Loading...
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
28#include <linux/task_io_accounting_ops.h>
29#include <linux/fault-inject.h>
30#include <linux/list_sort.h>
31#include <linux/delay.h>
32#include <linux/ratelimit.h>
33
34#define CREATE_TRACE_POINTS
35#include <trace/events/block.h>
36
37#include "blk.h"
38#include "blk-cgroup.h"
39
40EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
41EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
42EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
43
44DEFINE_IDA(blk_queue_ida);
45
46/*
47 * For the allocated request tables
48 */
49static struct kmem_cache *request_cachep;
50
51/*
52 * For queue allocation
53 */
54struct kmem_cache *blk_requestq_cachep;
55
56/*
57 * Controlling structure to kblockd
58 */
59static struct workqueue_struct *kblockd_workqueue;
60
61static void drive_stat_acct(struct request *rq, int new_io)
62{
63 struct hd_struct *part;
64 int rw = rq_data_dir(rq);
65 int cpu;
66
67 if (!blk_do_io_stat(rq))
68 return;
69
70 cpu = part_stat_lock();
71
72 if (!new_io) {
73 part = rq->part;
74 part_stat_inc(cpu, part, merges[rw]);
75 } else {
76 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
77 if (!hd_struct_try_get(part)) {
78 /*
79 * The partition is already being removed,
80 * the request will be accounted on the disk only
81 *
82 * We take a reference on disk->part0 although that
83 * partition will never be deleted, so we can treat
84 * it as any other partition.
85 */
86 part = &rq->rq_disk->part0;
87 hd_struct_get(part);
88 }
89 part_round_stats(cpu, part);
90 part_inc_in_flight(part, rw);
91 rq->part = part;
92 }
93
94 part_stat_unlock();
95}
96
97void blk_queue_congestion_threshold(struct request_queue *q)
98{
99 int nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
103 nr = q->nr_requests;
104 q->nr_congestion_on = nr;
105
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 if (nr < 1)
108 nr = 1;
109 q->nr_congestion_off = nr;
110}
111
112/**
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev: device
115 *
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
118 *
119 * Will return NULL if the request queue cannot be located.
120 */
121struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122{
123 struct backing_dev_info *ret = NULL;
124 struct request_queue *q = bdev_get_queue(bdev);
125
126 if (q)
127 ret = &q->backing_dev_info;
128 return ret;
129}
130EXPORT_SYMBOL(blk_get_backing_dev_info);
131
132void blk_rq_init(struct request_queue *q, struct request *rq)
133{
134 memset(rq, 0, sizeof(*rq));
135
136 INIT_LIST_HEAD(&rq->queuelist);
137 INIT_LIST_HEAD(&rq->timeout_list);
138 rq->cpu = -1;
139 rq->q = q;
140 rq->__sector = (sector_t) -1;
141 INIT_HLIST_NODE(&rq->hash);
142 RB_CLEAR_NODE(&rq->rb_node);
143 rq->cmd = rq->__cmd;
144 rq->cmd_len = BLK_MAX_CDB;
145 rq->tag = -1;
146 rq->ref_count = 1;
147 rq->start_time = jiffies;
148 set_start_time_ns(rq);
149 rq->part = NULL;
150}
151EXPORT_SYMBOL(blk_rq_init);
152
153static void req_bio_endio(struct request *rq, struct bio *bio,
154 unsigned int nbytes, int error)
155{
156 if (error)
157 clear_bit(BIO_UPTODATE, &bio->bi_flags);
158 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
159 error = -EIO;
160
161 if (unlikely(nbytes > bio->bi_size)) {
162 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
163 __func__, nbytes, bio->bi_size);
164 nbytes = bio->bi_size;
165 }
166
167 if (unlikely(rq->cmd_flags & REQ_QUIET))
168 set_bit(BIO_QUIET, &bio->bi_flags);
169
170 bio->bi_size -= nbytes;
171 bio->bi_sector += (nbytes >> 9);
172
173 if (bio_integrity(bio))
174 bio_integrity_advance(bio, nbytes);
175
176 /* don't actually finish bio if it's part of flush sequence */
177 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
178 bio_endio(bio, error);
179}
180
181void blk_dump_rq_flags(struct request *rq, char *msg)
182{
183 int bit;
184
185 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
186 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
187 rq->cmd_flags);
188
189 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
190 (unsigned long long)blk_rq_pos(rq),
191 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
192 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
193 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
194
195 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
196 printk(KERN_INFO " cdb: ");
197 for (bit = 0; bit < BLK_MAX_CDB; bit++)
198 printk("%02x ", rq->cmd[bit]);
199 printk("\n");
200 }
201}
202EXPORT_SYMBOL(blk_dump_rq_flags);
203
204static void blk_delay_work(struct work_struct *work)
205{
206 struct request_queue *q;
207
208 q = container_of(work, struct request_queue, delay_work.work);
209 spin_lock_irq(q->queue_lock);
210 __blk_run_queue(q);
211 spin_unlock_irq(q->queue_lock);
212}
213
214/**
215 * blk_delay_queue - restart queueing after defined interval
216 * @q: The &struct request_queue in question
217 * @msecs: Delay in msecs
218 *
219 * Description:
220 * Sometimes queueing needs to be postponed for a little while, to allow
221 * resources to come back. This function will make sure that queueing is
222 * restarted around the specified time.
223 */
224void blk_delay_queue(struct request_queue *q, unsigned long msecs)
225{
226 queue_delayed_work(kblockd_workqueue, &q->delay_work,
227 msecs_to_jiffies(msecs));
228}
229EXPORT_SYMBOL(blk_delay_queue);
230
231/**
232 * blk_start_queue - restart a previously stopped queue
233 * @q: The &struct request_queue in question
234 *
235 * Description:
236 * blk_start_queue() will clear the stop flag on the queue, and call
237 * the request_fn for the queue if it was in a stopped state when
238 * entered. Also see blk_stop_queue(). Queue lock must be held.
239 **/
240void blk_start_queue(struct request_queue *q)
241{
242 WARN_ON(!irqs_disabled());
243
244 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
245 __blk_run_queue(q);
246}
247EXPORT_SYMBOL(blk_start_queue);
248
249/**
250 * blk_stop_queue - stop a queue
251 * @q: The &struct request_queue in question
252 *
253 * Description:
254 * The Linux block layer assumes that a block driver will consume all
255 * entries on the request queue when the request_fn strategy is called.
256 * Often this will not happen, because of hardware limitations (queue
257 * depth settings). If a device driver gets a 'queue full' response,
258 * or if it simply chooses not to queue more I/O at one point, it can
259 * call this function to prevent the request_fn from being called until
260 * the driver has signalled it's ready to go again. This happens by calling
261 * blk_start_queue() to restart queue operations. Queue lock must be held.
262 **/
263void blk_stop_queue(struct request_queue *q)
264{
265 __cancel_delayed_work(&q->delay_work);
266 queue_flag_set(QUEUE_FLAG_STOPPED, q);
267}
268EXPORT_SYMBOL(blk_stop_queue);
269
270/**
271 * blk_sync_queue - cancel any pending callbacks on a queue
272 * @q: the queue
273 *
274 * Description:
275 * The block layer may perform asynchronous callback activity
276 * on a queue, such as calling the unplug function after a timeout.
277 * A block device may call blk_sync_queue to ensure that any
278 * such activity is cancelled, thus allowing it to release resources
279 * that the callbacks might use. The caller must already have made sure
280 * that its ->make_request_fn will not re-add plugging prior to calling
281 * this function.
282 *
283 * This function does not cancel any asynchronous activity arising
284 * out of elevator or throttling code. That would require elevaotor_exit()
285 * and blkcg_exit_queue() to be called with queue lock initialized.
286 *
287 */
288void blk_sync_queue(struct request_queue *q)
289{
290 del_timer_sync(&q->timeout);
291 cancel_delayed_work_sync(&q->delay_work);
292}
293EXPORT_SYMBOL(blk_sync_queue);
294
295/**
296 * __blk_run_queue - run a single device queue
297 * @q: The queue to run
298 *
299 * Description:
300 * See @blk_run_queue. This variant must be called with the queue lock
301 * held and interrupts disabled.
302 */
303void __blk_run_queue(struct request_queue *q)
304{
305 if (unlikely(blk_queue_stopped(q)))
306 return;
307
308 q->request_fn(q);
309}
310EXPORT_SYMBOL(__blk_run_queue);
311
312/**
313 * blk_run_queue_async - run a single device queue in workqueue context
314 * @q: The queue to run
315 *
316 * Description:
317 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
318 * of us.
319 */
320void blk_run_queue_async(struct request_queue *q)
321{
322 if (likely(!blk_queue_stopped(q))) {
323 __cancel_delayed_work(&q->delay_work);
324 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
325 }
326}
327EXPORT_SYMBOL(blk_run_queue_async);
328
329/**
330 * blk_run_queue - run a single device queue
331 * @q: The queue to run
332 *
333 * Description:
334 * Invoke request handling on this queue, if it has pending work to do.
335 * May be used to restart queueing when a request has completed.
336 */
337void blk_run_queue(struct request_queue *q)
338{
339 unsigned long flags;
340
341 spin_lock_irqsave(q->queue_lock, flags);
342 __blk_run_queue(q);
343 spin_unlock_irqrestore(q->queue_lock, flags);
344}
345EXPORT_SYMBOL(blk_run_queue);
346
347void blk_put_queue(struct request_queue *q)
348{
349 kobject_put(&q->kobj);
350}
351EXPORT_SYMBOL(blk_put_queue);
352
353/**
354 * blk_drain_queue - drain requests from request_queue
355 * @q: queue to drain
356 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
357 *
358 * Drain requests from @q. If @drain_all is set, all requests are drained.
359 * If not, only ELVPRIV requests are drained. The caller is responsible
360 * for ensuring that no new requests which need to be drained are queued.
361 */
362void blk_drain_queue(struct request_queue *q, bool drain_all)
363{
364 int i;
365
366 while (true) {
367 bool drain = false;
368
369 spin_lock_irq(q->queue_lock);
370
371 /*
372 * The caller might be trying to drain @q before its
373 * elevator is initialized.
374 */
375 if (q->elevator)
376 elv_drain_elevator(q);
377
378 blkcg_drain_queue(q);
379
380 /*
381 * This function might be called on a queue which failed
382 * driver init after queue creation or is not yet fully
383 * active yet. Some drivers (e.g. fd and loop) get unhappy
384 * in such cases. Kick queue iff dispatch queue has
385 * something on it and @q has request_fn set.
386 */
387 if (!list_empty(&q->queue_head) && q->request_fn)
388 __blk_run_queue(q);
389
390 drain |= q->rq.elvpriv;
391
392 /*
393 * Unfortunately, requests are queued at and tracked from
394 * multiple places and there's no single counter which can
395 * be drained. Check all the queues and counters.
396 */
397 if (drain_all) {
398 drain |= !list_empty(&q->queue_head);
399 for (i = 0; i < 2; i++) {
400 drain |= q->rq.count[i];
401 drain |= q->in_flight[i];
402 drain |= !list_empty(&q->flush_queue[i]);
403 }
404 }
405
406 spin_unlock_irq(q->queue_lock);
407
408 if (!drain)
409 break;
410 msleep(10);
411 }
412
413 /*
414 * With queue marked dead, any woken up waiter will fail the
415 * allocation path, so the wakeup chaining is lost and we're
416 * left with hung waiters. We need to wake up those waiters.
417 */
418 if (q->request_fn) {
419 spin_lock_irq(q->queue_lock);
420 for (i = 0; i < ARRAY_SIZE(q->rq.wait); i++)
421 wake_up_all(&q->rq.wait[i]);
422 spin_unlock_irq(q->queue_lock);
423 }
424}
425
426/**
427 * blk_queue_bypass_start - enter queue bypass mode
428 * @q: queue of interest
429 *
430 * In bypass mode, only the dispatch FIFO queue of @q is used. This
431 * function makes @q enter bypass mode and drains all requests which were
432 * throttled or issued before. On return, it's guaranteed that no request
433 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
434 * inside queue or RCU read lock.
435 */
436void blk_queue_bypass_start(struct request_queue *q)
437{
438 bool drain;
439
440 spin_lock_irq(q->queue_lock);
441 drain = !q->bypass_depth++;
442 queue_flag_set(QUEUE_FLAG_BYPASS, q);
443 spin_unlock_irq(q->queue_lock);
444
445 if (drain) {
446 blk_drain_queue(q, false);
447 /* ensure blk_queue_bypass() is %true inside RCU read lock */
448 synchronize_rcu();
449 }
450}
451EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
452
453/**
454 * blk_queue_bypass_end - leave queue bypass mode
455 * @q: queue of interest
456 *
457 * Leave bypass mode and restore the normal queueing behavior.
458 */
459void blk_queue_bypass_end(struct request_queue *q)
460{
461 spin_lock_irq(q->queue_lock);
462 if (!--q->bypass_depth)
463 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
464 WARN_ON_ONCE(q->bypass_depth < 0);
465 spin_unlock_irq(q->queue_lock);
466}
467EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
468
469/**
470 * blk_cleanup_queue - shutdown a request queue
471 * @q: request queue to shutdown
472 *
473 * Mark @q DEAD, drain all pending requests, destroy and put it. All
474 * future requests will be failed immediately with -ENODEV.
475 */
476void blk_cleanup_queue(struct request_queue *q)
477{
478 spinlock_t *lock = q->queue_lock;
479
480 /* mark @q DEAD, no new request or merges will be allowed afterwards */
481 mutex_lock(&q->sysfs_lock);
482 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483 spin_lock_irq(lock);
484
485 /*
486 * Dead queue is permanently in bypass mode till released. Note
487 * that, unlike blk_queue_bypass_start(), we aren't performing
488 * synchronize_rcu() after entering bypass mode to avoid the delay
489 * as some drivers create and destroy a lot of queues while
490 * probing. This is still safe because blk_release_queue() will be
491 * called only after the queue refcnt drops to zero and nothing,
492 * RCU or not, would be traversing the queue by then.
493 */
494 q->bypass_depth++;
495 queue_flag_set(QUEUE_FLAG_BYPASS, q);
496
497 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
498 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
499 queue_flag_set(QUEUE_FLAG_DEAD, q);
500 spin_unlock_irq(lock);
501 mutex_unlock(&q->sysfs_lock);
502
503 /* drain all requests queued before DEAD marking */
504 blk_drain_queue(q, true);
505
506 /* @q won't process any more request, flush async actions */
507 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
508 blk_sync_queue(q);
509
510 spin_lock_irq(lock);
511 if (q->queue_lock != &q->__queue_lock)
512 q->queue_lock = &q->__queue_lock;
513 spin_unlock_irq(lock);
514
515 /* @q is and will stay empty, shutdown and put */
516 blk_put_queue(q);
517}
518EXPORT_SYMBOL(blk_cleanup_queue);
519
520static int blk_init_free_list(struct request_queue *q)
521{
522 struct request_list *rl = &q->rq;
523
524 if (unlikely(rl->rq_pool))
525 return 0;
526
527 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
528 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
529 rl->elvpriv = 0;
530 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
531 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
532
533 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
534 mempool_free_slab, request_cachep, q->node);
535
536 if (!rl->rq_pool)
537 return -ENOMEM;
538
539 return 0;
540}
541
542struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
543{
544 return blk_alloc_queue_node(gfp_mask, -1);
545}
546EXPORT_SYMBOL(blk_alloc_queue);
547
548struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
549{
550 struct request_queue *q;
551 int err;
552
553 q = kmem_cache_alloc_node(blk_requestq_cachep,
554 gfp_mask | __GFP_ZERO, node_id);
555 if (!q)
556 return NULL;
557
558 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
559 if (q->id < 0)
560 goto fail_q;
561
562 q->backing_dev_info.ra_pages =
563 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
564 q->backing_dev_info.state = 0;
565 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
566 q->backing_dev_info.name = "block";
567 q->node = node_id;
568
569 err = bdi_init(&q->backing_dev_info);
570 if (err)
571 goto fail_id;
572
573 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
574 laptop_mode_timer_fn, (unsigned long) q);
575 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
576 INIT_LIST_HEAD(&q->queue_head);
577 INIT_LIST_HEAD(&q->timeout_list);
578 INIT_LIST_HEAD(&q->icq_list);
579#ifdef CONFIG_BLK_CGROUP
580 INIT_LIST_HEAD(&q->blkg_list);
581#endif
582 INIT_LIST_HEAD(&q->flush_queue[0]);
583 INIT_LIST_HEAD(&q->flush_queue[1]);
584 INIT_LIST_HEAD(&q->flush_data_in_flight);
585 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
586
587 kobject_init(&q->kobj, &blk_queue_ktype);
588
589 mutex_init(&q->sysfs_lock);
590 spin_lock_init(&q->__queue_lock);
591
592 /*
593 * By default initialize queue_lock to internal lock and driver can
594 * override it later if need be.
595 */
596 q->queue_lock = &q->__queue_lock;
597
598 /*
599 * A queue starts its life with bypass turned on to avoid
600 * unnecessary bypass on/off overhead and nasty surprises during
601 * init. The initial bypass will be finished at the end of
602 * blk_init_allocated_queue().
603 */
604 q->bypass_depth = 1;
605 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
606
607 if (blkcg_init_queue(q))
608 goto fail_id;
609
610 return q;
611
612fail_id:
613 ida_simple_remove(&blk_queue_ida, q->id);
614fail_q:
615 kmem_cache_free(blk_requestq_cachep, q);
616 return NULL;
617}
618EXPORT_SYMBOL(blk_alloc_queue_node);
619
620/**
621 * blk_init_queue - prepare a request queue for use with a block device
622 * @rfn: The function to be called to process requests that have been
623 * placed on the queue.
624 * @lock: Request queue spin lock
625 *
626 * Description:
627 * If a block device wishes to use the standard request handling procedures,
628 * which sorts requests and coalesces adjacent requests, then it must
629 * call blk_init_queue(). The function @rfn will be called when there
630 * are requests on the queue that need to be processed. If the device
631 * supports plugging, then @rfn may not be called immediately when requests
632 * are available on the queue, but may be called at some time later instead.
633 * Plugged queues are generally unplugged when a buffer belonging to one
634 * of the requests on the queue is needed, or due to memory pressure.
635 *
636 * @rfn is not required, or even expected, to remove all requests off the
637 * queue, but only as many as it can handle at a time. If it does leave
638 * requests on the queue, it is responsible for arranging that the requests
639 * get dealt with eventually.
640 *
641 * The queue spin lock must be held while manipulating the requests on the
642 * request queue; this lock will be taken also from interrupt context, so irq
643 * disabling is needed for it.
644 *
645 * Function returns a pointer to the initialized request queue, or %NULL if
646 * it didn't succeed.
647 *
648 * Note:
649 * blk_init_queue() must be paired with a blk_cleanup_queue() call
650 * when the block device is deactivated (such as at module unload).
651 **/
652
653struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
654{
655 return blk_init_queue_node(rfn, lock, -1);
656}
657EXPORT_SYMBOL(blk_init_queue);
658
659struct request_queue *
660blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
661{
662 struct request_queue *uninit_q, *q;
663
664 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
665 if (!uninit_q)
666 return NULL;
667
668 q = blk_init_allocated_queue(uninit_q, rfn, lock);
669 if (!q)
670 blk_cleanup_queue(uninit_q);
671
672 return q;
673}
674EXPORT_SYMBOL(blk_init_queue_node);
675
676struct request_queue *
677blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
678 spinlock_t *lock)
679{
680 if (!q)
681 return NULL;
682
683 if (blk_init_free_list(q))
684 return NULL;
685
686 q->request_fn = rfn;
687 q->prep_rq_fn = NULL;
688 q->unprep_rq_fn = NULL;
689 q->queue_flags = QUEUE_FLAG_DEFAULT;
690
691 /* Override internal queue lock with supplied lock pointer */
692 if (lock)
693 q->queue_lock = lock;
694
695 /*
696 * This also sets hw/phys segments, boundary and size
697 */
698 blk_queue_make_request(q, blk_queue_bio);
699
700 q->sg_reserved_size = INT_MAX;
701
702 /* init elevator */
703 if (elevator_init(q, NULL))
704 return NULL;
705
706 blk_queue_congestion_threshold(q);
707
708 /* all done, end the initial bypass */
709 blk_queue_bypass_end(q);
710 return q;
711}
712EXPORT_SYMBOL(blk_init_allocated_queue);
713
714bool blk_get_queue(struct request_queue *q)
715{
716 if (likely(!blk_queue_dead(q))) {
717 __blk_get_queue(q);
718 return true;
719 }
720
721 return false;
722}
723EXPORT_SYMBOL(blk_get_queue);
724
725static inline void blk_free_request(struct request_queue *q, struct request *rq)
726{
727 if (rq->cmd_flags & REQ_ELVPRIV) {
728 elv_put_request(q, rq);
729 if (rq->elv.icq)
730 put_io_context(rq->elv.icq->ioc);
731 }
732
733 mempool_free(rq, q->rq.rq_pool);
734}
735
736/*
737 * ioc_batching returns true if the ioc is a valid batching request and
738 * should be given priority access to a request.
739 */
740static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
741{
742 if (!ioc)
743 return 0;
744
745 /*
746 * Make sure the process is able to allocate at least 1 request
747 * even if the batch times out, otherwise we could theoretically
748 * lose wakeups.
749 */
750 return ioc->nr_batch_requests == q->nr_batching ||
751 (ioc->nr_batch_requests > 0
752 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
753}
754
755/*
756 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
757 * will cause the process to be a "batcher" on all queues in the system. This
758 * is the behaviour we want though - once it gets a wakeup it should be given
759 * a nice run.
760 */
761static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
762{
763 if (!ioc || ioc_batching(q, ioc))
764 return;
765
766 ioc->nr_batch_requests = q->nr_batching;
767 ioc->last_waited = jiffies;
768}
769
770static void __freed_request(struct request_queue *q, int sync)
771{
772 struct request_list *rl = &q->rq;
773
774 if (rl->count[sync] < queue_congestion_off_threshold(q))
775 blk_clear_queue_congested(q, sync);
776
777 if (rl->count[sync] + 1 <= q->nr_requests) {
778 if (waitqueue_active(&rl->wait[sync]))
779 wake_up(&rl->wait[sync]);
780
781 blk_clear_queue_full(q, sync);
782 }
783}
784
785/*
786 * A request has just been released. Account for it, update the full and
787 * congestion status, wake up any waiters. Called under q->queue_lock.
788 */
789static void freed_request(struct request_queue *q, unsigned int flags)
790{
791 struct request_list *rl = &q->rq;
792 int sync = rw_is_sync(flags);
793
794 rl->count[sync]--;
795 if (flags & REQ_ELVPRIV)
796 rl->elvpriv--;
797
798 __freed_request(q, sync);
799
800 if (unlikely(rl->starved[sync ^ 1]))
801 __freed_request(q, sync ^ 1);
802}
803
804/*
805 * Determine if elevator data should be initialized when allocating the
806 * request associated with @bio.
807 */
808static bool blk_rq_should_init_elevator(struct bio *bio)
809{
810 if (!bio)
811 return true;
812
813 /*
814 * Flush requests do not use the elevator so skip initialization.
815 * This allows a request to share the flush and elevator data.
816 */
817 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
818 return false;
819
820 return true;
821}
822
823/**
824 * rq_ioc - determine io_context for request allocation
825 * @bio: request being allocated is for this bio (can be %NULL)
826 *
827 * Determine io_context to use for request allocation for @bio. May return
828 * %NULL if %current->io_context doesn't exist.
829 */
830static struct io_context *rq_ioc(struct bio *bio)
831{
832#ifdef CONFIG_BLK_CGROUP
833 if (bio && bio->bi_ioc)
834 return bio->bi_ioc;
835#endif
836 return current->io_context;
837}
838
839/**
840 * get_request - get a free request
841 * @q: request_queue to allocate request from
842 * @rw_flags: RW and SYNC flags
843 * @bio: bio to allocate request for (can be %NULL)
844 * @gfp_mask: allocation mask
845 *
846 * Get a free request from @q. This function may fail under memory
847 * pressure or if @q is dead.
848 *
849 * Must be callled with @q->queue_lock held and,
850 * Returns %NULL on failure, with @q->queue_lock held.
851 * Returns !%NULL on success, with @q->queue_lock *not held*.
852 */
853static struct request *get_request(struct request_queue *q, int rw_flags,
854 struct bio *bio, gfp_t gfp_mask)
855{
856 struct request *rq;
857 struct request_list *rl = &q->rq;
858 struct elevator_type *et;
859 struct io_context *ioc;
860 struct io_cq *icq = NULL;
861 const bool is_sync = rw_is_sync(rw_flags) != 0;
862 bool retried = false;
863 int may_queue;
864retry:
865 et = q->elevator->type;
866 ioc = rq_ioc(bio);
867
868 if (unlikely(blk_queue_dead(q)))
869 return NULL;
870
871 may_queue = elv_may_queue(q, rw_flags);
872 if (may_queue == ELV_MQUEUE_NO)
873 goto rq_starved;
874
875 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
876 if (rl->count[is_sync]+1 >= q->nr_requests) {
877 /*
878 * We want ioc to record batching state. If it's
879 * not already there, creating a new one requires
880 * dropping queue_lock, which in turn requires
881 * retesting conditions to avoid queue hang.
882 */
883 if (!ioc && !retried) {
884 spin_unlock_irq(q->queue_lock);
885 create_io_context(gfp_mask, q->node);
886 spin_lock_irq(q->queue_lock);
887 retried = true;
888 goto retry;
889 }
890
891 /*
892 * The queue will fill after this allocation, so set
893 * it as full, and mark this process as "batching".
894 * This process will be allowed to complete a batch of
895 * requests, others will be blocked.
896 */
897 if (!blk_queue_full(q, is_sync)) {
898 ioc_set_batching(q, ioc);
899 blk_set_queue_full(q, is_sync);
900 } else {
901 if (may_queue != ELV_MQUEUE_MUST
902 && !ioc_batching(q, ioc)) {
903 /*
904 * The queue is full and the allocating
905 * process is not a "batcher", and not
906 * exempted by the IO scheduler
907 */
908 return NULL;
909 }
910 }
911 }
912 blk_set_queue_congested(q, is_sync);
913 }
914
915 /*
916 * Only allow batching queuers to allocate up to 50% over the defined
917 * limit of requests, otherwise we could have thousands of requests
918 * allocated with any setting of ->nr_requests
919 */
920 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
921 return NULL;
922
923 rl->count[is_sync]++;
924 rl->starved[is_sync] = 0;
925
926 /*
927 * Decide whether the new request will be managed by elevator. If
928 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
929 * prevent the current elevator from being destroyed until the new
930 * request is freed. This guarantees icq's won't be destroyed and
931 * makes creating new ones safe.
932 *
933 * Also, lookup icq while holding queue_lock. If it doesn't exist,
934 * it will be created after releasing queue_lock.
935 */
936 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
937 rw_flags |= REQ_ELVPRIV;
938 rl->elvpriv++;
939 if (et->icq_cache && ioc)
940 icq = ioc_lookup_icq(ioc, q);
941 }
942
943 if (blk_queue_io_stat(q))
944 rw_flags |= REQ_IO_STAT;
945 spin_unlock_irq(q->queue_lock);
946
947 /* allocate and init request */
948 rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
949 if (!rq)
950 goto fail_alloc;
951
952 blk_rq_init(q, rq);
953 rq->cmd_flags = rw_flags | REQ_ALLOCED;
954
955 /* init elvpriv */
956 if (rw_flags & REQ_ELVPRIV) {
957 if (unlikely(et->icq_cache && !icq)) {
958 create_io_context(gfp_mask, q->node);
959 ioc = rq_ioc(bio);
960 if (!ioc)
961 goto fail_elvpriv;
962
963 icq = ioc_create_icq(ioc, q, gfp_mask);
964 if (!icq)
965 goto fail_elvpriv;
966 }
967
968 rq->elv.icq = icq;
969 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
970 goto fail_elvpriv;
971
972 /* @rq->elv.icq holds io_context until @rq is freed */
973 if (icq)
974 get_io_context(icq->ioc);
975 }
976out:
977 /*
978 * ioc may be NULL here, and ioc_batching will be false. That's
979 * OK, if the queue is under the request limit then requests need
980 * not count toward the nr_batch_requests limit. There will always
981 * be some limit enforced by BLK_BATCH_TIME.
982 */
983 if (ioc_batching(q, ioc))
984 ioc->nr_batch_requests--;
985
986 trace_block_getrq(q, bio, rw_flags & 1);
987 return rq;
988
989fail_elvpriv:
990 /*
991 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
992 * and may fail indefinitely under memory pressure and thus
993 * shouldn't stall IO. Treat this request as !elvpriv. This will
994 * disturb iosched and blkcg but weird is bettern than dead.
995 */
996 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
997 dev_name(q->backing_dev_info.dev));
998
999 rq->cmd_flags &= ~REQ_ELVPRIV;
1000 rq->elv.icq = NULL;
1001
1002 spin_lock_irq(q->queue_lock);
1003 rl->elvpriv--;
1004 spin_unlock_irq(q->queue_lock);
1005 goto out;
1006
1007fail_alloc:
1008 /*
1009 * Allocation failed presumably due to memory. Undo anything we
1010 * might have messed up.
1011 *
1012 * Allocating task should really be put onto the front of the wait
1013 * queue, but this is pretty rare.
1014 */
1015 spin_lock_irq(q->queue_lock);
1016 freed_request(q, rw_flags);
1017
1018 /*
1019 * in the very unlikely event that allocation failed and no
1020 * requests for this direction was pending, mark us starved so that
1021 * freeing of a request in the other direction will notice
1022 * us. another possible fix would be to split the rq mempool into
1023 * READ and WRITE
1024 */
1025rq_starved:
1026 if (unlikely(rl->count[is_sync] == 0))
1027 rl->starved[is_sync] = 1;
1028 return NULL;
1029}
1030
1031/**
1032 * get_request_wait - get a free request with retry
1033 * @q: request_queue to allocate request from
1034 * @rw_flags: RW and SYNC flags
1035 * @bio: bio to allocate request for (can be %NULL)
1036 *
1037 * Get a free request from @q. This function keeps retrying under memory
1038 * pressure and fails iff @q is dead.
1039 *
1040 * Must be callled with @q->queue_lock held and,
1041 * Returns %NULL on failure, with @q->queue_lock held.
1042 * Returns !%NULL on success, with @q->queue_lock *not held*.
1043 */
1044static struct request *get_request_wait(struct request_queue *q, int rw_flags,
1045 struct bio *bio)
1046{
1047 const bool is_sync = rw_is_sync(rw_flags) != 0;
1048 struct request *rq;
1049
1050 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1051 while (!rq) {
1052 DEFINE_WAIT(wait);
1053 struct request_list *rl = &q->rq;
1054
1055 if (unlikely(blk_queue_dead(q)))
1056 return NULL;
1057
1058 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1059 TASK_UNINTERRUPTIBLE);
1060
1061 trace_block_sleeprq(q, bio, rw_flags & 1);
1062
1063 spin_unlock_irq(q->queue_lock);
1064 io_schedule();
1065
1066 /*
1067 * After sleeping, we become a "batching" process and
1068 * will be able to allocate at least one request, and
1069 * up to a big batch of them for a small period time.
1070 * See ioc_batching, ioc_set_batching
1071 */
1072 create_io_context(GFP_NOIO, q->node);
1073 ioc_set_batching(q, current->io_context);
1074
1075 spin_lock_irq(q->queue_lock);
1076 finish_wait(&rl->wait[is_sync], &wait);
1077
1078 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1079 };
1080
1081 return rq;
1082}
1083
1084struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1085{
1086 struct request *rq;
1087
1088 BUG_ON(rw != READ && rw != WRITE);
1089
1090 spin_lock_irq(q->queue_lock);
1091 if (gfp_mask & __GFP_WAIT)
1092 rq = get_request_wait(q, rw, NULL);
1093 else
1094 rq = get_request(q, rw, NULL, gfp_mask);
1095 if (!rq)
1096 spin_unlock_irq(q->queue_lock);
1097 /* q->queue_lock is unlocked at this point */
1098
1099 return rq;
1100}
1101EXPORT_SYMBOL(blk_get_request);
1102
1103/**
1104 * blk_make_request - given a bio, allocate a corresponding struct request.
1105 * @q: target request queue
1106 * @bio: The bio describing the memory mappings that will be submitted for IO.
1107 * It may be a chained-bio properly constructed by block/bio layer.
1108 * @gfp_mask: gfp flags to be used for memory allocation
1109 *
1110 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1111 * type commands. Where the struct request needs to be farther initialized by
1112 * the caller. It is passed a &struct bio, which describes the memory info of
1113 * the I/O transfer.
1114 *
1115 * The caller of blk_make_request must make sure that bi_io_vec
1116 * are set to describe the memory buffers. That bio_data_dir() will return
1117 * the needed direction of the request. (And all bio's in the passed bio-chain
1118 * are properly set accordingly)
1119 *
1120 * If called under none-sleepable conditions, mapped bio buffers must not
1121 * need bouncing, by calling the appropriate masked or flagged allocator,
1122 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1123 * BUG.
1124 *
1125 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1126 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1127 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1128 * completion of a bio that hasn't been submitted yet, thus resulting in a
1129 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1130 * of bio_alloc(), as that avoids the mempool deadlock.
1131 * If possible a big IO should be split into smaller parts when allocation
1132 * fails. Partial allocation should not be an error, or you risk a live-lock.
1133 */
1134struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1135 gfp_t gfp_mask)
1136{
1137 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1138
1139 if (unlikely(!rq))
1140 return ERR_PTR(-ENOMEM);
1141
1142 for_each_bio(bio) {
1143 struct bio *bounce_bio = bio;
1144 int ret;
1145
1146 blk_queue_bounce(q, &bounce_bio);
1147 ret = blk_rq_append_bio(q, rq, bounce_bio);
1148 if (unlikely(ret)) {
1149 blk_put_request(rq);
1150 return ERR_PTR(ret);
1151 }
1152 }
1153
1154 return rq;
1155}
1156EXPORT_SYMBOL(blk_make_request);
1157
1158/**
1159 * blk_requeue_request - put a request back on queue
1160 * @q: request queue where request should be inserted
1161 * @rq: request to be inserted
1162 *
1163 * Description:
1164 * Drivers often keep queueing requests until the hardware cannot accept
1165 * more, when that condition happens we need to put the request back
1166 * on the queue. Must be called with queue lock held.
1167 */
1168void blk_requeue_request(struct request_queue *q, struct request *rq)
1169{
1170 blk_delete_timer(rq);
1171 blk_clear_rq_complete(rq);
1172 trace_block_rq_requeue(q, rq);
1173
1174 if (blk_rq_tagged(rq))
1175 blk_queue_end_tag(q, rq);
1176
1177 BUG_ON(blk_queued_rq(rq));
1178
1179 elv_requeue_request(q, rq);
1180}
1181EXPORT_SYMBOL(blk_requeue_request);
1182
1183static void add_acct_request(struct request_queue *q, struct request *rq,
1184 int where)
1185{
1186 drive_stat_acct(rq, 1);
1187 __elv_add_request(q, rq, where);
1188}
1189
1190static void part_round_stats_single(int cpu, struct hd_struct *part,
1191 unsigned long now)
1192{
1193 if (now == part->stamp)
1194 return;
1195
1196 if (part_in_flight(part)) {
1197 __part_stat_add(cpu, part, time_in_queue,
1198 part_in_flight(part) * (now - part->stamp));
1199 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1200 }
1201 part->stamp = now;
1202}
1203
1204/**
1205 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1206 * @cpu: cpu number for stats access
1207 * @part: target partition
1208 *
1209 * The average IO queue length and utilisation statistics are maintained
1210 * by observing the current state of the queue length and the amount of
1211 * time it has been in this state for.
1212 *
1213 * Normally, that accounting is done on IO completion, but that can result
1214 * in more than a second's worth of IO being accounted for within any one
1215 * second, leading to >100% utilisation. To deal with that, we call this
1216 * function to do a round-off before returning the results when reading
1217 * /proc/diskstats. This accounts immediately for all queue usage up to
1218 * the current jiffies and restarts the counters again.
1219 */
1220void part_round_stats(int cpu, struct hd_struct *part)
1221{
1222 unsigned long now = jiffies;
1223
1224 if (part->partno)
1225 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1226 part_round_stats_single(cpu, part, now);
1227}
1228EXPORT_SYMBOL_GPL(part_round_stats);
1229
1230/*
1231 * queue lock must be held
1232 */
1233void __blk_put_request(struct request_queue *q, struct request *req)
1234{
1235 if (unlikely(!q))
1236 return;
1237 if (unlikely(--req->ref_count))
1238 return;
1239
1240 elv_completed_request(q, req);
1241
1242 /* this is a bio leak */
1243 WARN_ON(req->bio != NULL);
1244
1245 /*
1246 * Request may not have originated from ll_rw_blk. if not,
1247 * it didn't come out of our reserved rq pools
1248 */
1249 if (req->cmd_flags & REQ_ALLOCED) {
1250 unsigned int flags = req->cmd_flags;
1251
1252 BUG_ON(!list_empty(&req->queuelist));
1253 BUG_ON(!hlist_unhashed(&req->hash));
1254
1255 blk_free_request(q, req);
1256 freed_request(q, flags);
1257 }
1258}
1259EXPORT_SYMBOL_GPL(__blk_put_request);
1260
1261void blk_put_request(struct request *req)
1262{
1263 unsigned long flags;
1264 struct request_queue *q = req->q;
1265
1266 spin_lock_irqsave(q->queue_lock, flags);
1267 __blk_put_request(q, req);
1268 spin_unlock_irqrestore(q->queue_lock, flags);
1269}
1270EXPORT_SYMBOL(blk_put_request);
1271
1272/**
1273 * blk_add_request_payload - add a payload to a request
1274 * @rq: request to update
1275 * @page: page backing the payload
1276 * @len: length of the payload.
1277 *
1278 * This allows to later add a payload to an already submitted request by
1279 * a block driver. The driver needs to take care of freeing the payload
1280 * itself.
1281 *
1282 * Note that this is a quite horrible hack and nothing but handling of
1283 * discard requests should ever use it.
1284 */
1285void blk_add_request_payload(struct request *rq, struct page *page,
1286 unsigned int len)
1287{
1288 struct bio *bio = rq->bio;
1289
1290 bio->bi_io_vec->bv_page = page;
1291 bio->bi_io_vec->bv_offset = 0;
1292 bio->bi_io_vec->bv_len = len;
1293
1294 bio->bi_size = len;
1295 bio->bi_vcnt = 1;
1296 bio->bi_phys_segments = 1;
1297
1298 rq->__data_len = rq->resid_len = len;
1299 rq->nr_phys_segments = 1;
1300 rq->buffer = bio_data(bio);
1301}
1302EXPORT_SYMBOL_GPL(blk_add_request_payload);
1303
1304static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1305 struct bio *bio)
1306{
1307 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1308
1309 if (!ll_back_merge_fn(q, req, bio))
1310 return false;
1311
1312 trace_block_bio_backmerge(q, bio);
1313
1314 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1315 blk_rq_set_mixed_merge(req);
1316
1317 req->biotail->bi_next = bio;
1318 req->biotail = bio;
1319 req->__data_len += bio->bi_size;
1320 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1321
1322 drive_stat_acct(req, 0);
1323 return true;
1324}
1325
1326static bool bio_attempt_front_merge(struct request_queue *q,
1327 struct request *req, struct bio *bio)
1328{
1329 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1330
1331 if (!ll_front_merge_fn(q, req, bio))
1332 return false;
1333
1334 trace_block_bio_frontmerge(q, bio);
1335
1336 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1337 blk_rq_set_mixed_merge(req);
1338
1339 bio->bi_next = req->bio;
1340 req->bio = bio;
1341
1342 /*
1343 * may not be valid. if the low level driver said
1344 * it didn't need a bounce buffer then it better
1345 * not touch req->buffer either...
1346 */
1347 req->buffer = bio_data(bio);
1348 req->__sector = bio->bi_sector;
1349 req->__data_len += bio->bi_size;
1350 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1351
1352 drive_stat_acct(req, 0);
1353 return true;
1354}
1355
1356/**
1357 * attempt_plug_merge - try to merge with %current's plugged list
1358 * @q: request_queue new bio is being queued at
1359 * @bio: new bio being queued
1360 * @request_count: out parameter for number of traversed plugged requests
1361 *
1362 * Determine whether @bio being queued on @q can be merged with a request
1363 * on %current's plugged list. Returns %true if merge was successful,
1364 * otherwise %false.
1365 *
1366 * Plugging coalesces IOs from the same issuer for the same purpose without
1367 * going through @q->queue_lock. As such it's more of an issuing mechanism
1368 * than scheduling, and the request, while may have elvpriv data, is not
1369 * added on the elevator at this point. In addition, we don't have
1370 * reliable access to the elevator outside queue lock. Only check basic
1371 * merging parameters without querying the elevator.
1372 */
1373static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1374 unsigned int *request_count)
1375{
1376 struct blk_plug *plug;
1377 struct request *rq;
1378 bool ret = false;
1379
1380 plug = current->plug;
1381 if (!plug)
1382 goto out;
1383 *request_count = 0;
1384
1385 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1386 int el_ret;
1387
1388 if (rq->q == q)
1389 (*request_count)++;
1390
1391 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1392 continue;
1393
1394 el_ret = blk_try_merge(rq, bio);
1395 if (el_ret == ELEVATOR_BACK_MERGE) {
1396 ret = bio_attempt_back_merge(q, rq, bio);
1397 if (ret)
1398 break;
1399 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1400 ret = bio_attempt_front_merge(q, rq, bio);
1401 if (ret)
1402 break;
1403 }
1404 }
1405out:
1406 return ret;
1407}
1408
1409void init_request_from_bio(struct request *req, struct bio *bio)
1410{
1411 req->cmd_type = REQ_TYPE_FS;
1412
1413 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1414 if (bio->bi_rw & REQ_RAHEAD)
1415 req->cmd_flags |= REQ_FAILFAST_MASK;
1416
1417 req->errors = 0;
1418 req->__sector = bio->bi_sector;
1419 req->ioprio = bio_prio(bio);
1420 blk_rq_bio_prep(req->q, req, bio);
1421}
1422
1423void blk_queue_bio(struct request_queue *q, struct bio *bio)
1424{
1425 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1426 struct blk_plug *plug;
1427 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1428 struct request *req;
1429 unsigned int request_count = 0;
1430
1431 /*
1432 * low level driver can indicate that it wants pages above a
1433 * certain limit bounced to low memory (ie for highmem, or even
1434 * ISA dma in theory)
1435 */
1436 blk_queue_bounce(q, &bio);
1437
1438 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1439 spin_lock_irq(q->queue_lock);
1440 where = ELEVATOR_INSERT_FLUSH;
1441 goto get_rq;
1442 }
1443
1444 /*
1445 * Check if we can merge with the plugged list before grabbing
1446 * any locks.
1447 */
1448 if (attempt_plug_merge(q, bio, &request_count))
1449 return;
1450
1451 spin_lock_irq(q->queue_lock);
1452
1453 el_ret = elv_merge(q, &req, bio);
1454 if (el_ret == ELEVATOR_BACK_MERGE) {
1455 if (bio_attempt_back_merge(q, req, bio)) {
1456 elv_bio_merged(q, req, bio);
1457 if (!attempt_back_merge(q, req))
1458 elv_merged_request(q, req, el_ret);
1459 goto out_unlock;
1460 }
1461 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1462 if (bio_attempt_front_merge(q, req, bio)) {
1463 elv_bio_merged(q, req, bio);
1464 if (!attempt_front_merge(q, req))
1465 elv_merged_request(q, req, el_ret);
1466 goto out_unlock;
1467 }
1468 }
1469
1470get_rq:
1471 /*
1472 * This sync check and mask will be re-done in init_request_from_bio(),
1473 * but we need to set it earlier to expose the sync flag to the
1474 * rq allocator and io schedulers.
1475 */
1476 rw_flags = bio_data_dir(bio);
1477 if (sync)
1478 rw_flags |= REQ_SYNC;
1479
1480 /*
1481 * Grab a free request. This is might sleep but can not fail.
1482 * Returns with the queue unlocked.
1483 */
1484 req = get_request_wait(q, rw_flags, bio);
1485 if (unlikely(!req)) {
1486 bio_endio(bio, -ENODEV); /* @q is dead */
1487 goto out_unlock;
1488 }
1489
1490 /*
1491 * After dropping the lock and possibly sleeping here, our request
1492 * may now be mergeable after it had proven unmergeable (above).
1493 * We don't worry about that case for efficiency. It won't happen
1494 * often, and the elevators are able to handle it.
1495 */
1496 init_request_from_bio(req, bio);
1497
1498 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1499 req->cpu = raw_smp_processor_id();
1500
1501 plug = current->plug;
1502 if (plug) {
1503 /*
1504 * If this is the first request added after a plug, fire
1505 * of a plug trace. If others have been added before, check
1506 * if we have multiple devices in this plug. If so, make a
1507 * note to sort the list before dispatch.
1508 */
1509 if (list_empty(&plug->list))
1510 trace_block_plug(q);
1511 else {
1512 if (!plug->should_sort) {
1513 struct request *__rq;
1514
1515 __rq = list_entry_rq(plug->list.prev);
1516 if (__rq->q != q)
1517 plug->should_sort = 1;
1518 }
1519 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1520 blk_flush_plug_list(plug, false);
1521 trace_block_plug(q);
1522 }
1523 }
1524 list_add_tail(&req->queuelist, &plug->list);
1525 drive_stat_acct(req, 1);
1526 } else {
1527 spin_lock_irq(q->queue_lock);
1528 add_acct_request(q, req, where);
1529 __blk_run_queue(q);
1530out_unlock:
1531 spin_unlock_irq(q->queue_lock);
1532 }
1533}
1534EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1535
1536/*
1537 * If bio->bi_dev is a partition, remap the location
1538 */
1539static inline void blk_partition_remap(struct bio *bio)
1540{
1541 struct block_device *bdev = bio->bi_bdev;
1542
1543 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1544 struct hd_struct *p = bdev->bd_part;
1545
1546 bio->bi_sector += p->start_sect;
1547 bio->bi_bdev = bdev->bd_contains;
1548
1549 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1550 bdev->bd_dev,
1551 bio->bi_sector - p->start_sect);
1552 }
1553}
1554
1555static void handle_bad_sector(struct bio *bio)
1556{
1557 char b[BDEVNAME_SIZE];
1558
1559 printk(KERN_INFO "attempt to access beyond end of device\n");
1560 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1561 bdevname(bio->bi_bdev, b),
1562 bio->bi_rw,
1563 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1564 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1565
1566 set_bit(BIO_EOF, &bio->bi_flags);
1567}
1568
1569#ifdef CONFIG_FAIL_MAKE_REQUEST
1570
1571static DECLARE_FAULT_ATTR(fail_make_request);
1572
1573static int __init setup_fail_make_request(char *str)
1574{
1575 return setup_fault_attr(&fail_make_request, str);
1576}
1577__setup("fail_make_request=", setup_fail_make_request);
1578
1579static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1580{
1581 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1582}
1583
1584static int __init fail_make_request_debugfs(void)
1585{
1586 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1587 NULL, &fail_make_request);
1588
1589 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1590}
1591
1592late_initcall(fail_make_request_debugfs);
1593
1594#else /* CONFIG_FAIL_MAKE_REQUEST */
1595
1596static inline bool should_fail_request(struct hd_struct *part,
1597 unsigned int bytes)
1598{
1599 return false;
1600}
1601
1602#endif /* CONFIG_FAIL_MAKE_REQUEST */
1603
1604/*
1605 * Check whether this bio extends beyond the end of the device.
1606 */
1607static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1608{
1609 sector_t maxsector;
1610
1611 if (!nr_sectors)
1612 return 0;
1613
1614 /* Test device or partition size, when known. */
1615 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1616 if (maxsector) {
1617 sector_t sector = bio->bi_sector;
1618
1619 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1620 /*
1621 * This may well happen - the kernel calls bread()
1622 * without checking the size of the device, e.g., when
1623 * mounting a device.
1624 */
1625 handle_bad_sector(bio);
1626 return 1;
1627 }
1628 }
1629
1630 return 0;
1631}
1632
1633static noinline_for_stack bool
1634generic_make_request_checks(struct bio *bio)
1635{
1636 struct request_queue *q;
1637 int nr_sectors = bio_sectors(bio);
1638 int err = -EIO;
1639 char b[BDEVNAME_SIZE];
1640 struct hd_struct *part;
1641
1642 might_sleep();
1643
1644 if (bio_check_eod(bio, nr_sectors))
1645 goto end_io;
1646
1647 q = bdev_get_queue(bio->bi_bdev);
1648 if (unlikely(!q)) {
1649 printk(KERN_ERR
1650 "generic_make_request: Trying to access "
1651 "nonexistent block-device %s (%Lu)\n",
1652 bdevname(bio->bi_bdev, b),
1653 (long long) bio->bi_sector);
1654 goto end_io;
1655 }
1656
1657 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1658 nr_sectors > queue_max_hw_sectors(q))) {
1659 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1660 bdevname(bio->bi_bdev, b),
1661 bio_sectors(bio),
1662 queue_max_hw_sectors(q));
1663 goto end_io;
1664 }
1665
1666 part = bio->bi_bdev->bd_part;
1667 if (should_fail_request(part, bio->bi_size) ||
1668 should_fail_request(&part_to_disk(part)->part0,
1669 bio->bi_size))
1670 goto end_io;
1671
1672 /*
1673 * If this device has partitions, remap block n
1674 * of partition p to block n+start(p) of the disk.
1675 */
1676 blk_partition_remap(bio);
1677
1678 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1679 goto end_io;
1680
1681 if (bio_check_eod(bio, nr_sectors))
1682 goto end_io;
1683
1684 /*
1685 * Filter flush bio's early so that make_request based
1686 * drivers without flush support don't have to worry
1687 * about them.
1688 */
1689 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1690 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1691 if (!nr_sectors) {
1692 err = 0;
1693 goto end_io;
1694 }
1695 }
1696
1697 if ((bio->bi_rw & REQ_DISCARD) &&
1698 (!blk_queue_discard(q) ||
1699 ((bio->bi_rw & REQ_SECURE) &&
1700 !blk_queue_secdiscard(q)))) {
1701 err = -EOPNOTSUPP;
1702 goto end_io;
1703 }
1704
1705 if (blk_throtl_bio(q, bio))
1706 return false; /* throttled, will be resubmitted later */
1707
1708 trace_block_bio_queue(q, bio);
1709 return true;
1710
1711end_io:
1712 bio_endio(bio, err);
1713 return false;
1714}
1715
1716/**
1717 * generic_make_request - hand a buffer to its device driver for I/O
1718 * @bio: The bio describing the location in memory and on the device.
1719 *
1720 * generic_make_request() is used to make I/O requests of block
1721 * devices. It is passed a &struct bio, which describes the I/O that needs
1722 * to be done.
1723 *
1724 * generic_make_request() does not return any status. The
1725 * success/failure status of the request, along with notification of
1726 * completion, is delivered asynchronously through the bio->bi_end_io
1727 * function described (one day) else where.
1728 *
1729 * The caller of generic_make_request must make sure that bi_io_vec
1730 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1731 * set to describe the device address, and the
1732 * bi_end_io and optionally bi_private are set to describe how
1733 * completion notification should be signaled.
1734 *
1735 * generic_make_request and the drivers it calls may use bi_next if this
1736 * bio happens to be merged with someone else, and may resubmit the bio to
1737 * a lower device by calling into generic_make_request recursively, which
1738 * means the bio should NOT be touched after the call to ->make_request_fn.
1739 */
1740void generic_make_request(struct bio *bio)
1741{
1742 struct bio_list bio_list_on_stack;
1743
1744 if (!generic_make_request_checks(bio))
1745 return;
1746
1747 /*
1748 * We only want one ->make_request_fn to be active at a time, else
1749 * stack usage with stacked devices could be a problem. So use
1750 * current->bio_list to keep a list of requests submited by a
1751 * make_request_fn function. current->bio_list is also used as a
1752 * flag to say if generic_make_request is currently active in this
1753 * task or not. If it is NULL, then no make_request is active. If
1754 * it is non-NULL, then a make_request is active, and new requests
1755 * should be added at the tail
1756 */
1757 if (current->bio_list) {
1758 bio_list_add(current->bio_list, bio);
1759 return;
1760 }
1761
1762 /* following loop may be a bit non-obvious, and so deserves some
1763 * explanation.
1764 * Before entering the loop, bio->bi_next is NULL (as all callers
1765 * ensure that) so we have a list with a single bio.
1766 * We pretend that we have just taken it off a longer list, so
1767 * we assign bio_list to a pointer to the bio_list_on_stack,
1768 * thus initialising the bio_list of new bios to be
1769 * added. ->make_request() may indeed add some more bios
1770 * through a recursive call to generic_make_request. If it
1771 * did, we find a non-NULL value in bio_list and re-enter the loop
1772 * from the top. In this case we really did just take the bio
1773 * of the top of the list (no pretending) and so remove it from
1774 * bio_list, and call into ->make_request() again.
1775 */
1776 BUG_ON(bio->bi_next);
1777 bio_list_init(&bio_list_on_stack);
1778 current->bio_list = &bio_list_on_stack;
1779 do {
1780 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1781
1782 q->make_request_fn(q, bio);
1783
1784 bio = bio_list_pop(current->bio_list);
1785 } while (bio);
1786 current->bio_list = NULL; /* deactivate */
1787}
1788EXPORT_SYMBOL(generic_make_request);
1789
1790/**
1791 * submit_bio - submit a bio to the block device layer for I/O
1792 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1793 * @bio: The &struct bio which describes the I/O
1794 *
1795 * submit_bio() is very similar in purpose to generic_make_request(), and
1796 * uses that function to do most of the work. Both are fairly rough
1797 * interfaces; @bio must be presetup and ready for I/O.
1798 *
1799 */
1800void submit_bio(int rw, struct bio *bio)
1801{
1802 int count = bio_sectors(bio);
1803
1804 bio->bi_rw |= rw;
1805
1806 /*
1807 * If it's a regular read/write or a barrier with data attached,
1808 * go through the normal accounting stuff before submission.
1809 */
1810 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1811 if (rw & WRITE) {
1812 count_vm_events(PGPGOUT, count);
1813 } else {
1814 task_io_account_read(bio->bi_size);
1815 count_vm_events(PGPGIN, count);
1816 }
1817
1818 if (unlikely(block_dump)) {
1819 char b[BDEVNAME_SIZE];
1820 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1821 current->comm, task_pid_nr(current),
1822 (rw & WRITE) ? "WRITE" : "READ",
1823 (unsigned long long)bio->bi_sector,
1824 bdevname(bio->bi_bdev, b),
1825 count);
1826 }
1827 }
1828
1829 generic_make_request(bio);
1830}
1831EXPORT_SYMBOL(submit_bio);
1832
1833/**
1834 * blk_rq_check_limits - Helper function to check a request for the queue limit
1835 * @q: the queue
1836 * @rq: the request being checked
1837 *
1838 * Description:
1839 * @rq may have been made based on weaker limitations of upper-level queues
1840 * in request stacking drivers, and it may violate the limitation of @q.
1841 * Since the block layer and the underlying device driver trust @rq
1842 * after it is inserted to @q, it should be checked against @q before
1843 * the insertion using this generic function.
1844 *
1845 * This function should also be useful for request stacking drivers
1846 * in some cases below, so export this function.
1847 * Request stacking drivers like request-based dm may change the queue
1848 * limits while requests are in the queue (e.g. dm's table swapping).
1849 * Such request stacking drivers should check those requests agaist
1850 * the new queue limits again when they dispatch those requests,
1851 * although such checkings are also done against the old queue limits
1852 * when submitting requests.
1853 */
1854int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1855{
1856 if (rq->cmd_flags & REQ_DISCARD)
1857 return 0;
1858
1859 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1860 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1861 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1862 return -EIO;
1863 }
1864
1865 /*
1866 * queue's settings related to segment counting like q->bounce_pfn
1867 * may differ from that of other stacking queues.
1868 * Recalculate it to check the request correctly on this queue's
1869 * limitation.
1870 */
1871 blk_recalc_rq_segments(rq);
1872 if (rq->nr_phys_segments > queue_max_segments(q)) {
1873 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1874 return -EIO;
1875 }
1876
1877 return 0;
1878}
1879EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1880
1881/**
1882 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1883 * @q: the queue to submit the request
1884 * @rq: the request being queued
1885 */
1886int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1887{
1888 unsigned long flags;
1889 int where = ELEVATOR_INSERT_BACK;
1890
1891 if (blk_rq_check_limits(q, rq))
1892 return -EIO;
1893
1894 if (rq->rq_disk &&
1895 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1896 return -EIO;
1897
1898 spin_lock_irqsave(q->queue_lock, flags);
1899 if (unlikely(blk_queue_dead(q))) {
1900 spin_unlock_irqrestore(q->queue_lock, flags);
1901 return -ENODEV;
1902 }
1903
1904 /*
1905 * Submitting request must be dequeued before calling this function
1906 * because it will be linked to another request_queue
1907 */
1908 BUG_ON(blk_queued_rq(rq));
1909
1910 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1911 where = ELEVATOR_INSERT_FLUSH;
1912
1913 add_acct_request(q, rq, where);
1914 if (where == ELEVATOR_INSERT_FLUSH)
1915 __blk_run_queue(q);
1916 spin_unlock_irqrestore(q->queue_lock, flags);
1917
1918 return 0;
1919}
1920EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1921
1922/**
1923 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1924 * @rq: request to examine
1925 *
1926 * Description:
1927 * A request could be merge of IOs which require different failure
1928 * handling. This function determines the number of bytes which
1929 * can be failed from the beginning of the request without
1930 * crossing into area which need to be retried further.
1931 *
1932 * Return:
1933 * The number of bytes to fail.
1934 *
1935 * Context:
1936 * queue_lock must be held.
1937 */
1938unsigned int blk_rq_err_bytes(const struct request *rq)
1939{
1940 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1941 unsigned int bytes = 0;
1942 struct bio *bio;
1943
1944 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1945 return blk_rq_bytes(rq);
1946
1947 /*
1948 * Currently the only 'mixing' which can happen is between
1949 * different fastfail types. We can safely fail portions
1950 * which have all the failfast bits that the first one has -
1951 * the ones which are at least as eager to fail as the first
1952 * one.
1953 */
1954 for (bio = rq->bio; bio; bio = bio->bi_next) {
1955 if ((bio->bi_rw & ff) != ff)
1956 break;
1957 bytes += bio->bi_size;
1958 }
1959
1960 /* this could lead to infinite loop */
1961 BUG_ON(blk_rq_bytes(rq) && !bytes);
1962 return bytes;
1963}
1964EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1965
1966static void blk_account_io_completion(struct request *req, unsigned int bytes)
1967{
1968 if (blk_do_io_stat(req)) {
1969 const int rw = rq_data_dir(req);
1970 struct hd_struct *part;
1971 int cpu;
1972
1973 cpu = part_stat_lock();
1974 part = req->part;
1975 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1976 part_stat_unlock();
1977 }
1978}
1979
1980static void blk_account_io_done(struct request *req)
1981{
1982 /*
1983 * Account IO completion. flush_rq isn't accounted as a
1984 * normal IO on queueing nor completion. Accounting the
1985 * containing request is enough.
1986 */
1987 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1988 unsigned long duration = jiffies - req->start_time;
1989 const int rw = rq_data_dir(req);
1990 struct hd_struct *part;
1991 int cpu;
1992
1993 cpu = part_stat_lock();
1994 part = req->part;
1995
1996 part_stat_inc(cpu, part, ios[rw]);
1997 part_stat_add(cpu, part, ticks[rw], duration);
1998 part_round_stats(cpu, part);
1999 part_dec_in_flight(part, rw);
2000
2001 hd_struct_put(part);
2002 part_stat_unlock();
2003 }
2004}
2005
2006/**
2007 * blk_peek_request - peek at the top of a request queue
2008 * @q: request queue to peek at
2009 *
2010 * Description:
2011 * Return the request at the top of @q. The returned request
2012 * should be started using blk_start_request() before LLD starts
2013 * processing it.
2014 *
2015 * Return:
2016 * Pointer to the request at the top of @q if available. Null
2017 * otherwise.
2018 *
2019 * Context:
2020 * queue_lock must be held.
2021 */
2022struct request *blk_peek_request(struct request_queue *q)
2023{
2024 struct request *rq;
2025 int ret;
2026
2027 while ((rq = __elv_next_request(q)) != NULL) {
2028 if (!(rq->cmd_flags & REQ_STARTED)) {
2029 /*
2030 * This is the first time the device driver
2031 * sees this request (possibly after
2032 * requeueing). Notify IO scheduler.
2033 */
2034 if (rq->cmd_flags & REQ_SORTED)
2035 elv_activate_rq(q, rq);
2036
2037 /*
2038 * just mark as started even if we don't start
2039 * it, a request that has been delayed should
2040 * not be passed by new incoming requests
2041 */
2042 rq->cmd_flags |= REQ_STARTED;
2043 trace_block_rq_issue(q, rq);
2044 }
2045
2046 if (!q->boundary_rq || q->boundary_rq == rq) {
2047 q->end_sector = rq_end_sector(rq);
2048 q->boundary_rq = NULL;
2049 }
2050
2051 if (rq->cmd_flags & REQ_DONTPREP)
2052 break;
2053
2054 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2055 /*
2056 * make sure space for the drain appears we
2057 * know we can do this because max_hw_segments
2058 * has been adjusted to be one fewer than the
2059 * device can handle
2060 */
2061 rq->nr_phys_segments++;
2062 }
2063
2064 if (!q->prep_rq_fn)
2065 break;
2066
2067 ret = q->prep_rq_fn(q, rq);
2068 if (ret == BLKPREP_OK) {
2069 break;
2070 } else if (ret == BLKPREP_DEFER) {
2071 /*
2072 * the request may have been (partially) prepped.
2073 * we need to keep this request in the front to
2074 * avoid resource deadlock. REQ_STARTED will
2075 * prevent other fs requests from passing this one.
2076 */
2077 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2078 !(rq->cmd_flags & REQ_DONTPREP)) {
2079 /*
2080 * remove the space for the drain we added
2081 * so that we don't add it again
2082 */
2083 --rq->nr_phys_segments;
2084 }
2085
2086 rq = NULL;
2087 break;
2088 } else if (ret == BLKPREP_KILL) {
2089 rq->cmd_flags |= REQ_QUIET;
2090 /*
2091 * Mark this request as started so we don't trigger
2092 * any debug logic in the end I/O path.
2093 */
2094 blk_start_request(rq);
2095 __blk_end_request_all(rq, -EIO);
2096 } else {
2097 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2098 break;
2099 }
2100 }
2101
2102 return rq;
2103}
2104EXPORT_SYMBOL(blk_peek_request);
2105
2106void blk_dequeue_request(struct request *rq)
2107{
2108 struct request_queue *q = rq->q;
2109
2110 BUG_ON(list_empty(&rq->queuelist));
2111 BUG_ON(ELV_ON_HASH(rq));
2112
2113 list_del_init(&rq->queuelist);
2114
2115 /*
2116 * the time frame between a request being removed from the lists
2117 * and to it is freed is accounted as io that is in progress at
2118 * the driver side.
2119 */
2120 if (blk_account_rq(rq)) {
2121 q->in_flight[rq_is_sync(rq)]++;
2122 set_io_start_time_ns(rq);
2123 }
2124}
2125
2126/**
2127 * blk_start_request - start request processing on the driver
2128 * @req: request to dequeue
2129 *
2130 * Description:
2131 * Dequeue @req and start timeout timer on it. This hands off the
2132 * request to the driver.
2133 *
2134 * Block internal functions which don't want to start timer should
2135 * call blk_dequeue_request().
2136 *
2137 * Context:
2138 * queue_lock must be held.
2139 */
2140void blk_start_request(struct request *req)
2141{
2142 blk_dequeue_request(req);
2143
2144 /*
2145 * We are now handing the request to the hardware, initialize
2146 * resid_len to full count and add the timeout handler.
2147 */
2148 req->resid_len = blk_rq_bytes(req);
2149 if (unlikely(blk_bidi_rq(req)))
2150 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2151
2152 blk_add_timer(req);
2153}
2154EXPORT_SYMBOL(blk_start_request);
2155
2156/**
2157 * blk_fetch_request - fetch a request from a request queue
2158 * @q: request queue to fetch a request from
2159 *
2160 * Description:
2161 * Return the request at the top of @q. The request is started on
2162 * return and LLD can start processing it immediately.
2163 *
2164 * Return:
2165 * Pointer to the request at the top of @q if available. Null
2166 * otherwise.
2167 *
2168 * Context:
2169 * queue_lock must be held.
2170 */
2171struct request *blk_fetch_request(struct request_queue *q)
2172{
2173 struct request *rq;
2174
2175 rq = blk_peek_request(q);
2176 if (rq)
2177 blk_start_request(rq);
2178 return rq;
2179}
2180EXPORT_SYMBOL(blk_fetch_request);
2181
2182/**
2183 * blk_update_request - Special helper function for request stacking drivers
2184 * @req: the request being processed
2185 * @error: %0 for success, < %0 for error
2186 * @nr_bytes: number of bytes to complete @req
2187 *
2188 * Description:
2189 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2190 * the request structure even if @req doesn't have leftover.
2191 * If @req has leftover, sets it up for the next range of segments.
2192 *
2193 * This special helper function is only for request stacking drivers
2194 * (e.g. request-based dm) so that they can handle partial completion.
2195 * Actual device drivers should use blk_end_request instead.
2196 *
2197 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2198 * %false return from this function.
2199 *
2200 * Return:
2201 * %false - this request doesn't have any more data
2202 * %true - this request has more data
2203 **/
2204bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2205{
2206 int total_bytes, bio_nbytes, next_idx = 0;
2207 struct bio *bio;
2208
2209 if (!req->bio)
2210 return false;
2211
2212 trace_block_rq_complete(req->q, req);
2213
2214 /*
2215 * For fs requests, rq is just carrier of independent bio's
2216 * and each partial completion should be handled separately.
2217 * Reset per-request error on each partial completion.
2218 *
2219 * TODO: tj: This is too subtle. It would be better to let
2220 * low level drivers do what they see fit.
2221 */
2222 if (req->cmd_type == REQ_TYPE_FS)
2223 req->errors = 0;
2224
2225 if (error && req->cmd_type == REQ_TYPE_FS &&
2226 !(req->cmd_flags & REQ_QUIET)) {
2227 char *error_type;
2228
2229 switch (error) {
2230 case -ENOLINK:
2231 error_type = "recoverable transport";
2232 break;
2233 case -EREMOTEIO:
2234 error_type = "critical target";
2235 break;
2236 case -EBADE:
2237 error_type = "critical nexus";
2238 break;
2239 case -EIO:
2240 default:
2241 error_type = "I/O";
2242 break;
2243 }
2244 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2245 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2246 (unsigned long long)blk_rq_pos(req));
2247 }
2248
2249 blk_account_io_completion(req, nr_bytes);
2250
2251 total_bytes = bio_nbytes = 0;
2252 while ((bio = req->bio) != NULL) {
2253 int nbytes;
2254
2255 if (nr_bytes >= bio->bi_size) {
2256 req->bio = bio->bi_next;
2257 nbytes = bio->bi_size;
2258 req_bio_endio(req, bio, nbytes, error);
2259 next_idx = 0;
2260 bio_nbytes = 0;
2261 } else {
2262 int idx = bio->bi_idx + next_idx;
2263
2264 if (unlikely(idx >= bio->bi_vcnt)) {
2265 blk_dump_rq_flags(req, "__end_that");
2266 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2267 __func__, idx, bio->bi_vcnt);
2268 break;
2269 }
2270
2271 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2272 BIO_BUG_ON(nbytes > bio->bi_size);
2273
2274 /*
2275 * not a complete bvec done
2276 */
2277 if (unlikely(nbytes > nr_bytes)) {
2278 bio_nbytes += nr_bytes;
2279 total_bytes += nr_bytes;
2280 break;
2281 }
2282
2283 /*
2284 * advance to the next vector
2285 */
2286 next_idx++;
2287 bio_nbytes += nbytes;
2288 }
2289
2290 total_bytes += nbytes;
2291 nr_bytes -= nbytes;
2292
2293 bio = req->bio;
2294 if (bio) {
2295 /*
2296 * end more in this run, or just return 'not-done'
2297 */
2298 if (unlikely(nr_bytes <= 0))
2299 break;
2300 }
2301 }
2302
2303 /*
2304 * completely done
2305 */
2306 if (!req->bio) {
2307 /*
2308 * Reset counters so that the request stacking driver
2309 * can find how many bytes remain in the request
2310 * later.
2311 */
2312 req->__data_len = 0;
2313 return false;
2314 }
2315
2316 /*
2317 * if the request wasn't completed, update state
2318 */
2319 if (bio_nbytes) {
2320 req_bio_endio(req, bio, bio_nbytes, error);
2321 bio->bi_idx += next_idx;
2322 bio_iovec(bio)->bv_offset += nr_bytes;
2323 bio_iovec(bio)->bv_len -= nr_bytes;
2324 }
2325
2326 req->__data_len -= total_bytes;
2327 req->buffer = bio_data(req->bio);
2328
2329 /* update sector only for requests with clear definition of sector */
2330 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2331 req->__sector += total_bytes >> 9;
2332
2333 /* mixed attributes always follow the first bio */
2334 if (req->cmd_flags & REQ_MIXED_MERGE) {
2335 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2336 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2337 }
2338
2339 /*
2340 * If total number of sectors is less than the first segment
2341 * size, something has gone terribly wrong.
2342 */
2343 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2344 blk_dump_rq_flags(req, "request botched");
2345 req->__data_len = blk_rq_cur_bytes(req);
2346 }
2347
2348 /* recalculate the number of segments */
2349 blk_recalc_rq_segments(req);
2350
2351 return true;
2352}
2353EXPORT_SYMBOL_GPL(blk_update_request);
2354
2355static bool blk_update_bidi_request(struct request *rq, int error,
2356 unsigned int nr_bytes,
2357 unsigned int bidi_bytes)
2358{
2359 if (blk_update_request(rq, error, nr_bytes))
2360 return true;
2361
2362 /* Bidi request must be completed as a whole */
2363 if (unlikely(blk_bidi_rq(rq)) &&
2364 blk_update_request(rq->next_rq, error, bidi_bytes))
2365 return true;
2366
2367 if (blk_queue_add_random(rq->q))
2368 add_disk_randomness(rq->rq_disk);
2369
2370 return false;
2371}
2372
2373/**
2374 * blk_unprep_request - unprepare a request
2375 * @req: the request
2376 *
2377 * This function makes a request ready for complete resubmission (or
2378 * completion). It happens only after all error handling is complete,
2379 * so represents the appropriate moment to deallocate any resources
2380 * that were allocated to the request in the prep_rq_fn. The queue
2381 * lock is held when calling this.
2382 */
2383void blk_unprep_request(struct request *req)
2384{
2385 struct request_queue *q = req->q;
2386
2387 req->cmd_flags &= ~REQ_DONTPREP;
2388 if (q->unprep_rq_fn)
2389 q->unprep_rq_fn(q, req);
2390}
2391EXPORT_SYMBOL_GPL(blk_unprep_request);
2392
2393/*
2394 * queue lock must be held
2395 */
2396static void blk_finish_request(struct request *req, int error)
2397{
2398 if (blk_rq_tagged(req))
2399 blk_queue_end_tag(req->q, req);
2400
2401 BUG_ON(blk_queued_rq(req));
2402
2403 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2404 laptop_io_completion(&req->q->backing_dev_info);
2405
2406 blk_delete_timer(req);
2407
2408 if (req->cmd_flags & REQ_DONTPREP)
2409 blk_unprep_request(req);
2410
2411
2412 blk_account_io_done(req);
2413
2414 if (req->end_io)
2415 req->end_io(req, error);
2416 else {
2417 if (blk_bidi_rq(req))
2418 __blk_put_request(req->next_rq->q, req->next_rq);
2419
2420 __blk_put_request(req->q, req);
2421 }
2422}
2423
2424/**
2425 * blk_end_bidi_request - Complete a bidi request
2426 * @rq: the request to complete
2427 * @error: %0 for success, < %0 for error
2428 * @nr_bytes: number of bytes to complete @rq
2429 * @bidi_bytes: number of bytes to complete @rq->next_rq
2430 *
2431 * Description:
2432 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2433 * Drivers that supports bidi can safely call this member for any
2434 * type of request, bidi or uni. In the later case @bidi_bytes is
2435 * just ignored.
2436 *
2437 * Return:
2438 * %false - we are done with this request
2439 * %true - still buffers pending for this request
2440 **/
2441static bool blk_end_bidi_request(struct request *rq, int error,
2442 unsigned int nr_bytes, unsigned int bidi_bytes)
2443{
2444 struct request_queue *q = rq->q;
2445 unsigned long flags;
2446
2447 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2448 return true;
2449
2450 spin_lock_irqsave(q->queue_lock, flags);
2451 blk_finish_request(rq, error);
2452 spin_unlock_irqrestore(q->queue_lock, flags);
2453
2454 return false;
2455}
2456
2457/**
2458 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2459 * @rq: the request to complete
2460 * @error: %0 for success, < %0 for error
2461 * @nr_bytes: number of bytes to complete @rq
2462 * @bidi_bytes: number of bytes to complete @rq->next_rq
2463 *
2464 * Description:
2465 * Identical to blk_end_bidi_request() except that queue lock is
2466 * assumed to be locked on entry and remains so on return.
2467 *
2468 * Return:
2469 * %false - we are done with this request
2470 * %true - still buffers pending for this request
2471 **/
2472bool __blk_end_bidi_request(struct request *rq, int error,
2473 unsigned int nr_bytes, unsigned int bidi_bytes)
2474{
2475 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2476 return true;
2477
2478 blk_finish_request(rq, error);
2479
2480 return false;
2481}
2482
2483/**
2484 * blk_end_request - Helper function for drivers to complete the request.
2485 * @rq: the request being processed
2486 * @error: %0 for success, < %0 for error
2487 * @nr_bytes: number of bytes to complete
2488 *
2489 * Description:
2490 * Ends I/O on a number of bytes attached to @rq.
2491 * If @rq has leftover, sets it up for the next range of segments.
2492 *
2493 * Return:
2494 * %false - we are done with this request
2495 * %true - still buffers pending for this request
2496 **/
2497bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2498{
2499 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2500}
2501EXPORT_SYMBOL(blk_end_request);
2502
2503/**
2504 * blk_end_request_all - Helper function for drives to finish the request.
2505 * @rq: the request to finish
2506 * @error: %0 for success, < %0 for error
2507 *
2508 * Description:
2509 * Completely finish @rq.
2510 */
2511void blk_end_request_all(struct request *rq, int error)
2512{
2513 bool pending;
2514 unsigned int bidi_bytes = 0;
2515
2516 if (unlikely(blk_bidi_rq(rq)))
2517 bidi_bytes = blk_rq_bytes(rq->next_rq);
2518
2519 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2520 BUG_ON(pending);
2521}
2522EXPORT_SYMBOL(blk_end_request_all);
2523
2524/**
2525 * blk_end_request_cur - Helper function to finish the current request chunk.
2526 * @rq: the request to finish the current chunk for
2527 * @error: %0 for success, < %0 for error
2528 *
2529 * Description:
2530 * Complete the current consecutively mapped chunk from @rq.
2531 *
2532 * Return:
2533 * %false - we are done with this request
2534 * %true - still buffers pending for this request
2535 */
2536bool blk_end_request_cur(struct request *rq, int error)
2537{
2538 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2539}
2540EXPORT_SYMBOL(blk_end_request_cur);
2541
2542/**
2543 * blk_end_request_err - Finish a request till the next failure boundary.
2544 * @rq: the request to finish till the next failure boundary for
2545 * @error: must be negative errno
2546 *
2547 * Description:
2548 * Complete @rq till the next failure boundary.
2549 *
2550 * Return:
2551 * %false - we are done with this request
2552 * %true - still buffers pending for this request
2553 */
2554bool blk_end_request_err(struct request *rq, int error)
2555{
2556 WARN_ON(error >= 0);
2557 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2558}
2559EXPORT_SYMBOL_GPL(blk_end_request_err);
2560
2561/**
2562 * __blk_end_request - Helper function for drivers to complete the request.
2563 * @rq: the request being processed
2564 * @error: %0 for success, < %0 for error
2565 * @nr_bytes: number of bytes to complete
2566 *
2567 * Description:
2568 * Must be called with queue lock held unlike blk_end_request().
2569 *
2570 * Return:
2571 * %false - we are done with this request
2572 * %true - still buffers pending for this request
2573 **/
2574bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2575{
2576 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2577}
2578EXPORT_SYMBOL(__blk_end_request);
2579
2580/**
2581 * __blk_end_request_all - Helper function for drives to finish the request.
2582 * @rq: the request to finish
2583 * @error: %0 for success, < %0 for error
2584 *
2585 * Description:
2586 * Completely finish @rq. Must be called with queue lock held.
2587 */
2588void __blk_end_request_all(struct request *rq, int error)
2589{
2590 bool pending;
2591 unsigned int bidi_bytes = 0;
2592
2593 if (unlikely(blk_bidi_rq(rq)))
2594 bidi_bytes = blk_rq_bytes(rq->next_rq);
2595
2596 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2597 BUG_ON(pending);
2598}
2599EXPORT_SYMBOL(__blk_end_request_all);
2600
2601/**
2602 * __blk_end_request_cur - Helper function to finish the current request chunk.
2603 * @rq: the request to finish the current chunk for
2604 * @error: %0 for success, < %0 for error
2605 *
2606 * Description:
2607 * Complete the current consecutively mapped chunk from @rq. Must
2608 * be called with queue lock held.
2609 *
2610 * Return:
2611 * %false - we are done with this request
2612 * %true - still buffers pending for this request
2613 */
2614bool __blk_end_request_cur(struct request *rq, int error)
2615{
2616 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2617}
2618EXPORT_SYMBOL(__blk_end_request_cur);
2619
2620/**
2621 * __blk_end_request_err - Finish a request till the next failure boundary.
2622 * @rq: the request to finish till the next failure boundary for
2623 * @error: must be negative errno
2624 *
2625 * Description:
2626 * Complete @rq till the next failure boundary. Must be called
2627 * with queue lock held.
2628 *
2629 * Return:
2630 * %false - we are done with this request
2631 * %true - still buffers pending for this request
2632 */
2633bool __blk_end_request_err(struct request *rq, int error)
2634{
2635 WARN_ON(error >= 0);
2636 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2637}
2638EXPORT_SYMBOL_GPL(__blk_end_request_err);
2639
2640void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2641 struct bio *bio)
2642{
2643 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2644 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2645
2646 if (bio_has_data(bio)) {
2647 rq->nr_phys_segments = bio_phys_segments(q, bio);
2648 rq->buffer = bio_data(bio);
2649 }
2650 rq->__data_len = bio->bi_size;
2651 rq->bio = rq->biotail = bio;
2652
2653 if (bio->bi_bdev)
2654 rq->rq_disk = bio->bi_bdev->bd_disk;
2655}
2656
2657#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2658/**
2659 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2660 * @rq: the request to be flushed
2661 *
2662 * Description:
2663 * Flush all pages in @rq.
2664 */
2665void rq_flush_dcache_pages(struct request *rq)
2666{
2667 struct req_iterator iter;
2668 struct bio_vec *bvec;
2669
2670 rq_for_each_segment(bvec, rq, iter)
2671 flush_dcache_page(bvec->bv_page);
2672}
2673EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2674#endif
2675
2676/**
2677 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2678 * @q : the queue of the device being checked
2679 *
2680 * Description:
2681 * Check if underlying low-level drivers of a device are busy.
2682 * If the drivers want to export their busy state, they must set own
2683 * exporting function using blk_queue_lld_busy() first.
2684 *
2685 * Basically, this function is used only by request stacking drivers
2686 * to stop dispatching requests to underlying devices when underlying
2687 * devices are busy. This behavior helps more I/O merging on the queue
2688 * of the request stacking driver and prevents I/O throughput regression
2689 * on burst I/O load.
2690 *
2691 * Return:
2692 * 0 - Not busy (The request stacking driver should dispatch request)
2693 * 1 - Busy (The request stacking driver should stop dispatching request)
2694 */
2695int blk_lld_busy(struct request_queue *q)
2696{
2697 if (q->lld_busy_fn)
2698 return q->lld_busy_fn(q);
2699
2700 return 0;
2701}
2702EXPORT_SYMBOL_GPL(blk_lld_busy);
2703
2704/**
2705 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2706 * @rq: the clone request to be cleaned up
2707 *
2708 * Description:
2709 * Free all bios in @rq for a cloned request.
2710 */
2711void blk_rq_unprep_clone(struct request *rq)
2712{
2713 struct bio *bio;
2714
2715 while ((bio = rq->bio) != NULL) {
2716 rq->bio = bio->bi_next;
2717
2718 bio_put(bio);
2719 }
2720}
2721EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2722
2723/*
2724 * Copy attributes of the original request to the clone request.
2725 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2726 */
2727static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2728{
2729 dst->cpu = src->cpu;
2730 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2731 dst->cmd_type = src->cmd_type;
2732 dst->__sector = blk_rq_pos(src);
2733 dst->__data_len = blk_rq_bytes(src);
2734 dst->nr_phys_segments = src->nr_phys_segments;
2735 dst->ioprio = src->ioprio;
2736 dst->extra_len = src->extra_len;
2737}
2738
2739/**
2740 * blk_rq_prep_clone - Helper function to setup clone request
2741 * @rq: the request to be setup
2742 * @rq_src: original request to be cloned
2743 * @bs: bio_set that bios for clone are allocated from
2744 * @gfp_mask: memory allocation mask for bio
2745 * @bio_ctr: setup function to be called for each clone bio.
2746 * Returns %0 for success, non %0 for failure.
2747 * @data: private data to be passed to @bio_ctr
2748 *
2749 * Description:
2750 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2751 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2752 * are not copied, and copying such parts is the caller's responsibility.
2753 * Also, pages which the original bios are pointing to are not copied
2754 * and the cloned bios just point same pages.
2755 * So cloned bios must be completed before original bios, which means
2756 * the caller must complete @rq before @rq_src.
2757 */
2758int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2759 struct bio_set *bs, gfp_t gfp_mask,
2760 int (*bio_ctr)(struct bio *, struct bio *, void *),
2761 void *data)
2762{
2763 struct bio *bio, *bio_src;
2764
2765 if (!bs)
2766 bs = fs_bio_set;
2767
2768 blk_rq_init(NULL, rq);
2769
2770 __rq_for_each_bio(bio_src, rq_src) {
2771 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2772 if (!bio)
2773 goto free_and_out;
2774
2775 __bio_clone(bio, bio_src);
2776
2777 if (bio_integrity(bio_src) &&
2778 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2779 goto free_and_out;
2780
2781 if (bio_ctr && bio_ctr(bio, bio_src, data))
2782 goto free_and_out;
2783
2784 if (rq->bio) {
2785 rq->biotail->bi_next = bio;
2786 rq->biotail = bio;
2787 } else
2788 rq->bio = rq->biotail = bio;
2789 }
2790
2791 __blk_rq_prep_clone(rq, rq_src);
2792
2793 return 0;
2794
2795free_and_out:
2796 if (bio)
2797 bio_free(bio, bs);
2798 blk_rq_unprep_clone(rq);
2799
2800 return -ENOMEM;
2801}
2802EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2803
2804int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2805{
2806 return queue_work(kblockd_workqueue, work);
2807}
2808EXPORT_SYMBOL(kblockd_schedule_work);
2809
2810int kblockd_schedule_delayed_work(struct request_queue *q,
2811 struct delayed_work *dwork, unsigned long delay)
2812{
2813 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2814}
2815EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2816
2817#define PLUG_MAGIC 0x91827364
2818
2819/**
2820 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2821 * @plug: The &struct blk_plug that needs to be initialized
2822 *
2823 * Description:
2824 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2825 * pending I/O should the task end up blocking between blk_start_plug() and
2826 * blk_finish_plug(). This is important from a performance perspective, but
2827 * also ensures that we don't deadlock. For instance, if the task is blocking
2828 * for a memory allocation, memory reclaim could end up wanting to free a
2829 * page belonging to that request that is currently residing in our private
2830 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2831 * this kind of deadlock.
2832 */
2833void blk_start_plug(struct blk_plug *plug)
2834{
2835 struct task_struct *tsk = current;
2836
2837 plug->magic = PLUG_MAGIC;
2838 INIT_LIST_HEAD(&plug->list);
2839 INIT_LIST_HEAD(&plug->cb_list);
2840 plug->should_sort = 0;
2841
2842 /*
2843 * If this is a nested plug, don't actually assign it. It will be
2844 * flushed on its own.
2845 */
2846 if (!tsk->plug) {
2847 /*
2848 * Store ordering should not be needed here, since a potential
2849 * preempt will imply a full memory barrier
2850 */
2851 tsk->plug = plug;
2852 }
2853}
2854EXPORT_SYMBOL(blk_start_plug);
2855
2856static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2857{
2858 struct request *rqa = container_of(a, struct request, queuelist);
2859 struct request *rqb = container_of(b, struct request, queuelist);
2860
2861 return !(rqa->q <= rqb->q);
2862}
2863
2864/*
2865 * If 'from_schedule' is true, then postpone the dispatch of requests
2866 * until a safe kblockd context. We due this to avoid accidental big
2867 * additional stack usage in driver dispatch, in places where the originally
2868 * plugger did not intend it.
2869 */
2870static void queue_unplugged(struct request_queue *q, unsigned int depth,
2871 bool from_schedule)
2872 __releases(q->queue_lock)
2873{
2874 trace_block_unplug(q, depth, !from_schedule);
2875
2876 /*
2877 * Don't mess with dead queue.
2878 */
2879 if (unlikely(blk_queue_dead(q))) {
2880 spin_unlock(q->queue_lock);
2881 return;
2882 }
2883
2884 /*
2885 * If we are punting this to kblockd, then we can safely drop
2886 * the queue_lock before waking kblockd (which needs to take
2887 * this lock).
2888 */
2889 if (from_schedule) {
2890 spin_unlock(q->queue_lock);
2891 blk_run_queue_async(q);
2892 } else {
2893 __blk_run_queue(q);
2894 spin_unlock(q->queue_lock);
2895 }
2896
2897}
2898
2899static void flush_plug_callbacks(struct blk_plug *plug)
2900{
2901 LIST_HEAD(callbacks);
2902
2903 if (list_empty(&plug->cb_list))
2904 return;
2905
2906 list_splice_init(&plug->cb_list, &callbacks);
2907
2908 while (!list_empty(&callbacks)) {
2909 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2910 struct blk_plug_cb,
2911 list);
2912 list_del(&cb->list);
2913 cb->callback(cb);
2914 }
2915}
2916
2917void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2918{
2919 struct request_queue *q;
2920 unsigned long flags;
2921 struct request *rq;
2922 LIST_HEAD(list);
2923 unsigned int depth;
2924
2925 BUG_ON(plug->magic != PLUG_MAGIC);
2926
2927 flush_plug_callbacks(plug);
2928 if (list_empty(&plug->list))
2929 return;
2930
2931 list_splice_init(&plug->list, &list);
2932
2933 if (plug->should_sort) {
2934 list_sort(NULL, &list, plug_rq_cmp);
2935 plug->should_sort = 0;
2936 }
2937
2938 q = NULL;
2939 depth = 0;
2940
2941 /*
2942 * Save and disable interrupts here, to avoid doing it for every
2943 * queue lock we have to take.
2944 */
2945 local_irq_save(flags);
2946 while (!list_empty(&list)) {
2947 rq = list_entry_rq(list.next);
2948 list_del_init(&rq->queuelist);
2949 BUG_ON(!rq->q);
2950 if (rq->q != q) {
2951 /*
2952 * This drops the queue lock
2953 */
2954 if (q)
2955 queue_unplugged(q, depth, from_schedule);
2956 q = rq->q;
2957 depth = 0;
2958 spin_lock(q->queue_lock);
2959 }
2960
2961 /*
2962 * Short-circuit if @q is dead
2963 */
2964 if (unlikely(blk_queue_dead(q))) {
2965 __blk_end_request_all(rq, -ENODEV);
2966 continue;
2967 }
2968
2969 /*
2970 * rq is already accounted, so use raw insert
2971 */
2972 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2973 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2974 else
2975 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2976
2977 depth++;
2978 }
2979
2980 /*
2981 * This drops the queue lock
2982 */
2983 if (q)
2984 queue_unplugged(q, depth, from_schedule);
2985
2986 local_irq_restore(flags);
2987}
2988
2989void blk_finish_plug(struct blk_plug *plug)
2990{
2991 blk_flush_plug_list(plug, false);
2992
2993 if (plug == current->plug)
2994 current->plug = NULL;
2995}
2996EXPORT_SYMBOL(blk_finish_plug);
2997
2998int __init blk_dev_init(void)
2999{
3000 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3001 sizeof(((struct request *)0)->cmd_flags));
3002
3003 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3004 kblockd_workqueue = alloc_workqueue("kblockd",
3005 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3006 if (!kblockd_workqueue)
3007 panic("Failed to create kblockd\n");
3008
3009 request_cachep = kmem_cache_create("blkdev_requests",
3010 sizeof(struct request), 0, SLAB_PANIC, NULL);
3011
3012 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3013 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3014
3015 return 0;
3016}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/backing-dev.h>
18#include <linux/bio.h>
19#include <linux/blkdev.h>
20#include <linux/blk-mq.h>
21#include <linux/highmem.h>
22#include <linux/mm.h>
23#include <linux/pagemap.h>
24#include <linux/kernel_stat.h>
25#include <linux/string.h>
26#include <linux/init.h>
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
31#include <linux/task_io_accounting_ops.h>
32#include <linux/fault-inject.h>
33#include <linux/list_sort.h>
34#include <linux/delay.h>
35#include <linux/ratelimit.h>
36#include <linux/pm_runtime.h>
37#include <linux/blk-cgroup.h>
38#include <linux/t10-pi.h>
39#include <linux/debugfs.h>
40#include <linux/bpf.h>
41#include <linux/psi.h>
42#include <linux/sched/sysctl.h>
43#include <linux/blk-crypto.h>
44
45#define CREATE_TRACE_POINTS
46#include <trace/events/block.h>
47
48#include "blk.h"
49#include "blk-mq.h"
50#include "blk-mq-sched.h"
51#include "blk-pm.h"
52#include "blk-rq-qos.h"
53
54struct dentry *blk_debugfs_root;
55
56EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61
62DEFINE_IDA(blk_queue_ida);
63
64/*
65 * For queue allocation
66 */
67struct kmem_cache *blk_requestq_cachep;
68
69/*
70 * Controlling structure to kblockd
71 */
72static struct workqueue_struct *kblockd_workqueue;
73
74/**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
78 */
79void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80{
81 set_bit(flag, &q->queue_flags);
82}
83EXPORT_SYMBOL(blk_queue_flag_set);
84
85/**
86 * blk_queue_flag_clear - atomically clear a queue flag
87 * @flag: flag to be cleared
88 * @q: request queue
89 */
90void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
91{
92 clear_bit(flag, &q->queue_flags);
93}
94EXPORT_SYMBOL(blk_queue_flag_clear);
95
96/**
97 * blk_queue_flag_test_and_set - atomically test and set a queue flag
98 * @flag: flag to be set
99 * @q: request queue
100 *
101 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
102 * the flag was already set.
103 */
104bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
105{
106 return test_and_set_bit(flag, &q->queue_flags);
107}
108EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
109
110void blk_rq_init(struct request_queue *q, struct request *rq)
111{
112 memset(rq, 0, sizeof(*rq));
113
114 INIT_LIST_HEAD(&rq->queuelist);
115 rq->q = q;
116 rq->__sector = (sector_t) -1;
117 INIT_HLIST_NODE(&rq->hash);
118 RB_CLEAR_NODE(&rq->rb_node);
119 rq->tag = -1;
120 rq->internal_tag = -1;
121 rq->start_time_ns = ktime_get_ns();
122 rq->part = NULL;
123 refcount_set(&rq->ref, 1);
124 blk_crypto_rq_set_defaults(rq);
125}
126EXPORT_SYMBOL(blk_rq_init);
127
128#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
129static const char *const blk_op_name[] = {
130 REQ_OP_NAME(READ),
131 REQ_OP_NAME(WRITE),
132 REQ_OP_NAME(FLUSH),
133 REQ_OP_NAME(DISCARD),
134 REQ_OP_NAME(SECURE_ERASE),
135 REQ_OP_NAME(ZONE_RESET),
136 REQ_OP_NAME(ZONE_RESET_ALL),
137 REQ_OP_NAME(ZONE_OPEN),
138 REQ_OP_NAME(ZONE_CLOSE),
139 REQ_OP_NAME(ZONE_FINISH),
140 REQ_OP_NAME(ZONE_APPEND),
141 REQ_OP_NAME(WRITE_SAME),
142 REQ_OP_NAME(WRITE_ZEROES),
143 REQ_OP_NAME(SCSI_IN),
144 REQ_OP_NAME(SCSI_OUT),
145 REQ_OP_NAME(DRV_IN),
146 REQ_OP_NAME(DRV_OUT),
147};
148#undef REQ_OP_NAME
149
150/**
151 * blk_op_str - Return string XXX in the REQ_OP_XXX.
152 * @op: REQ_OP_XXX.
153 *
154 * Description: Centralize block layer function to convert REQ_OP_XXX into
155 * string format. Useful in the debugging and tracing bio or request. For
156 * invalid REQ_OP_XXX it returns string "UNKNOWN".
157 */
158inline const char *blk_op_str(unsigned int op)
159{
160 const char *op_str = "UNKNOWN";
161
162 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
163 op_str = blk_op_name[op];
164
165 return op_str;
166}
167EXPORT_SYMBOL_GPL(blk_op_str);
168
169static const struct {
170 int errno;
171 const char *name;
172} blk_errors[] = {
173 [BLK_STS_OK] = { 0, "" },
174 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
175 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
176 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
177 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
178 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
179 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
180 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
181 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
182 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
183 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
184 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
185
186 /* device mapper special case, should not leak out: */
187 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
188
189 /* everything else not covered above: */
190 [BLK_STS_IOERR] = { -EIO, "I/O" },
191};
192
193blk_status_t errno_to_blk_status(int errno)
194{
195 int i;
196
197 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
198 if (blk_errors[i].errno == errno)
199 return (__force blk_status_t)i;
200 }
201
202 return BLK_STS_IOERR;
203}
204EXPORT_SYMBOL_GPL(errno_to_blk_status);
205
206int blk_status_to_errno(blk_status_t status)
207{
208 int idx = (__force int)status;
209
210 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
211 return -EIO;
212 return blk_errors[idx].errno;
213}
214EXPORT_SYMBOL_GPL(blk_status_to_errno);
215
216static void print_req_error(struct request *req, blk_status_t status,
217 const char *caller)
218{
219 int idx = (__force int)status;
220
221 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
222 return;
223
224 printk_ratelimited(KERN_ERR
225 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
226 "phys_seg %u prio class %u\n",
227 caller, blk_errors[idx].name,
228 req->rq_disk ? req->rq_disk->disk_name : "?",
229 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
230 req->cmd_flags & ~REQ_OP_MASK,
231 req->nr_phys_segments,
232 IOPRIO_PRIO_CLASS(req->ioprio));
233}
234
235static void req_bio_endio(struct request *rq, struct bio *bio,
236 unsigned int nbytes, blk_status_t error)
237{
238 if (error)
239 bio->bi_status = error;
240
241 if (unlikely(rq->rq_flags & RQF_QUIET))
242 bio_set_flag(bio, BIO_QUIET);
243
244 bio_advance(bio, nbytes);
245
246 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
247 /*
248 * Partial zone append completions cannot be supported as the
249 * BIO fragments may end up not being written sequentially.
250 */
251 if (bio->bi_iter.bi_size)
252 bio->bi_status = BLK_STS_IOERR;
253 else
254 bio->bi_iter.bi_sector = rq->__sector;
255 }
256
257 /* don't actually finish bio if it's part of flush sequence */
258 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
259 bio_endio(bio);
260}
261
262void blk_dump_rq_flags(struct request *rq, char *msg)
263{
264 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
265 rq->rq_disk ? rq->rq_disk->disk_name : "?",
266 (unsigned long long) rq->cmd_flags);
267
268 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
269 (unsigned long long)blk_rq_pos(rq),
270 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
271 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
272 rq->bio, rq->biotail, blk_rq_bytes(rq));
273}
274EXPORT_SYMBOL(blk_dump_rq_flags);
275
276/**
277 * blk_sync_queue - cancel any pending callbacks on a queue
278 * @q: the queue
279 *
280 * Description:
281 * The block layer may perform asynchronous callback activity
282 * on a queue, such as calling the unplug function after a timeout.
283 * A block device may call blk_sync_queue to ensure that any
284 * such activity is cancelled, thus allowing it to release resources
285 * that the callbacks might use. The caller must already have made sure
286 * that its ->submit_bio will not re-add plugging prior to calling
287 * this function.
288 *
289 * This function does not cancel any asynchronous activity arising
290 * out of elevator or throttling code. That would require elevator_exit()
291 * and blkcg_exit_queue() to be called with queue lock initialized.
292 *
293 */
294void blk_sync_queue(struct request_queue *q)
295{
296 del_timer_sync(&q->timeout);
297 cancel_work_sync(&q->timeout_work);
298}
299EXPORT_SYMBOL(blk_sync_queue);
300
301/**
302 * blk_set_pm_only - increment pm_only counter
303 * @q: request queue pointer
304 */
305void blk_set_pm_only(struct request_queue *q)
306{
307 atomic_inc(&q->pm_only);
308}
309EXPORT_SYMBOL_GPL(blk_set_pm_only);
310
311void blk_clear_pm_only(struct request_queue *q)
312{
313 int pm_only;
314
315 pm_only = atomic_dec_return(&q->pm_only);
316 WARN_ON_ONCE(pm_only < 0);
317 if (pm_only == 0)
318 wake_up_all(&q->mq_freeze_wq);
319}
320EXPORT_SYMBOL_GPL(blk_clear_pm_only);
321
322/**
323 * blk_put_queue - decrement the request_queue refcount
324 * @q: the request_queue structure to decrement the refcount for
325 *
326 * Decrements the refcount of the request_queue kobject. When this reaches 0
327 * we'll have blk_release_queue() called.
328 *
329 * Context: Any context, but the last reference must not be dropped from
330 * atomic context.
331 */
332void blk_put_queue(struct request_queue *q)
333{
334 kobject_put(&q->kobj);
335}
336EXPORT_SYMBOL(blk_put_queue);
337
338void blk_set_queue_dying(struct request_queue *q)
339{
340 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
341
342 /*
343 * When queue DYING flag is set, we need to block new req
344 * entering queue, so we call blk_freeze_queue_start() to
345 * prevent I/O from crossing blk_queue_enter().
346 */
347 blk_freeze_queue_start(q);
348
349 if (queue_is_mq(q))
350 blk_mq_wake_waiters(q);
351
352 /* Make blk_queue_enter() reexamine the DYING flag. */
353 wake_up_all(&q->mq_freeze_wq);
354}
355EXPORT_SYMBOL_GPL(blk_set_queue_dying);
356
357/**
358 * blk_cleanup_queue - shutdown a request queue
359 * @q: request queue to shutdown
360 *
361 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
362 * put it. All future requests will be failed immediately with -ENODEV.
363 *
364 * Context: can sleep
365 */
366void blk_cleanup_queue(struct request_queue *q)
367{
368 /* cannot be called from atomic context */
369 might_sleep();
370
371 WARN_ON_ONCE(blk_queue_registered(q));
372
373 /* mark @q DYING, no new request or merges will be allowed afterwards */
374 blk_set_queue_dying(q);
375
376 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
377 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
378
379 /*
380 * Drain all requests queued before DYING marking. Set DEAD flag to
381 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
382 * after draining finished.
383 */
384 blk_freeze_queue(q);
385
386 rq_qos_exit(q);
387
388 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
389
390 /* for synchronous bio-based driver finish in-flight integrity i/o */
391 blk_flush_integrity();
392
393 /* @q won't process any more request, flush async actions */
394 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
395 blk_sync_queue(q);
396
397 if (queue_is_mq(q))
398 blk_mq_exit_queue(q);
399
400 /*
401 * In theory, request pool of sched_tags belongs to request queue.
402 * However, the current implementation requires tag_set for freeing
403 * requests, so free the pool now.
404 *
405 * Queue has become frozen, there can't be any in-queue requests, so
406 * it is safe to free requests now.
407 */
408 mutex_lock(&q->sysfs_lock);
409 if (q->elevator)
410 blk_mq_sched_free_requests(q);
411 mutex_unlock(&q->sysfs_lock);
412
413 percpu_ref_exit(&q->q_usage_counter);
414
415 /* @q is and will stay empty, shutdown and put */
416 blk_put_queue(q);
417}
418EXPORT_SYMBOL(blk_cleanup_queue);
419
420/**
421 * blk_queue_enter() - try to increase q->q_usage_counter
422 * @q: request queue pointer
423 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
424 */
425int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
426{
427 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
428
429 while (true) {
430 bool success = false;
431
432 rcu_read_lock();
433 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
434 /*
435 * The code that increments the pm_only counter is
436 * responsible for ensuring that that counter is
437 * globally visible before the queue is unfrozen.
438 */
439 if (pm || !blk_queue_pm_only(q)) {
440 success = true;
441 } else {
442 percpu_ref_put(&q->q_usage_counter);
443 }
444 }
445 rcu_read_unlock();
446
447 if (success)
448 return 0;
449
450 if (flags & BLK_MQ_REQ_NOWAIT)
451 return -EBUSY;
452
453 /*
454 * read pair of barrier in blk_freeze_queue_start(),
455 * we need to order reading __PERCPU_REF_DEAD flag of
456 * .q_usage_counter and reading .mq_freeze_depth or
457 * queue dying flag, otherwise the following wait may
458 * never return if the two reads are reordered.
459 */
460 smp_rmb();
461
462 wait_event(q->mq_freeze_wq,
463 (!q->mq_freeze_depth &&
464 (pm || (blk_pm_request_resume(q),
465 !blk_queue_pm_only(q)))) ||
466 blk_queue_dying(q));
467 if (blk_queue_dying(q))
468 return -ENODEV;
469 }
470}
471
472static inline int bio_queue_enter(struct bio *bio)
473{
474 struct request_queue *q = bio->bi_disk->queue;
475 bool nowait = bio->bi_opf & REQ_NOWAIT;
476 int ret;
477
478 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
479 if (unlikely(ret)) {
480 if (nowait && !blk_queue_dying(q))
481 bio_wouldblock_error(bio);
482 else
483 bio_io_error(bio);
484 }
485
486 return ret;
487}
488
489void blk_queue_exit(struct request_queue *q)
490{
491 percpu_ref_put(&q->q_usage_counter);
492}
493
494static void blk_queue_usage_counter_release(struct percpu_ref *ref)
495{
496 struct request_queue *q =
497 container_of(ref, struct request_queue, q_usage_counter);
498
499 wake_up_all(&q->mq_freeze_wq);
500}
501
502static void blk_rq_timed_out_timer(struct timer_list *t)
503{
504 struct request_queue *q = from_timer(q, t, timeout);
505
506 kblockd_schedule_work(&q->timeout_work);
507}
508
509static void blk_timeout_work(struct work_struct *work)
510{
511}
512
513struct request_queue *blk_alloc_queue(int node_id)
514{
515 struct request_queue *q;
516 int ret;
517
518 q = kmem_cache_alloc_node(blk_requestq_cachep,
519 GFP_KERNEL | __GFP_ZERO, node_id);
520 if (!q)
521 return NULL;
522
523 q->last_merge = NULL;
524
525 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
526 if (q->id < 0)
527 goto fail_q;
528
529 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
530 if (ret)
531 goto fail_id;
532
533 q->backing_dev_info = bdi_alloc(node_id);
534 if (!q->backing_dev_info)
535 goto fail_split;
536
537 q->stats = blk_alloc_queue_stats();
538 if (!q->stats)
539 goto fail_stats;
540
541 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
542 q->backing_dev_info->io_pages = VM_READAHEAD_PAGES;
543 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
544 q->node = node_id;
545
546 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
547 laptop_mode_timer_fn, 0);
548 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
549 INIT_WORK(&q->timeout_work, blk_timeout_work);
550 INIT_LIST_HEAD(&q->icq_list);
551#ifdef CONFIG_BLK_CGROUP
552 INIT_LIST_HEAD(&q->blkg_list);
553#endif
554
555 kobject_init(&q->kobj, &blk_queue_ktype);
556
557 mutex_init(&q->debugfs_mutex);
558 mutex_init(&q->sysfs_lock);
559 mutex_init(&q->sysfs_dir_lock);
560 spin_lock_init(&q->queue_lock);
561
562 init_waitqueue_head(&q->mq_freeze_wq);
563 mutex_init(&q->mq_freeze_lock);
564
565 /*
566 * Init percpu_ref in atomic mode so that it's faster to shutdown.
567 * See blk_register_queue() for details.
568 */
569 if (percpu_ref_init(&q->q_usage_counter,
570 blk_queue_usage_counter_release,
571 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
572 goto fail_bdi;
573
574 if (blkcg_init_queue(q))
575 goto fail_ref;
576
577 blk_queue_dma_alignment(q, 511);
578 blk_set_default_limits(&q->limits);
579 q->nr_requests = BLKDEV_MAX_RQ;
580
581 return q;
582
583fail_ref:
584 percpu_ref_exit(&q->q_usage_counter);
585fail_bdi:
586 blk_free_queue_stats(q->stats);
587fail_stats:
588 bdi_put(q->backing_dev_info);
589fail_split:
590 bioset_exit(&q->bio_split);
591fail_id:
592 ida_simple_remove(&blk_queue_ida, q->id);
593fail_q:
594 kmem_cache_free(blk_requestq_cachep, q);
595 return NULL;
596}
597EXPORT_SYMBOL(blk_alloc_queue);
598
599/**
600 * blk_get_queue - increment the request_queue refcount
601 * @q: the request_queue structure to increment the refcount for
602 *
603 * Increment the refcount of the request_queue kobject.
604 *
605 * Context: Any context.
606 */
607bool blk_get_queue(struct request_queue *q)
608{
609 if (likely(!blk_queue_dying(q))) {
610 __blk_get_queue(q);
611 return true;
612 }
613
614 return false;
615}
616EXPORT_SYMBOL(blk_get_queue);
617
618/**
619 * blk_get_request - allocate a request
620 * @q: request queue to allocate a request for
621 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
622 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
623 */
624struct request *blk_get_request(struct request_queue *q, unsigned int op,
625 blk_mq_req_flags_t flags)
626{
627 struct request *req;
628
629 WARN_ON_ONCE(op & REQ_NOWAIT);
630 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
631
632 req = blk_mq_alloc_request(q, op, flags);
633 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
634 q->mq_ops->initialize_rq_fn(req);
635
636 return req;
637}
638EXPORT_SYMBOL(blk_get_request);
639
640void blk_put_request(struct request *req)
641{
642 blk_mq_free_request(req);
643}
644EXPORT_SYMBOL(blk_put_request);
645
646static void blk_account_io_merge_bio(struct request *req)
647{
648 if (!blk_do_io_stat(req))
649 return;
650
651 part_stat_lock();
652 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
653 part_stat_unlock();
654}
655
656bool bio_attempt_back_merge(struct request *req, struct bio *bio,
657 unsigned int nr_segs)
658{
659 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
660
661 if (!ll_back_merge_fn(req, bio, nr_segs))
662 return false;
663
664 trace_block_bio_backmerge(req->q, req, bio);
665 rq_qos_merge(req->q, req, bio);
666
667 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
668 blk_rq_set_mixed_merge(req);
669
670 req->biotail->bi_next = bio;
671 req->biotail = bio;
672 req->__data_len += bio->bi_iter.bi_size;
673
674 bio_crypt_free_ctx(bio);
675
676 blk_account_io_merge_bio(req);
677 return true;
678}
679
680bool bio_attempt_front_merge(struct request *req, struct bio *bio,
681 unsigned int nr_segs)
682{
683 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
684
685 if (!ll_front_merge_fn(req, bio, nr_segs))
686 return false;
687
688 trace_block_bio_frontmerge(req->q, req, bio);
689 rq_qos_merge(req->q, req, bio);
690
691 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
692 blk_rq_set_mixed_merge(req);
693
694 bio->bi_next = req->bio;
695 req->bio = bio;
696
697 req->__sector = bio->bi_iter.bi_sector;
698 req->__data_len += bio->bi_iter.bi_size;
699
700 bio_crypt_do_front_merge(req, bio);
701
702 blk_account_io_merge_bio(req);
703 return true;
704}
705
706bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
707 struct bio *bio)
708{
709 unsigned short segments = blk_rq_nr_discard_segments(req);
710
711 if (segments >= queue_max_discard_segments(q))
712 goto no_merge;
713 if (blk_rq_sectors(req) + bio_sectors(bio) >
714 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
715 goto no_merge;
716
717 rq_qos_merge(q, req, bio);
718
719 req->biotail->bi_next = bio;
720 req->biotail = bio;
721 req->__data_len += bio->bi_iter.bi_size;
722 req->nr_phys_segments = segments + 1;
723
724 blk_account_io_merge_bio(req);
725 return true;
726no_merge:
727 req_set_nomerge(q, req);
728 return false;
729}
730
731/**
732 * blk_attempt_plug_merge - try to merge with %current's plugged list
733 * @q: request_queue new bio is being queued at
734 * @bio: new bio being queued
735 * @nr_segs: number of segments in @bio
736 * @same_queue_rq: pointer to &struct request that gets filled in when
737 * another request associated with @q is found on the plug list
738 * (optional, may be %NULL)
739 *
740 * Determine whether @bio being queued on @q can be merged with a request
741 * on %current's plugged list. Returns %true if merge was successful,
742 * otherwise %false.
743 *
744 * Plugging coalesces IOs from the same issuer for the same purpose without
745 * going through @q->queue_lock. As such it's more of an issuing mechanism
746 * than scheduling, and the request, while may have elvpriv data, is not
747 * added on the elevator at this point. In addition, we don't have
748 * reliable access to the elevator outside queue lock. Only check basic
749 * merging parameters without querying the elevator.
750 *
751 * Caller must ensure !blk_queue_nomerges(q) beforehand.
752 */
753bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
754 unsigned int nr_segs, struct request **same_queue_rq)
755{
756 struct blk_plug *plug;
757 struct request *rq;
758 struct list_head *plug_list;
759
760 plug = blk_mq_plug(q, bio);
761 if (!plug)
762 return false;
763
764 plug_list = &plug->mq_list;
765
766 list_for_each_entry_reverse(rq, plug_list, queuelist) {
767 bool merged = false;
768
769 if (rq->q == q && same_queue_rq) {
770 /*
771 * Only blk-mq multiple hardware queues case checks the
772 * rq in the same queue, there should be only one such
773 * rq in a queue
774 **/
775 *same_queue_rq = rq;
776 }
777
778 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
779 continue;
780
781 switch (blk_try_merge(rq, bio)) {
782 case ELEVATOR_BACK_MERGE:
783 merged = bio_attempt_back_merge(rq, bio, nr_segs);
784 break;
785 case ELEVATOR_FRONT_MERGE:
786 merged = bio_attempt_front_merge(rq, bio, nr_segs);
787 break;
788 case ELEVATOR_DISCARD_MERGE:
789 merged = bio_attempt_discard_merge(q, rq, bio);
790 break;
791 default:
792 break;
793 }
794
795 if (merged)
796 return true;
797 }
798
799 return false;
800}
801
802static void handle_bad_sector(struct bio *bio, sector_t maxsector)
803{
804 char b[BDEVNAME_SIZE];
805
806 printk(KERN_INFO "attempt to access beyond end of device\n");
807 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
808 bio_devname(bio, b), bio->bi_opf,
809 (unsigned long long)bio_end_sector(bio),
810 (long long)maxsector);
811}
812
813#ifdef CONFIG_FAIL_MAKE_REQUEST
814
815static DECLARE_FAULT_ATTR(fail_make_request);
816
817static int __init setup_fail_make_request(char *str)
818{
819 return setup_fault_attr(&fail_make_request, str);
820}
821__setup("fail_make_request=", setup_fail_make_request);
822
823static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
824{
825 return part->make_it_fail && should_fail(&fail_make_request, bytes);
826}
827
828static int __init fail_make_request_debugfs(void)
829{
830 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
831 NULL, &fail_make_request);
832
833 return PTR_ERR_OR_ZERO(dir);
834}
835
836late_initcall(fail_make_request_debugfs);
837
838#else /* CONFIG_FAIL_MAKE_REQUEST */
839
840static inline bool should_fail_request(struct hd_struct *part,
841 unsigned int bytes)
842{
843 return false;
844}
845
846#endif /* CONFIG_FAIL_MAKE_REQUEST */
847
848static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
849{
850 const int op = bio_op(bio);
851
852 if (part->policy && op_is_write(op)) {
853 char b[BDEVNAME_SIZE];
854
855 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
856 return false;
857
858 WARN_ONCE(1,
859 "Trying to write to read-only block-device %s (partno %d)\n",
860 bio_devname(bio, b), part->partno);
861 /* Older lvm-tools actually trigger this */
862 return false;
863 }
864
865 return false;
866}
867
868static noinline int should_fail_bio(struct bio *bio)
869{
870 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
871 return -EIO;
872 return 0;
873}
874ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
875
876/*
877 * Check whether this bio extends beyond the end of the device or partition.
878 * This may well happen - the kernel calls bread() without checking the size of
879 * the device, e.g., when mounting a file system.
880 */
881static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
882{
883 unsigned int nr_sectors = bio_sectors(bio);
884
885 if (nr_sectors && maxsector &&
886 (nr_sectors > maxsector ||
887 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
888 handle_bad_sector(bio, maxsector);
889 return -EIO;
890 }
891 return 0;
892}
893
894/*
895 * Remap block n of partition p to block n+start(p) of the disk.
896 */
897static inline int blk_partition_remap(struct bio *bio)
898{
899 struct hd_struct *p;
900 int ret = -EIO;
901
902 rcu_read_lock();
903 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
904 if (unlikely(!p))
905 goto out;
906 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
907 goto out;
908 if (unlikely(bio_check_ro(bio, p)))
909 goto out;
910
911 if (bio_sectors(bio)) {
912 if (bio_check_eod(bio, part_nr_sects_read(p)))
913 goto out;
914 bio->bi_iter.bi_sector += p->start_sect;
915 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
916 bio->bi_iter.bi_sector - p->start_sect);
917 }
918 bio->bi_partno = 0;
919 ret = 0;
920out:
921 rcu_read_unlock();
922 return ret;
923}
924
925/*
926 * Check write append to a zoned block device.
927 */
928static inline blk_status_t blk_check_zone_append(struct request_queue *q,
929 struct bio *bio)
930{
931 sector_t pos = bio->bi_iter.bi_sector;
932 int nr_sectors = bio_sectors(bio);
933
934 /* Only applicable to zoned block devices */
935 if (!blk_queue_is_zoned(q))
936 return BLK_STS_NOTSUPP;
937
938 /* The bio sector must point to the start of a sequential zone */
939 if (pos & (blk_queue_zone_sectors(q) - 1) ||
940 !blk_queue_zone_is_seq(q, pos))
941 return BLK_STS_IOERR;
942
943 /*
944 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
945 * split and could result in non-contiguous sectors being written in
946 * different zones.
947 */
948 if (nr_sectors > q->limits.chunk_sectors)
949 return BLK_STS_IOERR;
950
951 /* Make sure the BIO is small enough and will not get split */
952 if (nr_sectors > q->limits.max_zone_append_sectors)
953 return BLK_STS_IOERR;
954
955 bio->bi_opf |= REQ_NOMERGE;
956
957 return BLK_STS_OK;
958}
959
960static noinline_for_stack bool submit_bio_checks(struct bio *bio)
961{
962 struct request_queue *q = bio->bi_disk->queue;
963 blk_status_t status = BLK_STS_IOERR;
964 struct blk_plug *plug;
965
966 might_sleep();
967
968 plug = blk_mq_plug(q, bio);
969 if (plug && plug->nowait)
970 bio->bi_opf |= REQ_NOWAIT;
971
972 /*
973 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
974 * if queue is not a request based queue.
975 */
976 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
977 goto not_supported;
978
979 if (should_fail_bio(bio))
980 goto end_io;
981
982 if (bio->bi_partno) {
983 if (unlikely(blk_partition_remap(bio)))
984 goto end_io;
985 } else {
986 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
987 goto end_io;
988 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
989 goto end_io;
990 }
991
992 /*
993 * Filter flush bio's early so that bio based drivers without flush
994 * support don't have to worry about them.
995 */
996 if (op_is_flush(bio->bi_opf) &&
997 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
998 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
999 if (!bio_sectors(bio)) {
1000 status = BLK_STS_OK;
1001 goto end_io;
1002 }
1003 }
1004
1005 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
1006 bio->bi_opf &= ~REQ_HIPRI;
1007
1008 switch (bio_op(bio)) {
1009 case REQ_OP_DISCARD:
1010 if (!blk_queue_discard(q))
1011 goto not_supported;
1012 break;
1013 case REQ_OP_SECURE_ERASE:
1014 if (!blk_queue_secure_erase(q))
1015 goto not_supported;
1016 break;
1017 case REQ_OP_WRITE_SAME:
1018 if (!q->limits.max_write_same_sectors)
1019 goto not_supported;
1020 break;
1021 case REQ_OP_ZONE_APPEND:
1022 status = blk_check_zone_append(q, bio);
1023 if (status != BLK_STS_OK)
1024 goto end_io;
1025 break;
1026 case REQ_OP_ZONE_RESET:
1027 case REQ_OP_ZONE_OPEN:
1028 case REQ_OP_ZONE_CLOSE:
1029 case REQ_OP_ZONE_FINISH:
1030 if (!blk_queue_is_zoned(q))
1031 goto not_supported;
1032 break;
1033 case REQ_OP_ZONE_RESET_ALL:
1034 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
1035 goto not_supported;
1036 break;
1037 case REQ_OP_WRITE_ZEROES:
1038 if (!q->limits.max_write_zeroes_sectors)
1039 goto not_supported;
1040 break;
1041 default:
1042 break;
1043 }
1044
1045 /*
1046 * Various block parts want %current->io_context, so allocate it up
1047 * front rather than dealing with lots of pain to allocate it only
1048 * where needed. This may fail and the block layer knows how to live
1049 * with it.
1050 */
1051 if (unlikely(!current->io_context))
1052 create_task_io_context(current, GFP_ATOMIC, q->node);
1053
1054 if (blk_throtl_bio(bio)) {
1055 blkcg_bio_issue_init(bio);
1056 return false;
1057 }
1058
1059 blk_cgroup_bio_start(bio);
1060 blkcg_bio_issue_init(bio);
1061
1062 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1063 trace_block_bio_queue(q, bio);
1064 /* Now that enqueuing has been traced, we need to trace
1065 * completion as well.
1066 */
1067 bio_set_flag(bio, BIO_TRACE_COMPLETION);
1068 }
1069 return true;
1070
1071not_supported:
1072 status = BLK_STS_NOTSUPP;
1073end_io:
1074 bio->bi_status = status;
1075 bio_endio(bio);
1076 return false;
1077}
1078
1079static blk_qc_t __submit_bio(struct bio *bio)
1080{
1081 struct gendisk *disk = bio->bi_disk;
1082 blk_qc_t ret = BLK_QC_T_NONE;
1083
1084 if (blk_crypto_bio_prep(&bio)) {
1085 if (!disk->fops->submit_bio)
1086 return blk_mq_submit_bio(bio);
1087 ret = disk->fops->submit_bio(bio);
1088 }
1089 blk_queue_exit(disk->queue);
1090 return ret;
1091}
1092
1093/*
1094 * The loop in this function may be a bit non-obvious, and so deserves some
1095 * explanation:
1096 *
1097 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
1098 * that), so we have a list with a single bio.
1099 * - We pretend that we have just taken it off a longer list, so we assign
1100 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
1101 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
1102 * bios through a recursive call to submit_bio_noacct. If it did, we find a
1103 * non-NULL value in bio_list and re-enter the loop from the top.
1104 * - In this case we really did just take the bio of the top of the list (no
1105 * pretending) and so remove it from bio_list, and call into ->submit_bio()
1106 * again.
1107 *
1108 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
1109 * bio_list_on_stack[1] contains bios that were submitted before the current
1110 * ->submit_bio_bio, but that haven't been processed yet.
1111 */
1112static blk_qc_t __submit_bio_noacct(struct bio *bio)
1113{
1114 struct bio_list bio_list_on_stack[2];
1115 blk_qc_t ret = BLK_QC_T_NONE;
1116
1117 BUG_ON(bio->bi_next);
1118
1119 bio_list_init(&bio_list_on_stack[0]);
1120 current->bio_list = bio_list_on_stack;
1121
1122 do {
1123 struct request_queue *q = bio->bi_disk->queue;
1124 struct bio_list lower, same;
1125
1126 if (unlikely(bio_queue_enter(bio) != 0))
1127 continue;
1128
1129 /*
1130 * Create a fresh bio_list for all subordinate requests.
1131 */
1132 bio_list_on_stack[1] = bio_list_on_stack[0];
1133 bio_list_init(&bio_list_on_stack[0]);
1134
1135 ret = __submit_bio(bio);
1136
1137 /*
1138 * Sort new bios into those for a lower level and those for the
1139 * same level.
1140 */
1141 bio_list_init(&lower);
1142 bio_list_init(&same);
1143 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1144 if (q == bio->bi_disk->queue)
1145 bio_list_add(&same, bio);
1146 else
1147 bio_list_add(&lower, bio);
1148
1149 /*
1150 * Now assemble so we handle the lowest level first.
1151 */
1152 bio_list_merge(&bio_list_on_stack[0], &lower);
1153 bio_list_merge(&bio_list_on_stack[0], &same);
1154 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1155 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
1156
1157 current->bio_list = NULL;
1158 return ret;
1159}
1160
1161static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
1162{
1163 struct bio_list bio_list[2] = { };
1164 blk_qc_t ret = BLK_QC_T_NONE;
1165
1166 current->bio_list = bio_list;
1167
1168 do {
1169 struct gendisk *disk = bio->bi_disk;
1170
1171 if (unlikely(bio_queue_enter(bio) != 0))
1172 continue;
1173
1174 if (!blk_crypto_bio_prep(&bio)) {
1175 blk_queue_exit(disk->queue);
1176 ret = BLK_QC_T_NONE;
1177 continue;
1178 }
1179
1180 ret = blk_mq_submit_bio(bio);
1181 } while ((bio = bio_list_pop(&bio_list[0])));
1182
1183 current->bio_list = NULL;
1184 return ret;
1185}
1186
1187/**
1188 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1189 * @bio: The bio describing the location in memory and on the device.
1190 *
1191 * This is a version of submit_bio() that shall only be used for I/O that is
1192 * resubmitted to lower level drivers by stacking block drivers. All file
1193 * systems and other upper level users of the block layer should use
1194 * submit_bio() instead.
1195 */
1196blk_qc_t submit_bio_noacct(struct bio *bio)
1197{
1198 if (!submit_bio_checks(bio))
1199 return BLK_QC_T_NONE;
1200
1201 /*
1202 * We only want one ->submit_bio to be active at a time, else stack
1203 * usage with stacked devices could be a problem. Use current->bio_list
1204 * to collect a list of requests submited by a ->submit_bio method while
1205 * it is active, and then process them after it returned.
1206 */
1207 if (current->bio_list) {
1208 bio_list_add(¤t->bio_list[0], bio);
1209 return BLK_QC_T_NONE;
1210 }
1211
1212 if (!bio->bi_disk->fops->submit_bio)
1213 return __submit_bio_noacct_mq(bio);
1214 return __submit_bio_noacct(bio);
1215}
1216EXPORT_SYMBOL(submit_bio_noacct);
1217
1218/**
1219 * submit_bio - submit a bio to the block device layer for I/O
1220 * @bio: The &struct bio which describes the I/O
1221 *
1222 * submit_bio() is used to submit I/O requests to block devices. It is passed a
1223 * fully set up &struct bio that describes the I/O that needs to be done. The
1224 * bio will be send to the device described by the bi_disk and bi_partno fields.
1225 *
1226 * The success/failure status of the request, along with notification of
1227 * completion, is delivered asynchronously through the ->bi_end_io() callback
1228 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
1229 * been called.
1230 */
1231blk_qc_t submit_bio(struct bio *bio)
1232{
1233 if (blkcg_punt_bio_submit(bio))
1234 return BLK_QC_T_NONE;
1235
1236 /*
1237 * If it's a regular read/write or a barrier with data attached,
1238 * go through the normal accounting stuff before submission.
1239 */
1240 if (bio_has_data(bio)) {
1241 unsigned int count;
1242
1243 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1244 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1245 else
1246 count = bio_sectors(bio);
1247
1248 if (op_is_write(bio_op(bio))) {
1249 count_vm_events(PGPGOUT, count);
1250 } else {
1251 task_io_account_read(bio->bi_iter.bi_size);
1252 count_vm_events(PGPGIN, count);
1253 }
1254
1255 if (unlikely(block_dump)) {
1256 char b[BDEVNAME_SIZE];
1257 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1258 current->comm, task_pid_nr(current),
1259 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1260 (unsigned long long)bio->bi_iter.bi_sector,
1261 bio_devname(bio, b), count);
1262 }
1263 }
1264
1265 /*
1266 * If we're reading data that is part of the userspace workingset, count
1267 * submission time as memory stall. When the device is congested, or
1268 * the submitting cgroup IO-throttled, submission can be a significant
1269 * part of overall IO time.
1270 */
1271 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1272 bio_flagged(bio, BIO_WORKINGSET))) {
1273 unsigned long pflags;
1274 blk_qc_t ret;
1275
1276 psi_memstall_enter(&pflags);
1277 ret = submit_bio_noacct(bio);
1278 psi_memstall_leave(&pflags);
1279
1280 return ret;
1281 }
1282
1283 return submit_bio_noacct(bio);
1284}
1285EXPORT_SYMBOL(submit_bio);
1286
1287/**
1288 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1289 * for the new queue limits
1290 * @q: the queue
1291 * @rq: the request being checked
1292 *
1293 * Description:
1294 * @rq may have been made based on weaker limitations of upper-level queues
1295 * in request stacking drivers, and it may violate the limitation of @q.
1296 * Since the block layer and the underlying device driver trust @rq
1297 * after it is inserted to @q, it should be checked against @q before
1298 * the insertion using this generic function.
1299 *
1300 * Request stacking drivers like request-based dm may change the queue
1301 * limits when retrying requests on other queues. Those requests need
1302 * to be checked against the new queue limits again during dispatch.
1303 */
1304static int blk_cloned_rq_check_limits(struct request_queue *q,
1305 struct request *rq)
1306{
1307 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1308 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1309 __func__, blk_rq_sectors(rq),
1310 blk_queue_get_max_sectors(q, req_op(rq)));
1311 return -EIO;
1312 }
1313
1314 /*
1315 * queue's settings related to segment counting like q->bounce_pfn
1316 * may differ from that of other stacking queues.
1317 * Recalculate it to check the request correctly on this queue's
1318 * limitation.
1319 */
1320 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1321 if (rq->nr_phys_segments > queue_max_segments(q)) {
1322 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1323 __func__, rq->nr_phys_segments, queue_max_segments(q));
1324 return -EIO;
1325 }
1326
1327 return 0;
1328}
1329
1330/**
1331 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1332 * @q: the queue to submit the request
1333 * @rq: the request being queued
1334 */
1335blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1336{
1337 if (blk_cloned_rq_check_limits(q, rq))
1338 return BLK_STS_IOERR;
1339
1340 if (rq->rq_disk &&
1341 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1342 return BLK_STS_IOERR;
1343
1344 if (blk_crypto_insert_cloned_request(rq))
1345 return BLK_STS_IOERR;
1346
1347 if (blk_queue_io_stat(q))
1348 blk_account_io_start(rq);
1349
1350 /*
1351 * Since we have a scheduler attached on the top device,
1352 * bypass a potential scheduler on the bottom device for
1353 * insert.
1354 */
1355 return blk_mq_request_issue_directly(rq, true);
1356}
1357EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1358
1359/**
1360 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1361 * @rq: request to examine
1362 *
1363 * Description:
1364 * A request could be merge of IOs which require different failure
1365 * handling. This function determines the number of bytes which
1366 * can be failed from the beginning of the request without
1367 * crossing into area which need to be retried further.
1368 *
1369 * Return:
1370 * The number of bytes to fail.
1371 */
1372unsigned int blk_rq_err_bytes(const struct request *rq)
1373{
1374 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1375 unsigned int bytes = 0;
1376 struct bio *bio;
1377
1378 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1379 return blk_rq_bytes(rq);
1380
1381 /*
1382 * Currently the only 'mixing' which can happen is between
1383 * different fastfail types. We can safely fail portions
1384 * which have all the failfast bits that the first one has -
1385 * the ones which are at least as eager to fail as the first
1386 * one.
1387 */
1388 for (bio = rq->bio; bio; bio = bio->bi_next) {
1389 if ((bio->bi_opf & ff) != ff)
1390 break;
1391 bytes += bio->bi_iter.bi_size;
1392 }
1393
1394 /* this could lead to infinite loop */
1395 BUG_ON(blk_rq_bytes(rq) && !bytes);
1396 return bytes;
1397}
1398EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1399
1400static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
1401{
1402 unsigned long stamp;
1403again:
1404 stamp = READ_ONCE(part->stamp);
1405 if (unlikely(stamp != now)) {
1406 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp))
1407 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1408 }
1409 if (part->partno) {
1410 part = &part_to_disk(part)->part0;
1411 goto again;
1412 }
1413}
1414
1415static void blk_account_io_completion(struct request *req, unsigned int bytes)
1416{
1417 if (req->part && blk_do_io_stat(req)) {
1418 const int sgrp = op_stat_group(req_op(req));
1419 struct hd_struct *part;
1420
1421 part_stat_lock();
1422 part = req->part;
1423 part_stat_add(part, sectors[sgrp], bytes >> 9);
1424 part_stat_unlock();
1425 }
1426}
1427
1428void blk_account_io_done(struct request *req, u64 now)
1429{
1430 /*
1431 * Account IO completion. flush_rq isn't accounted as a
1432 * normal IO on queueing nor completion. Accounting the
1433 * containing request is enough.
1434 */
1435 if (req->part && blk_do_io_stat(req) &&
1436 !(req->rq_flags & RQF_FLUSH_SEQ)) {
1437 const int sgrp = op_stat_group(req_op(req));
1438 struct hd_struct *part;
1439
1440 part_stat_lock();
1441 part = req->part;
1442
1443 update_io_ticks(part, jiffies, true);
1444 part_stat_inc(part, ios[sgrp]);
1445 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1446 part_stat_unlock();
1447
1448 hd_struct_put(part);
1449 }
1450}
1451
1452void blk_account_io_start(struct request *rq)
1453{
1454 if (!blk_do_io_stat(rq))
1455 return;
1456
1457 rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1458
1459 part_stat_lock();
1460 update_io_ticks(rq->part, jiffies, false);
1461 part_stat_unlock();
1462}
1463
1464unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1465 unsigned int op)
1466{
1467 struct hd_struct *part = &disk->part0;
1468 const int sgrp = op_stat_group(op);
1469 unsigned long now = READ_ONCE(jiffies);
1470
1471 part_stat_lock();
1472 update_io_ticks(part, now, false);
1473 part_stat_inc(part, ios[sgrp]);
1474 part_stat_add(part, sectors[sgrp], sectors);
1475 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1476 part_stat_unlock();
1477
1478 return now;
1479}
1480EXPORT_SYMBOL(disk_start_io_acct);
1481
1482void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1483 unsigned long start_time)
1484{
1485 struct hd_struct *part = &disk->part0;
1486 const int sgrp = op_stat_group(op);
1487 unsigned long now = READ_ONCE(jiffies);
1488 unsigned long duration = now - start_time;
1489
1490 part_stat_lock();
1491 update_io_ticks(part, now, true);
1492 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1493 part_stat_local_dec(part, in_flight[op_is_write(op)]);
1494 part_stat_unlock();
1495}
1496EXPORT_SYMBOL(disk_end_io_acct);
1497
1498/*
1499 * Steal bios from a request and add them to a bio list.
1500 * The request must not have been partially completed before.
1501 */
1502void blk_steal_bios(struct bio_list *list, struct request *rq)
1503{
1504 if (rq->bio) {
1505 if (list->tail)
1506 list->tail->bi_next = rq->bio;
1507 else
1508 list->head = rq->bio;
1509 list->tail = rq->biotail;
1510
1511 rq->bio = NULL;
1512 rq->biotail = NULL;
1513 }
1514
1515 rq->__data_len = 0;
1516}
1517EXPORT_SYMBOL_GPL(blk_steal_bios);
1518
1519/**
1520 * blk_update_request - Special helper function for request stacking drivers
1521 * @req: the request being processed
1522 * @error: block status code
1523 * @nr_bytes: number of bytes to complete @req
1524 *
1525 * Description:
1526 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1527 * the request structure even if @req doesn't have leftover.
1528 * If @req has leftover, sets it up for the next range of segments.
1529 *
1530 * This special helper function is only for request stacking drivers
1531 * (e.g. request-based dm) so that they can handle partial completion.
1532 * Actual device drivers should use blk_mq_end_request instead.
1533 *
1534 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1535 * %false return from this function.
1536 *
1537 * Note:
1538 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1539 * blk_rq_bytes() and in blk_update_request().
1540 *
1541 * Return:
1542 * %false - this request doesn't have any more data
1543 * %true - this request has more data
1544 **/
1545bool blk_update_request(struct request *req, blk_status_t error,
1546 unsigned int nr_bytes)
1547{
1548 int total_bytes;
1549
1550 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1551
1552 if (!req->bio)
1553 return false;
1554
1555#ifdef CONFIG_BLK_DEV_INTEGRITY
1556 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1557 error == BLK_STS_OK)
1558 req->q->integrity.profile->complete_fn(req, nr_bytes);
1559#endif
1560
1561 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1562 !(req->rq_flags & RQF_QUIET)))
1563 print_req_error(req, error, __func__);
1564
1565 blk_account_io_completion(req, nr_bytes);
1566
1567 total_bytes = 0;
1568 while (req->bio) {
1569 struct bio *bio = req->bio;
1570 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1571
1572 if (bio_bytes == bio->bi_iter.bi_size)
1573 req->bio = bio->bi_next;
1574
1575 /* Completion has already been traced */
1576 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1577 req_bio_endio(req, bio, bio_bytes, error);
1578
1579 total_bytes += bio_bytes;
1580 nr_bytes -= bio_bytes;
1581
1582 if (!nr_bytes)
1583 break;
1584 }
1585
1586 /*
1587 * completely done
1588 */
1589 if (!req->bio) {
1590 /*
1591 * Reset counters so that the request stacking driver
1592 * can find how many bytes remain in the request
1593 * later.
1594 */
1595 req->__data_len = 0;
1596 return false;
1597 }
1598
1599 req->__data_len -= total_bytes;
1600
1601 /* update sector only for requests with clear definition of sector */
1602 if (!blk_rq_is_passthrough(req))
1603 req->__sector += total_bytes >> 9;
1604
1605 /* mixed attributes always follow the first bio */
1606 if (req->rq_flags & RQF_MIXED_MERGE) {
1607 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1608 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1609 }
1610
1611 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1612 /*
1613 * If total number of sectors is less than the first segment
1614 * size, something has gone terribly wrong.
1615 */
1616 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1617 blk_dump_rq_flags(req, "request botched");
1618 req->__data_len = blk_rq_cur_bytes(req);
1619 }
1620
1621 /* recalculate the number of segments */
1622 req->nr_phys_segments = blk_recalc_rq_segments(req);
1623 }
1624
1625 return true;
1626}
1627EXPORT_SYMBOL_GPL(blk_update_request);
1628
1629#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1630/**
1631 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1632 * @rq: the request to be flushed
1633 *
1634 * Description:
1635 * Flush all pages in @rq.
1636 */
1637void rq_flush_dcache_pages(struct request *rq)
1638{
1639 struct req_iterator iter;
1640 struct bio_vec bvec;
1641
1642 rq_for_each_segment(bvec, rq, iter)
1643 flush_dcache_page(bvec.bv_page);
1644}
1645EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1646#endif
1647
1648/**
1649 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1650 * @q : the queue of the device being checked
1651 *
1652 * Description:
1653 * Check if underlying low-level drivers of a device are busy.
1654 * If the drivers want to export their busy state, they must set own
1655 * exporting function using blk_queue_lld_busy() first.
1656 *
1657 * Basically, this function is used only by request stacking drivers
1658 * to stop dispatching requests to underlying devices when underlying
1659 * devices are busy. This behavior helps more I/O merging on the queue
1660 * of the request stacking driver and prevents I/O throughput regression
1661 * on burst I/O load.
1662 *
1663 * Return:
1664 * 0 - Not busy (The request stacking driver should dispatch request)
1665 * 1 - Busy (The request stacking driver should stop dispatching request)
1666 */
1667int blk_lld_busy(struct request_queue *q)
1668{
1669 if (queue_is_mq(q) && q->mq_ops->busy)
1670 return q->mq_ops->busy(q);
1671
1672 return 0;
1673}
1674EXPORT_SYMBOL_GPL(blk_lld_busy);
1675
1676/**
1677 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1678 * @rq: the clone request to be cleaned up
1679 *
1680 * Description:
1681 * Free all bios in @rq for a cloned request.
1682 */
1683void blk_rq_unprep_clone(struct request *rq)
1684{
1685 struct bio *bio;
1686
1687 while ((bio = rq->bio) != NULL) {
1688 rq->bio = bio->bi_next;
1689
1690 bio_put(bio);
1691 }
1692}
1693EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1694
1695/**
1696 * blk_rq_prep_clone - Helper function to setup clone request
1697 * @rq: the request to be setup
1698 * @rq_src: original request to be cloned
1699 * @bs: bio_set that bios for clone are allocated from
1700 * @gfp_mask: memory allocation mask for bio
1701 * @bio_ctr: setup function to be called for each clone bio.
1702 * Returns %0 for success, non %0 for failure.
1703 * @data: private data to be passed to @bio_ctr
1704 *
1705 * Description:
1706 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1707 * Also, pages which the original bios are pointing to are not copied
1708 * and the cloned bios just point same pages.
1709 * So cloned bios must be completed before original bios, which means
1710 * the caller must complete @rq before @rq_src.
1711 */
1712int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1713 struct bio_set *bs, gfp_t gfp_mask,
1714 int (*bio_ctr)(struct bio *, struct bio *, void *),
1715 void *data)
1716{
1717 struct bio *bio, *bio_src;
1718
1719 if (!bs)
1720 bs = &fs_bio_set;
1721
1722 __rq_for_each_bio(bio_src, rq_src) {
1723 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1724 if (!bio)
1725 goto free_and_out;
1726
1727 if (bio_ctr && bio_ctr(bio, bio_src, data))
1728 goto free_and_out;
1729
1730 if (rq->bio) {
1731 rq->biotail->bi_next = bio;
1732 rq->biotail = bio;
1733 } else
1734 rq->bio = rq->biotail = bio;
1735 }
1736
1737 /* Copy attributes of the original request to the clone request. */
1738 rq->__sector = blk_rq_pos(rq_src);
1739 rq->__data_len = blk_rq_bytes(rq_src);
1740 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1741 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1742 rq->special_vec = rq_src->special_vec;
1743 }
1744 rq->nr_phys_segments = rq_src->nr_phys_segments;
1745 rq->ioprio = rq_src->ioprio;
1746
1747 if (rq->bio)
1748 blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask);
1749
1750 return 0;
1751
1752free_and_out:
1753 if (bio)
1754 bio_put(bio);
1755 blk_rq_unprep_clone(rq);
1756
1757 return -ENOMEM;
1758}
1759EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1760
1761int kblockd_schedule_work(struct work_struct *work)
1762{
1763 return queue_work(kblockd_workqueue, work);
1764}
1765EXPORT_SYMBOL(kblockd_schedule_work);
1766
1767int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1768 unsigned long delay)
1769{
1770 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1771}
1772EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1773
1774/**
1775 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1776 * @plug: The &struct blk_plug that needs to be initialized
1777 *
1778 * Description:
1779 * blk_start_plug() indicates to the block layer an intent by the caller
1780 * to submit multiple I/O requests in a batch. The block layer may use
1781 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1782 * is called. However, the block layer may choose to submit requests
1783 * before a call to blk_finish_plug() if the number of queued I/Os
1784 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1785 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1786 * the task schedules (see below).
1787 *
1788 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1789 * pending I/O should the task end up blocking between blk_start_plug() and
1790 * blk_finish_plug(). This is important from a performance perspective, but
1791 * also ensures that we don't deadlock. For instance, if the task is blocking
1792 * for a memory allocation, memory reclaim could end up wanting to free a
1793 * page belonging to that request that is currently residing in our private
1794 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1795 * this kind of deadlock.
1796 */
1797void blk_start_plug(struct blk_plug *plug)
1798{
1799 struct task_struct *tsk = current;
1800
1801 /*
1802 * If this is a nested plug, don't actually assign it.
1803 */
1804 if (tsk->plug)
1805 return;
1806
1807 INIT_LIST_HEAD(&plug->mq_list);
1808 INIT_LIST_HEAD(&plug->cb_list);
1809 plug->rq_count = 0;
1810 plug->multiple_queues = false;
1811 plug->nowait = false;
1812
1813 /*
1814 * Store ordering should not be needed here, since a potential
1815 * preempt will imply a full memory barrier
1816 */
1817 tsk->plug = plug;
1818}
1819EXPORT_SYMBOL(blk_start_plug);
1820
1821static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1822{
1823 LIST_HEAD(callbacks);
1824
1825 while (!list_empty(&plug->cb_list)) {
1826 list_splice_init(&plug->cb_list, &callbacks);
1827
1828 while (!list_empty(&callbacks)) {
1829 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1830 struct blk_plug_cb,
1831 list);
1832 list_del(&cb->list);
1833 cb->callback(cb, from_schedule);
1834 }
1835 }
1836}
1837
1838struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1839 int size)
1840{
1841 struct blk_plug *plug = current->plug;
1842 struct blk_plug_cb *cb;
1843
1844 if (!plug)
1845 return NULL;
1846
1847 list_for_each_entry(cb, &plug->cb_list, list)
1848 if (cb->callback == unplug && cb->data == data)
1849 return cb;
1850
1851 /* Not currently on the callback list */
1852 BUG_ON(size < sizeof(*cb));
1853 cb = kzalloc(size, GFP_ATOMIC);
1854 if (cb) {
1855 cb->data = data;
1856 cb->callback = unplug;
1857 list_add(&cb->list, &plug->cb_list);
1858 }
1859 return cb;
1860}
1861EXPORT_SYMBOL(blk_check_plugged);
1862
1863void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1864{
1865 flush_plug_callbacks(plug, from_schedule);
1866
1867 if (!list_empty(&plug->mq_list))
1868 blk_mq_flush_plug_list(plug, from_schedule);
1869}
1870
1871/**
1872 * blk_finish_plug - mark the end of a batch of submitted I/O
1873 * @plug: The &struct blk_plug passed to blk_start_plug()
1874 *
1875 * Description:
1876 * Indicate that a batch of I/O submissions is complete. This function
1877 * must be paired with an initial call to blk_start_plug(). The intent
1878 * is to allow the block layer to optimize I/O submission. See the
1879 * documentation for blk_start_plug() for more information.
1880 */
1881void blk_finish_plug(struct blk_plug *plug)
1882{
1883 if (plug != current->plug)
1884 return;
1885 blk_flush_plug_list(plug, false);
1886
1887 current->plug = NULL;
1888}
1889EXPORT_SYMBOL(blk_finish_plug);
1890
1891void blk_io_schedule(void)
1892{
1893 /* Prevent hang_check timer from firing at us during very long I/O */
1894 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1895
1896 if (timeout)
1897 io_schedule_timeout(timeout);
1898 else
1899 io_schedule();
1900}
1901EXPORT_SYMBOL_GPL(blk_io_schedule);
1902
1903int __init blk_dev_init(void)
1904{
1905 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1906 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1907 sizeof_field(struct request, cmd_flags));
1908 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1909 sizeof_field(struct bio, bi_opf));
1910
1911 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1912 kblockd_workqueue = alloc_workqueue("kblockd",
1913 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1914 if (!kblockd_workqueue)
1915 panic("Failed to create kblockd\n");
1916
1917 blk_requestq_cachep = kmem_cache_create("request_queue",
1918 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1919
1920 blk_debugfs_root = debugfs_create_dir("block", NULL);
1921
1922 return 0;
1923}