Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * This program is free software; you can redistribute it and/or
  3 * modify it under the terms of the GNU General Public License
  4 * as published by the Free Software Foundation; either version 2
  5 * of the License, or (at your option) any later version.
  6 *
  7 * This program is distributed in the hope that it will be useful,
  8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 10 * GNU General Public License for more details.
 11 *
 12 * You should have received a copy of the GNU General Public License
 13 * along with this program; if not, write to the Free Software
 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 15 *
 16 * Copyright (C) 2000, 2001 Kanoj Sarcar
 17 * Copyright (C) 2000, 2001 Ralf Baechle
 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
 20 */
 21#include <linux/cache.h>
 22#include <linux/delay.h>
 23#include <linux/init.h>
 24#include <linux/interrupt.h>
 25#include <linux/smp.h>
 26#include <linux/spinlock.h>
 27#include <linux/threads.h>
 28#include <linux/module.h>
 29#include <linux/time.h>
 30#include <linux/timex.h>
 31#include <linux/sched.h>
 32#include <linux/cpumask.h>
 33#include <linux/cpu.h>
 34#include <linux/err.h>
 35#include <linux/ftrace.h>
 36
 37#include <linux/atomic.h>
 38#include <asm/cpu.h>
 39#include <asm/processor.h>
 
 40#include <asm/r4k-timer.h>
 41#include <asm/mmu_context.h>
 42#include <asm/time.h>
 43#include <asm/setup.h>
 44
 45#ifdef CONFIG_MIPS_MT_SMTC
 46#include <asm/mipsmtregs.h>
 47#endif /* CONFIG_MIPS_MT_SMTC */
 48
 49volatile cpumask_t cpu_callin_map;	/* Bitmask of started secondaries */
 50
 51int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
 52EXPORT_SYMBOL(__cpu_number_map);
 53
 54int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 55EXPORT_SYMBOL(__cpu_logical_map);
 56
 57/* Number of TCs (or siblings in Intel speak) per CPU core */
 58int smp_num_siblings = 1;
 59EXPORT_SYMBOL(smp_num_siblings);
 60
 61/* representing the TCs (or siblings in Intel speak) of each logical CPU */
 62cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
 63EXPORT_SYMBOL(cpu_sibling_map);
 64
 65/* representing cpus for which sibling maps can be computed */
 66static cpumask_t cpu_sibling_setup_map;
 67
 68static inline void set_cpu_sibling_map(int cpu)
 69{
 70	int i;
 71
 72	cpu_set(cpu, cpu_sibling_setup_map);
 73
 74	if (smp_num_siblings > 1) {
 75		for_each_cpu_mask(i, cpu_sibling_setup_map) {
 76			if (cpu_data[cpu].core == cpu_data[i].core) {
 77				cpu_set(i, cpu_sibling_map[cpu]);
 78				cpu_set(cpu, cpu_sibling_map[i]);
 79			}
 80		}
 81	} else
 82		cpu_set(cpu, cpu_sibling_map[cpu]);
 83}
 84
 85struct plat_smp_ops *mp_ops;
 
 86
 87__cpuinit void register_smp_ops(struct plat_smp_ops *ops)
 88{
 89	if (mp_ops)
 90		printk(KERN_WARNING "Overriding previously set SMP ops\n");
 91
 92	mp_ops = ops;
 93}
 94
 95/*
 96 * First C code run on the secondary CPUs after being started up by
 97 * the master.
 98 */
 99asmlinkage __cpuinit void start_secondary(void)
100{
101	unsigned int cpu;
102
103#ifdef CONFIG_MIPS_MT_SMTC
104	/* Only do cpu_probe for first TC of CPU */
105	if ((read_c0_tcbind() & TCBIND_CURTC) == 0)
 
 
106#endif /* CONFIG_MIPS_MT_SMTC */
107	cpu_probe();
108	cpu_report();
109	per_cpu_trap_init(false);
110	mips_clockevent_init();
111	mp_ops->init_secondary();
112
113	/*
114	 * XXX parity protection should be folded in here when it's converted
115	 * to an option instead of something based on .cputype
116	 */
117
118	calibrate_delay();
119	preempt_disable();
120	cpu = smp_processor_id();
121	cpu_data[cpu].udelay_val = loops_per_jiffy;
122
123	notify_cpu_starting(cpu);
124
125	set_cpu_online(cpu, true);
126
127	set_cpu_sibling_map(cpu);
128
129	cpu_set(cpu, cpu_callin_map);
130
131	synchronise_count_slave();
132
133	/*
134	 * irq will be enabled in ->smp_finish(), enabling it too early
135	 * is dangerous.
136	 */
137	WARN_ON_ONCE(!irqs_disabled());
138	mp_ops->smp_finish();
139
140	cpu_idle();
141}
142
143/*
144 * Call into both interrupt handlers, as we share the IPI for them
145 */
146void __irq_entry smp_call_function_interrupt(void)
147{
148	irq_enter();
149	generic_smp_call_function_single_interrupt();
150	generic_smp_call_function_interrupt();
151	irq_exit();
152}
153
154static void stop_this_cpu(void *dummy)
155{
156	/*
157	 * Remove this CPU:
158	 */
159	set_cpu_online(smp_processor_id(), false);
160	for (;;) {
161		if (cpu_wait)
162			(*cpu_wait)();		/* Wait if available. */
163	}
164}
165
166void smp_send_stop(void)
167{
168	smp_call_function(stop_this_cpu, NULL, 0);
169}
170
171void __init smp_cpus_done(unsigned int max_cpus)
172{
173	mp_ops->cpus_done();
174	synchronise_count_master();
175}
176
177/* called from main before smp_init() */
178void __init smp_prepare_cpus(unsigned int max_cpus)
179{
180	init_new_context(current, &init_mm);
181	current_thread_info()->cpu = 0;
182	mp_ops->prepare_cpus(max_cpus);
183	set_cpu_sibling_map(0);
184#ifndef CONFIG_HOTPLUG_CPU
185	init_cpu_present(cpu_possible_mask);
186#endif
187}
188
189/* preload SMP state for boot cpu */
190void __devinit smp_prepare_boot_cpu(void)
191{
192	set_cpu_possible(0, true);
193	set_cpu_online(0, true);
194	cpu_set(0, cpu_callin_map);
195}
196
197int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
198{
199	mp_ops->boot_secondary(cpu, tidle);
200
201	/*
202	 * Trust is futile.  We should really have timeouts ...
203	 */
204	while (!cpu_isset(cpu, cpu_callin_map))
205		udelay(100);
206
 
207	return 0;
208}
209
210/* Not really SMP stuff ... */
211int setup_profiling_timer(unsigned int multiplier)
212{
213	return 0;
214}
215
216static void flush_tlb_all_ipi(void *info)
217{
218	local_flush_tlb_all();
219}
220
221void flush_tlb_all(void)
222{
223	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
224}
225
226static void flush_tlb_mm_ipi(void *mm)
227{
228	local_flush_tlb_mm((struct mm_struct *)mm);
229}
230
231/*
232 * Special Variant of smp_call_function for use by TLB functions:
233 *
234 *  o No return value
235 *  o collapses to normal function call on UP kernels
236 *  o collapses to normal function call on systems with a single shared
237 *    primary cache.
238 *  o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core.
239 */
240static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
241{
242#ifndef CONFIG_MIPS_MT_SMTC
243	smp_call_function(func, info, 1);
244#endif
245}
246
247static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
248{
249	preempt_disable();
250
251	smp_on_other_tlbs(func, info);
252	func(info);
253
254	preempt_enable();
255}
256
257/*
258 * The following tlb flush calls are invoked when old translations are
259 * being torn down, or pte attributes are changing. For single threaded
260 * address spaces, a new context is obtained on the current cpu, and tlb
261 * context on other cpus are invalidated to force a new context allocation
262 * at switch_mm time, should the mm ever be used on other cpus. For
263 * multithreaded address spaces, intercpu interrupts have to be sent.
264 * Another case where intercpu interrupts are required is when the target
265 * mm might be active on another cpu (eg debuggers doing the flushes on
266 * behalf of debugees, kswapd stealing pages from another process etc).
267 * Kanoj 07/00.
268 */
269
270void flush_tlb_mm(struct mm_struct *mm)
271{
272	preempt_disable();
273
274	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
275		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
276	} else {
277		unsigned int cpu;
278
279		for_each_online_cpu(cpu) {
280			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
281				cpu_context(cpu, mm) = 0;
282		}
283	}
284	local_flush_tlb_mm(mm);
285
286	preempt_enable();
287}
288
289struct flush_tlb_data {
290	struct vm_area_struct *vma;
291	unsigned long addr1;
292	unsigned long addr2;
293};
294
295static void flush_tlb_range_ipi(void *info)
296{
297	struct flush_tlb_data *fd = info;
298
299	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
300}
301
302void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
303{
304	struct mm_struct *mm = vma->vm_mm;
305
306	preempt_disable();
307	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
308		struct flush_tlb_data fd = {
309			.vma = vma,
310			.addr1 = start,
311			.addr2 = end,
312		};
313
314		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
315	} else {
316		unsigned int cpu;
317
318		for_each_online_cpu(cpu) {
319			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
320				cpu_context(cpu, mm) = 0;
321		}
322	}
323	local_flush_tlb_range(vma, start, end);
324	preempt_enable();
325}
326
327static void flush_tlb_kernel_range_ipi(void *info)
328{
329	struct flush_tlb_data *fd = info;
330
331	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
332}
333
334void flush_tlb_kernel_range(unsigned long start, unsigned long end)
335{
336	struct flush_tlb_data fd = {
337		.addr1 = start,
338		.addr2 = end,
339	};
340
341	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
342}
343
344static void flush_tlb_page_ipi(void *info)
345{
346	struct flush_tlb_data *fd = info;
347
348	local_flush_tlb_page(fd->vma, fd->addr1);
349}
350
351void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
352{
353	preempt_disable();
354	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
355		struct flush_tlb_data fd = {
356			.vma = vma,
357			.addr1 = page,
358		};
359
360		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
361	} else {
362		unsigned int cpu;
363
364		for_each_online_cpu(cpu) {
365			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
366				cpu_context(cpu, vma->vm_mm) = 0;
367		}
368	}
369	local_flush_tlb_page(vma, page);
370	preempt_enable();
371}
372
373static void flush_tlb_one_ipi(void *info)
374{
375	unsigned long vaddr = (unsigned long) info;
376
377	local_flush_tlb_one(vaddr);
378}
379
380void flush_tlb_one(unsigned long vaddr)
381{
382	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
383}
384
385EXPORT_SYMBOL(flush_tlb_page);
386EXPORT_SYMBOL(flush_tlb_one);
v3.15
  1/*
  2 * This program is free software; you can redistribute it and/or
  3 * modify it under the terms of the GNU General Public License
  4 * as published by the Free Software Foundation; either version 2
  5 * of the License, or (at your option) any later version.
  6 *
  7 * This program is distributed in the hope that it will be useful,
  8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 10 * GNU General Public License for more details.
 11 *
 12 * You should have received a copy of the GNU General Public License
 13 * along with this program; if not, write to the Free Software
 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 15 *
 16 * Copyright (C) 2000, 2001 Kanoj Sarcar
 17 * Copyright (C) 2000, 2001 Ralf Baechle
 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
 20 */
 21#include <linux/cache.h>
 22#include <linux/delay.h>
 23#include <linux/init.h>
 24#include <linux/interrupt.h>
 25#include <linux/smp.h>
 26#include <linux/spinlock.h>
 27#include <linux/threads.h>
 28#include <linux/module.h>
 29#include <linux/time.h>
 30#include <linux/timex.h>
 31#include <linux/sched.h>
 32#include <linux/cpumask.h>
 33#include <linux/cpu.h>
 34#include <linux/err.h>
 35#include <linux/ftrace.h>
 36
 37#include <linux/atomic.h>
 38#include <asm/cpu.h>
 39#include <asm/processor.h>
 40#include <asm/idle.h>
 41#include <asm/r4k-timer.h>
 42#include <asm/mmu_context.h>
 43#include <asm/time.h>
 44#include <asm/setup.h>
 45
 46#ifdef CONFIG_MIPS_MT_SMTC
 47#include <asm/mipsmtregs.h>
 48#endif /* CONFIG_MIPS_MT_SMTC */
 49
 50volatile cpumask_t cpu_callin_map;	/* Bitmask of started secondaries */
 51
 52int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
 53EXPORT_SYMBOL(__cpu_number_map);
 54
 55int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 56EXPORT_SYMBOL(__cpu_logical_map);
 57
 58/* Number of TCs (or siblings in Intel speak) per CPU core */
 59int smp_num_siblings = 1;
 60EXPORT_SYMBOL(smp_num_siblings);
 61
 62/* representing the TCs (or siblings in Intel speak) of each logical CPU */
 63cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
 64EXPORT_SYMBOL(cpu_sibling_map);
 65
 66/* representing cpus for which sibling maps can be computed */
 67static cpumask_t cpu_sibling_setup_map;
 68
 69static inline void set_cpu_sibling_map(int cpu)
 70{
 71	int i;
 72
 73	cpu_set(cpu, cpu_sibling_setup_map);
 74
 75	if (smp_num_siblings > 1) {
 76		for_each_cpu_mask(i, cpu_sibling_setup_map) {
 77			if (cpu_data[cpu].core == cpu_data[i].core) {
 78				cpu_set(i, cpu_sibling_map[cpu]);
 79				cpu_set(cpu, cpu_sibling_map[i]);
 80			}
 81		}
 82	} else
 83		cpu_set(cpu, cpu_sibling_map[cpu]);
 84}
 85
 86struct plat_smp_ops *mp_ops;
 87EXPORT_SYMBOL(mp_ops);
 88
 89void register_smp_ops(struct plat_smp_ops *ops)
 90{
 91	if (mp_ops)
 92		printk(KERN_WARNING "Overriding previously set SMP ops\n");
 93
 94	mp_ops = ops;
 95}
 96
 97/*
 98 * First C code run on the secondary CPUs after being started up by
 99 * the master.
100 */
101asmlinkage void start_secondary(void)
102{
103	unsigned int cpu;
104
105#ifdef CONFIG_MIPS_MT_SMTC
106	/* Only do cpu_probe for first TC of CPU */
107	if ((read_c0_tcbind() & TCBIND_CURTC) != 0)
108		__cpu_name[smp_processor_id()] = __cpu_name[0];
109	else
110#endif /* CONFIG_MIPS_MT_SMTC */
111	cpu_probe();
112	cpu_report();
113	per_cpu_trap_init(false);
114	mips_clockevent_init();
115	mp_ops->init_secondary();
116
117	/*
118	 * XXX parity protection should be folded in here when it's converted
119	 * to an option instead of something based on .cputype
120	 */
121
122	calibrate_delay();
123	preempt_disable();
124	cpu = smp_processor_id();
125	cpu_data[cpu].udelay_val = loops_per_jiffy;
126
127	notify_cpu_starting(cpu);
128
129	set_cpu_online(cpu, true);
130
131	set_cpu_sibling_map(cpu);
132
133	cpu_set(cpu, cpu_callin_map);
134
135	synchronise_count_slave(cpu);
136
137	/*
138	 * irq will be enabled in ->smp_finish(), enabling it too early
139	 * is dangerous.
140	 */
141	WARN_ON_ONCE(!irqs_disabled());
142	mp_ops->smp_finish();
143
144	cpu_startup_entry(CPUHP_ONLINE);
145}
146
147/*
148 * Call into both interrupt handlers, as we share the IPI for them
149 */
150void __irq_entry smp_call_function_interrupt(void)
151{
152	irq_enter();
 
153	generic_smp_call_function_interrupt();
154	irq_exit();
155}
156
157static void stop_this_cpu(void *dummy)
158{
159	/*
160	 * Remove this CPU:
161	 */
162	set_cpu_online(smp_processor_id(), false);
163	for (;;) {
164		if (cpu_wait)
165			(*cpu_wait)();		/* Wait if available. */
166	}
167}
168
169void smp_send_stop(void)
170{
171	smp_call_function(stop_this_cpu, NULL, 0);
172}
173
174void __init smp_cpus_done(unsigned int max_cpus)
175{
176	mp_ops->cpus_done();
 
177}
178
179/* called from main before smp_init() */
180void __init smp_prepare_cpus(unsigned int max_cpus)
181{
182	init_new_context(current, &init_mm);
183	current_thread_info()->cpu = 0;
184	mp_ops->prepare_cpus(max_cpus);
185	set_cpu_sibling_map(0);
186#ifndef CONFIG_HOTPLUG_CPU
187	init_cpu_present(cpu_possible_mask);
188#endif
189}
190
191/* preload SMP state for boot cpu */
192void smp_prepare_boot_cpu(void)
193{
194	set_cpu_possible(0, true);
195	set_cpu_online(0, true);
196	cpu_set(0, cpu_callin_map);
197}
198
199int __cpu_up(unsigned int cpu, struct task_struct *tidle)
200{
201	mp_ops->boot_secondary(cpu, tidle);
202
203	/*
204	 * Trust is futile.  We should really have timeouts ...
205	 */
206	while (!cpu_isset(cpu, cpu_callin_map))
207		udelay(100);
208
209	synchronise_count_master(cpu);
210	return 0;
211}
212
213/* Not really SMP stuff ... */
214int setup_profiling_timer(unsigned int multiplier)
215{
216	return 0;
217}
218
219static void flush_tlb_all_ipi(void *info)
220{
221	local_flush_tlb_all();
222}
223
224void flush_tlb_all(void)
225{
226	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
227}
228
229static void flush_tlb_mm_ipi(void *mm)
230{
231	local_flush_tlb_mm((struct mm_struct *)mm);
232}
233
234/*
235 * Special Variant of smp_call_function for use by TLB functions:
236 *
237 *  o No return value
238 *  o collapses to normal function call on UP kernels
239 *  o collapses to normal function call on systems with a single shared
240 *    primary cache.
241 *  o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core.
242 */
243static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
244{
245#ifndef CONFIG_MIPS_MT_SMTC
246	smp_call_function(func, info, 1);
247#endif
248}
249
250static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
251{
252	preempt_disable();
253
254	smp_on_other_tlbs(func, info);
255	func(info);
256
257	preempt_enable();
258}
259
260/*
261 * The following tlb flush calls are invoked when old translations are
262 * being torn down, or pte attributes are changing. For single threaded
263 * address spaces, a new context is obtained on the current cpu, and tlb
264 * context on other cpus are invalidated to force a new context allocation
265 * at switch_mm time, should the mm ever be used on other cpus. For
266 * multithreaded address spaces, intercpu interrupts have to be sent.
267 * Another case where intercpu interrupts are required is when the target
268 * mm might be active on another cpu (eg debuggers doing the flushes on
269 * behalf of debugees, kswapd stealing pages from another process etc).
270 * Kanoj 07/00.
271 */
272
273void flush_tlb_mm(struct mm_struct *mm)
274{
275	preempt_disable();
276
277	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
278		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
279	} else {
280		unsigned int cpu;
281
282		for_each_online_cpu(cpu) {
283			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
284				cpu_context(cpu, mm) = 0;
285		}
286	}
287	local_flush_tlb_mm(mm);
288
289	preempt_enable();
290}
291
292struct flush_tlb_data {
293	struct vm_area_struct *vma;
294	unsigned long addr1;
295	unsigned long addr2;
296};
297
298static void flush_tlb_range_ipi(void *info)
299{
300	struct flush_tlb_data *fd = info;
301
302	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
303}
304
305void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
306{
307	struct mm_struct *mm = vma->vm_mm;
308
309	preempt_disable();
310	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
311		struct flush_tlb_data fd = {
312			.vma = vma,
313			.addr1 = start,
314			.addr2 = end,
315		};
316
317		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
318	} else {
319		unsigned int cpu;
320
321		for_each_online_cpu(cpu) {
322			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
323				cpu_context(cpu, mm) = 0;
324		}
325	}
326	local_flush_tlb_range(vma, start, end);
327	preempt_enable();
328}
329
330static void flush_tlb_kernel_range_ipi(void *info)
331{
332	struct flush_tlb_data *fd = info;
333
334	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
335}
336
337void flush_tlb_kernel_range(unsigned long start, unsigned long end)
338{
339	struct flush_tlb_data fd = {
340		.addr1 = start,
341		.addr2 = end,
342	};
343
344	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
345}
346
347static void flush_tlb_page_ipi(void *info)
348{
349	struct flush_tlb_data *fd = info;
350
351	local_flush_tlb_page(fd->vma, fd->addr1);
352}
353
354void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
355{
356	preempt_disable();
357	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
358		struct flush_tlb_data fd = {
359			.vma = vma,
360			.addr1 = page,
361		};
362
363		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
364	} else {
365		unsigned int cpu;
366
367		for_each_online_cpu(cpu) {
368			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
369				cpu_context(cpu, vma->vm_mm) = 0;
370		}
371	}
372	local_flush_tlb_page(vma, page);
373	preempt_enable();
374}
375
376static void flush_tlb_one_ipi(void *info)
377{
378	unsigned long vaddr = (unsigned long) info;
379
380	local_flush_tlb_one(vaddr);
381}
382
383void flush_tlb_one(unsigned long vaddr)
384{
385	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
386}
387
388EXPORT_SYMBOL(flush_tlb_page);
389EXPORT_SYMBOL(flush_tlb_one);
390
391#if defined(CONFIG_KEXEC)
392void (*dump_ipi_function_ptr)(void *) = NULL;
393void dump_send_ipi(void (*dump_ipi_callback)(void *))
394{
395	int i;
396	int cpu = smp_processor_id();
397
398	dump_ipi_function_ptr = dump_ipi_callback;
399	smp_mb();
400	for_each_online_cpu(i)
401		if (i != cpu)
402			mp_ops->send_ipi_single(i, SMP_DUMP);
403
404}
405EXPORT_SYMBOL(dump_send_ipi);
406#endif