass mode till released. Note
490 * that, unlike blk_queue_bypass_start(), we aren't performing
491 * synchronize_rcu() after entering bypass mode to avoid the delay
492 * as some drivers create and destroy a lot of queues while
493 * probing. This is still safe because blk_release_queue() will be
494 * called only after the queue refcnt drops to zero and nothing,
495 * RCU or not, would be traversing the queue by then.
496 */
497 q->bypass_depth++;
498 queue_flag_set(QUEUE_FLAG_BYPASS, q);
499
500 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
501 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
502 queue_flag_set(QUEUE_FLAG_DYING, q);
503 spin_unlock_irq(lock);
504 mutex_unlock(&q->sysfs_lock);
505
506 /*
507 * Drain all requests queued before DYING marking. Set DEAD flag to
508 * prevent that q->request_fn() gets invoked after draining finished.
509 */
510 if (q->mq_ops) {
511 blk_mq_drain_queue(q);
512 spin_lock_irq(lock);
513 } else {
514 spin_lock_irq(lock);
515 __blk_drain_queue(q, true);
516 }
517 queue_flag_set(QUEUE_FLAG_DEAD, q);
518 spin_unlock_irq(lock);
519
520 /* @q won't process any more request, flush async actions */
521 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
522 blk_sync_queue(q);
523
524 spin_lock_irq(lock);
525 if (q->queue_lock != &q->__queue_lock)
526 q->queue_lock = &q->__queue_lock;
527 spin_unlock_irq(lock);
528
529 /* @q is and will stay empty, shutdown and put */
530 blk_put_queue(q);
531}
532EXPORT_SYMBOL(blk_cleanup_queue);
533
534int blk_init_rl(struct request_list *rl, struct request_queue *q,
535 gfp_t gfp_mask)
536{
537 if (unlikely(rl->rq_pool))
538 return 0;
539
540 rl->q = q;
541 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
542 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
543 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
544 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
545
546 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
547 mempool_free_slab, request_cachep,
548 gfp_mask, q->node);
549 if (!rl->rq_pool)
550 return -ENOMEM;
551
552 return 0;
553}
554
555void blk_exit_rl(struct request_list *rl)
556{
557 if (rl->rq_pool)
558 mempool_destroy(rl->rq_pool);
559}
560
561struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
562{
563 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
564}
565EXPORT_SYMBOL(blk_alloc_queue);
566
567struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
568{
569 struct request_queue *q;
570 int err;
571
572 q = kmem_cache_alloc_node(blk_requestq_cachep,
573 gfp_mask | __GFP_ZERO, node_id);
574 if (!q)
575 return NULL;
576
577 if (percpu_counter_init(&q->mq_usage_counter, 0))
578 goto fail_q;
579
580 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
581 if (q->id < 0)
582 goto fail_c;
583
584 q->backing_dev_info.ra_pages =
585 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
586 q->backing_dev_info.state = 0;
587 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
588 q->backing_dev_info.name = "block";
589 q->node = node_id;
590
591 err = bdi_init(&q->backing_dev_info);
592 if (err)
593 goto fail_id;
594
595 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
596 laptop_mode_timer_fn, (unsigned long) q);
597 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
598 INIT_LIST_HEAD(&q->queue_head);
599 INIT_LIST_HEAD(&q->timeout_list);
600 INIT_LIST_HEAD(&q->icq_list);
601#ifdef CONFIG_BLK_CGROUP
602 INIT_LIST_HEAD(&q->blkg_list);
603#endif
604 INIT_LIST_HEAD(&q->flush_queue[0]);
605 INIT_LIST_HEAD(&q->flush_queue[1]);
606 INIT_LIST_HEAD(&q->flush_data_in_flight);
607 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
608
609 kobject_init(&q->kobj, &blk_queue_ktype);
610
611 mutex_init(&q->sysfs_lock);
612 spin_lock_init(&q->__queue_lock);
613
614 /*
615 * By default initialize queue_lock to internal lock and driver can
616 * override it later if need be.
617 */
618 q->queue_lock = &q->__queue_lock;
619
620 /*
621 * A queue starts its life with bypass turned on to avoid
622 * unnecessary bypass on/off overhead and nasty surprises during
623 * init. The initial bypass will be finished when the queue is
624 * registered by blk_register_queue().
625 */
626 q->bypass_depth = 1;
627 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
628
629 init_waitqueue_head(&q->mq_freeze_wq);
630
631 if (blkcg_init_queue(q))
632 goto fail_bdi;
633
634 return q;
635
636fail_bdi:
637 bdi_destroy(&q->backing_dev_info);
638fail_id:
639 ida_simple_remove(&blk_queue_ida, q->id);
640fail_c:
641 percpu_counter_destroy(&q->mq_usage_counter);
642fail_q:
643 kmem_cache_free(blk_requestq_cachep, q);
644 return NULL;
645}
646EXPORT_SYMBOL(blk_alloc_queue_node);
647
648/**
649 * blk_init_queue - prepare a request queue for use with a block device
650 * @rfn: The function to be called to process requests that have been
651 * placed on the queue.
652 * @lock: Request queue spin lock
653 *
654 * Description:
655 * If a block device wishes to use the standard request handling procedures,
656 * which sorts requests and coalesces adjacent requests, then it must
657 * call blk_init_queue(). The function @rfn will be called when there
658 * are requests on the queue that need to be processed. If the device
659 * supports plugging, then @rfn may not be called immediately when requests
660 * are available on the queue, but may be called at some time later instead.
661 * Plugged queues are generally unplugged when a buffer belonging to one
662 * of the requests on the queue is needed, or due to memory pressure.
663 *
664 * @rfn is not required, or even expected, to remove all requests off the
665 * queue, but only as many as it can handle at a time. If it does leave
666 * requests on the queue, it is responsible for arranging that the requests
667 * get dealt with eventually.
668 *
669 * The queue spin lock must be held while manipulating the requests on the
670 * request queue; this lock will be taken also from interrupt context, so irq
671 * disabling is needed for it.
672 *
673 * Function returns a pointer to the initialized request queue, or %NULL if
674 * it didn't succeed.
675 *
676 * Note:
677 * blk_init_queue() must be paired with a blk_cleanup_queue() call
678 * when the block device is deactivated (such as at module unload).
679 **/
680
681struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
682{
683 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
684}
685EXPORT_SYMBOL(blk_init_queue);
686
687struct request_queue *
688blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
689{
690 struct request_queue *uninit_q, *q;
691
692 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
693 if (!uninit_q)
694 return NULL;
695
696 q = blk_init_allocated_queue(uninit_q, rfn, lock);
697 if (!q)
698 blk_cleanup_queue(uninit_q);
699
700 return q;
701}
702EXPORT_SYMBOL(blk_init_queue_node);
703
704struct request_queue *
705blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
706 spinlock_t *lock)
707{
708 if (!q)
709 return NULL;
710
711 q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL);
712 if (!q->flush_rq)
713 return NULL;
714
715 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
716 goto fail;
717
718 q->request_fn = rfn;
719 q->prep_rq_fn = NULL;
720 q->unprep_rq_fn = NULL;
721 q->queue_flags |= QUEUE_FLAG_DEFAULT;
722
723 /* Override internal queue lock with supplied lock pointer */
724 if (lock)
725 q->queue_lock = lock;
726
727 /*
728 * This also sets hw/phys segments, boundary and size
729 */
730 blk_queue_make_request(q, blk_queue_bio);
731
732 q->sg_reserved_size = INT_MAX;
733
734 /* Protect q->elevator from elevator_change */
735 mutex_lock(&q->sysfs_lock);
736
737 /* init elevator */
738 if (elevator_init(q, NULL)) {
739 mutex_unlock(&q->sysfs_lock);
740 goto fail;
741 }
742
743 mutex_unlock(&q->sysfs_lock);
744
745 return q;
746
747fail:
748 kfree(q->flush_rq);
749 return NULL;
750}
751EXPORT_SYMBOL(blk_init_allocated_queue);
752
753bool blk_get_queue(struct request_queue *q)
754{
755 if (likely(!blk_queue_dying(q))) {
756 __blk_get_queue(q);
757 return true;
758 }
759
760 return false;
761}
762EXPORT_SYMBOL(blk_get_queue);
763
764static inline void blk_free_request(struct request_list *rl, struct request *rq)
765{
766 if (rq->cmd_flags & REQ_ELVPRIV) {
767 elv_put_request(rl->q, rq);
768 if (rq->elv.icq)
769 put_io_context(rq->elv.icq->ioc);
770 }
771
772 mempool_free(rq, rl->rq_pool);
773}
774
775/*
776 * ioc_batching returns true if the ioc is a valid batching request and
777 * should be given priority access to a request.
778 */
779static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
780{
781 if (!ioc)
782 return 0;
783
784 /*
785 * Make sure the process is able to allocate at least 1 request
786 * even if the batch times out, otherwise we could theoretically
787 * lose wakeups.
788 */
789 return ioc->nr_batch_requests == q->nr_batching ||
790 (ioc->nr_batch_requests > 0
791 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
792}
793
794/*
795 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
796 * will cause the process to be a "batcher" on all queues in the system. This
797 * is the behaviour we want though - once it gets a wakeup it should be given
798 * a nice run.
799 */
800static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
801{
802 if (!ioc || ioc_batching(q, ioc))
803 return;
804
805 ioc->nr_batch_requests = q->nr_batching;
806 ioc->last_waited = jiffies;
807}
808
809static void __freed_request(struct request_list *rl, int sync)
810{
811 struct request_queue *q = rl->q;
812
813 /*
814 * bdi isn't aware of blkcg yet. As all async IOs end up root
815 * blkcg anyway, just use root blkcg state.
816 */
817 if (rl == &q->root_rl &&
818 rl->count[sync] < queue_congestion_off_threshold(q))
819 blk_clear_queue_congested(q, sync);
820
821 if (rl->count[sync] + 1 <= q->nr_requests) {
822 if (waitqueue_active(&rl->wait[sync]))
823 wake_up(&rl->wait[sync]);
824
825 blk_clear_rl_full(rl, sync);
826 }
827}
828
829/*
830 * A request has just been released. Account for it, update the full and
831 * congestion status, wake up any waiters. Called under q->queue_lock.
832 */
833static void freed_request(struct request_list *rl, unsigned int flags)
834{
835 struct request_queue *q = rl->q;
836 int sync = rw_is_sync(flags);
837
838 q->nr_rqs[sync]--;
839 rl->count[sync]--;
840 if (flags & REQ_ELVPRIV)
841 q->nr_rqs_elvpriv--;
842
843 __freed_request(rl, sync);
844
845 if (unlikely(rl->starved[sync ^ 1]))
846 __freed_request(rl, sync ^ 1);
847}
848
849/*
850 * Determine if elevator data should be initialized when allocating the
851 * request associated with @bio.
852 */
853static bool blk_rq_should_init_elevator(struct bio *bio)
854{
855 if (!bio)
856 return true;
857
858 /*
859 * Flush requests do not use the elevator so skip initialization.
860 * This allows a request to share the flush and elevator data.
861 */
862 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
863 return false;
864
865 return true;
866}
867
868/**
869 * rq_ioc - determine io_context for request allocation
870 * @bio: request being allocated is for this bio (can be %NULL)
871 *
872 * Determine io_context to use for request allocation for @bio. May return
873 * %NULL if %current->io_context doesn't exist.
874 */
875static struct io_context *rq_ioc(struct bio *bio)
876{
877#ifdef CONFIG_BLK_CGROUP
878 if (bio && bio->bi_ioc)
879 return bio->bi_ioc;
880#endif
881 return current->io_context;
882}
883
884/**
885 * __get_request - get a free request
886 * @rl: request list to allocate from
887 * @rw_flags: RW and SYNC flags
888 * @bio: bio to allocate request for (can be %NULL)
889 * @gfp_mask: allocation mask
890 *
891 * Get a free request from @q. This function may fail under memory
892 * pressure or if @q is dead.
893 *
894 * Must be callled with @q->queue_lock held and,
895 * Returns %NULL on failure, with @q->queue_lock held.
896 * Returns !%NULL on success, with @q->queue_lock *not held*.
897 */
898static struct request *__get_request(struct request_list *rl, int rw_flags,
899 struct bio *bio, gfp_t gfp_mask)
900{
901 struct request_queue *q = rl->q;
902 struct request *rq;
903 struct elevator_type *et = q->elevator->type;
904 struct io_context *ioc = rq_ioc(bio);
905 struct io_cq *icq = NULL;
906 const bool is_sync = rw_is_sync(rw_flags) != 0;
907 int may_queue;
908
909 if (unlikely(blk_queue_dying(q)))
910 return NULL;
911
912 may_queue = elv_may_queue(q, rw_flags);
913 if (may_queue == ELV_MQUEUE_NO)
914 goto rq_starved;
915
916 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
917 if (rl->count[is_sync]+1 >= q->nr_requests) {
918 /*
919 * The queue will fill after this allocation, so set
920 * it as full, and mark this process as "batching".
921 * This process will be allowed to complete a batch of
922 * requests, others will be blocked.
923 */
924 if (!blk_rl_full(rl, is_sync)) {
925 ioc_set_batching(q, ioc);
926 blk_set_rl_full(rl, is_sync);
927 } else {
928 if (may_queue != ELV_MQUEUE_MUST
929 && !ioc_batching(q, ioc)) {
930 /*
931 * The queue is full and the allocating
932 * process is not a "batcher", and not
933 * exempted by the IO scheduler
934 */
935 return NULL;
936 }
937 }
938 }
939 /*
940 * bdi isn't aware of blkcg yet. As all async IOs end up
941 * root blkcg anyway, just use root blkcg state.
942 */
943 if (rl == &q->root_rl)
944 blk_set_queue_congested(q, is_sync);
945 }
946
947 /*
948 * Only allow batching queuers to allocate up to 50% over the defined
949 * limit of requests, otherwise we could have thousands of requests
950 * allocated with any setting of ->nr_requests
951 */
952 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
953 return NULL;
954
955 q->nr_rqs[is_sync]++;
956 rl->count[is_sync]++;
957 rl->starved[is_sync] = 0;
958
959 /*
960 * Decide whether the new request will be managed by elevator. If
961 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
962 * prevent the current elevator from being destroyed until the new
963 * request is freed. This guarantees icq's won't be destroyed and
964 * makes creating new ones safe.
965 *
966 * Also, lookup icq while holding queue_lock. If it doesn't exist,
967 * it will be created after releasing queue_lock.
968 */
969 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
970 rw_flags |= REQ_ELVPRIV;
971 q->nr_rqs_elvpriv++;
972 if (et->icq_cache && ioc)
973 icq = ioc_lookup_icq(ioc, q);
974 }
975
976 if (blk_queue_io_stat(q))
977 rw_flags |= REQ_IO_STAT;
978 spin_unlock_irq(q->queue_lock);
979
980 /* allocate and init request */
981 rq = mempool_alloc(rl->rq_pool, gfp_mask);
982 if (!rq)
983 goto fail_alloc;
984
985 blk_rq_init(q, rq);
986 blk_rq_set_rl(rq, rl);
987 rq->cmd_flags = rw_flags | REQ_ALLOCED;
988
989 /* init elvpriv */
990 if (rw_flags & REQ_ELVPRIV) {
991 if (unlikely(et->icq_cache && !icq)) {
992 if (ioc)
993 icq = ioc_create_icq(ioc, q, gfp_mask);
994 if (!icq)
995 goto fail_elvpriv;
996 }
997
998 rq->elv.icq = icq;
999 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1000 goto fail_elvpriv;
1001
1002 /* @rq->elv.icq holds io_context until @rq is freed */
1003 if (icq)
1004 get_io_context(icq->ioc);
1005 }
1006out:
1007 /*
1008 * ioc may be NULL here, and ioc_batching will be false. That's
1009 * OK, if the queue is under the request limit then requests need
1010 * not count toward the nr_batch_requests limit. There will always
1011 * be some limit enforced by BLK_BATCH_TIME.
1012 */
1013 if (ioc_batching(q, ioc))
1014 ioc->nr_batch_requests--;
1015
1016 trace_block_getrq(q, bio, rw_flags & 1);
1017 return rq;
1018
1019fail_elvpriv:
1020 /*
1021 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1022 * and may fail indefinitely under memory pressure and thus
1023 * shouldn't stall IO. Treat this request as !elvpriv. This will
1024 * disturb iosched and blkcg but weird is bettern than dead.
1025 */
1026 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1027 dev_name(q->backing_dev_info.dev));
1028
1029 rq->cmd_flags &= ~REQ_ELVPRIV;
1030 rq->elv.icq = NULL;
1031
1032 spin_lock_irq(q->queue_lock);
1033 q->nr_rqs_elvpriv--;
1034 spin_unlock_irq(q->queue_lock);
1035 goto out;
1036
1037fail_alloc:
1038 /*
1039 * Allocation failed presumably due to memory. Undo anything we
1040 * might have messed up.
1041 *
1042 * Allocating task should really be put onto the front of the wait
1043 * queue, but this is pretty rare.
1044 */
1045 spin_lock_irq(q->queue_lock);
1046 freed_request(rl, rw_flags);
1047
1048 /*
1049 * in the very unlikely event that allocation failed and no
1050 * requests for this direction was pending, mark us starved so that
1051 * freeing of a request in the other direction will notice
1052 * us. another possible fix would be to split the rq mempool into
1053 * READ and WRITE
1054 */
1055rq_starved:
1056 if (unlikely(rl->count[is_sync] == 0))
1057 rl->starved[is_sync] = 1;
1058 return NULL;
1059}
1060
1061/**
1062 * get_request - get a free request
1063 * @q: request_queue to allocate request from
1064 * @rw_flags: RW and SYNC flags
1065 * @bio: bio to allocate request for (can be %NULL)
1066 * @gfp_mask: allocation mask
1067 *
1068 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1069 * function keeps retrying under memory pressure and fails iff @q is dead.
1070 *
1071 * Must be callled with @q->queue_lock held and,
1072 * Returns %NULL on failure, with @q->queue_lock held.
1073 * Returns !%NULL on success, with @q->queue_lock *not held*.
1074 */
1075static struct request *get_request(struct request_queue *q, int rw_flags,
1076 struct bio *bio, gfp_t gfp_mask)
1077{
1078 const bool is_sync = rw_is_sync(rw_flags) != 0;
1079 DEFINE_WAIT(wait);
1080 struct request_list *rl;
1081 struct request *rq;
1082
1083 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1084retry:
1085 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1086 if (rq)
1087 return rq;
1088
1089 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1090 blk_put_rl(rl);
1091 return NULL;
1092 }
1093
1094 /* wait on @rl and retry */
1095 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1096 TASK_UNINTERRUPTIBLE);
1097
1098 trace_block_sleeprq(q, bio, rw_flags & 1);
1099
1100 spin_unlock_irq(q->queue_lock);
1101 io_schedule();
1102
1103 /*
1104 * After sleeping, we become a "batching" process and will be able
1105 * to allocate at least one request, and up to a big batch of them
1106 * for a small period time. See ioc_batching, ioc_set_batching
1107 */
1108 ioc_set_batching(q, current->io_context);
1109
1110 spin_lock_irq(q->queue_lock);
1111 finish_wait(&rl->wait[is_sync], &wait);
1112
1113 goto retry;
1114}
1115
1116static struct request *blk_old_get_request(struct request_queue *q, int rw,
1117 gfp_t gfp_mask)
1118{
1119 struct request *rq;
1120
1121 BUG_ON(rw != READ && rw != WRITE);
1122
1123 /* create ioc upfront */
1124 create_io_context(gfp_mask, q->node);
1125
1126 spin_lock_irq(q->queue_lock);
1127 rq = get_request(q, rw, NULL, gfp_mask);
1128 if (!rq)
1129 spin_unlock_irq(q->queue_lock);
1130 /* q->queue_lock is unlocked at this point */
1131
1132 return rq;
1133}
1134
1135struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1136{
1137 if (q->mq_ops)
1138 return blk_mq_alloc_request(q, rw, gfp_mask);
1139 else
1140 return blk_old_get_request(q, rw, gfp_mask);
1141}
1142EXPORT_SYMBOL(blk_get_request);
1143
1144/**
1145 * blk_make_request - given a bio, allocate a corresponding struct request.
1146 * @q: target request queue
1147 * @bio: The bio describing the memory mappings that will be submitted for IO.
1148 * It may be a chained-bio properly constructed by block/bio layer.
1149 * @gfp_mask: gfp flags to be used for memory allocation
1150 *
1151 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1152 * type commands. Where the struct request needs to be farther initialized by
1153 * the caller. It is passed a &struct bio, which describes the memory info of
1154 * the I/O transfer.
1155 *
1156 * The caller of blk_make_request must make sure that bi_io_vec
1157 * are set to describe the memory buffers. That bio_data_dir() will return
1158 * the needed direction of the request. (And all bio's in the passed bio-chain
1159 * are properly set accordingly)
1160 *
1161 * If called under none-sleepable conditions, mapped bio buffers must not
1162 * need bouncing, by calling the appropriate masked or flagged allocator,
1163 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1164 * BUG.
1165 *
1166 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1167 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1168 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1169 * completion of a bio that hasn't been submitted yet, thus resulting in a
1170 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1171 * of bio_alloc(), as that avoids the mempool deadlock.
1172 * If possible a big IO should be split into smaller parts when allocation
1173 * fails. Partial allocation should not be an error, or you risk a live-lock.
1174 */
1175struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1176 gfp_t gfp_mask)
1177{
1178 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1179
1180 if (unlikely(!rq))
1181 return ERR_PTR(-ENOMEM);
1182
1183 for_each_bio(bio) {
1184 struct bio *bounce_bio = bio;
1185 int ret;
1186
1187 blk_queue_bounce(q, &bounce_bio);
1188 ret = blk_rq_append_bio(q, rq, bounce_bio);
1189 if (unlikely(ret)) {
1190 blk_put_request(rq);
1191 return ERR_PTR(ret);
1192 }
1193 }
1194
1195 return rq;
1196}
1197EXPORT_SYMBOL(blk_make_request);
1198
1199/**
1200 * blk_requeue_request - put a request back on queue
1201 * @q: request queue where request should be inserted
1202 * @rq: request to be inserted
1203 *
1204 * Description:
1205 * Drivers often keep queueing requests until the hardware cannot accept
1206 * more, when that condition happens we need to put the request back
1207 * on the queue. Must be called with queue lock held.
1208 */
1209void blk_requeue_request(struct request_queue *q, struct request *rq)
1210{
1211 blk_delete_timer(rq);
1212 blk_clear_rq_complete(rq);
1213 trace_block_rq_requeue(q, rq);
1214
1215 if (blk_rq_tagged(rq))
1216 blk_queue_end_tag(q, rq);
1217
1218 BUG_ON(blk_queued_rq(rq));
1219
1220 elv_requeue_request(q, rq);
1221}
1222EXPORT_SYMBOL(blk_requeue_request);
1223
1224static void add_acct_request(struct request_queue *q, struct request *rq,
1225 int where)
1226{
1227 blk_account_io_start(rq, true);
1228 __elv_add_request(q, rq, where);
1229}
1230
1231static void part_round_stats_single(int cpu, struct hd_struct *part,
1232 unsigned long now)
1233{
1234 if (now == part->stamp)
1235 return;
1236
1237 if (part_in_flight(part)) {
1238 __part_stat_add(cpu, part, time_in_queue,
1239 part_in_flight(part) * (now - part->stamp));
1240 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1241 }
1242 part->stamp = now;
1243}
1244
1245/**
1246 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1247 * @cpu: cpu number for stats access
1248 * @part: target partition
1249 *
1250 * The average IO queue length and utilisation statistics are maintained
1251 * by observing the current state of the queue length and the amount of
1252 * time it has been in this state for.
1253 *
1254 * Normally, that accounting is done on IO completion, but that can result
1255 * in more than a second's worth of IO being accounted for within any one
1256 * second, leading to >100% utilisation. To deal with that, we call this
1257 * function to do a round-off before returning the results when reading
1258 * /proc/diskstats. This accounts immediately for all queue usage up to
1259 * the current jiffies and restarts the counters again.
1260 */
1261void part_round_stats(int cpu, struct hd_struct *part)
1262{
1263 unsigned long now = jiffies;
1264
1265 if (part->partno)
1266 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1267 part_round_stats_single(cpu, part, now);
1268}
1269EXPORT_SYMBOL_GPL(part_round_stats);
1270
1271#ifdef CONFIG_PM_RUNTIME
1272static void blk_pm_put_request(struct request *rq)
1273{
1274 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1275 pm_runtime_mark_last_busy(rq->q->dev);
1276}
1277#else
1278static inline void blk_pm_put_request(struct request *rq) {}
1279#endif
1280
1281/*
1282 * queue lock must be held
1283 */
1284void __blk_put_request(struct request_queue *q, struct request *req)
1285{
1286 if (unlikely(!q))
1287 return;
1288
1289 if (q->mq_ops) {
1290 blk_mq_free_request(req);
1291 return;
1292 }
1293
1294 blk_pm_put_request(req);
1295
1296 elv_completed_request(q, req);
1297
1298 /* this is a bio leak */
1299 WARN_ON(req->bio != NULL);
1300
1301 /*
1302 * Request may not have originated from ll_rw_blk. if not,
1303 * it didn't come out of our reserved rq pools
1304 */
1305 if (req->cmd_flags & REQ_ALLOCED) {
1306 unsigned int flags = req->cmd_flags;
1307 struct request_list *rl = blk_rq_rl(req);
1308
1309 BUG_ON(!list_empty(&req->queuelist));
1310 BUG_ON(ELV_ON_HASH(req));
1311
1312 blk_free_request(rl, req);
1313 freed_request(rl, flags);
1314 blk_put_rl(rl);
1315 }
1316}
1317EXPORT_SYMBOL_GPL(__blk_put_request);
1318
1319void blk_put_request(struct request *req)
1320{
1321 struct request_queue *q = req->q;
1322
1323 if (q->mq_ops)
1324 blk_mq_free_request(req);
1325 else {
1326 unsigned long flags;
1327
1328 spin_lock_irqsave(q->queue_lock, flags);
1329 __blk_put_request(q, req);
1330 spin_unlock_irqrestore(q->queue_lock, flags);
1331 }
1332}
1333EXPORT_SYMBOL(blk_put_request);
1334
1335/**
1336 * blk_add_request_payload - add a payload to a request
1337 * @rq: request to update
1338 * @page: page backing the payload
1339 * @len: length of the payload.
1340 *
1341 * This allows to later add a payload to an already submitted request by
1342 * a block driver. The driver needs to take care of freeing the payload
1343 * itself.
1344 *
1345 * Note that this is a quite horrible hack and nothing but handling of
1346 * discard requests should ever use it.
1347 */
1348void blk_add_request_payload(struct request *rq, struct page *page,
1349 unsigned int len)
1350{
1351 struct bio *bio = rq->bio;
1352
1353 bio->bi_io_vec->bv_page = page;
1354 bio->bi_io_vec->bv_offset = 0;
1355 bio->bi_io_vec->bv_len = len;
1356
1357 bio->bi_iter.bi_size = len;
1358 bio->bi_vcnt = 1;
1359 bio->bi_phys_segments = 1;
1360
1361 rq->__data_len = rq->resid_len = len;
1362 rq->nr_phys_segments = 1;
1363 rq->buffer = bio_data(bio);
1364}
1365EXPORT_SYMBOL_GPL(blk_add_request_payload);
1366
1367bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1368 struct bio *bio)
1369{
1370 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1371
1372 if (!ll_back_merge_fn(q, req, bio))
1373 return false;
1374
1375 trace_block_bio_backmerge(q, req, bio);
1376
1377 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1378 blk_rq_set_mixed_merge(req);
1379
1380 req->biotail->bi_next = bio;
1381 req->biotail = bio;
1382 req->__data_len += bio->bi_iter.bi_size;
1383 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1384
1385 blk_account_io_start(req, false);
1386 return true;
1387}
1388
1389bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1390 struct bio *bio)
1391{
1392 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1393
1394 if (!ll_front_merge_fn(q, req, bio))
1395 return false;
1396
1397 trace_block_bio_frontmerge(q, req, bio);
1398
1399 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1400 blk_rq_set_mixed_merge(req);
1401
1402 bio->bi_next = req->bio;
1403 req->bio = bio;
1404
1405 /*
1406 * may not be valid. if the low level driver said
1407 * it didn't need a bounce buffer then it better
1408 * not touch req->buffer either...
1409 */
1410 req->buffer = bio_data(bio);
1411 req->__sector = bio->bi_iter.bi_sector;
1412 req->__data_len += bio->bi_iter.bi_size;
1413 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1414
1415 blk_account_io_start(req, false);
1416 return true;
1417}
1418
1419/**
1420 * blk_attempt_plug_merge - try to merge with %current's plugged list
1421 * @q: request_queue new bio is being queued at
1422 * @bio: new bio being queued
1423 * @request_count: out parameter for number of traversed plugged requests
1424 *
1425 * Determine whether @bio being queued on @q can be merged with a request
1426 * on %current's plugged list. Returns %true if merge was successful,
1427 * otherwise %false.
1428 *
1429 * Plugging coalesces IOs from the same issuer for the same purpose without
1430 * going through @q->queue_lock. As such it's more of an issuing mechanism
1431 * than scheduling, and the request, while may have elvpriv data, is not
1432 * added on the elevator at this point. In addition, we don't have
1433 * reliable access to the elevator outside queue lock. Only check basic
1434 * merging parameters without querying the elevator.
1435 */
1436bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1437 unsigned int *request_count)
1438{
1439 struct blk_plug *plug;
1440 struct request *rq;
1441 bool ret = false;
1442 struct list_head *plug_list;
1443
1444 if (blk_queue_nomerges(q))
1445 goto out;
1446
1447 plug = current->plug;
1448 if (!plug)
1449 goto out;
1450 *request_count = 0;
1451
1452 if (q->mq_ops)
1453 plug_list = &plug->mq_list;
1454 else
1455 plug_list = &plug->list;
1456
1457 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1458 int el_ret;
1459
1460 if (rq->q == q)
1461 (*request_count)++;
1462
1463 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1464 continue;
1465
1466 el_ret = blk_try_merge(rq, bio);
1467 if (el_ret == ELEVATOR_BACK_MERGE) {
1468 ret = bio_attempt_back_merge(q, rq, bio);
1469 if (ret)
1470 break;
1471 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1472 ret = bio_attempt_front_merge(q, rq, bio);
1473 if (ret)
1474 break;
1475 }
1476 }
1477out:
1478 return ret;
1479}
1480
1481void init_request_from_bio(struct request *req, struct bio *bio)
1482{
1483 req->cmd_type = REQ_TYPE_FS;
1484
1485 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1486 if (bio->bi_rw & REQ_RAHEAD)
1487 req->cmd_flags |= REQ_FAILFAST_MASK;
1488
1489 req->errors = 0;
1490 req->__sector = bio->bi_iter.bi_sector;
1491 req->ioprio = bio_prio(bio);
1492 blk_rq_bio_prep(req->q, req, bio);
1493}
1494
1495void blk_queue_bio(struct request_queue *q, struct bio *bio)
1496{
1497 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1498 struct blk_plug *plug;
1499 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1500 struct request *req;
1501 unsigned int request_count = 0;
1502
1503 /*
1504 * low level driver can indicate that it wants pages above a
1505 * certain limit bounced to low memory (ie for highmem, or even
1506 * ISA dma in theory)
1507 */
1508 blk_queue_bounce(q, &bio);
1509
1510 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1511 bio_endio(bio, -EIO);
1512 return;
1513 }
1514
1515 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1516 spin_lock_irq(q->queue_lock);
1517 where = ELEVATOR_INSERT_FLUSH;
1518 goto get_rq;
1519 }
1520
1521 /*
1522 * Check if we can merge with the plugged list before grabbing
1523 * any locks.
1524 */
1525 if (blk_attempt_plug_merge(q, bio, &request_count))
1526 return;
1527
1528 spin_lock_irq(q->queue_lock);
1529
1530 el_ret = elv_merge(q, &req, bio);
1531 if (el_ret == ELEVATOR_BACK_MERGE) {
1532 if (bio_attempt_back_merge(q, req, bio)) {
1533 elv_bio_merged(q, req, bio);
1534 if (!attempt_back_merge(q, req))
1535 elv_merged_request(q, req, el_ret);
1536 goto out_unlock;
1537 }
1538 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1539 if (bio_attempt_front_merge(q, req, bio)) {
1540 elv_bio_merged(q, req, bio);
1541 if (!attempt_front_merge(q, req))
1542 elv_merged_request(q, req, el_ret);
1543 goto out_unlock;
1544 }
1545 }
1546
1547get_rq:
1548 /*
1549 * This sync check and mask will be re-done in init_request_from_bio(),
1550 * but we need to set it earlier to expose the sync flag to the
1551 * rq allocator and io schedulers.
1552 */
1553 rw_flags = bio_data_dir(bio);
1554 if (sync)
1555 rw_flags |= REQ_SYNC;
1556
1557 /*
1558 * Grab a free request. This is might sleep but can not fail.
1559 * Returns with the queue unlocked.
1560 */
1561 req = get_request(q, rw_flags, bio, GFP_NOIO);
1562 if (unlikely(!req)) {
1563 bio_endio(bio, -ENODEV); /* @q is dead */
1564 goto out_unlock;
1565 }
1566
1567 /*
1568 * After dropping the lock and possibly sleeping here, our request
1569 * may now be mergeable after it had proven unmergeable (above).
1570 * We don't worry about that case for efficiency. It won't happen
1571 * often, and the elevators are able to handle it.
1572 */
1573 init_request_from_bio(req, bio);
1574
1575 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1576 req->cpu = raw_smp_processor_id();
1577
1578 plug = current->plug;
1579 if (plug) {
1580 /*
1581 * If this is the first request added after a plug, fire
1582 * of a plug trace.
1583 */
1584 if (!request_count)
1585 trace_block_plug(q);
1586 else {
1587 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1588 blk_flush_plug_list(plug, false);
1589 trace_block_plug(q);
1590 }
1591 }
1592 list_add_tail(&req->queuelist, &plug->list);
1593 blk_account_io_start(req, true);
1594 } else {
1595 spin_lock_irq(q->queue_lock);
1596 add_acct_request(q, req, where);
1597 __blk_run_queue(q);
1598out_unlock:
1599 spin_unlock_irq(q->queue_lock);
1600 }
1601}
1602EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1603
1604/*
1605 * If bio->bi_dev is a partition, remap the location
1606 */
1607static inline void blk_partition_remap(struct bio *bio)
1608{
1609 struct block_device *bdev = bio->bi_bdev;
1610
1611 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1612 struct hd_struct *p = bdev->bd_part;
1613
1614 bio->bi_iter.bi_sector += p->start_sect;
1615 bio->bi_bdev = bdev->bd_contains;
1616
1617 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1618 bdev->bd_dev,
1619 bio->bi_iter.bi_sector - p->start_sect);
1620 }
1621}
1622
1623static void handle_bad_sector(struct bio *bio)
1624{
1625 char b[BDEVNAME_SIZE];
1626
1627 printk(KERN_INFO "attempt to access beyond end of device\n");
1628 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1629 bdevname(bio->bi_bdev, b),
1630 bio->bi_rw,
1631 (unsigned long long)bio_end_sector(bio),
1632 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1633
1634 set_bit(BIO_EOF, &bio->bi_flags);
1635}
1636
1637#ifdef CONFIG_FAIL_MAKE_REQUEST
1638
1639static DECLARE_FAULT_ATTR(fail_make_request);
1640
1641static int __init setup_fail_make_request(char *str)
1642{
1643 return setup_fault_attr(&fail_make_request, str);
1644}
1645__setup("fail_make_request=", setup_fail_make_request);
1646
1647static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1648{
1649 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1650}
1651
1652static int __init fail_make_request_debugfs(void)
1653{
1654 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1655 NULL, &fail_make_request);
1656
1657 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1658}
1659
1660late_initcall(fail_make_request_debugfs);
1661
1662#else /* CONFIG_FAIL_MAKE_REQUEST */
1663
1664static inline bool should_fail_request(struct hd_struct *part,
1665 unsigned int bytes)
1666{
1667 return false;
1668}
1669
1670#endif /* CONFIG_FAIL_MAKE_REQUEST */
1671
1672/*
1673 * Check whether this bio extends beyond the end of the device.
1674 */
1675static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1676{
1677 sector_t maxsector;
1678
1679 if (!nr_sectors)
1680 return 0;
1681
1682 /* Test device or partition size, when known. */
1683 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1684 if (maxsector) {
1685 sector_t sector = bio->bi_iter.bi_sector;
1686
1687 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1688 /*
1689 * This may well happen - the kernel calls bread()
1690 * without checking the size of the device, e.g., when
1691 * mounting a device.
1692 */
1693 handle_bad_sector(bio);
1694 return 1;
1695 }
1696 }
1697
1698 return 0;
1699}
1700
1701static noinline_for_stack bool
1702generic_make_request_checks(struct bio *bio)
1703{
1704 struct request_queue *q;
1705 int nr_sectors = bio_sectors(bio);
1706 int err = -EIO;
1707 char b[BDEVNAME_SIZE];
1708 struct hd_struct *part;
1709
1710 might_sleep();
1711
1712 if (bio_check_eod(bio, nr_sectors))
1713 goto end_io;
1714
1715 q = bdev_get_queue(bio->bi_bdev);
1716 if (unlikely(!q)) {
1717 printk(KERN_ERR
1718 "generic_make_request: Trying to access "
1719 "nonexistent block-device %s (%Lu)\n",
1720 bdevname(bio->bi_bdev, b),
1721 (long long) bio->bi_iter.bi_sector);
1722 goto end_io;
1723 }
1724
1725 if (likely(bio_is_rw(bio) &&
1726 nr_sectors > queue_max_hw_sectors(q))) {
1727 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1728 bdevname(bio->bi_bdev, b),
1729 bio_sectors(bio),
1730 queue_max_hw_sectors(q));
1731 goto end_io;
1732 }
1733
1734 part = bio->bi_bdev->bd_part;
1735 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1736 should_fail_request(&part_to_disk(part)->part0,
1737 bio->bi_iter.bi_size))
1738 goto end_io;
1739
1740 /*
1741 * If this device has partitions, remap block n
1742 * of partition p to block n+start(p) of the disk.
1743 */
1744 blk_partition_remap(bio);
1745
1746 if (bio_check_eod(bio, nr_sectors))
1747 goto end_io;
1748
1749 /*
1750 * Filter flush bio's early so that make_request based
1751 * drivers without flush support don't have to worry
1752 * about them.
1753 */
1754 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1755 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1756 if (!nr_sectors) {
1757 err = 0;
1758 goto end_io;
1759 }
1760 }
1761
1762 if ((bio->bi_rw & REQ_DISCARD) &&
1763 (!blk_queue_discard(q) ||
1764 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1765 err = -EOPNOTSUPP;
1766 goto end_io;
1767 }
1768
1769 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1770 err = -EOPNOTSUPP;
1771 goto end_io;
1772 }
1773
1774 /*
1775 * Various block parts want %current->io_context and lazy ioc
1776 * allocation ends up trading a lot of pain for a small amount of
1777 * memory. Just allocate it upfront. This may fail and block
1778 * layer knows how to live with it.
1779 */
1780 create_io_context(GFP_ATOMIC, q->node);
1781
1782 if (blk_throtl_bio(q, bio))
1783 return false; /* throttled, will be resubmitted later */
1784
1785 trace_block_bio_queue(q, bio);
1786 return true;
1787
1788end_io:
1789 bio_endio(bio, err);
1790 return false;
1791}
1792
1793/**
1794 * generic_make_request - hand a buffer to its device driver for I/O
1795 * @bio: The bio describing the location in memory and on the device.
1796 *
1797 * generic_make_request() is used to make I/O requests of block
1798 * devices. It is passed a &struct bio, which describes the I/O that needs
1799 * to be done.
1800 *
1801 * generic_make_request() does not return any status. The
1802 * success/failure status of the request, along with notification of
1803 * completion, is delivered asynchronously through the bio->bi_end_io
1804 * function described (one day) else where.
1805 *
1806 * The caller of generic_make_request must make sure that bi_io_vec
1807 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1808 * set to describe the device address, and the
1809 * bi_end_io and optionally bi_private are set to describe how
1810 * completion notification should be signaled.
1811 *
1812 * generic_make_request and the drivers it calls may use bi_next if this
1813 * bio happens to be merged with someone else, and may resubmit the bio to
1814 * a lower device by calling into generic_make_request recursively, which
1815 * means the bio should NOT be touched after the call to ->make_request_fn.
1816 */
1817void generic_make_request(struct bio *bio)
1818{
1819 struct bio_list bio_list_on_stack;
1820
1821 if (!generic_make_request_checks(bio))
1822 return;
1823
1824 /*
1825 * We only want one ->make_request_fn to be active at a time, else
1826 * stack usage with stacked devices could be a problem. So use
1827 * current->bio_list to keep a list of requests submited by a
1828 * make_request_fn function. current->bio_list is also used as a
1829 * flag to say if generic_make_request is currently active in this
1830 * task or not. If it is NULL, then no make_request is active. If
1831 * it is non-NULL, then a make_request is active, and new requests
1832 * should be added at the tail
1833 */
1834 if (current->bio_list) {
1835 bio_list_add(current->bio_list, bio);
1836 return;
1837 }
1838
1839 /* following loop may be a bit non-obvious, and so deserves some
1840 * explanation.
1841 * Before entering the loop, bio->bi_next is NULL (as all callers
1842 * ensure that) so we have a list with a single bio.
1843 * We pretend that we have just taken it off a longer list, so
1844 * we assign bio_list to a pointer to the bio_list_on_stack,
1845 * thus initialising the bio_list of new bios to be
1846 * added. ->make_request() may indeed add some more bios
1847 * through a recursive call to generic_make_request. If it
1848 * did, we find a non-NULL value in bio_list and re-enter the loop
1849 * from the top. In this case we really did just take the bio
1850 * of the top of the list (no pretending) and so remove it from
1851 * bio_list, and call into ->make_request() again.
1852 */
1853 BUG_ON(bio->bi_next);
1854 bio_list_init(&bio_list_on_stack);
1855 current->bio_list = &bio_list_on_stack;
1856 do {
1857 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1858
1859 q->make_request_fn(q, bio);
1860
1861 bio = bio_list_pop(current->bio_list);
1862 } while (bio);
1863 current->bio_list = NULL; /* deactivate */
1864}
1865EXPORT_SYMBOL(generic_make_request);
1866
1867/**
1868 * submit_bio - submit a bio to the block device layer for I/O
1869 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1870 * @bio: The &struct bio which describes the I/O
1871 *
1872 * submit_bio() is very similar in purpose to generic_make_request(), and
1873 * uses that function to do most of the work. Both are fairly rough
1874 * interfaces; @bio must be presetup and ready for I/O.
1875 *
1876 */
1877void submit_bio(int rw, struct bio *bio)
1878{
1879 bio->bi_rw |= rw;
1880
1881 /*
1882 * If it's a regular read/write or a barrier with data attached,
1883 * go through the normal accounting stuff before submission.
1884 */
1885 if (bio_has_data(bio)) {
1886 unsigned int count;
1887
1888 if (unlikely(rw & REQ_WRITE_SAME))
1889 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1890 else
1891 count = bio_sectors(bio);
1892
1893 if (rw & WRITE) {
1894 count_vm_events(PGPGOUT, count);
1895 } else {
1896 task_io_account_read(bio->bi_iter.bi_size);
1897 count_vm_events(PGPGIN, count);
1898 }
1899
1900 if (unlikely(block_dump)) {
1901 char b[BDEVNAME_SIZE];
1902 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1903 current->comm, task_pid_nr(current),
1904 (rw & WRITE) ? "WRITE" : "READ",
1905 (unsigned long long)bio->bi_iter.bi_sector,
1906 bdevname(bio->bi_bdev, b),
1907 count);
1908 }
1909 }
1910
1911 generic_make_request(bio);
1912}
1913EXPORT_SYMBOL(submit_bio);
1914
1915/**
1916 * blk_rq_check_limits - Helper function to check a request for the queue limit
1917 * @q: the queue
1918 * @rq: the request being checked
1919 *
1920 * Description:
1921 * @rq may have been made based on weaker limitations of upper-level queues
1922 * in request stacking drivers, and it may violate the limitation of @q.
1923 * Since the block layer and the underlying device driver trust @rq
1924 * after it is inserted to @q, it should be checked against @q before
1925 * the insertion using this generic function.
1926 *
1927 * This function should also be useful for request stacking drivers
1928 * in some cases below, so export this function.
1929 * Request stacking drivers like request-based dm may change the queue
1930 * limits while requests are in the queue (e.g. dm's table swapping).
1931 * Such request stacking drivers should check those requests against
1932 * the new queue limits again when they dispatch those requests,
1933 * although such checkings are also done against the old queue limits
1934 * when submitting requests.
1935 */
1936int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1937{
1938 if (!rq_mergeable(rq))
1939 return 0;
1940
1941 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1942 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1943 return -EIO;
1944 }
1945
1946 /*
1947 * queue's settings related to segment counting like q->bounce_pfn
1948 * may differ from that of other stacking queues.
1949 * Recalculate it to check the request correctly on this queue's
1950 * limitation.
1951 */
1952 blk_recalc_rq_segments(rq);
1953 if (rq->nr_phys_segments > queue_max_segments(q)) {
1954 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1955 return -EIO;
1956 }
1957
1958 return 0;
1959}
1960EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1961
1962/**
1963 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1964 * @q: the queue to submit the request
1965 * @rq: the request being queued
1966 */
1967int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1968{
1969 unsigned long flags;
1970 int where = ELEVATOR_INSERT_BACK;
1971
1972 if (blk_rq_check_limits(q, rq))
1973 return -EIO;
1974
1975 if (rq->rq_disk &&
1976 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1977 return -EIO;
1978
1979 spin_lock_irqsave(q->queue_lock, flags);
1980 if (unlikely(blk_queue_dying(q))) {
1981 spin_unlock_irqrestore(q->queue_lock, flags);
1982 return -ENODEV;
1983 }
1984
1985 /*
1986 * Submitting request must be dequeued before calling this function
1987 * because it will be linked to another request_queue
1988 */
1989 BUG_ON(blk_queued_rq(rq));
1990
1991 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1992 where = ELEVATOR_INSERT_FLUSH;
1993
1994 add_acct_request(q, rq, where);
1995 if (where == ELEVATOR_INSERT_FLUSH)
1996 __blk_run_queue(q);
1997 spin_unlock_irqrestore(q->queue_lock, flags);
1998
1999 return 0;
2000}
2001EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2002
2003/**
2004 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2005 * @rq: request to examine
2006 *
2007 * Description:
2008 * A request could be merge of IOs which require different failure
2009 * handling. This function determines the number of bytes which
2010 * can be failed from the beginning of the request without
2011 * crossing into area which need to be retried further.
2012 *
2013 * Return:
2014 * The number of bytes to fail.
2015 *
2016 * Context:
2017 * queue_lock must be held.
2018 */
2019unsigned int blk_rq_err_bytes(const struct request *rq)
2020{
2021 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2022 unsigned int bytes = 0;
2023 struct bio *bio;
2024
2025 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2026 return blk_rq_bytes(rq);
2027
2028 /*
2029 * Currently the only 'mixing' which can happen is between
2030 * different fastfail types. We can safely fail portions
2031 * which have all the failfast bits that the first one has -
2032 * the ones which are at least as eager to fail as the first
2033 * one.
2034 */
2035 for (bio = rq->bio; bio; bio = bio->bi_next) {
2036 if ((bio->bi_rw & ff) != ff)
2037 break;
2038 bytes += bio->bi_iter.bi_size;
2039 }
2040
2041 /* this could lead to infinite loop */
2042 BUG_ON(blk_rq_bytes(rq) && !bytes);
2043 return bytes;
2044}
2045EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2046
2047void blk_account_io_completion(struct request *req, unsigned int bytes)
2048{
2049 if (blk_do_io_stat(req)) {
2050 const int rw = rq_data_dir(req);
2051 struct hd_struct *part;
2052 int cpu;
2053
2054 cpu = part_stat_lock();
2055 part = req->part;
2056 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2057 part_stat_unlock();
2058 }
2059}
2060
2061void blk_account_io_done(struct request *req)
2062{
2063 /*
2064 * Account IO completion. flush_rq isn't accounted as a
2065 * normal IO on queueing nor completion. Accounting the
2066 * containing request is enough.
2067 */
2068 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2069 unsigned long duration = jiffies - req->start_time;
2070 const int rw = rq_data_dir(req);
2071 struct hd_struct *part;
2072 int cpu;
2073
2074 cpu = part_stat_lock();
2075 part = req->part;
2076
2077 part_stat_inc(cpu, part, ios[rw]);
2078 part_stat_add(cpu, part, ticks[rw], duration);
2079 part_round_stats(cpu, part);
2080 part_dec_in_flight(part, rw);
2081
2082 hd_struct_put(part);
2083 part_stat_unlock();
2084 }
2085}
2086
2087#ifdef CONFIG_PM_RUNTIME
2088/*
2089 * Don't process normal requests when queue is suspended
2090 * or in the process of suspending/resuming
2091 */
2092static struct request *blk_pm_peek_request(struct request_queue *q,
2093 struct request *rq)
2094{
2095 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2096 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2097 return NULL;
2098 else
2099 return rq;
2100}
2101#else
2102static inline struct request *blk_pm_peek_request(struct request_queue *q,
2103 struct request *rq)
2104{
2105 return rq;
2106}
2107#endif
2108
2109void blk_account_io_start(struct request *rq, bool new_io)
2110{
2111 struct hd_struct *part;
2112 int rw = rq_data_dir(rq);
2113 int cpu;
2114
2115 if (!blk_do_io_stat(rq))
2116 return;
2117
2118 cpu = part_stat_lock();
2119
2120 if (!new_io) {
2121 part = rq->part;
2122 part_stat_inc(cpu, part, merges[rw]);
2123 } else {
2124 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2125 if (!hd_struct_try_get(part)) {
2126 /*
2127 * The partition is already being removed,
2128 * the request will be accounted on the disk only
2129 *
2130 * We take a reference on disk->part0 although that
2131 * partition will never be deleted, so we can treat
2132 * it as any other partition.
2133 */
2134 part = &rq->rq_disk->part0;
2135 hd_struct_get(part);
2136 }
2137 part_round_stats(cpu, part);
2138 part_inc_in_flight(part, rw);
2139 rq->part = part;
2140 }
2141
2142 part_stat_unlock();
2143}
2144
2145/**
2146 * blk_peek_request - peek at the top of a request queue
2147 * @q: request queue to peek at
2148 *
2149 * Description:
2150 * Return the request at the top of @q. The returned request
2151 * should be started using blk_start_request() before LLD starts
2152 * processing it.
2153 *
2154 * Return:
2155 * Pointer to the request at the top of @q if available. Null
2156 * otherwise.
2157 *
2158 * Context:
2159 * queue_lock must be held.
2160 */
2161struct request *blk_peek_request(struct request_queue *q)
2162{
2163 struct request *rq;
2164 int ret;
2165
2166 while ((rq = __elv_next_request(q)) != NULL) {
2167
2168 rq = blk_pm_peek_request(q, rq);
2169 if (!rq)
2170 break;
2171
2172 if (!(rq->cmd_flags & REQ_STARTED)) {
2173 /*
2174 * This is the first time the device driver
2175 * sees this request (possibly after
2176 * requeueing). Notify IO scheduler.
2177 */
2178 if (rq->cmd_flags & REQ_SORTED)
2179 elv_activate_rq(q, rq);
2180
2181 /*
2182 * just mark as started even if we don't start
2183 * it, a request that has been delayed should
2184 * not be passed by new incoming requests
2185 */
2186 rq->cmd_flags |= REQ_STARTED;
2187 trace_block_rq_issue(q, rq);
2188 }
2189
2190 if (!q->boundary_rq || q->boundary_rq == rq) {
2191 q->end_sector = rq_end_sector(rq);
2192 q->boundary_rq = NULL;
2193 }
2194
2195 if (rq->cmd_flags & REQ_DONTPREP)
2196 break;
2197
2198 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2199 /*
2200 * make sure space for the drain appears we
2201 * know we can do this because max_hw_segments
2202 * has been adjusted to be one fewer than the
2203 * device can handle
2204 */
2205 rq->nr_phys_segments++;
2206 }
2207
2208 if (!q->prep_rq_fn)
2209 break;
2210
2211 ret = q->prep_rq_fn(q, rq);
2212 if (ret == BLKPREP_OK) {
2213 break;
2214 } else if (ret == BLKPREP_DEFER) {
2215 /*
2216 * the request may have been (partially) prepped.
2217 * we need to keep this request in the front to
2218 * avoid resource deadlock. REQ_STARTED will
2219 * prevent other fs requests from passing this one.
2220 */
2221 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2222 !(rq->cmd_flags & REQ_DONTPREP)) {
2223 /*
2224 * remove the space for the drain we added
2225 * so that we don't add it again
2226 */
2227 --rq->nr_phys_segments;
2228 }
2229
2230 rq = NULL;
2231 break;
2232 } else if (ret == BLKPREP_KILL) {
2233 rq->cmd_flags |= REQ_QUIET;
2234 /*
2235 * Mark this request as started so we don't trigger
2236 * any debug logic in the end I/O path.
2237 */
2238 blk_start_request(rq);
2239 __blk_end_request_all(rq, -EIO);
2240 } else {
2241 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2242 break;
2243 }
2244 }
2245
2246 return rq;
2247}
2248EXPORT_SYMBOL(blk_peek_request);
2249
2250void blk_dequeue_request(struct request *rq)
2251{
2252 struct request_queue *q = rq->q;
2253
2254 BUG_ON(list_empty(&rq->queuelist));
2255 BUG_ON(ELV_ON_HASH(rq));
2256
2257 list_del_init(&rq->queuelist);
2258
2259 /*
2260 * the time frame between a request being removed from the lists
2261 * and to it is freed is accounted as io that is in progress at
2262 * the driver side.
2263 */
2264 if (blk_account_rq(rq)) {
2265 q->in_flight[rq_is_sync(rq)]++;
2266 set_io_start_time_ns(rq);
2267 }
2268}
2269
2270/**
2271 * blk_start_request - start request processing on the driver
2272 * @req: request to dequeue
2273 *
2274 * Description:
2275 * Dequeue @req and start timeout timer on it. This hands off the
2276 * request to the driver.
2277 *
2278 * Block internal functions which don't want to start timer should
2279 * call blk_dequeue_request().
2280 *
2281 * Context:
2282 * queue_lock must be held.
2283 */
2284void blk_start_request(struct request *req)
2285{
2286 blk_dequeue_request(req);
2287
2288 /*
2289 * We are now handing the request to the hardware, initialize
2290 * resid_len to full count and add the timeout handler.
2291 */
2292 req->resid_len = blk_rq_bytes(req);
2293 if (unlikely(blk_bidi_rq(req)))
2294 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2295
2296 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2297 blk_add_timer(req);
2298}
2299EXPORT_SYMBOL(blk_start_request);
2300
2301/**
2302 * blk_fetch_request - fetch a request from a request queue
2303 * @q: request queue to fetch a request from
2304 *
2305 * Description:
2306 * Return the request at the top of @q. The request is started on
2307 * return and LLD can start processing it immediately.
2308 *
2309 * Return:
2310 * Pointer to the request at the top of @q if available. Null
2311 * otherwise.
2312 *
2313 * Context:
2314 * queue_lock must be held.
2315 */
2316struct request *blk_fetch_request(struct request_queue *q)
2317{
2318 struct request *rq;
2319
2320 rq = blk_peek_request(q);
2321 if (rq)
2322 blk_start_request(rq);
2323 return rq;
2324}
2325EXPORT_SYMBOL(blk_fetch_request);
2326
2327/**
2328 * blk_update_request - Special helper function for request stacking drivers
2329 * @req: the request being processed
2330 * @error: %0 for success, < %0 for error
2331 * @nr_bytes: number of bytes to complete @req
2332 *
2333 * Description:
2334 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2335 * the request structure even if @req doesn't have leftover.
2336 * If @req has leftover, sets it up for the next range of segments.
2337 *
2338 * This special helper function is only for request stacking drivers
2339 * (e.g. request-based dm) so that they can handle partial completion.
2340 * Actual device drivers should use blk_end_request instead.
2341 *
2342 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2343 * %false return from this function.
2344 *
2345 * Return:
2346 * %false - this request doesn't have any more data
2347 * %true - this request has more data
2348 **/
2349bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2350{
2351 int total_bytes;
2352
2353 if (!req->bio)
2354 return false;
2355
2356 trace_block_rq_complete(req->q, req, nr_bytes);
2357
2358 /*
2359 * For fs requests, rq is just carrier of independent bio's
2360 * and each partial completion should be handled separately.
2361 * Reset per-request error on each partial completion.
2362 *
2363 * TODO: tj: This is too subtle. It would be better to let
2364 * low level drivers do what they see fit.
2365 */
2366 if (req->cmd_type == REQ_TYPE_FS)
2367 req->errors = 0;
2368
2369 if (error && req->cmd_type == REQ_TYPE_FS &&
2370 !(req->cmd_flags & REQ_QUIET)) {
2371 char *error_type;
2372
2373 switch (error) {
2374 case -ENOLINK:
2375 error_type = "recoverable transport";
2376 break;
2377 case -EREMOTEIO:
2378 error_type = "critical target";
2379 break;
2380 case -EBADE:
2381 error_type = "critical nexus";
2382 break;
2383 case -ETIMEDOUT:
2384 error_type = "timeout";
2385 break;
2386 case -ENOSPC:
2387 error_type = "critical space allocation";
2388 break;
2389 case -ENODATA:
2390 error_type = "critical medium";
2391 break;
2392 case -EIO:
2393 default:
2394 error_type = "I/O";
2395 break;
2396 }
2397 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2398 error_type, req->rq_disk ?
2399 req->rq_disk->disk_name : "?",
2400 (unsigned long long)blk_rq_pos(req));
2401
2402 }
2403
2404 blk_account_io_completion(req, nr_bytes);
2405
2406 total_bytes = 0;
2407 while (req->bio) {
2408 struct bio *bio = req->bio;
2409 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2410
2411 if (bio_bytes == bio->bi_iter.bi_size)
2412 req->bio = bio->bi_next;
2413
2414 req_bio_endio(req, bio, bio_bytes, error);
2415
2416 total_bytes += bio_bytes;
2417 nr_bytes -= bio_bytes;
2418
2419 if (!nr_bytes)
2420 break;
2421 }
2422
2423 /*
2424 * completely done
2425 */
2426 if (!req->bio) {
2427 /*
2428 * Reset counters so that the request stacking driver
2429 * can find how many bytes remain in the request
2430 * later.
2431 */
2432 req->__data_len = 0;
2433 return false;
2434 }
2435
2436 req->__data_len -= total_bytes;
2437 req->buffer = bio_data(req->bio);
2438
2439 /* update sector only for requests with clear definition of sector */
2440 if (req->cmd_type == REQ_TYPE_FS)
2441 req->__sector += total_bytes >> 9;
2442
2443 /* mixed attributes always follow the first bio */
2444 if (req->cmd_flags & REQ_MIXED_MERGE) {
2445 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2446 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2447 }
2448
2449 /*
2450 * If total number of sectors is less than the first segment
2451 * size, something has gone terribly wrong.
2452 */
2453 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2454 blk_dump_rq_flags(req, "request botched");
2455 req->__data_len = blk_rq_cur_bytes(req);
2456 }
2457
2458 /* recalculate the number of segments */
2459 blk_recalc_rq_segments(req);
2460
2461 return true;
2462}
2463EXPORT_SYMBOL_GPL(blk_update_request);
2464
2465static bool blk_update_bidi_request(struct request *rq, int error,
2466 unsigned int nr_bytes,
2467 unsigned int bidi_bytes)
2468{
2469 if (blk_update_request(rq, error, nr_bytes))
2470 return true;
2471
2472 /* Bidi request must be completed as a whole */
2473 if (unlikely(blk_bidi_rq(rq)) &&
2474 blk_update_request(rq->next_rq, error, bidi_bytes))
2475 return true;
2476
2477 if (blk_queue_add_random(rq->q))
2478 add_disk_randomness(rq->rq_disk);
2479
2480 return false;
2481}
2482
2483/**
2484 * blk_unprep_request - unprepare a request
2485 * @req: the request
2486 *
2487 * This function makes a request ready for complete resubmission (or
2488 * completion). It happens only after all error handling is complete,
2489 * so represents the appropriate moment to deallocate any resources
2490 * that were allocated to the request in the prep_rq_fn. The queue
2491 * lock is held when calling this.
2492 */
2493void blk_unprep_request(struct request *req)
2494{
2495 struct request_queue *q = req->q;
2496
2497 req->cmd_flags &= ~REQ_DONTPREP;
2498 if (q->unprep_rq_fn)
2499 q->unprep_rq_fn(q, req);
2500}
2501EXPORT_SYMBOL_GPL(blk_unprep_request);
2502
2503/*
2504 * queue lock must be held
2505 */
2506static void blk_finish_request(struct request *req, int error)
2507{
2508 if (blk_rq_tagged(req))
2509 blk_queue_end_tag(req->q, req);
2510
2511 BUG_ON(blk_queued_rq(req));
2512
2513 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2514 laptop_io_completion(&req->q->backing_dev_info);
2515
2516 blk_delete_timer(req);
2517
2518 if (req->cmd_flags & REQ_DONTPREP)
2519 blk_unprep_request(req);
2520
2521 blk_account_io_done(req);
2522
2523 if (req->end_io)
2524 req->end_io(req, error);
2525 else {
2526 if (blk_bidi_rq(req))
2527 __blk_put_request(req->next_rq->q, req->next_rq);
2528
2529 __blk_put_request(req->q, req);
2530 }
2531}
2532
2533/**
2534 * blk_end_bidi_request - Complete a bidi request
2535 * @rq: the request to complete
2536 * @error: %0 for success, < %0 for error
2537 * @nr_bytes: number of bytes to complete @rq
2538 * @bidi_bytes: number of bytes to complete @rq->next_rq
2539 *
2540 * Description:
2541 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2542 * Drivers that supports bidi can safely call this member for any
2543 * type of request, bidi or uni. In the later case @bidi_bytes is
2544 * just ignored.
2545 *
2546 * Return:
2547 * %false - we are done with this request
2548 * %true - still buffers pending for this request
2549 **/
2550static bool blk_end_bidi_request(struct request *rq, int error,
2551 unsigned int nr_bytes, unsigned int bidi_bytes)
2552{
2553 struct request_queue *q = rq->q;
2554 unsigned long flags;
2555
2556 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2557 return true;
2558
2559 spin_lock_irqsave(q->queue_lock, flags);
2560 blk_finish_request(rq, error);
2561 spin_unlock_irqrestore(q->queue_lock, flags);
2562
2563 return false;
2564}
2565
2566/**
2567 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2568 * @rq: the request to complete
2569 * @error: %0 for success, < %0 for error
2570 * @nr_bytes: number of bytes to complete @rq
2571 * @bidi_bytes: number of bytes to complete @rq->next_rq
2572 *
2573 * Description:
2574 * Identical to blk_end_bidi_request() except that queue lock is
2575 * assumed to be locked on entry and remains so on return.
2576 *
2577 * Return:
2578 * %false - we are done with this request
2579 * %true - still buffers pending for this request
2580 **/
2581bool __blk_end_bidi_request(struct request *rq, int error,
2582 unsigned int nr_bytes, unsigned int bidi_bytes)
2583{
2584 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2585 return true;
2586
2587 blk_finish_request(rq, error);
2588
2589 return false;
2590}
2591
2592/**
2593 * blk_end_request - Helper function for drivers to complete the request.
2594 * @rq: the request being processed
2595 * @error: %0 for success, < %0 for error
2596 * @nr_bytes: number of bytes to complete
2597 *
2598 * Description:
2599 * Ends I/O on a number of bytes attached to @rq.
2600 * If @rq has leftover, sets it up for the next range of segments.
2601 *
2602 * Return:
2603 * %false - we are done with this request
2604 * %true - still buffers pending for this request
2605 **/
2606bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2607{
2608 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2609}
2610EXPORT_SYMBOL(blk_end_request);
2611
2612/**
2613 * blk_end_request_all - Helper function for drives to finish the request.
2614 * @rq: the request to finish
2615 * @error: %0 for success, < %0 for error
2616 *
2617 * Description:
2618 * Completely finish @rq.
2619 */
2620void blk_end_request_all(struct request *rq, int error)
2621{
2622 bool pending;
2623 unsigned int bidi_bytes = 0;
2624
2625 if (unlikely(blk_bidi_rq(rq)))
2626 bidi_bytes = blk_rq_bytes(rq->next_rq);
2627
2628 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2629 BUG_ON(pending);
2630}
2631EXPORT_SYMBOL(blk_end_request_all);
2632
2633/**
2634 * blk_end_request_cur - Helper function to finish the current request chunk.
2635 * @rq: the request to finish the current chunk for
2636 * @error: %0 for success, < %0 for error
2637 *
2638 * Description:
2639 * Complete the current consecutively mapped chunk from @rq.
2640 *
2641 * Return:
2642 * %false - we are done with this request
2643 * %true - still buffers pending for this request
2644 */
2645bool blk_end_request_cur(struct request *rq, int error)
2646{
2647 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2648}
2649EXPORT_SYMBOL(blk_end_request_cur);
2650
2651/**
2652 * blk_end_request_err - Finish a request till the next failure boundary.
2653 * @rq: the request to finish till the next failure boundary for
2654 * @error: must be negative errno
2655 *
2656 * Description:
2657 * Complete @rq till the next failure boundary.
2658 *
2659 * Return:
2660 * %false - we are done with this request
2661 * %true - still buffers pending for this request
2662 */
2663bool blk_end_request_err(struct request *rq, int error)
2664{
2665 WARN_ON(error >= 0);
2666 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2667}
2668EXPORT_SYMBOL_GPL(blk_end_request_err);
2669
2670/**
2671 * __blk_end_request - Helper function for drivers to complete the request.
2672 * @rq: the request being processed
2673 * @error: %0 for success, < %0 for error
2674 * @nr_bytes: number of bytes to complete
2675 *
2676 * Description:
2677 * Must be called with queue lock held unlike blk_end_request().
2678 *
2679 * Return:
2680 * %false - we are done with this request
2681 * %true - still buffers pending for this request
2682 **/
2683bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2684{
2685 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2686}
2687EXPORT_SYMBOL(__blk_end_request);
2688
2689/**
2690 * __blk_end_request_all - Helper function for drives to finish the request.
2691 * @rq: the request to finish
2692 * @error: %0 for success, < %0 for error
2693 *
2694 * Description:
2695 * Completely finish @rq. Must be called with queue lock held.
2696 */
2697void __blk_end_request_all(struct request *rq, int error)
2698{
2699 bool pending;
2700 unsigned int bidi_bytes = 0;
2701
2702 if (unlikely(blk_bidi_rq(rq)))
2703 bidi_bytes = blk_rq_bytes(rq->next_rq);
2704
2705 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2706 BUG_ON(pending);
2707}
2708EXPORT_SYMBOL(__blk_end_request_all);
2709
2710/**
2711 * __blk_end_request_cur - Helper function to finish the current request chunk.
2712 * @rq: the request to finish the current chunk for
2713 * @error: %0 for success, < %0 for error
2714 *
2715 * Description:
2716 * Complete the current consecutively mapped chunk from @rq. Must
2717 * be called with queue lock held.
2718 *
2719 * Return:
2720 * %false - we are done with this request
2721 * %true - still buffers pending for this request
2722 */
2723bool __blk_end_request_cur(struct request *rq, int error)
2724{
2725 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2726}
2727EXPORT_SYMBOL(__blk_end_request_cur);
2728
2729/**
2730 * __blk_end_request_err - Finish a request till the next failure boundary.
2731 * @rq: the request to finish till the next failure boundary for
2732 * @error: must be negative errno
2733 *
2734 * Description:
2735 * Complete @rq till the next failure boundary. Must be called
2736 * with queue lock held.
2737 *
2738 * Return:
2739 * %false - we are done with this request
2740 * %true - still buffers pending for this request
2741 */
2742bool __blk_end_request_err(struct request *rq, int error)
2743{
2744 WARN_ON(error >= 0);
2745 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2746}
2747EXPORT_SYMBOL_GPL(__blk_end_request_err);
2748
2749void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2750 struct bio *bio)
2751{
2752 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2753 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2754
2755 if (bio_has_data(bio)) {
2756 rq->nr_phys_segments = bio_phys_segments(q, bio);
2757 rq->buffer = bio_data(bio);
2758 }
2759 rq->__data_len = bio->bi_iter.bi_size;
2760 rq->bio = rq->biotail = bio;
2761
2762 if (bio->bi_bdev)
2763 rq->rq_disk = bio->bi_bdev->bd_disk;
2764}
2765
2766#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2767/**
2768 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2769 * @rq: the request to be flushed
2770 *
2771 * Description:
2772 * Flush all pages in @rq.
2773 */
2774void rq_flush_dcache_pages(struct request *rq)
2775{
2776 struct req_iterator iter;
2777 struct bio_vec bvec;
2778
2779 rq_for_each_segment(bvec, rq, iter)
2780 flush_dcache_page(bvec.bv_page);
2781}
2782EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2783#endif
2784
2785/**
2786 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2787 * @q : the queue of the device being checked
2788 *
2789 * Description:
2790 * Check if underlying low-level drivers of a device are busy.
2791 * If the drivers want to export their busy state, they must set own
2792 * exporting function using blk_queue_lld_busy() first.
2793 *
2794 * Basically, this function is used only by request stacking drivers
2795 * to stop dispatching requests to underlying devices when underlying
2796 * devices are busy. This behavior helps more I/O merging on the queue
2797 * of the request stacking driver and prevents I/O throughput regression
2798 * on burst I/O load.
2799 *
2800 * Return:
2801 * 0 - Not busy (The request stacking driver should dispatch request)
2802 * 1 - Busy (The request stacking driver should stop dispatching request)
2803 */
2804int blk_lld_busy(struct request_queue *q)
2805{
2806 if (q->lld_busy_fn)
2807 return q->lld_busy_fn(q);
2808
2809 return 0;
2810}
2811EXPORT_SYMBOL_GPL(blk_lld_busy);
2812
2813/**
2814 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2815 * @rq: the clone request to be cleaned up
2816 *
2817 * Description:
2818 * Free all bios in @rq for a cloned request.
2819 */
2820void blk_rq_unprep_clone(struct request *rq)
2821{
2822 struct bio *bio;
2823
2824 while ((bio = rq->bio) != NULL) {
2825 rq->bio = bio->bi_next;
2826
2827 bio_put(bio);
2828 }
2829}
2830EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2831
2832/*
2833 * Copy attributes of the original request to the clone request.
2834 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2835 */
2836static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2837{
2838 dst->cpu = src->cpu;
2839 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2840 dst->cmd_type = src->cmd_type;
2841 dst->__sector = blk_rq_pos(src);
2842 dst->__data_len = blk_rq_bytes(src);
2843 dst->nr_phys_segments = src->nr_phys_segments;
2844 dst->ioprio = src->ioprio;
2845 dst->extra_len = src->extra_len;
2846}
2847
2848/**
2849 * blk_rq_prep_clone - Helper function to setup clone request
2850 * @rq: the request to be setup
2851 * @rq_src: original request to be cloned
2852 * @bs: bio_set that bios for clone are allocated from
2853 * @gfp_mask: memory allocation mask for bio
2854 * @bio_ctr: setup function to be called for each clone bio.
2855 * Returns %0 for success, non %0 for failure.
2856 * @data: private data to be passed to @bio_ctr
2857 *
2858 * Description:
2859 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2860 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2861 * are not copied, and copying such parts is the caller's responsibility.
2862 * Also, pages which the original bios are pointing to are not copied
2863 * and the cloned bios just point same pages.
2864 * So cloned bios must be completed before original bios, which means
2865 * the caller must complete @rq before @rq_src.
2866 */
2867int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2868 struct bio_set *bs, gfp_t gfp_mask,
2869 int (*bio_ctr)(struct bio *, struct bio *, void *),
2870 void *data)
2871{
2872 struct bio *bio, *bio_src;
2873
2874 if (!bs)
2875 bs = fs_bio_set;
2876
2877 blk_rq_init(NULL, rq);
2878
2879 __rq_for_each_bio(bio_src, rq_src) {
2880 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2881 if (!bio)
2882 goto free_and_out;
2883
2884 if (bio_ctr && bio_ctr(bio, bio_src, data))
2885 goto free_and_out;
2886
2887 if (rq->bio) {
2888 rq->biotail->bi_next = bio;
2889 rq->biotail = bio;
2890 } else
2891 rq->bio = rq->biotail = bio;
2892 }
2893
2894 __blk_rq_prep_clone(rq, rq_src);
2895
2896 return 0;
2897
2898free_and_out:
2899 if (bio)
2900 bio_put(bio);
2901 blk_rq_unprep_clone(rq);
2902
2903 return -ENOMEM;
2904}
2905EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2906
2907int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2908{
2909 return queue_work(kblockd_workqueue, work);
2910}
2911EXPORT_SYMBOL(kblockd_schedule_work);
2912
2913int kblockd_schedule_delayed_work(struct request_queue *q,
2914 struct delayed_work *dwork, unsigned long delay)
2915{
2916 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2917}
2918EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2919
2920#define PLUG_MAGIC 0x91827364
2921
2922/**
2923 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2924 * @plug: The &struct blk_plug that needs to be initialized
2925 *
2926 * Description:
2927 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2928 * pending I/O should the task end up blocking between blk_start_plug() and
2929 * blk_finish_plug(). This is important from a performance perspective, but
2930 * also ensures that we don't deadlock. For instance, if the task is blocking
2931 * for a memory allocation, memory reclaim could end up wanting to free a
2932 * page belonging to that request that is currently residing in our private
2933 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2934 * this kind of deadlock.
2935 */
2936void blk_start_plug(struct blk_plug *plug)
2937{
2938 struct task_struct *tsk = current;
2939
2940 plug->magic = PLUG_MAGIC;
2941 INIT_LIST_HEAD(&plug->list);
2942 INIT_LIST_HEAD(&plug->mq_list);
2943 INIT_LIST_HEAD(&plug->cb_list);
2944
2945 /*
2946 * If this is a nested plug, don't actually assign it. It will be
2947 * flushed on its own.
2948 */
2949 if (!tsk->plug) {
2950 /*
2951 * Store ordering should not be needed here, since a potential
2952 * preempt will imply a full memory barrier
2953 */
2954 tsk->plug = plug;
2955 }
2956}
2957EXPORT_SYMBOL(blk_start_plug);
2958
2959static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2960{
2961 struct request *rqa = container_of(a, struct request, queuelist);
2962 struct request *rqb = container_of(b, struct request, queuelist);
2963
2964 return !(rqa->q < rqb->q ||
2965 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2966}
2967
2968/*
2969 * If 'from_schedule' is true, then postpone the dispatch of requests
2970 * until a safe kblockd context. We due this to avoid accidental big
2971 * additional stack usage in driver dispatch, in places where the originally
2972 * plugger did not intend it.
2973 */
2974static void queue_unplugged(struct request_queue *q, unsigned int depth,
2975 bool from_schedule)
2976 __releases(q->queue_lock)
2977{
2978 trace_block_unplug(q, depth, !from_schedule);
2979
2980 if (from_schedule)
2981 blk_run_queue_async(q);
2982 else
2983 __blk_run_queue(q);
2984 spin_unlock(q->queue_lock);
2985}
2986
2987static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2988{
2989 LIST_HEAD(callbacks);
2990
2991 while (!list_empty(&plug->cb_list)) {
2992 list_splice_init(&plug->cb_list, &callbacks);
2993
2994 while (!list_empty(&callbacks)) {
2995 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2996 struct blk_plug_cb,
2997 list);
2998 list_del(&cb->list);
2999 cb->callback(cb, from_schedule);
3000 }
3001 }
3002}
3003
3004struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3005 int size)
3006{
3007 struct blk_plug *plug = current->plug;
3008 struct blk_plug_cb *cb;
3009
3010 if (!plug)
3011 return NULL;
3012
3013 list_for_each_entry(cb, &plug->cb_list, list)
3014 if (cb->callback == unplug && cb->data == data)
3015 return cb;
3016
3017 /* Not currently on the callback list */
3018 BUG_ON(size < sizeof(*cb));
3019 cb = kzalloc(size, GFP_ATOMIC);
3020 if (cb) {
3021 cb->data = data;
3022 cb->callback = unplug;
3023 list_add(&cb->list, &plug->cb_list);
3024 }
3025 return cb;
3026}
3027EXPORT_SYMBOL(blk_check_plugged);
3028
3029void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3030{
3031 struct request_queue *q;
3032 unsigned long flags;
3033 struct request *rq;
3034 LIST_HEAD(list);
3035 unsigned int depth;
3036
3037 BUG_ON(plug->magic != PLUG_MAGIC);
3038
3039 flush_plug_callbacks(plug, from_schedule);
3040
3041 if (!list_empty(&plug->mq_list))
3042 blk_mq_flush_plug_list(plug, from_schedule);
3043
3044 if (list_empty(&plug->list))
3045 return;
3046
3047 list_splice_init(&plug->list, &list);
3048
3049 list_sort(NULL, &list, plug_rq_cmp);
3050
3051 q = NULL;
3052 depth = 0;
3053
3054 /*
3055 * Save and disable interrupts here, to avoid doing it for every
3056 * queue lock we have to take.
3057 */
3058 local_irq_save(flags);
3059 while (!list_empty(&list)) {
3060 rq = list_entry_rq(list.next);
3061 list_del_init(&rq->queuelist);
3062 BUG_ON(!rq->q);
3063 if (rq->q != q) {
3064 /*
3065 * This drops the queue lock
3066 */
3067 if (q)
3068 queue_unplugged(q, depth, from_schedule);
3069 q = rq->q;
3070 depth = 0;
3071 spin_lock(q->queue_lock);
3072 }
3073
3074 /*
3075 * Short-circuit if @q is dead
3076 */
3077 if (unlikely(blk_queue_dying(q))) {
3078 __blk_end_request_all(rq, -ENODEV);
3079 continue;
3080 }
3081
3082 /*
3083 * rq is already accounted, so use raw insert
3084 */
3085 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3086 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3087 else
3088 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3089
3090 depth++;
3091 }
3092
3093 /*
3094 * This drops the queue lock
3095 */
3096 if (q)
3097 queue_unplugged(q, depth, from_schedule);
3098
3099 local_irq_restore(flags);
3100}
3101
3102void blk_finish_plug(struct blk_plug *plug)
3103{
3104 blk_flush_plug_list(plug, false);
3105
3106 if (plug == current->plug)
3107 current->plug = NULL;
3108}
3109EXPORT_SYMBOL(blk_finish_plug);
3110
3111#ifdef CONFIG_PM_RUNTIME
3112/**
3113 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3114 * @q: the queue of the device
3115 * @dev: the device the queue belongs to
3116 *
3117 * Description:
3118 * Initialize runtime-PM-related fields for @q and start auto suspend for
3119 * @dev. Drivers that want to take advantage of request-based runtime PM
3120 * should call this function after @dev has been initialized, and its
3121 * request queue @q has been allocated, and runtime PM for it can not happen
3122 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3123 * cases, driver should call this function before any I/O has taken place.
3124 *
3125 * This function takes care of setting up using auto suspend for the device,
3126 * the autosuspend delay is set to -1 to make runtime suspend impossible
3127 * until an updated value is either set by user or by driver. Drivers do
3128 * not need to touch other autosuspend settings.
3129 *
3130 * The block layer runtime PM is request based, so only works for drivers
3131 * that use request as their IO unit instead of those directly use bio's.
3132 */
3133void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3134{
3135 q->dev = dev;
3136 q->rpm_status = RPM_ACTIVE;
3137 pm_runtime_set_autosuspend_delay(q->dev, -1);
3138 pm_runtime_use_autosuspend(q->dev);
3139}
3140EXPORT_SYMBOL(blk_pm_runtime_init);
3141
3142/**
3143 * blk_pre_runtime_suspend - Pre runtime suspend check
3144 * @q: the queue of the device
3145 *
3146 * Description:
3147 * This function will check if runtime suspend is allowed for the device
3148 * by examining if there are any requests pending in the queue. If there
3149 * are requests pending, the device can not be runtime suspended; otherwise,
3150 * the queue's status will be updated to SUSPENDING and the driver can
3151 * proceed to suspend the device.
3152 *
3153 * For the not allowed case, we mark last busy for the device so that
3154 * runtime PM core will try to autosuspend it some time later.
3155 *
3156 * This function should be called near the start of the device's
3157 * runtime_suspend callback.
3158 *
3159 * Return:
3160 * 0 - OK to runtime suspend the device
3161 * -EBUSY - Device should not be runtime suspended
3162 */
3163int blk_pre_runtime_suspend(struct request_queue *q)
3164{
3165 int ret = 0;
3166
3167 spin_lock_irq(q->queue_lock);
3168 if (q->nr_pending) {
3169 ret = -EBUSY;
3170 pm_runtime_mark_last_busy(q->dev);
3171 } else {
3172 q->rpm_status = RPM_SUSPENDING;
3173 }
3174 spin_unlock_irq(q->queue_lock);
3175 return ret;
3176}
3177EXPORT_SYMBOL(blk_pre_runtime_suspend);
3178
3179/**
3180 * blk_post_runtime_suspend - Post runtime suspend processing
3181 * @q: the queue of the device
3182 * @err: return value of the device's runtime_suspend function
3183 *
3184 * Description:
3185 * Update the queue's runtime status according to the return value of the
3186 * device's runtime suspend function and mark last busy for the device so
3187 * that PM core will try to auto suspend the device at a later time.
3188 *
3189 * This function should be called near the end of the device's
3190 * runtime_suspend callback.
3191 */
3192void blk_post_runtime_suspend(struct request_queue *q, int err)
3193{
3194 spin_lock_irq(q->queue_lock);
3195 if (!err) {
3196 q->rpm_status = RPM_SUSPENDED;
3197 } else {
3198 q->rpm_status = RPM_ACTIVE;
3199 pm_runtime_mark_last_busy(q->dev);
3200 }
3201 spin_unlock_irq(q->queue_lock);
3202}
3203EXPORT_SYMBOL(blk_post_runtime_suspend);
3204
3205/**
3206 * blk_pre_runtime_resume - Pre runtime resume processing
3207 * @q: the queue of the device
3208 *
3209 * Description:
3210 * Update the queue's runtime status to RESUMING in preparation for the
3211 * runtime resume of the device.
3212 *
3213 * This function should be called near the start of the device's
3214 * runtime_resume callback.
3215 */
3216void blk_pre_runtime_resume(struct request_queue *q)
3217{
3218 spin_lock_irq(q->queue_lock);
3219 q->rpm_status = RPM_RESUMING;
3220 spin_unlock_irq(q->queue_lock);
3221}
3222EXPORT_SYMBOL(blk_pre_runtime_resume);
3223
3224/**
3225 * blk_post_runtime_resume - Post runtime resume processing
3226 * @q: the queue of the device
3227 * @err: return value of the device's runtime_resume function
3228 *
3229 * Description:
3230 * Update the queue's runtime status according to the return value of the
3231 * device's runtime_resume function. If it is successfully resumed, process
3232 * the requests that are queued into the device's queue when it is resuming
3233 * and then mark last busy and initiate autosuspend for it.
3234 *
3235 * This function should be called near the end of the device's
3236 * runtime_resume callback.
3237 */
3238void blk_post_runtime_resume(struct request_queue *q, int err)
3239{
3240 spin_lock_irq(q->queue_lock);
3241 if (!err) {
3242 q->rpm_status = RPM_ACTIVE;
3243 __blk_run_queue(q);
3244 pm_runtime_mark_last_busy(q->dev);
3245 pm_request_autosuspend(q->dev);
3246 } else {
3247 q->rpm_status = RPM_SUSPENDED;
3248 }
3249 spin_unlock_irq(q->queue_lock);
3250}
3251EXPORT_SYMBOL(blk_post_runtime_resume);
3252#endif
3253
3254int __init blk_dev_init(void)
3255{
3256 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3257 sizeof(((struct request *)0)->cmd_flags));
3258
3259 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3260 kblockd_workqueue = alloc_workqueue("kblockd",
3261 WQ_MEM_RECLAIM | WQ_HIGHPRI |
3262 WQ_POWER_EFFICIENT, 0);
3263 if (!kblockd_workqueue)
3264 panic("Failed to create kblockd\n");
3265
3266 request_cachep = kmem_cache_create("blkdev_requests",
3267 sizeof(struct request), 0, SLAB_PANIC, NULL);
3268
3269 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3270 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3271
3272 return 0;
3273}